Science.gov

Sample records for greenhouse gas emitted

  1. Does manure management affect the latent greenhouse gas emitting potential of livestock manures?

    PubMed

    Pratt, Chris; Redding, Matthew; Hill, Jaye; Jensen, Paul D

    2015-12-01

    With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this. PMID:26320816

  2. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these experiments was to investigate the effect of dietary crude protein concentration on ammonia and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from dairy cow manure in simulated storage (Exp. 1) and from manure amended soil (Exp. 2). Manure was prep...

  3. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure.

    PubMed

    Lee, C; Hristov, A N; Dell, C J; Feyereisen, G W; Kaye, J; Beegle, D

    2012-04-01

    Two experiments were conducted to investigate the effect of dietary crude protein concentration on ammonia (NH(3)) and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from fresh dairy cow manure incubated in a controlled environment (experiment 1) and from manure-amended soil (experiment 2). Manure was prepared from feces and urine collected from lactating Holstein cows fed diets with 16.7% (DM basis; HCP) or 14.8% CP (LCP). High-CP manure had higher N content and proportion of NH(3)- and urea-N in total manure N than LCP manure (DM basis: 4.4 vs. 2.8% and 51.4 vs. 30.5%, respectively). In experiment 1, NH(3) emitting potential (EP) was greater for HCP compared with LCP manure (9.20 vs. 4.88 mg/m(2) per min, respectively). The 122-h cumulative NH(3) emission tended to be decreased 47% (P=0.09) using LCP compared with HCP manure. The EP and cumulative emissions of GHG were not different between HCP and LCP manure. In experiment 2, urine and feces from cows fed LCP or HCP diets were mixed and immediately applied to lysimeters (61×61×61 cm; Hagerstown silt loam; fine, mixed, mesic Typic Hapludalf) at 277 kg of N/ha application rate. The average NH(3) EP (1.53 vs. 1.03 mg/m(2) per min, respectively) and the area under the EP curve were greater for lysimeters amended with HCP than with LCP manure. The largest difference in the NH(3) EP occurred approximately 24 h after manure application (approximately 3.5 times greater for HCP than LCP manure). The 100-h cumulative NH(3) emission was 98% greater for HCP compared with LCP manure (7,415 vs. 3,745 mg/m(2), respectively). The EP of methane was increased and that of carbon dioxide tended to be increased by LCP compared with HCP manure. The cumulative methane emission was not different between treatments, whereas the cumulative carbon dioxide emission was increased with manure from the LCP diet. Nitrous oxide emissions were low in this experiment and did not differ between treatments. In the

  4. Greenhouse Gas Reductions: SF6

    SciTech Connect

    Anderson, Diana

    2012-01-01

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  5. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2013-04-19

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  6. Greenhouse gas emissions tool

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Power plants were the largest stationary source of direct greenhouse gas (GHG) emissions in the United States in 2010, according to data from the Environmental Protection Agency's (EPA) GHG Reporting Program, the agency announced on 11 January. The GHG data set, which includes reports from more than 6700 facilities, provides information that the public can search to identify local sources of emissions and that businesses can use to track emissions. Gina McCarthy, assistant administrator for EPA's Office of Air and Radiation, said the program is “a transparent, powerful data resource available to the public” and that it provides “a critical tool” for businesses and others to find efficiencies to reduce emissions.

  7. Midwestern Greenhouse Gas Reduction Accord

    SciTech Connect

    2007-07-01

    The Midwestern Greenhouse Gas Reduction Acccord, or Midwestern Greenhouse gas Accord (MGA), is a regional agreement by governors of the states in the US Midwest and one Canadian province to reduce greenhouse gas emissions to combat climate change. Signatories to the accord include the US states of Minnesota, Wisconsin, Illinois, Indiana, Iowa, Michigan, Kansas, Ohio and South Dakota, and the Canadian Province of Manitoba. The accord, signed on November 15, 2007, established the Midwestern Greenhouse Gas Reduction Program, which aims to: establish greenhouse gas reduction targets and timeframes consistent with MGA member states' targets; develop a market-based and multi-sector cap-and-trade mechanism to help achieve those reduction targets; establish a system to enable tracking, management, and crediting for entities that reduce greenhouse gas emissions; and develop and implement additional steps as needed to achieve the reduction targets, such as a low-carbon fuel standards and regional incentives and funding mechanisms. The GHG registry will be managed by the Climate Registry, which manages the registry for other US state schemes. One of the first actions was to convene an Energy Security under Climate Stewardship Platform to guide future development of the Midwest's energy economy.

  8. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  9. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  10. Biofuels and the Greenhouse Gas Factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels have been scrutinized for their potential to be used as a fuel substitute to offset a portion of the greenhouse gas (GHG) emissions produced by fossil fuel combustion. But quantifying that offset is complex. Bioenergy crops offset their greenhouse-gas contributions in three key ways: by rem...

  11. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  12. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively. PMID:17827109

  13. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  14. Greenhouse Gas Emissions from Dairy Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reduction of greenhouse gas emissions is becoming more important world-wide. Although research suggests that farm land can serve as a sink for carbon, animal production is also an important source of emissions. Thus, strategies must be designed to reduce or eliminate net emissions of greenhouse ...

  15. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  16. Multiagency Initiative to Provide Greenhouse Gas Information

    NASA Astrophysics Data System (ADS)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  17. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  18. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  19. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  20. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  1. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  2. Greenhouse gas induced climate change.

    PubMed

    Hegerl, G C; Cubasch, U

    1996-06-01

    Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

  3. Greenhouse gas emissions from dairy farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reduction of greenhouse gas emissions is becoming more important throughout the world. As a result, scientists and policymakers have sought cost-effective methods of reducing global emissions. One such proposed method is to sequester carbon in soil, particularly land used for agriculture. This p...

  4. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  5. Micrometeorological methods for assessing greenhouse gas flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micrometeorological methods for measuring carbon dioxide and nitrous oxide provide an opportunity for large-scale, long-term monitoring of greenhouse gas flux without the limitations imposed by chamber methods. Flux gradient and eddy covariance methods have been used for several decades to monitor g...

  6. Economic outcomes of greenhouse gas mitigation options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic outcomes of greenhouse gas (GHG) mitigation options are reviewed including reductions in tillage intensity, diversifying crop rotation, and N fertilizer management. The review indicates that, while reducing tillage can be a cost effective GHG mitigation practice, results vary by region and ...

  7. Assessing Greenhouse Gas Emissions from University Purchases

    ERIC Educational Resources Information Center

    Thurston, Matthew; Eckelman, Matthew J.

    2011-01-01

    Purpose: A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest "indirect" GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's…

  8. 78 FR 23149 - Mandatory Greenhouse Gas Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 Mandatory Greenhouse Gas Reporting CFR Correction In Title 40 of the Code of Federal Regulations, Parts 96 to 99, revised as of July 1, 2012, on page 768, in Sec. 98.226, in...

  9. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  10. Greenhouse-gas-trading markets.

    PubMed

    Sandor, Richard; Walsh, Michael; Marques, Rafael

    2002-08-15

    This paper summarizes the extension of new market mechanisms for environmental services, explains of the importance of generating price information indicative of the cost of mitigating greenhouse gases (GHGs) and presents the rationale and objectives for pilot GHG-trading markets. It also describes the steps being taken to define and launch pilot carbon markets in North America and Europe and reviews the key issues related to incorporating carbon sequestration into an emissions-trading market. There is an emerging consensus to employ market mechanisms to help address the threat of human-induced climate changes. Carbon-trading markets are now in development around the world. A UK market is set to launch in 2002, and the European Commission has called for a 2005 launch of an European Union (EU)-wide market, and a voluntary carbon market is now in formation in North America. These markets represent an initial step in resolving a fundamental problem in defining and implementing appropriate policy actions to address climate change. Policymakers currently suffer from two major information gaps: the economic value of potential damages arising from climate changes are highly uncertain, and there is a lack of reliable information on the cost of mitigating GHGs. These twin gaps significantly reduce the quality of the climate policy debate. The Chicago Climate Exchange, for which the authors serve as lead designers, is intended to provide an organized carbon-trading market involving energy, industry and carbon sequestration in forests and farms. Trading among these diverse sectors will provide price discovery that will help clarify the cost of combating climate change when a wide range of mitigation options is employed. By closing the information gap on mitigation costs, society and policymakers will be far better prepared to identify and implement optimal policies for managing the risks associated with climate change. Establishment of practical experience in providing

  11. The Dairy Greenhouse Gas Emission Model: Reference Manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  12. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  13. Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production

    NASA Astrophysics Data System (ADS)

    Weston, Ralph E.

    Tetrafluoromethane (CF 4) is an extremely stable gas which strongly absorbs infrared radiation at ˜ 8 μm, and therefore is capable of influencing the greenhouse effect. No natural sources have been identified, and the major anthropogenic source appears to be the electrolytic smelting of alumina to produce aluminum. Measurements of CF 4 concentrations in the atmosphere are reviewed, and these are combined with aluminum production rates to provide an estimate of 1.3-3.6 kg of CF 4 emitted per ton of aluminum produced for the period up to ˜ 1985. Aluminum production also requires large amounts of electrical energy, leading to the emission of as much as 22 tons of carbon dioxide per ton of aluminum due to fossil fuel combustion in power plants. The present day contribution of hydroelectric power reduces this figure to about 14 tons of carbon dioxide per ton of aluminum. An estimate of the relative radiative trapping of CF 4 and CO 2 emitted in aluminum production during this same period (1900-1985) indicates that the effect of CF 4 is about one-third that of the CO 2 formed by aluminum production. However, the emission of fluorocarbons from modem aluminum electrolysis cells is much lower than previous estimates indicate, and this factor is considered in estimating potential long-term global warming effects of CF 4 and CO 2 from aluminum production. Possible processes leading to removal of CF 4 from the atmosphere are described.

  14. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research. PMID:18839604

  15. Joint implementation: Biodiversity and greenhouse gas offsets

    NASA Astrophysics Data System (ADS)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  16. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  17. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  18. Greenhouse-gas emissions from soils increased by earthworms

    NASA Astrophysics Data System (ADS)

    Lubbers, Ingrid M.; van Groenigen, Kees Jan; Fonte, Steven J.; Six, Johan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2013-03-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon dioxide and nitrous oxide. Hence, it remains highly controversial whether earthworms predominantly affect soils to act as a net source or sink of greenhouse gases. Here, we provide a quantitative review of the overall effect of earthworms on the soil greenhouse-gas balance. Our results suggest that although earthworms are largely beneficial to soil fertility, they increase net soil greenhouse-gas emissions.

  19. Greenhouse Gas Emissions from the Nuclear Fuel Cycle

    SciTech Connect

    Strom, Daniel J.

    2010-03-01

    Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

  20. CO2 As An Inverse Greenhouse Gas

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    1984-01-01

    It is a well-known fact that mankind's burning of fossil fuels such as coal, gas and oil has significantly increased the CO2 content of Earth's atmosphere, from something less than 300 ppm (parts per million by volume) in the pre-Industrial Revolution era to a con-centration which is currently somewhat over 340 ppm. It is also fairly well established that a concentration of 600 ppm will be reached sometime in the next century. Atmospheric scientists using complex computer models of the atmosphere have predicted that such a concentration doubling will lead to a calamatous climatic warming, due to the thermal infra-red "greenhouse" properties of CO2. However, my investigation of a large body of empirical evidence suggests just the opposite. Indeed, long-term records of surface air temperature and snow cover data indicate that increasing concentrations of atmospheric CO2 may actually tend to cool the Earth and not warm it. These and other observations of the real world lead to the conclusion that, for the present composition of the Earth's atmosphere, CO2 appears to behave as an inverse greenhouse gas. A mechanism for this phenomenon is suggested; and it is then indicated how enhanced concentrations of atmospheric CO2 may be beneficial for the planet, particularly with respect to the ability of enhanced CO2 concentrations to stimulate plant growth and reduce water requirements.

  1. Modern to millennium-old greenhouse gases emitted from freshwater ecosystems of the eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Bouchard, F.; Laurion, I.; Preskienis, V.; Fortier, D.; Xu, X.; Whiticar, M. J.

    2015-07-01

    Ponds and lakes are widespread across the rapidly changing permafrost environments. Aquatic systems play an important role in global biogeochemical cycles, especially in greenhouse gas (GHG) exchanges between terrestrial systems and the atmosphere. The source, speciation and emission of carbon released from permafrost landscapes are strongly influenced by local specific conditions rather than general environmental setting. This study reports on GHG ages and emission rates from aquatic systems on Bylot Island in the eastern Canadian Arctic. Dissolved and ebullition gas samples were collected during the summer season from different types of water bodies located in a highly dynamic periglacial valley: polygonal ponds, collapsed ice-wedge trough ponds, and larger lakes overlying unfrozen soils (talik). The results showed strikingly different ages and fluxes depending on aquatic system types. Polygonal ponds were net sinks of dissolved CO2, but variable sources of dissolved CH4. They presented the highest ebullition fluxes, one or two orders of magnitude higher than from other ponds and lakes. Trough ponds appeared as substantial GHG sources, especially when their edges were actively eroding. Both types of ponds produced modern to hundreds of years old (<550 yr BP) GHG, even if trough ponds could contain much older carbon (>2000 yr BP) derived from freshly eroded peat. Lakes had small dissolved and ebullition fluxes, however they released much older GHG, including millennium-old CH4 (up to 3500 yr BP) sampled from lake central areas. Acetoclastic methanogenesis dominated at all study sites and there was minimal, if any, methane oxidation in gas emitted through ebullition. These findings provide new insights on the variable role of permafrost aquatic systems as a positive feedback mechanism on climate.

  2. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  3. Greenhouse gas exchange over grazed systems

    NASA Astrophysics Data System (ADS)

    Felber, R.; Ammann, C.; Neftel, A.

    2012-04-01

    Grasslands act as sinks and sources of greenhouse gases (GHG) and are, in conjunction with livestock production systems, responsible for a large share of GHG emissions. Whereas ecosystem scale flux measurements (eddy covariance) are commonly used to investigate CO2 exchange (and is becoming state-of-the-art for other GHGs, too), GHG emissions from agricultural animals are usually investigated on the scale of individual animals. Therefore eddy covariance technique has to be tested for combined systems (i.e. grazed systems). Our project investigates the ability of field scale flux measurements to reliably quantify the contribution of grazing dairy cows to the net exchange of CO2 and CH4. To quantify the contribution of the animals to the net flux the position, movement, and grazing/rumination activity of each cow are recorded. In combination with a detailed footprint analysis of the eddy covariance fluxes, the animal related CO2 and CH4 emissions are derived and compared to standard emission values derived from respiration chambers. The aim of the project is to test the assumption whether field scale CO2 flux measurements adequately include the respiration of grazing cows and to identify potential errors in ecosystem Greenhouse gas budgets.

  4. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the

  5. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  6. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  7. Greenhouse gas emissions from traditional and biofuels cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  8. Valuation of carbon capture and sequestration under Greenhouse gas regulations

    SciTech Connect

    Lokey, Elizabeth

    2009-05-15

    The value assigned to CCS depends on the type of greenhouse gas regulation chosen and details of how the market is implemented. This article describes some ways in which CCS can be incorporated into greenhouse gas regulations, together with their implications, and how CCS is treated in current regulations for regulated entities. (author)

  9. Life cycle greenhouse gas emissions from bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life cycle greenhouse gas emissions from bioenergy crops Bioenergy cropping systems could help offset greenhouse gas emissions from energy use, but quantifying that offset is complex. We conducted a life cycle assessment of a range of bioenergy cropping systems to determine the impact on net greenho...

  10. Greenhouse gas emissions from a managed grassland

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Rees, R. M.; Skiba, U. M.; Ball, B. C.

    2005-07-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were measured in 2002 and 2003. Closed static chambers were used for N 2O and CH 4 flux measurements, and samples were analysed by gas chromatography. Closed dynamic chambers were used for soil respiration measurements, using infrared gas analysis. Three organic manures and two inorganic fertilizers were applied at a rate of 300 kg N ha -1 a -1 (available N) and compared with a zero-N control on grassland plots in a replicated experimental design. Soil respiration from plots receiving manure was up to 1.6 times larger than CO 2 release from control plots and up to 1.7 times larger compared to inorganic treatments ( p<0.05). A highly significant ( p<0.001) effect of fertilizer and manure treatments on N 2O release was observed. Release of N 2O from plots receiving inorganic fertilizers resulted in short term peaks of up to 388 g N 2O-N ha -1 day -1. However losses from plots receiving organic manures were both longer lasting and greater in magnitude, with an emission of up to 3488 g N 2O-N ha -1 day -1 from the sewage sludge treatments. During the 2002 growing season the cumulative total N 2O flux from manure treatments was 25 times larger than that from mineral fertilizers. CH 4 emissions were only significantly increased ( p<0.001) for a short period following applications of cattle slurry. Although soil respiration in manure plots was high, model predictions and micrometeorological flux measurements at an adjacent site suggest that all plots receiving fertilizer or manure acted as a sink for CO 2. Therefore in terms of global warming potentials the contribution of N 2O from

  11. EDITORIAL: Tropical deforestation and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly K.; Herold, Martin

    2007-10-01

    Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world

  12. Overview of ARB's Greenhouse Gas Research Program

    NASA Astrophysics Data System (ADS)

    Falk, M.; Chen, Y.; Kuwayama, T.; Vijayan, A.; Herner, J.; Croes, B.

    2015-12-01

    Since the passage of the California Global Warming Solutions Act (or AB32) in 2006, California Air Resources Board (ARB) has established and implemented a comprehensive plan to understand, quantify, and mitigate the various greenhouse gas (GHG) emission source sectors in the state. ARB has also developed a robust and multi-tiered in-house research effort to investigate methane (CH4), nitrous oxide (N2O) and fluorinated gas emission sources. This presentation will provide an overview of ARB's monitoring and measurement research efforts to study the regional and local emission sources of these pollutants in California. ARB initiated the first subnational GHG Research Monitoring Network in 2010 to study the regional GHG emissions throughout the state. The network operates several high precision analyzers to study CH4, N2O, CO and CO2 emissions at strategically selected regional sites throughout California, and the resulting data are used to study the statewide emission trends and evaluate regional sources using statistical analyses and inverse modeling efforts. ARB is also collaborating with leading scientists to study important emission sources including agriculture, waste, and oil and gas sectors, and to identify "hot spot" methane sources through aerial surveys of high methane emitters in California. At the source level, ARB deploys Mobile Measurement Platforms (MMP) and flux chambers to measure local and source specific emissions, and uses the information to understand source characteristics and inform emissions inventories. Collectively, all these efforts are offering a comprehensive view of regional and local emission sources, and are expected to help in developing effective mitigation strategies to reduce GHG emissions in California.

  13. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... ADMINISTRATION Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal... Supplier Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on... Information Collection 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the...

  14. Embodied greenhouse gas emissions in diets.

    PubMed

    Pradhan, Prajal; Reusser, Dominik E; Kropp, Juergen P

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO(2eq.)/day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO(2eq.)/yr by 2050. PMID:23700408

  15. Estonian greenhouse gas emissions inventory report

    SciTech Connect

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  16. California's new mandatory greenhouse gas reporting regulation

    SciTech Connect

    Patrick Gaffney; Doug Thompson; Richard Bode

    2008-11-15

    Beginning in early 2009, approximately 1000 California businesses will begin reporting their greenhouse gas (GHG) emissions based on the requirements of a new regulation adopted by the California Air Resources Board (CARB) in December 2007. California's mandatory GHG reporting regulation is the first rule adopted as a requirement of the Global Warming Solutions Act of 2006, passed by the California Legislature as Assembly Bill 32 (AB 32; Nunez, Chapter 488, Statutes of 2006) and signed by Governor Arnold Schwarzenegger in September 2006. The regulation is the first of its kind in the United States to require facilities to report annual GHG emissions. In general, all facilities subject to reporting are required to report their on-site stationary source combustion emissions of CO{sub 2}, nitrous oxide (N{sub 2}O), and methane (CH{sub 4}). Some industrial sectors, such as cement producers and oil refineries, also must report their process emissions, which occur from chemical or other noncombustion activities. Fugitive emissions from facilities are required to be reported when specified in the regulation. Sulfur hexafluoride (SF{sub 6}) and hydrofluorocarbon (HFC) use is prevalent in electricity facilities and must be reported. CO{sub 2} emissions from biomass-derived fuels must be separately identified during reporting, and reporters must also provide their consumption of purchased or acquired electricity and thermal energy; these requirements will assist facilities in evaluating changes in their fossil fuel carbon footprints. 1 tab.

  17. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  18. Freshwater greenhouse gas emissions and their implications on landscape level carbon balances in India

    NASA Astrophysics Data System (ADS)

    Panneer Selvam, B.; Natchimuthu, S.; Arunachalam, L.; Bastviken, D.

    2012-04-01

    Methane (CH4) and carbon dioxide (CO2) emissions from global freshwaters are important sources of greenhouse gases to the atmosphere. It has been estimated that about 0.65 Pg of C (CO2 equiv.) yr-1 in the form of CH4 and 1.4 Pg C yr -1 in the form of CO2 is being emitted from global freshwaters. Therefore, including freshwater emissions in the greenhouse gas budgets in the national or global levels could significantly reduce the estimated land carbon sink, but present estimates suffer from lack of data, in particular from tropical freshwaters. Hence, we attempted to test the validity of the land carbon sink estimate in India, a tropical country with a large number of natural and man-made water bodies. We measured the CH4 and CO2 fluxes and surface water concentrations from a wide variety of inland freshwaters like lakes, ponds, rivers, reservoirs, open wells, canals and springs in three South Indian states, Tamil Nadu, Kerala and Andhra Pradesh. We observed that almost all of these freshwater systems emitted varied amounts of CH4 and a majority of them emitted CO2, similar to other tropical locations in South America. We extrapolated the measured fluxes for the whole of Indian inland waters by using the total area of different categories of inland waters in the national wetland atlas of India. By comparing our estimates of aquatic fluxes with the national greenhouse gas budget, we show that the land carbon sink of India is substantially overestimated. Thus, freshwater emissions are important components of greenhouse gas budgets on a landscape level and it is necessary to incorporate them in national and global greenhouse gas budgets to accurately quantify the land carbon sink.

  19. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  20. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  1. Special Issue From the 4th USDA Greenhouse Gas Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  2. Can Grazing Reduce Greenhouse Gas Emissions from Dairy Farms?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases (GHG) have become a common topic the past few years as more concern is developing over global climate change and the potential impact of these gases on our environment. So do our farms emit GHG? If so, how much and does the use of grazing affect these losses? A study was conducted u...

  3. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    SciTech Connect

    McAlexander, Benjamin L.

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  4. Greenhouse gas emissions from on-site wastewater treatment systems

    NASA Astrophysics Data System (ADS)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  5. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  6. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  7. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    SciTech Connect

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  8. Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts

    EPA Science Inventory

    Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...

  9. Integrated Belowground Greenhouse Gas Flux Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.

    2013-12-01

    Soil greenhouse gas (GHG) emissions play a significant role as biotic feedbacks to climate change. However, these complex processes, involving C, N, and O2 substrates and inhibitors, interactions with plant processes, and environmental influences of temperature, moisture, and gas transport, remain challenging to simulate in process models. Because CO2, CH4, and N2O production and consumption processes are inter-linked through common substrates and the contrasting effects of O2 as either an essential substrate or a potential inhibitor, the simulation of fluxes of any one gas must be consistent with mechanistic simulations and observations of fluxes of the other gases. Simulating the fluxes of one gas alone is a simpler task, but simulating all three gases simultaneously would provide multiple constraints and would afford greater confidence that the most important mechanisms are aptly simulated. A case in point is the challenge of resolving the apparent paradox of observed simultaneous CO2 production by aerobic respiration, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil profile. Consumption of atmospheric N2O should occur only under reducing conditions, and yet we have observed uptake of atmospheric CH4 (oxidation) and N2O (reduction) simultaneously. One of the great challenges of numerical modeling is determining the appropriate level of complexity when representing the most important environmental controllers. Ignoring complexity, such as simulating microbial processes with only simple Q10 functions, often results in poor model performance, because soil moisture and substrate supply can also be important factors. On the other hand, too much complexity, while perhaps mechanistically compelling, may result in too many poorly constrained parameters. Here we explore a parsimonious modeling framework for consistently integrated mechanistic and mathematical representation of the biophysical processes of belowground GHG production and

  10. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  11. Benefits of dealing with uncertainty in greenhouse gas inventories: introduction

    SciTech Connect

    Jonas, Matthias; Winiwarter, Wilfried; Marland, Gregg; White, Thomas; Nahorski, Zbigniew; Bun, Rostyslav

    2010-01-01

    The assessment of greenhouse gases emitted to and removed from the atmosphere is high on the international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need for policy-oriented solutions to the issue of uncertainty in, and related to, inventories of greenhouse gas (GHG) emissions. The approaches to addressing uncertainty discussed in this Special Issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, systems analytical perspective-a perspective that seeks to strengthen the usefulness of national inventories under a compliance and/or global monitoring and reporting framework. These approaches demonstrate the benefits of including inventory uncertainty in policy analyses. The authors of the contributed papers show that considering uncertainty helps avoid situations that can, for example, create a false sense of certainty or lead to invalid views of subsystems. This may eventually prevent related errors from showing up in analyses. However, considering uncertainty does not come for free. Proper treatment of uncertainty is costly and demanding because it forces us to make the step from 'simple to complex' and only then to discuss potential simplifications. Finally, comprehensive treatment of uncertainty does not offer policymakers quick and easy solutions. The authors of the papers in this Special Issue do, however, agree that uncertainty analysis must be a key component of national GHG inventory analysis. Uncertainty analysis helps to provide a greater understanding and better science helps us to reduce and deal with uncertainty. By recognizing the importance of identifying and quantifying uncertainties, great strides can be made in ongoing discussions regarding GHG inventories and accounting for climate change. The 17 papers in this Special Issue deal with many aspects of analyzing and dealing with uncertainty in emissions

  12. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  13. Greenhouse gas emissions from stabilization ponds in subtropical climate.

    PubMed

    Hernandez-Paniagua, I Y; Ramirez-Vargas, R; Ramos-Gomez, M S; Dendooven, L; Avelar-Gonzalez, F J; Thalasso, F

    2014-01-01

    Waste stabilization ponds (WSPs) are a cost-efficient method to treat municipal and non-toxic industrial effluents. Numerous studies have shown that WSPs are a source of greenhouse gas (GHG). However, most reports concerned anaerobic ponds (AP) and few have addressed GHG emissions from facultative (FP) and aerobic/maturation ponds (MPs). In this paper, GHG emissions from three WSP in series are presented. These WSPs were designed as anaerobic, facultative and aerobic/maturation and were treating agricultural wastewater. CH4 fluxes from 0.6 +/- 0.4 g CH4 m(-2) d(-1) in the MP, to 7.0 +/- 1.0 g CH4 m(-2) d(-1) in the (AP), were measured. A linear correlation was found between the loading rates of the ponds and CH4 emissions. Relatively low CO2 fluxes (0.2 +/- 0.1 to 1.0 +/- 0.8 g CO2 m(-2) d(-1)) were found, which suggest that carbonate/bicarbonate formation is caused by alkaline pH. A mass balance performed showed that 30% of the total chemical oxygen demand removed was converted to CH4. It has been concluded that the WSP system studied emits at least three times more GHG than aerobic activated sludge systems and that the surface loading rate is the most important design parameter for CH4 emissions. PMID:24645453

  14. A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot.

    PubMed

    Bai, Mei; Flesch, Thomas K; McGinn, Sean M; Chen, Deli

    2015-11-01

    Beef cattle feedlots emit large amounts of the greenhouse gases (GHG) methane (CH) and nitrous oxide (NO), as well as ammonia (NH), which contributes to NO emission when NH is deposited to land. However, there is a lack of simultaneous, in situ, and nondisturbed measurements of the major GHG gas components from beef cattle feedlots, or measurements from different feedlot sources. A short-term campaign at a beef cattle feedlot in Victoria, Australia, quantified CH, NO, and NH emissions from the feedlot pens, manure stockpiles, and surface run-off pond. Open-path Fourier transform infrared (OP-FTIR) spectrometers and open-path lasers (OP-Laser) were used with an inverse-dispersion technique to estimate emissions. Daily average emissions of CH, NO, and NH were 132 (± 2.3 SE), 0, and 117 (± 4.5 SE) g animal d from the pens and 22 (± 0.7 SE), 2 (± 0.2 SE), and 9 (± 0.6 SE) g animal d from the manure stockpiles. Emissions of CH and NH from the run-off pond were less than 0.5 g animal d. Extrapolating these results to the feedlot population of cattle across Australia would mean that feedlots contribute approximately 2% of the agricultural GHG emissions and 2.7% of livestock sector emissions, lower than a previous estimate of 3.5%. PMID:26641350

  15. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. PMID:26059550

  16. 78 FR 25392 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    .... Environmental Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program CO... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... Greenhouse Gas Reporting Rule must submit requests for use of best available monitoring methods to...

  17. 77 FR 14225 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule Step 3, GHG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...This proposal concerns the third step (Step 3) in the EPA's Tailoring Rule. We are proposing to maintain the applicability thresholds for greenhouse gas (GHG)-emitting sources at the current levels. We are also proposing two streamlining approaches, which will improve the administration of GHG Prevention of Significant Deterioration (PSD) and title V permitting programs. The first proposal......

  18. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  19. Agricultural opportunities to mitigate greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a source for three primary greenhouse gases (GHG): carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It can also be a sink for CO2 through carbon (C) sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestrati...

  20. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  1. Editorial and Introduction of the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

    SciTech Connect

    Dooley, James J.; Benson, Sally M.; Karimjee, Anhar; Rubin, Edward S.

    2010-03-01

    Short one page editorial to introduce the +30 peer reviewed papers contained within the Special Issue for the Ninth International Conference on Greenhouse Gas Control Technologies in the International Journal of Greenhouse Gas Control

  2. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  3. Usepa Development and Use of Greenhouse Gas Emissions Information

    NASA Astrophysics Data System (ADS)

    Irving, W. N.; Wirth, T.; Weitz, M.; Hockstad, L.

    2014-12-01

    EPA uses greenhouse gas emissions data for a variety of different purposes, including the development, implementation, and assessment of mitigation policies & programs domestically and internationally. In this presentation, EPA will describe its greenhouse gas dataset requirements, how it develops and uses its own data, how it makes use of data from external providers, and some ideas for further collaboration with the research community. In particular, EPA will provide examples of the type of information and calculations used for specific sources of greenhouse gas emissions (e.g., oil & gas emissions), and how it updates its estimates for these sources on the basis of new and improved information. The presentation will also address uncertainty assessments and different types of verification approaches. The presentation will also identify key emission sources and sinks that have the highest estimated uncertainty and which could benefit from additional characterization, data collection and measurement by the research community.

  4. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  5. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  6. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-12-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  7. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  8. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... AGENCY 40 CFR Parts 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY..., 2010 EPA promulgated Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule... outlined for calculating greenhouse gas emissions for the petroleum and natural gas systems source...

  9. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

  10. Managing greenhouse gas emission in the indian aluminum industry

    NASA Astrophysics Data System (ADS)

    Mahadevan, H.

    2001-11-01

    Fluorocarbons are pollutants that destroy the ozone layer in the upper atmosphere and allow more ultraviolet radiation to reach the surface of the earth. Over-exposure to such radiation damages plants and greatly increases people’s risk of skin cancer. Aluminum refineries and smelters, which consume large amounts of energy, are committed to continuous improvement in greenhouse gas abatement. Although India is under no international pressure to reduce greenhouse gas emissions, the Indian aluminum industry could undertake such a commitment voluntarily. This analysis shows where immediate improvements are possible, and presents a tentative action plan for the industry.

  11. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  12. Greenhouse gas emission from covered windrow composting with controlled ventilation.

    PubMed

    Ermolaev, Evgheni; Pell, Mikael; Smårs, Sven; Sundberg, Cecilia; Jönsson, Håkan

    2012-02-01

    Data on greenhouse gas (GHG) emissions from full-scale composting of municipal solid waste, investigating the effects of process temperature and aeration combinations, is scarce. Oxygen availability affects the composition of gases emitted during composting. In the present study, two experiments with three covered windrows were set up, treating a mixture of source separated biodegradable municipal solid waste (MSW) fractions from Uppsala, Sweden, and structural amendment (woodchips, garden waste and re-used compost) in the volume proportion 1:2. The effects of different aeration and temperature settings on the emission of methane (CH(4)), nitrous oxide (N(2)O) and carbon dioxide (CO(2)) during windrow composting with forced aeration following three different control schemes were studied. For one windrow, the controller was set to keep the temperature below 40 °C until the pH increased, another windrow had minimal aeration at the beginning of the process and the third one had constant aeration. In the first experiment, CH(4) concentrations (CH(4):CO(2) ratio) increased, from around 0.1% initially to between 1 and 2% in all windrows. In the second experiment, the initial concentrations of CH(4) displayed similar patterns of increase between windrows until day 12, when concentration peaked at 3 and 6%, respectively, in two of the windrows. In general, the N(2)O fluxes remained low (0.46 ± 0.02 ppm) in the experiments and were two to three times the ambient concentrations. In conclusion, the emissions of CH(4) and N(2)O were low regardless of the amount of ventilation. The data indicates a need to perform longer experiments in order to observe further emission dynamics. PMID:21994145

  13. a Review of Hydropower Reservoir and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rosa, L. P.; Dos Santos, M. A.

    2013-05-01

    Like most manmade projects, hydropower dams have multiple effects on the environment that have been studied in some depth over the past two decades. Among their most important effects are potential changes in water movement, flowing much slower than in the original river. This favors the appearance of phytoplankton as nutrients increase, with methanogenesis replacing oxidative water and generating anaerobic conditions. Although research during the late 1990s highlighted the problems caused by hydropower dams emitting greenhouse gases, crucial aspects of this issue still remain unresolved. Similar to natural water bodies, hydropower reservoirs have ample biota ranging from microorganisms to aquatic vertebrates. Microorganisms (bacteria) decompose organic matter producing biogenic gases under water. Some of these biogenic gases cause global warming, including methane, carbon dioxide and nitrous oxide. The levels of GHG emissions from hydropower dams are a strategic matter of the utmost importance, and comparisons with other power generation options such as thermo-power are required. In order to draw up an accurate assessment of the net emissions caused by hydropower dams, significant improvements are needed in carbon budgets and studies of representative hydropower dams. To determine accurately the net emissions caused by hydro reservoir formation is required significant improvement of carbon budgets studies on different representatives' hydro reservoirs at tropical, boreal, arid, semi arid and temperate climate. Comparisons must be drawn with emissions by equivalent thermo power plants, calculated and characterized as generating the same amount of energy each year as the hydropower dams, burning different fuels and with varying technology efficiency levels for steam turbines as well as coal, fuel oil and natural gas turbines and combined cycle plants. This paper brings to the scientific community important aspects of the development of methods and techniques applied

  14. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem].

    PubMed

    Li, Jian-zheng; Wang, Ying-chun; Wang, Li-gang; Li, Hu; Qiu, Jian-jun; Wang, Dao-long

    2015-01-01

    In spite of the increasing studies on greenhouse gas (GHG) emissions mitigation technologies, there is still a lack of systematic indices for evaluation of their overall impacts in croplands. In this study, we collected all the indices relating to greenhouse gas emissions and analyzed each index following the principles of representativeness, objectivity, completeness, dominance and operability. Finally, we proposed evaluation indices for mitigation technologies based on the current situation of China. Crop yield per unit area was proposed as a constrained index, and greenhouse gas emissions intensity, defined as GHG emissions per unit of produced yield, was proposed as comprehensive index to evaluate the greenhouse effect of various croplands mitigation technologies. Calculation of GHG emissions intensity involved yield, change of soil organic carbon, direct N2O emissions, paddy CH4 emissions and direct and indirect emissions from inputs into croplands. By following these evaluation indices, the greenhouse effect of the technologies could be well evaluated, which could provide scientific basis for their further adoption. PMID:25985682

  15. 78 FR 19605 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request... published a direct final rule, Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method... petroleum and natural gas systems source category of the Greenhouse Gas Reporting Rule are required...

  16. Institutionalizing a Greenhouse Gas Emission Reduction Target at Yale

    ERIC Educational Resources Information Center

    Rauch, Jason N.; Newman, Julie

    2009-01-01

    Purpose: The purpose of this paper is to analyze the development and implementation of how a greenhouse gas GHG reduction target at Yale University has resulted in broad and long-term institutional commitment. Design/methodology/approach: Interviews are conducted with key individuals representing those most directly involved in developing and…

  17. Greenhouse Gas Mitigation Options Database(GMOD)and Tool

    EPA Science Inventory

    Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...

  18. PROCEEDINGS: THE 1992 GREENHOUSE GAS EMISSIONS AND MITIGATION RESEARCH SYMPOSIUM

    EPA Science Inventory

    The report documents the 1992 Greenhouse Gas Emissions and Mitigation Research Symposium held in Washington, DC, August 18-20, 1992. The symposium provided a forum for exchange of technical information on global change emissions and potential mitigation technologies. The primary ...

  19. Life cycle greenhouse gas impacts of grassland management practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from conservation and dedicated grasslands could be an important feedstock for biofuels. Estimating the carbon (C) intensity of biofuel production pathways is important in order to meet greenhouse gas (GHG) targets set by government policy. Management decisions made during feedstock producti...

  20. Assessment and mitigation of greenhouse gas emissions from feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This was an invited 45 minute oral presentation concerning assessment and mitigation of greenhouse gas emissions from feedlots. The audience at the summit (about 60 people) included university professors, environmental regulators, and producers. The presentation included a brief review of environm...

  1. Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions

    ERIC Educational Resources Information Center

    Deason, Jeffrey A.; Friedman, Lee S.

    2010-01-01

    Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…

  2. The Role of Nuclear Power in Reducing Greenhouse Gas Emissions

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge As this chapter will point out, nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to gr...

  3. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  4. Mitigation potential and costs for global agricultural greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a substantial contributor to global greenhouse gas (GHG) emissions, accounting for about 58% of the world’s anthropogenic non-carbon dioxide GHG emissions and 14% of all anthropogenic GHG emissions, and agriculture is often viewed as a potential source of relatively low-c...

  5. USDA Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 43%, 152%, and 20% respectively since about 1750. In 2013, total U.S. greenhouse gas emissions were 6,673 million metric tons of carbon dioxide equivalents (MMT CO2 eq.), ris...

  6. Estimated Greenhouse Gas Emissions from a Representative Northeastern Dairy Farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions to the atmosphere and their potential impact on global climate change have become important concerns world-wide. Livestock production systems, such as dairy farms, provide both sinks and sources for GHG emissions. Farmland can serve as a carbon sink by providing a lon...

  7. Quantifying greenhouse gas mitigation potential of cropland management practices: A review of the GRA croplands research group greenhouse gas network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-national greenhouse gas (GHG) flux networks play a central role facilitating model development and verification while concurrently identifying critical research needs. In 2012, a network was established within Component 1 of the Global Research Alliance (GRA) Croplands Research Group. The ne...

  8. The Dairy Greenhouse Gas Model: A Tool for estimating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Animal agriculture is a recognized source of GHG emissions, but good information does not exist on the net emissions from our farms. A software tool called the Dai...

  9. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... started on October 16, 2012 (77 FR 63538). This document announces the extension of the deadline for... AGENCY 40 CFR Part 98 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality... rule titled ``Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality...

  10. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Leadership in Environmental, Energy, and Economic Performance (74 FR 52117) in order to establish an... QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council on Environmental Quality. ACTION: Notice of Availability, Draft Guidance, ``Federal Greenhouse Gas Accounting...

  11. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    SciTech Connect

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch.

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  12. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  13. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  14. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut)

    NASA Astrophysics Data System (ADS)

    Bouchard, F.; Laurion, I.; Prėskienis, V.; Fortier, D.; Xu, X.; Whiticar, M. J.

    2015-12-01

    Ponds and lakes are widespread across the rapidly changing permafrost environments. Aquatic systems play an important role in global biogeochemical cycles, especially in greenhouse gas (GHG) exchanges between terrestrial systems and the atmosphere. The source, speciation and emission rate of carbon released from permafrost landscapes are strongly influenced by local conditions, hindering pan-Arctic generalizations. This study reports on GHG ages and emission rates from aquatic systems located on Bylot Island, in the continuous permafrost zone of the Eastern Canadian Arctic. Dissolved and ebullition gas samples were collected during the summer season from different types of water bodies located in a highly dynamic periglacial valley: polygonal ponds, collapsed ice-wedge trough ponds, and larger lakes. The results showed strikingly different ages and fluxes depending on aquatic system types. Polygonal ponds were net sinks of dissolved CO2, but variable sources of dissolved CH4. They presented the highest ebullition fluxes, 1 or 2 orders of magnitude higher than from other ponds and lakes. Trough ponds appeared as substantial GHG sources, especially when their edges were actively eroding. Both types of ponds produced modern to hundreds of years old (< 550 yr BP) GHG, even if trough ponds could contain much older carbon (> 2000 yr BP) derived from freshly eroded peat. Lakes had small dissolved and ebullition fluxes, however they released much older GHG, including millennium-old CH4 (up to 3500 yr BP) from lake central areas. Acetoclastic methanogenesis dominated at all study sites and there was minimal, if any, methane oxidation in gas emitted through ebullition. These findings provide new insights on GHG emissions by permafrost aquatic systems and their potential positive feedback effect on climate.

  15. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  16. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    SciTech Connect

    Liu, Zhen; Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; van Bloemen Waanders, Bart Gustaaf; LaFranchi, Brian W.; Ivey, Mark D.; Schrader, Paul E.; Michelsen, Hope A.; Bambha, Ray P.

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF

  17. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  18. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  19. 40 CFR 1036.241 - Demonstrating compliance with greenhouse gas pollutant standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gas pollutant standards. 1036.241 Section 1036.241 Protection of Environment ENVIRONMENTAL... HIGHWAY ENGINES Certifying Engine Families § 1036.241 Demonstrating compliance with greenhouse gas... deterioration factors as follows: (1) Additive deterioration factor for greenhouse gas emissions. Except...

  20. 78 FR 11619 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... category of the Greenhouse Gas Reporting Rule must submit requests for use of best available monitoring... address: GHGReportingRule@epa.gov . For technical information, contact the Greenhouse Gas Reporting...

  1. Towards European organisation for integrated greenhouse gas observation system

    NASA Astrophysics Data System (ADS)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  2. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  3. Measurement of greenhouse gas flux from agricultural soils using static chambers.

    PubMed

    Collier, Sarah M; Ruark, Matthew D; Oates, Lawrence G; Jokela, William E; Dell, Curtis J

    2014-01-01

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. PMID:25146426

  4. Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers

    PubMed Central

    Collier, Sarah M.; Ruark, Matthew D.; Oates, Lawrence G.; Jokela, William E.; Dell, Curtis J.

    2014-01-01

    Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies. PMID:25146426

  5. The greenhouse impact of unconventional gas for electricity generation

    NASA Astrophysics Data System (ADS)

    Hultman, Nathan; Rebois, Dylan; Scholten, Michael; Ramig, Christopher

    2011-10-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  6. Optimization of wastewater treatment plant operation for greenhouse gas mitigation.

    PubMed

    Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C

    2015-11-01

    This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. PMID:26292772

  7. Recent and future trends in synthetic greenhouse gas radiative forcing

    NASA Astrophysics Data System (ADS)

    Rigby, M.; Prinn, R. G.; O'Doherty, S.; Miller, B. R.; Ivy, D.; Mühle, J.; Harth, C. M.; Salameh, P. K.; Arnold, T.; Weiss, R. F.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Young, D.; Simmonds, P. G.

    2014-04-01

    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m-2 in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to "no HFC policy" projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m-2 by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.

  8. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  9. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  10. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  11. Using Coupled Harmonic Oscillators to Model Some Greenhouse Gas Molecules

    SciTech Connect

    Go, Clark Kendrick C.; Maquiling, Joel T.

    2010-07-28

    Common greenhouse gas molecules SF{sub 6}, NO{sub 2}, CH{sub 4}, and CO{sub 2} are modeled as harmonic oscillators whose potential and kinetic energies are derived. Using the Euler-Lagrange equation, their equations of motion are derived and their phase portraits are plotted. The authors use these data to attempt to explain the lifespan of these gases in the atmosphere.

  12. Research on Greenhouse-Gas-Induced Climate Change

    SciTech Connect

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  13. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  14. Greenhouse-gas payback times for crop-based biofuels

    NASA Astrophysics Data System (ADS)

    Elshout, P. M. F.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; van der Velde, M.; Huijbregts, M. A. J.

    2015-06-01

    A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

  15. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity

  16. The contribution of drained organic soils to the globally emitted greenhouse gases and emission hotspots

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Couwenberg, John; Joosten, Hans

    2016-04-01

    Key words: organic soils, peatlands, drainage, emissions, globally Peatlands cover only 3% of the global land surface. Some 15% of these peatlands have been drained for agriculture, forestry and grazing, which leads to the release of huge amounts of carbon. The '2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands' (IPCC 2014) offers up-to-date default emission factors for different land use types on organic soil and thus enables proper reporting. For this, realistic area data of drained organic soils are needed at a national scale. We analysed the drained organic soil areas and related emissions as reported to the UNFCCC in 2014 for several Nordic-Baltic countries . The analysis revealed that the areas often seem to be underestimated and that several countries use outdated emission factors. The re-assessment of the drained area and the application of the IPCC (2014) default emission factors resulted in 5-10 x higher emissions from drained organic soils for some countries. Out of 9 Nordic-Baltic countries only 1 country seems to have overestimated the drainage related organic soil emissions. If adopting the default emission factors from IPCC (2014) globally, the emissions from drained and degrading organic soils (~ 1,600 Mt CO2-eq.) amount to almost double the amount of CO2 emissions from aviation, even when emissions from peat fires are not included . By far the top single emitter of drained peatland related greenhouse gases is Indonesia, followed by the European Union and Russia. 25 countries are together responsible for 95% of global emissions from peatland drainage, excluding fires. Fires raise the importance of particularly Indonesia and Russian Federation. In 25 countries emissions from peatland degradation are over 50% of the emissions from fossil fuels and cement production combined, hence peatland emissions are of national significance.

  17. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  18. Estimating methane gas generation from Devil's swamp landfill using greenhouse gas emission models

    NASA Astrophysics Data System (ADS)

    Adeyemi, Ayodeji Thompson

    Greenhouse gas (GHG) has been a key issue in the study, design, and management of landfills. Landfill gas (LFG) is considered either as a significant source of renewable energy (if extracted and processed accordingly) or significant source of pollution and risk (if not mitigated or processed). A municipal solid waste (MSW) landfill emits a significant amount of methane, a potent GHG. Thus, quantification and mitigation of GHG emissions is an important area of study in engineering and other sciences related to landfill technology and management. The present study will focus on estimating methane generation from Devils swamp landfill (DSLF), a closed landfill in Baton Rouge, LA. The landfill operated for 53 years (1940-1993) and contains both industrial and municipal waste products. Since the Clean Air Act of 1963, landfills are now classified as New Source Performance Standard (NSPS) waste (i.e., waste that will decompose to generate LFG). Currently, the DSLF is being used as source of renewable energy through the "Waste to Energy" program. For this study, to estimate the methane potential in the DSLF, it is important to determine the characteristics and classification of the landfill's wastes. The study uses and compares different GHG modeling tools---LandGEM, a multiphase model, and a simple first-order model---to estimate methane gas emission and compare results with the actual emissions from the DSLF. The sensitivity of the methane generation rate was analyzed by the methane generation models to assess the effects of variables such as initial conditions, specific growth rate, and reaction rate constants. The study concludes that methane (L0) and initial organic concentration in waste (k) are the most important parameters when estimating methane generation using the models.

  19. The Drivers of Climate Change -- Tracking Global Greenhouse Gas Trends and their Warming Influence

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Montzka, S. A.; Dlugokencky, E. J.; Hall, B. D.; Masarie, K. A.; Elkins, J. W.; Dutton, G. S.; Miller, B. R.

    2014-12-01

    Of the National Physical Climate Indicators, two stand out as primary drivers of climate change - the Global Monthly Average of Carbon Dioxide Concentration and the Annual Greenhouse Gas Index. Both of these are products of high quality, long-term, globally distributed monitoring of greenhouse gases in the atmosphere. To support monitoring of the trends of these gases over decades, NOAA maintains the WMO World Calibration Scales for the major contributors to radiative forcing and its own universally accepted scales for most of the minor greenhouse gases. Maintenance of these scales over time ensures the consistency of measurements from decade to decade. Further quality control through use of internal and external comparisons of on-going measurements places tight constraints on spatial and temporal bias. By far the most influential greenhouse gas contributing to radiative forcing is carbon dioxide (CO2). Its amount at Mauna Loa is reported on-line daily and its global trend updated monthly on NOAA's global monitoring website and at climate.gov. This is one of the most closely watched records of atmospheric composition, as its accelerating rate of increase is a constant reminder that society has yet to deal successfully with its emissions of this gas. Much of CO2 emitted remains in the atmosphere for 1000s of years, which is why it is of substantial concern. But atmospheric CO2 is not alone in warming the planet and driving climate change. Many other gases contribute in a lesser way to this long-term trend and are captured along with CO2 in NOAA's Annual Greenhouse Gas Index (AGGI). The AGGI is a normalized compilation of the radiative forcing (RF) of five major long-lived greenhouse gases (96% of RF) and 15 minor gases (4% of RF). Because it does not include short lived gases (< ~10 years), it measures a robust RF trend that represents the warming influence society has already committed itself to living in. This presentation discusses the development of these two

  20. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    de Faria, Felipe A. M.; Jaramillo, Paulina; Sawakuchi, Henrique O.; Richey, Jeffrey E.; Barros, Nathan

    2015-12-01

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

  1. Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.

    2012-01-01

    Tidal freshwater forested wetlands (tidal swamps) are periodically affected by salinity intrusion at seaward transitions with marsh, which, along with altered hydrology, may affect the balance of gaseous carbon (C) and nitrogen (N) losses from soils. We measured greenhouse gas emissions (CO2, CH4, N2O) from healthy, moderately degraded, and degraded tidal swamp soils undergoing sea-level-rise-induced retreat along the lower Savannah River, Georgia, USA. Soil CO2 flux ranged from 90.2 to 179.1 mg CO2 m-2 h-1 among study sites, and was the dominant greenhouse gas emitted. CO2 flux differed among sites in some months, while CH4 and N2O fluxes were 0.18 mg CH4 m-2 h-1 and 1.23 μg N2O m-2 h-1, respectively, with no differences among sites. Hydrology, soil temperature, and air temperature, but not salinity, controlled the annual balance of soil CO2 emissions from tidal swamp soils. No clear drivers were found for CH4 or N2O emissions. On occasion, large ebbing or very low tides were even found to draw CO2 fluxes into the soil (dark CO2 uptake), along with CH4 and N2O. Overall, we hypothesized a much greater role for salinity and site condition in controlling the suite of greenhouse gases emitted from tidal swamps than we discovered, and found that CO2 emissions-not CH4 or N2O-contributed most to the global warming potential from these tidal swamp soils.

  2. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture

    PubMed Central

    Milne, Alice E.; Glendining, Margaret J.; Lark, R. Murray; Perryman, Sarah A.M.; Gordon, Taylor; Whitmore, Andrew P.

    2015-01-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as ‘likely’ and ‘very unlikely’; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those

  3. Nutrient removal and greenhouse gas emissions in duckweed treatment ponds.

    PubMed

    Sims, Atreyee; Gajaraj, Shashikanth; Hu, Zhiqiang

    2013-03-01

    Stormwater treatment ponds provide a variety of functions including sediment retention, organic and nutrient removal, and habitat restoration. The treatment ponds are, however, also a source of greenhouse gases. The objectives of this study were to assess greenhouse gas (CH(4), CO(2) and N(2)O) emissions in duckweed treatment ponds (DWPs) treating simulated stormwater and to determine the role of ammonia-oxidizing organisms in nutrient removal and methanogens in greenhouse gas emissions. Two replicated DWPs operated at a hydraulic retention time (HRT) of 10 days were able to remove 84% (± 4% [standard deviation]) chemical oxygen demand (COD), 79% (± 3%) NH(4)(+)-N, 86% (± 2%) NO(3)(-)-N and 56% (± 7%) orthophosphate. CH(4) emission rates in the DWPs ranged from 502 to 1900 mg CH(4) m(-2) d(-1) while those of nitrous oxide (N(2)O) ranged from 0.63 to 4 mg N(2)O m(-2) d(-1). The CO(2) emission rates ranged from 1700 to 3300 mg CO(2) m(-2) day(-1). Duckweed coverage on water surface along with the continued deposit of duckweed debris in the DWPs and low-nutrient influent water created a low dissolved oxygen environment for the growth of unique ammonia-oxidizing organisms and methanogens. Archaeal and bacterial amoA abundance in the DWPs ranged from (1.5 ± 0.2) × 10(7) to (1.7 ± 0.2) × 10(8) copies/g dry soil and from (1.0 ± 0.3) × 10(3) to (1.5 ± 0.4) × 10(6) copies/g dry soil, respectively. The 16S rRNA acetoclastic and hydrogenotrophic methanogens ranged from (5.2 ± 0.2) × 10(5) to (9.0 ± 0.3) × 10(6) copies/g dry soil and from (1.0 ± 0.1) × 10(2) to (5.5 ± 0.4) × 10(3) copies/g dry soil, respectively. Ammonia-oxidizing archaea (AOA) appeared to be the dominant nitrifiers and acetoclastic Methanosaeta was the major methanogenic genus. The results suggest that methane is the predominant (>90%) greenhouse gas in the DWPs, where the relatively low stormwater nutrient inputs facilitate the growth of K-strategists such as AOA and Methanosaeta that may

  4. Communicating the uncertainty in estimated greenhouse gas emissions from agriculture.

    PubMed

    Milne, Alice E; Glendining, Margaret J; Lark, R Murray; Perryman, Sarah A M; Gordon, Taylor; Whitmore, Andrew P

    2015-09-01

    In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as 'likely' and 'very unlikely'; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked

  5. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ..., ``Federal Leadership in Environmental, Energy, and Economic Performance'' (74 FR 52117), in order to... QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' AGENCY: Council On Environmental Quality. ACTION: Notice of Availability, Draft Revised Guidance, ``Federal Greenhouse...

  6. What we learn from updates of NOAA's Annual Greenhouse Gas Index (AGGI)

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward; Elkins, James W.; Masarie, Kenneth; Schnell, Russell C.; Tans, Pieter; Dutton, Geoff; Miller, Ben R.

    2014-05-01

    Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (D.J. Hofmann et al., Tellus, 2006, S8B, 614-619). Being a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core records that go back to 1750. The AGGI is radiative forcing from these long-lived gases, normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. For 2012, the AGGI was 1.32, indicating that global radiative forcing by long-lived greenhouse gases had increased 32% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing (and the AGGI) by long-lived greenhouse gases, whereas, since 2000, it has accounted for 80-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) has increased measurably over the past 6 years, as did its contribution to radiative forcing (and the AGGI). This year, in addition to updating the AGGI for 2013, increases in radiative forcing will be evaluated and discussed with respect to time-dependent changes in the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  7. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  8. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    PubMed

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1). PMID:26211046

  9. Globally significant greenhouse-gas emissions from African inland waters

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Darchambeau, François; Teodoru, Cristian R.; Marwick, Trent R.; Tamooh, Fredrick; Geeraert, Naomi; Omengo, Fredrick O.; Guérin, Frédéric; Lambert, Thibault; Morana, Cédric; Okuku, Eric; Bouillon, Steven

    2015-08-01

    Carbon dioxide emissions to the atmosphere from inland waters--streams, rivers, lakes and reservoirs--are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly affect greenhouse-gas emissions from African inland waters.

  10. Upscaling of greenhouse gas emissions in upland forestry following clearfell

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Keane, Ben; Yamulki, Sirwan; Blei, Emanuel; Gibson-Poole, Simon; Xenakis, Georgios; Perks, Mike; Morison, James; Ineson, Phil

    2016-04-01

    Data on greenhouse gas (GHG) emissions caused by forest management activities are limited. Management such as clearfelling may, however, have major impacts on the GHG balance of forests through effects of soil disturbance, increased water table, and brash and root inputs. Besides carbon dioxide (CO2), the biogenic GHGs nitrous oxide (N2O) and methane (CH4) may also contribute to GHG emissions from managed forests. Accurate flux estimates of all three GHGs are therefore necessary, but, since GHG emissions usually show large spatial and temporal variability, in particular CH4 and N2O fluxes, high-frequency GHG flux measurements and better understanding of their controls are central to improve process-based flux models and GHG budgets at multiple scales. In this study, we determined CO2, CH4 and N2O emissions following felling in a mature Sitka spruce (Picea sitchensis) stand in an upland forest in northern England. High-frequency measurements were made along a transect using a novel, automated GHG chamber flux system ('SkyLine') developed at the University of York. The replicated, linear experiment aimed (1) to quantify GHG emissions from three main topographical features at the clearfell site, i.e. the ridges on which trees had been planted, the hollows in between and the drainage ditches, and (2) to determine the effects of the green-needle component of the discarded brash. We also measured abiotic soil and climatic factors alongside the 'SkyLine' GHG flux measurements to identify drivers of the observed GHG emissions. All three topographic features were overall sources of GHG emissions (in CO2 equivalents), and, although drainage ditches are often not included in studies, GHG emissions per unit area were highest from ditches, followed by ridges and lowest in hollows. The CO2 emissions were most important in the GHG balance of ridges and hollows, but CH4 emissions were very high from the drainage ditches, contributing to over 50% of their overall net GHG emissions

  11. The challenge of identifying greenhouse gas-induced climatic change

    NASA Technical Reports Server (NTRS)

    Maccracken, Michael C.

    1992-01-01

    Meeting the challenge of identifying greenhouse gas-induced climatic change involves three steps. First, observations of critical variables must be assembled, evaluated, and analyzed to determine that there has been a statistically significant change. Second, reliable theoretical (model) calculations must be conducted to provide a definitive set of changes for which to search. Third, a quantitative and statistically significant association must be made between the projected and observed changes to exclude the possibility that the changes are due to natural variability or other factors. This paper provides a qualitative overview of scientific progress in successfully fulfilling these three steps.

  12. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  13. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina."The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding," said Michael Zammit Cutajar, executive secretary of the convention. "In Buenos Aires, governments will try to establish the rules of the game for reaching these targets.""

  14. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina.“The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding,” said Michael Zammit Cutajar, executive secretary of the convention. “In Buenos Aires, governments will try to establish the rules of the game for reaching these targets."”

  15. Monitoring soil greenhouse gas emissions from managed grasslands

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  16. Integrating terrestrial sequestration into a greenhouse gas management plan

    NASA Astrophysics Data System (ADS)

    Brown, Joel R.; Sampson, Neil

    Terrestrial sequestration has the potential to contribute to national and global greenhouse gas management strategies. However, spatial and temporal variability in sequestration potential and in the implementation of sequestering technologies introduces serious questions about how to resolve uncertainties and raise the credibility of terrestrial sequestration. Carbon flux in terrestrial ecosystems without land use change generally is less than one ton CO2e/ha and driven primarily by precipitation. Land use and management changes are relatively common and are driven by economics and social considerations both in the private and public sectors. Implementing a credible greenhouse gas management program that integrates terrestrial sequestration along with other sources and sinks requires a systematic approach to identify and quantitatively monitor changes in the drivers of terrestrial sequestration. A credible terrestrial sequestration monitoring program will require close attention to integrating direct measurement of soils and vegetation, statistically valid scaling, remote sensing, and computer modeling. Predicting changes at a level of confidence useful to policy development will also require an understanding of how land owners and managers respond to private sector price signals and government conservation initiatives.

  17. Greenhouse gas emission associated with sugar production in southern Brazil

    PubMed Central

    2010-01-01

    Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equivalent were released to the atmosphere per a ton of sugar produced (2406 kg of carbon dioxide equivalent per a hectare of the cropped area, and 26.5 kg of carbon dioxide equivalent per a ton of sugarcane processed). The major part of the total emission (44%) resulted from residues burning; about 20% resulted from the use of synthetic fertilizers, and about 18% from fossil fuel combustion. Conclusions The results of this study suggest that the most important reduction in greenhouse gas emissions from sugarcane areas could be achieved by switching to a green harvest system, that is, to harvesting without burning. PMID:20565736

  18. Greenhouse Gas Growth Rates from AIRS Hyperspectral Radiance Time Series

    NASA Astrophysics Data System (ADS)

    Strow, L. L.; Desouza-Machado, S. G.; Hannon, S.; Imbiriba, B.; Schou, P.

    2009-12-01

    The AIRS seven year hyperspectral radiance record provides an ideal platform for measurings growth rates of infrared active minor gases, especially carbon dioxide and methane. The largest changes in CLARREO radiances will likely be due to increasing carbon dioxide and other greenhouse gases. We have produced a 5+ year record of almost cloud-free AIRS radiances, from which we have derived the radiance anomaly and linear time rate of change. The source of these radiances are the L1b radiances corrected for small frequency drifts. Growth rates of carbon dioxide, nitrous oxide, methane, ozone, and CFC11 are simultaneously derived from zonal averages of these radiance rates for tropics, and mid-latitude northern and southern hemispheres. The effective linear rate of change of ~5 layers of water vapor and temperature, plus the surface temperature are also simultaneously derived with the minor gas rates. No model data or prior is needed and more than 1000 channels are used in the fit. Sampling issues may preclude the use of the mid-latitude temperature and water vapor rates for climate analysis, but possibly not for the tropics. The resulting greenhouse gas growth rates agree very well with in-situ measurements, which suggests high radiometric stability for AIRS. Radiance intercomparisons for climate analysis between IASI and AIRS will also be presented.

  19. A Proposed Framework for Synthesis Analysis of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Lanz, A.; Berliner, M.; Braverman, A. J.

    2010-12-01

    Synthesis Analysis for greenhouse gas (GHG) emissions data refers to the “meta-integration” of many sources of GHG emissions data (beyond the standardization of related data required for a data assimilation system). This includes integration of various data types such as, but not limited to: data from multiple data assimilation systems; data from standardized economic-based emissions inventories such as the UNFCCC National Emissions Inventories (NEI) from various Annex I countries; data from non-NEI emissions inventories for sectors specified by UNFCCC as excluded; and ancillary data available from other sources. The term data integration refers to meaningful comparisons between different data sets and associated uncertainties but does not necessarily imply reduction to a single value or set of values. This analysis intends to develop a preliminary framework for development and assessment of the quality and impact of policies and decisions based on Bayesian statistical methods. It will also identify some likely data sources that will need to be synthesized for greenhouse gas emission discussions and policy products. Uncertainties and uncertainty methodologies are explored, along with suggestions for improving reporting of emissions quantities and associated uncertainties to better facilitate future data comparison.

  20. 78 FR 11585 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... AGENCY 40 CFR Part 98 RIN 2060-AR74 Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring... natural gas systems source category of the Greenhouse Gas Reporting Rule must submit requests for use of... timely withdrawal notice in the Federal Register to inform the public that this rule will not take...

  1. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  2. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  3. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  4. The impact of 'Cash for Clunkers' on greenhouse gas emissions: a life cycle perspective

    NASA Astrophysics Data System (ADS)

    Lenski, Shoshannah M.; Keoleian, Gregory A.; Bolon, Kevin M.

    2010-10-01

    One of the goals of the US Consumer Assistance to Recycle and Save (CARS) Act of 2009, more commonly known as 'Cash for Clunkers', was to improve the US vehicle fleet fuel efficiency. Previous studies of the program's environmental impact have focused mainly on the effect of improved fuel economy, and the resulting reductions in fuel use and emissions during the vehicle use phase. We propose and apply a method for analyzing the net effect of CARS on greenhouse gas emissions from a full vehicle life cycle perspective, including the impact of premature production and retirement of vehicles. We find that CARS had a one-time effect of preventing 4.4 million metric tons of CO2-equivalent emissions, about 0.4% of US annual light-duty vehicle emissions. Of these, 3.7 million metric tons are avoided during the period of the expected remaining life of the inefficient 'clunkers'. 1.5 million metric tons are avoided as consumers purchase vehicles that are more efficient than their next replacement vehicle would otherwise have been. An additional 0.8 million metric tons are emitted as a result of premature manufacturing and disposal of vehicles. These results are sensitive to the remaining lifetime of the 'clunkers' and to the fuel economy of new vehicles in the absence of CARS, suggesting important considerations for policymakers deliberating on the use of accelerated vehicle retirement programs as a part of the greenhouse gas emissions policy.

  5. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems

    NASA Astrophysics Data System (ADS)

    Cai, Zucong; Sawamoto, Takuji; Li, Changsheng; Kang, Guoding; Boonjawat, Jariya; Mosier, Arvin; Wassmann, Reiner; Tsuruta, Haruo

    2003-12-01

    Validations of the DeNitrification-DeComposition (DNDC) model against field data sets of trace gases (CH4, N2O, and NO) emitted from cropping systems in Japan, China, and Thailand were conducted. The model-simulated results were in agreement with seasonal N2O emissions from a lowland soil in Japan from 1995 to 2000 and seasonal CH4 emissions from rice fields in China, but failed to simulate N2O and NO emissions from an Andisol in Japan as well as NO emissions from the lowland soil. Seasonal CH4 emissions from rice cropping systems in Thailand were poorly simulated because of site-specific soil conditions and rice variety. For all of the simulated cases, the model satisfactorily simulated annual variations of greenhouse gas emissions from cropping systems and effects of land management. However, discrepancies existed between the modeled and observed seasonal patterns of CH4 and N2O emissions. By incorporating modifications based on the local soil properties and management, DNDC model could become a powerful tool for estimating greenhouse gas emissions from terrestrial ecosystems.

  6. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    PubMed

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2016-06-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 141.5millionl of diesel to land 342.3millionkg of fish and shellfish. Annually, 0.36-0.48l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 316-1025% if only nominal targets were considered. In nine years, trawling operations emitted 104.07GgC to the atmosphere, between 36,800-49,500tons CO2 per year. PMID:27068561

  7. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    PubMed

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2014-11-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 9.1 million liters of diesel to land 342.3 million kilograms of fish and shellfish. Annually, 0.023-0.031 l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 200-900% if only nominal targets were considered. In nine years, trawling operations emitted 6.69 GgC to the atmosphere, between 2300 and 3300 tons CO2 per year. PMID:25173595

  8. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    USGS Publications Warehouse

    Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J. M. K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.

  9. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    NASA Astrophysics Data System (ADS)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  10. Greenhouse-gas emissions from biofuel use in Asia.

    SciTech Connect

    Streets, D. G.; Waldhoff, S. T.

    1999-07-06

    Biomass is a primary fuel for much of the world's population. In some developing countries it can contribute 80-90% of total primary energy consumption. In Asia as a whole we estimate that biomass contributes about 22 EJ, almost 24% of total energy use. Much of this biomass is combusted in inefficient domestic stoves and cookers, enhancing the formation of products of incomplete combustion (PIC), many of which are greenhouse gases. An inventory of the combustion of biofuels (fuelwood, crop residues, and dried animal waste) in Asia is used to develop estimates of the emissions of carbon-containing greenhouse gases (CO{sub 2},CO, CH{sub 4}, and NMHC) in Asian countries. The data are examined from two perspectives: total carbon released and total global warming potential (GWP) of the gases. We estimate that blofuels contributed 573 Tg-C in 1990, about 28% of the total carbon emissions from energy use in Asia. China (259 Tg-C) and India (187 Tg-C) were the largest emitting countries by far. The majority of the emissions, 504 Tg-C, are in the form of CO{sub 2}; however, emissions of non-CO{sub 2} greenhouse gases are significant: 57 Tg-C as CO, 6.4 Tg-C as CH{sub 4}, and 5.9 Tg-C as NMHC. Because of the high rate of incomplete combustion in typical biofuel stoves and the high GWP coefficients of the products of incomplete combustion, biofuels comprise an even larger share of energy-related emissions when measured in terms of global warming potential (in CO{sub 2} equivalents): 38% over a 20-year time frame and 31% over 100 years. Even when the biofuel is assumed to be harvested on a completely sustainable basis (all CO{sub 2} emissions are reabsorbed in the following growing season), PIC emissions from biofuel combustion account for almost 5% of total carbon emissions and nearly 25% of CO{sub 2} equivalents in terms of short-term (20-year) GWP.

  11. Greenhouse gas emissions from septic systems in New York State

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Rahm, B. G.; Brooks, R. A.; Nadeau, S. A.; Walter, M. T.

    2015-12-01

    Onsite septic systems are a practical way to treat wastewater in rural or less-densely populated areas. Septic systems utilize microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). At each of nine septic systems, we measured fluxes of CH4, CO2, and N2O from the soil over the leach field and sand filter, and from the roof outlet vent. These are the most likely locations for gas emissions during normal operation of the septic system. The majority of all septic system gas emissions were released from the roof vent. However, our comparisons of the gas fluxes from these locations suggest that biological processes in the soil, especially the soil over the leach field, can influence the type and quantity of gas that is released from the system. The total vent, sand filter, and leach field GHG emissions were 0.12, 0.045, and 0.046 tonne CO2e capita-1 year-1, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the US.

  12. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  13. Greenhouse gas budget of agricultural systems: real possibility or dream?

    NASA Astrophysics Data System (ADS)

    Neftel, A.; Ammann, C.; Calanca, P.; Fuhrer, J.; Leifeld, J.; Jocher, M.; Volk, M.

    2003-04-01

    It is now widely accepted that emission of greenhouse gases (GHG) by human activities are causing an increase of global mean temperature. Model calculations have shown that the rate of increase might have a decisive influence on the stability of the climate. It is therefore crucial to slow down the increase of GHG concentrations in the atmosphere. Storage of carbon in the terrestrial biosphere is mentioned as one possibility in the Kyoto protocol. Mitigation options to decrease GHG emissions in agricultural systems as well as to increase carbon stock in agricultural soils are in discussion. The quantification and verification of the GHG budget is a prerequisite to establish a trade within the Kyoto protocol. On the scientific level this comes down to a greenhouse gas budget for agricultural systems. Comparability and interpretation of GHG budgets depends on an appropriate and consistent choice of the considered system, especially the system boundaries. In this presentation we discuss the feasibility of such a budget for a the smallest unit: the yearly budget of grassland system. Differences between GHG budget and carbon budget will be assessed.

  14. Adapting a weather forecast model for greenhouse gas simulation

    NASA Astrophysics Data System (ADS)

    Polavarapu, S. M.; Neish, M.; Tanguay, M.; Girard, C.; de Grandpré, J.; Gravel, S.; Semeniuk, K.; Chan, D.

    2015-12-01

    The ability to simulate greenhouse gases on the global domain is useful for providing boundary conditions for regional flux inversions, as well as for providing reference data for bias correction of satellite measurements. Given the existence of operational weather and environmental prediction models and assimilation systems at Environment Canada, it makes sense to use these tools for greenhouse gas simulations. In this work, we describe the adaptations needed to reasonably simulate CO2 with a weather forecast model. The main challenges were the implementation of a mass conserving advection scheme, and the careful implementation of a mixing ratio defined with respect to dry air. The transport of tracers through convection was also added, and the vertical mixing through the boundary layer was slightly modified. With all these changes, the model conserves CO2 mass well on the annual time scale, and the high resolution (0.9 degree grid spacing) permits a good description of synoptic scale transport. The use of a coupled meteorological/tracer transport model also permits an assessment of approximations needed in offline transport model approaches, such as the neglect of water vapour mass when computing a tracer mixing ratio with respect to dry air.

  15. Storage management influences greenhouse gas emissions from biosolids.

    PubMed

    Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K

    2015-03-15

    Biosolids produced by wastewater treatment plants are often stored in stockpiles and can be a significant source of greenhouse gases (GHG). Growing trees in shallow stockpiled biosolids may remove nutrients, keep the biosolids drier and offset GHG emissions through C sequestration. We directly measured methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) flux from a large biosolid stockpile and two shallow stockpiles, one planted with Salix reichardtii (willow) trees, from December 2009 to January 2011. All stockpiles emitted large annual amounts of GHG ranging from 38 kg CO2-e Mg(-1) dry biosolid for the large stockpile, to 65 kg CO2-e Mg(-1) for the unplanted shallow stockpile, probably due to the greater surface area to volume ratio. GHG emissions were dominated by N2O and CO2 whilst CH4 emissions were negligible (<2%) from the large stockpile and the shallow stockpiles were actually a CH4 sink. Annual willow tree growth was 12 Mg dry biomass ha(-1), but this only offset 8% of the GHG emissions from the shallow planted stockpile. Our data highlight that biosolid stockpiles are significant sources for GHG emissions but alternate management options such as shallow stockpiles or planting for biomass production will not lead to GHG emission reductions. PMID:25585149

  16. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  17. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  18. Greenhouse Gas Emissions within Seasonally Flooded Tropical River Deltas

    NASA Astrophysics Data System (ADS)

    Salvador, A. K.; Schaefer, M.; Roberts, K. A.; Fendorf, S. E.; Benner, S. G.

    2015-12-01

    Soils contain the largest terrestrial carbon pool on Earth, and approximately one-third of soil carbon is stored in the tropics. Gas exchange between soil and the atmosphere occurs largely as a result of microbial degradation (mineralization) of organic carbon. The rate of soil organic matter (SOM) mineralization is determined by a combination of climatic factors and soil ecosystem properties, which dictate the dominant metabolic pathway(s) within soil at a given time; major changes in metabolic rate are particularly pronounced between aerobic and anaerobic mineralization. Here we assessed the impact of soil moisture, a major factor determining soil anaerobiosis, on greenhouse gas fluxes in a tropical, seasonally flooded wetland in the Mekong Delta. We monitored CO2, CH4, and N2O gas fluxes, porewater chemistry, and soil moisture content in a seasonal wetland. Additionally, we collected wetland soil cores (10 cm diameter) and manipulated them in the laboratory, allowing us to control soil moisture and drying rates, and to simulate multiple periods of wetting and drying. During drying, CH4 fluxes within the wetland initially increase to a maximum before decreasing as soil moisture decreases and oxygen diffusion into the soil increases. Maximum CH4 fluxes vary with moisture content, but the wettest sites produced fluxes >1000 mg C m-2 d-1 for short periods of time. As drying continues, CH4 fluxes decrease to nearly zero, and N2O fluxes begin to increase to ~3 mg N m-2 d-1 but do not appear to have reached a maximum before sampling ceased. Gas flux from soil core incubations (n=5) exhibit trends and values similar to field measurements. CH4 fluxes initially increase and reach >1000 mg C m-2 d-1 in cores while N2O fluxes reach up to 10 mg N m-2 d-1 and decrease with continued drying. CO2 fluxes in both field and laboratory are sustained until near desiccated conditions. Seasonal wetlands are characteristic of large tropical deltas. Our findings provide a means to

  19. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  20. Interactions between greenhouse gas policies and acid rain control strategies

    SciTech Connect

    Klein, D.E.; Kane, R.L.; Mansueti, L.

    1997-12-31

    Conventional wisdom and much of the public policy debate have usually drawn a clean delineation between acid rain issues and global warming concerns. This traditional approach of evaluating one policy at a time is too simplistic to serve as a framework for electric utilities making major capital investment and fuel procurement decisions to comply with various environmental requirements. Potential Climate change regulation can affect acid rain compliance decisions, and acid rain compliance decisions will affect future GHG emissions. This paper explores two categories of linkages between these different environmental issues. First, the assumptions one makes regarding future climate change policies can have a profound impact on the economic attractiveness of various acid rain compliance strategies. Second, decisions regarding acid rain compliance strategy can have greenhouse gas implications that might prove more or less difficult to address in future climate change legislation.

  1. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  2. Greenhouse gas emissions during cattle feedlot manure composting.

    PubMed

    Hao, X; Chang, C; Larney, F J; Travis, G R

    2001-01-01

    The emission of greenhouse gases (GHG) during feedlot manure composting reduces the agronomic value of the final compost and increases the greenhouse effect. A study was conducted to determine whether GHG emissions are affected by composting method. Feedlot cattle manure was composted with two aeration methods--passive (no turning) and active (turned six times). Carbon lost in the forms of CO2 and CH4 was 73.8 and 6.3 kg C Mg-1 manure for the passive aeration treatment and 168.0 and 8.1 kg C Mg-1 manure for the active treatment. The N loss in the form of N2O was 0.11 and 0.19 kg N Mg-1 manure for the passive and active treatments. Fuel consumption to turn and maintain the windrow added a further 4.4 kg C Mg-1 manure for the active aeration treatment. Since CH4 and N2O are 21 and 310 times more harmful than CO2 in their global warming effect, the total GHG emission expressed as CO2-C equivalent was 240.2 and 401.4 kg C Mg-1 manure for passive and active aeration. The lower emission associated with the passive treatment was mainly due to the incomplete decomposition of manure and a lower gas diffusion rate. In addition, turning affected N transformation and transport in the window profile, which contributed to higher N2O emissions for the active aeration treatment. Gas diffusion is an important factor controlling GHG emissions. Higher GHG concentrations in compost windrows do not necessarily mean higher production or emission rates. PMID:11285897

  3. Can Aerosol Forcing Compensate the Greenhouse Gas Warming?

    NASA Astrophysics Data System (ADS)

    Feichter, J.; Liepert, B.; Lohmann, U.; Roeckner, E.

    2002-12-01

    Fossil fuel combustion and biomass burning modify the chemical composition of the atmosphere by enhancing aerosol particles (AP) and greenhouse gas (GHG) concentrations. These changes induce opposite effects on temperature, i.e. warming through increasing GHG levels and cooling through increasing AP concentrations. While increasing GHGs tend to enhance the hydrological cycle, the APs have the opposite effect: First, through climate cooling and, second, through a reduction in solar radiation absorbed at the Earth's surface. Moreover, in contrast to GHGs, there is a strong coupling between aerosols, clouds and precipitation formation such that AP induced changes in the hydrological cycle feed back on the aerosol distribution. We performed simulations with of a low-resolution version (T30 spectral truncation) of the atmospheric general circulation model ECHAM4 coupled to an ocean mixed layer model and a thermodynamic sea ice model. Furthermore, the atmospheric model solves prognostic equations for the mass mixing ratio of dimethyl sulfide, sulfur dioxide, sulfate aerosols, organic and black carbon aerosols, mineral dust, sea-salt, cloud liquid water, cloud ice and for the cloud droplet and ice crystal number concentration. It also includes a fully coupled aerosol-cloud microphysics module. We performed three pairs of climate equilibrium experiments. Each pair consists of two simulations: one represents pre-industrial (year 1870) (PI) and one present-day (early 1980's) conditions (PD). In the first pair we change the greenhouse gas (GHG) concentrations and apply the model's operational aerosol climatology as PD conditions. In the second pair we calculate the aerosol interactively and we change the anthropogenic aerosol and aerosol precursor emissions and keep the GHG concentrations fixed to PD level. In the third pair we change both, GHG concentrations and aerosol emissions. The climate responses and the basic mechanisms will be discussed.

  4. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture. PMID:25354441

  5. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller. PMID:26114481

  6. Greenhouse gas emissions from heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Rideout, Greg; Rosenblatt, Deborah; Hendren, Jill

    This paper summarizes greenhouse gas (GHG) emissions measurements obtained during several recent studies conducted by Environment Canada, Emissions Research and Measurement Division (ERMD). A variety of heavy-duty vehicles and engines operating on a range of different fuels including diesel, biodiesel, compressed natural gas (CNG), hythane (20% hydrogen, 80% CNG), and liquefied natural gas (LNG), and with different advanced aftertreatment technologies were studied by chassis dynamometer testing, engine dynamometer testing or on-road testing. Distance-based emission rates of CO 2, CH 4, and N 2O are reported. Fuel consumption calculated by carbon balance from measured emissions is also reported. The measurement results show, for heavy-duty diesel vehicles without aftertreatment, that while CO 2 emissions dominate, CH 4 emissions account for between 0% and 0.11% and N 2O emissions account for between 0.16% and 0.27% of the CO 2-equivalent GHG emissions. Both of the aftertreatment technologies (diesel oxidation catalyst and active regeneration diesel particle filter) studied increased N 2O emissions compared to engine out emissions while CH 4 emissions remain essentially unchanged. No effect on tailpipe GHG emissions was found with the use of up to 20% biodiesel when the engine was equipped with an oxidation catalyst. Biodiesel use did show some reductions in tailpipe GHG emissions as compared to ULSD without aftertreatment and with the use of a diesel particle filter. Natural gas and hythane also offer decreased GHG emissions (10-20%) at the tailpipe when compared with diesel. Emission factors (g L -1 fuel) for CH 4 and N 2O are suggested for heavy-duty vehicles fueled with diesel-based fuels and natural gas. These emission factors are substantially lower than those recommended for use by IPCC methodologies for developing national inventories.

  7. Agroecosystem Management Effects on Greenhouse Gas Emissions Across a Coastal Plain Catena

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscape variability influences soil properties that influence soil respiration and subsequent trace gas emissions. Scarcity of data on greenhouse gas emissions as influenced by landscape variability and agroecosystem management in southeastern US necessitates study. The objective of this study was...

  8. The Role of Hydropedologic Vegetation Zones in Greenhouse Gas Emissions for Agricultural Wetland Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net greenhouse gas (GHG) source strength for agricultural wetland ecosystems in the Prairie Pothole Region (PPR) and spatial constraints associated with CH4, CO2, and N2O fluxes are currently unknown. Greenhouse gas fluxes typically vary with edaphic, hydrologic, biologic, and climatic factors. In...

  9. 75 FR 18942 - FY 2010 Discretionary Sustainability Funding Opportunity; Transit Investments for Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Investments for Greenhouse Gas and Energy Reduction (TIGGER) Program and Clean Fuels Grant Program, Augmented... clean energy sources that will both enhance the environment through improved air quality and curb our... funds in Fiscal Year (FY) 2010 for the Transit Investments for Greenhouse Gas and Energy...

  10. 77 FR 51477 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... required by the November 2010 Subpart L final rule (75 FR 74774), defers the deadline for reporting a data... Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program kg/ft\\3... Register on October 30, 2009 (74 FR 56260, hereafter referred to as the ``2009 final rule'' or ``Part...

  11. Cropping System Impacts on Greenhouse Gas Emissions in the Cool, Humid Northeastern U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating global greenhouse gas (GHG) emissions from agriculture requires regional measurements of different production systems. A long-term potato cropping systems experiment in Maine was designed to contribute to the USDA-ARS national project entitled Greenhouse Gas Reduction through Agricultural...

  12. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...: Corrections EPA published a Call for Information in the Federal Register (75 FR 41173) on July 15, 2010. In... AGENCY Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other... greenhouse gas emissions from bioenergy and other biogenic sources. Inadvertently, incorrect text...

  13. Greenhouse Gas Mitigation Economics for Irrigated Cropping Systems in Northeastern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent soil and crop management technologies have potential for mitigating greenhouse gas emissions. However, these management strategies must be profitable if they are to be adopted by producers. The economic feasibility of reducing net greenhouse gas emissions in irrigated cropping systems was eva...

  14. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  15. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  16. 40 CFR 1036.610 - Innovative technology credits and adjustments for reducing greenhouse gas emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the provisions of 40 CFR 86.1866-12(d)(3). However, we will generally not seek public comment on... adjustments for reducing greenhouse gas emissions. 1036.610 Section 1036.610 Protection of Environment... adjustments for reducing greenhouse gas emissions. (a) You may ask us to apply the provisions of this...

  17. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... published in the Federal Register on April 13, 2012 (77 FR 22392), and is available at: http://www.epa.gov... AGENCY 40 CFR Part 60 Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources... proposed rule, ``Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources:...

  18. 78 FR 19801 - 2013 Revisions to the Greenhouse Gas Reporting Rule and Proposed Confidentiality Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Protection Agency F degrees Fahrenheit FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting... in the Federal Register on October 30, 2009 (74 FR 56260). Part 98 became effective on December 29... published in 2010 promulgating the requirements for subparts T, FF, II, and TT (75 FR 39736, July 12,...

  19. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    .... Currently, according to the provisions in 76 FR 22825 (April 25, 2011), owners and operators subject to 40.... Environmental Protection Agency. FR Federal Register. GHG greenhouse gas. ICR Information Collection Request... Systems of the Greenhouse Gas Reporting Rule on November 30, 2010, 40 CFR part 98, subpart W (75 FR...

  20. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...The EPA is proposing to amend specific provisions of the Greenhouse Gas Reporting Rule to provide greater clarity and flexibility to facilities subject to reporting emissions from certain source categories. These source categories will report greenhouse gas (GHG) data for the first time in September of 2012. The proposed changes are not expected to significantly change the overall calculation......

  1. Overview of coal consumption and related environmental trends, and implications for greenhouse gas emissions

    SciTech Connect

    Johnson, C.J.; Wang, X.

    1997-06-01

    This paper reviews world and regional trends in coal consumption, and its growing contribution to greenhouse gas emissions. The paper then discusses a number of options within the coal system where greenhouse gas emissions, particularly CO{sub 2}, can be reduced. The commercial status and environmental performance of the main power plant technology options are briefly reviewed.

  2. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS 1990-2004

    EPA Science Inventory

    The Environmental Protection Agency submits the U.S. greenhouse gas inventory as an annual reporting requirement under UNFCCC, which the United States and other developed countries signed June 1992 at the Rio Earth Summit. The EPA has submitted the greenhouse gas inventory to the...

  3. INVENTORY OF U.S. GREENHOUSE GAS EMISSIONS AND SINKS 1990-2011

    EPA Science Inventory

    The Environmental Protection Agency submits the U.S. greenhouse gas inventory as an annual reporting requirement under UNFCCC, which the United States and other developed countries signed June 1992 at the Rio Earth Summit. The EPA has submitted the greenhouse gas inventory to the...

  4. A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system

    NASA Astrophysics Data System (ADS)

    Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson

    2016-06-01

    Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.

  5. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process.

    PubMed

    Kong, Qiang; Wang, Zhi-Bin; Niu, Peng-Fei; Miao, Ming-Sheng

    2016-06-01

    This study evaluates greenhouse gas emission and the microbial community dynamics during simultaneous nitrification and denitrification (SND) process. Based on CO2 equivalents, the SND reactor released 4.28g of greenhouse gases each cycle. 2.91% of the incoming nitrogen load was emitted as N2O. The CO2 and N2O emissions mainly occurred in the aerobic stage and CH4 emissions were consistently near zero. Extracellular polymeric substance (EPS) contents in activated sludge increased during start-up the SND process. High-throughput sequencing showed increases in bacterial species richness, leading to changes in EPS content and composition observed using 3D-EEM fluorescence spectra. For denitrifying bacteria, the relative abundance of Pseudomonas significantly increased during the SND process, while Paracoccus decreased significantly. For phosphorus-accumulating bacteria, the relative abundance of Rhodocyclaceae also significantly increased. The relative abundance of other functional microbes, such as Nitrosomonadaceae (ammonia oxidizer), Nitrospirales (nitrite oxidizer) and Planctomyces (anammox) decreased significantly during the SND process. PMID:26935325

  6. Environmental and health risk analysis of nitrogen trifluoride (NF(3)), a toxic and potent greenhouse gas.

    PubMed

    Tsai, Wen-Tien

    2008-11-30

    This article aimed at the introduction of nitrogen trifluoride (NF(3)) and its decomposition products into its hazards to the environment and health because this perfluorocompound is a toxic and potent greenhouse gas not blanketed into the Kyoto Protocol. This paper also predicted the global NF(3) emissions from the electronics industry on the basis of the methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC), and further discussed its atmospheric implications according to the estimation of environmental fate for NF(3). It showed that the vaporization of NF(3) from the water bodies to the atmosphere is very high according to its predicted value (ca. 6.0 x 10(5)MPa) of Henry's law constant (K(H)). Furthermore, NF(3) emitted from the electronics industry around the world in 2006 was estimated to be between 3.6 and 56 metric tonnes and it will be on increasing trend in the near future. Although the accumulative amount of NF(3) in the atmosphere currently should be very negligible based on the predicted ratio (the order of 10(-6) to 10(-7)) of equivalent CO(2) emission from NF(3) to total equivalent CO(2) emissions from potent greenhouse gases, it is necessary to adopt the available abatement and also monitor the concentration of NF(3) in the workplaces for reducing the overall environmental and health impacts of various semiconductor processes. PMID:18378075

  7. Greenhouse gas source identification and flux measurements using an optical remote sensing method and a photoacoustic multi-gas analyzer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil properties such as particle size, soil organic carbon (SOC) and moisture contents, tillage operations and crop management practices influence greenhouse gas emission or consumption patterns from agricultural lands. Greenhouse gas (GG) emissions have been measured on small field plots, although ...

  8. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. PMID:27118738

  9. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    NASA Astrophysics Data System (ADS)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  10. Global mismatch between greenhouse gas emissions and the burden of climate change

    PubMed Central

    Althor, Glenn; Watson, James E. M.; Fuller, Richard A.

    2016-01-01

    Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth’s atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries’ GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we find an enormous global inequality where 20 of the 36 highest emitting countries are among the least vulnerable to negative impacts of future climate change. Conversely, 11 of the 17 countries with low or moderate GHG emissions, are acutely vulnerable to negative impacts of climate change. In 2010, only 28 (16%) countries had an equitable balance between emissions and vulnerability. Moreover, future emissions scenarios show that this inequality will significantly worsen by 2030. Many countries are manifestly free riders causing others to bear a climate change burden, which acts as a disincentive for them to mitigate their emissions. It is time that this persistent and worsening climate inequity is resolved, and for the largest emitting countries to act on their commitment of common but differentiated responsibilities. PMID:26848052

  11. Global mismatch between greenhouse gas emissions and the burden of climate change

    NASA Astrophysics Data System (ADS)

    Althor, Glenn; Watson, James E. M.; Fuller, Richard A.

    2016-02-01

    Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth’s atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries’ GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we find an enormous global inequality where 20 of the 36 highest emitting countries are among the least vulnerable to negative impacts of future climate change. Conversely, 11 of the 17 countries with low or moderate GHG emissions, are acutely vulnerable to negative impacts of climate change. In 2010, only 28 (16%) countries had an equitable balance between emissions and vulnerability. Moreover, future emissions scenarios show that this inequality will significantly worsen by 2030. Many countries are manifestly free riders causing others to bear a climate change burden, which acts as a disincentive for them to mitigate their emissions. It is time that this persistent and worsening climate inequity is resolved, and for the largest emitting countries to act on their commitment of common but differentiated responsibilities.

  12. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    PubMed

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively. PMID:23786706

  13. An issue of trust: state corruption, responsibility and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Frame, David J.; Hepburn, Cameron

    2010-01-01

    Climate change is increasingly seen to raise difficult normative issues. To date, cumulative emissions have been disproportionately from the developed world, while the consequences of climate change are anticipated to hit poorer countries hardest. For this reason, amongst others, it is suggested that more economically developed countries with high greenhouse gas emissions ought to transfer resources to less economically developed, lower emissions countries. Some proponents would justify these resource transfers by ethical or justice-based arguments, often based on some function of the emissions per capita of each country, such that rights of some sort are created and those nations which are emitting more (per capita) than some amount are to compensate those who are emitting less. In this letter we show that national emissions per capita, scaled by economic output, show a systematic negative correlation with state corruption. We discuss this result in the context of justice-based arguments for per capita climate mitigation transfers, and suggest that it would be beneficial for the climate mitigation community to consider state corruption as a relevant factor in the development of mitigation policy.

  14. Regional and sectoral assessment of greenhouse gas emissions in India

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Bhattacharya, Sumana; Shukla, P. R.; Dadhwal, V. K.

    In this paper the authors have estimated for 1990 and 1995 the inventory of greenhouse gases CO 2, CH 4 and N 2O for India at a national and sub-regional district level. The district level estimates are important for improving the national inventories as well as for developing sound mitigation strategies at manageable smaller scales. Our estimates indicate that the total CO 2, CH 4 and N 2O emissions from India were 592.5, 17, 0.2 and 778, 18, 0.3 Tg in 1990 and 1995, respectively. The compounded annual growth rate (CAGR) of these gases over this period were 6.3, 1.2 and 3.3%, respectively. The districts have been ranked according to their order of emissions and the relatively large emitters are termed as hotspots. A direct correlation between coal consumption and districts with high CO 2 emission was observed. CO 2 emission from the largest 10% emitters increased by 8.1% in 1995 with respect to 1990 and emissions from rest of the districts decreased over the same period, thereby indicating a skewed primary energy consumption pattern for the country. Livestock followed by rice cultivation were the dominant CH 4 emitting sources. The waste sector though a large CH 4 emitter in the developed countries, only contributed about 10% the total CH 4 emission from all sources as most of the waste generated in India is allowed to decompose aerobically. N 2O emissions from the use of nitrogen fertilizer were maximum in both the years (more than 60% of the total N 2O). High emission intensities, in terms of CO 2 equivalent, are in districts of Gangetic plains, delta areas, and the southern part of the country. These overlap with districts with large coal mines, mega power plants, intensive paddy cultivation and high fertilizer use. The study indicates that the 25 highest emitting districts account for more than 37% of all India CO 2 equivalent GHG emissions. Electric power generation has emerged as the dominant source of GHG emissions, followed by emissions from steel and

  15. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  16. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in

  17. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales. PMID:19020618

  18. Peru`s national greenhouse gas inventory, 1990. Peru climate change country study

    SciTech Connect

    1996-07-01

    The aim of this study has been to determine the Inventory and to propose greenhouse gases mitigation alternatives in order to face the future development of the country in a clean environmental setting, improving in this way the Peruvian standard of life. The main objective of this executive summary is to show concisely the results of the National Inventory about greenhouse gases emitted by Peru in 1990.

  19. Economics of lifecycle analysis and greenhouse gas regulations

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces

  20. Anthropogenic greenhouse gas contribution to UK autumn flood risk

    NASA Astrophysics Data System (ADS)

    Pall, Pardeep; Aina, Tolu; Stone, Dáithí; Stott, Peter; Nozawa, Toru; Hilberts, Arno; Lohmann, Dag; Allen, Myles

    2010-05-01

    Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing[1]. Yet climate models typically used for studying the attribution problem do not resolve weather at scales causing damage[2]. Here we present the first multi-step study that attributes increasing risk of a damaging regional weather-related event to global anthropogenic greenhouse gas emissions. The event was the UK flooding of October and November 2000, occurring during the wettest autumn in England & Wales since records began in 1766[3] and inundating several river catchments[4]. Nearly 10,000 properties were flooded and transport services and power supplies severely disrupted, with insured losses estimated at £1.3bn[5,6]. Though the floods were deemed a ‘wake up call' to the impacts of climate change[7], anthropogenic drivers cannot be blamed for this individual event: but they could be blamed for changing its risk[8,9]. Indeed, typically quoted thermodynamic arguments do suggest increased probability of precipitation extremes under anthropogenic warming[10]. But these arguments are too simple[11,12,13] to fully account for the complex weather[4,14] associated with the flooding. Instead we use a Probabilistic Event Attribution framework, to rigorously estimate the contribution of anthropogenic greenhouse gas emissions to England & Wales Autumn 2000 flood risk. This involves comparing an unprecedented number of daily river runoff realisations for the region, under Autumn 2000 scenarios both with and without the emissions. These realisations are produced using publicly volunteered distributed computing power to generate several thousand seasonal forecast resolution climate model simulations[15,16] that are then fed into a precipitation-runoff model[17,18]. Autumn 2000 flooding is characterised by realisations exceeding the highest daily river runoff for that period, derived from the observational-based ERA-40 re-anaylsis[19]. We find that our

  1. Greenhouse Gas Emissions from Septic Systems in New York State.

    PubMed

    Truhlar, Allison M; Rahm, Brian G; Brooks, Rachael A; Nadeau, Sarah A; Makarsky, Erin T; Walter, M Todd

    2016-07-01

    Onsite septic systems use microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). Current USEPA estimates for septic system GHG emissions are based on one study conducted in north-central California and are limited to methane; therefore, the contribution of these systems to the overall GHG emission budget is unclear. This study quantified and compared septic system GHG emissions from the soil over leach fields and the roof vent, which are the most likely locations for gas emissions during normal septic system operation. At each of eight septic systems, we measured fluxes of CH, CO, and NO using a static chamber method. The roof vent released the majority of septic system gas emissions. In addition, the leach field was a significant source of NO fluxes. Comparisons between leach field and vent emissions suggest that biological processes in the leach field soil may influence the type and quantity of gas released. Overall, our results suggest that (i) revisions are needed in USEPA guidance (e.g., septic systems are not currently listed as a source of NO emissions) and (ii) similar studies representing a wider range of climatic and geographic settings are needed. The total vent, sand filter, and leach field GHG emissions were 0.17, 0.045, and 0.050 t CO-equivalents capita yr, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the United States. PMID:27380062

  2. The economics of biomass for power and greenhouse gas reduction

    NASA Astrophysics Data System (ADS)

    Cameron, Jay Brooker

    The power cost and optimum plant size for power plants using straw fuel in western Canada was determined. The optimum size for agricultural residues is 450 MW (the largest single biomass unit judged feasible in this study), and the power cost is 50.30 MWh-1. If a larger biomass boiler could be built, the optiμm project size for straw would be 628 MW. For a market power price of 40 MWh-1 the cost of the GHG credit generated by a straw-fired plant is 11 tonne-1 CO2. Straw was evaluated as a possible supplement to the primary coal fuel at the Genesee power station in order to reduce the greenhouse gas (GHG) emissions intensity. Cofiring straw at the Genesee power station does not compete favorably with other GHG abatement technologies, even the lowest cost option is estimated at 22 tonne-1 CO2. The cost of transporting wood chips by truck and by pipeline as a water slurry is determined. The pipeline would be economical at large capacity (>0.5 M dry tonnes per year for a one way pipeline, and >1.25 M dry tonnes per year for a two way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km (one way) and >470 km (two way) at a capacity of 2 M dry tonnes per year). Pipelining was determined to be unsuitable for combustion applications. Pipeline transport of corn is evaluated against a range of truck transport costs. At 20% solids, pipeline transport of corn stover costs less than trucking at capacities in excess of 1.4 M dry tonnes/yr when compared to a mid range of truck transport. Pipelining of corn stover gives the opportunity to conduct simultaneous transport and saccharification (STS) but would require a source of waste heat at the pipeline inlet in order to be economical. Transport of corn stover in multiple pipelines offers the opportunity to develop a large ethanol fermentation plant, avoiding some of the diseconomies of scale that arise from smaller plants whose capacities are limited by issues of truck congestion

  3. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  4. Greenhouse gas flux from tropical peatlands: context and controls

    NASA Astrophysics Data System (ADS)

    Page, Susan; Jauhiainen, Jyrki; Hooijer, Aljosja

    2010-05-01

    Peatlands play a key role within the global carbon cycle by storing a disproportionately large amount of soil carbon relative to other terrestrial ecosystems. Peatland systems have accumulated carbon through an imbalance between the uptake and release of CO2 from and to the atmosphere. In a pristine condition, tropical peat swamp forest is one of the world's most efficient carbon sequestering ecosystems as a result of substantial biomass production and the waterlogged condition of the peat, which reduces significantly the rate of organic matter decomposition. Tropical peat deposits have acted as sinks of atmospheric carbon since at least the beginning of the Holocene and, in some cases, the Late Pleistocene. They currently store ~ 65 Gt C, most of which is located in thick deposits in Southeast Asia. Tropical peatlands are, however, vulnerable to destabilisation through both human and climate induced changes. The former include poor forest and land management practices, drainage, large-scale conversion to plantation agriculture, and fire; these lead to degradation and reduction of the peatland carbon store and contribute to greenhouse gas emissions, whilst compromising other valuable ecosystem services. Climate induced changes include susceptibility to drought-impacts, particularly during ENSO-events; there are also initial indications that regional climates in areas with extensive peatlands are experiencing reduced rainfall, which threatens longer term peatland sustainability. This paper reviews the current understanding of carbon-climate-human interactions on tropical peatlands. It focuses on the main causes of peatland degradation, in particular natural and anthropogenic changes in peatland hydrology; considers the risks that hydrological change, especially water-table drawdown, poses to the peatland carbon pool; and assesses the scale of peatland drainage-associated CO2 emissions, which are currently of the order of ~250 Mt C yr-1 for Southeast Asian peatlands

  5. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  6. Greenhouse Gas Emissions from Three Cage Layer Housing Systems

    PubMed Central

    Fournel, Sébastien; Pelletier, Frédéric; Godbout, Stéphane; Lagacé, Robert; Feddes, John

    2011-01-01

    Simple Summary Greenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure. Abstract Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The

  7. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region

    PubMed Central

    McKain, Kathryn; Wofsy, Steven C.; Nehrkorn, Thomas; Eluszkiewicz, Janusz; Ehleringer, James R.; Stephens, Britton B.

    2012-01-01

    International agreements to limit greenhouse gas emissions require verification to ensure that they are effective and fair. Verification based on direct observation of atmospheric greenhouse gas concentrations will be necessary to demonstrate that estimated emission reductions have been actualized in the atmosphere. Here we assess the capability of ground-based observations and a high-resolution (1.3 km) mesoscale atmospheric transport model to determine a change in greenhouse gas emissions over time from a metropolitan region. We test the method with observations from a network of CO2 surface monitors in Salt Lake City. Many features of the CO2 data were simulated with excellent fidelity, although data-model mismatches occurred on hourly timescales due to inadequate simulation of shallow circulations and the precise timing of boundary-layer stratification and destratification. Using two optimization procedures, monthly regional fluxes were constrained to sufficient precision to detect an increase or decrease in emissions of approximately 15% at the 95% confidence level. We argue that integrated column measurements of the urban dome of CO2 from the ground and/or space are less sensitive than surface point measurements to the redistribution of emitted CO2 by small-scale processes and thus may allow for more precise trend detection of emissions from urban regions. PMID:22611187

  8. Unified account of gas pollutants and greenhouse gas emissions: Chinese transportation 1978-2004

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, G. Q.

    2010-09-01

    To facilitate the aggregation of both quantity and quality of waste emissions, the concept of chemical exergy combining the first and second laws of thermodynamics is introduced for a unified account of gas pollutants and greenhouse gases, by a case study for the Chinese transportation system 1978-2004 with main gas pollutants of NO, SO2, CO and main greenhouse gases of CO2 and CH4. With chemical exergy emission factors concretely estimated, the total emission as well as emission intensity by exergy of the overall transportation system and of its four modes of highways, railways, waterways and civil aviation are accounted in full detail and compared with those by the conventionally prevailing metrics of mass, with essential implications for environmental policy making.

  9. Competitiveness of Terrestrial Greenhouse Gas Offsets: Are They a Bridge to the Future?

    SciTech Connect

    McCarl, Bruce A.; Sands, Ronald D.

    2007-01-22

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration utilize currently known and readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from dynamic and multiple strategy viewpoints. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower carbon prices and in the near term, soil carbon and other agricultural/forestry options are important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher carbon prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system provide an increasing share of potential reductions in total U.S. greenhouse gas emissions.

  10. Greenhouse gas emissions from municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    by a person in Germany or Austria (10.6 t CO2e/p/a, UBA, 2016). The results indicate that GHG emissions from WWTP have at global scale a small impact, as also highlighted by the Austrian national inventory report (NIR, 2015), where the estimated CO2e emissions from WWTPs account for only 0.23% of the total CO2e emission in Austria. References IPCC (2006). Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Program, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Anabe K. (eds). Published: IGES, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/. NIR (2015). Austria's National Inventory Report 2015. Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Reports, Band 0552, ISBN: 978-3-99004-364-6, Umweltbundesamt, Wien. Parravicini V., Valkova T., Haslinger J., Saracevic E., Winkelbauer A., Tauber J., Svardal K., Hohenblum P., Clara M., Windhofer G., Pazdernik K., Lampert C. (2015). Reduktionspotential bei den Lachgasemissionen aus Kläranlagen durch Optimierung des Betriebes (ReLaKO). The research project was financially supported by the Ministry for agriculture, forestry, Environment and Water Management. Project leader: TU Wien, Institute for Water Quality, Ressources and Waste Management; Project partner: Umweltbundesamt GmbH. Final report: http://www.bmlfuw.gv.at/service/publikationen/wasser/Lachgasemissionen---Kl-ranlagen.html. UBA (2016). German average carbon footprint. Umweltbundesamt, Januar 2016, http://uba.klimaktiv-co2-rechner.de/de_DE/page/footprint/

  11. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    PubMed

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. PMID:26024280

  12. Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste.

    PubMed

    Clemens, J; Cuhls, C

    2003-06-01

    The mechanical and biological waste treatment (MBT) is an increasingly important technology for the treatment of municipal solid waste (MSW) before landfilling. This process includes composting of the material with intensive aeration in order to minimize the organic fraction that may induce methane and leachate emissions after landfilling. The exhaust air is treated by biofilters to remove odorous and volatile organic compounds. The emission of direct and indirect greenhouse gases, namely methane (CH4), carbon dioxide (CO2), ammonia (NH3), nitric (NO) and nitrous oxide (N2O) was studied in four existing treatment plants. All gases except NO were emitted from the composting material. The emission factors were 12 to 185 kg ton(-1) substrate for CO2, 6-12 x 10(3) g ton(-1) substrate for CH4, 1.44 to 378 g ton(-1) substrate for N2O and 18-1150 g ton(-1) for NH3. In general, emission factors increased with increasing treatment time. The biofilters had no net effect on CH4, but removed 13-89% of the NH3. For CO2 the biofilters were a small, for N2O a major and for NO the exclusive source. Approximately 26% of the NH3-N that was removed in the biofilter was transformed into N2O when NH3 was the exclusive nitrogen source. Assuming that all municipal waste was treated by MBT, the emissions would account for 0.3 to 5% of the N2O and for 0.1 to 3% of the CH4 emissions in Germany, respectively. Optimising aeration and removing NH3 before the exhaust gas enters the biofilter could lead to reduced greenhouse gas emissions. PMID:12868530

  13. [Study on regularity of greenhouse gas emissions from black soil with different reclamation years].

    PubMed

    Li, Ping; Lang, Man; Xu, Xiang-Hua; Li, Yu-Shan; Zhu, Shu-Xian

    2014-11-01

    Regularity of greenhouse gas emissions from black soil with different reclamation years in northern China was investigated by an incubation experiment. Soil samples cultivated for 2 years, 30 years, 100 years and uncultivated were collected and incubated at 2 degrees C and a soil moisture of 60% of the water hold capacity (WHC) for 7 days. The results indicated that the physical and chemical properties of black soil changed significantly after reclamation, which had significant influence on the greenhouse gas emissions. N2O emission was stimulated after soil was reclaimed, the longer time of reclamation, the higher N2O emitted from soil, and the N2O emissions from soil cultivated for 30 and 100 years were significantly higher than that from uncultivated soil. There were significant positive correlations between N2O emission and the content of water organic nitrogen and silt in soil, whereas significant negative correlations were found between pH, sand content and N2O emission. CO2 emission decreased after the soil was cultivated, and CO2 emission from soil cultivated for 30 and 100 years were significantly lower than that of uncultivated soil. There were significant positive correlations between organic carbon, water organic carbon and CO2 emission. All of the soils behaved as weak sources of CH4 emission during the first 4 days of incubation, and then behaved as weak sink of atmospheric CH4, the CH4 cumulative emission increased with reclamation years. The difference of CO2 and CH4 emissions from black soil with different reclamation years may be attributed to the difference of soil pH, organic carbon, soluble organic carbon and the contents of sand and silt. PMID:25639112

  14. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles. PMID:26757000

  15. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE)

    NASA Astrophysics Data System (ADS)

    Dobler, Jeremy; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Tim; Botos, Chris

    2016-06-01

    Exelis has recently developed a novel laser-based instrument to aid in the autonomous real-time monitoring and mapping of CO2 concentration over a two-dimensional area. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) instrument uses two transceivers and a series of retroreflectors to continuously measure the differential transmission over a number of overlapping lines of sight or "chords", forming a plane. By inverting the differential transmission measurements along with locally measured temperature (T), pressure (P) and relative humidity (RH) the average concentration of CO2 along each chord can be determined and, based on the overlap between chords, a 2D map of CO2 concentration over the measurement plane can be estimated. The GreenLITE system was deployed to the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions, while utilizing a controlled release of CO2 into a segmented underground pipe [1]. The system demonstrated the ability to identify persistent CO2 sources at the test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, instrument design, and results from the deployment to the ZERT site.

  16. Incorporating energy trade into national greenhouse gas emission estimates

    SciTech Connect

    Ashton, W.B.; Kinzey, B.R.; Dailey, R.G.; Spencer, D.F.

    1994-12-31

    As negotiations aimed at establishing national emissions reductions targets proceed, it is very important to understand the differences between alternative methods of estimating and attributing emissions to the respective countries. Current estimates of national energy-related greenhouse gas (GHG) emissions frequently consider only domestic emissions sources. However, this approach may inaccurately reflect the true level of global emissions resulting from energy consumed by a particular economy, particularly if it engages in significant levels of energy trade. Alternative estimation methods may more accurately reflect these ``trade-based`` emissions. In this paper, the authors propose a method of estimating emissions, by country, that incorporates the effects of international energy trade. The paper shows that estimated trade-based emission levels for a country can significantly differ from domestic-based emissions estimates, depending on that country`s levels of fossil energy imports and exports relative to its domestic energy consumption. Four preliminary case studies are presented to demonstrate the impact of energy trade on emissions estimates, including the United States, Japan, France, and Saudi Arabia. Countries that are large exporters of fossil energy (like Saudi Arabia) tend to have reduced emissions attributable to their economy, while the converse is true for large energy importers (such as Japan).

  17. Aligning corporate greenhouse-gas emissions targets with climate goals

    NASA Astrophysics Data System (ADS)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-12-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.

  18. Managed grasslands: A greenhouse gas sink or source?

    NASA Astrophysics Data System (ADS)

    Leahy, Paul; Kiely, Ger; Scanlon, Todd M.

    2004-10-01

    We describe a unique, one year investigation of CO2 and N2O fluxes over a fertilized grassland in Ireland using two eddy covariance systems. As the global warming potential (GWP) of N2O is 296 (100 year time horizon), relatively small N2O emissions have a potentially large impact on overall radiative forcing. Therefore nitrogen fertilizer application practices may possibly turn a site with a net CO2 uptake into a net radiative forcing source. We observed a net annual uptake of 9.45 T CO2 ha-1. N2O emissions equivalent to 5.42 T ha-1 CO2 GWP counteracted 57% of the effect of the CO2 uptake. Estimated methane emissions from ruminants (3.74 T ha-1 CO2 GWP) further counteract the CO2 uptake, making the overall GWP nearly neutral. This delicate balance of the greenhouse gas fluxes underscores the significance of fertilizer application strategies in determining whether a managed grassland is a net GWP source or sink.

  19. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  20. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  1. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  2. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  3. Idaho National Laboratory's FY13 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2014-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  4. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  5. Opportunities for reducing greenhouse gas emissions in tropical peatlands

    PubMed Central

    Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V.

    2010-01-01

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

  6. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol. PMID:25588032

  7. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    PubMed

    Hertwich, Edgar G

    2013-09-01

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated. PMID:23909506

  8. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    NASA Astrophysics Data System (ADS)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p < 0.05) during the wet versus the dry seasons for some, but not all, crop types. The heterogeneity and seasonality of fluxes suggest that the available data describing soil fluxes in Africa, based on measurements of limited duration of only a few crop types and agroecological zones, are inadequate to use as a basis for estimating the impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  9. Continuous Greenhouse Gas Monitoring on South Atlantic Islands

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; Lanoiselle, M.; Nisbet, E. G.; Dlugokencky, E. J.; Manning, A. C.

    2010-12-01

    Analytical instruments based on cavity ring-down spectroscopy (CRDS) with automated calibration systems are being deployed on South Atlantic Islands to monitor atmospheric CO2 and CH4. Data have been returned daily from the CRDS analyzer deployed at the Meteorological Office Ascension Island site since 22 June 2010. Installation of a second instrument near Stanley Airport on the Falkland Islands is due to take place in October 2010. The equipment will reach the Falklands on the British Antarctic Survey ship, James Clark Ross and will monitor CO2 and CH4 continuously on the Atlantic voyage from the UK, providing additional important greenhouse gas data for the South Atlantic as well as for the south and east coast of the UK. Data for Ascension Island winter (June to August) show variations in CO2 between 387 and 390 ppm and CH4 between 1760 and 1778 ppb, but with prolonged periods of 3 weeks or more with both gas species toward the upper or lower ends of these ranges. These trends are also observed in twice weekly NOAA flask samples collected within 100 m of the RHUL air inlet. The averaged mixing ratio for NOAA flask samples collected over this period is within 0.04 ppm for CO2 and 0.4 ppb for CH4 of the averaged continuous CRDS record. Data for δ13C of methane measured on flask samples collected by RHUL since 2000 show a range of -47.2 to -46.7‰ with a maximum seasonal cycle of 0.3‰. Comparison of RHUL data for 2000-2004 and 2009-2010 suggest an isotopic enrichment of 0.2 per mil associated with an increase in mixing ratio of 15-20 ppb over this period.

  10. Greenhouse Gas Balance in a Restored and Natural Wetland

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Jaffe, P. R.; Morin, T. H.; Bohrer, G.

    2015-12-01

    The greenhouse gas balance of natural and restored wetlands is an important consideration when assessing ecosystem services, structure and function and restoration success of wetlands. Fast methane (CH4) gas analyzers such as the LI7700 are now enabling continuous ecosystem scale (eddy flux) measurements and assessment in conjunction with CO2 measurements. Here, we have set up two locations, one in a natural and one in a restored tidal salt marsh in the Meadowlands of New Jersey (MNJ) USA, in order to compare ecosystem level methane and carbon dioxide fluxes. Continuous methane fluxes were measured at the ecosystem level over three growing seasons at the restored site and two growing seasons at the natural wetland site concomitant to carbon dioxide fluxes. Methane and carbon dioxide emissions were highly variable in space and time over the three years of investigation (2012-2014). The temporal dynamics of methane and carbon dioxide fluxes in each of the sites suggest small-scale site-specific controls on methane emissions, but ubiquitous, non-specific controls on carbon dioxide uptake and release. Methane emissions increased at the restored site from 2012 to 2013, despite no corresponding increases in carbon dioxide uptake. In contrast, methane emission decreased at the natural wetlands site over the same time with concomitant increase in carbon dioxide uptake (more negative net ecosystem exchange). In 2014, the trend continued at the natural and the restored wetland sites with decreasing methane emission and increasing CO2 uptake. The influence of temperature and phenology on the observed patterns will be discussed.