Science.gov

Sample records for greenhouse gases observation

  1. Monitoring greenhouse gases with astronomical observations

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Barden, M.; Smette, A.; Szyszka, C.; Jones, A.; Kimeswenger, S.; Sana, H.; Horst, H.

    2012-04-01

    Modern telescopes are equipped with high-precision multi-mode spectrographs. To obtain proper calibration, astronomers observe the plain night sky and specific telluric standard stars (TS stars) to estimate the influence of the Earth atmosphere on astronomical observations. TS stars are usually white dwarfs, as their spectra are not time dependent and hardly contain any spectral features. Since the atmospheric emission in the thermal infrared and the absorption of stellar radiation reflect molecular abundances in the lower atmosphere, plain night sky and TS spectra can be used to obtain column densities of greenhouse gases. We present a method for determining this, incorporating the radiative transfer code LBLRTM and the HITRAN database. We fit specific molecular absorption and emission features by varying the corresponding abundance profiles iteratively implementing a Levenberg-Marquardt ?2 minimisation algorithm. This method was originally developed to estimate the amount of precipitable water vapour, which strongly influences infrared observations, above the observing site of the ESO Very Large Telescope, Cerro Paranal. We are currently in the process of extending this procedure to other greenhouse gases. As plain sky and TS stars are observed several times per night these spectra can be used to monitor molecular column densities on a long term basis.

  2. Greenhouse Gases

    MedlinePLUS

    ... effects. More about how greenhouse gases affect the climate » Also on Energy Explained Energy and the Environment Where Greenhouse Gases ... 44&aid=8 Last reviewed: September 25, 2015 « Energy and the Environment Greenhouse Gases’ Effect on the Climate »

  3. The state of greenhouse gases in the atmosphere using global observations through 2012

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Edward; Montzka, Stephen A.; Butler, James H.

    2014-05-01

    The Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) provides a framework for global observations and assessment of the state and development of atmospheric composition, including greenhouse gases. It puts stringent requirements on the quality of the observations. These requirements are reviewed by the greenhouse gas science and measurement community at biennial WMO/IAEA Meetings on Carbon Dioxide, Other Greenhouse Gases, and Related Tracer Measurement Techniques. The 17th meeting was held in Beijing, China, on 10 - 14 June 2013 (http://ggmt-2013.cma.gov.cn/dct/page/1). Results of global analysis of the observational data are reported annually in the WMO/GAW Annual Greenhouse Gas Bulletin. Bulletin No. 9 represents an update of the results for the year 2012 (extended version is available at http://www.wmo.int/pages/prog/arep/gaw/ghg/ghg9-en-online.html). The cover story of this bulletin presents the attribution of methane sources in the context of the renewed growth of the global average methane mole fraction in 2007. The bulletin is prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/www/CBS/Lists_WorkGroups/CAS/opag-epac/gaw%20sag%20ghg) in collaboration with the World Data Center for Greenhouse Gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) derived from this network reached new highs in 2012, with CO2 at 393.1±0.1 ppm, CH4 at 1819±1 ppb and N2O at 325.1±0.1 ppb. These values constitute 141%, 260% and 120% of pre-industrial (before 1750) levels, respectively. The increase of the annual mean CO2 mole fraction from 2011 to 2012 amounted to 2.2 ppm, which is greater than the average growth rate for the 1990s (~1.5 ppm yr-1) and for the past decade (~2.0 ppm yr-1). The globally averaged CH4 mole fraction increased by 6 ppb from 2011 to 2012. The growth rate of CH4 decreased from ~13 ppb yr-1 during the early 1980s to near zero during 1999-2006. Since 2007, atmospheric CH4 has been increasing again, averaging ~5 ppb yr-1. The growth rate of N2O in 2012 was 0.9 ppb yr-1, which is greater than the average growth rate over the last 10 years (0.75 ppb yr-1). The NOAA Annual Greenhouse Gas Index (AGGI) has been defined as the ratio of total radiative forcing due to long-lived greenhouse gases for any year for which adequate global measurements exist to that which was present in 1990. The AGGI in 2012 was 1.32 (corresponding to 2.87 W m-2 of global radiative forcing, relative to 1750, of all long-lived greenhouse gases). The AGGI indicates an increase in radiative forcing by all long-lived greenhouse gases of 32% since 1990 and of 1.2% from 2011 to 2012, while the radiative forcing by all long-lived greenhouse gases in 2012 corresponded to a CO2-equivalent mole fraction of 475.6 ppm (http://www.esrl.noaa.gov/gmd/aggi).

  4. Hyper-spectral observations of greenhouse gases in Three Gorges Reservoir Region, China

    NASA Astrophysics Data System (ADS)

    Wang, Ding Yi; Zhang, Chun-ming; Qin, Lin; Zhang, Lu; Wang, Xiang-hong; Li, Hong-qun; Yang, Fu-Mo; Chen, Gang-Cai; Wang, Shu-peng; Zhang, Xing-ying; Zhang, Peng

    The Three Gorges Reservoir (TGR) is the most ambitious hydroelectric and flood control project in human history. Its riparian zone has areas of ~300 km2 with water levels fluctuating between 175m above the sea in winter and 145m in summer, and is a special type of wetlands at the low water levels. These wetlands may release CO2 and CH4 with significantly spatial and temporal variations, and have been misleadingly described as a “methane menace” and caused a worldwide concern. A joint research program for TGR greenhouse gases monitoring is operated by several institutions and based at Yangtze Normal Univ. in Fuling of Chongqing. It is characterized by the combined satellite, airship, and ground-based hyper-spectral observations, which serve to simultaneously measure various eco-environmental parameters in a large area with high spatial and spectral resolutions, and to model the status and key dynamic processes of the TGR greenhouse gases. In this talk, the retrieval algorithm of the gas species from satellite near-infrared observations is discussed with special attentions paid to the mountainous and foggy TGR region. The distributions and variations of TGR greenhouse gases are studied by using the AIRS and SCIAMACHY monthly means of multiple years. The airship and ground-based observation system is outlined and expected to provide unique data needed to address the TGR environmental issues, and to evolve towards operational service.

  5. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.

    PubMed

    Kuze, Akihiko; Suto, Hiroshi; Nakajima, Masakatsu; Hamazaki, Takashi

    2009-12-10

    The Greenhouse Gases Observing Satellite (GOSAT) monitors carbon dioxide (CO(2)) and methane (CH(4)) globally from space using two instruments. The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) detects gas absorption spectra of the solar short wave infrared (SWIR) reflected on the Earth's surface as well as of the thermal infrared radiated from the ground and the atmosphere. TANSO-FTS is capable of detecting three narrow bands (0.76, 1.6, and 2.0 microm) and a wide band (5.5-14.3 microm) with 0.2 cm(-1) spectral resolution (interval). The TANSO Cloud and Aerosol Imager (TANSO-CAI) is an ultraviolet (UV), visible, near infrared, and SWIR radiometer designed to detect cloud and aerosol interference and to provide the data for their correction. GOSAT is placed in a sun-synchronous orbit 666 km at 13:00 local time, with an inclination angle of 98 degrees . A brief overview of the GOSAT project, scientific requirements, instrument designs, hardware performance, on-orbit operation, and data processing is provided. PMID:20011012

  6. The state of greenhouse gases in the atmosphere using global observations through 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at 1824 ± 2 ppb and N2O at 325.9 ± 0.1 ppb. These values constitute 142%, 253% and 121% of pre-industrial (before 1750) levels, respectively. The atmospheric increase of CO2 from 2012 to 2013 was 2.9 ppm, which is the largest year to year change from 1984 to 2013. The rise of CO2 concentration has been only about a half of what is expected if all the excess CO2 from the burning of fossil-fuel stayed in the air. The other half has been absorbed by the land biosphere and the oceans, but the split between land and oceans is not easily resolved from CO2 data alone. As described in the Bulletin, O2 measurements have been used to estimate the magnitude of the terrestrial biosphere sink. For N2O the increase from 2012 to 2013 is smaller than the one observed from 2011 to 2012 but comparable to the average growth rate over the past 10 years. Atmospheric CH4 continued to increase at a rate similar to the mean rate over the past 5 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2013 radiative forcing by long-lived greenhouse gases increased by 34%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 479 ppm (http://www.esrl.noaa.gov/gmd/aggi). Uptake of anthropogenic CO2 by the ocean results in increased CO2 concentrations and increased acidity levels in sea-water. During the last two decades ocean water pH decreased by 0.0011 - 0.0024 per year, and the amount of CO2 dissolved in see water (pCO2) increased by 1.2 - 2.8 ?atm per year for time-series from several featured ocean stations.

  7. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  8. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  9. GREENHOUSE GASES AND AGRICULTURE

    EPA Science Inventory

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  10. Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but

    E-print Network

    . It has the essential ingre- dient of the greenhouse effect, but it is missing numerous thingsGreenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but most aren't, and some that are important in the real atmosphere. Starting from the Layer Model, the next few chapters add things one

  11. Atmospheric Concentrations of Greenhouse Gases

    EPA Science Inventory

    This indicator presents trends in atmospheric concentrations of several greenhouse gases (GHGs) over geological time and in recent years. Changes in atmospheric GHGs, in part caused by human activities, affect the amount of energy held in the Earth-atmosphere system and thus a...

  12. Different greenhouse gases as a possible origin of the different behaviour of TIR anomalies observed from satellite in seismogenic areas

    NASA Astrophysics Data System (ADS)

    Aliano, C.; Corrado, R.; Filizzola, C.; Lanorte, V.; Lisi, M.; Paciello, R.; Pergola, N.; Tramutoli, V.; Tsamalashvili, T.

    2009-04-01

    Many studies have been suggesting for decades a relation between Thermal Infrared (TIR) anomalies, observed from satellite, and seismic activity. In particular, the Robust Satellite Technique (RST) for the first time provided a statistics-based definition of "TIR anomalies" and a suitable method for their identification even in very different local (e.g. related to atmosphere and/or surface) and observational (e.g. related to time/season, but also to solar and satellite zenithal angles) conditions. The application of the RST approach to tens of earthquakes all around the world allowed us not to exclude, as already suggested by previous studies, that the TIR anomaly appearance in seismically active areas may be a consequence of the increase of green-house gas (such as CO2, CH4, etc.) emission rates. However, the application of the RST to seismic events which occurred in areas characterized by different prevailing degassing activities (i.e. CO2 or CH4) seems to highlight that, depending on the greenhouse gas which could be "responsible" for TIR anomalies, the shape of such anomalies appear to be more linear or more diffuse. In fact, it may be expected a more linear shape (i.e. an anomaly which seems to follow tectonic lineaments) in the case of greenhouse gases like CO2 which are heavier than the air so that they tend to gather within low morphological settings often formed along faults. On the other hand, when the diffusing gases are lighter than the air (e.g. CH4) it is expected that the overlapping of TIR anomalies on tectonic lineaments is less marked or even the anomaly seems to be quite scattered. The observation of such different shapes of TIR anomalies led us to further investigate the phenomenon origin. To this aim, a test was performed over an area with huge and highly variable CH4 emissions. The selected region was Azerbaijan, characterized by a large number of mud volcanoes which typically have methane as the principal component of their emissions. Following RST procedure, Meteosat-TIR images, acquired on the Caucasian area during mud volcano activities, were analysed. The space-time signature of the observed TIR anomalies seems to confirm, even by comparison with the ones observed in presence of degassing activity dominated by CO2 (heavier than air), that their behaviour actually depends on the density (greater or lower than the air) of the main emitted green-house gases.

  13. Quantifying urban/industrial emissions of greenhouse and ozone-depleting gases based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Barnes, Diana Hart

    2000-11-01

    Background and pollution trends and cycles of fourteen trace gases over the Northeastern U.S. are inferred from continuous atmospheric observations at the Harvard Forest research station located in Petersham, Massachusetts. This site receives background `clean' air from the northwest (Canada) and `dirty' polluted air from the southwest (New York City-Washington, D.C. corridor). Mixing ratios of gases regulated by the Montreal Protocol or other policies (CO, PCE, CFC11, CFC12, CFC113, CH 3CCl3, CCl4, and Halon-1211) and of those not subject to restrictions (H2, CH4, CHCl3, TCE, N2O, and SF6) were measured over the three-year period, 1996 to 1998, every 24 minutes by a fully automated gas chromatographic instrument with electron capture detectors. Evidence for polar vortex venting is found consistently in the month of June of the background seasonal cycles. The ratio of CO and PCE enhancements borne on southwesterly winds are in excellent agreement with county-level EPA and sales-based inventories for the New York City-Washington, D.C. region. From this firm footing, we use CO and PCE as reference compounds to determine the urban/industrial source strengths for the other species. A broad historical and geographic study of emissions reveals that the international treaty has by and large been a success. Locally, despite the passing of the 1996 Montreal Protocol ban, only emissions of CFC12 and CH3CCl3 are abating. Though source strengths are waning, the sources are not spent and continued releases to the atmosphere may be expected for some years to come. For CH3CCl3, whose rate of decline is central to our understanding of atmospheric processes, we estimate that absolute concentrations may persist until around the year 2010. The long-term high frequency time series of hydrogen provided here represents the first such data set of its kind. The H2 diurnal cycle is established and explained in terms of its sources and sinks. The ratio of H2 to CO in pollution plumes is found to be a seasonal and unchanged since early automobile exhaust studies of the 1960s, despite the many restrictions placed on car emissions and fuels since that time. Based on this result, a spatial inventory of H2 emissions from fossil fuel combustion is developed at the county level for the entire Northeastern U.S.

  14. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  15. Comparing greenhouse gases for policy purposes

    E-print Network

    Schmalensee, Richard

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions of different gases must be compared. The greenhouse warming potential (GWP) index, which is most often ...

  16. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites.

    PubMed

    Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry

    2013-02-20

    This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON). PMID:23435008

  17. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2016-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  18. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  19. Where do California's greenhouse gases come from?

    ScienceCinema

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  20. Remote sensing of greenhouse gases (CO2 and CH4) using hyperspectral observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Crevoisier, Cyril; Chedin, Alain; Nobileau, Delphine; Armante, Raymond; Thonat, Thibaud; Scott, Noelle A.

    Densely sampling the atmosphere in time and space, satellite measurements of the distribution of global atmospheric CO2 concentration could in principle provide a way to constrain atmo-spheric inversions of CO2 surface fluxes. Until the recent launch of the first dedicated CO2 observing instrument JAXA/GOSAT in January 2009, information on CO2 and other green-house gas atmospheric distribution have been obtained for several years from thermal infrared sounders, such as the Atmospheric Infrared Sounder (AIRS) launched onboard the NASA/Aqua satellite in May 2002 or the Infrared Atmospheric Sounding Interferometer (IASI) launched on-board the European MetOp platform in October 2006. We use coupled observations in the thermal infrared from IASI, and in the microwave from the Advanced Microwave Sounding Unit (AMSU), also launched onboard MetOp, to retrieve mid-to-upper tropospheric contents of carbon dioxide (CO2) and methane (CH4) in clear-sky conditions, in the tropics. Thermal observations, sensitive to both temperature and either CO2 or CH4, are used in conjunction with microwave observations, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of gas seasonality, trend, or geographical patterns. The precision of the IASI retrieval is estimated to be about 2 ppmv (less than 1 Features of the retrieved CO2-CH4 space-time distributions include: (1) a CO2 trend of 2.1 ppmv.yr-1 in average, and a CH4 trend of 10 ppbv.yr-1 in the last couple of years, which confirms the recent increase of methane detected at surface stations; (2) a strong seasonal cycle in the northern tropics, and a lower seasonal cycle in the southern tropics, in agreement with in-situ measurements; in particular, comparison between AIRS and IASI retrievals highlights the time-lag of CO2 cycle while transported from the surface to the upper troposphere; (3) a latitudinal decrease from 20 N to 20 S lower than what is observed at the surface but in excellent agreement with tropospheric aircraft measurements; (4) geographical patterns in good agree-ment with simulations from atmospheric transport and chemistry models, but with a higher variability; (5) signatures of CO2 and CH4 emissions transported to the troposphere such as CO2 emissions from biomass burnings, or a large plume of elevated tropospheric methane south of the Asian continent, which might be due to Asian emissions from rice paddies uplifted by deep convection during the monsoon period and then transported towards Indonesia. More-over, these retrievals, performed from the same instrument and with the same retrieval process, provide the means to study the correlation between CO2 and CH4, in particular its seasonal variation over regions of specific interest, which leads the way to a multi-species study of surface fluxes and atmospheric transport. In addition to bringing a greatly improved view of CO2 and CH4 atmospheric distribution, these results from thermal infrared observations should provide a means to observe and understand atmospheric transport pathways of these two greenhouse gases from the surface to the upper troposphere.

  1. Curbing Greenhouse Gases: Agriculture's Role

    E-print Network

    McCarl, Bruce A.

    be changed by the presence of a market or other means to mitigate greenhouse gas? The Kyoto Protocol called Kyoto Protocol after the Japanese conference place. Developing countries negotiated emission and nitrous oxide. Agriculture, emissions and sinks - Treatment in the Kyoto Protocol The Protocol mentions

  2. Space-Based Measurements of CO2 from the Japanese Greenhouse Gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory-2 (OCO-2) Missions

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    Space-based remote sensing observations hold substantial promise for future long-term monitoring of CO2 and other greenhouse gases. The principal advantages of space based measurements include: (1) Spatial coverage (especially over oceans and tropical land) (2) Sampling density (needed to resolve CO2 weather). The principal challenge is the need for high precision To reach their full potential, space based CO2 measurements must be validated against surface measurements to ensure their accuracy. The TCCON network is providing the transfer standard There is a need for a long-term vision to establish and address community priorities (1) Must incorporate ground, air, space-based assets and models (2) Must balance calls for new observations with need to maintain climate data records.

  3. Voluntary reporting of greenhouse gases 1997

    SciTech Connect

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  4. Greenhouse gases in the stratosphere

    SciTech Connect

    Wenyi Zhong; Haigh, J.D. ); Pyle, J.A. )

    1993-02-20

    The potential radiative forcing in the stratosphere of changing concentrations of ozone, methane, nitrous oxide and chlorofluorocarbons 11 and 12 is assessed. Significant changes in heating rate in the lower stratosphere are found. The response of a fully interactive radiative-photochemical-dynamical two-dimensional model to such changes in gaseous concentrations is investigated. The inclusion of CH[sub 4], N[sub 2]O and the CFC in the radiation scheme causes a small (1 K) decrease in temperature throughout the stratosphere after 50 model years with a resulting increase in ozone column up to 1% in summer high latitudes. An experiment in which lower stratospheric ozone concentrations were forcibly reduced in line with recent satellite observations results in significant (several degrees) temperature decrease in this region. Such decreases may be very significant in maintaining polar ozone loss. 20 refs., 12 figs., 2 tabs.

  5. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...Division, Office of Atmospheric Programs (MC-6207J...please go to the Greenhouse Gas Reporting Rule...substantial direct effects on the States...that directly emit greenhouses gases...or environmental effects on minority or...and procedure, Greenhouse gases,...

  6. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    ERIC Educational Resources Information Center

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  7. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ...Mandatory Reporting of Greenhouse Gases from Magnesium...insights on the potential effects. This analysis is...before a rule may take effect, the agency promulgating...major rule cannot take effect until 60 days after...practice and procedure, Greenhouse gases,...

  8. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  9. Greenhouse gases: What is their role in climate change

    SciTech Connect

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  10. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  11. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  12. Sun and dust versus greenhouse gases - An assessment of their relative roles in global climate change

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Lacis, Andrew A.

    1990-01-01

    Many mechanisms, including variations in solar radiation and atmospheric aerosol concentrations, compete with anthropogenic greenhouse gases as causes of global climate change. Comparisons of available data show that solar variability will not counteract greenhouse warming and that future observations will need to be made to quantify the role of tropospheric aerosols, for example.

  13. Analysis of air pollution and greenhouse gases

    SciTech Connect

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  14. GLOBAL MITIGATION OF NON-CO2 GREENHOUSE GASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitigation of noncarbon dioxide (non-CO2) greenhouse gas emissions can be a relatively inexpensive supplement to CO2-only mitigation strategies. The non-CO2 gases include methane (CH4), nitrous oxide (N2O), and a number of high global warming potential (high- GWP) or fluorinated gases. These ga...

  15. Synthetic greenhouse gases to decline if Montreal Protocol amended

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    The Montreal Protocol, an international treaty designed to reduce the release into the atmosphere of ozone-depleting gases such as hydrochlorofluorocarbons and chlorofluorocarbons, has been successful since its implementation in the late 1980s. However, related greenhouse gases, such as hydrofluorocarbons (HFCs), have increased in concentration in the atmosphere since then. HFCs, along with other synthetic greenhouse gases (SGHGs), account for a radiative forcing almost 20% as large as that due to the increase in carbon dioxide (CO2) since the preindustrial era.

  16. Remote Sensing of Greenhouse Gases and Their Sources and Sinks

    NASA Astrophysics Data System (ADS)

    Butz, Andre; Babenhauserheide, Arne; Bertleff, Marco; Checa-Garcia, Ramiro; Hahne, Philipp; Hase, Frank; Klappenbach, Friedrich; Kostinek, Julian; Aben, Ilse; Hasekamp, Otto; Landgraf, Jochen; Galli, Andre; Basu, Sourish

    2014-06-01

    The man-made emissions of the greenhouse gases carbon dioxide (CO2) and methane (CH4) are considered the main drivers of anthropogenically induced climate change. Major uncertainties persist when it comes to quantifying regional scale surface fluxes of these gases or predicting the evolution of the relevant source/sink processes in a changing climate. Remote sensing of the atmospheric greenhouse gas concentrations from space-borne and ground-based platforms offers the opportunity to significantly advance our knowledge on spatial and temporal scales that are suitable for process attribution and mitigation actions. Overall, the most promising remote-sensing strategy exploits the rotational-vibrational absorption of CO2 and CH4 in sunlight penetrating the Earth's atmosphere. Typically, satellite sounders such as GOSAT (Greenhouse Gases Observing Satellite), OCO-2 (Orbiting Carbon Observatory), and S5P (Sentinel-5 precursor) as well as the ground-based spectrometers of the TCCON (Total Carbon Column Observing Network) cover various CO2, CH4, and O2 absorption bands in the near and shortwave infrared spectral range between 0.75 micron (13400cm-1) and 2.5 micron (4000cm-1). Accuracy of the inferred gas concentrations is contingent on the accuracy of the adopted spectroscopic parameters and spectroscopic models available in these spectral regions. Here, I will report on recent achievements and challenges within our greenhouse-gas remote-sensing activities mainly focusing on the GOSAT observational record. Since its launch in early 2009, the Fourier Transform Spectrometer onboard GOSAT delivers solar absorption spectra with good spectral resolution and high signal-to-noise. It has been shown that the CO2 and CH4 retrievals from these observations can achieve an accuracy on the order of fractions of a percent which makes them suitable for tracking regional scale source/sink processes and their response to climate events. In order to achieve the required accuracy, it is crucial to develop highly accurate radiative-transfer algorithms and to validate the satellite soundings by ground-based observations. I will illustrate some cases where the excellent quality of the absorption spectra collected by GOSAT reveals spectroscopic deficiencies and inconsistencies among the various absorption bands covered. As such, lessons learned from GOSAT can be used as a feedback to the spectroscopy community. Beyond GOSAT, future satellite missions such as S5P or the planned S5 (Sentinel-5, launch ˜2020) will cover spectral ranges which have not yet been spectroscopically optimized for remote-sensing purposes. In that case, simulations and studies based on ground-based observations show that spectroscopic uncertainties constitute a dominant contribution to the error budget of the retrieved gas concentrations. Therefore, further improvements of spectroscopic parameters and line-shape models is of paramount interest for remote sensing of greenhouse gases.

  17. Emissions of greenhouse gases in the United States 1997

    SciTech Connect

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  18. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  19. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  20. Impact of greenhouse gases on the Earth's ozone layer

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  1. Production of Greenhouse Gases in The Atmosphere of Early Mars

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  2. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  3. Proceedings of the International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases

    E-print Network

    Sathaye Ed., Jayant; Makundi Ed., Willy; Goldberg Ed., Beth; Andrasko Ed., Ken; Sanchez Ed., Arturo

    1997-01-01

    Amazonian deforestation and global warming: Carbon stocks indeforestation, environmental services, greenhouse greenhouse gases, global warming,deforestation could lead to different priorities fcr combating global warming.

  4. MAGLUE: Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs

    E-print Network

    MAGLUE: Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs into LCAs and the UK Bioenergy Value Chain Modelling Environment 5 November 2014 ­ SUPERGEN HUB MEETING Imperial perennial bioenergy crops #12;The ELUM Project is a seven-member Consortium project commissioned and funded

  5. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  6. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...15 2010-07-01 2010-07-01 false Enforceable commitments for further actions addressing Greenhouse Gases (GHGs...PERMIT PROGRAMS Operating Permits § 71.13 Enforceable commitments for further actions addressing Greenhouse Gases...

  7. A review of research on human activity induced climate change I. Greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Mingxing; Liu, Qiang; Yang, Xin

    2004-06-01

    Extensive research on the sources and sinks of greenhouse gases, carbon cycle modeling, and the characterization of atmospheric aerosols has been carried out in China during the last 10 years or so. This paper presents the major achievements in the fields of emissions of greenhouse gases from agricultural lands, carbon cycle modeling, the characterization of Asian mineral dust, source identification of the precursors of the tropospheric ozone, and observations of the concentrations of atmospheric organic compounds. Special, more detailed information on the emissions of methane from rice fields and the physical and chemical characteristics of mineral aerosols are presented.

  8. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section 52.22 Protection of Environment... PLANS General Provisions § 52.22 Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined...

  9. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section 52.22 Protection of Environment... PLANS General Provisions § 52.22 Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined...

  10. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section 52.22 Protection of Environment... PLANS General Provisions § 52.22 Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined...

  11. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section 52.22 Protection of Environment... PLANS General Provisions § 52.22 Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined...

  12. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...The EPA is announcing two public hearings to be held for proposed rules related to mandatory reporting of greenhouse gases, which will be published separately in the Federal Register. These proposed rules would amend the Mandatory Reporting of Greenhouse Gases rule, published on October 30, 2009 by requiring reporting of greenhouse gases from additional industry source categories. One hearing......

  13. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  14. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  15. Keeping Mars warm with new super greenhouse gases

    PubMed Central

    Gerstell, M. F.; Francisco, J. S.; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.

    2001-01-01

    Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction. PMID:11226208

  16. Emissions of greenhouse gases in the United States 1996

    SciTech Connect

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  17. Ozone depletion, greenhouse gases, and climate change

    NASA Technical Reports Server (NTRS)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  18. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ?80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  19. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy to fuel cellular functions. "We think this chemical process did not exist when life first formed on Earth," he says, "because it is based on oxygen being available, and there was little oxygen available on the early Earth." It is possible that there are anaerobic regions beneath the sea floor in which life forms like those early non-Krebs Cycle microbes may yet exist. To detect and potentially collect samples of life emerging from hydrothermal vents, Flynn and his colleagues created Medusa, a multi-sensor instrument designed for long-term observation of diked vents on the ocean floor. When the vents erupt, Medusa assesses indicators of life within the expelled water. If the results are positive, the observatory collects samples and detaches from the ocean floor, making the long journey to the surface for retrieval by scientists. One of the indicators Medusa measures is the ratio of carbon isotopes in the water, namely carbon-12 and carbon-13. Living organisms preferentially take up carbon-12, Flynn says, so examining the ratio of these isotopes can help to determine the source of carbon in an environment as either biological or non-biological. "On Mars, there is evidence of localized methane in the atmosphere, and that methane could come from biological sources or from geochemical ones," Flynn says. "Determining the background planetary carbon isotope ratios and then evaluating the specific carbon ratios in this methane would help to determine how it was formed." A long-duration observatory similar to Medusa could one day provide essential evidence for or against the presence of life on the Red Planet or beneath the ice-crusted oceans of Europa.

  20. Observational determination of the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  1. Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and

    E-print Network

    Dufresne, Jean-Louis

    Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation/C.N.R.S., Villeneuve d'Ascq, France Among anthropogenic perturbations of the Earth's atmosphere, greenhouse gases. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight

  2. 75 FR 22699 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ...Mandatory Reporting of Greenhouse Gases: Minor Harmonizing...provisions for the Mandatory Greenhouse Gas (GHG) Reporting...Division, Office of Atmospheric Programs (MC-6207J...rule would not take effect and we would publish...practice and procedure, Greenhouse gases,...

  3. Greenhouse gases in the Earth system: a palaeoclimate perspective.

    PubMed

    Wolff, Eric W

    2011-05-28

    While the trends in greenhouse gas concentrations in recent decades are clear, their significance is only revealed when viewed in the context of a longer time period. Fortunately, the air bubbles in polar ice cores provide an unusually direct method of determining the concentrations of stable gases over a period of (so far) 800,000 years. Measurements on different cores with varying characteristics, as well as an overlap of ice-core and atmospheric measurements covering the same time period, show that the ice-core record provides a faithful record of changing atmospheric composition. The mixing ratio of CO(2) is now 30 per cent higher than any value observed in the ice-core record, while methane is more than double any observed value; the rate of change also appears extraordinary compared with natural changes. Before the period when anthropogenic changes have dominated, there are very interesting natural changes in concentration, particularly across glacial/interglacial cycles, and these can be used to understand feedbacks in the Earth system. The phasing of changes in temperature and CO(2) across glacial/interglacial transitions is consistent with the idea that CO(2) acts as an important amplifier of climate changes in the natural system. Even larger changes are inferred to have occurred in periods earlier than the ice cores cover, and these events might be used to constrain assessments of the way the Earth could respond to higher than present concentrations of CO(2), and to a large release of carbon: however, more certainty about CO(2) concentrations beyond the time period covered by ice cores is needed before such constraints can be fully realized. PMID:21502180

  4. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Greenhouse gases andGreenhouse gases and

    E-print Network

    Zevenhoven, Ron

    warming potential (GWP) % of US GHG emissions (1990) % of US GHG emissions (1998) Carbon dioxide, CO22 1 Fuel cells Removal after fuel reforming or from off-gas "Hydrocarb" etc. Removal of carbon from-depleting gases ·· COCO22 removal for gas purificationremoval for gas purification ·· COCO22 removal

  5. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India

    SciTech Connect

    Auffhammer, M.; Ramanathan, V.; Vincent, J.R.

    2007-12-26

    Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests. The results also imply that adverse climate change due to brown clouds and greenhouse gases contributed to the slowdown in harvest growth that occurred during the past two decades.

  6. Radiative forcings for 28 potential Archean greenhouse gases

    E-print Network

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  7. Emissions of greenhouse gases in the United States 1995

    SciTech Connect

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  8. Fluorinated greenhouse gases in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Laube, Johannes C.; Gallacher, Eileen; Oram, David E.; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Fraser, Paul J.; Röckmann, Thomas; Sturges, William T.

    2015-04-01

    Fluorinated organic trace gases in the atmosphere are almost exclusively thought to be of anthropogenic origin. In the case of fully fluorinated alkane and cycloalkane-derivatives their IR absorption features and very long atmospheric lifetimes (on the order of thousands of years) make them very strong greenhouse gases. We here present measurements of 10 of these perfluorocarbons in the UT/LS and stratosphere as derived from deployments of regular passenger aircraft (CARIBIC project, http://www.caribic-atmospheric.com/) and the high-altitude research aircraft M55 Geophysica. In combination with long-term tropospheric records obtained from the Cape Grim observatory, Tasmania, we estimate their impact on radiative forcing expressed as CO2-equivalents. As these gases have no significant sinks in the stratosphere they could also be suitable to derive an important transport diagnostic: the so-called mean age-of-air i.e. the average stratospheric transit time of an air parcel. We evaluate this possibility for all above-mentioned species and compare their characteristics with other inert species such as SF6, SF5CF3, and long-lived chlorofluorocarbons.

  9. High-Resolution Urban Monitoring of Greenhouse Gases and Pollutants

    NASA Astrophysics Data System (ADS)

    Baer, D. S.; Leen, J.; Gupta, M.; Graves, L.

    2012-12-01

    Accurate measurements of greenhouse gases and pollutants in urban areas with high spatial and temporal resolution allow scientists and policy makers determine source contributions, monitor pollution migration, and validate air quality models. Currently, these applications are limited by the poor spatial resolution of fixed air monitoring stations. We present very high-resolution measurements of CO, CO2, CH4, H2O, NH3 and NO2 taken throughout the San Francisco Bay Area, California using a flexible mobile monitoring platform. These measurements cover several highly urban and coastal regions that were repeatedly monitored over the course of several months. The data clearly shows the presence of several discrete sources and the migration of pollution through adjacent neighborhoods. Moreover, this validation study demonstrates the ease of mobile monitoring and the possibility of extending this platform to several other gas species (H2S, HF, HCl, NO, and others).

  10. Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the contribution of agriculture to climate change, flux of greenhouse gases from different cropping systems must be assessed. Measurement of soil efflux of greenhouse gases (CO2, N2O, and CH4) from conservation and conventional tillage systems that have been under the influence of eleva...

  11. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...The Environmental Protection Agency (EPA) is making available to the public draft default emission factors for semiconductor manufacturing refined process categories. On April 12, 2010 EPA published a proposed rule, Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs (75 FR 18652) which included proposed methods for monitoring and reporting greenhouse gases (GHGs)......

  12. 76 FR 61293 - Extension of Public Comment Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... period on the action published on September 9, 2011 (76 FR 56010), Mandatory Reporting of Greenhouse... Gases: Technical Revisions to the Electronics Manufacturing and the Petroleum and Natural Gas Systems..., Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Electronics Manufacturing and...

  13. 76 FR 37300 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...have substantial direct effects on the States, on the...facilities that emit greenhouse gases. Few, if any...health or environmental effects of their programs...health or environmental effects on minority or low-income...practice and procedures, Greenhouse gases, Air...

  14. Zevenhoven & Kilpinen Greenhouse Gases, Ozone-Depleting Gases 19.6.2001 9-1 Figure 9.1 Increasing world population

    E-print Network

    Zevenhoven, Ron

    over the arctic and antarctic poles. The ozone-layer is crucial for many forms of life on earthZevenhoven & Kilpinen Greenhouse Gases, Ozone-Depleting Gases 19.6.2001 9-1 Figure 9.1 Increasing Greenhouse gases, ozone-depleting gases 9.1 Introduction By the end of the 20th century it was widely

  15. What's the Greenhouse Effect? The earth is surrounded by a blanket of gases. This

    E-print Network

    Bowen, James D.

    #12;What's the Greenhouse Effect? · The earth is surrounded by a blanket of gases. This blanket traps energy in the atmosphere, much the same way as glass traps heat inside a greenhouse and climate change result from the greenhouse effect. #12;What's the Problem? · Eradica@on of en

  16. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Removal Efficiency. EPA U.S. Environmental Protection Agency. FR Federal Register. GHG greenhouse gas. ICR... AGENCY 40 CFR Part 98 RIN 2060-AR26 Mandatory Reporting of Greenhouse Gases: Changes to Provisions for... Electronics Manufacturing portion of the Greenhouse Gas Reporting Rule for the ``largest''...

  17. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... EPA U.S. Environmental Protection Agency FR Federal Register GHG greenhouse gas m\\2\\ square meters mm... Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2011 (40 CFR part 98, subpart I) (75 FR 74774... AGENCY 40 CFR Part 98 RIN A2060 Mandatory Reporting of Greenhouse Gases; Changes to Provisions...

  18. 76 FR 36339 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs: Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Regulations EPA U.S. Environmental Protection Agency FR Federal Register GHG greenhouse gas mm millimeters...: Electronics Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2010 (75 FR 74774). This subpart... AGENCY 40 CFR Part 98 RIN A2060 Mandatory Reporting of Greenhouse Gases: Additional Sources...

  19. 75 FR 12489 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... AGENCY 40 CFR Part 98 RIN 2060-AQ15 Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to...: EPA is proposing to amend the general provisions for the Mandatory Greenhouse Gas (GHG) Reporting Rule... the Mandatory Greenhouse Gas Reporting Rule (40 CFR part 98, subpart A.) We have published a...

  20. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ...Mandatory Reporting of Greenhouse Gases: Petroleum and...source category of the Greenhouse Gas Reporting Rule...Division, Office of Atmospheric Programs (MC-6207J...the WWW on EPA's Greenhouse Gas Reporting Program...rules may not take effect earlier than 30...

  1. 75 FR 12451 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ...Mandatory Reporting of Greenhouse Gases: Minor Harmonizing...for the Mandatory Greenhouse Gas (GHG) Reporting...will not take effect. ADDRESSES: Submit...Division, Office of Atmospheric Programs (MC-6207J...rule will not take effect. EPA will not...to the Mandatory Greenhouse Gas...

  2. 75 FR 12489 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ...Mandatory Reporting of Greenhouse Gases: Minor Harmonizing...provisions for the Mandatory Greenhouse Gas (GHG) Reporting...Division, Office of Atmospheric Programs (MC-6207J...action on the Mandatory Greenhouse Gas Reporting Rule...and it will not take effect. We are not...

  3. Improving UK greenhouse gas emission estimates using tall tower observations 

    E-print Network

    Howie, James Edward

    2014-06-30

    Greenhouse gases in the Earth’s atmosphere play an important role in regulating surface temperatures. The UK is signatory to international agreements that legally commit the UK to reduce its greenhouse gas emissions, and ...

  4. Passive and Active Remote Sensing of Greenhouse Gases in the GOSAT Project

    NASA Astrophysics Data System (ADS)

    Morino, I.; Inoue, M.; Yoshida, Y.; Kikuchi, N.; Yokota, T.; Matsunaga, T.; Uchino, O.; Tanaka, T.; Sakaizawa, D.; Kawakami, S.; Ishii, S.; Mizutani, K.; Shibata, Y.; Abo, M.; Nagasawa, C.

    2014-12-01

    The Greenhouse gases Observing SATellite (GOSAT), launched on 23 Jan. 2009, is the world's first satellite dedicated to measuring concentrations of the two major greenhouse gases, carbon dioxide (CO2) and methane (CH4), from space. Column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4) are retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard GOSAT. The present NIES full physics SWIR retrieval algorithm (ver. 02.xx) showed smaller biases and standard deviations (-1.48 ppm and 2.09 ppm for XCO2 and -5.9 ppb and 12.6 ppb for XCH4, respectively) than those of the ver. 01.xx by comparing with data of the Total Carbon Column Observing Network (TCCON). GOSAT retrievals from the GOSAT TANSO-FTS SWIR spectra for more than five years are now ready for scientific research, but may be still influenced by thin aerosols and clouds. Under GOSAT validation activities, we made aircraft observation campaigns to validate the GOSAT products and calibrate TCCON FTSs installed in Japan. In their campaigns, we also made partial column measurements of CO2 with an airborne laser absorption spectrometer, and comparison of ground-based CO2Differential Absorption Lidars with aircraft measurement data. Their active remote sensing experiments are for development of new validation methodology for passive space-based mission and fundamental development for future active space-based mission. The Ministry of the Environment, the Japan Aerospace Exploration Agency, and the National Institute for Environmental Studies also started the development of the follow-on satellite, GOSAT-2 in 2013. GOSAT-2 will be launched in 2017 - 2018. Instruments onboard GOSAT-2 are similar to current GOSAT. The SWIR passive remote sensing of greenhouse gases would be more or less affected by aerosols and thin cirrus clouds. Therefore, active remote sensing is expected to solve it and extend observations during nighttime and to be complementary with passive remote sensing which is adequate to wider observations. In this presentation, we will show results on GOSAT observations, validation activities, and lessons learnt from passive remote sensing of greenhouse gases for next-generation remote sensing.

  5. Long term changes in the ionosphere over Indian low latitudes: Impact of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Chandra, H.; Beig, G.

    2015-06-01

    Increased concentration of greenhouse gases due to anthropogenic activities warm the troposphere and have a cooling effect in the middle and upper atmosphere. Ionospheric densities and heights are affected due to cooling. Carbon dioxide is one of the most dominant gases for the cause of long term ionospheric trends along with other radiatively active greenhouse gases. Regular ionospheric soundings are made over Ahmedabad (23.1°N, 72.7°E), since 1953. Long term changes in the ionosphere as a consequence of the cooling of the mesosphere and thermosphere due to the increased concentration of greenhouse gases have been studied. Ionospheric observations over Ahmedabad, a low latitude station in the anomaly crest region, for the years 1955-2003 are examined to study the long term changes in the critical frequencies of the various ionospheric layers and the height of the maximum ionization as characterized by hPF2. A decrease in foF2 (1.9 MHz for midday, 1.4 MHz for midnight) and hPF2 (18 km for midday, 17 km for midnight) during about five decades are noted. An increase is noted in foF1 (0.4 MHz). The foF2 data are also examined over an equatorial station Kodaikanal (10.2°N, 77.5°E), situated near the magnetic equator for the years 1960-1995 and a decrease of 0.5 MHz for midday and 0.7 MHz for midnight are noted in ~35 years.

  6. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in the absence of threats from climate change and ocean acidification. Therefore, these measures represent “no regrets” policy options for the marine environment. Nevertheless, even with adaptive policies in place, continued greenhouse gas emissions increasingly risk damaging marine ecosystems and the human communities that depend on them.

  7. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  8. Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Aerosols and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.; Correa, G. J. P.

    2014-12-01

    Changes in extreme temperatures, heat waves, heavy rainfall events, and precipitation frequency can have adverse impacts on human health, air quality, agricultural productivity, and water resources. Using the aerosol only (AER) and greenhouse gas only (GHG) "single forcing" simulations (3 ensemble members each) from the GFDL CM3 chemistry-climate model, we investigate aerosol- versus greenhouse gas-induced changes in high temperature and precipitation extremes over the United States. We identify changes in these events from 1860 to 2005 and the associated large-scale dynamical conditions. Small changes in these extremes in the "all forcing" simulations reflect cancellations between the individual, opposite-signed effects of increasing anthropogenic aerosols and greenhouse gases. In AER, aerosols lead to lower extreme high temperatures and fewer warm spells over the western US (-2.1 K regional average; -20 days/year) and over the central and northeast US (-1.5 K; -12 days/year). In GHG, a similar but opposite-signed response pattern occurs (+2.7 K and +14 days/year over the western US; +2.5 K and +10 days/year in the central and northeast US). The similar spatial response patterns in AER versus GHG suggest a preferred regional mode of response that is largely independent of the regional distribution of the forcing agent. The influence of both greenhouse gases and aerosols on extreme high temperature is weakest in the southeast US, collocated with the observed "warming hole". No statistically significant change occurs in AER, and a warming of only +1.8 K occurs in GHG. Warming in this region continues to be muted over the 21st century under the RCP 8.5 scenario, with increases in extreme temperatures more than 1 K smaller than elsewhere. Aerosols induce decreases in the number of days per year with at least 10mm of precipitation (R10mm) over the eastern US in summer and winter and over the southern US in spring of roughly 1 day/year. In contrast, greenhouse gases induce increases in R10mm over the eastern US in winter (+0.8 days/year), the northern and central US during spring (+1 day/year), and the southeast US during summer (+0.5 days/year), but decreases over the northeast US in summer (-0.2 days/year). In RCP 8.5, the patterns of extreme temperature and precipitation associated with greenhouse gas forcing dominate.

  9. Use of 222Rn for estimation of greenhouse gases emissions at Russian territory

    NASA Astrophysics Data System (ADS)

    Berezina, E. V.; Elansky, N. F.

    2009-04-01

    It is well known that 222Rn is widely used as a tracer for studying different atmospheric processes including estimations of greenhouse gases emissions. Calculation of 222Rn fluxes from the soil into the atmosphere allows quantitative estimation of greenhouse gases emissions having the soil origin or sources of which are located near the surface. For accurate estimation of 222Rn fluxes detailed investigations of spatial and temporal variations of its concentrations are necessary. 222Rn concentrations data in the atmospheric surface layer over continental Russia from Moscow to Vladivostok obtained during the six TROICA (Transcontinental Observations Into the Chemistry of the Atmosphere) expeditions of the mobile laboratory along the Trans-Siberian railroad are analyzed. Spatial distribution, diurnal and seasonal variations of surface 222Rn concentrations along the Trans-Siberian railroad are investigated. According to the obtained data surface 222Rn concentration values above continental Russia vary from 0.5 to 75 Bq/m3 depending on meteorological conditions and geological features of the territory with the average value being 8.42 ± 0.10 Bq/m3. The average 222Rn concentration is maximum in the autumn expedition and minimum in the spring one. The factors mostly influencing 222Rn concentration variations are studied: surface temperature inversions, geological features of the territory, precipitations. 222Rn accumulation features in the atmospheric surface layer during night temperature inversions are analyzed. It was noted that during night temperature inversions the surface 222Rn concentration is 7 - 8 times more than the one during the nights without temperature inversions. Since atmospheric stratification determines accumulation and diurnal variations of many atmospheric pollutants as well as greenhouse gases its features are analyzed in detail. Surface temperature inversions were mainly observed from 18:00-19:00 to 06:00-07:00 in the warm season and from 16:00 to 08:00-09:00 in the cold season. During this time 222Rn accumulated in the surface atmospheric layer with its maximum concentration values being observed near sunrise. 222Rn fluxes from the soil into the atmosphere from Moscow to Vladivostok during surface temperature inversions are estimated taking into account geological factors. 222Rn accumulation layer depth in the lower atmosphere is calculated. Using the data of CO2, CH4 and 222Rn concentrations obtained in the expeditions we analyzed correlations between the greenhouse gases and 222Rn. There are significant positive correlations between CO2, CH4 and 222Rn concentrations during night temperature inversions especially in summer and in autumn. It indicates similar accumulation both 222Rn and the greenhouse gases in the surface layer during atmospheric stability. On the basis of the regressions between 222Rn, CO2 and CH4 concentrations the greenhouse gases night time fluxes in the surface layer from Moscow to Vladivostok are estimated using the calculated values of 222Rn fluxes. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic Research Foundation (project No. 08-05-13589, 07-05-12063 and 07-05-00428). The authors thank I. B. Belikov for preparation and carrying out the TROICA experiments.

  10. Quantifying emissions of greenhouse gases from South Asia through a targeted measurement campaign

    E-print Network

    Ganesan, Anita Lakshmi

    2013-01-01

    Methane (CH 4 ), nitrous oxide (N20) and sulfur hexafluoride (SF6) are powerful greenhouse gases with global budgets that are well-known but regional distributions that are not adequately constrained for the purposes of ...

  11. 76 FR 61293 - Extension of Public Comment Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of...the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of...Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems....

  12. EVALUATION OF GREENHOUSE GASES EMISSION FROM SOILS AMENDED WITH SEWAGE SLUDGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in concentration of various greenhouse gases and their possible contributions to the global warming have received considerable research intrest. Agricultural practices, fossil fuel burning, deforestation, industrial emissions, and wetlands have contributed to atmospheric increases of carbo...

  13. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  14. Global Mitigation Of Non-CO2 Greenhouse Gases: 2010-2030

    EPA Science Inventory

    This report illustrates the abatement potential of non-CO2 greenhouse gases, by sector and by region, from 2010-2030. This peer-reviewed update provides economists and policymakers with improved data to better understand the costs and opportunities for reducing non-CO2 greenhouse...

  15. 75 FR 22699 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... AGENCY 40 CFR Part 98 RIN 2060-AQ15 Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to... withdrawing the direct final rule to amend the general provisions for the Mandatory Greenhouse Gas (GHG... rule published at 75 FR 12451 on March 16, 2010. FOR FURTHER INFORMATION CONTACT: Carole Cook,...

  16. 77 FR 5514 - Mandatory Reporting of Greenhouse Gases: Notice of Preliminary Determinations Regarding Requests...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...The EPA is announcing and explaining to the public its preliminary determinations regarding requests to use provisional global warming potentials for eight fluorinated greenhouse gases submitted by DuPont de Nemours, Inc. and Honeywell International for purposes of certain calculations in the Fluorinated Gas Production portion of the Mandatory Greenhouse Gas Reporting Rule. EPA's preliminary......

  17. 75 FR 70254 - PSD and Title V Permitting Guidance for Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... under the GHG Tailoring Rule at 75 FR 31514 (June 3, 2010). EPA invites public comment on all aspects of... AGENCY PSD and Title V Permitting Guidance for Greenhouse Gases AGENCY: Environmental Protection Agency... the EPA has posted its guidance titled, ``PSD and Title V Permitting Guidance for Greenhouse...

  18. 77 FR 10434 - Mandatory Reporting of Greenhouse Gases Rule: Confidentiality Determinations and Best Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...Mandatory Reporting of Greenhouse Gas Emissions Final...issues related to such effects. D. Unfunded Mandates...health or environmental effects of their programs...health or environmental effects on minority or low-income...practice and procedure, Greenhouse gases, Reporting...

  19. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  20. Measurements of greenhouse gases at Beromünster tall tower station in Switzerland

    NASA Astrophysics Data System (ADS)

    Berhanu, T. A.; Satar, E.; Schanda, R.; Nyfeler, P.; Moret, H.; Brunner, D.; Oney, B.; Leuenberger, M.

    2015-10-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CARBOCOUNT-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m a.g.l., and it is equipped with a Picarro CRDS analyzer (G-2401), which continuously measures CO, CO2, CH4 and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79, 0.05 and 0.29 ppb for CO, CO2 and CH4, respectively over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation, which is mainly due to the above mentioned temperature effects.

  1. The contribution from emissions of different gases to the enhanced greenhouse effect. Appendix B

    SciTech Connect

    Wigley, T.M.L.

    1993-01-01

    The main purpose of this paper is to compare the different contributions, that mankind has made to perturbing the atmosphere`s radiative balance. We have, and will continue to perturb both the balance of outgoing long-wave radiation and the balance of incoming short-wave radiation. Human activities since preindustrial times have caused a substantial enhancement of the greenhouse effect, a process involving the absorption of outgoing long-wave radiation which leads to a warming of the lower atmosphere. Because the atmosphere`s short-wave radiative balance is affected by the presence of small particles (aerosols) produced by the oxidation of sulphur compounds, anthropogenic emissions of sulphur dioxide (SO{sub 2}) have also caused a perturbation of the overall balance. The greenhouse gases we will consider are, in order of importance: carbon dioxide (CO{sub 2}), Methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the halocarbons. We use observed and model-based concentration data together with the most recent information relating concentrations to radiative forcing to estimate the individual contributions of the different gases to the changing radiative balance of the atmosphere. We also estimate the ranges of uncertainty in each of these estimates. We base all results on the 1992 IPCC emissions scenarios IS92a-f. We begin with a summary of 1990 conditions, then consider each gas separately (but lumping the halocarbons into a single group), to compare their relative importance.

  2. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    .... Environmental Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program... September 22, 2009 and published in the Federal Register on October 30, 2009 (74 FR 56260, October 30, 2009... notices were published in 2010 promulgating the requirements for subparts FF, II, and TT (75 FR...

  3. Managing agricultural greenhouse gases: The basis of GRACEnet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, USDA Agricultural Research Service has been engaged in a national project called GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network). Goals of the project are to (1) evaluate soil organic carbon status and change, (2) assess net greenhouse gas emissions (...

  4. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  5. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The difference in the impact of the greenhouse gases on the ozone layer at the southern and northern polar latitudes through PCS modification is determined by the difference in temperature regimes of the Polar Regions. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  6. Greenhouse gases accounting and reporting for waste management - A South African perspective

    SciTech Connect

    Friedrich, Elena; Trois, Cristina

    2010-11-15

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  7. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C.; Lang, Patricia M.; Chantara, Somporn; Lin, Neng-Huei

    2015-06-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO2) and methane (CH4)) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr-1 and +4.70 ± 4.4 ppb yr-1 for CO2 and CH4, respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO2 and 59.6 ppb for CH4, which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO2 is shown to have no differences (<0.42 ppm in July) during the same period. Positive biases of the Greenhouse Gases Observing Satellite (GOSAT) L4B data against the surface measurements are estimated to be 2.4 ± 3.4 ppm for CO2 and 43.2 ± 36.8 ppb for CH4. The satellite products retrieved from the GOSAT showed the effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH4 mixing ratios observed on the DSI in summer.

  8. Comparison of airborne measurements of greenhouse gases over Railroad Valley, Nevada to satellite and model results

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Yates, E. L.; Iraci, L. T.; Johnson, M. S.; Lopez, J.; Loewenstein, M.; Gore, W.; Tadic, J.; Kuze, A.; Kawakami, S.

    2014-12-01

    As part of the Alpha Jet Atmospheric eXperiment (AJAX) we have measured vertical profiles of greenhouse gases (GHGs) (i.e., carbon dioxide (CO2) and methane (CH4)) over Railroad Valley, NV (RRV) on a monthly basis since 2011. These GHG measurements are conducted to quantify trends of climatically important gases and to validate satellite-based GHG column estimates from Greenhouse Observing Satellite (GOSAT) and Orbiting Carbon Observatory-2 (OCO-2).The vertical profiles of GHGs observed over RRV show relatively uniform features below and above the boundary layer, and mixing ratios are increasing every year. Strong enhancements in the free troposphere are seen in these profiles in some instances. To assess possible sources of these enhancements and their effects on the GHG column average, GHG vertical profiles calculated by the 3-D GEOS-Chem chemical transport model (v9-01-03) and back-trajectory analysis from the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) are compared with airborne measurements. The main results that we will show are 1) the comparison of vertical GHG distribution calculated from GEOS-Chem and that measured by AJAX, 2) total column GHG values from the model, AJAX, and GOSAT, and 3) demonstrate the source apportionment in GHGs profiles measured at RRV.The RRV playa is a flat high altitude desert site where local sources and sinks of carbon-species are expected to be minimal except for a small oil field. RRV is a radiometrically flat region and has been used to calibrate various satellite radiometers before. These measurements are conducted as part of the Alpha Jet Atmospheric eXperiment (AJAX) which regularly measures GHGs, ozone, and 3-D winds over California and Nevada. The Alpha Jet is operated from NASA Ames Research Center at Moffett Field and airborne instruments are installed in an unpressurized wing pod.

  9. Carbon and Conservation: Cropping systems and greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  10. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Manufacturing) (75 FR 18652, April 12, 2010); 40 CFR part 98, subpart L (Fluorinated Gas Production) (75 FR 18652, April 12, 2010); 40 CFR part 98, subpart W (Petroleum and Natural Gas Systems) (75 FR 18608... FR 18455, April 12, 2010) and the following memoranda ``Review of Non-Federal Existing Greenhouse...

  11. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  12. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  13. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    ERIC Educational Resources Information Center

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  14. Advances in Data Processing for Open-path Fourier Transform Infrared Spectrometry of Greenhouse Gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The automated quantification of three greenhouse gases, ammonia, methane and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 minutes is demonstrated. Spectral pretreatment, including the detection and correction ...

  15. D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases

    E-print Network

    Jackman, Charles H.

    O(1 D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases Munkhbayar Baasandorj with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were included in this study. 1. INTRODUCTION Accurate climate change modeling relies on accurate input kinetic

  16. 77 FR 10434 - Mandatory Reporting of Greenhouse Gases Rule: Confidentiality Determinations and Best Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...This action re-proposes confidentiality determinations for the data elements in subpart I, Electronics Manufacturing source category, of the Mandatory Reporting of Greenhouse Gases Rule. On July 7, 2010, the EPA proposed confidentiality determinations for then-proposed subpart I data elements and is now issuing this re-proposal due to significant changes to certain data elements in the final......

  17. 75 FR 18607 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ..., 2009 and published in the Federal Register on October 30, 2009 (74 FR 209 (October 30, 2009) pp. 56260... the initial proposed rule (74 FR 16448, April 10, 2009), section 114(a)(1) of the CAA authorizes the... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas...

  18. June 1998 GPS WORLD 33 Global warming and greenhouse gases are

    E-print Network

    Businger, Steven

    June 1998 GPS WORLD 33 Global warming and greenhouse gases are familiar terms of late, spurred by an interna- tional sense of urgency to comprehend the effect of human activity on the earth's cli- mate in the atmosphere play in the dynamic global climate system is little under- stood yet represents an important

  19. Evaluation of Emission of Greenhouse Gases from Soils Amended with Sewage Sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in concentrations of various greenhouse gases originated by various human activities, including agricultural origin, could contribute to climate change. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in ...

  20. Field emissions of greenhouse gases from contrasting biofuel feedstock production systems under different N fertilization rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management choices (crop type, fertilization rate) could affect agricultural soil emissions of important temperature-forcing greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Soil GHG emissions were measured in situ over the 2010 growing season at a biofu...

  1. Documentation for Emissions of Greenhouse Gases in the United States 2008

    EIA Publications

    2011-01-01

    The Energy Policy Act of 1992 required the U.S. Energy Information Administration (EIA) to prepare an inventory of aggregate U.S. national emissions of greenhouse gases for the period 1987-1990, with annual updates thereafter. This report documents the methodology for the seventeenth annual inventory, covering national emissions over the period 1990-2008.

  2. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect

    Calabro, Paolo S.

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  3. Emissions of air pollutants and greenhouse gases over1 Asian regions during 20002008: Regional Emission2

    E-print Network

    Meskhidze, Nicholas

    1 Emissions of air pollutants and greenhouse gases over1 Asian regions during 2000­2008: Regional , G. Janssens-5 Maenhout6 , T. Fukui7 , K. Kawashima8 , and H. Akimoto1 6 [1]{Asia Center for Air Pollution Research, 1182 Sowa, Nishi-ku, Niigata, Niigata, 950-2144,7 Japan}8 [2]{National Institute

  4. Changes in the Arctic Oscillation under increased1 atmospheric greenhouse gases

    E-print Network

    Hsieh, William

    Changes in the Arctic Oscillation under increased1 atmospheric greenhouse gases 2 Aiming Wu1 in determining how the22 linear oscillatory pattern changes when there is a change in the mean climate.23 2 #12 (CCCma) coupled climate model forced by45 3 #12;changing GHG concentrations and aerosol loading [Flato

  5. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...not have a substantial direct effect on one or more Indian Tribes...not have substantial direct effects on the States, on the relationship...that before a rule may take effect, the agency promulgating the...Mandatory Reporting of Greenhouse Gases: Petroleum and...

  6. 76 FR 36339 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs: Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...not have a substantial direct effect on one or more Indian Tribes...not have substantial direct effects on the States, on the relationship...that before a rule may take effect, the agency promulgating the...Mandatory Reporting of Greenhouse Gases: Additional...

  7. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  8. Effect of noble gases on an atmospheric greenhouse /Titan/.

    NASA Technical Reports Server (NTRS)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  9. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  10. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column Observing Network), and only two of its 16 operational sites are in the United States. TCCON data is used for validation of GOSAT data, and will be used for OCO-2 validation. While these Fourier-transform spectrometers (FTS) can measure the largest range of trace gases, the network is severely limited due to the high cost and extreme size of these instruments (these occupy small buildings and require personnel for operation). The LHR/AERONET instrument offers a significantly smaller (carry-on luggage size) autonomous instrument that can be incorporated into AERONET s much larger (450 instruments) global network.

  11. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    PubMed

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4) generation. PMID:22465726

  12. More greenhouse gases needed to explain warm Archean Earth

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-02-01

    Figure 1 During the Archean eon, from 3.8 to 2.5 billion years ago, life on Earth was thriving for the first time, growing in a world with much less land and a faster planetary rotation than today. At the same time, the energy flowing to the early Earth from the Sun was just three quarters of what it is now. Despite the drastically lower levels of solar irradiance, previous research has suggested that the Archean Earth was not a planet encased in ice but instead remained a watery world. To explain this seeming inconsistency, a dilemma known as the "faint young Sun paradox," researchers have suggested that the planetary greenhouse effect must have been much more potent than today. Previous research suggested that atmospheric carbon dioxide levels would need to have had a partial pressure of approximately 0.06 bar, equivalent to an atmospheric concentration 200 times that of the pre-Industrial modern era.

  13. Emission of greenhouse gases from controlled incineration of cattle manure.

    PubMed

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure. PMID:22988613

  14. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  15. Greenhouse warming by minor gases on early Mars

    NASA Technical Reports Server (NTRS)

    Heinrich, M. N.; Thompson, W. R.; Sagan, C.

    1992-01-01

    The early atmospheres of Earth and Mars were non-oxidizing mixtures likely derived from volcanic outgassing of a silicate mantle, with some fraction of the volatiles also contributed by impacting comets and meteorites. Here the authors investigate the potential of minor atmospheric constituents produced by ultraviolet and auroral chemistry to contribute to the thermal opacity of early Earth and Mars atmospheres. Using a very simple two-stream thermal opacity model, the authors show that HCN at 10 parts per million (ppm) and N2O at 100 ppm can each block radiation in thermal infrared windows sufficiently to increase the surface temperature by 7 K separately, or 14 K together. Small quantities of other species are also produced in such experiments. Some of these have especially complex infrared spectra and should be further investigated for their potential to help close windows in the CO2 + H2O infrared transmission. Enhancement of greenhouse warming by minor atmospheric species different from those present in today's atmosphere may have played important roles in the climate of early Earth and Mars.

  16. Persistence of climate changes due to a range of greenhouse gases

    PubMed Central

    Solomon, Susan; Daniel, John S.; Sanford, Todd J.; Murphy, Daniel M.; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-01-01

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO2 greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth’s climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean. PMID:20937898

  17. Air Surface Temperature Correlation with Greenhouse Gases by Using Airs Data Over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; MatJafri, M. Z.; Lim, H. S.

    2014-08-01

    The main objective of this study is to develop algorithms for calculating the air surface temperature (AST). This study also aims to analyze and investigate the effects of greenhouse gases (GHGs) on the AST value in Peninsular Malaysia. Multiple linear regression is used to achieve the objectives of the study. Peninsular Malaysia has been selected as the research area because it is among the regions of tropical Southeast Asia with the greatest humidity, pockets of heavy pollution, rapid economic growth, and industrialization. The predicted AST was highly correlated ( R = 0.783) with GHGs for the 6-year data (2003-2008). Comparisons of five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the wet season (within 1.3 K). The in situ data ranged from 1 to 2 K. Validation results showed that AST ( R = 0.776-0.878) has values nearly the same as the observed AST from AIRS. We found that O3 during the wet season was indicated by a strongly positive beta coefficient (0.264-0.992) with AST. The CO2 yields a reasonable relationship with temperature with low to moderate beta coefficient (-0.065 to 0.238). The O3, CO2, and environmental variables experienced different seasonal fluctuations that depend on weather conditions and topography. The concentration of gases and pollution were the highest over industrial zones and overcrowded cities, and the dry season was more polluted compared with the wet season. These results indicate the advantage of using the satellite AIRS data and a correlation analysis to investigate the effect of atmospheric GHGs on AST over Peninsular Malaysia. An algorithm that is capable of retrieving Peninsular Malaysian AST in all weather conditions with total uncertainties ranging from 1 to 2 K was developed.

  18. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  19. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    SciTech Connect

    Wang, S-Y; Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  20. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.

    PubMed

    Guibelin, E

    2004-01-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission. PMID:15259957

  1. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  2. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    SciTech Connect

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  3. Investigating high concentrations of three greenhouse gases in the Los Angeles Basin and San Bernardino Valley

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Blake, D. R.; Marrero, J.

    2013-12-01

    Following the Montreal Protocol of 1987 calling for the phase-out of CFCs and other ozone depleting substances, HCFCs and HFCs were introduced as alternatives despite still being greenhouse gases with high global warming potentials. In this study, whole air samples were collected during four research flights over Southern California aboard the NASA DC-8 Airborne Science Laboratory as part of the NASA Student Airborne Science Program. These samples were then analyzed by gas chromatography using a suite of detectors for many compounds, including HFC-134a, HCFC-22, and HFC-152a. HCFC-22 is primarily used as a refrigerant, while HFC-134a and HFC-152a are also used as aerosol propellants and foam blowing agents. High concentrations of these three compounds were observed for samples taken at low altitudes over urban areas around Los Angeles and San Bernardino. Exceptionally high concentrations were seen for all three compounds in samples taken near the Ontario and San Bernardino airports. Concentrations of HFC-134a, HCFC-22, and HFC-152a were enhanced above background levels near other airports sampled in the Los Angeles Basin and San Bernardino Valley. It is clear that concentrations of these three gases are higher in the San Bernardino Valley than in the Los Angeles Basin, and locations with exceptionally high concentrations were investigated to identify potential point sources. Concentrations of these three compounds were also compared to data from past SARP missions and data collected at Trinidad Head, California since 2005 as part of the AGAGE network. Comparison of the average values for each of these campaigns reveal that the background concentrations of HFC-134a, HCFC-22, and HFC-152a are all increasing with a strong linear trend in Southern California.

  4. Integrated Modeling & Development of Emission Scenarios for Methane and Key Indirect Greenhouse Gases

    SciTech Connect

    Jain, Atul K.

    2005-09-30

    This report outlines main accomplishments on the development of Emission inventories and Scenarios for Key Indirect Greenhouse Gases (CO, VOCs, NOx) and methane supported by Office of Science (BER), US Department of Energy. This research produced 3 journal articles, 1 book chapter, and 4 research articles/abstracts in conference proceedings. In addition, this grant supported two PhD students and one undergraduate student at UIUC.

  5. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  6. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Myhrvold, N. P.; Caldeira, K.

    2012-03-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1-100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot.

  7. Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases

    SciTech Connect

    Plantico, M.S.; Karl, T.R. ); Kukla, G.; Gavin, J. )

    1990-09-20

    During the period 1948-1987, the concentration of anthropogenic greenhouse gases increased by more than 30%, and the mean annual temperature of the northern hemisphere increased by about 0.15{degree}C. To gain a better understanding of why the US temperature record does not reflect the anticipated greenhouse warming, the authors studied the inter-relationships between trends of temperature, cloudiness, sunshine and precipitation. Both the seasonal and annual trends for 23 geographic regions covering the US were analyzed using Monte Carlo field significance tests. While winters and autumns cooled, springs and summers warmed. Annually, cooling has occurred across the eastern half of the country, while warming dominates in the West. The largest changes in maximum temperature, daily temperature range, cloud amount, percent of possible sunshine and precipitation occur during autumn. They found that the recent decrease of the maximum temperature and daily temperature range in autumn is statistically associated with increasing cloud amount and precipitation, and with decreasing sunshine. Cloud amount increased over most of the country during all seasons except spring. Interestingly, no significant correlation was found between trends of mean temperature and cloud amount. Either the recent changes of temperature, cloud amount, sunshine and precipitation over the US are as yet unrelated to the increasing anthropogenic greenhouse gases, or that the transient response of regional climates to the greenhouse effect is not proportional to the modeled difference between the 1 {times} CO{sub 2} and 2 {times} CO{sub 2} equilibrium climates.

  8. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992

    SciTech Connect

    Holt, E. Jr.; Vernet, J.E. Jr.

    1994-12-31

    DOE is developing guidelines for the voluntary reporting of greenhouse gas emissions and their reductions, under Section 1605(b) of the Energy Policy Act of 1992. The establishment of this voluntary program should encourage the reduction of greenhouse gases while providing the opportunity to share innovative approaches to achieving such reductions. This social learning aspect is an important element of the program. In addition to greenhouse gas reductions achieved during a given year, reporters are encouraged to also report their actual emissions of such gases for 1987 through 1990. Due to the voluntary nature of this program, and the myriad differences among the potential reporting entities and possible uses for the data reported, the guidelines will need to be structured so as to maximize participation without compromising the usefulness of the data collected. Through a broad notice of inquiry, published in the Federal Register on July 27, 1993, the Department began seeking input into development of the guidelines. Subsequently, to gain a better understanding of the various sectors of the economy, six public workshops were held during the 1993. One workshop addressed institutional issues of potential interest to all sectors of the economy, with the other five workshops focusing more on matters of concern to specific sectors. These meetings were structured so as to provide broad representation from potential reporting entities along with public interest organizations. It is clear that there are significant variations among those reporting greenhouse information. Presently voluntary, the program will need flexibility to encourage broad participation.

  9. Coal-Fired Power Plants, Greenhouse Gases, and State Statutory Substantial Endangerment Provisions: Climate Change Comes to Kansas

    E-print Network

    Glicksman, Robert L.

    2008-04-01

    economy standards on motor vehicles by states such as California. But the states have also targeted stationary sources of greenhouse gases. In particular, they have sought to minimize carbon dioxide emissions from coal-fired power plants. States have used...

  10. Metrology for laser spectroscopic concentration and isotope ratio measurements of atmospheric greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis; Manninen, Albert; Mohn, Joachim; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2015-04-01

    Continuous, accurate and precise measurements of greenhouse gases (GHG) and their isotopic composition are required to understand the global cycle as well as source and sink processes of these environmentally harmful substances. Part of the EMRP project HIGHGAS (Metrology for high-impact greenhouse gases) [1] focuses on spectroscopic methods for GHG isotopic composition measurements and optical transfer standards. Harmonization of terminologies and concepts used in the GHG measurement communities and the metrology community are in focus, especially for isotope ratio measurements by laser spectroscopy, where gas metrology is still at an early stage. The focus of the HIGHGAS project here is on 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O and 13C/12C and 2H/1H ratios in CH4. As an alternative and complement of gas mixture standards, optical spectroscopic transfer standards for CO2 and CO shall be developed providing concentration results that are directly traceable to the international system of units (SI). Optical transfer standards offer an alternative in situ calibration route for other GHG measurement devices operating in the field. An optical transfer standard becomes particularly interesting when measuring sticky or reactive gases where cylinder-based reference gas mixtures may not be feasible. We present an approach to perform IR-spectrometry on gases with results directly traceable to the SI. This is crucial for the development of optical spectroscopic transfer standards providing SI-traceability to field measurements. Ideas for spectroscopic isotope ratio measurements aiming at SI-traceability will be discussed. Finally, we demonstrate the current performance and limitations of our measurement approaches and project possible solutions. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] EMRP project ENV52-HIGHGAS (Metrology for high-impact greenhouse gases), available at: http://www.euramet.org/

  11. Landscape patterns of soil oxygen and atmospheric greenhouse gases in a northern hardwood forest landscape

    NASA Astrophysics Data System (ADS)

    Werner, S. F.; Driscoll, C. T.; Groffman, P. M.; Yavitt, J. B.

    2011-11-01

    The production and consumption of the greenhouse gases, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), are controlled by redox reactions in soils. Together with oxygen (O2), seasonal and spatial dynamics of these atmospheric gases can serve as robust indicators of soil redox status, respiration rates, and nitrogen cycling. We examined landscape patterns of soil oxygen and greenhouse gas dynamics in Watershed 3 at the Hubbard Brook Experimental Forest, NH, USA. We analyzed depth profiles of soil O2, CO2, N2O, and CH4 approximately bimonthly for one year. Soil gas depth profiles were obtained from several different soil types encompassing a range of topographic positions, drainage classes, and organic matter content. Soil O2 was a good predictor of greenhouse gas concentrations. Unsaturated soils always had O2 concentrations >18 %, while saturated soils had O2 ranging from 0 to 18 %. For unsaturated soils, changes in CO2 were nearly stoichiometric with O2. High concentrations of CH4 (>10 ?L L-1) were typically associated with saturated soils; CH4 was typically below atmospheric concentrations (<1.8 ?L L-1) in unsaturated soils. High concentrations of N2O (>5000 nL L-1) were found only in well-aerated soils after summer rainfall events and in marginally-anoxic soils; N2O was consumed (<200 nL L-1) under anoxic conditions. The production and consumption of greenhouse gases were linked to functionally distinct biogeochemical zones of variable redox conditions (hotspots), which exhibit dynamic temporal patterns of redox fluctuations (hot moments). These soil redox hot phenomena were temporally driven by climate and spatially organized by soil type (reflective of topographic position) further constrained by subsurface hydrology.

  12. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  13. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  14. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The second group's task is similar to the first. Students have to study how the concentration of methane affects the temperature of their atmosphere box. Similarly, the third group monitors the influence of the water steam (generated by evaporation) on the temperature of their atmosphere box. Results must be carefully analyzed because of possible interferences from water steam. And finally, the forth and last group explores the long term effects that the accumulation of greenhouse gases have on the Earth's temperature. As temperature rises, evaporation increases and more water steam accumulates in the atmosphere. As a greenhouse gas, water absorbs heat, therefore the air gets warmer and, again, more water is evaporated. To develop this project, a previous experiment is needed so that the concentration of carbon dioxide remains constant and water steam levels increase gradually. Thus, the consequences of an uncontrolled increase of temperature can be simulated. Students' aim is to examine the data elicited from the last step of the scientific method experiment. They have to decide either if the experiment supported their hypothesis and, therefore, they can be regarded as true, or the experiment disproved them and, therefore, they are false. Finally, in the last lesson, students perform an oral presentation about their experimental results, establishing relationships amongst the different experiments. All together emphasizes the must of humankind to promote renewable energies.

  15. Greenhouse Gases

    MedlinePLUS

    ... is involved is critically important to projecting future climate change, but as yet is still fairly poorly measured ... feedbacks in the climate system leading to global climate change. As yet, though the basics of the hydrological ...

  16. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  17. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  18. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-02-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  19. Investigation of the relationship between atmospheric mercury and concentrations of key greenhouse gases at a mountainous monitoring site.

    PubMed

    Kim, Ki-Hyun; Pandey, Sudhir Kumar; Brown, Richard J C; Sheu, Guey Rong; Jeon, Eui-Chan; Jung, Kweon; Kang, Chang-Hee

    2015-03-01

    The concentration of total gaseous mercury (TGM) was monitored, together with some key greenhouse gases (GHGs: carbon dioxide (CO2), methane (CH4), and water (H2O) vapor) at hourly intervals at a mountainous monitoring site close to the highly industrialized city of Seoul, Korea. Correlations between the concentrations of Hg and those of the greenhouse gases were examined to assess their source characteristics and responses to changes in meteorological conditions. The mean Hg levels in this study (3.58 ± 2.13 ng m(-3)) were considerably lower (by, e.g., 24.3%) than those measured previously in other comparable sites during 1999-2006 (4.73 ± 1.34 ng m(-3)). Accordingly, such a reduction in Hg levels suggests the effectiveness of the regulatory measures enforced over the years. The mean Hg level observed in this study is also lower (by approximately 5%) than those in other Asian locations. In contrast, the mean concentrations of the two most important GHGs (CO2 and CH4) were moderately higher than those of other locations across the world (by approximately 4-9%). The results of our analysis indicate that the behavior of Hg is strongly correlated with water vapor and CH4 in terms of their source characteristics, despite notable differences in their diurnal patterns. PMID:25639653

  20. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  1. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  2. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  3. Shipboard monitoring of non-CO2 greenhouse gases in Asia and Oceania using commercially cargo vessels

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Mukai, H.; Nojiri, Y.; Tohjima, Y.; Machida, T.; Hashimoto, S.

    2011-12-01

    The National Institute for Environmental Studies (NIES) has been performing a long-term program for monitoring trace gases of atmospheric importance over the Pacific Ocean since 1995. The NIES Voluntary Observing Ships (NIES-VOS) program currently makes use of commercial cargo vessels because they operate regularly over fixed routes for long periods and sail over a wide area between various ports (e.g., between Japan and the United States, between Japan and Australia/New Zealand, and between Japan and southeast Asia). This program allows systematic and continuous measurements of non-CO2 greenhouse gases, providing long-term datasets for background air over the Pacific Ocean and regionally polluted air around east Asia. We observe both long-lived greenhouse gases (e.g., carbon dioxide) and short-lived air pollutants (e.g., tropospheric ozone, carbon monoxide) on a continuous basis. Flask samples are collected for later laboratory analysis of carbon dioxide, methane, nitrous oxide, and carbon monoxide by using gas chromatographic techniques. In addition, we recently installed cavity ringdown spectrometers for high-resolution measurement of methane and carbon dioxide to capture their highly variable features in regionally polluted air around southeast Asia (e.g., Hong Kong, Thailand, Singapore, Malaysia, Indonesia and Philippine), which is now thought to be a large source due to expanding socioeconomic activities as well as biomass burnings. Contrasting the Japan-Australia/New Zealand and Japan-southeast Asia cruises revealed regional characteristics of sources and sinks of these atmospherically important species, suggesting the existence of additional sources for methane, nitrous oxides, and carbon monoxide in this tropical Asian region.

  4. Emission inventory for greenhouse gases in the City of Barcelona, 1987-1996

    NASA Astrophysics Data System (ADS)

    Baldasano, José M.; Soriano, Cecilia; Boada, Lluís.

    Emissions of greenhouse gases for the City of Barcelona are estimated for the period 1987-1994. The sources considered are: public and private transportation; industrial, commercial and domestic activities; and municipal solid waste disposal. The results show that the main source of CO 2 emissions in Barcelona is private vehicle transportation, which accounts, as an average for the period studied, for 35% of total emissions. The second most important source is the municipal solid waste landfill facility of the city (24% of total emissions). The percentages for the remaining sources under consideration were: 14% electricity, 12% natural gas, 5% incineration, and 3% liquefied petroleum gases. However, the values for CO 2 emissions per inhabitant over the period studied are lower than those for any other industrialized city available for comparison. This is closely related to the high percentage of electricity generation from nuclear power stations and hydro power facilities, and also to the extensive use of natural gas for domestic uses.

  5. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models

    SciTech Connect

    Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.

    2008-04-01

    A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

  6. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a crossover between lower atmospheric heating and upper atmospheric cooling that is located at about 90 hPa in the tropics and 30-40 hPa in the polar regions. This results from the combination of continuing increases in greehouse gases and recovery from ozone depletion.

  7. A new UK Greenhouse Gas measurement network providing ultra high-frequency measurements of key radiatively active trace gases taken from a network of tall towers

    NASA Astrophysics Data System (ADS)

    Grant, A.; O'Doherty, S.; Manning, A. J.; Simmonds, P. G.; Derwent, R. G.; Moncrieff, J. B.; Sturges, W. T.

    2012-04-01

    Monitoring of atmospheric concentrations of gases is important in assessing the impact of international policies related to the atmospheric environment. The effects of control measures on greenhouse gases introduced under the Montreal and Kyoto Protocols are now being observed. Continued monitoring is required to assess the overall success of the Protocols. For over 15 years the UK Government have funded high-frequency measurements of greenhouse gases and ozone depleting gases at Mace Head, a global background measurement station on the west coast of Ireland. These continuous, high-frequency, high-precision measurements are used to estimate regional (country-scale) emissions of greenhouse gases across the UK using an inversion methodology (NAME-Inversion) that links the Met Office atmospheric dispersion model (Numerical Atmospheric dispersion Modelling Environment - NAME) with the Mace Head observations. This unique inversion method acts to independently verify bottom up emission estimates of radiatively active and ozone-depleting trace gases. In 2011 the UK government (DECC) funded the establishment and integration of three new tall tower measurements stations in the UK, to provide enhanced resolution emission maps and decrease uncertainty of regional emission estimates produced using the NAME-Inversion. One station included in this new UK network was already established in Scotland and was used in collaboration with Edinburgh University. The two other new stations are in England and were set-up early in 2012, they contain brand new instrumentation for measurements of greenhouse gases. All three additional stations provide ultra high-frequency (1 sec) data of CO2 and CH4 using the Picarro© Cavity Ring Down Spectrometer and high frequency (20 min) measurements of N2O and SF6 from custom built sample modules with GC-ECD. We will present the new tall tower UK measurement network in detail. Using high-frequency measurements at new operational sites, including Mace Head, we will present the latest inversion results from the new network highlighting the enhanced resolution in regional emission maps for the UK. These results are presented to the UK government periodically and provide independent verification of the emission estimates of radiatively active trace gases. These results also inform policy makers on the accuracy of inventory emissions estimates of radiatively active and ozone-depleting trace gases.

  8. Photoacoustic Experimental System To Confirm Infrared Absorption Due to Greenhouse Gases.

    PubMed

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masaaki; Kasai, Toshio

    2010-01-12

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily available components and is suitable for small-group experiments. The PA signal from a greenhouse gas (GHG), such as CO(2), H(2)O, and CH(4), can be detected down to a concentration of 0.1%. Since the basic theory of the PA effect in gases due to IR absorption is straightforward, the experiments with this PA system are accessible to students. It can be shown that there is a significant difference in IR absorption between GHGs and the major components of the atmosphere, N(2), O(2), and Ar, which helps students understand that the minor components, that is, the GHGs, determine the IR absorptivity of the atmosphere. PMID:20084177

  9. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    NASA Astrophysics Data System (ADS)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-01

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779-1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50-1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  11. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE PAGESBeta

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist largemore »or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  12. Influence of biochar amendment on greenhouse gases emission and rice production in paddy field, China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Pan, G. X.; Li, L. Q.; Zhou, T.

    2012-04-01

    Biochar incorporating into agricultural soils as a strategy to increase soil carbon content and mitigate climate change received great attention. We present a field study about biochar amendment into paddy field in Sichuan province 2010, China. The objective was to evaluate the impacts of biochar incorporation on rice production and greenhouse gas emissions. Biochar used in this study was produced from wheat straw at temperature 350-550°C. Biochar incorporated into paddy field before rice transplanting. Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in situ using closed chamber method during whole rice growing season. Flux of greenhouse gases was monitored at about 7 day's interval. Two rates of N fertilizer (0 and 240 kg N/ha) were applied as urea in combination with 3 biochar rates (0, 20 and 40 t/ha). Amendment of biochar had no influence on rice yield even at the hightest rate of 40 t/ha. However, rice production was greatly relying on chemical N fertilization input. No interact effect was detected between biochar and N fertilizer. Amendment of biochar suppressed N2O emission. During the whole rice growing season, the total N2O emission from chemical fertilizer was reduce by 29% and 53% under biochar amendment rates of 20t/ha and 40t/ha respectively. Total amounts of CO2 and CH4 emitted from paddy fields during whole rice growing season were not greatly increased despite of much carbon brought into soil with biochar. However, biochar amendment slightly increased CO2 emission in the absence of N fertilizer. Our results showed that biochar amendment into paddy field did not increase the global warming potential (GPW) and greenhouse gases emission intensity (GHGI).

  13. [Effects of urea and coated urea on harmful gases concentrations in plastic greenhouse].

    PubMed

    Zhou, Xihong; Zeng, Qingru; Mao, Xiaoyun; Zhang, Litian; Liao, Bohan; Tie, Baiqing; Liao, Zongwen

    2006-09-01

    With simulation test and plastic greenhouse experiment, this paper studied the effects of urea and minerals- coated urea on the soil pH and harmful gases concentrations in plastic greenhouse. The results showed that under simulated condition, the application of these'two N fertilizers led to an initial increase of soil pH, which reached the maximum (an increment of > 50%) within the first week and dropped to the initial level by the end of the fifth week. In plastic greenhouse, applying urea and coated urea resulted in the increase of NH3, NO2 and O3 concentrations. The daily volatilization amount of NH3 and NO2 was higher in urea treatment than in coated urea treatment, and the highest value in urea treatment was 42.36 microg x m(-3) x d(-1) for NH3, 41.95 microg x m(-3) x d(-1) for NO2, and 86.00 microg x m(-3) x d(-1) for O3. The volatilization intensity of NH3 and NO2 was influenced by temperature and sunlight, while the O3 concentration was influenced by sunlight. PMID:17147165

  14. Atmospheric Removal of Very Long-lived Greenhouse Gases in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Totterdill, A.; Kovacs, T.; Gomez Martin, J.; FENG, W.; Chipperfield, M.; Plane, J. M.

    2013-12-01

    Chlorofluorocarbons are known to have serious ozone depleting and global warming potentials. Perfluorinated compounds such as SF6, NF3, SF5CF3 and CF3CF2Cl which have very long lifetimes (ranging from a few centuries to over 3000 years) are too stable to affect stratospheric ozone but do have among the highest per molecule radiative forcing of any greenhouse pollutant, making them extremely potent greenhouse gases. Due to the stability of these gases in the lower atmosphere, mesospheric loss processes could significantly reduce their estimated atmospheric lifetimes and hence, overall climate impact. Potential sinks include reactions with metals and energetic particles such as electrons or short wavelength photons already present in the upper atmosphere. The metals, in this instance iron, sodium or potassium, are produced by meteoric ablation, while background and energetic electrons have the continuous source of photoionization and auroral precipitation, respectively. In this study we investigate the removal potentials of four very long lived gases (SF6, NF3, SF5CF3 and CF3CF2Cl). First, by four metals (Fe, Mg, Na and K), where rate coefficients are measured using the Fast Flow Tube and Pulsed Laser Flash Photolysis / Laser Induced Fluorescence techniques. Second, removal by electron attachment was investigated using a quadrupole mass spectrometer. measurements. Third, Lyman-alpha (121.56 nm) photolysis was measured in a VUV absorption cell. The resulting removal rate coefficients are currently being input into the Whole Atmosphere Community Climate Model (WACCM) to obtain lifetime measurements for these species.

  15. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    SciTech Connect

    Not Available

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

  16. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  17. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    PubMed

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ? -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included in this study. PMID:23441917

  18. Observations of tropospheric trace gases from GOSAT thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto

    2013-04-01

    Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH related to plant growth and biomass burning, and the high-level NH3 in the hot spot areas.

  19. Using STELLA System Dynamic Model to Analyze Greenhouse Gases' Emission From Solid Waste Management in Taiwan

    SciTech Connect

    Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.

    2004-03-31

    Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce a lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.

  20. Interhemispherical delay of the current warming gives a first evidence of the greenhouse gases signal

    SciTech Connect

    Sonechkin, D.M.

    1996-12-31

    The most accurate TRENDS`93 time series of the hemispherical surface air temperatures and the corresponding greenhouse gases concentrations were processed by means of the technique of wavelet transform. The technique easily admits splitting the time series of interest to statistically stationary oscillations and a trend. Such temperature oscillations of interannual-interdecadal scales were extracted which include differences between both hemispherical temperature series. In particular, these oscillations depict an increasing of the temperature during 1900--1930s in both hemispheres. A relative cooling in the Northern Hemisphere (a temperature stabilization in the Southern one) during 1940--1970s, and a strong warming in both hemispheres are depicted in the latest decades. One can assume that the contributions of these oscillations to global warming will be negative during the next decade.

  1. European trends in greenhouse gases emissions from integrated solid waste management.

    PubMed

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1). PMID:25704238

  2. On Road Study of Colorado Front Range Greenhouse Gases Distribution and Sources

    NASA Astrophysics Data System (ADS)

    Petron, G.; Hirsch, A.; Trainer, M. K.; Karion, A.; Kofler, J.; Sweeney, C.; Andrews, A.; Kolodzey, W.; Miller, B. R.; Miller, L.; Montzka, S. A.; Kitzis, D. R.; Patrick, L.; Frost, G. J.; Ryerson, T. B.; Robers, J. M.; Tans, P.

    2008-12-01

    The Global Monitoring Division and Chemical Sciences Division of the NOAA Earth System Research Laboratory have teamed up over the summer 2008 to experiment with a new measurement strategy to characterize greenhouse gases distribution and sources in the Colorado Front Range. Combining expertise in greenhouse gases measurements and in local to regional scales air quality study intensive campaigns, we have built the 'Hybrid Lab'. A continuous CO2 and CH4 cavity ring down spectroscopic analyzer (Picarro, Inc.), a CO gas-filter correlation instrument (Thermo Environmental, Inc.) and a continuous UV absorption ozone monitor (2B Technologies, Inc., model 202SC) have been installed securely onboard a 2006 Toyota Prius Hybrid vehicle with an inlet bringing in outside air from a few meters above the ground. To better characterize point and distributed sources, air samples were taken with a Portable Flask Package (PFP) for later multiple species analysis in the lab. A GPS unit hooked up to the ozone analyzer and another one installed on the PFP kept track of our location allowing us to map measured concentrations on the driving route using Google Earth. The Hybrid Lab went out for several drives in the vicinity of the NOAA Boulder Atmospheric Observatory (BAO) tall tower located in Erie, CO and covering areas from Boulder, Denver, Longmont, Fort Collins and Greeley. Enhancements in CO2, CO and destruction of ozone mainly reflect emissions from traffic. Methane enhancements however are clearly correlated with nearby point sources (landfill, feedlot, natural gas compressor ...) or with larger scale air masses advected from the NE Colorado, where oil and gas drilling operations are widespread. The multiple species analysis (hydrocarbons, CFCs, HFCs) of the air samples collected along the way bring insightful information about the methane sources at play. We will present results of the analysis and interpretation of the Hybrid Lab Front Range Study and conclude with perspectives on how we will adapt the measurement strategy to study CO2 anthropogenic emissions in Denver Basin.

  3. Tracing origin and fate of dissolved greenhouse gases in Malaysian peat-draining rivers

    NASA Astrophysics Data System (ADS)

    Müller, Denise; Warneke, Thorsten; Rixen, Tim; Denis, Nastassia; Müller, Moritz; Notholt, Justus

    2014-05-01

    Tropical peatlands are known to store large amounts of organic carbon. Peat-draining rivers in these regions receive considerable amounts of carbon from these soils, yet, its fate remains poorly studied. Although a number of recent studies investigated greenhouse gas production and emission from inland waters, only a small number focused on tropical freshwaters, and data from tropical peat-draining rivers are particularly lacking. We investigated rivers in a peat-dominated catchment in Sarawak, Malaysia. Dissolved greenhouse gases (GHG) were measured with Fourier Transform InfraRed (FTIR) spectroscopy. It allows for the simultaneous and continuous measurement of major GHG (CO2 and ?13C in CO2, CH4, N2O, and CO) with high accuracy and precision. We found that concentrations of dissolved CO, CO2 and CH4 were higher than the respective atmospheric equilibrium concentration, suggesting that those rivers are a source of these GHG to the atmosphere. Enhanced N2O concentrations were only found around some cultivated areas. In order to trace the origin of the GHG, we quantified dissolved organic carbon (DOC), particulate organic carbon (POC), inorganic nutrients and different parameters that describe water chemistry. Stable carbon isotope analysis of dissolved inorganic carbon (DIC) yielded indications of a terrestrial source of inorganic carbon in the river, suggesting that in-situ respiration of organic matter might play an important role.

  4. Greenhouse Gases Emission from Land Application of Swine Waste Water: A Comparison of Three Different Swine Slurry Application Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities (including land application of animal manures) account for about 20% of the total human induced global warming budget due to emissions of greenhouse gases (GHG). Recently, there has been an increasing emphasis on controlling these emissions from livestock operations. One of...

  5. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    SciTech Connect

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  6. Greenhouse gases measurements in road tunnel in São Paulo Megacity, Brazil

    NASA Astrophysics Data System (ADS)

    Fornaro, A.; Andrade, M. F.; Ynoue, R. Y.; Galichio, W.; Astolfo, R.; Miranda, R. M.

    2012-04-01

    The Metropolitan Area of São Paulo (MASP) is the richest area in Brazil and is one of the largest megacities in the world, with more than 20 million inhabitants. The fleet, with more than 7 million vehicles, is unique in that most are fueled by ethanol or by a gasoline-ethanol (flex-fuel vehicles) mixture containing 75-78% gasoline (by volume) and 22-25% ethanol (a blend referred to as gasohol). Nowadays, approximately 50% of the fuel burned by the fleet is ethanol. The vehicular emissions are responsible for approximately 98, 97, and 96%, respectively, of all emissions of carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx). In addition, the fleet is the largest source of CO2 emissions in the MASP. The goal is to evaluate of the vehicles emissions of the pollutants and greenhouse gases (CH4 and CO2) in the MASP. The gases carbon dioxide and methane were carried out by Picarro G2301 Analyzer for CO2/CH4/H2O in air. Field measurements were carried out in two road tunnels within the MASP: May 2 to 13, 2011 in the Janio Quadros (JQ) tunnel and from July 04 to 19, 2011 in the Rodoanel (RA) tunnel. The JQ tunnel is located in the southwest portion of São Paulo. It is a two-lane tunnel that is 1900 m in length, and the traffic in both lanes flows in the same directions. The in-tunnel emissions are mainly from gasohol- and ethanol-powered vehicles. The RA tunnel is located in the West portion of the city and different from JQ tunnel. It is 1700m in length and carries gasohol, ethanol and diesel powered vehicles, being that approximately 40% of the heavy-duty (burning diesel) in its four-lane. The results showed that the effects of the number and velocity of the vehicles in the variability of greenhouse gases and pollutants. The carbon dioxide reaching the hourly maximum value of 550 ppm in-inside the JQ tunnel, and 900 ppm in-side the RA tunnel.

  7. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry

    NASA Astrophysics Data System (ADS)

    Costa, Annamaria; Guarino, Marcella

    The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO 2, CH 4 and N 2O) emission into the atmosphere during one year of observation. A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn-Winter, Springtime and Summer, monitoring at least 60% of each period (20% at the beginning, in the middle and at the end) of each cycle). During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM 10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 ?m [Emission Inventory Guidebook, 2007. B1100 Particle Emissions from Animal Husbandry Activities. Available from: (accessed October 2008)] and to define GHG emission. The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5%. PM 10 concentration was monitored by a sampler (Haz Dust EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data. PM 10 concentration amount incoming from inlets was removed from PM 10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere. Mean yearly emission factor of PM 10 was measured in 2 g d -1 LU -1 for the weaning room, 0.09 g d -1 LU -1 for the farrowing room, 2.59 g d -1 LU -1 for the fattening room and 1.23 g d -1 LU -1 for the gestation room. The highest PM 10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room. CO 2, CH 4 and N 2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 min, for the 60% of the cycles. Yearly emission factor for CO 2 was measured in 5997 g d -1 LU -1 for the weaning room, 1278 g d -1 LU -1 for the farrowing room, 13,636 g d -1 LU -1 for the fattening room and 8851 g d -1 LU -1 for the gestation room. Yearly emission factor for CH 4 was measured in 24.57 g d -1 LU -1 for the weaning room, 4.68 g d -1 LU -1 for the farrowing room, 189.82 g d -1 LU -1 for the fattening room and 132.12 g d -1 LU -1 for the gestation room. Yearly emission factor for N 2O was measured in 3.62 g d -1 LU -1 for the weaning room, 0.66 g d -1 LU -1 for the farrowing room, 3.26 g d -1 LU -1 for the fattening room and 2.72 g d -1 LU -1 for the gestation room.

  8. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  9. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  10. Long open path Fourier transform spectroscopy measurements of greenhouse gases in the near infrared

    NASA Astrophysics Data System (ADS)

    Griffith, David; Pöhler, Denis; Schmidt, Stefan; Hammer, Samuel; Vardag, Sanam; Levin, Ingeborg; Platt, Ulrich

    2015-04-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. But how representative are in situ measurements at one point in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. With what precision, accuracy and reliability can such measurements be made? Building on our pooled experience in ground-level open path Fourier transform spectroscopy and TCCON solar FTS in the infrared (Wollongong) and long path DOAS techniques in the UV-visible (Heidelberg), we set up a new type of open path measurement system across a 1.5 km one-way path in urban Heidelberg, Germany, using FTS in the near infrared. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability, and avenues for further improvements and extensions. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due only to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision.

  11. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    SciTech Connect

    Singh, S.V.; Storch, H.V.

    1994-12-31

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth`s climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model.

  12. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Fuglestvedt, J.; Shine, K. P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. How could global society prepare for, and react to, such emergencies? One possibility is deliberate, coordinated emissions of short-lived greenhouse gases, along a pathway designed to match the climate responses to the eruption. We estimate such an emission pathway, countering a hypothetical eruption three times the size of Mt Pinatubo in 1991. Using a global climate model to evaluate global and regional responses to the eruption, with and without counter emissions, we show that it may be possible to counteract its climate effects, significantly dampening the abrupt impact of the eruption. We then raise practical, financial and ethical aspects related to such a strategy. Designed emissions to counter temporary global cooling would not have the disadvantages associated with more commonly discussed geoengineering to avoid long-term warming. Nevertheless, implementation would still face significant challenges.

  13. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  14. Global what emdash control possibilities of CO sub 2 and other greenhouse gases

    SciTech Connect

    Springer, K.J. )

    1991-07-01

    The principal greenhouse gas, CO{sub 2}, is joined by methane, N{sub 2}O, and other trace gases in absorbing infrared radiation, which would otherwise escape into space, a process thought to be responsible for gradual increase in temperature that will melt ice caps and raise ocean levels. This paper discusses control possibilities that could be considered once there is agreement that CO{sub 2} must be controlled. Many of the responses to the energy crisis of 1974 are applicable for CO{sub 2} control. A variety of technologies, energy sources, and ideas are offered that, in combination, could be the basis for a global energy policy. Conversion and replacement of coal, oil, and eventually natural gas fired electric power plants with other energy sources such as nuclear, solar, wind, tidal, and geothermal, could significantly reduce CO{sub 2} emissions. There are, however, no good alternatives to fossil fuels used in transportation that significantly reduce CO{sub 2} emissions. Of all the fossil fuels, natural gas has the least CO{sub 2} production.

  15. Emissions of greenhouse gases from the use of transportation fuels and electricity

    SciTech Connect

    DeLuchi, M.A. )

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  16. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    SciTech Connect

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  17. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution.

    PubMed

    Eisted, Rasmus; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO(2)-equivalent (kg CO(2)-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, and travel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways. PMID:19808734

  18. Comparing solubility algorithms of greenhouse gases in Earth-System modelling

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Accurate solubility estimates are fundamental for (i) Earth-System models forecasting the climate change taking into consideration the atmosphere-ocean balances and trades of greenhouse gases, and (ii) using field data to calibrate and validate the algorithms simulating those trades. We found important differences between the formulation generally accepted and a recently proposed alternative relying on a different chemistry background. First, we tested with field data from the Baltic Sea, which also enabled finding differences between using water temperatures measured at 0.5 or 4 m depths. Then, we used data simulated by atmospheric (Meteodata application of WRF) and oceanographic (WW3-NEMO) models of the European Coastal Ocean and Mediterranean to compare the use of the two solubility algorithms in Earth-System modelling. The mismatches between both formulations lead to a difference of millions of tons of CO2, and hundreds of tons of CH4 and N2O, dissolved in the first meter below the sea surface of the whole modelled region.

  19. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  20. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna

    2015-03-01

    The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  1. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect

    Kao, C.Y.J.; Morz, E.; Tie, X.

    1991-11-01

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth`s radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  2. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect

    Kao, C.Y.J.; Morz, E. ); Tie, X. )

    1991-11-01

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth's radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  3. The increase of Southern Ocean winds and SAM: is it caused by the ozone hole or by increased greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Roscoe, H. K.

    2010-12-01

    The amplitude of the Southern Annular Mode of variability in sea level pressure has increased significantly since station records began in the late 1950s. As expected, this has led to an increase in surface winds over the Southern Ocean in meteorological analyses. Roscoe & Haigh (2007), using data to 2006, showed that the increase in SAM correlated at high significance with both the ozone hole and the increase in greenhouse gases, but the correlation with the ozone hole was more significant. However, it was difficult to quantify the meaning of this greater significance because of the then similarity between the trends in greenhouse gases and the ozone hole - the esoteric statistical concepts associated with the Akaike Information Criterion had to be used. Now the trends have diverged significantly, so the update presented here allows us to quantify the greater degree of significance of the ozone hole, using the more familiar statistical method of Student’s t-test.

  4. Interaction of biochar and organic residues from sugarcane industry in soil chemical attributes and greenhouse gases emissions.

    NASA Astrophysics Data System (ADS)

    Fernanda Abbruzzini, Thalita; Feola Conz, Rafaela; Pellegrino Cerri, Carlos Eduardo

    2014-05-01

    Researchers have highlighted the importance of providing soil quality in agricultural systems, besides mitigating greenhouse gases (GHG) emissions to the atmosphere and increasing soil carbon sequestration. Therefore, several studies have demonstrated the effectiveness of biochar as a soil conditioner, both in relation to increased C sequestration and improvements in soil chemical, physical and biological attributes, resulting in better conditions for plant growth. The aim of this study was to assess the impact of applying biochar produced from sugarcane straw to soils in relation to changes in soil chemical attributes and mitigation of greenhouse gases emissions into the atmosphere. To do so, we conducted a laboratory incubation under controlled environmental conditions (ie temperature and humidity) with and without the application of filter cake and vinasse (ie organic residues from sugarcane industry) and rates of biochar application (0, 10, 20 and 50 Mg ha-1). The fluxes of CO2, N2O and CH4 of each incubation unity were measured periodically (in days 1, 2, 5, 9, 13, 16, 20, 24, 28, 30, 47, 60, 91, 105, 123, 130, 138 and 150). Each treatment consisted of eight replicates with destructive samples evaluated at 30, 60, 90 and 150 days after incubation to characterize the chemical attributes of the incubated soil, besides GHG (CO2, N2O and CH4) emissions. In general, there was an increase in carbon dioxide (CO2) fluxes over time due to the application of filter cake and vinasse and increasing dose of biochar. Regarding nitrous oxide (N2O) emissions, there was an increase of 82.35% with the application of vinasse and filter cake compared to the control treatment. However, different doses of biochar (10, 20 and 50 Mg ha-1) reduced N2O emissions by 29, 38.7 and 70.9%, respectively. The methane (CH4) flux was negligible in all treatments. We observed improvements in soil chemical attributes, such as higher pH, a substantial increase in the soil CEC, reduced exchangeable Al3+ and higher available P regarding the condition of the original soil.

  5. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    E-print Network

    Rieder, Harald E.

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we ...

  6. Observation of the Efimovian Expansion in Scale Invariant Fermi Gases

    E-print Network

    Deng, Shujin; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin

    2015-01-01

    Scale invariance emerges and plays an important role in strongly correlated many-body systems such as critical regimes nearby phase transitions and the unitary Fermi gases. Discrete scaling symmetry also manifests itself in quantum few-body systems such as the Efimov effect. Here we report both theoretical predication and experimental observation of a novel type expansion dynamics for scale invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time $t$, surprisingly, the expansion of cloud size exhibits a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor and the entire expansion dynamics is governed by a log-periodic function. This striking expansion of quantum Fermi gases shares similar scaling laws and same mathematical description as the Efimov effect. Our work demonstrates the first expansion dynamics of a quantum many-body system with the temporal disc...

  7. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    SciTech Connect

    Sathaye , Jayant; Makundi , Willy; Goldberg ,Beth; Andrasko , Ken; Sanchez , Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  8. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    PubMed

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer. PMID:24835490

  9. [Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].

    PubMed

    Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui

    2014-01-01

    To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration. PMID:24720227

  10. Analysis of air pollution and greenhouse gases. Initial studies, FY 1991

    SciTech Connect

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project ``Analysis of Air Pollution and Greenhouse Gases`` is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  11. Greenhouse gases emission from soils under major crops in Northwest India.

    PubMed

    Jain, N; Arora, P; Tomer, R; Mishra, Shashi Vind; Bhatia, A; Pathak, H; Chakraborty, D; Kumar, Vinod; Dubey, D S; Harit, R C; Singh, J P

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008-2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N2O emissions were significantly different (P>0.05) among the crop types. Emission of N2O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r(2)=0.74, P<0.05). The cumulative flux of CH4 from the rice crop was 28.64±4.40kgha(-1), while the mean seasonal integrated flux of CO2 from soils ranged from 3058±236 to 3616±157kgCO2ha(-1) under different crops. The global warming potential (GWP) of crops varied between 3053kgCO2eq.ha(-1) (pigeon pea) and 3968kgCO2eq.ha(-1) (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833kgCha(-1)) and largest in wheat (1042kgCha(-1)). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. PMID:26540602

  12. Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem

    NASA Technical Reports Server (NTRS)

    Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.

    1994-01-01

    Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).

  13. Ionic composition and greenhouse gases evaluation in Tietê River sediment and mud landfill

    NASA Astrophysics Data System (ADS)

    La-Scalea, M. A.; Fornaro, A.; Abreu, E. L.; Mendonça, C. A.

    2012-04-01

    There are 39 cities composing the Metropolitan Area of São Paulo (MASP) which has grown seven times during the last sixty years, reaching, in 2011, 19.3 million inhabitants. This fact associated with a strong industrial development provoked, among other consequences, a disordered urbanization along the most important river of the region: Tietê. About 100 Km of its 1,150 Km full extension crosses MASP and, during the 60's, Marginal Tietê roadway was constructed, occupying the river banks as access routes. Tietê River was straightened and several landfills were created with its deposit (sediment and mud). EACH-USP (46.50 W, 23.48 S) lies nowadays in one of these areas, where this work has been developed. Therefore, the goal is to evaluate the chemical composition (ionic and gases) and its variability in function of the depth levels using three wells, from 0.60 to 9.0 m of depth. The wells were perforated in September 2011, end of the dry weather. Each well owns a homemade multiport sampling device (HMSD), being possible to push gas and/or water up from 15 available ports. The gases measurements were carried out using a GEM-2000 plus (Landtec) portable analyzer. Aqueous samples containing solid material were taken at each level depth from ports of the HMSD. However, no water was found in some levels. All samples were kept cooled until analysis procedures. After decantation of the solid material, the supernatant liquid was divided in two portions, being its conductivity (Micronal conductimeter) and pH (pH-meter Metrohm 654 with combined glass electrode) measured with the former and ionic analysis with the latter, in which all samples were filtered (Millex 0.22 micrometer pores) before each ionic chromatographic analysis, using Metrohm 850 System, for the ions: sodium, ammonium, potassium, calcium, magnesium, chloride, nitrate and sulfate. The first sampling stage was carried out during November and December 2011 in the beginning of rainy season in the mid Spring. From all the analysis performed, a large variability of the results may be observed for both gases and ionic composition not only among the wells, but also among the different depth levels. Vertically, one of the wells (W2) showed the same percentage of gases, methane 55% and carbon dioxide 45%, at all depth levels, while the other two wells (W1 and W3) presented these gases percentages only under 5.0 m deep. Concerning oxygen, 25% of this gas was detected at 1.0 m under the surface in W1 and W3. In relation to aqueous samples, the most acidity was observed near the surface (0.60 m deep, W1), pH 4.65, while pH 7.88 was obtained under 5.0 m deep (W3). For ionic concentrations a large range was observed considering all wells, being the lowest values for sulfate, from 0.60 to 20 mg/l, and the highest values for ammonium, between 14 and 53 mg/l. These results variability can be associated to the different soil composition layers, as well as to the biodegradation process and the time confinement of the river material deposit.

  14. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    PubMed

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance. PMID:23011297

  15. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2009-11-01

    From Multi-Axis- (MAX-) DOAS observations information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  16. Mobile MAX-DOAS observations of tropospheric trace gases

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U.

    2010-02-01

    From Multi-Axis- (MAX-) DOAS observations, information on tropospheric trace gases close to the surface and up to the free troposphere can be obtained. Usually MAX-DOAS observations are performed at fixed locations, which allows to retrieve the diurnal variation of tropospheric species at that location. Alternatively, MAX-DOAS observations can also be made on mobile platforms like cars, ships or aircrafts. Then, in addition to the vertical (and temporal) distribution, also the horizontal variation of tropospheric trace gases can be measured. Such information is important for the quantitative comparison with model simulations, study of transport processes, and for the validation of tropospheric trace gas products from satellite observations. However, for MAX-DOAS observations from mobile platforms, the standard analysis techniques for MAX-DOAS observations can usually not be applied, because the probed airmasses can change rapidly between successive measurements. In this study we introduce a new technique which overcomes these problems and allows the exploitation of the full information content of mobile MAX-DOAS observations. Our method can also be applied to MAX-DOAS observations made at fixed locations in order to improve the accuracy especially in cases of strong winds. We apply the new technique to MAX-DOAS observations made during an automobile trip from Brussels to Heidelberg.

  17. The GHG-CCI Project to Deliver the Essential Climate Variable Greenhouse Gases: Current status

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Boesch, H.; Reuter, M.

    2012-04-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are bing further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  18. 76 FR 59533 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    .... Currently, according to the provisions in 76 FR 22825 (April 25, 2011), owners and operators subject to 40.... Environmental Protection Agency. FR Federal Register. GHG greenhouse gas. ICR Information Collection Request... Systems of the Greenhouse Gas Reporting Rule on November 30, 2010, 40 CFR part 98, subpart W (75 FR...

  19. 76 FR 56009 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Electronics Manufacturing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... List FERC Federal Energy Regulatory Commission FR Federal Register GHG greenhouse gas GPA Gas... Greenhouse Gas Reporting Program (GHGRP) on December 1, 2010 (75 FR 74774) subpart I of the GHGRP requires..., 2010(75 FR 74458). Subpart W of the GHGRP, which applies to facilities in specific segments of...

  20. Sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Paynter, D.; Frölicher, T. L.

    2015-10-01

    We use both prescribed sea surface temperature and fully coupled versions of the Geophysical Fluid Dynamics Laboratory coupled climate model (CM3) to analyze the sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols considered separately over the 1870 to 2005 period. The global anthropogenic aerosol climate feedback parameter (- ?) of -1.13 ± 0.33 Wm-2 K-1 is indistinguishable from the greenhouse gas - ? of -1.28 ± 0.23 Wm-2 K-1. However, this greenhouse gas climate feedback parameter is about 50% larger than that obtained for CM3 from a widely used linear extrapolation method of regressing Earth's top of atmosphere imbalance against surface air temperature change in idealized CO2 radiative forcing experiments. This implies that the global mean surface temperature change due to forcing over the 1870-2005 period is 50% smaller than that predicted using the climate feedback parameter obtained from idealized experiments. This difference results from time dependence in ?, which makes the radiative forcing obtained by the fixed sea surface temperature method incompatible with that obtained by the linear extrapolation method fitted over the first 150 years after CO2 is quadrupled. On a regional scale, ? varies greatly between the greenhouse gas and aerosol case. This suggests that the relationship between transient and equilibrium climate sensitivities obtained from idealized CO2 simulations, using techniques such as regional feedback analysis and heat uptake efficacy, may not hold for other forcing scenarios.

  1. Uncertainty in predictions of the climate response to rising levels of greenhouse gases.

    PubMed

    Stainforth, D A; Aina, T; Christensen, C; Collins, M; Faull, N; Frame, D J; Kettleborough, J A; Knight, S; Martin, A; Murphy, J M; Piani, C; Sexton, D; Smith, L A; Spicer, R A; Thorpe, A J; Allen, M R

    2005-01-27

    The range of possibilities for future climate evolution needs to be taken into account when planning climate change mitigation and adaptation strategies. This requires ensembles of multi-decadal simulations to assess both chaotic climate variability and model response uncertainty. Statistical estimates of model response uncertainty, based on observations of recent climate change, admit climate sensitivities--defined as the equilibrium response of global mean temperature to doubling levels of atmospheric carbon dioxide--substantially greater than 5 K. But such strong responses are not used in ranges for future climate change because they have not been seen in general circulation models. Here we present results from the 'climateprediction.net' experiment, the first multi-thousand-member grand ensemble of simulations using a general circulation model and thereby explicitly resolving regional details. We find model versions as realistic as other state-of-the-art climate models but with climate sensitivities ranging from less than 2 K to more than 11 K. Models with such extreme sensitivities are critical for the study of the full range of possible responses of the climate system to rising greenhouse gas levels, and for assessing the risks associated with specific targets for stabilizing these levels. PMID:15674288

  2. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  3. Optimization Model for Reducing Emissions of Greenhouse Gases from Automobiles (OMEGA)

    EPA Science Inventory

    The EPA Vehicle Greenhouse Gas (VGHG) model is used to apply various technologies to a defined set of vehicles in order to meet a specified GHG emission target, and to then calculate the costs and benefits of doing so.

  4. Greenhouse gases and ozone depleting compounds in the earth`s atmosphere

    SciTech Connect

    Khalil, M.A.K.

    1996-12-31

    Global warming and ozone depletion are the main environmental problems caused by changes in atmospheric composition. These changes come from human activities that add to the natural cycles of atmospheric gases or put entirely new compounds into the earth`s atmosphere. At present only a few gases play a major role in global climate change and ozone depletion. These are carbon dioxide, methane, nitrous oxide, trichlorofluoromethane (F-11), and dichlorofluoromethane (F-12). There are other gases that also add to these problems but to a lesser extent. This paper is about global warming, ozone depletion and the trends and budgets of the gases that can change the climate or deplete the ozone layer. 8 refs., 3 tabs.

  5. Assessing Greenhouse Gas emissions in the Greater Toronto Area using atmospheric observations (Invited)

    NASA Astrophysics Data System (ADS)

    Vogel, F. R.; Chan, E.; Huang, L.; Levin, I.; Worthy, D.

    2013-12-01

    Urban areas are said to be responsible for approximately 75% of anthropogenic Greenhouse Gases (GHGs) emissions while comprising only two percent of the land area [1]. This limited spatial expansion should facilitate a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first measure and report these publicly [2]. Modelling studies and measurements of CO2 from fossil fuel burning (FFCO2) in densely populated areas does, however, pose several challenges: Besides continuous in-situ observations, i.e. finding an adequate atmospheric transport model, a sufficiently fine-grained FFCO2 emission model and the proper background reference observations to distinguish the large-scale from the local/urban contributions to the observed FFCO2 concentration offsets ( ?FFCO2) are required. Pilot studies which include the data from two 'sister sites*' in the vicinity of Toronto, Canada helped to derive flux estimates for Non-CO2 GHGs [3] and improve our understanding of urban FFCO2 emissions. Our 13CO2 observations reveal that the contribution of natural gas burning (mostly due to domestic heating) account for 80%×7% of FFCO2 emissions in the Greater Toronto Area (GTA) during winter. Our 14CO2 observations in the GTA, furthermore, show that the local offset of CO2 (?CO2) between our two sister sites can be largely attributed to urban FFCO2 emissions. The seasonal cycle of the observed ?FFCO2 in Toronto, combined with high-resolution atmospheric modeling, helps to independently assess the contribution from different emission sectors (transportation, primary energy and industry, domestic heating) as predicted by a dedicated city-scale emission inventory, which deviates from a UNFCCC-based inventory. [1] D. Dodman. 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environment and Urbanization, 21,185. [2] Arikan Y., Desaim R., Bhatia P. and W. K. Fong, 2012 Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC), C40 Cities Climate Leadership group, available at: http://www.c40.org [3] Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I., & Worthy, D. E. J. (2012). Regional non-CO2 greenhouse gas fluxes inferred from atmospheric measurements in Ontario, Canada. Journal of Integrative Environmental Sciences, 9(1), 41-55. *The term 'sister sites' refers to sites that share a common background signal (i.e. common large scale influence), while significantly differing sensitivities to urban GHG emissions. In our case: Egbert, Ontario and Downsview, Toronto, Ontario.

  6. Greenhouse gases in the South Atlantic Ocean: recent trends and anomalies from continuous island and shipboard measurements

    NASA Astrophysics Data System (ADS)

    Lowry, David; Fisher, Rebecca; Lanoisellé, Mathias; France, James; Nisbet, Euan

    2013-04-01

    In-situ observation of tropical and southern Atlantic greenhouse gases is still limited. Continuous high-precision greenhouse gas measurement by CRDS in the South Atlantic started in 2010 on Ascension Is. (8° S) and near Stanley on East Falkland Is. (52° S), and in 2012 on the British Antarctic Survey ship RRS James Clark Ross, which sails annually from the UK to Antarctica and back. Both the Ascension and Falklands records show sustained inter-annual growth in both CO2 and CH4. NOAA data from a small number of stations indicate that Southern Tropical Methane has been increasing since 2007 but that growth is now slowing. This is confirmed by our new data. Strong CH4 growth of 11 ppb was observed on Ascension between July 2010 and July 2011 (winter to winter), of 7 ppb/yr from Jan 2011 to Jan 2012 (summer-to-summer) and decreased further to 4 ppb from July 2011 to July 2012. This compares with a fairly constant growth of 4-5 ppb/yr for the Falklands site. Isotopic evidence for the causes of the 2010-11 southern hemisphere sub-tropical methane anomaly is inconclusive. A slight depletion in 13C on Ascension during the period of growth might indicate that wetland emissions are the dominant cause of the anomaly, fitting with much higher than average sub-tropical rainfall during recent years, but a much longer data set is required to isolate the anomaly from the long-term trend. On 23 April 2011, Ascension experienced a 20-year event when the ITCZ moved far south of its normal position. In very clean marine air, in the space of 3 minutes the methane jumped from a normal autumn southern hemisphere level of 1763 ppb to 1795 ppb, closer to the concentrations of northern hemisphere spring, settling near to 1800 ppb for six hours, after which it rapidly fell back to 1760 ppb. Simultaneously CO2 rose from 389 to about 392 ppm, then to 396 ppm before falling back to 388 ppm. During this period there was very heavy rainfall, with nearly 300 mm on the slopes of Green Mountain and more than 200 mm in surrounding desert areas. The 35 ppb magnitude of this methane switch compares with a magnitude of 55 ppb (1825 to 1770 ppb) observed by continuous measurement on-board the James Clark Ross when crossing the ITCZ from 8° N to 8° S in October 2010. In this event, high altitude Northern hemisphere air was moving SE over NW moving trade winds until the storm brought high level air to ground level. The observations highlight the usefulness of continuous measurement at such a site and demonstrate that the meteorological boundary between the hemispheres can on occasion be very sharp.

  7. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    PubMed

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups. PMID:24682309

  8. Sugarcane field renovation: influence of tillage and no-tillage in the emission of greenhouse gases (GHG).

    NASA Astrophysics Data System (ADS)

    Packer, Ana Paula; Degaspari, Iracema A. M.; Ramos, Nilza Patricia; Vilela, Viviane A. A.; do Carmo, Janaina B.; Cabral, Osvaldo M. R.; Rossi, Paulo; de Andrade, Cristiano A.

    2015-04-01

    The management of agricultural soils can play an important role in the greenhouse gases (GHG) balance, depending on the adopted practices. In the agricultural system, current GHG emissions generated by anthropogenic activities include land use, land use change and management practices, which have contributed to disrupt the C and N cycles in terrestrial ecosystems. The GHG (CO2, N2O and CH4) emissions from agricultural soils depend on the biophysical processes, and the incorporation/decomposition of organic residues. Agricultural soils preparation requires a combination of several implements, which can produce great soil disturbance as is the case of conventional tillage or minimum soil mobilization in the reduced tillage or no-tillage. Tillage breaks soil aggregates leading to enhanced organic matter decomposition and reduced C and N concentrations and no-tillage increases the stability of soil macroaggregates, reducing the emissions of CO2. In this study, we evaluated the CO2 emissions from different management practices widely used in the renewal of sugarcane fields previously planted with soybean, in an Acric Oxisol plantation in the southeast region of Brazil. The conventional tillage (CT) operation consisted of an offset disk harrowing using a tool with 36 disks x 26" and a subsoiling with an implement reaching nearly 50 cm depth. The reduced tillage (RT) was carried out with subsoiling operation in the row planting and in the no-tillage (NT), the soybean trash from the last harvest was left on the soil. The soil preparation and the establishment of four experimental plots (30 m x 30 m each) occurred within two days. During the studied period, two CO2 and N2O emission peaks were observed after the soil preparation, the first one on day 4 and the second on day 35 after a 55 mm rain. The cumulative emissions were measured during 40 days after soil preparation. We observed higher emissions in the conventional tillage (CT), and lower values in the reduced tillage (approximately 10%) and non-tillage (approximately 20%) areas. Considering the expansion of sugarcane area in 320,000 hectares during the next sugarcane season (2014/2015), the NT management practice compared to the CT could reduce the emissions of CO2 and N2O in approximately 0.2 - 0.6 T g of CO2 eq.

  9. Sources of greenhouse gases and carbon monoxide in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent with the weaker seasonality of CH4 fluxes compared with CO and CO2. Annual estimates of CO2 emissions (41 kt km-2) obtained by EC were consistent with data upscaled from the London Atmospheric Emissions Inventory (LAEI; 46 kt km-2). Good agreement between measurements and inventory data was also found for CO (measured 156 t km-2; LAEI 145 t km-2) and for N2O (measured 0.36 t km-2; LAEI 0.42 t km-2), although based on a much shorter measurement period. By contrast, a two-fold difference was found between inventory and measured CH4 fluxes (measured 75 t km-2; LAEI 34 t km-2), which could indicate an underestimation by the inventory of CH4 emissions from anthropogenic sources or the existence of unaccounted biogenic sources. Measurements of isotopic CH4 taken 2 km SE of the tower near the banks of the river Thames reveal multiple episodes of 13C-depleted morning peaks consistent with biogenic sources. We speculate that the Thames can act as an additional significant source of biogenic methane especially at low tide and after heavy rainfall, which could explain the large emissions observed in the S-SE sector.

  10. Greenhouse gas relationships in the Indian summer monsoon plume observed by CARIBIC

    NASA Astrophysics Data System (ADS)

    Schuck, T. J.; Baker, A. K.; Brenninkmeijer, C. A.; Slemr, F.; van Velthoven, P. F.; Zahn, A.

    2010-12-01

    The Indian summer monsoon provides an important pathway for transport of pollutants into the upper troposphere and also into the lowermost stratosphere. In summer 2008, the impact of the monsoon circulation on the trace gas composition of the upper troposphere was investigated during regular monthly CARIBIC flights between Europe and India. CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) uses a Lufthansa Airbus A340-600 passenger aircraft equipped with a dedicated air inlet system. In 2008, most flights went to India in order to study the influence of the Indian summer monsoon. During the summer months a distinctive monsoon plume was observed to develop from June to September at latitudes between 35N and 25N jointly with the formation of the easterly jet over northern India. Higher levels of CH4, N2O and SF6 were found in air masses influenced by the monsoon. While the increase of the purely anthropogenic SF6 is entirely due to increased convective transport during the summer months, an additional enhancement of CH4 and to a lesser extent also of N2O is caused by increasing emissions from rice paddies, wetlands and landfills during the rainy season. Besides these greenhouse gases, other tracers such as CO and various hydrocarbons and halocarbons showed enhanced mixing ratios. In contrast, CO2 is depleted in the monsoon plume due to an increase in photosynthesis in the regions affected by the monsoon rains. Based on the CARIBIC data we get a consistent picture of the systematic evolution of the plume, reflecting the progression of the Indian summer monsoon. Using tracer-tracer correlations we estimate the emission changes of the above greenhouse gases during the summer monsoon season.

  11. "An Inconvenient Truth" Increases Knowledge, Concern, and Willingness to Reduce Greenhouse Gases

    ERIC Educational Resources Information Center

    Nolan, Jessica M.

    2010-01-01

    Since May 24, 2006 millions of people have seen the movie "An Inconvenient Truth." Several countries have even proposed using the film as an educational tool in school classrooms. However, it is not yet clear that the movie accomplishes its apparent goals of increasing knowledge and concern, and motivating people to reduce their greenhouse gas…

  12. Life-cycle analysis of dryland greenhouse gases affected by cropping sequence and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available about management practices effect on net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional till malt barley-fallow [CTB-F], no-till malt barley-pea [NTB-P], a...

  13. 76 FR 37300 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... Protection Agency FR Federal Register GHG greenhouse gas IBR incorporation by reference ICR information... CFR part 98, subpart W (75 FR 74458) (subpart W). Included in the final rule were new provisions that... preamble to the 2009 final rule (74 FR 56260), CAA section 114 provides EPA broad authority to require...

  14. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...have necessary information to monitor and report emissions and...EPA's Office of Air and Radiation (OAR) and Office of Water...equipment proposed to be used to monitor the behavior of stored greenhouse...the techniques to be used to monitor, the length of time that...

  15. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...EPA is finalizing technical corrections and revisions to the petroleum and natural gas systems source category of the Greenhouse Gas Reporting Rule. Final changes include providing clarification on existing requirements, increasing flexibility for certain calculation methods, amending data reporting requirements, clarifying terms and definitions, and technical...

  16. The response of soil organic matter decomposition and greenhouse gases emission to global warming and nitrogen addition

    NASA Astrophysics Data System (ADS)

    Oh, H.; Choi, J. H.

    2014-12-01

    The increase of atmospheric greenhouse gases has caused noticeable climate change. The increased temperature by climate change could dramatically change in the decomposition rate and greater losses of carbon from soil organic matter. Decomposition of organic carbon regulates both the amount of organic material which is stored in soils, as well as the amount of mineralized carbon that can be released into the atmosphere as greenhouse gases (CO2 and CH4). In addition, the largest increase in the N-deposition was expected in Asia due to the dramatic increase in anthropogenic activities. Previous results from N-deposition experiments led to apparently contradictory hypotheses regarding the decomposition of organic carbon in soil. N-deposition has been found to decrease the decomposition of chemically complex carbon compounds, while increasing decomposition rates of labile carbon pools. Combined changes in temperature increase and N-deposition have considerable potential to affect soil carbon sequestration/loss and soil nutrient cycling. This study investigated how the combined changes of temperature increase and N-deposition influence mineralization processes and C dynamics of two soil systems (wetlands and forest). For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in temperature increase and N-deposition on the decomposition of organic carbon and emission of greenhouse gases from two different soil systems. The samples were collected in wetland and forest around Gyeongan stream of South Korea. Incubator experiment was conducted under the enhanced air temperature (controlled 20 ?, 25 ? and 30 ?) and nitrogen addition (low and high condition by using ammonium nitrate). GHGs (CO2, N2O, and CH4) were measured gas chromatograph. Results of experiment show that CO2 flux decrease with time at forest soil and increase at wetland. Moreover high temperature (25 ?, 30 ?) and high concentration of nitrogen cause emission more than 20 ?. As time goes on, N2O flux decrease at low concentration of nitrogen, increase at high concentration in both of the soils. But cases of N2O flux have a lot of fluctuation. While CH4 flux was not detected at all of temperatures and soils.

  17. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  18. Supporting Greenhouse Gas Management Strategies with Observations and Analysis - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tarasova, O. A.

    2014-12-01

    Climate-change challenges facing society in the 21st century require an improved understanding of the global carbon-cycle and of the impacts and feedbacks of past, present, and future emissions of carbon-cycle gases. Global society faces a major challenge of reducing greenhouse gas emissions to virtually zero, most notably those of CO2, while at the same time facing variable and potentially overwhelming Earth System feedbacks. How it goes about this will depend upon the nature of impending international agreements, national laws, regional strategies, and social and economic forces. The challenge to those making observations to support, inform, or verify these reduction efforts, or to address potential Earth System feedbacks, lies in harmonizing a diverse array of observations and observing systems. Doing so is not trivial. Providing coherent, regional-scale information from these observations also requires improved modelling and ensemble reanalysis, but in the end such information must be relevant and reasonably certain. The challenge to us is to ensure a globally coherent observing and analysis system to supply the information that society will need to succeed. Policy-makers, scientists, government agencies, and businesses will need the best information available for decision-making and any observing and analysis system ultimately must be able to provide a coherent story over decades.

  19. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  20. GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION IN DEVELOPING COUNTRIES -- A PILOT STUDY IN MANILA

    EPA Science Inventory

    The report gives results of sampling of combustion gases released by household cookstoves in Manila, Philippines. n a total of 24 samples, 14 cookstoves were tested, fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Five ambient sample...

  1. Air-water greenhouse gases exchange in two coastal systems in Cadiz Bay (SW Spain)

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Forja, Jesús

    2014-05-01

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity, causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Water surface greenhouse gas concentrations (CH4 and N2O) have been estimated in two aquatic systems of Cadiz Bay Natural Park: Rio San Pedro Creek and Sancti Petri Channel Water renewal in Rio San Pedro Creek is tidally controlled. Due to its little freshwater input, the Creek is essentially a marine system. Several fish farms are distributed on its banks discharging effluents without previous treatment. Nine sampling stations are distributed along this system 12 Km length. Sancti Petri Channel is a flow channel-ebb tides extending from the inner Cadiz Bay to the Atlantic Ocean along 17 Km. Organic matter pollution sources in this environment are straggly. There exist anthropogenic inputs such as aquaculture effluents and sewage discharges coming through the Iro River, which flows into the Channel central part. In addition there are natural organic matter inputs from surrounding marshes. It has been established 11 sampling stations crossing this system. Sampling was conducted seasonally during 2013. CH4 and N2O concentrations were obtained though a gas chromatograph connected to an equilibration system. Greenhouse gas values vary between 24 and 295 nM and 16 and 27 nM for CH4 and N2O, respectively. Gas concentrations increase close to the fish farm effluent in Rio San Pedro Creek, and next to Iro River's mouth in Sancti Petri tidal Channel. Both environments act as greenhouse gas sources into the atmosphere, showing seasonal variations. It has been estimated mean fluxes of 75.3 ?mol m-2 d-1 of CH4 and 31.9 ?mol m-2 d-1 of N2O for both systems.

  2. The forcing of anthropogenic aerosols and greenhouse gases on sub-thermocline temperature trends in the southern subtropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cowan, T.; Purich, A.; Cai, W.; Rotstayn, L. D.; England, M. H.

    2013-12-01

    In the late twentieth century, the sub-thermocline waters of the southern tropical and subtropical Indian Ocean (IO) experienced a sharp cooling. This cooling has been previously attributed to an anthropogenic aerosol-induced strengthening of the global ocean conveyor, which transfers heat from the subtropical gyre latitudes toward the North Atlantic. From the mid-1990s the sub-thermocline IO experienced a rapid temperature trend reversal. In the context of understanding the causes of the sub-thermocline temperature changes, we use a suite of Coupled Model Intercomparison Project phase 5 (CMIP5) models forced with natural and anthropogenic radiative forcings and as well as individual forcing runs. We use these to: (i) examine whether the sub-thermocline cooling and/or rapid warming of the tropical/subtropical IO is anthropogenic or naturally forced; and (ii) assess future projections of the sub-thermocline temperatures in the mid twenty-first century from available model output. Results suggest that the late twentieth century sub-thermocline cooling of the southern IO was primarily driven by increasing anthropogenic aerosols and greenhouse gases. The models simulate a slow-down in the sub-thermocline cooling followed by a rapid warming towards the middle of the twenty-first century. The timing of the commencement of this warming appears dependent on the total change in anthropogenic aerosol levels, with models exhibiting a strong (weak) decline in future aerosols simulating a greater (weaker) magnitude of warming after the occurrence of peak aerosols. The role of greenhouse gases in forcing sub-thermocline temperature trends in the IO in the future remains to be determined. Despite this, it is clear is that as human generated aerosols continue to decline over the coming century, the subsurface ocean circulation will respond accordingly through an acceleration in the warming.

  3. Emissions of greenhouse gases, ammonia, and hydrogen sulfide from pigs fed standard diets and diets supplemented with dried distillers grains with solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine growers are increasingly supplementing animal diets with dried distillers grains soluble (DDGS) to offset cost of a typical corn-soybean meal diet. An experiment was conducted to investigate the effects of DDGS diets on both on manure composition and emissions of greenhouse gases (GHG), ammoni...

  4. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGESBeta

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore »network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  5. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  6. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  7. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGESBeta

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore »network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  8. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically significant increases in nitrogen oxides (NOx) emissions for 50% or higher biodiesel blends. The 20% blends of the biodiesels showed no statistically significant effect on NOx emissions on any cycle. In contrast, renewable diesel slightly decreased NOx emissions and the degree of reduction was statistically significant for 50% or higher blends over the UDDS cycle, but not at the 20% blends. The highway cruise cycles did not show a statistically strong NOx emission trend with increasing blend level of renewable diesel. Biodiesel and renewable fuel impacts on two greenhouse gases, CO2 and N2O emissions were of lower magnitude when compared to other regulated pollutants emissions, showing a change in their emissions within approximately ±3% from the CARB ULSD.

  9. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  10. Intensive flux measurements and analysis of greenhouse gases from an upland cabbage field at Kunsan, Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Na, U.

    2010-12-01

    It has been recognized that intensively managed agricultural soil is a dominant source of atmospheric N2O through increase in use of nitrogen fertilizer and soil microbial processes, contributing to about 57% (9Tg y-1) of total N2O annual global emission. Organic carbons in soil and wetland sediment including tidal flat affect the CO2 and CH4 emission in such environments depending on their physicochemical conditions. From October 2009 to June 2010, CO2, CH4, and N2O (GHG) soil emission measurements were conducted from upland cabbage field at Kunsan (35o56’23’’N, 126o43’14’’E), Korea by using closed static chamber method. During the experimental period, hourly GHG emissions were conducted mostly from 1000 to 1800LST in each field measurement day (total 28 days). After placing each chamber over soil surface of two neighboring plots, 50 ml of air sample inside the chambers was taken for every 15 min over a 30 min period by using plastic syringes (total of three samples). GHG concentrations were simultaneously analyzed in the laboratory by using a GC equipped with a methanizer, FID and ECD (Varian CP3800). The GHG fluxes were calculated from a linear regression of the changes in the concentrations. Negative values indicate GHG uptake by the soil surface, and positive values indicate GHG emission to the atmosphere. In addition, soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were measured at the sampling plot. The average soil pH and soil moisture during the experimental period was ~pH5.4±0.4 and 70.0±19.7 %WFPS, respectively. The average fluxes and ranges of GHG during the experimental period were -0.004±0.032 mg-m-2 hr-1 (-0.087 ~ 0.045 mg-m-2 hr-1) for CH4, 5.32±57.63 mg-m-2 hr-1 (-92.96 ~ 139.38 mg-m-2 hr-1) for CO2, and 1.119±1.918 mg-m-2 hr-1 (0.077 ~ 8.409 mg-m-2 hr-1) for N2O, respectively. Monthly base flux measurement results revealed that monthly means of CO2 and CH4 flux during October (fall) was positive and significantly higher than those (negative value) during January (winter) when sub soil have low temperature and relatively high moisture due to snow during the winter measurement period. Averages of soil temperature and moisture during these months were 17.5±1.2oC, 45.7±8.2%WFPS for October; and 1.4±1.3oC, 89.9±8.8%WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the CO2 and CH4 emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also correlated with GHG emissions and discussed. Both positive and negative gas fluxes in CH4 and CO2 were observed during these measurements, but not for N2O. CH4 and CO2 gases seem to be emitted from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions. However, still there are many uncertainties and large scarcities in both their determination methods and soil GHG flux data. Improvement of measurement techniques and well-understanding of relationships between gas emission and controlling factors in such environments need to be required.

  11. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  12. On the cause of the relative greenhouse strength of gases such as the halocarbons

    SciTech Connect

    Shine, K.P. )

    1991-06-15

    This note examines some of the factors important in determining the large radiative impact, relative to carbon dioxide, of increased concentrations of gases in the optically thin limit (such as the halocarbons at their present day concentrations). A narrow-band radiative transfer model is used to show that an absorber with the same integrated band strength as CFC-12, but with almost the same spectral variation of tropopause net flux change as occurs for small variations in carbon dioxide concentration, is 400 times more effective than carbon dioxide, on a molecule-per-molecule basis; this can be compared with the relative strength of 20,000 for CFC-12. This illustrates that the dominant reason for the relative strength of such gases is not their position in the 8-13 [mu]m window. It is not possible to unambiguously separate the possible reasons (spectral position, preexisting amounts and spectroscopic strength) for the variations in relative strength, as they are all related. 9 refs., 6 figs.

  13. Greenhouse Gases in the South Atlantic: Testing and Automation of Instrumentation for Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R.; Sriskantharajah, S.; Lanoisellé, M.; Etchells, A.; Manning, A.; Nisbet, E.

    2009-04-01

    Understanding ocean uptake of atmospheric CO2 by the Southern Ocean is important for modelling of future global warming scenarios, particularly since it was recently proposed that this sink was reducing (Le Quéré, et al., 2007). To help our understanding of this problem a new project aims to flask sample air from 5 South Atlantic sites and set up continuous monitoring at the 2 most accessible of these: Ascension Island and the Falklands. Flask sample measurements will include CO2 and CH4 mixing ratios and the ^13C measurement of both of these gases using the rapid continuous flow trace gas analysis system at Royal Holloway, University of London (RHUL). Routine precisions are ±0.03 per mil and ±0.05 per mil for CO2 and CH4, respectively (Fisher et al., 2006). A time series of ^13C in CH4 was maintained for Ascension Island from 2000-2005 and a time series for methane isotopes commenced for the Falkland Islands in autumn 2007. To meet the continuous monitoring requirements of the new project, three Picarro G1301 CO2 / CH4 / H2O Cavity Ring Down Spectrometers (CRDS) were installed at RHUL in October 2008 for testing, calibration and the development of an automated air inlet system suitable for analysis of calibration gases at the remote sites. Initial testing included calibration with NOAA calibrated and target gases, validation of the Picarro-defined H2O-correction of CO2, and derivation of an H2O-correction for CH4. Continuing checks on the H2O correction are made by having 2 instruments side-by-side taking air from the same inlet, but one having a combined Nafion / Mg-perchlorate drying system that utilizes the analysis system exhaust gas for the reverse flow through the Nafion and maintains water-levels at 0.05% for more than 2 weeks. These instruments are connected to the same air inlet as a GC measuring CH4 mixing ratio and a LiCor 6252 measuring CO2 mixing ratio at 30-minute and 1-minute intervals respectively. The third CRDS instrument is connected to a separate airline and can be switched between inlets that are within 1m of grass lawn at ground level or within 5 m of a large oak tree at canopy level. Flow rates vary between the internal pumps of the CRDS instruments, but within the range 260-300 cc/min when inlet valves are fully opened. Controlling flows below 200 cc/min significantly increases stabilisation time for cylinder gases. Likewise setting outlet pressures for NOAA and target gases at 4 psi and allowing the instrument pumps to control flow speeds up stabilization. Currently the instruments are measuring CO2, CH4 and H2O at 5-second intervals. Precisions (1 SD) of NOAA tanks, based on the final 10 minutes of a 30-minute analysis period are better than ±0.03 ppm for CO2 and ±0.3 ppb for CH4. Automated inlets and automated data retrieval will be tested during spring, for deployment on the South Atlantic islands later in 2009. Fisher, R., Lowry, D., Wilkin, O., Sriskantharajah S. & Nisbet. E.G. (2006) High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Comm. Mass. Spec. 20, 200-208. Le Quéré, C., C. Rödenbeck, E. T. Buitenhuis, T. J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann, Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316, 1735-1738, 2007.

  14. The Role of Non-CO2 Greenhouse Gases and Aerosols in Climate Mitigation

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.; Wigley, Tom M.; de la Chesnaye, Francisco; Pitcher, Hugh M.

    2003-11-17

    Forcing agents other than carbon dioxide, such as methane, nitrous oxide, halocarbons, and perhaps aerosol particles, may play a major role in mitigating climate change. Of these agents, methane is the most important greenhouse gas and has substantial mitigation potential. The role of black and organic carbon aerosols has attracted increasing interest and we explicitly include these carbonaceous aerosols in our calculations. This paper analyzes the potential role of different forcing agents in reducing future climate forcing in a multi-gas, integrated assessment model in which mitigation options compete and interact. Our framework includes all of the important atmospheric forcing agents: carbon dioxide, methane, nitrous oxide, halocarbons, sulfur dioxide, and carbonaceous aerosols along with an array of potential mitigation options. Through an integrated analysis of all available options we present a realistic portrait of the potential role of these forcing agents in limiting future climate change.

  15. Greenhouse gases generated from the anaerobic biodegradation of natural offshore asphalt seepages in southern California

    USGS Publications Warehouse

    Lorenson, T.D.; Wong, Florence L.; Dartnell, Peter; Sliter, Ray W.

    2014-01-01

    Significant offshore asphaltic deposits with active seepage occur in the Santa Barbara Channel offshore southern California. The composition and isotopic signatures of gases sampled from the oil and gas seeps reveal that the coexisting oil in the shallow subsurface is anaerobically biodegraded, generating CO2 with secondary CH4 production. Biomineralization can result in the consumption of as much as 60% by weight of the original oil, with 13C enrichment of CO2. Analyses of gas emitted from asphaltic accumulations or seeps on the seafloor indicate up to 11% CO2 with 13C enrichment reaching +24.8‰. Methane concentrations range from less than 30% up to 98% with isotopic compositions of –34.9 to –66.1‰. Higher molecular weight hydrocarbon gases are present in strongly varying concentrations reflecting both oil-associated gas and biodegradation; propane is preferentially biodegraded, resulting in an enriched 13C isotopic composition as enriched as –19.5‰. Assuming the 132 million barrels of asphaltic residues on the seafloor represent ~40% of the original oil volume and mass, the estimated gas generated is 5.0×1010 kg (~76×109 m3) CH4 and/or 1.4×1011 kg CO2 over the lifetime of seepage needed to produce the volume of these deposits. Geologic relationships and oil weathering inferences suggest the deposits are of early Holocene age or even younger. Assuming an age of ~1,000 years, annual fluxes are on the order of 5.0×107 kg (~76×106 m3) and/or 1.4×108 kg for CH4 and CO2, respectively. The daily volumetric emission rate (2.1×105 m3) is comparable to current CH4 emission from Coal Oil Point seeps (1.5×105 m3/day), and may be a significant source of both CH4 and CO2 to the atmosphere provided that the gas can be transported through the water column.

  16. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly revise the estimates of future greenhouse gas emissions for Midwest agroecology.

  17. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  18. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant.

    PubMed

    Masuda, Shuhei; Suzuki, Shunsuke; Sano, Itsumi; Li, Yu-You; Nishimura, Osamu

    2015-12-01

    The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2m(-3). The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3°C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank. PMID:25439128

  19. Prospects of and requirements for nuclear power as a contributor toward managing greenhouse gases

    SciTech Connect

    Hassberger, J.A., Schock, R.N.; Isaacs, T.H.

    1997-10-23

    The world`s population, energy demand, and rate of carbon emissions are increasing, but the rates of increase are uncertain. Even modest growth rates present significant challenges to existing and developing technologies for reducing carbon and greenhouse gas emissions while meeting growing energy demands. Nuclear power is currently the most developed alternative to fossil fuel combustion and is one of the options for meeting these challenges. However, there remain significant technical, economic and institutional barriers inhibiting growth of nuclear capacity in the U.S. and slowing implementation worldwide. In the near-term, the major barriers to nuclear power, especially in the U.S., appear to be economic and institutional, with the risks such as safety, waste management and proliferation having reasonably acceptable limits considering the current installed capacity. Future growth of nuclear power, however, may well hinge on continuous evolutionary and perhaps revolutionary reduction of these risks such that the overall risk of nuclear power, aggregated over the entire installed capacity, remains at or below today`s risks.

  20. Greenhouse gases, Regulated Emissions, and Energy use in Transportation fuel-cyl

    Energy Science and Technology Software Center (ESTSC)

    2000-06-20

    The GREET model estimates the full fuel-cycle energy use and emissions associated with various transportation fuels and advanced vehile technologies applied to motor vehicles. GREET 1.5 includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; corn, woody biomass, andmore »herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, Fischer-Tropsch diesel, and dimethyl ether; and landfill gases to methanol. For a given fuel/transportation technology combination, GREET 1.5 calculates (1) the fuel-cycle consumption of total energy (all energy sources), fossil fuels (petroleum, natural gas, and coal), and petroleum; (2) the fuel-cycle emissions of GHGs -- primarily carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20); and (3) the fuel-cycle emissions of five criteria pollutants: volatile organic compounds (VOCs), carbon monoxide (C0), nitrogen oxides (N0x), sulfur oxides (S0x), and particulate matter with a diameter measuring 10 micrometers or less (PM10). The model is designed to readily allow researchers to input their own assumptions and generate fuel-cycle energy and emission results for specified fuel/technology combinations.« less

  1. Quantified estimates of total GWPs for greenhouse gases taking into account tropospheric chemistry

    SciTech Connect

    Wuebbles, D.J.; Tamaresis, J.S.; Patten, K.O.

    1993-11-01

    The purpose of this report is to give interim account of the progress being made at Lawrence Livermore National Laboratory (LLNL) in developing an improved capability for assessing the direct and indirect effects on Global Warming Potentials. Much of our current efforts are being devoted to improving the capability for modeling of global tropospheric processes in our state-of-the-art zonally-averaged chemical-radiative-transport model of the troposphere and stratosphere. These efforts are in preparation for an improved evaluation and better quantification of the indirect GWPs resulting from effects on tropospheric ozone from ethane and other gases with significant human-related emissions. There are three major findings that should result from this project that should have significant impacts on EPA and its programs. First, the current and ongoing studies of the direct and indirect GWPs should have a significant influence on the continuing national and international assessments of climate change. Second, the improved capability for modeling of chemical and physical processes should lead to enhanced understanding of the controlling factors influencing ozone, hydroxyl and other key tropospheric constituents. Third, the enhanced modeling capability should be important to future studies of human-related influences on tropospheric and stratospheric chemical processes.

  2. Observations of halogenated trace gases in Taiwan and Malaysia

    NASA Astrophysics Data System (ADS)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  3. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  4. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-11-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N(2)O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3-9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347-371 kg CO(2)-eq. tonne( -1) of waste for incineration and 735-803 kg CO(2)-eq. tonne(-1) of waste for co-combustion). Indirect downstream savings were within the range of -480 to -1373 kg CO(2)eq. tonne(-1) of waste for incineration and within -181 to -2607 kg CO(2)-eq. tonne(- 1) of waste for co-combustion. N(2)O emissions and residue management did not appear to play significant roles. PMID:19748939

  5. Modern to millennium-old greenhouse gases emitted from freshwater ecosystems of the eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Bouchard, F.; Laurion, I.; Preskienis, V.; Fortier, D.; Xu, X.; Whiticar, M. J.

    2015-07-01

    Ponds and lakes are widespread across the rapidly changing permafrost environments. Aquatic systems play an important role in global biogeochemical cycles, especially in greenhouse gas (GHG) exchanges between terrestrial systems and the atmosphere. The source, speciation and emission of carbon released from permafrost landscapes are strongly influenced by local specific conditions rather than general environmental setting. This study reports on GHG ages and emission rates from aquatic systems on Bylot Island in the eastern Canadian Arctic. Dissolved and ebullition gas samples were collected during the summer season from different types of water bodies located in a highly dynamic periglacial valley: polygonal ponds, collapsed ice-wedge trough ponds, and larger lakes overlying unfrozen soils (talik). The results showed strikingly different ages and fluxes depending on aquatic system types. Polygonal ponds were net sinks of dissolved CO2, but variable sources of dissolved CH4. They presented the highest ebullition fluxes, one or two orders of magnitude higher than from other ponds and lakes. Trough ponds appeared as substantial GHG sources, especially when their edges were actively eroding. Both types of ponds produced modern to hundreds of years old (<550 yr BP) GHG, even if trough ponds could contain much older carbon (>2000 yr BP) derived from freshly eroded peat. Lakes had small dissolved and ebullition fluxes, however they released much older GHG, including millennium-old CH4 (up to 3500 yr BP) sampled from lake central areas. Acetoclastic methanogenesis dominated at all study sites and there was minimal, if any, methane oxidation in gas emitted through ebullition. These findings provide new insights on the variable role of permafrost aquatic systems as a positive feedback mechanism on climate.

  6. An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions

    PubMed Central

    Kung, Chih-Chun; McCarl, Bruce A.; Chen, Chi-Chung

    2014-01-01

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied. PMID:24619159

  7. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  8. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  9. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system.

    PubMed

    Rodriguez-Caballero, A; Aymerich, I; Poch, M; Pijuan, M

    2014-09-15

    In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug-flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2-3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. PMID:24954560

  10. Attribution of Ozone Changes in the Near Future: Nonlinear Feedbacks between Ozone Depleting Substances and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Meul, Stefanie; Oberländer, Sophie; Langematz, Ulrike

    2014-05-01

    In the first half of the 21st century the stratospheric burden of ozone depleting substances (ODSs) is predicted to decrease due to the regulations in the Montreal Protocol and its amendments. Concomitantly, the concentrations of well-mixed greenhouse gases (GHGs) will continue to rise. As the removal of the ODSs from the stratosphere is also affected by changes in the Brewer-Dobson Circulation, the decrease of halogens will also depend on the rate of the GHG increase. Furthermore, the increasing concentrations of the GHGs methane (CH4) and nitrous oxide (N2O) can modify the halogen-ozone chemistry. Therefore, a non-linear contribution has to be included in the attribution analysis of the ozone changes to ODS and GHG changes. In this study we detect and analyze this non-linear term in a set of appropriately defined timeslice simulations for the year 2045 with the Chemistry-Climate-Model EMAC. The causal processes of the non-linear interactions are studied in more detail by separating the relative ozone changes in the contribution from chemistry (production and loss) and transport. This allows us to identify not only feedbacks between chemistry and temperature but also between chemistry and dynamics, i.e. ozone transport.

  11. Why the developing nations like India need strong capacity building efforts in greenhouse gases mitigation?

    NASA Astrophysics Data System (ADS)

    Vishal, V.; Sudhakaran, A.; Singh, T. N.

    2014-12-01

    Today, India rubs shoulders with nations like USA and China for being the major shareholders in global greenhouse emissions and has more emissions than Russia! Carbon Capture, Utilization and Storage (CCUS) has been proven as a reliable method to counter global warming and keep the 2ºC per year policy in check and is currently in the pilot stage in many developed nations. The three major requirements for CCUS are: manpower in diverse fields, implementation potential and capital. Keeping other social problems aside, India still has sufficient mankind in all spheres of research ranging from earth science, engineering, basic sciences, economy, policy making, regulation, public outreach etc. to successfully work on such challenges. India has leading academic institutions, research labs and universities in science and engineering. They also have a working power force in aspects like economy, policy making, regulation, public outreach etc. in various management institutes of repute. India, however, lacks in sufficient funding for advanced research and capacity building schemes to support projects of such scale. Deployment of facts and concepts on climate change need an approach of much greater scope than what is anticipated. The above workforces can put forth a clear picture about the various entities surrounding CCUS and provide sensible planning and implementation information through scientific research. CCUS is only possible when the direct anthropogenic emitters like fossil fuel plants modify their features to incorporate the methods associated with it. The rural population has to be educated in context to the safety of the storage sites. Above all, the Indian government must holistically divert funds for such programs and provide economic incentives to the industries for the industries. The bottom line is that India has been working in lots of aspects with not very clear cuts objectives. There are CO2 capture technologies like amine scrubbing and membrane separation that is available and immense storage potential is also seen in the Gondwana coal fields and basalt rocks of the Deccan plateau. For successful working of such ideas, the confidence of a big section of public comprising of academicians, researchers, industrialists, sustainable energy workers, politicians etc. is required apart from the key workforce.

  12. Do Agricultural Soils of California have the Potential to Sequester Carbon and Mitigate Greenhouse Gases?

    NASA Astrophysics Data System (ADS)

    Suddick, E. C.; Scow, K. M.; Six, J. W.

    2008-12-01

    Agricultural ecosystems play a major role in the global carbon cycle and can be both sources of carbon emissions to the atmosphere and also carbon sinks which may be used to offset any future greenhouse gas (GHG) emissions. In California, climate change predictions indicate major impacts and substantial alterations of agricultural systems over the next decades. In 2006, California passed the California Global Warming Solutions Act of 2006 (AB 32) that requires reduction of the three major GHG's (CO2, N2O and CH4) to 1990 levels by 2020. We surveyed and synthesized available data from recent studies describing the potential to sequester carbon and reduce other GHG emissions in California agricultural soils. The studies evaluated various management practices in both annual row and perennial cropping systems, with other studies focusing upon biogeochemical model predictions for carbon sequestration and GHG mitigation calibrated towards California agriculture. Management practices considered included minimum or no tillage, cover cropping, organic residue (low and high inputs) and nitrogen fertilizer management. Though practices involving inputs of carbon, such as cover cropping and organic amendments, were often associated with increases in soil organic carbon (SOC) in the top soil layer (0-20 cm), results were not consistent across farming systems. Several studies indicated that conservation tillage, alone, increased above-ground biomass, especially when used with a cover crop. However, the reduced soil disturbance from conservation tillage merely resulted in a redistribution of the soil carbon rather than an overall accumulation, when compared with standard tillage and cover cropping practices together. Predictions from biogeochemical models indicated that increased inputs of manure and increased organic residues led to substantial carbon sequestration but did not consistently reduce non-CO2 related GHG emissions. The most effective way to reduce non-CO2 GHG emissions, and simultaneously add organic matter to soil, was to employ reduced tillage techniques and low input farming which is based upon the reduction of chemical fertilizers, pesticides and herbicides without their complete elimination and to also add carbon to the soils through the addition and incorporation of organic amendments and cover crops.

  13. Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hallberg, Robert; Inamdar, Anand K.

    1993-01-01

    Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.

  14. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  15. Atmospheric station K?ešín u Pacova, Czech Republic - a Central European research infrastructure for studying greenhouse gases, aerosols and air quality

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Sedlák, P.; Schwarz, J.; Fusek, M.; Hanuš, V.; Vodi?ka, P.; Trusina, J.

    2015-05-01

    Long-lasting research infrastructures covering the research areas of atmospheric chemistry, meteorology and climatology are of highest importance. The Atmospheric Station (AS) K?ešín u Pacova, central Czech Republic, is focused on monitoring of the occurence and long-range transport of greenhouse gases, atmospheric aerosols, selected gaseous atmospheric pollutants and basic meteorological characteristics. The AS and its 250 m tall tower was built according to the recommendations of the Integrated Carbon Observation System (ICOS) and cooperates with numerous national and international projects and monitoring programmes. First measurements conducted at ground started in 2012, vertical profile measurements were added in 2013. A seasonal variability with slightly higher autumn and winter concentrations of elemental and organic carbon was revealed. The suitability of the doubly left-censored Weibull distribution for modelling and interpretation of elemental carbon concentrations, which are often lower than instrumental quantification limits, was verified. Initial data analysis also suggests that in summer, the tower top at 250 m is frequently above the nocturnal surface inversions, thus being decoupled from local influences.

  16. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch; Gautier, Catherine; Granger, Stephanie; Hannon, Scott; Irion, Fredrick W; Kakar, Ramesh; Kalnay, Eugenia; Lambrigtsen, Bjorn H.; Lee, Sung-Yung; Marshall, John Le; McMillan, W. Wallace; McMillin, Larry; Olsen, Edward T.; Revercomb, Henry; Rosenkranz, Philip; Smith, William L.

    2006-01-01

    This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

  17. Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Ciais, Philippe; Li, Yue; Li, Laurent Z. X.; Vautard, Robert; Zhou, Liming; Yang, Hui; Huang, Mengtian; Piao, Shilong

    2015-06-01

    Mountain waters, glaciers, hazards, and biodiversity are vulnerable to the impacts of global warming. Warming is projected to amplify over mountains by global climate models, yet meteorological records do not show a uniform acceleration of warming with elevation. Here we explore warming-elevation relationships using records from 2660 meteorological stations and determine that the vertical gradient of warming rate varies with location. The warming is faster at higher altitudes in Asia and western North America, but the opposite is observed over Central Europe and eastern North America which have received more short-wave radiation (brightening) associated with a decrease of aerosols and clouds since the 1980s. We found that altitudinal differences in air pollution (brightening), with observations showing more short-wave radiation received at low altitudes than at mountains, modulate the warming-elevation relationships. The advance in understanding of the drivers of regional climate change will contribute to the formulation of strategies for climate change mitigation at high elevations.

  18. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Sarthou, G.; Fernández, C.

    2015-03-01

    The concentrations of greenhouse gases (GHGs), such as nitrous oxide (N2O) and methane (CH4), were measured in the Kerguelen Plateau region (KPR). The KPR is affected by an annual microalgal bloom caused by natural iron fertilization, and this may stimulate the microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Oceanographic variables, including N2O and CH4, were sampled (from the surface to 500 m depth) in two transects along and across the KRP, the north-south (TNS) transect (46°-51° S, ~ 72° E) and the east-west (TEW) transect (66°-75° E, ~ 48.3° S), both associated with the presence of a plateau, polar front (PF) and other mesoscale features. The TEW presented N2O levels ranging from equilibrium (105%) to slightly supersaturated (120%) with respect to the atmosphere, whereas CH4 levels fluctuated dramatically, being highly supersaturated (120-970%) in areas close to the coastal waters of the Kerguelen Islands and in the PF. The TNS showed a more homogenous distribution for both gases, with N2O and CH4 levels ranging from 88 to 171% and 45 to 666% saturation, respectively. Surface CH4 peaked at southeastern stations of the KPR (A3 stations), where a phytoplankton bloom was observed. Both gases responded significantly, but in contrasting ways (CH4 accumulation and N2O depletion), to the patchy distribution of chlorophyll a. This seems to be associated to the supply of iron from various sources. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.25 ± 4.04 ?mol m-2 d-1) and for CH4 (from 0.32 to 38.1, mean 10.01 ± 9.97 ?mol-2 d-1) indicated that the KPR is both a sink and a source for N2O, as well as a considerable and variable source of CH4. This appears to be associated with biological factors, as well as the transport of water masses enriched with Fe and CH4 from the coastal area of the Kerguelen Islands. These previously unreported results for the Southern Ocean suggest an intense microbial CH4 production in the study area.

  19. Dissolved greenhouse gases (nitrous oxide and methane) associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Fernández, C.

    2014-08-01

    The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north-south (N-S) transect (46-51° S, 72° E meridian) and the west-east (W-E) transect (66-75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W-E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120-970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N-S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.71 ?mol m-2d-1), and for CH4 (from 0.32 to 38.1, mean 10.07 ?mol m-2d-1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  20. Greenhouse Gases Life Cycle Assessment (GHGLCA) as a decision support tool for municipal solid waste management in Iran

    PubMed Central

    2014-01-01

    Background One of the most problems in developing countries is the integrated waste management and the effects on Greenhouse Gases (GHG) emission, Life Cycle Assessment (LCA) is used in this paper as a decision supporting tool in planning Municipal Solid Waste (MSW) managements. Methods In this paper the EPA’s Waste Reduction Model (WARM) that provide GHG emission factors for waste stream components that are based on life Cycle Inventory (LCI) framework were used and The MSW management methods comprised in seven scenarios. Results The amount of GHG which was generated from Iran’s waste sector estimated about 17836079 Metric Tons of Carbon dioxide Equivalents (MT CO2e) in this study. The lowest amount of GHG was generated by LFG capture system with energy recovery (557635 MT CO2e), while Incineration of materials being sent to landfill (1756823 MT CO2e), Landfill Gas (LFG) capture system with flaring (2929150 MT CO2e) and Improved source reduction and recycling (4780278 MT CO2e) emitted fewer GHG than the other scenarios. Lowest levels of gross energy consumption occur in source reduction with recycling and composting (-89356240 Mega British Thermal Unit, M BTU), recycling and composting (-86772060 M BTU) as well as Improved source reduction with recycling and composting (-54794888 M BTU). Conclusions It appears that recycling and composting each offer significant GHG emissions and energy consumption reductions (scenarios 4, 5 and 6). Upon of the GHG emission and energy consumption results concluded that improved source reduction and recycling scenario has been the Balanced and appropriate technology for handling the solid waste streams in municipalities. PMID:24910776

  1. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2015-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  2. An extensive study of O(1D) reaction rate coefficients for key ozone depleting substances and greenhouse gases

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Baasandorj, M.; Fleming, E. L.; Jackman, C. H.

    2012-12-01

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Although numerous O(1D) reactions have been studied in the past, large uncertainties in the recommended rate coefficients and reactive yields, i.e., loss of ODS or GHG, for use in atmospheric modeling still exist for a number of key compounds. Our understanding of the coupling of atmospheric chemistry and climate-change requires the most accurate reaction rate coefficient data to be used in climate-change model calculations. In this presentation, results from an extensive laboratory study of the total reaction rate coefficient, corresponding to loss of O(1D), and reactive rate coefficients, corresponding to the loss of the reactant compound, will be presented for the ODSs: CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115), HClCF2 (HCFC-22), CH3CClF2 (HCFC-142b); GHGs: CHF3 (HFC-23), CHF2CF3 (HFC-125), CF3CHCF3 (HFC-227ea), and CF3CH3 (HFC-143a); and the persistent (long-lived) GHGs: NF3, SF5CF3, C2F6, c-C4F8, n-C5F12, and n-C6F14. The results from this work will be compared with results from previous studies and discrepancies discussed along with the atmospheric implications of the improved kinetic dataset on the atmospheric lifetimes of these compounds.

  3. Emission of greenhouse gases from geographically isolated wetlands of Western Siberia

    NASA Astrophysics Data System (ADS)

    Golovatskaya, E.; Dyukarev, E.; Veretennikova, E.

    2014-12-01

    Wetlands are integral components of landscapes with specific nutrient dynamics and carbon sequestration potentials, which frequently differ, based on hydroperiod and seasonal hydropattern, as well as the constituent concentration of inputs, site-specific storages and vegetation structures. Human modifications have the potential to significantly alter controls on carbon dynamics. This study focused on determining carbon emissions (CO2 and CH4) from geographically isolated peatlands within the Ob-Tom River Interfluve area of Western Siberia affected by water diversion for municipal use by the city of Tomsk, Russia. Two oligotrophic wetlands within the study area were selected for site-specific CO2 studies, the Timiryazevskoe (16 ha) and Kirsanovskoe wetlands (29 ha), both affected by the Tomsk water intake (177 water wells 250 000 m3 water daily). Measurements of ??2 and CH4 emissions from peat surfaces were carried out bi-monthly in growing periods from 2008-2013 in two dominate vegetation zones, pine- shrub-sphagnum phytocenosis (ryam) and sedge-sphagnum fens. ??2 emissions were measured using OPTOGAS-500.4 infrared gas analyzer and dark chamber. Methane emissions were measured using static chamber method. Air samples were collected by syringes and analyzed at gas chromatograph Shimadzu-GC14B. Observations were accompanied by measurement of air temperature and humidity, surface temperature, peat temperature at various depths and the water table level. C?2 emission over the vegetative growing period had clearly pronounced seasonal dynamics with maximum values in the middle of the growing season (mid-July) and minimum values in spring and autumn. The average total flux over the studied period is 123±55 g?/m2 at sedge-sphagnum fen of Kirsanovskoe wetland and 323±66 g?/m2 at fen of Timiryazevskoe wetland. Total ??2 flux for the snow-free period at ryam sites of Timiryazevskoe and Kirsanovskoe wetlands is 238±84 and 260±47 g?/m2 accordingly. Methane emission from the surface of isolated wetlands for the snow-free period varies from 0.3±1.1 to 2.9±2.3 gC/m2 on ryam sites of Kirsanovskoe and Timiryazevskoe wetlands respectively. The total CH4 flux on sedge-sphagnum fen varies from 2.5±3.0 at Kirsanovskoe wetlands to 31.6±26.3 gC/m2 at Timiryazevskoe wetland.

  4. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud evolution accounted for the first and second indirect effects and the mixing state of aerosol particles. The optical properties of clouds were found by treating black carbon inclusions surrounded by a shell of water. The albedos of snow, sea ice, and water were calculated with radiative transfer solutions, assuming black carbon inclusions in the case of snow and sea ice. The simulations accounted for 3-D energy diffusion to the deep ocean and 2-D ocean circulation. Major conclusions are (a) the most important constituents of global warming, in terms of climate response, appear to be, in order, carbon dioxide, black carbon, and methane, (b) aerosol particles (all together) appear to act on top of greenhouse gases to enhance extremes in both regional cooling and regional warming, (b) the combination of important greenhouse gases and aerosol particles can explain observed major regions of historic warming and cooling, and (d) eliminating all anthropogenic aerosol emission could more than double current global warming but would have less of an effect than independently doubling carbon dioxide.

  5. GREENHOUSES GREENHOUSES

    E-print Network

    Isaacs, Rufus

    Michigan 4-H Children's Garden BogueStreetParking Entrance Webb English Garden Harold & Martha DavidsonP P $ P P Visitor Booth TEACHING GREENHOUSES TEACHING GREENHOUSES Conservatory Conservatory Plaza Annual Trial Garden Foyer Garden Indoor 4-H Children's Garden Curiosity Classroom Jane Smith Conifer

  6. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  7. Profiling wind and greenhouse gases by infrared-laser occultation: results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-07-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting. Here we use a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both stand-alone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from a wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s. wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to the decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in the case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  8. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of landscapes and climatic variability. The monitoring is carried out in one of the stations of the ClimaDat network, which consists of eight GHG monitoring stations in highly preserved ecosystems which are very sensitive to climate change in Spain. This constant monitoring will allow relating changes in terrestrial ecosystems, hydrological processes and atmospheric transport of GHG. The goal of the presentation is to show the results obtained since September 2013 through continuous monitoring, focusing on the seasonal changes in precipitation, temperature, and CO2 and CH4 changes in atmospheric concentrations.

  9. Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    NASA Astrophysics Data System (ADS)

    Meul, S.; Oberländer-Hayn, S.; Abalichin, J.; Langematz, U.

    2015-06-01

    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the prevailing GHG concentrations. Therefore the future ozone evolution will not simply be a reversal of the past.

  10. Measurements and modeling of greenhouse gases and the planetary boundary layer for the Boston metro area and the Northeastern Megalopolis

    NASA Astrophysics Data System (ADS)

    DeCola, Philip; Jones, Taylor; Wofsy, Steven; McKain, Kathryn; Chen, Jia; Bererra, Yanina; Gottlieb, Elaine; Nehrkorn, Thomas; Hegarty, Jennifer; Eluszkiewicz, Janusz; Henderson, John; Mountain, Marikate; Hutyra, Lucy; Callahan, William

    2014-05-01

    The accuracy of greenhouse gas (GHG) emission and air quality simulations reflects the fidelity of the atmospheric transport model employed that in turn is highly dependent on the accuracy of the meteorological input data. We begin by describing a multi-scale measurement network and model-data analysis framework for the Boston Metro region, with extension to the mid-Atlantic urban corridor. Observations include a network of automated concentrations of CO2 and CH4 inside and outside the urban domain, near the surface, on towers and tall buildings, total column measurements using the sun as a source, aerosol LiDAR data defining atmospheric structure, and meteorological data. The model-data analysis framework includes a Lagrangian particle dispersion model (LPDM), the Stochastic Time-Inverted Lagrangian Transport (STILT), driven by meteorological fields from the North American Regional Reanalysis (NARR) and Weather Research and Forecasting (WRF) model, and an inversion framework. We show examples of data and discuss the observational network's sampling design and a plan for extension to the NE urban corridor of the US. These urban studies are demonstrating the feasibility and value of incorporating advanced instrumentation such as the Mini Micro Pulse LiDAR to evaluate and improve the fidelity of the WRF simulations of atmospheric transport and structure in the planetary boundary layer. We also present examples of inverse analyses assessing anthropogenic emission rates for CH4 and CO2 in the urban region of metro Boston and along the urban-rural gradient.

  11. A game of climate chicken : can EPA regulate greenhouse gases before the U.S. Senate ratifies the Kyoto Protocol?

    E-print Network

    Bugnion, Véronique.; Reiner, David M.

    EPA's legal authority to regulate greenhouse gas emissions under the Clean Air Act is reviewed. While EPA clearly does not have the authority to implement the precise terms of the Kyoto Protocol, arguments could be put ...

  12. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    PubMed

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  13. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    PubMed Central

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  14. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons

    E-print Network

    Stohl, A.

    A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on ...

  15. Quantum gases. Observation of isolated monopoles in a quantum field.

    PubMed

    Ray, M W; Ruokokoski, E; Tiurev, K; Möttönen, M; Hall, D S

    2015-05-01

    Topological defects play important roles throughout nature, appearing in contexts as diverse as cosmology, particle physics, superfluidity, liquid crystals, and metallurgy. Point defects can arise naturally as magnetic monopoles resulting from symmetry breaking in grand unified theories. We devised an experiment to create and detect quantum mechanical analogs of such monopoles in a spin-1 Bose-Einstein condensate. The defects, which were stable on the time scale of our experiments, were identified from spin-resolved images of the condensate density profile that exhibit a characteristic dependence on the choice of quantization axis. Our observations lay the foundation for experimental studies of the dynamics and stability of topological point defects in quantum systems. PMID:25931553

  16. Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil

    NASA Astrophysics Data System (ADS)

    Fangueiro, David; Coutinho, João; Cabral, Fernanda; Fidalgo, Paula; Bol, Roland; Trindade, Henrique

    2012-02-01

    The application to soil of different slurry particle size fractions may lead to variable gaseous soil emissions and associated differential environmental impacts. An incubation experiment was carried out during 70 d to assess the influence on nitric oxide (NO) and greenhouse gas (GHG; i.e. nitrous oxide, carbon dioxide and methane) emissions following incorporation of 4 particle size fractions, obtained through laboratorial separation from cattle slurry, to agricultural sandy loam soil (Dystric Cambisol). The response to these applied slurry fractions (>2000 ?m, 2000-500 ?m, 500-100 ?m, <100 ?m) was compared to other experimental treatments, including whole slurry (WS), ammonium sulphate (AS) and an unamended control (CON). The highest value of cumulated NO emissions (6.3 mg NO-N kg -1 dry soil) were observed from the AS treatment. The cumulated amount of NO emitted (˜1 mg NO-N kg -1 dry soil) was not significantly different between slurry fractions, thereby indicating that slurry particle size had no effect on NO emissions. The largest slurry fraction (>2000 ?m) induced significantly higher N 2O emissions (1.8 mg N 2O-N kg -1 dry soil) compared to the other smaller sized fractions (1.0 mg N 2O-N kg -1 dry soil). The >2000 ?m, fraction, being more than 55% of the slurry by weight, was the major contributor to daily and cumulative N 2O emissions. Hence, for N 2O, the application of WS to agricultural soil is a better option that amendment with the >2000 ?m, fraction. Low CH 4 emissions (<200 ?g CH 4-C kg -1 dry soil d -1) were observed, but only in treatments amended with slurry or its fractions. The CH 4 emissions were short-lived and rates returned to control levels within 3 d after the slurry application. Higher CO 2 emissions were observed in soils amended with slurry fractions when compared to application with whole slurry. Clearly, slurry separation can increase soil CO 2 emissions relative to whole slurry application. Overall, N 2O contributed 10-30% to total GHG emissions, while that of methane was negligible. The present study suggested that mechanical separation of slurry into fractions and targeted application of the finest fractions to soil is a potential suitable management tool to reduce GHG emissions. However, the largest fractions have to be used for other purposes as anaerobic digestion rather than applied to soil.

  17. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  18. EFFECT OF MOISTURE AND MANURE CONTENT ON MICROBIAL PROCESSES IN CATTLE FEEDLOT SOILS: GREENHOUSE GASES, NUTRIENT LOSSES, AND ODORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms play a central role in environmental challenges facing animal agriculture. Aerobic and anaerobic processes in the manure affect greenhouse gas emissions, odors, and nutrient losses, but the controls on these processes are not well understood. Cattle feedlot surface moisture and manu...

  19. Preface to book entitled: Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric greenhouse gas (GHG) absorbs and emits radiation within the thermal infrared range, a natural process that regulates the temperature of the Earth. Long-term changes in GHG emission could negatively or positively affect global surface temperature (USGCRP, 2009). The abatement of climate...

  20. Solar energy collection/storage system for greenhouses: observed and simulated performance

    SciTech Connect

    Willits, D.H.; Chandra, P.; Miller, C.H.

    1981-01-01

    Performance data are pesented and some operating characteristics of a solar energy collection/storage system for greenhouses are examined. The system uses an external rock storage connected to a 6.7 x 12.2 m, fiberglass-covered greenhouse to hold excess energy collected with the greenhouse during the day for use in supplementing heating requirements during periods of deficit. Fuel consumption in the test house is compared to that in an identical, unmodified control house for three growing seasons over 1 1/2 years. Tomatoes were grown for two of the three seasons (Fall 78 and Spring 79) and lettuce was grown during the third (Fall 79). The data indicate that a savings of 31.1% was achieved for the Fall 79 season as compared to 16.9% for the same period of the previous year. This improvement is attributed to the reduced operating temperature and evapotranspiration load of the lettuce crop as well as to some improvements made to the system during the summer of 1979. Increased electrical consumption required to pump the air through the rock storage was observed to be a small percentage of the total energy saved. Yield data for the three growing seasons are pesented but no conclusions are drawn. Simulation studies performed in an effort to answer some pertinent questions about the performance of the system indicate that: (1) the uncontrolled release of heat from internal storages can be detrimental during periods when little or no heating is required resulting in higher greenhouse temperatures, and therefore higher plant respiration rates, than houses using external storages; and (2) better performance can be expected with double polyethylene-covered greenhouses than with fiberglass greenhouses owing to reduced nighttime heating load and increased solar energy collection.

  1. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    NASA Astrophysics Data System (ADS)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (?13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; ?18O, ?2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations, scientists and researchers with temporally and spatially resolved data (including measurements of important greenhouse gases, isotopes and pollutants) necessary for compliance monitoring, hot-spot detection, as well as cap and trade, at any location. Details of extended measurement campaigns (including lessons learned) at the various field sites (urban and rural environments) will be presented.

  2. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  3. How will greenhouse gas observations meet changing requirements, laws, and demands?

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Andrews, A. E.; Miller, J. B.; Montzka, S. A.

    2010-12-01

    Recent efforts to develop a global greenhouse gas information system (GHGIS) have been driven by an anticipated need to support future national emission reduction policies or international treaties with observations. Such an effort would be similar to that done in support of the Montreal Protocol on Substances that Deplete Ozone, but more complex. However, greenhouse gas emissions are much more difficult to manage and may not be controlled by international agreement. The Kyoto Protocol has been fraught with political and practical difficulties, not the least of which is the absence of an independent observation and analysis requirement. Nevertheless, no unifying agreement was reached at the much heralded 2009 Conference of Parties (COP-15) in Copenhagen. Thus, it is quite possible (likely?) that greenhouse gas emissions may be reduced owing to other, uncoordinated policies that have their own merits, e.g., energy efficiency, alternative energy development, air quality improvement, forest development, agricultural practices, etc. If this is the future, then what observations and observation system design are needed and to what end? This presentation will discuss those needs in light of critical observations, analytical approaches, and evolving, disparate policies.

  4. Gradient anaysis of biomass in Costa Rica and a first estimate of total emissions of greenhouse gases from biomass burning

    SciTech Connect

    Helmer, E.H.; Brown, S.

    1997-12-31

    One important component of sustainable development for a nation is the degree to which it can balance greenhouse gas (GHG) exchange with the atmosphere. Scientists at NHEERL-WED recently estimated the release of such GHGs from the conversion of a range of forest types in Costa Rica between 1940-1983. They also evaluated the influence of environmental gradients that affect the rates and patterns of deforestation and the carbon pools of the forest cleared on GHG emissions.

  5. Effects of ploughing on land-atmosphere exchange of greenhouse gases in a managed temperate grassland in central Scotland

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Drewer, Julia; Anderson, Margaret; Scholtes, Bob; Rees, Bob; Skiba, Ute

    2015-04-01

    Grasslands are important ecosystems covering > 20% and > 30% of EU and Scotland's land area respectively. Management practices such as grazing, fertilisation and ploughing can have significant short- and long-term effects on greenhouse gas exchange. Here we report on two separate ploughing events two years apart in adjacent grasslands under common management. The Easter Bush grassland, located 10 km south of Edinburgh (55° 52'N, 3° 2'W), comprises two fields separated by a fence and is used for grazing by sheep and cattle. The vegetation is predominantly Lolium perenne (> 90%) growing on poorly drained clay loam. The fields receive several applications of mineral fertiliser a year in spring and summer. Net ecosystem exchange (NEE) of carbon dioxide (CO2) has been monitored continuously by eddy-covariance (EC) since 2002 which has demonstrated that the site is a consistent yet variable sink of atmospheric CO2. The EC system comprises a LI-COR 7000 closed-path analyser and a Gill Instruments Windmaster Pro ultrasonic anemometer mounted atop a 2.5 m mast located along the fence line separating the fields. In addition, fluxes of nitrous oxide (N2O), methane (CH4)and CO2were measured with static chambers installed along transects in each field. Gas samples collected from the chambers were analysed by gas chromatography and fluxes calculated for each 60-minute sampling period. The ploughing events in 2012 and 2014 exhibited multiple similarities in terms of NEE. The light response (i.e. relationship between CO2 flux, and photosynthetically active radiation, PAR) of the NF and SF during the month preceding each ploughing event was of comparable magnitude in both years. Following ploughing, CO2 uptake ceased in the ploughed field for approximately one month and full recovery of the photosynthetic potential was observed after ca. 2 months. During the month following the 2014 ploughing event, the ploughed NF released on average 333 ± 17 mg CO2-C m-2 h-1. In contrast, the SF net uptake during the same period was -79 ± 19 mg CO2-C m-2 h-1. Ploughing caused a net release of carbon of 183 g CO2-C m-2 during the month following ploughing, thus turning the grassland into a potent CO2 source. Chamber measurements of CH4 and N2O exhibited high spatial variability in 2012 and no statistical difference could be established between fields and treatments. CH4 fluxes were high in both fields after ploughing which was presumably linked to air temperature. N2O fluxes in the ploughed SF reached on average 100 ?g N2O-N m-2 h-1 29 days after ploughing which corresponded to ca. 20 times the background level recorded at the site. Fluxes of N2O were however considerably larger in 2014, peaking at 2570 ?g N2O-N m-2 h-1 29 days after ploughing. Contrarily to 2012, substantial and statistically significant CH4 emissions were recorded in 2014 in the ploughed field. Whilst spatial variability was high in both years it can nevertheless be concluded that ploughing had substantial adverse short term effects on emissions and that environmental conditions greatly impacted the magnitude of CH4 and N2O fluxes.

  6. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on greenhouse gas emissions are explored. Tradeoffs between renewable energy production,contaminant removal, and mitigation of greenhouse gases are also evaluated. Results indicate that a decrease in greenhouse gas emissions of 29-43% is possible, together with an estimated increase in renewable energy production of 7-22%.

  7. Direct observation of the superfluid phase transition in ultracold Fermi gases.

    PubMed

    Zwierlein, Martin W; Schunck, Christian H; Schirotzek, André; Ketterle, Wolfgang

    2006-07-01

    Phase transitions are dramatic phenomena: water freezes into ice, atomic spins spontaneously align in a magnet, and liquid helium becomes superfluid. Sometimes, such a drastic change in behaviour is accompanied by a visible change in appearance. The hallmark of Bose-Einstein condensation and superfluidity in trapped, weakly interacting Bose gases is the sudden formation of a dense central core inside a thermal cloud. However, in strongly interacting gases--such as the recently observed fermionic superfluids--there is no longer a clear separation between the superfluid and the normal parts of the cloud. The detection of fermion pair condensates has required magnetic field sweeps into the weakly interacting regime, and the quantitative description of these sweeps presents a major theoretical challenge. Here we report the direct observation of the superfluid phase transition in a strongly interacting gas of 6Li fermions, through sudden changes in the shape of the clouds--in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the distribution of non-interacting excess atoms serves as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions that drive the normal-to-superfluid transition at the critical population imbalance of 70 +/- 5 per cent (ref. 12). PMID:16823447

  8. Global and regional emissions of HFC-125 (CHF[subscript 2]CF[subscript 3]) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories

    E-print Network

    O'Doherty, S.

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and System for Observation of halogenated Greenhouse gases in Europe (SOGE) networks for the period 1998 to 2008, combined ...

  9. The natural flux of greenhouse gases in the case of monitoring the flux of juvenile carbon dioxide in the Hranice Karst

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Stepišnik, Uroš; Mare?ek, Jan; Geršlová, Eva; Hammerschmiedt, Michal

    2015-04-01

    Located in the Teplice nad Bečvou district 40 km SE of Olomouc (Czech Republic), the hydrothermal Hranice Karst with the Zbrašov Aragonite Caves has been developed in the sequence of Palaeozoic limestones as a result of deep influx of thermal water charged with subcrustal carbon dioxide (CO2). This area of discharge of juvenile carbon dioxide is a unique place where one can study the long-term natural production of a greenhouse gas and confront it with the anthropogenic production. As a result, the continuous measurements of the properties of the cave microclimate with additional seasonal measurements of flux of carbon dioxide give rise to a rare pool of data that cover natural routes of greenhouse gases. Repeated seasonal analysis of the ratio of stable carbon isotopes in carbon dioxide (d13C around -5 ) (Meyberg - Rinne, 1995)has suggested the juvenile (mantle) origin of this gas. Isotopic analyses in the mineral water of dissolved gases (He) show that some part of these gases come from the upper mantle of the Earth. The lower floors of the caves are filled with carbon dioxide producing so-called gas lakes in the area. Concentrations of the gas commonly reach 40 % by volume. In 1999, for example, the average concentration in the Gallas dome was 84.9 % by volume. Flux of CO2 (g.m-2.d-1) was measured on the surface and in the cave. The homogenisation chamber and the pumping test were applied to evaluate the CO2 flux. The average CO2 flux in the soil ranged from 74 to 125 g.m-2.d-1, reflecting the venting of subcrustal CO2 in the Hranice area (Geršl et al., 2012). In the Zbrašov Aragonite Caves the CO2 concentration in the atmosphere fluctuates from 0,X to 85 % with the measured constant flux being 32 894 g.m-2.d-1. Since 2005, the CO2 concentrations in the cave area have been reported by an automatic monitoring system at 10 cave sites. CO2 concentrations are recorded in 5-min intervals. Interpretation can be put into the context of measuring concentrations of Rn, groundwater levels, and influence of the ambient conditions on the cave system and the operation of the visitor trail. The data obtained are an exceptional source of information about the behaviour of natural emissions of a greenhouse gas in the form of juvenile carbon dioxide. The hydrothermal speleothems carry unique information about production of carbon dioxide in the studied area. Based on their dating using the 230Th/234U method it can be deduced indirectly that the carbon dioxide emissions occurred as early as 84-127 thousand years ago in the area. The research was conducted with the support of the project entitled "Postdoc contracts at MENDELU technical and ekonomical research' (CZ.1.07/2.3.00/30.0031). Geršl, M. - Geršlová, E. - Šimečková, B. (2012): Subcrustal CO2 flux measurement in the Hranice hydrothermal Karst, methodology and first results. - Geoscience research reports for 2011, 45, D, 162-166. Praha. Meyberg, M. - Rinne, B. (1995): Messung des 3He/4He-Isotopenverhältnisses im Hranicka Propast (Tschechische Republik). - Die Höhle. Zeitschrift für Karst- und Höhlenkunde, 46, 1, 5-8. Wien.

  10. Joint profiling of greenhouse gases, isotopes, thermodynamic variables, and wind from space by combined microwave and IR laser occultation: the ACCURATE concept

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schweitzer, S.

    2008-12-01

    The ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) mission was conceived at the Wegener Center in late 2004 and subsequently proposed in 2005 by an international team of more than 20 scientific partners from more than 12 countries to an ESA selection process for next Earth Explorer Missions. While the mission was not selected for formal pre-phase A study, it received very positive evaluation and was recommended for further development and demonstration. ACCURATE employs the occultation measurement principle, known for its unique combination of high vertical resolution, accuracy and long-term stability, in a novel way. It systematically combines use of highly stable signals in the MW 17-23/178-196 GHz bands (LEO-LEO MW crosslink occultation) with laser signals in the SWIR 2-2.5 ?m band (LEO-LEO IR laser crosslink occultation) for exploring and monitoring climate and chemistry in the atmosphere with focus on the UTLS region (upper troposphere/lower stratosphere, 5-35 km). The MW occultation is an advanced and at the same time compact version of the LEO-LEO MW occultation concept, studied in 2002-2004 for the ACE+ mission project of ESA for frequencies including the 17-23 GHz band, complemented by U.S. study heritage for frequencies including the 178-196 GHz bands (R. Kursinski et al., Univ. of Arizona, Tucson). The core of ACCURATE is tight synergy of the IR laser crosslinks with the MW crosslinks. The observed parameters, obtained simultaneously and in a self-calibrated manner based on Doppler shift and differential log-transmission profiles, comprise the fundamental thermodynamic variables of the atmosphere (temperature, pressure/geopotential height, humidity) retrieved from the MW bands, complemented by line-of-sight wind, six greenhouse gases (GHGs) and key species of UTLS chemistry (H2O, CO2, CH4, N2O, O3, CO) and four CO2 and H2O isotopes (HDO, H218O, 13CO2, C18OO) from the SWIR band. Furthermore, profiles of aerosol extinction, cloud layering, and turbulence are obtained. All profiles come with accurate height knowledge (< 10 m uncertainty), since measuring height as a function of time is intrinsic to the MW occultation part of ACCURATE. The presentation will introduce ACCURATE along the lines above, with emphasis on the climate science value and the new IR laser occultation capability. The focus will then be on retrieval performance analysis results obtained so far, in particular regarding the profiles of GHGs, isotopes, and wind. The results provide evidence that the GHG and isotope profiles can generally be retrieved within 5-35 km outside clouds with < 1% to 5% rms accuracy at 1-2 km vertical resolution, and wind with < 2 m/s accuracy. Monthly mean climatological profiles, assuming ~40 profiles per climatologic grid box per month, are found unbiased (free of time-varying biases) and at < 0.2% to 0.5% rms accuracy. These encouraging results are discussed in light of the potential of the ACCURATE technique to provide benchmark data for future monitoring of climate, GHGs, and chemistry variability and change. European science and demonstration activities are outlined, including international participation opportunities.

  11. Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases

    NASA Astrophysics Data System (ADS)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    This study examines the potential change in primary emissions and energy use from replacing the current U.S. fleet of fossil-fuel on-road vehicles (FFOV) with hybrid electric fossil fuel vehicles or hydrogen fuel cell vehicles (HFCV). Emissions and energy usage are analyzed for three different HFCV scenarios, with hydrogen produced from: (1) steam reforming of natural gas, (2) electrolysis powered by wind energy, and (3) coal gasification. With the U.S. EPA's National Emission Inventory as the baseline, other emission inventories are created using a life cycle assessment (LCA) of alternative fuel supply chains. For a range of reasonable HFCV efficiencies and methods of producing hydrogen, we find that the replacement of FFOV with HFCV significantly reduces emission associated with air pollution, compared even with a switch to hybrids. All HFCV scenarios decrease net air pollution emission, including nitrogen oxides, volatile organic compounds, particulate matter, ammonia, and carbon monoxide. These reductions are achieved with hydrogen production from either a fossil fuel source such as natural gas or a renewable source such as wind. Furthermore, replacing FFOV with hybrids or HFCV with hydrogen derived from natural gas, wind or coal may reduce the global warming impact of greenhouse gases and particles (measured in carbon dioxide equivalent emission) by 6, 14, 23, and 1%, respectively. Finally, even if HFCV are fueled by a fossil fuel such as natural gas, if no carbon is sequestered during hydrogen production, and 1% of methane in the feedstock gas is leaked to the environment, natural gas HFCV still may achieve a significant reduction in greenhouse gas and air pollution emission over FFOV.

  12. Radiative Forcing by Well-Mixed Greenhouse Gases: Estimates from Climate Models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    NASA Technical Reports Server (NTRS)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-01-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  13. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks. PMID:25938939

  14. Photocatalytic TiO2 coating-to reduce ammonia and greenhouse gases concentration and emission from animal husbandries.

    PubMed

    Guarino, Marcella; Costa, Annamaria; Porro, Marco

    2008-05-01

    Animal production is a main source of NH3 emission into the environment and a significant producer of other polluting gases. Most of the best available techniques (BAT) that could be used today are not very widely applied in the field because of costs, especially in existing livestock buildings. Industrial applications show that TiO2 catalytic paint can be used to transform NH3 into N2, N2O or NO and water. Field experiments aimed at determining effects on indoor air quality and NH3 and polluting gas emissions into the environment of coating pig house walls with TiO2 catalytic paint and to assess the potential efficiency of this simple painting technique as a low cost BAT technique for animal farmers. The trial was performed in two identical mechanical ventilated farrowing rooms in a swine farm in Northern Italy. Environmental parameters, ventilation rate and gas concentrations were continuously monitored in the two units throughout a 28 day production cycle. NH3, N2O, CO2, CH4 average concentrations of 5.41, 1.18, 6.28 and 2109.38 mg m(-3) (reference unit without treatment) and 3.76, 1.13, 5.32 and 1881.64 mg m(-3) (experimental unit) were, respectively, recorded during a full farrowing cycle. Pollutant emissions, expressed on a Livestock Unit (LU, i.e., 500 kg live weight) basis, were 16.33, 3.57, 18.96 and 6365.01 kg y(-1)LU(-1) (reference unit) and 11.37, 3.43, 16.11 and 5695.58 kg y(-1) LU(-1) (experimental unit), respectively. Significantly higher pollutant concentrations and emissions were found in the untreated reference unit, under similar environmental conditions and with identical numbers of sows and piglets per unit. PMID:17574843

  15. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  16. Update on the Development of Optical Remote Sensing Tools for Quantification of Greenhouse Gases from Distributed Area Sources

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Maxwell, S. E.; Samarov, D. V.; Bienfang, J. C.; Restelli, A.; Liu, X.; Plusquellic, D. F.

    2014-12-01

    Our goal is to develop and validate advanced optical measurement technologies to enable accurate quantification of greenhouse gas (GHG) sources and sinks with a well-characterized uncertainty. Our focus is the measurement of distributed-area sources with spatial scales ranging from of 1 km2 to 10 km2. A few examples of distributed sources include landfills, mines, gas and oil production sites, carbon sequestration sites, enhanced oil-recovery sites, etc. The goal is to measure both concentration and wind speed of the emitted gas to determine the emission flux. To achieve our measurement goals we are developing several complementary differential absorption LIDAR (DIAL) systems. The systems are designed for the detection of methane and carbon dioxide, but they vary in the type of laser source, the range resolution, the wavelength tuning method, detector type, and expected use. A limiting component of DIAL systems in the short wave infrared is detector technology. There are four detectors currently being tested, three single-photon detectors, and one linear-mode, which include an 8 % quantum-efficiency photomultiplier tube, 300 pixel array of Geiger-mode APDs with an effective area of 200 ?m, a 100 MHz linear mode APD with a diameter of 500 ?m, and a single-pixel Geiger-mode APD gated at 1.25 GHz whose active-area diameter is < 50 ?m. We have also acquired a commercially produced mobile aerosol LIDAR system that has the following measurement capabilities: aerosol to molecular scattering ratio, molecular temperature, density, and line-of-sight wind velocity. The aerosol LIDAR system operates at three wavelengths 1064 nm, 532 nm, and 355 nm. Extinction, backscatter, and depolarization measurements are performed at 532 nm and 1064 nm. The wind velocity and temperature measurements are performed at 355 nm and use direct detection methods. The system is housed in a trailer with scanning capabilities. The presentation will provide an overview of the NIST LIDAR systems, recent results, a discussion of detector technology, and plans for deployment of the DIAL systems.

  17. Global warming potentials; Part 7 of 7 supporting documents. Sector-specific issues and reporting methodologies supporting the general guidelines for voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992; Public review draft

    SciTech Connect

    Not Available

    1994-05-31

    This document provides methods to account for the different effects of different gases on the atmosphere. It discusses the rationale and uses for simplified measures to represent human-related effects on climate and provides a brief introduction to a major index, the global warming potential (GWP) index. Appendix 7.A analyzes the science underlying the development of indices for concerns about climate, which is still evolving, evaluates the usefulness of currently available indices, and presents the state of the art for numerical indices and their uncertainties. For concerns about climate, the Intergovernmental Panel on Climate Change (IPCC) has been instrumental in examining relative indices for comparing the radiative influences of greenhouse gases. The IPCC developed the concept of GWPs to provide a simple representation of the relative effects on climate resulting from a unit mass emission of a greenhouse gas. Alternative measures and variations on the definition of GWPs have also been considered and reported.

  18. Potential of in-service aircraft based greenhouse gas observations within IAGOS for constraining regional carbon budgets.

    NASA Astrophysics Data System (ADS)

    Verma, Shreeya; Gerbig, Christoph; Marshall, Julia; Roedenbeck, Christian

    2014-05-01

    The spatial and temporal variations of atmospheric CO2 contain information about carbon sources and sinks and the characteristics of the CO2 exchange processes between the atmosphere and the surface of the earth. Within the recently established European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System), highly accurate and precise in-situ observation of greenhouse gases is foreseen in the near future. The objective of this study is to quantify the reduction in uncertainty in estimates of carbon sources, sinks, and exchange processes brought about by the use of this newly developed data stream. Anticipating the deployment of five GHG observing systems within IAGOS, the flight tracks from five in-service aircraft within MOZAIC (Measurement of OZone and water vapour by AIrbus in-service airCraft), a predecessor of IAGOS, are used in an inversion system to assess the constraint on the carbon budget and quantify the potential for reduction in posterior CO2 flux uncertainties. These measurement locations are used to evaluate the impact of data from aircraft on the reduction of flux uncertainties compared to that based on the existing global observation network, and furthermore to identify areas where the addition of these measurements would be of greatest impact. We use the Jena Inversion System that employs the Global Atmospheric Tracer Model TM3 for atmospheric transport, focussing on the period 1996-2004. The vertical aircraft profiles are input into the inversion as two partial-column averages instead of point measurements, the lower partial column completely containing (and exceeding) the boundary layer. Thus the error due to imperfect model representation of the boundary layer height and hence the vertical tracer transport near the surface can be diminished, and results in the reduction of the overall model-data mismatch error. The experimental design is such that in each simulation the existing measurement network is augmented by pseudo-observations from up to five simulated IAGOS aircraft. Uncertainty reduction from each of these simulations is compared to the uncertainty reduction from simulations employing only IAGOS or only the existing observation network. Additional constraint on regional carbon budgets is expected from the reduced model-data mismatch error when using vertical profiles as compared to using point measurements within the atmospheric boundary layer only.

  19. The HIAPER Pole-to-Pole Observations (HIPPO) Public Data Archive at CDIAC: Carbon Cycle and Greenhouse Gas Data

    NASA Astrophysics Data System (ADS)

    Christensen, S. W.; Hook, L. A.

    2011-12-01

    The HIAPER Pole-to-Pole Observations (HIPPO) project is investigating the carbon cycle and greenhouse gases throughout various altitudes in the atmosphere over the Pacific Basin through the annual cycle (Wofsy and the HIPPO Science Team 2011, this session). Aircraft-based data collection occurred during 2009-2011. Data analyses, comparisons, and integration are ongoing. A permanent public archive of HIPPO data has been established at the U. S. DOE Carbon Dioxide Information Analysis Center (CDIAC). Datasets are provided primarily by the Lead Principal Investigator (PI), who draws on a comprehensive set of aircraft navigation information, meteorological measurements, and research instrument and sampling system results from multiple co-investigators to compile integrated and generate value-added products. A website/ftp site has been developed for HIPPO data and metadata (http://hippo.ornl.gov), in coordination with the UCAR website that presents field catalogs and other detailed information about HIPPO missions (http://www.eol.ucar.edu/projects/hippo/dm/). A data policy was adopted that balances the needs of the project investigators with the interests of the scientific user community. A data dictionary was developed to capture the basic characteristics of the hundreds of measurements. Instrument descriptions were compiled. A user's guide is presented for each dataset that also contains data file information enabling users to know when data have been updated. Data are received and provided as space-delimited ASCII files. Metadata records are compiled into a searchable CDIAC index and will be submitted to climate change research data clearinghouses. Each dataset is given a persistent identifier (DOI) to facilitate attribution. We expect that data will continue to be added to the archive for the next year or more. In the future we anticipate creating a database for HIPPO data, with a web interface to facilitate searching and customized data extraction.

  20. Quantifying Sources and Sinks of Reactive Gases in the Lower Atmosphere Using Airborne Flux Observations

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; Jacob, D. J.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, T.; Misztal, P. K.; Nguyen, T. B.; Peischl, J.; Pollack, I.; Ryerson, T.; St. Clair, J. M.; Teng, A.; Travis, K. R.; Ullmann, K.; Wennberg, P.O.; Wisthaler, A.

    2015-01-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  1. Observation of threshold effects in positron scattering from the noble gases.

    PubMed

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; McEachran, R P; Machacek, J R; Sullivan, J P; Buckman, S J

    2010-08-13

    Channel coupling is a phenomenon that has been investigated for many scattering processes, and is responsible for the formation of cusps or steps in the cross sections for open scattering channels at, or near, the onset of a new scattering channel. It has long been speculated that the opening of the positronium formation channel may lead to the formation of such cusp features in the elastic positron scattering cross section. In this work, elastic scattering of positrons has been measured in the region of the positronium formation threshold for the noble gases He-Xe. Cusplike behavior is observed and, while the features which are observed appear broad, they represent a magnitude of between 4 and 15% of the total elastic cross section. No evidence is found of any other features in this region, at least within the uncertainty of the present data, discounting the possibility of scattering resonances. PMID:20868040

  2. Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    NASA Astrophysics Data System (ADS)

    Wolfe, G. M.; Hanisco, T. F.; Arkinson, H. L.; Bui, T. P.; Crounse, J. D.; Dean-Day, J.; Goldstein, A.; Guenther, A.; Hall, S. R.; Huey, G.; Jacob, D. J.; Karl, T.; Kim, P. S.; Liu, X.; Marvin, M. R.; Mikoviny, T.; Misztal, P. K.; Nguyen, T. B.; Peischl, J.; Pollack, I.; Ryerson, T.; St. Clair, J. M.; Teng, A.; Travis, K. R.; Ullmann, K.; Wennberg, P. O.; Wisthaler, A.

    2015-10-01

    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations.

  3. Transport fluxes and emission of greenhouse gases of the Middle Niger River (west Africa): disproprotionate importance of the recent red floods in the Niamey region

    NASA Astrophysics Data System (ADS)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km². It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Since few decades, the Middle Niger River presents a two flood hydrograph, the local flood, or red flood, occurring during the rainy season being the more pronounced one. Here, we report initial results of a monitoring campaign whereby 2-weekly samples were collected at Niamey (Niger) [2.01°E 13.57°N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, concentration and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), chromophoric dissolved organic matter (CDOM), dissolved organic carbon (DOC and ?13C-DOC), dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct seasonal budgets for particulate and dissolved carbon fluxes, nutrient exports, as well as a first seasonally resolved characterisation of the GHGs emitted to the atmosphere by the Middle Niger River. The red flood, concentrated on 2 months (August-September), contributed to more than 80% of the annual transport fluxes of TSM and POC and to approximately 30% of the annual transport fluxes of DIC and DOC.

  4. Reactive and nonreactive quenching of O(1D) by the potent greenhouse gases SO2F2, NF3, and SF5CF3

    PubMed Central

    Zhao, Zhijun; Laine, Patrick L.; Nicovich, J. Michael; Wine, Paul H.

    2010-01-01

    A laser flash photolysis–resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O(1D) deactivation by three potent greenhouse gases, SO2F2(k1), NF3(k2), and SF5CF3(k3). In excellent agreement with one published study, we find that k1(T) = 9.0 × 10-11 exp(+98/T) cm3 molecule-1 s-1 and that the reactive quenching rate coefficient is k1b = (5.8 ± 2.3) × 10-11 cm3 molecule-1 s-1 independent of temperature. We find that k2(T) = 2.0 × 10-11 exp(+52/T) cm3 molecule-1 s-1 with reaction proceeding almost entirely (?99%) by reactive quenching. Reactive quenching of O(1D) by NF3 is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF3. Deactivation of O(1D) by SF5CF3 is slow enough (k3 < 2.0 × 10-13 cm3 molecule-1 s-1 at 298 K) that reaction with O(1D) is unimportant as an atmospheric removal mechanism for SF5CF3. The kinetics of O(1D) reactions with SO2 (k4) and CS2 (k5) have also been investigated at 298 K. We find that k4 = (2.2 ± 0.3) × 10-10 and k5 = (4.6 ± 0.6) × 10-10 cm3 molecule-1 s-1; branching ratios for reactive quenching are 0.76 ± 0.12 and 0.94 ± 0.06 for the SO2 and CS2 reactions, respectively. All uncertainties reported above are estimates of accuracy (2?) and rate coefficients ki(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of ± 15% (2?). PMID:20133693

  5. GreenHouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Bösch, Hartmut; Palmer, Paul I.; Parr-Burman, Phil M.; Vick, Andrew J. A.; Bezawada, Naidu N.; Black, Martin; Born, Andrew J.; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-10-01

    The tropospheric distribution of greenhouse gases (GHGs) depends on surface flux variations, atmospheric chemistry and transport processes over a range of spatial and temporal scales. Accurate and precise atmospheric concentration observations of GHGs can be used to infer surface flux estimates, though their interpretation relies on unbiased atmospheric transport models. GHOST is a novel, compact shortwave infrared spectrometer which will observe tropospheric columns of CO2, CO, CH4 and H2O (along with the HDO/H2O ratio) during deployment on board the NASA Global Hawk unmanned aerial vehicle. The primary science objectives of GHOST are to: 1) test atmospheric transport models; 2) evaluate satellite observations of GHG column observations over oceans; and 3) complement in-situ tropopause transition layer observations from other Global Hawk instruments. GHOST comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. Incoming light is then split into four spectral bands, selected to optimise remote observations of GHGs. The design uses a single grating and detector for all four spectral bands. We summarise the GHOST concept and its objectives, and describe the instrument design and proposed deployment aboard the Global Hawk platform.

  6. CO2, CO and CH4 measurements from the NOAA Earth System Research Laboratory's Tall Tower Greenhouse Gas Observing Network: instrumentation, uncertainty analysis and recommendations for future high-accuracy greenhouse gas monitoring efforts

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Kofler, J. D.; Trudeau, M. E.; Williams, J. C.; Neff, D. H.; Masarie, K. A.; Chao, D. Y.; Kitzis, D. R.; Novelli, P. C.; Zhao, C. L.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M. J.; Fischer, M. L.; Parker, M. J.; Lee, J. T.; Baumann, D. D.; Desai, A. R.; Stanier, C. O.; de Wekker, S. F. J.; Wolfe, D. E.; Munger, J. W.; Tans, P. P.

    2013-02-01

    A robust in situ CO2 and CO analysis system has been developed and deployed at eight sites in the NOAA Earth System Research Laboratory's (ESRL) Tall Tower Greenhouse Gas Observing Network. The network uses very tall (> 300 m) television and radio transmitter towers that provide a convenient platform for mid-boundary layer trace gas sampling. Each analyzer has three sample inlets for profile sampling, and a complete vertical profile is obtained every 15 min. The instrument suite at one site has been augmented with a cavity ring-down spectrometer for measuring CO2 and CH4. The long-term stability of the systems in the field is typically better than 0.1 ppm for CO2, 6 ppb for CO, and 0.5 ppb for CH4, as determined from repeated standard gas measurements. The instrumentation is fully automated and includes sensors for measuring a variety of status parameters, such as temperatures, pressures and flow rates that are inputs for automated alerts and quality control algorithms. These algorithms provide detailed and time-dependent uncertainty estimates for all of the gases and could be adapted to other species or analysis systems. The design emphasizes use of off the shelf parts and modularity to facilitate network operations and ease of maintenance. The systems report high-quality data with > 93% uptime. Recurrent problems and limitations of the current system are discussed along with general recommendations for high accuracy trace-gas monitoring. The network is a key component of the North American Carbon Program and a useful model for future research-grade operational greenhouse gas monitoring efforts.

  7. Multi-Model CIMP5 projected impacts of increased greenhouse gases on the Niger basin and implications for hydropower production

    NASA Astrophysics Data System (ADS)

    Oyerinde, Ganiyu; Wisser, Dominik

    2014-05-01

    Climate change could potentially have large impacts on water availability in West Africa and the predictions are accrued with high uncertainties in this region. Countries in the Niger River basin (West Africa) plan the investment of 200 million in the installation of an additional 400MW of hydropower in the nearest future, adding to the existing 685MW. With the impacts of climate change in the basin already occurring, there is a need for comprehending the influence of future hydro-climatic changes on water resources and hydro-power generation in the basin. This study uses a hydrological model to simulate river flow under present and future conditions and evaluates the impacts of potential changes on electricity production of the largest hydroelectric dam (Kainji) in the Niger Basin. The Kainji reservoir produces 25 per cent of the current energy needs of Nigeria and was subject to large fluctuations in energy production as a result of variable inflow and operational reasons. Inflow into the reservoir was simulated using hydroclimatic data from a set of 7 regional climate models (RCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Based on observations of inflow, water level in the reservoir, and energy production we developed a simple hydroelectricity production model to simulate future energy production for the reservoir. Results suggest increases in river flow for the majority of RCM data as a result of increases in precipitation in the headwaters of the basin around 2050 and slightly decreasing trends for low emission scenarios by the end of the century. Despite this consistent increase, shifts in timing of river flow can challenge the reliable production of energy. This analysis could help assess the planning of hydropower schemes in the basin for a sustainable production of hydroelectricity in the future.

  8. Experimental observations of the transport of brine and dissolved gases in sea ice

    NASA Astrophysics Data System (ADS)

    Middleton, Ceri A.; Thomas, Carelle; Escala, Darío M.; De Wit, Anne; Tison, Jean-Louis

    2014-05-01

    A detailed knowledge of processes in sea ice is necessary to understand how sea ice behaviour both affects and is affected by our changing climate. As the extent of sea ice cover is modified due to anthropogenic climate change, it is important to understand how these variations will themselves contribute to feedback mechanisms in the climate system, particularly when considering the sources, sinks, and transport of CO2 and other climatically important gases. So that we can understand the effect that changing sea ice cover will have on the amount of CO2 in the atmosphere and the oceans, we have to understand how gas transport occurs in sea ice. It is therefore necessary to understand the movement of the brines in which these gases are dissolved. The mechanisms of sea ice formation have been well described previously, however, the processes and mechanisms of transport of brine and fresher sea water through the ice are not yet completely understood. As ice freezes from sea water, it behaves as a mushy layer in which the salts present are expelled into pockets of increasingly saline brine. These pockets link together at certain critical values of brine volume fraction, temperature, and salinity to form channels by which the dense brine can sink into the underlying sea water, so driving convective transport from the ice layer into the sea. To analyse the influence of this convection on the transport of gases in ice, we will experimentally characterise convective patterns and instabilities in an ice-liquid two-layer system. We produce a quasi-2D ice-salt water interface within a Hele-Shaw cell by applying a gradient of temperature to a thin layer of saline water, cooling from the upper boundary. As the system cools, a freezing front develops, so forming a 2D model of the mushy layer. Here we will present the methodology and preliminary results of visualisation of this process using optical imaging techniques. Schlieren and synthetic Schlieren imaging allow gradients of densities to be mapped due to their different refractive indices, and we can therefore potentially observe the downward flow of denser brine and upward movement of fresher water as the freezing front progresses. From these experiments we can provide qualitative observations of the transport mechanisms, and also analyse the onset of convection within these brine channels.

  9. Greenhouse gas observations from space: The GHG-CCI project of ESA's Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Noël, Stefan; Bergamaschi, Peter; Boesch, Hartmut; Bovensmann, Heinrich; Notholt, Justus; Schneising, Oliver; Hasekamp, Otto; Reuter, Maximilian; Parker, Robert; Dils, Bart; Chevallier, Frederic; Zehner, Claus; Burrows, John

    2012-07-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI), which will deliver various Essential Climate Variables (ECVs). The goal of GHG-CCI is to deliver global satellite-derived data sets of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) suitable to obtain information on regional CO2 and CH4 surface sources and sinks as needed for better climate prediction. The GHG-CCI core ECV data products are column-averaged mole fractions of CO2 and CH4, XCO2 and XCH4, retrieved from SCIAMACHY on ENVISAT and TANSO on GOSAT. Other satellite instruments will be used to provide constraints in upper layers such as IASI, MIPAS, and ACE-FTS. Which of the advanced algorithms, which are under development, will be the best for a given data product still needs to be determined. For each of the 4 GHG-CCI core data products - XCO2 and XCH4 from SCIAMACHY and GOSAT - several algorithms are being further developed and the corresponding data products are inter-compared to identify which data product is the most appropriate. This includes comparisons with corresponding data products generated elsewhere, most notably with the operational data products of GOSAT generated at NIES and the NASA/ACOS GOSAT XCO2 product. This activity, the so-called "Round Robin exercise", will be performed in the first two years of this project. At the end of the 2 year Round Robin phase (end of August 2012) a decision will be made which of the algorithms performs best. The selected algorithms will be used to generate the first version of the ECV GHG. In the last six months of this 3 year project the resulting data products will be validated and made available to all interested users. In the presentation and overview about this project will be given focussing on the latest results.

  10. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  11. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  12. Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non-linear models

    NASA Astrophysics Data System (ADS)

    Silva, Juan P.; Lasso, Ana; Lubberding, Henk J.; Peña, Miguel R.; Gijzen, Hubert J.

    2015-05-01

    The closed static chamber technique is widely used to quantify greenhouse gases (GHG) i.e. CH4, CO2 and N2O from aquatic and wastewater treatment systems. However, chamber-measured fluxes over air-water interfaces appear to be subject to considerable uncertainty, depending on the chamber design, lack of air mixing in the chamber, concentration gradient changes during the deployment, and irregular eruptions of gas accumulated in the sediment. In this study, the closed static chamber technique was tested in an anaerobic pond operating under tropical conditions. The closed static chambers were found to be reliable to measure GHG, but an intrinsic limitation of using closed static chambers is that not all the data for gas concentrations measured within a chamber headspace can be used to estimate the flux due to gradient concentration curves with non-plausible and physical explanations. Based on the total data set, the percentage of curves accepted was 93.6, 87.2, and 73% for CH4, CO2 and N2O, respectively. The statistical analyses demonstrated that only considering linear regression was inappropriate (i.e. approximately 40% of the data for CH4, CO2 and N2O were best fitted to a non-linear regression) for the determination of GHG flux from stabilization ponds by the closed static chamber technique. In this work, it is clear that when R2adj-non-lin > R2adj-lin, the application of linear regression models is not recommended, as it leads to an underestimation of GHG fluxes by 10-50%. This suggests that adopting only or mostly linear regression models will affect the GHG inventories obtained by using closed static chambers. According to our results, the misuse of the usual R2 parameter and only the linear regression model to estimate the fluxes will lead to reporting erroneous information on the real contribution of GHG emissions from wastewater. Therefore, the R2adj and non-linear regression model analysis should be used to reduce the biases in flux estimation by the inappropriate application of only linear regression models.

  13. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Greet, J.-M.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-04-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.7 Pg (+59%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are available from the following url: http://www.nies.go.jp/REAS/ .

  14. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-11-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25° × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.0 Pg (+57%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulphurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25° × 0.25° for the major sectors are available from the following URL: http://www.nies.go.jp/REAS/.

  15. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions

    E-print Network

    Prinn, Ronald G.

    With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

  16. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions.

    PubMed

    James, E K; Olivares, F L; de Oliveira, A L; dos Reis, F B; da Silva, L G; Reis, V M

    2001-04-01

    Sugar cane (Saccharum spp.) variety SP 70-1143 was inoculated with Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) in two experiments. In experiment 1 the bacteria were inoculated into a modified, low sucrose MS medium within which micropropagated plantlets were rooted. After 10 d there was extensive anatomical evidence of endophytic colonization by G. diazotrophicus, particularly in lower stems, where high numbers of bacteria were visible within some of the xylem vessels. The identity of the bacteria was confirmed by immunogold labelling with an antibody raised against G. diazotrophicus. On the lower stems there were breaks caused by the separation of the plantlets into individuals, and at these 'wounds' bacteria were seen colonizing the xylem and intercellular spaces. Bacteria were also occasionally seen entering leaves via damaged stomata, and subsequently colonizing sub-stomatal cavities and intercellular spaces. A localized host defence response in the form of fibrillar material surrounding the bacteria was associated with both the stem and leaf invasion. In experiment 2, stems of 5-week-old greenhouse-grown plants were inoculated by injection with a suspension of G. diazotrophicus containing 10(8) bacteria ml(-1). No hypersensitive response (HR) was observed, and no symptoms were visible on the leaves and stems for the duration of the experiment (7 d). Close to the point of inoculation, G. diazotrophicus cells were observed within the protoxylem and the xylem parenchyma, where they were surrounded by fibrillar material that stained light-green with toluidine blue. In leaf samples taken up to 4 cm from the inoculation points, G. diazotrophicus cells were mainly found within the metaxylem, where they were surrounded by a light green-staining material. The bacteria were growing in relatively low numbers adjacent to the xylem cell walls, and they were separated from the host-derived material by electron-transparent 'haloes' that contained material that reacted with the G. diazotrophicus antibody. PMID:11413211

  17. Aerosols and gases concentrations observed at Stelvio National Park (Italian Alps) during summer conditions

    NASA Astrophysics Data System (ADS)

    Landi, T. C.; Marinoni, A.; Cristofanelli, P.; Bonafè, U.; Calzolari, F.; Duchi, R.; Laj, P.; Villani, P.; Bonasoni, P.

    2012-04-01

    Three summer fields campaigns were carried out during 2009, 2010 and 2011 in two sites in the area of Stelvio National Park (SNP), Central Italian Alps. Those activities were performed in the frame of the SHARE - Stelvio project (Station at High Altitude for Research on the Environment). SNP includes an extensive impervious territory of valleys and high mountains, up to 3900 m asl. Two high altitude sampling sites, Rifugio Guasti (3285 m asl) and Forni glacier ( 2700 m asl), have been picked out for collecting the main atmospheric parameters: the first site hosted the field campaign in 2009 and 2010 and was located at Cevedale pass, at the border between Lombardia and Trentino-Alto Adige regions, while in 2011 the measurements were carried out on Forni glacier surface, in a N-S oriented valley, through SHARE-box, a portable and autonomous unit for atmospheric measurements developed in the framework of SHARE project. Because of different location Rifugio Guasti is an ideal site to monitor long range transport on Southern slope of Alpine range, while Forni glacier is more affected by local influence of valley and glacier breezes. Monitored parameters concerned (i) meteorology, such as air temperature, relative humidity, wind speed and direction, air pressure, (ii) chemical and physical properties of the aerosols (number concentrations, size distribution and chemical composition) and (iii) , gases concentration (CO2, O3). This work is aimed at describing the behaviour of these compounds, in terms of concentration observed over different time scales, such hourly and daily, in order to investigate the impact of transport processes (i.e. air masses transports arisen from both "thermal" breezes or synoptic circulation) on aerosols and gases variability at SNP. The Alps face the Po Valley, one of the more populated and industrialized region in Europe. This is one of the most probable source of polluted air masses which spread towards high altitude sites, such as Alps and Apennines, according to the dominant wind direction and the planetary boundary layer depth. In fact during summer-time, when the convective boundary layer is well developed, the measurement could be affected by air masses travelling along Tellina Valley and from the urbanized Po Valley and vegetated belt, spreading towards the high elevation of Alpine Southern slope, strongly affecting the tropospheric conditions and resulting in a typical diurnal cycle. On the other hand, as will be shown in this work, the long-range transport related with synoptic circulation may affect air-mass composition at the SNP. In fact several episodes of mineral dust transport coming from Northern Africa and air-masses descending from the upper troposphere or the low stratosphere has been observed. Long range transport of polluted air masses from continental Europe may also affect the pristine air conditions at SNP.

  18. In-situ vertical profiles of greenhouse gases: Why we need them and how we are going to get them in the future

    NASA Astrophysics Data System (ADS)

    Sweeney, C.; Karion, A.; Tans, P. P.; Butler, J. H.; Crosson, E.

    2009-12-01

    For more than five years the NOAA/ESRL aircraft project has been collecting flask samples at as many as 20 sites throughout North America. A compilation of the data demonstrates that vertical profiles are valuable in many ways. In particular, we have demonstrated that it is possible to make continental-scale flux estimates that depend only on well known horizontal re-analysis winds. We also show how these datasets contribute to our understanding of large scale circulation and chemical processes that dominate the seasonal cycle of these gases. Finally, these datasets have been essential for validating satellite observations and GHG forward and inverse models. As the requirements grow for estimating fluxes at smaller scales, so will the need for a higher density of vertical profiles. The NOAA/ESRL aircraft project has taken a lead role in this with the development a new sampling technology called the AirCore, as well as the validation and testing of Wavelength-Scanned Cavity Ring Down Spectroscopy (WS-CRDS) technology that is suitable for deployment on commercial aircraft. With this technology we expect to increase the density of vertical profiles made each year by two orders of magnitude with only moderate increases in cost. The increase in vertical profile density will not only help us quantify terrestrial fluxes but also help to understand the key mechanisms driving the variability in fluxes.

  19. Greenhouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-05-01

    The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a single grating and detector is used for all four spectral bands. The whole instrument is housed within a liquid nitrogen cooled cryostat to ensure thermal stability. We summarise the GHOST project and its objectives, and will provide a detailed overview of the instrument concept, development, and proposed deployment on board the Global Hawk.

  20. Experimental observation of a traveling plasma grating formed by two crossing filaments in gases

    SciTech Connect

    Durand, Magali; Liu Yi; Forestier, Benjamin; Houard, Aurelien; Mysyrowicz, Andre

    2011-03-21

    The spatial motion and effective duration of a traveling plasma grating formed by two interfering femtosecond laser filaments in gases is characterized by its Doppler effect imparted on a probe pulse. The shift velocity determined experimentally agrees with the theoretical calculations.

  1. Retrieval of vertical profiles of multiple trace gases from MAX-DOAS observations during the MADCAT Campaign in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xie, Pinhua; Wagner, Thomas; Li, Ang; Luo, Yuhan; Remmers, Julia; Horbanski, Martin; Friess, Udo

    2014-05-01

    In order to promote the development of passive DOAS technique and solve some critical problems including e.g. accurate retrievals of trace gas slant column densities (SCD), profile retrievals of trace gases and aerosol, and the effects of cloud, the Multi Axis DOAS-Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max-Planck institute for Chemistry in Mainz, Germany from June to August 2013. Within this campaign, spectra of scattered sun light were taken by our two-dimensional scanning MAX-DOAS (2D-MAX-DOAS) instrument and a Mini-MAX-DOAS instrument from the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. In this presentation, firstly we show the retrieved differential SCDs of O4, NO2, HCHO, HONO and CHOCHO based on the observations of the 2D-MAX-DOAS. Based on these dSCDs we acquired the vertical profiles of these trace gases and aerosol extinction using optimal estimation method. We compare the aerosol optical depth (AOD) from MAX-DOAS with simultaneous observations from an AERONET instrument as well as the near surface volume mixing ratio (VMR) of NO2 from MAX-DOAS with those from a CE-DOAS instrument from the IUP Heidelberg group and found in general good agreement. In addition we apply a cloud classification scheme based on our MAX-DOAS observations to identify different kinds of weather during the MAD-CAT campaign.

  2. Spatial variability of greenhouse gases emissions (CO2, CH4, N2O) in a tropical hydroelectric reservoir flooding primary forest (Petit Saut Reservoir, French Guiana)

    NASA Astrophysics Data System (ADS)

    Cailleaud, Emilie; Guérin, Frédéric; Bouillon, Steven; Sarrazin, Max; Serça, Dominique

    2014-05-01

    At the Petit Saut Reservoir (PSR, French Guiana, South America), vertical profiles were performed at 5 stations in the open waters (OW) and 6 stations in two shallow flooded forest (FF) areas between April 2012 and September 2013. Measurements included physico-chemical parameters, ammonium, nitrate and dissolved greenhouse gas (CO2, CH4, N2O) concentrations, dissolved and particulate organic carbon (DOC, POC) and nitrogen (PN), ?13C-POC and ?15N-PN . The diffusive fluxes were calculated from surface concentrations. The aim of this study was to estimate the spatial variations of greenhouse gas emissions at a dentrical hydroelectric reservoir located in the tropics and flooding primary forest. Twenty years after impoundment, the water column of the PSR is permanently and tightly stratified thermally in the FF whereas in the OW, the thermal gradients are not as stable. The different hydrodynamical behaviours between the two different zones have significant consequences on the biogeochemistry: oxygen barely diffuses down to the hypolimnion in the FF whereas destratification occurs sporadically during the rainy season in the OW. Although we found the same range of POC in the FF and the OW (2.5-29 ?mol L-1) and 20% more DOC at the bottom of OW than in the FF (229-878 ?mol L-1), CO2 and CH4 concentrations were always significantly higher in the FF (CO2: 11-1412 ?mol L-1, CH4: 0.001-1015 ?mol L-1) than in the OW. On average, the CO2 concentrations were 30-40% higher in the FF than in the OW and the CH4 concentrations were three times higher in the FF than in the OW. The ?13C-POC and C:N values did not suggest substantial differences in the sources of OM between the FF and OW. At all stations, POC at the bottom has an isotopic signature slightly lighter than the terrestrial OM in the surrounding forest whereas the isotopic signature of surface POM would result from phytoplankton and methanotrophs. The vertical profiles of nitrogen compounds reveal that the main source of nitrogen in the water column of the PSR is the NH4+ produced during the mineralisation of the OM at the bottom of the reservoir. In OW, the production of NO3- and N2O is enhanced compared to the FF. As a result, N2O concentrations are three times higher at the bottom of OW but surface concentrations are similar in the FF and OW. CO2 diffusive fluxes are 40% higher and CH4 diffusive fluxes are three times higher in FF (CO2: 42±20 mmol m-2 d-1 ; CH4: 0.7±1.4 mmol m-2 d-1) than in OW (CO2: 27±17 mmol m-2 d-1 ; CH4: 0.2±0.3 mmol m-2 d-1). In shallow FF, average CH4 ebullition is 3±10 mmol m-2 d-1 whereas ebullition was never observed in OW. N2O emissions did not exhibit any spatial variability (9±4 ?mol m-2 d-1). At the PSR, FF which represents one third of the surface area, is responsible of half of the GHG emissions from the reservoir. This implies that the emissions from most of the tropical reservoirs flooding primary forest need to be reassessed since FF environments are usually overlooked.

  3. Direct observations of reactive atmospheric gases at ZOTTO station in the middle of Siberia as a base for large-scale modeling of atmospheric chemistry over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey; Belikov, Igor; Shtabkin, Yury; Moiseenko, Konstantin; Pankratova, Natalia; Vasileva, Anastasia; Rakitin, Vadim; Heimann, Martin

    2015-04-01

    Direct observations of atmospheric air composition are very important for a comprehensive understanding of atmospheric chemistry over Northern Eurasia and its variability and trends driven by abrupt climatic and ecosystem changes and anthropogenic pressure. Atmospheric air composition (including greenhouse gases and aerosols), its trends and variability is still insufficiently known for most of the nearly uninhabited areas of Northern Eurasia. This limits the accuracy of both global and regional models, which simulate climatological and ecosystem changes in this highly important region. From that point of view, the Zotino Tall Tower Observatory (ZOTTO) in the middle of Siberia (near 60N, 90E), launched in 2006 and governed by a scientific international consortium plays an important role providing unique information about concentrations of greenhouse and reactive trace gases, as well as aerosols. Simulations of surface concentrations of O3, NOx and CO performed by global chemical-transport model GEOS-Chem using up-to-date anthropogenic and biogenic emissions databases show very good agreement with values observed at ZOTTO in 2007-2012. Observed concentration of ozone has a pronounced seasonal variation with a clear peak in spring (40-45 ppbv in average and up to 80 ppbv in extreme cases) and minimum in winter. Average ozone level is about 20 ppbv that corresponds to the background conditions. Enhanced concentration in March-July is due to increased stratospheric-tropospheric exchange. In autumn and winter distribution of ozone is close to uniform. NOx concentration does not exceed 1 ppb that is typical for background areas but may vary by order and some more in few hours. Higher surface NOx(=NO+NO2) concentrations during day time generally correspond to higher ozone when NO/NO2 ratio indicates on clean or slightly polluted conditions. CO surface concentration has a vivid seasonal course and varies from about 100 ppb in summer till 150 ppb in winter. But during polluted cases which are quite regular CO may increase till 400 ppb and more. Most uncertainties are due to the wild fires, which are often in different regions of Siberia. Numerical assessment of climatically important natural and anthropogenic emission sources influencing observed CO and O3 concentrations and their seasonal variability was made using GEOS-Chem model. According to the results, during the cold period CO concentrations in the surface layer is largely driven atmospheric transport from anthropogenic sources in Western Europe (up to 20 ppb), south of European Russia (up to 35 ppb) and south-western Siberia (up to 28 ppb). During the warm season they are usually affected by air transport from eastern Siberia, where the main contribution to the CO emissions are biogenic VOC oxidation (up to 15 ppb) and wildfires (up to 12 ppb). Transport of pollutants from south-western Siberia can add about 2,5 ppb to the ozone summer level in Central Siberia. In wintertime this factor leads to a reduced surface ozone level by 2 ppb. The contribution of large remote emission sources (Europe) is estimated within 1 ppb. Generally the simulation results indicate a significant role of long-range air transport in addition to regional natural and anthropogenic sources of air pollution which determine the total balance of surface CO. These processes need to be considered in quantitative analyses of the factors that determine the long-term photochemical system evolution in the lower troposphere over the continental regions of Northern Eurasia. This work was supported by the Russian Scientific Fund under grant 14-47-00049.

  4. Comparison of the observed and calculated clear sky greenhouse effect - Implications for climate studies

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1992-01-01

    The clear sky greenhouse effect is defined in terms of the outgoing longwave clear sky flux at the top of the atmosphere. Recently, interest in the magnitude of the clear sky greenhouse effect has increased due to the archiving of the clear sky flux quantity through the Earth Radiation Budget Experiment (ERBE). The present study investigates to what degree of accuracy this flux can be analyzed by using independent atmospheric and surface data in conjunction with a detailed longwave radiation model. The conclusion from this comparison is that for most regions over oceans the analyzed fluxes agree to within the accuracy of the ERBE-retrieved fluxes (+/- 5 W/sq m). However, in regions where deep convective activity occurs, the ERBE fluxes are significantly higher (10-15 W/sq m) than the calculated fluxes. This bias can arise from either cloud contamination problems or variability in water vapor amount. It is argued that the use of analyzed fluxes may provide a more consistent clear sky flux data set for general circulation modeling validation. Climate implications from the analyzed fluxes are explored. Finally, results for obtaining longwave surface fluxes over the oceans are presented.

  5. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  6. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  7. Satellite Observations of Trace Gases and Their Application for Studying Air Quality Near Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.; Nichols, M.; Fasnacht, Z.; Martins, D. K.; Dickerson, R. R.

    2014-12-01

    The increase in the natural gas component of the energy sector has led many state and local municipalities to begin regulation of emissions from the oil and natural gas operators with air quality (AQ) as a concern. "Top-down" measurements of trace gases in the air above wells complement "bottom-up" inventories, used by EPA and AQ stakeholders, through a more accurate depiction of regional variability of methane and other species near and downwind of oil and gas operations. Satellite observations of methane, nitrogen dioxide, formaldehyde, ozone, and other carbon gases enhance the spatial and temporal coverage of the data needed to demonstrate any long-term impacts from shale gas development. As part of a NASA AQAST (Air Quality Applied Sciences Team) project, we are evaluating satellite measurements of trace gases in regions with oil and gas operations for their application as a "top-down" constraint. For validation of the satellite instruments' sensitivities to emitted gases, we focus on regions where the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaign deployed with ground and aircraft measurements, including, Maryland (2011), California and Texas (2013), and Colorado (2014). We compare vertical distributions of methane and volatile organic compounds (VOCs) nearby and downwind of oil and gas wells to locate any regional differences during the campaign time periods. This allows for better characterization of the satellite observations and their limitations for application in air quality studies in similar environments. Taking advantage of current EOS-era satellites' data records, we also analyze methane anomalies and gas correlations in the free troposphere from 2005 to present to identify trends for basins with oil and gas extraction sites and their influence on background concentrations downwind of wells. In most regions with oil and gas activity, we see continually increasing methane concentrations and about a 5-10 percent enhancement above background tropospheric concentrations. With this ongoing effort, we aim to demonstrate the benefits of satellite-derived "top-down" constraints for emissions estimates associated with oil and natural gas operations.

  8. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    SciTech Connect

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  9. Greenhouse gas induced climate change.

    PubMed

    Hegerl, G C; Cubasch, U

    1996-06-01

    Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence. PMID:24234957

  10. 2013 Update of NOAA's Annual Greenhouse Gas Index

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward J.; Elkins, James W.; Masari, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2013-04-01

    Indexes are becoming increasingly important in communicating messages about climate change to a diverse public. Indexes exist for a number of climate-related phenomena including heat, precipitation, and extreme events. These help communicate complex phenomena to the public and, at times, policy makers, to aid in understanding or making decisions. Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (DJ Hofmann et al., Tellus, 2006, S8B 614-619). Essentially a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core record that go back to 1750. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. At the end of 2011, the AGGI was 1.30, indicating that global radiative forcing by long-lived greenhouse gases had increased 30% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In addition to presenting the AGGI for 2012, increases in radiative forcing will be evaluated and discussed with respect to the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  11. Mesospheric removal of very long-lived greenhouse gases SF6 and CFC-115 by metal reactions, Lyman-? photolysis, and electron attachment.

    PubMed

    Totterdill, Anna; Kovács, Tamás; Gómez Martín, Juan Carlos; Feng, Wuhu; Plane, John M C

    2015-03-12

    The fluorinated gases SF6 and C2F5Cl (CFC-115) are chemically inert with atmospheric lifetimes of many centuries which, combined with their strong absorption of IR radiation, results in unusually high global warming potentials. Very long lifetimes imply that mesospheric sinks could make important contributions to their atmospheric removal. In order to investigate this, the photolysis cross sections at the prominent solar Lyman-? emission line (121.6 nm), and the reaction kinetics of SF6 and CFC-115 with the neutral meteoric metal atoms Na, K, Mg, and Fe over large temperature ranges, were measured experimentally. The Na and K reactions exhibit significant non-Arrhenius behavior; quantum chemistry calculations of the potential energy surfaces for the SF6 reactions indicate that the Na and K reactions with SF6 are probably activated by vibrational excitation of the F-SF5 (v3) stretching mode. A limited set of kinetic measurements on Na + SF5CF3 are also presented. The atmospheric removal of these long-lived gases by a variety of processes is then evaluated. For SF6, the removal processes in decreasing order of importance are electron attachment, VUV photolysis, and reaction with K, Na, and H. For CFC-115, the removal processes in decreasing order of importance are reaction with O((1)D), VUV photolysis, and reaction with Na, K, and H. PMID:25647411

  12. Global Warming Observations

    E-print Network

    Schofield, Jeremy

    Global Warming Observations: 1. Global temperature has been gradually rising in recent years #15 in range 8000 12000 nm { CFC's, methane and N 2 O important for global warming even though concentra- tions in concentration of \\greenhouse gases" like CO 2 What determines global temperature? Energy budget of earth: 1

  13. First Results of Atmospheric Trace Gases in and around New Delhi using mobile MAX-DOAS observations

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Marbach, T.; Wagner, T.; Sharma, M.; Chauhan, A.; Singh, R.

    2010-12-01

    . Megacities are localized, heterogeneous and variable sources of air pollutants, greatly influence air quality and have direct influence on climate. Within the European project MEGAPOLI, in month of April 2010, we carried out mobile MAX-DOAS measurements in and around Delhi and made comparison with satellite data. The MAX-DOAS was mounted on a car. The aim of the project was to characterize and quantify pollutants. The mobile observations were conducted in and around New Delhi along circles of different radii. The analysis of MAX-DOAS, satellite observations and meteorological data, is used to quantify the total emissions of trace gases like NO2, HCHO or Glyoxal. The results obtained from the detailed analysis are first time compared with the satellite data. The ground and satellite data show a good correlation over Delhi, capital of India.

  14. Gases, God and the balance of nature: a commentary on Priestley (1772) ‘Observations on different kinds of air’

    PubMed Central

    McEvoy, John G.

    2015-01-01

    Historians of chemistry usually associate the eighteenth century with the Chemical Revolution, but it could just as readily be called ‘the century of gases’ (or ‘airs’, as they were called in the eighteenth century). In the early part of the century, the British pneumatic chemists struggled to replace the traditional notion ‘Air’, understood as an inert chemical element, with the concept of ‘air’, regarded as the third state of matter, encompassing a wide variety of chemical species. These developments constituted a necessary condition for the Chemical Revolution, which occurred in the latter part of the century. In ‘Observations’, Priestley took pneumatic chemistry to a new level, with the discovery of eight simple inorganic gases. Motivated by his belief in a benevolent God and a pious utilitarianism, Priestly explored the role of the atmosphere in the balance of nature and the politics of the state, which he linked to the movement of Rational Dissent. He styled himself an ‘aerial philosopher’ to signal the interdisciplinary nature of his inquiries, which he regarded not as a branch of ordinary chemistry, but as a mode of thought that encompassed physics, chemistry and natural theology. Priestley saw it as a source of principles and secrets of nature more extensive than that of ‘gravity itself’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750146

  15. 75 FR 43889 - Proposed Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...Required Under the Mandatory Greenhouse Gas Reporting Rule AGENCY: Environmental...Required under the Mandatory Greenhouse Gas Reporting Rule and Proposed Amendment...of the Mandatory Reporting of Greenhouse Gases Rule,'' also signed...

  16. Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant

    E-print Network

    Bauer, Wolfgang

    the effects of the rise of atmospheric greenhouse gases and associated global warming the total greenhouse gas load on the atmosphere. In terms of producing transportation 1 Title: Net Energy Ratio and Greenhouse Gas Analysis

  17. 75 FR 31513 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...Greenhouse Gas GHz Gigahertz GWP Global Warming Potential HAP Hazardous Air Pollutant...these gases is multiplied by the Global Warming Potential (GWP) of that gas...cause of most of the observed global warming over the last 50 years. A...

  18. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  19. Analysis of air quality with numerical simulation (CMAQ), and observations of trace gases

    NASA Astrophysics Data System (ADS)

    Castellanos, Patricia

    Ozone, a secondary pollutant, is a strong oxidant that can pose a risk to human health. It is formed from a complex set of photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Ambient measurements and air quality modeling of ozone and its precursors are important tools for support of regulatory decisions, and analyzing atmospheric chemical and physical processes. I worked on three methods to improve our understanding of photochemical ozone production in the Eastern U.S.: a new detector for NO2, a numerical experiment to test the sensitivity to the timing to emissions, and comparison of modeled and observed vertical profiles of CO and ozone. A small, commercially available cavity ring-down spectroscopy (CRDS) NO2 detector suitable for surface and aircraft monitoring was modified and characterized. The CRDS detector was run in parallel to an ozone chemiluminescence device with photolytic conversion of NO2 to NO. The two instruments measured ambient air in suburban Maryland. A linear least-squares fit to a direct comparison of the data resulted in a slope of 0.960+/-0.002 and R of 0.995, showing agreement between two measurement techniques within experimental uncertainty. The sensitivity of the Community Multiscale Air Quality (CMAQ) model to the temporal variation of four emissions sectors was investigated to understand the effect of emissions' daily variability on modeled ozone. Decreasing the variability of mobile source emissions changed the 8-hour maximum ozone concentration by +/-7 parts per billion by volume (ppbv). Increasing the variability of point source emissions affected ozone concentrations by +/-6 ppbv, but only in areas close to the source. CO is an ideal tracer for analyzing pollutant transport in AQMs because the atmospheric lifetime is longer than the timescale of boundary layer mixing. CO can be used as a tracer if model performance of CO is well understood. An evaluation of CO model performance in CMAQ was carried out using aircraft observations taken for the Regional Atmospheric Measurement, Modeling and Prediction Program (RAMMPP) in the summer of 2002. Comparison of modeled and observed CO total columns were generally in agreement within 5-10%. There is little evidence that the CO emissions inventory is grossly overestimated. CMAQ predicts the same vertical profile shape for all of the observations, i.e. CO is well mixed throughout the boundary layer. However, the majority of observations have poorly mixed air below 500 m, and well mixed air above. CMAQ appears to be transporting CO away from the surface more quickly than what is observed. Turbulent mixing in the model is represented with K-theory. A minimum Kz that scales with fractional urban land use is imposed in order to account for subgrid scale obstacles in urban areas and the urban heat island effect. Micrometeorological observations suggest that the minimum Kz is somewhat high. A sensitivity case where the minimum K z was reduced from 0.5 m2/s to 0.1 m2/s was carried out. Model performance of surface ozone observations at night increased significantly. The model better captures the observed ozone minimum with slower mixing, and increases ozone concentrations in the residual layer. Model performance of CO and ozone morning vertical profiles improves, but the effect is not large enough to bring the model and measurements into agreement. Comparison of modeled CO and O3 vertical profiles shows that turbulent mixing (as represented by eddy diffusivity) appears to be too fast, while convective mixing may be too slow.

  20. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget

    NASA Astrophysics Data System (ADS)

    Teodoru, C. R.; Nyoni, F. C.; Borges, A. V.; Darchambeau, F.; Nyambe, I.; Bouillon, S.

    2015-04-01

    Spanning over 3000 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. We present data on greenhouse gas (GHG: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) concentrations and fluxes, as well as data that allow for characterization of sources and dynamics of carbon pools collected along the Zambezi River, reservoirs and several of its tributaries during 2012 and 2013 and over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity along the aquatic continuum. All GHG concentrations showed high spatial variability (coefficient of variation: 1.01 for CO2, 2.65 for CH4 and 0.21 for N2O). Overall, there was no unidirectional pattern along the river stretch (i.e., decrease or increase towards the ocean), as the spatial heterogeneity of GHGs appeared to be determined mainly by the connectivity with floodplains and wetlands as well as the presence of man-made structures (reservoirs) and natural barriers (waterfalls, rapids). Highest CO2 and CH4 concentrations in the main channel were found downstream of extensive floodplains/wetlands. Undersaturated CO2 conditions, in contrast, were characteristic of the surface waters of the two large reservoirs along the Zambezi mainstem. N2O concentrations showed the opposite pattern, being lowest downstream of the floodplains and highest in reservoirs. Among tributaries, highest concentrations of both CO2 and CH4 were measured in the Shire River, whereas low values were characteristic of more turbid systems such as the Luangwa and Mazoe rivers. The interannual variability in the Zambezi River was relatively large for both CO2 and CH4, and significantly higher concentrations (up to 2-fold) were measured during wet seasons compared to the dry season. Interannual variability of N2O was less pronounced, but higher values were generally found during the dry season. Overall, both concentrations and fluxes of CO2 and CH4 were well below the median/average values for tropical rivers, streams and reservoirs reported previously in the literature and used for global extrapolations. A first-order mass balance suggests that carbon (C) transport to the ocean represents the major component (59%) of the budget (largely in the form of dissolved inorganic carbon, DIC), while 38% of the total C yield is annually emitted into the atmosphere, mostly as CO2 (98%), and 3% is removed by sedimentation in reservoirs.

  1. The greenhouse trap

    SciTech Connect

    Lyman, F.; Mintzer, I.; Courrier, K.; MacKenzie, J.

    1990-01-01

    This book describes evidence of global warming and the contributions of man's activities to the process. The impacts of greenhouse gases on climate and health are discussed and recommendations are made for mitigation of these effects. Changes in fuel use, expansion of carbon sinks through planting of trees, and personal commitments to energy conservation are among these recommendations. Individual chapters were indexed separately for the data base.

  2. QUANTUM GASES. Observation of many-body localization of interacting fermions in a quasirandom optical lattice.

    PubMed

    Schreiber, Michael; Hodgman, Sean S; Bordia, Pranjal; Lüschen, Henrik P; Fischer, Mark H; Vosk, Ronen; Altman, Ehud; Schneider, Ulrich; Bloch, Immanuel

    2015-08-21

    Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions. PMID:26229112

  3. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    NASA Astrophysics Data System (ADS)

    Oney, B.; Henne, S.; Gruber, N.; Leuenberger, M.; Bamberger, I.; Eugster, W.; Brunner, D.

    2015-10-01

    We describe a new rural network of four densely placed (< 100 km apart), continuous atmospheric carbon (CO2, CH4, and CO) measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100-500 km) carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling). The Beromünster measurements are made on a tall tower (212 m) located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background) vary diurnally from -4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130-260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (< 50 km) pasture and forest fluxes exert the most simulated surface influence, except during convective summertime days when the site is mainly influenced by the eastern Swiss Plateau, which results in summertime regional CO2 signals varying diurnally from -5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites). The Gimmiz site measurements are made on a small tower (32 m) in flat terrain. Here, strong summertime regional signals (-5 to +60 ppmv CO2) stem from large, nearby (< 50 km) crop and anthropogenic fluxes of the Seeland region, except during warm or windy days when simulated surface influence is of regional scale (< 250 km). The Lägern-Hochwacht measurements are made on a small tower (32 m) on top of the steep Lägern crest, where simulated surface influence is typically of regional scale (130-300 km) causing summertime regional signals to vary from -5 to +8 ppmv CO2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site. We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km) atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be necessary to determine the impact of these limitations on our ability to derive reliable regional-scale carbon flux estimates in the complex Swiss landscape.

  4. Observing Trace Gases Of The Arctic And Subarctic Stratosphere By TELIS

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Vogt, Peter; Birk, Manfred; Wagner, Georg; Trautmann, Thomas

    2013-12-01

    The Terahertz and submillimeter Limb Sounder (TELIS) is a balloon-borne cryogenic heterodyne spectrometer developed by a consortium of European institutes, which was mounted together with the Michelson Interferometer for Passive Atmospheric Sounding - Balloon (MIPAS- B) and the mini- Differential Optical Absorption Spectroscopy (mini-DOAS) instruments on a stratospheric gondola. The TELIS instrument is designed to monitor the vertical distribution of stratospheric state parameters associated with ozone destruction and climate change in Arctic and subarctic areas. The broad spectral coverage of TELIS is achieved by utilizing three frequency channels: a tunable 1.8THz channel based on a solid state local oscillator and a hot electron bolometer as mixer, a 480-650GHz channel with the Superconducting Integrated Receiver (SIR) technology, and a highly compact 500 GHz channel developed by the German Aerospace Center (DLR), the Netherlands Institute for Space Research (SRON), and the Rutherford Apple- ton Laboratory (RAL), respectively. Furthermore, an ex- tended spectral range is observed by the combination of TELIS and MIPAS-B, which can be employed for cross validation of several gas concentrations. Between 2009 and 2011 three successful scientific flights have been launched in Kiruna, Sweden and all relevant atmospheric gas species were seen by TELIS over an altitude range of 10-32.5 km. For estimation of concentration profiles from TELIS measurements, a constrained nonlinear least squares fitting framework along with var- ious Tikhonov-type regularization methods has been developed. In this work we present recent retrieval results from latest calibrated spectra during the 2010 flight. Emphasis is placed on ozone (O3) and hydrogen chloride (HCl), and error issues pertaining to the main instrumental uncertainty terms including nonlinearity in the calibration procedure, sideband ratio and pointing offset are investigated. The retrieved profiles are validated against other limb sounding instruments, e.g. the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES), the Microwave Limb Sounder (MLS), and MIPAS-B.

  5. Trapping, chemistry and export of trace gases in the South Asian summer monsoon observed during CARIBIC flights in 2008

    NASA Astrophysics Data System (ADS)

    Rauthe-Schöch, A.; Baker, A. K.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Zahn, A.; Hermann, M.; Stratmann, G.; Ziereis, H.; van Velthoven, P. F. J.; Lelieveld, J.

    2015-03-01

    The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10-12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region, which so far has mostly been observed from satellites, using the broad suite of trace gases and aerosols measured by CARIBIC. Elevated levels of a range of atmospheric pollutants were recorded e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles and several volatile organic compounds. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with regular latitudinal patterns of trace gases during the entire monsoon period. Trajectory calculations indicate that these air masses originated mainly from South Asia and Mainland Southeast Asia. Using the CARIBIC trace gas and aerosol measurements in combination with the Lagrangian particle dispersion model FLEXPART we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were consistently younger (less than 7 days) and the air masses mostly in an ozone forming chemical regime. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.

  6. Recent trends of inorganic chlorine and halogenated source gases above the Jungfraujoch and Kitt Peak stations derived from high-resolution FTIR solar observations

    NASA Astrophysics Data System (ADS)

    Mahieu, Emmanuel; Rinsland, Curtis P.; Gardiner, Tom; Zander, Rodolphe; Demoulin, Philippe; Chipperfield, Martyn P.; Ruhnke, Roland; Chiou, Linda S.; de Mazière, Martine

    2010-05-01

    The longest series of Fourier Transform Infrared (FTIR) high spectral resolution solar absorption observations are available from the Jungfraujoch and Kitt Peak stations, located at 46.5°N and 30.9°N, respectively. State-of-the-art interferometers are operated at these sites within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). These instruments allow to record spectra on a regular basis, under clear-sky conditions, using a suite of optical filters which altogether cover the 2 to 16 micron spectral range. Numerous absorption features characterized in the HITRAN compilations (e.g. Rothman et al., 2008) are encompassed in this mid-infrared region. Their analyses with either the SFIT-1 or SFIT-2 algorithm allow retrieving total columns of the target gases. Moreover, information on their distribution with altitude can generally be derived when using SFIT-2 which implements the Optimal Estimation Method of Rodgers (1990). Among the two dozen gases of atmospheric interest accessible to the ground-based FTIR technique, we have selected here a suite of long-lived halogenated species: HCl, ClONO2, CCl2F2, CCl3F, CHClF2, CCl4 and SF6. Time series available from the two sites will be presented, compared and critically discussed. In particular, changes in the abundances of theses gases since the peak in inorganic chlorine (Cly, which occurred in 1996-1997) and their intra-annual variability will be characterized with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trends and their associated uncertainties will be reported and put into perspective with the phase-out regulations of the production of ozone depleting substances adopted and implemented by the Montreal Protocol, its Amendments and Adjustments. For instance, the trends affecting the reservoir species HCl, ClONO2, and their summation which is a good proxy of the total inorganic chlorine, have been calculated using all available daily mean measurements from January 1996 onwards. The following values were obtained for Jungfraujoch, when using 1996 as the reference year: -0.90±0.10%/yr for HCl, -0.92±0.26 %/yr for ClONO2, and -0.96±0.14 %/yr for Cly; in all cases, the uncertainties define the 95% confidence interval around the trend values. For Kitt Peak (covering 1977-2009 but with far fewer measurements than from Jungfraujoch), the corresponding trends are: -0.55±0.34 %/yr for HCl, -1.27±0.84 %/yr for ClONO2 and -0.61±0.51 %/yr for Cly, they are statistically consistent with the Jungfraujoch rates of decrease. Further trend data will be presented at the EGU General Assembly while supplementary information on Jungfraujoch results will be available from communications at the same meeting by Duchatelet et al. (2010), Lejeune et al (2010) and Rinsland et al (2010). Comparisons with model data are also foreseen. Acknowledgments The University of Liège contribution to present work has primarily been supported by the AGACC and SECPEA projects funded by the Belgian Federal Science Policy Office (BELSPO), Brussels. We further acknowledge the support of the GEOMon European project. Work at the NASA Langley Research Center was supported by NASA's Upper Atmospheric Chemistry and Modeling Program (ACMAP). References Duchatelet et al., Updating hydrogen fluoride (HF) FTIR time series above Jungfraujoch: comparison of two retrieval algorithms and impact of line shape models, this issue, 2010. Gardiner, T., A. Forbes, M. De Mazière et al., Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, 2008. Lejeune et al., Optimized approach to retrieve information on the Tropospheric and Stratospheric Carbonyl Sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra, this issue, 2010. Rinsland et al., Long-term trend of carbon tetrachloride (CCl4) from ground-based high-resolution infrared solar spectra recorded at the Jungfraujoch, this issue, 2010. Rodgers, C.D., Char

  7. What we learn from updates of NOAA's Annual Greenhouse Gas Index (AGGI)

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Dlugokencky, Edward; Elkins, James W.; Masarie, Kenneth; Schnell, Russell C.; Tans, Pieter; Dutton, Geoff; Miller, Ben R.

    2014-05-01

    Several years ago, NOAA introduced a unique index for expressing the influence of human-emitted, long-lived greenhouse gases in the atmosphere (D.J. Hofmann et al., Tellus, 2006, S8B, 614-619). Being a condensation and normalization of radiative forcing from long-lived gases, the NOAA Annual Greenhouse Gas Index (AGGI) was designed to enhance the connection between scientists and society by providing a standard that could be easily understood and followed. The index each year is calculated from high quality, long-term observations by NOAA's Global Monitoring Division, which includes real-time measurements extending over the past five decades, as well as published ice core records that go back to 1750. The AGGI is radiative forcing from these long-lived gases, normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. For 2012, the AGGI was 1.32, indicating that global radiative forcing by long-lived greenhouse gases had increased 32% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing (and the AGGI) by long-lived greenhouse gases, whereas, since 2000, it has accounted for 80-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) has increased measurably over the past 6 years, as did its contribution to radiative forcing (and the AGGI). This year, in addition to updating the AGGI for 2013, increases in radiative forcing will be evaluated and discussed with respect to time-dependent changes in the contributions from CO2, CH4, nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  8. Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Kulizhsky, S. P.; Vorobiev, S. N.

    2013-08-01

    During the anomalously hot summer in 2012, surface air temperatures in Western Siberia were 5 to 15 °C higher than those observed during the previous period of > 30 yr. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating of water in thermokarst ponds and lakes in discontinuous permafrost zones and compare these observations to previous field results obtained when the temperature was normal during the summer of 2010 in the same region. In 2012, thermokarst bodies of water shrank significantly, water levels dropped approximately 50 cm in large lakes and small (< 10-100 m2) ponds, and shallow soil depressions disappeared. Based on samples from ~ 40 bodies of water collected previously and in 2012, first-order features of changes in chemical composition in response to increased water temperatures (from 14.1 ± 2.2 to 23.8 ± 2.3 °C in 2010 and 2012, respectively) were established. In these thermokarst bodies of water that covered a full range of surface areas, the average conductivity and pH were almost unchanged, whereas dissolved organic carbon (DOC), Cl- and SO42- concentrations were higher by a factor of ~ 2 during summer 2012 compared to periods with normal temperatures. Similarly, most divalent metals and insoluble trivalent and tetravalent elements were more concentrated by a factor of 1.7-2.4 in the summer of 2012 than normal periods. The average concentrations of dissolved CO2 and CH4 during the hot summer of 2012 increased by factors of 1.4 and 4.9, respectively. For most of the trace elements bound to colloids, the degree of colloidal binding decreased by a factor of 1.44 ± 0.33 (for an average of 40 elements) during the hot summer of 2012 compared to normal periods. Increases in CO2 and CH4 concentrations with the decreasing size of the body of water were well-pronounced during the hot summer of 2012. The concentrations of CO2 and CH4 rose by factors of 5 and 150, respectively, in small (? 102 m2) compared to large (? 104 m2) thermokarst (thaw) lakes. Taken together, these trends suggest that, for a conservative scenario of lake size distribution, lake water warming at high latitudes will produce (1) a significant increase in methane emission capacity from thaw lake surfaces; (2) decreased molecular sizes of trace element complexes and potential bioavailability of metal micronutrients in water columns; and (3) relatively conservative responses by CO2, DOC and trace element concentrations.

  9. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  10. Microtrap assembly for greenhouse gas and air pollution monitoring

    DOEpatents

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  11. Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins

    USGS Publications Warehouse

    Kharaka, Y.K.; Cole, D.R.; Hovorka, S.D.; Gunter, W.D.; Knauss, K.G.; Freifeld, B.M.

    2006-01-01

    To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick sandstone section of the Frio Formation, a regional brine and oil reservoir in the U.S. Gulf Coast. Fluid samples obtained from the injection and observation wells before CO2 injection showed a Na-Ca-Cl-type brine with 93,000 mg/L total dissolved solids (TDS) at near saturation with CH4 at reservoir conditions. Following CO2 breakthrough, samples showed sharp drops in pH (6.5-5.7), pronounced increases in alkalinity (100-3000 mg/L as HCO3) and Fe (30-1100 mg/L), and significant shifts in the isotopic compositions of H2O, dissolved inorganic carbon (DIC), and CH4. Geochemical modeling indicates that brine pH would have dropped lower but for the buffering by dissolution of carbonate and iron oxyhydroxides. This rapid dissolution of carbonate and other minerals could ultimately create pathways in the rock seals or well cements for CO2 and brine leakage. Dissolution of minerals, especially iron oxyhydroxides, could mobilize toxic trace metals and, where residual oil or suitable organics are present, the injected CO2 could also mobilize toxic organic compounds. Environmental impacts could be major if large brine volumes with mobilized toxic metals and organics migrated into potable groundwater. The ??18O values for brine and CO2 samples indicate that supercritical CO2 comprises ???50% of pore-fluid volume ???6 mo after the end of injection. Postinjection sampling, coupled with geochemical modeling, indicates that the brine gradually will return to its preinjection composition. ?? 2006 Geological Society of America.

  12. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  13. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  14. Modeling non-CO? greenhouse gases

    E-print Network

    Hyman, Robert C.

    Although emissions of CO? are the largest anthropogenic contributor to the risks of climate change, other substances are important in the formulation of a cost-effective response. To provide improved facilities for addressing ...

  15. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-print Network

    Montes-Hernandez, German

    ­solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. Ó 2008 ElsevierCarbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions

  16. 78 FR 25392 - Greenhouse Gas Reporting Rule: Revision to Best Available Monitoring Method Request Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ...rule would not take effect and that the EPA...Response to Comments: Greenhouse Gas Reporting Rule...substantial direct effects on the States...facilities that emit greenhouse gases. Few, if...rule cannot take effect until 60 days after...pollution control, Greenhouse gases,...

  17. Greenhouse-gas emissions from soils increased by earthworms

    NASA Astrophysics Data System (ADS)

    Lubbers, Ingrid M.; van Groenigen, Kees Jan; Fonte, Steven J.; Six, Johan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2013-03-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon dioxide and nitrous oxide. Hence, it remains highly controversial whether earthworms predominantly affect soils to act as a net source or sink of greenhouse gases. Here, we provide a quantitative review of the overall effect of earthworms on the soil greenhouse-gas balance. Our results suggest that although earthworms are largely beneficial to soil fertility, they increase net soil greenhouse-gas emissions.

  18. Fallow Contributions to Greenhouse Gas Flux in Dryland Cropping Systems: Observations from a GRACEnet Site in Central North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fallow is often used in dryland cropping systems to mitigate production risks by increasing storage of soil water. Increased soil water and a lack of vegetation cover during fallow, however, may contribute to greater greenhouse gas emissions. An investigation was conducted to quantify the effects ...

  19. 1. Introduction The atmospheric greenhouse effect is the basic mechanism

    E-print Network

    1. Introduction The atmospheric greenhouse effect is the basic mechanism whereby absorbed solar radiation is converted by longwave (LW) opacity of atmospheric greenhouse gases (GHGs) and clouds system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non

  20. TREES, PEOPLE, THE MISSING SINK AND THE GREENHOUSE EFFECT

    E-print Network

    Bateman, Ian J.

    to the atmospheric concentrations of greenhouse gases. Land use is in effect both a culprit and a victim of globalTREES, PEOPLE, THE MISSING SINK AND THE GREENHOUSE EFFECT by Neil Adger and Katrina Brown CSERGE Working Paper GEC 94-14 #12;TREES, PEOPLE, THE MISSING SINK AND THE GREENHOUSE EFFECT by Neil Adger

  1. Overview of global greenhouse effects

    SciTech Connect

    Reck, R.A.

    1993-09-01

    This report reviews the factors that influence the evolution of climate and climate change. Recent studies have confirmed that CO{sub 2}, O{sub 3}, N{sub 2}O, CH{sub 4}, and chlorofluorocarbos are increasing in abundance in the atmosphere and can alter the radiation balance by means of the so-called greenhouse effect. The greenhouse effect is as well-accepted phenomenon, but the prediction of its consequences is much less certain. Attempts to detect a human-caused temperature change are still inconclusive. This report presents a discussion of the scientific basis for the greenhouse effect, its relationship to the abundances of greenhouse gases, and the evidence confirming the increases in the abundances. The basis for climate modeling is presented together with an example of the model outputs from one of the most sophisticated modeling efforts. Uncertainties in the present understanding of climate are outlined.

  2. Composition and Trends of Short-Lived Trace Gases in the UT/LS over Europe Observed by the CARIBIC Aircraft

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Brenninkmeijer, C. A.; Oram, D. E.; O'Sullivan, D. A.; Slemr, F.; Schuck, T. J.

    2009-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from aboard a commercial airliner, and has operated since 2005 from aboard a Lufthansa Airbus 340-600 . Measurements from the container include in-situ trace gas and aerosol analyses and the collection of aerosol and whole air samples for post-flight laboratory analysis. Measurements made from the sampling flasks include greenhouse gas (GHG), halocarbon and nonmethane hydrocarbon (NMHC) analysis. CARIBIC flights originate in Frankfurt, Germany with routes to India, East Asia, South America, North America and Africa, and typical aircraft cruising altitudes of 10-12km allow for the monitoring of the upper troposphere/lower stratosphere (UT/LS) along these routes. Data collected during the aircraft’s departure from and return to Frankfurt provide a 4 year time series of near-monthly measurements of the composition of the UT/LS above Europe. Here we present a discussion of the composition of short-lived trace gases in the whole air samples collected above Europe during CARIBIC flights. Over 150 air samples were collected between May 2005 and July 2009, or about 4 samples per month. Of the whole air samples collected, about 45% showed influence by stratospheric air (i.e. very low values of GHG, NMHC and halocarbons, elevated O3, high potential vorticity). The remaining samples were representative of the upper troposphere; back trajectories for these samples indicate that a little over half were collected in air masses that had been in the boundary layer within the previous 8 days. The predominant source regions for these samples were the Gulf of Mexico and continental North America. Owing to their wide range of chemical lifetimes and the varying composition of emissions, short-lived trace gases transported to the UT/LS can be useful indicators of source region, photochemical processing and transport timescales of an air mass. Seasonal and longer-term trends in trace gases and trace gas composition are discussed, as well as composition of air masses having different origins. Additionally, we apply relationships between the different species, particularly the NMHC, to gain a qualitative understanding of photochemical processes occurring during transport from the boundary layer to the upper troposphere over Europe.

  3. Greenhouse gas emissions associated with direct energy inputs for a warmwater low-salinity recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases (GHGs) are gases that trap heat in the atmosphere. These gases include carbon dioxide (CO2), methane (CH3), nitrous oxide (N2O), and fluorinated gases. Some of these gases occur naturally and some are created by human activities which can increase their concentrations. The most comm...

  4. Urban greenhouse gas mole fraction in-situ measurements: Results from the Indianapolis Flux Experiment (INFLUX)

    NASA Astrophysics Data System (ADS)

    Miles, Natasha; Lauvaux, Thomas; Davis, Kenneth; Richardson, Scott; Sarmiento, Daniel; Sweeney, Colm; Karion, Anna; Hardesty, Robert Michael; Turnbull, Jocelyn; Iraci, Laura; Gurney, Kevin; Razlivanov, Igor; Obiminda Cambaliza, Maria; Shepson, Paul; Whetstone, James

    2014-05-01

    The Indianapolis Flux Experiment (INFLUX) was designed to develop and evaluate methods for the measurement and modeling of greenhouse gas fluxes from urban environments. Determination of greenhouse gas fluxes and uncertainty bounds is essential for the evaluation of the effectiveness of mitigation strategies. The current INFLUX observation network includes twelve in-situ tower-based, continuous measurements of CO2, CO, and CH4, flask sampling of 14CO2 and other trace gases, and periodic aircraft sampling of greenhouse gases and meteorological conditions. Eddy covariance and radiative flux are measured at four of the tower sites, and a scanning Doppler lidar was installed in April 2013; both are used to quantify key boundary layer meteorological properties and evaluate model performance. Additionally, a total carbon column observing network (TCCON) column remote sensing station was deployed August - December 2012. The data from the towers, TCCON, and aircraft measurements are being used in an inverse-modeling approach to yield estimates of the urban area flux at 1 km2 resolution. Very high space/time resolution estimates of fossil fuel carbon emissions (Hestia project) offer state-of-the-art "bottom up" emissions estimates for the city and its surroundings. Here we present an overview of the progress from INFLUX, with a focus on tower-based results. With this high density of urban tower-based greenhouse gas measurements, we will quantify horizontal and vertical spatial patterns in atmospheric mole fractions of CO2, CO, and CH4 in Indianapolis. The consistency of the observed horizontal gradients with that expected based on differences in land-cover contributions according to footprint analysis will be evaluated. The ability to correctly model transport and mixing in the atmospheric boundary layer, responsible for carrying greenhouse gases from their source to the point of measurement, is essential. Thus we investigate differences between the modeled and observed sensible heat flux, latent heat flux, air temperature, and wind speed.

  5. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  6. CarbonSat -Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.

  7. New measurements quantify atmospheric greenhouse effect

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.

  8. Comparing the effects of greenhouse gas emissions on global warming

    E-print Network

    Eckaus, Richard S.

    1990-01-01

    Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

  9. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  10. Greenhouse gas emissions from contrasting beef production systems 

    E-print Network

    Ricci, Patricia

    2014-06-30

    Agriculture has been reported to contribute a significant amount of greenhouse gases to the atmosphere among other anthropogenic activities. With still more than 870 million people in the world suffering from under-nutrition ...

  11. Study of the Effects on Student Knowledge and Perceptions of Activities Related to Submetering the 6th Grade Wing of a Middle School, to Displaying the Carbon Footprint, and to Efforts to Reduce Energy Consumption and Greenhouse Gases

    ERIC Educational Resources Information Center

    Peck, Rick

    2009-01-01

    The purpose of the study was to determine the effects upon student knowledge and perceptions regarding greenhouse gas emissions as a result of an intervention relying upon the submetering the 6th grade wing of a Middle School, displaying the information regarding electrical consumption and carbon footprint, and reducing the electrical consumption…

  12. Tropospheric carbon monoxide: satellite observations and their applications 

    E-print Network

    MacCallum, Stuart Neil

    2008-01-01

    of greenhouse gases such as CH4 and O3. Consequently, CO has an atmospheric lifetime of 1-3 months, making it a good tracer for studying the long range transport of pollution. Satellite observations present a valuable tool to investigate tropospheric CO...

  13. CLIMATICALLY-ACTIVE GASES IN THE EASTERN BOUNDARY UPWELLING AND OXYGEN MINIMUM ZONE (OMZ) SYSTEMS

    E-print Network

    Garbe, Christoph S.

    to the greenhouse gases (hereafter GHG). From in-situ ocean measurements, the uncertainty of the net global ocean-atmosphere and the atmosphere [1, 2], notably with respect to the greenhouse gases (here- after GHG). Invasion or outgasing) contribute very significantly to the gas exchange between the ocean and the atmosphere, notably with respect

  14. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  15. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  16. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  17. Zevenhoven & Kilpinen FLUE GASES and FUEL GASES 19.6.2001 2-1 Chapter 2 Flue gases and

    E-print Network

    Zevenhoven, Ron

    . By means of a stack of sufficient height these can be dispersed into the atmosphere without much effect-chloroethene, and chemicals such as chlorofluorocarbons (CFCs) and SF6 that contribute to the enhanced greenhouse effect and atmosphere at ground-level. The formation of ground-level ozone from traffic exhaust gases during sunny

  18. The El Nino-Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming

    SciTech Connect

    Collins, M.

    2000-04-01

    This paper describes El Nino-Southern Oscillation (ENSO) interannual variability simulated in the second Handley Centre coupled model under control and greenhouse warming scenarios. The model produces a very reasonable simulation of ENSO in the control experiment--reproducing the amplitude, spectral characteristics, and phase locking to the annual cycle that are observed in nature. The mechanism for the model ENSO is shown to be a mixed SST-ocean dynamics mode that can be interpreted in terms of the ocean recharge paradigm of Jin. In experiments with increased levels of greenhouse gases, no statistically significant changes in ENSO are seen until these levels approach four times preindustrial values. In these experiments, the model ENSO has an approximately 20% larger amplitude, a frequency that is approximately double that of the current ENSO (implying more frequent El Ninos and La Ninas), and phase locks to the annual cycle at a different time of year. It is shown that the increase in the vertical gradient of temperature in the thermocline region, associated with the model's response to increased greenhouse gases, is responsible for the increase in the amplitude of ENSO, while the increase in meridional temperature gradients on either side of the equator, again associated with the models response to increasing greenhouse gases, is responsible for the increased frequency of ENSO events.

  19. Can Grazing Reduce Greenhouse Gas Emissions from Dairy Farms?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases (GHG) have become a common topic the past few years as more concern is developing over global climate change and the potential impact of these gases on our environment. So do our farms emit GHG? If so, how much and does the use of grazing affect these losses? A study was conducted u...

  20. Policy Analysis of the Greenhouse Effect (PAGE)

    EPA Science Inventory

    PAGE09 is a spreadsheet probabilistic model written in Microsoft Office Excel. The model calculates regional and global impacts of climate change, and social costs of different greenhouse gases. It also calculates the costs of abatement and adaptation. It is an Integrated Assessm...

  1. Agricultural opportunities to mitigate greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a source for three primary greenhouse gases (GHG): carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It can also be a sink for CO2 through carbon (C) sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestrati...

  2. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question,

  3. Direct electrical observation of plasma wave-related effects in GaN-based two-dimensional electron gases

    SciTech Connect

    Zhao, Y.; Chen, W.; Li, W.; Zhu, M.; Yue, Y.; Song, B.; Encomendero, J.; Xing, H.; Fay, P.; Sensale-Rodriguez, B.

    2014-10-27

    In this work, signatures of plasma waves in GaN-based high electron mobility transistors were observed by direct electrical measurement at room temperature. Periodic grating-gate device structures were fabricated and characterized by on-wafer G-band (140–220?GHz) s-parameter measurements as a function of gate bias voltage and device geometry. A physics-based equivalent circuit model was used to assist in interpreting the measured s-parameters. The kinetic inductance extracted from the measurement data matches well with theoretical predictions, consistent with direct observation of plasma wave-related effects in GaN-channel devices at room temperature. This observation of electrically significant room-temperature plasma-wave effects in GaN-channel devices may have implications for future millimeter-wave and THz device concepts and designs.

  4. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  5. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-08-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  6. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  7. 77 FR 48072 - Final Confidentiality Determinations for Regulations Under the Mandatory Reporting of Greenhouse...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ...Mandatory Reporting of Greenhouse Gases Rule AGENCY...under the Mandatory Greenhouse Gas Reporting Rule...Division, Office of Atmospheric Programs (MC-6207J...WWW on the EPA's Greenhouse Gas Reporting Program...rules may not take effect earlier than 30...

  8. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale or smaller such as thermokarst lakes as well as landscape changes on the 100 km scale.

  9. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  10. No way to cool the ultimate greenhouse

    SciTech Connect

    Kerr, R.A.

    1993-10-29

    When the Clinton Administration announced its Climate Change Action Plan last week, some press accounts called it an effort to halt greenhouse warming. To greenhouse experts, however, cutting emissions of greenhouse gases to 1990 levels by the end of the decade -- the goal of the plan -- will only delay the inevitable. Such modest conservation measures, as a recent study shows, will buy humanity valuable time to adapt to the greenhouse world, but they will have little effect on how warm the global climate ultimately becomes. Centuries down the road, humanity will have to come to grips with elevated temperatures due to increased atmospheric CO[sub 2] levels. Reducing emissions will slow the warming process and give humanity more time to adapt.

  11. Patterns of trace gases near sources of global pollution

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A. )

    1990-08-01

    Many trace gases are increasing in the earth's armosphere and may couase global environmental changes in the future. Consequently there has been growing interest in the cycles of the long-lived gases that are likely to contribute the most to global change. At present there are four such gases: methane (CH{sub 4}), nitrous oxide (N{sub 2}0), trichlorofluoromethane (CCl{sub 3}F,F-11), and dichlorodifluoromethane (CCl{sub 2}F{sub 2},F-12). Methane and N{sub 2}O are involved mostly in adding to the greenhouse effect with some role in the stratospheric ozone cycle, and the two main fluorocarbons (F-11 and F-12) are involved in the depletion of the ozone layer with some role in global warming. This paper is about the patterns of these trace gases near regions of global scale pollution. Our purpose is to provide a synthesis of observations from diverse environments and ecosystems of the world and to provide readers with intuitive connections between sources and concentrations. We will consider four types of regions: rice fields in CHina that are a major source of methane, urban areas of the United States and China that are sources of fluorocarbons and other gases, rivers and surrounding wetlands, specifically the Yangtze in China and the Amazon in Brazil, and finally the environment of Boola Boola National Forest in Australia populated by many speices of termites that are a source of methane to the atmosphere. Eventually these patterns can be translated into estimeates of fluxes from the various sources of global pollution.

  12. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated functionally into future greenhouse constructions in space.

  13. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  14. channels as well as more stagnant ones, consis-tent with macroscopic observations. --MSL

    E-print Network

    Yu, Haiyuan

    concentrations of atmospheric greenhouse gases. How well do observations and models agree, though? To answer of natural variability and the effects of a warming climate. Nearly all climate models predict that September:FRANCOISLENOIR/REUTERS cases by large amounts. These findings have two important implications: first, that the effect of rising

  15. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  16. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  17. Ten years of continuous observations of stratospheric ozone depleting gases at Monte Cimone (Italy)--comments on the effectiveness of the Montreal Protocol from a regional perspective.

    PubMed

    Maione, M; Giostra, U; Arduini, J; Furlani, F; Graziosi, F; Lo Vullo, E; Bonasoni, P

    2013-02-15

    Halogenated gases potentially harmful to the stratospheric ozone layer are monitored worldwide in order to assess compliance with the Montreal Protocol requiring a phase out of these compounds on a global scale. We present the results of long term (2002-2011) continuous observation conducted at the Mt. Cimone GAW Global Station located on the highest peak of the Italian Northern Apennines, at the border of two important regions: the Po Valley (and the Alps) to the North and the Mediterranean Basin to the South. Bi-hourly air samples of CFC-12, CFC-11, CFC-114, CFC-115, H-1211, H-1301, methyl chloroform, carbon tetrachloride, HCFC-22, HCFC-142b, HCFC-124 and methyl bromide are collected and analysed using a gas chromatograph-mass spectrometer, providing multi annual time series. In order to appreciate the effectiveness of the Montreal Protocol from a regional perspective, trends and annual growth rates of halogenated species have been calculated after identification of their baseline values. A comparison with results from other international observation programmes is also presented. Our data show that the peak in the atmospheric mixing ratios of four chlorofluorocarbons, two halons and two chlorocarbons has been reached and all these species now show a negative atmospheric trend. Pollution episodes are still occurring for species like halon-1211, methyl chloroform and carbon tetrachloride, indicating fresh emissions from the site domain which could be ascribed both to fugitive un-reported uses of the compounds and/or emissions from banks. For the hydrofluorocarbons changes in the baseline are affected by emissions from fast developing Countries in East Asia. Fresh emissions from the site domain are clearly declining. Methyl bromide, for which the Mediterranean area is an important source region, shows, in a generally decreasing trend, an emission pattern that is not consistent with the phase-out schedule of this compound, with a renewed increase in the last two years of pollution episodes. PMID:23333511

  18. Gardening with Greenhouses

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  19. Opportunities for market-based programs worldwide that reduce greenhouse gas emissions: Initial Observations from Missions to the Philippines, South Africa, and Mexico

    SciTech Connect

    Stanton-Hoyle, D.R.

    1998-07-01

    Globally, governments and industries are implementing innovative voluntary programs to reduce greenhouse gas emissions. Often these programs encourage groups to use cost effective technologies that capture market-based forces. These programs are successful because they capitalize on existing opportunities where both the environment and the participants can benefit (i.e., win-win opportunities). This paper documents efforts to investigate these kinds of win-win opportunities in three developing countries: the Philippines, South Africa, and Mexico. Initial observations are provided as fresh information from the field, drawing on six missions during the last nine months. Utility costs, interest rates, and overall economic health appear to critically affect opportunities in each country. By contrast, details of heating, ventilating and air-conditioning (HVAC) design and local climate were often important differences between countries. These affect opportunities, for example, to achieve significant savings from cooling systems or not. Looking at the success of ESCOs was somewhat surprising. One might expect to see the most successful ESCO activity where utility costs are high and upgrade opportunities are plentiful (such as in the Philippines). This was not the case, however, as research in the Philippines did not reveal even one active ESCO contract yet. Design practices for new construction were in need of the same thing that helps US design teams do a better job of energy-efficient design, better communications between design team members. Finally, industrial firms were doing a variety of EE upgrades in each country, but this level of activity was relatively small compared to what should be cost effective.

  20. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In this presentation, preliminary values for 2011 will be evaluated and discussed with respect to the contributions from CO2, CH4,nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other emerging greenhouse gases.

  1. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  2. Greenhouse effect and the global climate. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning terrestrial climatic changes known as the greenhouse effect. The greenhouse effect is an accumulation of carbon dioxide and other gases that retain solar-induced heat, thereby increasing the average global temperature. Modeling studies, measurements of atmospheric gases, pollutants and temperatures, studies of climatic records for occurrence of similar changes (paleoclimatology), prediction of environmental changes due to the greenhouse effect, government energy policy as a result of possible climate change, and the contributions of manmade and natural pollutants to the greenhouse effect are among the topics discussed. (Contains a minimum of 52 citations and includes a subject term index and title list.)

  3. PUBLISHED ONLINE: 15 NOVEMBER 2009 | DOI: 10.1038/NGEO692 Nitrogen-enhanced greenhouse warming on

    E-print Network

    Matthews, Adrian

    that more N2 in the atmosphere would have increased the warming effect of existing greenhouse gases, if the early Earth was less cloudy) or a means of amplifying the greenhouse effect. Higher atmospheric pressure greenhouse effect or a lower planetary albedo. Here we use a radiative­convective climate model to show

  4. Inert gases in Sea of Fertility regolith

    NASA Technical Reports Server (NTRS)

    Vinogradov, A. P.; Zadorozhnyy, I. K.

    1974-01-01

    The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.

  5. The ice-core record - Climate sensitivity and future greenhouse warming

    NASA Technical Reports Server (NTRS)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  6. ENSO and greenhouse warming

    NASA Astrophysics Data System (ADS)

    Cai, Wenju; Santoso, Agus; Wang, Guojian; Yeh, Sang-Wook; An, Soon-Il; Cobb, Kim M.; Collins, Mat; Guilyardi, Eric; Jin, Fei-Fei; Kug, Jong-Seong; Lengaigne, Matthieu; McPhaden, Michael J.; Takahashi, Ken; Timmermann, Axel; Vecchi, Gabriel; Watanabe, Masahiro; Wu, Lixin

    2015-09-01

    The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

  7. Greenhouse gas emissions from a managed grassland

    NASA Astrophysics Data System (ADS)

    Jones, S. K.; Rees, R. M.; Skiba, U. M.; Ball, B. C.

    2005-07-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were measured in 2002 and 2003. Closed static chambers were used for N 2O and CH 4 flux measurements, and samples were analysed by gas chromatography. Closed dynamic chambers were used for soil respiration measurements, using infrared gas analysis. Three organic manures and two inorganic fertilizers were applied at a rate of 300 kg N ha -1 a -1 (available N) and compared with a zero-N control on grassland plots in a replicated experimental design. Soil respiration from plots receiving manure was up to 1.6 times larger than CO 2 release from control plots and up to 1.7 times larger compared to inorganic treatments ( p<0.05). A highly significant ( p<0.001) effect of fertilizer and manure treatments on N 2O release was observed. Release of N 2O from plots receiving inorganic fertilizers resulted in short term peaks of up to 388 g N 2O-N ha -1 day -1. However losses from plots receiving organic manures were both longer lasting and greater in magnitude, with an emission of up to 3488 g N 2O-N ha -1 day -1 from the sewage sludge treatments. During the 2002 growing season the cumulative total N 2O flux from manure treatments was 25 times larger than that from mineral fertilizers. CH 4 emissions were only significantly increased ( p<0.001) for a short period following applications of cattle slurry. Although soil respiration in manure plots was high, model predictions and micrometeorological flux measurements at an adjacent site suggest that all plots receiving fertilizer or manure acted as a sink for CO 2. Therefore in terms of global warming potentials the contribution of N 2O from manure treatments becomes particularly important. There were considerable variations in N 2O and CO 2 fluxes between years, which was related to annual variations in soil temperature and rainfall.

  8. Chemical gradient of selected organic trace gases in the Tropical Tropopause Layer observed during the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2013)

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Lueb, R.; Hendershot, R.; Gabbard, S.; Zhu, X.; Pope, L.

    2013-12-01

    Hydrocarbons and short-lived organic halogen gases play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. The characterization of these gases not only provides information on air mass sources and transport time scales, but also defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. As part of the transition between troposphere and stratosphere, nonmethane hydrocarbons (NMHC) and halocarbons reach the Tropical Tropopause Layer (TTL) where chemical and physical processes determine their fate. However, very limited data are available regarding composition, seasonality and variability of these gases, since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km). A new whole air sampler (GWAS) was developed to study the trace gas chemistry in this region of the upper troposphere and lower stratosphere. The sampler collects up to 90 samples per flight for measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents. During the Airborne Tropical Tropopause Experiment (ATTREX) field project, carried out during February-March 2013, we flew the GWAS system on 5 research flights. A total of 388 samples were collected during flights of approximately 24 hours, which sampled air over the tropical Pacific Ocean at altitudes from 9 to 19 km. The sample collection focused on obtaining measurements across the TTL region. Approximately 45 vertical profiles of the TTL were sampled with our instrument during this mission. Measurements of trace gases were carried out at Dryden Flight Research Center using a combination of gas chromatography with mass spectrometric, flame ionization, and electron capture detectors. Supporting measurements were done at the University of Miami (UM) laboratory. The distribution, vertical structure, and variability of selected hydrocarbon and organic halogen trace gases in the TTL region will be presented here.

  9. Modeling & learning from the design recommendations for California's Greenhouse Gas Cap-and-Trade System

    E-print Network

    Fernandes, Chester, S.M. Massachusetts Institute of Technology

    2008-01-01

    Climate Change has become a Major issue beginning with our generation. Governments the world over are now recognizing that industry cannot continue to pollute in a business-as-usual manner. Emitting Greenhouse gases has a ...

  10. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  11. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  12. Geothermal greenhouse development update

    SciTech Connect

    Lienau, P.J.

    1997-01-01

    Greenhouse heating is one of the popular applications of low-to moderated-temperature geothermal resources. Using geothermal energy is both an economical and efficient way to heat greenhouses. Greenhouse heating systems can be designed to utilize low-temperature (>50{degrees}C or 122{degrees}F) resources, which makes the greenhouse an attractive application. These resources are widespread throughout the western states providing a significant potential for expansion of the geothermal greenhouse industry. This article summarizes the development of geothermal heated greenhouses, which mainly began about the mid-1970`s. Based on a survey (Lienau, 1988) conducted in 1988 and updated in 1997, there are 37 operators of commercial greenhouses. Table 1 is a listing of known commercial geothermal greenhouses, we estimate that there may be an additional 25% on which data is not available.

  13. The Greenhouse Effect Does Exist!

    E-print Network

    Ebel, Jochen

    2009-01-01

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tscheuschner called for this discussion in their paper.

  14. CLIMATE CHANGE & THE GREENHOUSE

    E-print Network

    Tobar, Michael

    . Demonstrating the greenhouse effect This experiment demonstrates that an atmosphere high in carbon dioxideCLIMATE CHANGE & THE GREENHOUSE EFFECT #12;This development of these materials was supported under ------------------------------------------------------------------------------------------------------------- What is the greenhouse effect? 11 Links to Australian curriculum 12 Teacher notes 13 Student answers 16

  15. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  16. The Dynamic Greenhouse Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  17. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF3CF3, CHF3, C2F6, c-C3F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-09-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1 corresponding to a reactive branching ratio of 0.87 ± 0.13. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10-14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3, kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2? and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies.

  18. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-12-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10×14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3 kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2? and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies. As part of this work, infrared absorption band strengths for NF3 and SF5CF3 were measured and found to be in good agreement with recently reported values.

  19. Policy implications of greenhouse warming: Mitigation, adaptation, and the science base

    SciTech Connect

    Not Available

    1992-01-01

    This book discusses the policy implications of greenhouse warming by examining three major areas: general summary of information about the greenhouse effect leading to a framework for policy; the science basis for the greenhouse effect; mitigation of greenhouse warming. Each section contains 9-13 chapters on specific subjects including the following: overview of greenhouse gases; policy implications; internations considerations; climate records and models; sea levels; temperature rise estimation; energy management at several levels; nonenergy emission reduction; human populations; deforestation. Conclusions are summarized at the end of each section.

  20. Greenhouse gas emissions from the Tubul-Raqui estuary (central Chile 36°S)

    NASA Astrophysics Data System (ADS)

    Daniel, Inger; DeGrandpre, Michael; Farías, Laura

    2013-12-01

    The Tubul-Raqui estuary is a coastal system off central Chile at 37°S, adjacent to an active coastal upwelling area, which undergoes rapid changes associated with natural and anthropogenic perturbations. Biogenic greenhouse gas cycling and the gas saturation levels are good indicators of microbial metabolism and trophic status in estuaries. The dissolved greenhouse gases CO2, CH4 and N2O and other biological and chemical variables were spatially recorded in this estuary over two seasons (summer and winter) and over one-half of one tidal cycle. Tidal and spatial variability of these gases indicated they had different origins within the system. Surface waters were always oversaturated in CO2 (up to 578%) and CH4 (up to 6200%) with respect to the atmosphere. But while CO2 seems to come from marine and in situ metabolism, CH4 appears to be more influenced by fluvial and adjacent salt marsh areas. In contrast, N2O was mostly undersaturated and sediments seem to be largely responsible for its consumption. Strong seasonal variability was also observed in CO2 and CH4 fluxes, being tenfold (from -319 to 714 mmol m-2 d-1) and fivefold (from 0.33 to 2.5 mmol m-2 d-1) higher, respectively, in the austral summer compared to winter. In contrast, only small seasonal differences in N2O fluxes were found ranging from -59 to 28 µmol m-2 d-1. These temporal patterns can be explained not only in terms of hydrological and nutrient balances within the system, but also by the influence of wind-driven upwelling processes. Additionally, potential effects of changes in nutrient load and freshwater discharge on net ecosystem metabolism (i.e., autotrophy or heterotrophy) and therefore, on the production/removal of greenhouse gases in this system were explored.

  1. Greenhouse gas fluxes from no-till rotated corn in the Upper Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined soil surface fluxes of greenhouse gases (carbon dioxide, nitrous oxide, methane) from no-till, dryland corn (Zea mays L.) in eastern South Dakota and tested the effect of rotation on greenhouse gas fluxes from corn. The corn was grown within a randomized, complete block study that incl...

  2. Impact of Time to First Rainfall Event on Greenhouse Gas Emissions Following Manure Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of inorganic fertilizers and manures are known to result in the release of greenhouse gases to the atmosphere, and rainfall events can also increase greenhouse gas emissions from soils. However, little is known about the temporal relationship between fertilizer application and rainfall on greenh...

  3. 75 FR 31513 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... careful consideration of numerous public comments. On October 27, 2009 (74 FR 55292), EPA proposed the GHG.... Background A. What are GHGs and their sources? Greenhouse gases trap the Earth's heat that would otherwise escape from the atmosphere into space, and form the ] greenhouse effect that helps keep the Earth...

  4. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  5. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  6. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  7. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  8. Greenhouse Gas Emissions from Soils as Affected by Addition of Biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) and carbon dioxide (CO2) are two major greenhouse gases that are emitted during agricultural and industrial activities. High concentrations of those gases in the stratospheric ozone layer are believed to be responsible for global climate change. Processing biomass by pyrolysis an...

  9. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  10. Mitigating greenhouse gas emissions from beef cattle housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  11. Estimating greenhouse gas emissions from a waste lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cost-effective approach was used to investigate the relationship between emission of the greenhouse gases (GHG) CO2, CH4, and N2O and energy fluxes from a swine waste lagoon. Energy fluxes were calculated using the Penman method. The energy fluxes showed a diurnal pattern as expected of such flux...

  12. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  13. Special Issue From the 4th USDA Greenhouse Gas Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  14. Introduction Integrated assessment of uncertainties in greenhouse gas emissions

    E-print Network

    for International Studies, Brown University, Providence, RI, USA e Goddard Institute for Space Studies, Columbia Elsevier Inc. All rights reserved. doi:10.1016/j.techfore.2006.07.009 #12;understanding of these challenges of greenhouse gases (GHGs)? Are there ways of "bending down" the curve of ever increasing radiative forcing

  15. Evaluation of poultry litter fertilization practices on greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of greenhouse gases (GHGs) in the atmosphere have been increasing since preindustrial times. Integrating poultry litter use into conservation agricultural systems could be a management practice for sequestering atmospheric C in soil. However, consideration for the best method for this...

  16. Greenhouse gas fluxes in response to corn stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils play a critical role in the mitigation of increasing levels of atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Identifying management strategies (fertilization, tillage, irrigation) that optimize corn stover removal rates ...

  17. Greenhouse gas mitigation potential with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The land use impacts, such as nitrous oxide (N2O) emissions and soil carbon sequestration, are associated with the largest changes in life cycle greenhouse gases from growing bioenergy crops. The biogeochemical model DAYCENT simulates fluxes of carbon (C) and nitrogen (N) between the atmosphere, veg...

  18. Agricultural greenhouse gas flux determination via remote sensing and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious concerns have been raised about increasing levels of atmospheric greenhouse gases (GHGs) and associated climate change. For every degree in global temperature increase, grain production yields are expected to decrease 10%, while the global human population continues to increase by roughly 8...

  19. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  20. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  1. Enhanced chemistry-climate feedbacks in past greenhouse worlds

    PubMed Central

    Beerling, David J.; Fox, Andrew; Stevenson, David S.; Valdes, Paul J.

    2011-01-01

    Trace greenhouse gases are a fundamentally important component of Earth’s global climate system sensitive to global change. However, their concentration in the pre-Pleistocene atmosphere during past warm greenhouse climates is highly uncertain because we lack suitable geochemical or biological proxies. This long-standing issue hinders assessment of their contribution to past global warmth and the equilibrium climate sensitivity of the Earth system (Ess) to CO2. Here we report results from a series of three-dimensional Earth system modeling simulations indicating that the greenhouse worlds of the early Eocene (55 Ma) and late Cretaceous (90 Ma) maintained high concentrations of methane, tropospheric ozone, and nitrous oxide. Modeled methane concentrations were four- to fivefold higher than the preindustrial value typically adopted in modeling investigations of these intervals, even after accounting for the possible high CO2-suppression of biogenic isoprene emissions on hydroxyl radical abundance. Higher concentrations of trace greenhouse gases exerted marked planetary heating (> 2 K), amplified in the high latitudes (> 6 K) by lower surface albedo feedbacks, and increased Ess in the Eocene by 1 K. Our analyses indicate the requirement for including non-CO2 greenhouse gases in model-based Ess estimates for comparison with empirical paleoclimate assessments, and point to chemistry-climate feedbacks as possible amplifiers of climate sensitivity in the Anthropocene. PMID:21628580

  2. On network design for the detection of urban greenhouse gas emissions: Results from the Indianapolis Flux Experiment (INFLUX) (Invited)

    NASA Astrophysics Data System (ADS)

    Miles, N. L.; Lauvaux, T.; Davis, K. J.; Richardson, S.; McGowan, L. E.; Sarmiento, D.; Sweeney, C.; Karion, A.; Hardesty, R. M.; Turnbull, J. C.; Iraci, L. T.; Gurney, K. R.; Razlivanov, I. N.; Cambaliza, M. L.; Shepson, P. B.; Whetstone, J. R.

    2013-12-01

    The Indianapolis Flux Experiment (INFLUX) was designed to develop and evaluate methods for the measurement and modeling of greenhouse gas fluxes from urban environments. Determination of greenhouse gas fluxes and uncertainty bounds is essential for the evaluation of the effectiveness of mitigation strategies. The current INFLUX observation network includes twelve in-situ tower-based, continuous measurements of CO2, CO, and CH4, flask sampling of 14CO2 and other trace gases, and periodic aircraft sampling of greenhouse gases and meteorological conditions. A total carbon column observing network (TCCON) column remote sensing station was deployed Aug - Dec 2012. The network will soon be enhanced to include an array of eddy covariance and radiative flux measurements, and a scanning Doppler lidar was installed in April 2013; both are used to quantify key boundary layer meteorological properties and evaluate model performance. The data from the towers, TCCON, and aircraft measurements are being used in an inverse-modeling approach to yield estimates of the urban area flux at 1 km2 resolution. Additionally, very high space/time resolution estimates of fossil fuel carbon emissions (Hestia project) offer state-of-the-art "bottom up" emissions estimates for the city and its surroundings. Here we present an overview of the progress from INFLUX, with a focus on tower-based results. With the unprecedented density of urban tower-based greenhouse gas measurements, we will quantify horizontal and vertical spatial patterns in atmospheric mole fractions of CO2, CO, and CH4 in Indianapolis. The consistency of the observed horizontal gradients with that expected based on differences in land-cover contributions according to footprint analysis will be evaluated. To address the optimal spatial density of tower-based measurements within the city, we will evaluate the spatial coverage of the model footprints. Using observations at several heights on the towers, we will investigate the performance of the forward model, thus addressing the question of the required height for these types of measurements. The ability to correctly model transport and mixing in the atmospheric boundary layer, responsible for carrying greenhouse gases from their source to the point of measurement, is essential. Thus we investigate differences between the modeled and observed sensible heat flux, latent heat flux, air temperature, and wind speed. Finally, we will present initial results of the emissions estimates from the inversion model.

  3. The Greenhouse Gases. UNEP/GEMS Environment Library No. 1.

    ERIC Educational Resources Information Center

    United Nations Environment Programme, Nairobi (Kenya).

    Since the United Nations Environment Program (UNEP) was created, more than a dozen years ago, public understanding of the environmental issues confronting our planet has increased enormously. The Global Environment Monitoring System (GEMS) has provided several environmental assessments including urban air pollution, climate modification,…

  4. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  5. An optimal transition path for controlling greenhouse gases.

    PubMed

    Nordhaus, W D

    1992-11-20

    Designing efficient policies to slow global warming requires an approach that combines economic tools with relations from the natural sciences. The dynamic integrated climate-economy (DICE) model presented here, an intertemporal general-equilibrium model of economic growth and climate change, can be used to investigate alternative approaches to slowing climate change. Evaluation of five policies suggests that a modest carbon tax would be an efficient approach to slow global warming, whereas rigid emissions- or climate-stabilization approaches would impose significant net economic costs. PMID:17778354

  6. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming

    E-print Network

    Svensen, Henrik

    from a new type of geological structures, termed breccia pipes, rooted in the aureoles within the shale of the Western Karoo Basin. The breccia pipes are cylindrical structures up to 150 meters in diameter and are mainly comprised of brecciated and baked black shale. Thousands of breccia pipes were formed due to gas

  7. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ..., 2010, and it was not published until October 28, 2010 (75 FR 66434), three weeks later. The purpose of... -equivalent CWPB center worked prebake FR Federal Register FTIR Fourier transform infrared GC gas... Jackson on September 22, 2009 and published in the Federal Register on October 30, 2009 (74 FR...

  8. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... emission factor EIA Energy Information Administration EPA U.S. Environmental Protection Agency FR Federal... FR 56260, October 30, 2009). Part 98, which became effective on December 29, 2009, included reporting.... The proposal was published on June 15, 2010 (75 FR 33950). The public comment period for the...

  9. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Information Administration EO Executive Order EPA U.S. Environmental Protection Agency FR Federal Register GHG... FR 56260-56519, October 30, 2009). The 2009 Final MRR, which became effective on December 29, 2009... section 114 and section 208 of the CAA. As stated in the preamble to the 2009 Final MRR (74 FR...

  10. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... Agency ERC Energy Recovery Council FGD flue gas desulfurization FR Federal Register FTIR fourier... FR 56260-56519, October 30, 2009). Part 98, which became effective on December 29, 2009, included... on June 15, 2010 (75 FR 33950). This proposal complements the proposal published on June 15, 2010...

  11. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...unit screens manufacturing facilities. 334419 MEMS manufacturing facilities. Electrical Transmission...annual rainfall plus the recirculated leachate application rate. Recirculated leachate application rate (in inches/year) is the total...

  12. Emergence of the global research alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing human population pressure on the Earth is of great concern and a key reason why agricultural and natural resource sciences must be fully engaged to develop solutions for a sustainable future. Increasing population puts pressure on the demand for food, clean water, healthy soil, and a sta...

  13. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...potassium carbonate, lithium carbonate, and strontium carbonate, because these carbonates...material,'' adding lithium carbonate and strontium carbonate, as well as the proposed additions...that they consume lithium carbonate and strontium carbonate. Response: EPA...

  14. Breaking News Fertilizers Incease Greenhouse Gases in Air

    E-print Network

    Rogers, John A.

    /03/120327091057.htm #12;See Also: Health & Medicine · Skin Care · Today's Healthcare · Psoriasis Matter & Energy to transmit data to the patient's cell phone and on to the doctor's office. Rogers and colleagues to move with the natural motions of the skin as people go about their normal business. This was a big

  15. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ...chloride HHV high heat value HSS horizontal stud S[oslash]derberg IPCC Intergovernmental...Mandates Reform Act of 1995 VSS vertical stud S[oslash]derberg Table of Contents...side worked prebake (SWPB), vertical stud S[oslash]derberg (VSS), and...

  16. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...Chlorodifluoromethane manufacturing facilities. Hydrogen Production........................... 325120 Hydrogen manufacturing facilities. Iron...HFC-23 Destruction H. Subpart P--Hydrogen Production I. Subpart...

  17. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...Generation......... 221112 Fossil-fuel fired electric generating units...as certain suppliers (e.g., fossil fuel, petroleum products, industrial...liquid Distillate fuel oil Fossil fuel Fuel gas Municipal solid...

  18. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...Generation........... 221112 Fossil-fuel fired electric generating units...about half do not combust any fossil fuel (e.g., they utilize hydro...example, a federally-owned, fossil-fuel fired electrical power plant...

  19. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... emission factor. e-GGRT electronic-GHG Reporting Tool. EPA U.S. Environmental Protection Agency. FR Federal... Lisa Jackson on September 22, 2009 and published in the Federal Register on October 30, 2009 (74 FR..., and TT (75 FR 39736, July 12, 2010), subpart W (75 FR 74458, November 30, 2010), subpart DD (75...

  20. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ..., 2009 (74 FR 56260), requires reporting by facilities that emit GHGs (``facilities'') and by suppliers... facilities and suppliers required to report under 40 CFR part 98, published on October 30, 2009 (74 FR 56260... implementation of various CAA provisions (74 FR 66264). Under CAA section 114(a)(1), the Administrator...

  1. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... operating Combustion Sources. boilers, process heaters, incinerators, turbines, and internal combustion..., 2010, and it was not published until October 28, 2010 (75 FR 66434), three weeks later. The purpose of... -equivalent CWPB center worked prebake FR Federal Register FTIR Fourier transform infrared GC...

  2. Measuring the Isotopic Composition of Solar Wind Noble Gases

    E-print Network

    Floss, Christine

    5 Measuring the Isotopic Composition of Solar Wind Noble Gases Alex Meshik, Charles Hohenberg, Olga and processes leading to the variations observed and how the present solar wind noble gases may differ from and breccias, implanted with solar wind noble gases, did provide a needed ground truth, neither by themselves

  3. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  4. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in-flight calibrations, provided ground calibrations and testing were performed regularly. Comparisons between in situ CRDS measurements and flask measurements are consistent with expected measurement uncertainties for CH4 and CO, but differences are larger than expected for CO2. Biases and standard deviations of comparisons with flask samples suggest that atmospheric variability, flask-to-flask variability, and possible flask sampling biases may be driving the observed flask versus in situ CO2 differences rather than the CRDS measurements.

  5. Greenhouse Gas Reduction Act

    E-print Network

    Hilderbrand, Robert H.

    Maryland's Greenhouse Gas Reduction Act Plan October 2013 #12;The Maryland Department of the Environment is the agency responsible for preparing and submitting this 2013 Greenhouse Gas Reduction Act Plan Chapter 2: Update on climate change science Chapter 3: Inventory and forecast Chapter 4: Climate change

  6. U. S. bites greenhouse bullet and gags

    SciTech Connect

    Kerr, R.A.

    1991-02-22

    Delegates from more than 100 countries gathered in Chantilly, VA for the first meeting of the UN-sponsored Intergovernmental Convention on Climate Change and reached an agreement on their organizational structure for negotiating how to reduce global warming. However, the commitment of the US to reduce the release of CO{sub 2} emission was very disappointing. The US attitude toward CO{sub 2} emission is totally unchanged, and US policy includes no provision other than those already in place to reduce the greenhouse gases. The plan of the administration to take action now to reduce climate changes really includes only the administrations already announced intentions to stabilize the greenhouse gas emissions by the year 2000. The administration is not yet fully convinced that there is substantial scientific evidence supporting greenhouse warming, and there is general concern that the economic costs of moderating the greenhouse effect might be excessive. There is a good measure of free market ideology involved in the US policy of opposition to reduction of CO{sub 2} emissions. In fact, CO{sub 2} emissions in the US are predicted to rise by 15% by the year 2000.

  7. Trends in source gases

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Fraser, P. J.; Albritton, D.; Cicerone, R. J.; Khalil, M. A. K.; Legrand, M.; Makide, Y.; Rowland, F. S.; Steele, L. P.; Zander, R.

    1989-01-01

    Source gases are defined as those gases that, by their breakdown, introduce into the stratosphere halogen, hydrogen, and nitrogen compounds that are important in stratospheric ozone destruction. Given here is an update of the existing concentration time series for chlorocarbons, nitrous oxide, and methane. Also reviewed is information on halogen containing species and the use of these data for establishing trends. Also reviewed is evidence on trends in trace gases that influence tropospheric chemistry and thus the tropospheric lifetimes of source gases, such as carbon dioxide, carbon monoxide, or nitrogen oxides. Much of the information is given in tabular form.

  8. Greenhouse climate factors

    SciTech Connect

    Popovski, K.

    1997-01-01

    There are many examples of geothermally heated greenhouses throughout the world, even in warmer climates. The main reason for using geothermal heating systems is that greenhouses are one of the largest energy consumers in agriculture. This concentrated demand for energy can be satisfied, in the case of geothermal, by siting facilities near wells even though they are located far from urban areas and industrial concentrations. The reasons for this high energy requirement are in the nature of the greenhouse construction itself: (1) Greenhouses are typically constructed of light materials that have very poor insulating qualities, and (2) The {open_quotes}internal{close_quotes} climate of the greenhouse are usually significantly different than the external one, especially during the colder seasons.

  9. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  10. Measuring Greenhouse Gas Emissions From China's Reservoirs

    NASA Astrophysics Data System (ADS)

    Yang, Le; Lu, Fei; Wang, Xiaoke

    2014-01-01

    Hydroelectricity has typically been regarded as a green energy source, but reservoirs created for its generation emit greenhouse gases (GHGs) just as natural lakes and rivers do. The role of reservoirs in GHG emissions has been overlooked. Substantial amounts of methane (CH4) are emitted from reservoir surfaces every year, which account for about 20% of the total CH4 emission from inland waters. GHG emissions (transferred into carbon dioxide (CO2) equivalents) from some tropical reservoirs even exceed CO2 emissions from thermal power plants if the same amount of electricity is generated.

  11. Equity and equality in the greenhouse

    SciTech Connect

    Streets, D.G.

    1990-01-01

    This paper discusses some ideas of how to balance equity and equality in negotiating action on greenhouse gases. Some parallels are drawn with previous agreements to combat another regional air pollution problem, acid rain. The ease with which formulations come into the mind should not mislead the reader into thinking the process will be easy. Setting international environmental policy is a tortuous process. Many attractive regulatory concepts, such as efficiency, cost-effectiveness, and benefits of control, are sacrificed on the negotiating table. But when the parties at the table represent such a broad cross-section of the human condition, some fundamental rethinking of cooperation and coordination is necessary. 8 refs.

  12. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  13. Passive-solar greenhouse

    SciTech Connect

    Not Available

    1982-01-01

    Our project objective was to design, construct, and operate a commercialized (16' x 50') passive, solar greenhouse. The structure was originally intended as a vegetable forcing facility to produce vegetable crops in the off-season. Building and size constraints and economic considerations convinced us to use the greenhouse for producing bedding plants and vegetable starts in the spring, high value vegetables (tomatoes, cucumbers) in the fall and forced bulbs in the winter. This crop sequence allows us to use the greenhouse all year without additional heat as the crops are adopted to the temperature regime of the greenhouse during each particular season. In our first season, the greenhouse performed beautifully. The lowest temperature recorded was 38/sup 0/F after 4 cold, cloudy days in February. The production of bedding plants has allowed us to diversify our products and the early transplants we produced were a great asset to our vegetable farming operation. Although construction cost (4.57 sq. ft.) is higher than that of a conventional polyethylene-covered, quonset-type greenhouse (approx. $1.92 sq. ft.), our annual operating cost is cheaper than that of a conventional greenhouse (0.49 cents sq. ft. versus 0.67 cents sq. ft.) due to a longer usable lifetime of the structure and the elimination of heating costs. Our structure has been toured by interested individuals, school and farm groups. We plan to publicize the structure and its advantages by promoting more visits to the site.

  14. HIPPO (HIAPER Pole-to-Pole Observations) Data from CDIAC's HIPPO Data Archive

    DOE Data Explorer

    The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole over the Pacific Ocean. HIPPO flew hundreds of vertical profiles from the ocean/ice surface to as high as the tropopause, at five times during different seasons over a three year period from 2009-2011. HIPPO provides the first high-resolution vertically-resolved global survey of a comprehensive suite of atmospheric trace gases and aerosols pertinent to understanding the carbon cycle and challenging global climate models.

  15. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  16. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  17. Greenhouse gas emissions in Canada and Japan: sector-specific estimates and managerial and economic implications.

    PubMed

    Hayami, Hitoshi; Nakamura, Masao

    2007-10-01

    Many firms generate large amounts of carbon dioxide and other greenhouse gases when they burn fossil fuels in their production processes. In addition, production of raw materials and other inputs the firms procure for their operations also generates greenhouse gases indirectly. These direct and indirect greenhouse gas emissions occur in many sectors of our economies. In this paper, we first present sector-specific estimates for such greenhouse gas emissions. We then show that estimates for such sector-specific greenhouse gas emissions are often required for various types of corporate as well as public policy analyses in both domestic and international contexts. Measuring greenhouse gas emissions resulting from firms' multi-stage production processes in a multi-sector context is relevant for policies related to the Kyoto protocol, an international agreement to limit global greenhouse gas emissions. For example, since the protocol allows firms to engage in trading and offsetting of their greenhouse gas emissions across national borders, provided that emissions are correctly measured, the firms can take advantage of such trading schemes by placing their energy-intensive production facilities globally and strategically. We present several case studies which illustrate the importance of this and other aspects of greenhouse gas emissions in firms' environmental management. We also argue that our modeling and estimation methods based on input-output analyses are suitable for the types of research goals we have in this paper. Our methods are applied to data for Canada and Japan in a variety of environmental management circumstances. PMID:17126990

  18. Long-lived atmospheric trace gases measurements in flask samples from three stations in India

    NASA Astrophysics Data System (ADS)

    Lin, X.; Indira, N. K.; Ramonet, M.; Delmotte, M.; Ciais, P.; Bhatt, B. C.; Reddy, M. V.; Angchuk, D.; Balakrishnan, S.; Jorphail, S.; Dorjai, T.; Mahey, T. T.; Patnaik, S.; Begum, M.; Brenninkmeijer, C.; Durairaj, S.; Kirubagaran, R.; Schmidt, M.; Swathi, P. S.; Vinithkumar, N. V.; Yver Kwok, C.; Gaur, V. K.

    2015-09-01

    With the rapid growth in population and economic development, emissions of greenhouse gases (GHGs) from the Indian subcontinent have sharply increased during recent decades. However, evaluation of regional fluxes of GHGs and characterization of their spatial and temporal variations by atmospheric inversions remain uncertain due to a sparse regional atmospheric observation network. As a result of an Indo-French collaboration, three new atmospheric stations were established in India at Hanle (HLE), Pondicherry (PON) and Port Blair (PBL), with the objective of monitoring the atmospheric concentrations of GHGs and other trace gases. Here we present the results of the measurements of CO2, CH4, N2O, SF6, CO, and H2 from regular flask sampling at these three stations over the period 2007-2011. For each species, annual means, seasonal cycles and gradients between stations were calculated and related to variations in natural GHG fluxes, anthropogenic emissions, and monsoon circulations. Covariances between species at the synoptic scale were analyzed to investigate the likely source(s) of emissions. The flask measurements of various trace gases at the three stations have the potential to constrain the inversions of fluxes over southern and northeastern India. However, this network of ground stations needs further extension to other parts of India to better constrain the GHG budgets at regional and continental scales.

  19. Five-year flask measurements of long-lived trace gases in India

    NASA Astrophysics Data System (ADS)

    Lin, X.; Indira, N. K.; Ramonet, M.; Delmotte, M.; Ciais, P.; Bhatt, B. C.; Reddy, M. V.; Angchuk, D.; Balakrishnan, S.; Jorphail, S.; Dorjai, T.; Mahey, T. T.; Patnaik, S.; Begum, M.; Brenninkmeijer, C.; Durairaj, S.; Kirubagaran, R.; Schmidt, M.; Swathi, P. S.; Vinithkumar, N. V.; Yver Kwok, C.; Gaur, V. K.

    2015-03-01

    With the rapid growth in population and economic development, emissions of greenhouse gases (GHGs) from the Indian subcontinent have sharply increased during recent decades. However, evaluation of regional fluxes of GHGs and characterization of their spatial and temporal variations by atmospheric inversions remain uncertain due to a sparse regional atmospheric observation network. As a result of Indo-French collaboration, three new atmospheric stations were established in India at Hanle (HLE), Pondicherry (PON) and Port Blair (PBL), with the objective of monitoring the atmospheric concentrations of GHGs and other trace gases. Here we present the results of five-year measurements (2007-2011) of CO2, CH4, N2O, SF6, CO, and H2 from regular flask sampling at these three stations. For each species, annual means, seasonal cycles and gradients between stations were calculated and related to variations in the natural GHG fluxes, anthropogenic emissions, and the monsoon circulations. Covariances between species at the synoptic scale were analyzed to investigate the dominant source(s) of emissions. The flask measurements of various trace gases at the three stations show potential to constrain the inversions of fluxes over Southern and Northeastern India. However, this network of ground stations needs further extension to other parts of India to allow a better understanding of, and constraints on the GHG budgets at regional and continental scales.

  20. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...