Sample records for greenhouse gases observation

  1. GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Methane Observations from the Greenhouse gases1

    E-print Network

    Palmer, Paul

    the Greenhouse gases1 Observing SATellite: Validation and Model2 Comparison3 Robert Parker, 1 Hartmut Boesch, 1 the Japanese Greenhouse gases Observing SATellite5 (GOSAT) and compare observed spatial and temporal variations important anthropogenic greenhouse gas, with a radiative22 forcing that is comparable to CO2 over a 20-year

  2. Observations of greenhouse gases at Sodankylä during 2009-2014

    NASA Astrophysics Data System (ADS)

    Kivi, Rigel; Chen, Huilin; Hatakka, Juha; Heikkinen, Pauli; Laurila, Tuomas

    2015-04-01

    A Fourier Transform Spectrometer (FTS) was installed at the Sodankylä research station in February 2009. The system is recording direct solar spectra in the near-infrared spectral region in the spectral range between 0.7 and 2.5 ?m. From the spectra column-averaged abundance of CO2, CH4, N2O and other gases are retrieved. The FTS instrument is based on Bruker 125 HR and participates in the Total Carbon Column Observing Network (TCCON); the instrument has been optimized for greenhouse gas measurements. Here we first present analysis of the reprocessed data set over a six year period from 2009 until 2014. We find statistically significant increase of column amounts of carbon dioxide by 2.4 +/- 0.3 ppm per year and methane increase by 6 +/- 1 ppb per year. In addition to the FTS measurements we have started with year around AirCore measurements at Sodankylä in September 2013. AirCore is an atmospheric sampling system that is directly related to the World Meteorological Organization in situ trace gas measurement scales. AirCore provides profile information of CO2, CH4 and CO from troposphere and lower stratosphere. The AirCore measurements have allowed us to evaluate the accuracy of FTS retrievals. Of special interest has been the quality of the FTS retrievals of CH4 under polar vortex conditions. Finally we present comparisons with space borne measurements by GOSAT (the Greenhouse Gases Observing Satellite) mission. We find a good agreement between the GOSAT and ground based observations. In case of CO2 the relative difference between the two instruments has been -0.03 +/- 0.02 % and in case of CH4 the relative difference has been -0.08 +/- 0.03 %.

  3. On surface temperature, greenhouse gases, and aerosols: models and observations

    SciTech Connect

    Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

    1995-10-01

    The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

  4. Observation of greenhouse gases from ground-based telescope "Subaru" and "TAO"

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Imasu, R.; Miyata, T.

    2009-12-01

    Long-term observation of greenhouse gases is very important to understand temporal variations of greenhouse gases. This January, Japanese satellite, GOSAT (greenhouse gases observing satellite) was launched and its operational observation has started. For supporting satellite observations, validation data such as obtained by ground-based observations are very important. However, there is no observation site in South America. In this study, I propose new data analysis procedure for the observation of greenhouse gases using a ground-based astronomical telescope, which is placed in South America. The purpose of this study is to measure the vertical distribution and temporal variation of greenhouse gases such as methane and ozone from infrared spectrum data measured by an astronomical telescope on the ground. Although solar radiation is generally used to measure greenhouse gases, we use stellar radiation in order to measure the gases even in the night. The method developed in this study can be applicable for analysis of the data observed at world wide astronomical observatories. Institute of Astronomy, The University of Tokyo has conducted an international project, TAO (University of Tokyo Atacama Observatory) Project. In this project they are constructing a very big size telescope (diameter of the main mirror is 6m) at the observation site in Chile, South America. We are going to measure greenhouse gases using the telescope. However, as it is still under construction, we use the data from another Japanese telescope, “Subaru” in Hawaii. Subaru telescope, which has 7 instruments, is located at the top of Mauna Kea, Hawaii. In this study, we use mid-infrared grating spectrometer, called COMICS. This instrument provides spectroscopic capabilities from 7.5-13.5 um, which include absorption bands methane and ozone. To analyze these greenhouse gases, we developed a new method using two stars which have different zenith angles observed in a short interval. I will present some preliminary results retrieved from Subaru data.

  5. Hyper-spectral observations of greenhouse gases in Three Gorges Reservoir Region, China

    NASA Astrophysics Data System (ADS)

    Wang, Ding Yi; Zhang, Chun-ming; Qin, Lin; Zhang, Lu; Wang, Xiang-hong; Li, Hong-qun; Yang, Fu-Mo; Chen, Gang-Cai; Wang, Shu-peng; Zhang, Xing-ying; Zhang, Peng

    The Three Gorges Reservoir (TGR) is the most ambitious hydroelectric and flood control project in human history. Its riparian zone has areas of ~300 km2 with water levels fluctuating between 175m above the sea in winter and 145m in summer, and is a special type of wetlands at the low water levels. These wetlands may release CO2 and CH4 with significantly spatial and temporal variations, and have been misleadingly described as a “methane menace” and caused a worldwide concern. A joint research program for TGR greenhouse gases monitoring is operated by several institutions and based at Yangtze Normal Univ. in Fuling of Chongqing. It is characterized by the combined satellite, airship, and ground-based hyper-spectral observations, which serve to simultaneously measure various eco-environmental parameters in a large area with high spatial and spectral resolutions, and to model the status and key dynamic processes of the TGR greenhouse gases. In this talk, the retrieval algorithm of the gas species from satellite near-infrared observations is discussed with special attentions paid to the mountainous and foggy TGR region. The distributions and variations of TGR greenhouse gases are studied by using the AIRS and SCIAMACHY monthly means of multiple years. The airship and ground-based observation system is outlined and expected to provide unique data needed to address the TGR environmental issues, and to evolve towards operational service.

  6. Retrieval of CFC concentrations from thermal infrared spectrum observed by Greenhouse gases Observation SATellite (GOSAT)

    NASA Astrophysics Data System (ADS)

    Inagoya, A.; Imasu, R.; Hayashi, Y.

    2011-12-01

    Chemical substances emitted by the anthropological activities cause serious environmental problems. Among them, CFCs have been depleting ozone layer in the stratosphere. Also, it is reported that their radiative forcing is 0.268 W/m2 and they could largely account for global warming. To mitigate these problems, it is important to estimate their distribution and amount globally with good accuracy. Though on site measurements provide considerably precise data, the observation sites are quite limited. In contrast, results retrieved from data obtained by remote sensing may contain more errors, but its wide spatial coverage is great advantage to monitor atmosphere globally and continuously for long term. The purpose of this study is to retrieve concentrations of CFC-11 and CFC-12, and replacements for CFCs from thermal infrared spectrum data obtained by Greenhouse gases Observation SATellite (GOSAT). We use spectrum data taken from its main sensor, Fourier transform spectrometer TANSO-FTS, particularly its band 4 (5.5 - 14.3?m). The sub-sensor called TANSO-CAI is used for cloud screening. To calculate simulated spectrum using a radiative transfer model, LBLRTM, the meteorological reanalysis data including atmospheric information at each point such as surface temperature and atmospheric composition are prepared. As the first step, we focus on CFC-11 and CFC-12 which have strong absorption band near 850 cm-1 and 920 cm-1 respectably. For retrieving the gases, the baselines of the observed and calculated spectrum need to be matched. However, it is not always true due to the uncertainty of information in the reanalysis data. To match baselines, we first set the constant emissivity and estimate the surface temperature. Even after the procedure, spectral residue still remained particularly on the peaks of water vapor absorption lines. We will retrieve more precise surface temperature and the amount of water vapor from observed each spectrum so that we could get better a priori for gas retrieval. We will also discuss how accurately CFC-11 and CFC-12 can be retrieved by GOSAT data.

  7. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.

    PubMed

    Kuze, Akihiko; Suto, Hiroshi; Nakajima, Masakatsu; Hamazaki, Takashi

    2009-12-10

    The Greenhouse Gases Observing Satellite (GOSAT) monitors carbon dioxide (CO(2)) and methane (CH(4)) globally from space using two instruments. The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) detects gas absorption spectra of the solar short wave infrared (SWIR) reflected on the Earth's surface as well as of the thermal infrared radiated from the ground and the atmosphere. TANSO-FTS is capable of detecting three narrow bands (0.76, 1.6, and 2.0 microm) and a wide band (5.5-14.3 microm) with 0.2 cm(-1) spectral resolution (interval). The TANSO Cloud and Aerosol Imager (TANSO-CAI) is an ultraviolet (UV), visible, near infrared, and SWIR radiometer designed to detect cloud and aerosol interference and to provide the data for their correction. GOSAT is placed in a sun-synchronous orbit 666 km at 13:00 local time, with an inclination angle of 98 degrees . A brief overview of the GOSAT project, scientific requirements, instrument designs, hardware performance, on-orbit operation, and data processing is provided. PMID:20011012

  8. The state of greenhouse gases in the atmosphere using global observations through 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at 1824 ± 2 ppb and N2O at 325.9 ± 0.1 ppb. These values constitute 142%, 253% and 121% of pre-industrial (before 1750) levels, respectively. The atmospheric increase of CO2 from 2012 to 2013 was 2.9 ppm, which is the largest year to year change from 1984 to 2013. The rise of CO2 concentration has been only about a half of what is expected if all the excess CO2 from the burning of fossil-fuel stayed in the air. The other half has been absorbed by the land biosphere and the oceans, but the split between land and oceans is not easily resolved from CO2 data alone. As described in the Bulletin, O2 measurements have been used to estimate the magnitude of the terrestrial biosphere sink. For N2O the increase from 2012 to 2013 is smaller than the one observed from 2011 to 2012 but comparable to the average growth rate over the past 10 years. Atmospheric CH4 continued to increase at a rate similar to the mean rate over the past 5 years. The National Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2013 radiative forcing by long-lived greenhouse gases increased by 34%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 479 ppm (http://www.esrl.noaa.gov/gmd/aggi). Uptake of anthropogenic CO2 by the ocean results in increased CO2 concentrations and increased acidity levels in sea-water. During the last two decades ocean water pH decreased by 0.0011 - 0.0024 per year, and the amount of CO2 dissolved in see water (pCO2) increased by 1.2 - 2.8 ?atm per year for time-series from several featured ocean stations.

  9. 8, 82738326, 2008 Greenhouse gases

    E-print Network

    Boyer, Edmond

    ACPD 8, 8273­8326, 2008 Greenhouse gases from satellite ­ Part 2: Methane O. Schneising et al.0 License. Atmospheric Chemistry and Physics Discussions Three years of greenhouse gas column-averaged dry­8326, 2008 Greenhouse gases from satellite ­ Part 2: Methane O. Schneising et al. Title Page Abstract

  10. 8, 54775536, 2008 Greenhouse gases

    E-print Network

    Boyer, Edmond

    ACPD 8, 5477­5536, 2008 Greenhouse gases from satellite ­ Part 1: CO2 O. Schneising et al. Title.0 License. Atmospheric Chemistry and Physics Discussions Three years of greenhouse gas column-averaged dry­5536, 2008 Greenhouse gases from satellite ­ Part 1: CO2 O. Schneising et al. Title Page Abstract

  11. 5, 213242, 2008 Greenhouse gases

    E-print Network

    Paris-Sud XI, Université de

    BGD 5, 213­242, 2008 Greenhouse gases German bog S. Glatzel et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences Environmental controls of greenhouse gas Correspondence to: S. Glatzel (stephan.glatzel@uni-rostock.de) 213 #12;BGD 5, 213­242, 2008 Greenhouse gases

  12. Voluntary Reporting of Greenhouse Gases

    EIA Publications

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  13. Atmospheric Chemistry, Carbon Cycle, and Climate (AC4): Observational Constraints on Sources and Sinks of Aerosols and Greenhouse Gases

    E-print Network

    of aerosols and greenhouse gases, and (4) measure emissions from oil and gas extraction of the following: 1. Greenhouse gas emissions from oil and gas extraction 2. Emissions of aerosols, greenhouse uncertain. Recent increases in emissions from oil and gas extraction are becoming significant

  14. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  15. The ice record of greenhouse gases

    Microsoft Academic Search

    D. Raynaud; J. Jouzel; J. M. Barnola; J. Chappellaz; R. J. Delmas; C. Lorius

    1993-01-01

    Gases trapped in polar ice provide our most direct record of the changes in greenhouse gas levels during the past 150,000 years. The best conducted trace-gas records are for CO2 and CH4. The measurements corresponding to the industrial period document the recent changes in growth rate. The variability observed over the last 1000 years constrains the possible feedbacks of a

  16. Detection of optical path in spectroscopic space-based observations of greenhouse gases: Application to GOSAT data processing

    NASA Astrophysics Data System (ADS)

    Oshchepkov, Sergey; Bril, Andrey; Maksyutov, Shamil; Yokota, Tatsuya

    2011-07-01

    We present a method to detect optical path modification due to atmospheric light scattering in space-based greenhouse gas spectroscopic sounding. This method, which was applied to the analysis of radiance spectra measured by the Greenhouse Gases Observing Satellite (GOSAT), is based on the path length probability density function (PPDF) and on retrieval of PPDF parameters from radiance spectra in the oxygen A-band of absorption at 0.76 ?m. We show that these parameters can be effectively used to characterize the impact of atmospheric light scattering on carbon dioxide retrieval in the atmospheric carbon dioxide (CO2) absorption bands at 1.6 ?m and 2.0 ?m. The threshold for PPDF parameters is set so that the optical-path modification is negligible, and these settings are recommended as a basic guideline for selecting the clearest atmospheric scenarios. An example of data processing for six global GOSAT repeat cycles in April and July 2009 shows that PPDF-based selection efficiently removes CO2 retrieval biases associated with subvisible cirrus and sandstorm activities.

  17. Where do California's greenhouse gases come from?

    ScienceCinema

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  18. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.

    2013-08-01

    has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis data sets and find no statistically significant trends in VPSC-nor changes in their probability density functions-over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  19. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, H.; Polvani, L. M.

    2013-12-01

    It has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis datasets and find no statistically significant trends in VPSC - nor changes in their probability density functions - over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  20. Improvement of a retrieval method of the column-averaged dry air mole fractions of carbon dioxide and methane from Greenhouse gases Observing SATellite (GOSAT) observation

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Eguchi, N.; Ota, Y.; Morino, I.; Uchino, O.; Watanabe, H.; Yokota, T.

    2010-12-01

    Column-averaged dry air mole fractions of carbon dioxide and methane (XCO2 and XCH4) are retrieved globally from the short-wavelength infrared spectrum data observed by the Greenhouse gases Observing SATellite (GOSAT). When we use only the carbon dioxide 1.6 ? m band or methane 1.67 ? m band in the retrievals, the retrieved XCO2 and XCH4 values show large variabilities (-35% to +15% from the average) due to aerosol and cloud influences. Equivalent optical path length changes due to cloud and aerosol have two contrary effects; the multiple-scattering of cloud and aerosol extends the equivalent optical path length, while the scattering event at high altitude shortens it. The former effect is obvious over the Sahara desert and its surroundings where the dust particles are rich, and the latter effect is spread over the tropics where the frequency of cirrus occurrence is high. Overestimated (underestimated) equivalent optical path length brings negative (positive) biases in the retrieved XCO2 and XCH4 values. In order to minimize these biases, pre-processed cloud screening criterion is optimized to detect and exclude relatively thin cirrus case, and the observed spectrum at the oxygen A-band (0.76 ? m) is utilized in the retrieval to correct the optical path modification. These improvements eliminate most of the largely deviated retrieval results and make the variabilities of the retrieved XCO2 and XCH4 smaller (-7% to +5% from the average). Data products retrieved with the improved method (GOSAT SWIR L2 V01.xx Products) are available to get via https://data.gosat.nies.go.jp.

  1. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect

    Post, Wilfred M [ORNL; Venterea, Rodney [United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Soil and Water

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  2. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    ERIC Educational Resources Information Center

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  3. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...commitments for further actions addressing Greenhouse Gases (GHGs) 71.13 Section 71...commitments for further actions addressing Greenhouse Gases (GHGs) (a) Definitions —(1) Greenhouse Gases (GHGs) means the air...

  4. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...further actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section...further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  5. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...commitments for further actions addressing Greenhouse Gases (GHGs) 71.13 Section 71...commitments for further actions addressing Greenhouse Gases (GHGs) (a) Definitions —(1) Greenhouse Gases (GHGs) means the air...

  6. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...further actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section...further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  7. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 70.12 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  8. 40 CFR 71.13 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 71.13 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions —(1) Greenhouse Gases (GHGs) means the air...

  9. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 70.12 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  10. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 70.12 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  11. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...further actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section...further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  12. 40 CFR 71.13 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 71.13 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions —(1) Greenhouse Gases (GHGs) means the air...

  13. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...further actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section...further actions addressing the pollutant greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  14. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...commitments for further actions addressing greenhouse gases (GHGs). 70.12 Section...commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air...

  15. Greenhouse gases: What is their role in climate change

    SciTech Connect

    Edmonds, J.A.; Chandler, W.U. (Pacific Northwest Lab., Richland, WA (USA)); Wuebbles, D. (Lawrence Livermore National Lab., CA (USA))

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  16. Remote Sensing Observations of Greenhouse Gases from space based and airborne platforms: from SCIAMACHY and MaMap to CarbonSat

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Schneising, Oliver; Buchwitz, Michael; Bovensmann, Heinrich; Heymann, Jens; Gerilowski, Konstantin; Krings, Thomas; Krautwurst, Sven; Dickerson, Russ

    2015-04-01

    Methane, CH4, e and carbon dioxide, CO2, play an important role in the earth carbon cycle. They are the two most important long lived greenhouse gases produced by anthropogenic fossil fuel combustion. In order to assess accurately the surface fluxes of CH4 or CO2. The Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY, SCIAMACHY, was a national contribution to the ESA Envisat platform: the latter being launched on the 28th February 2002 and operating successfully until April 2012. The SCIAMACHY measurements of the up-welling radiation have been used to retrieve the dry mole fraction of XCH4 and XCO2, providing a unique 10 year record at the spatial resolution of 60 kmx30 km. This data has been used to observe the changing CH4 abundance in the atmosphere and identify anthropogenic such as Fracking and natural sources such as wetlands. The Methane and carbon dioxide Mapper, MaMap, was developed as an aircraft demonstration instrument for our CarbonSat and CarbonSat Constellation concepts. CarbonSat is in Phase A B1 studies as one of two candidate missions for ESA's Earth Explorer 8 Mission. Selected results from SCIAMACHY and Mamap will be presented with a focus on methane and the perspective for CarbonSat.

  17. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  18. Sun and dust versus greenhouse gases - An assessment of their relative roles in global climate change

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Lacis, Andrew A.

    1990-01-01

    Many mechanisms, including variations in solar radiation and atmospheric aerosol concentrations, compete with anthropogenic greenhouse gases as causes of global climate change. Comparisons of available data show that solar variability will not counteract greenhouse warming and that future observations will need to be made to quantify the role of tropospheric aerosols, for example.

  19. Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change

    Microsoft Academic Search

    James E. Hansen; Andrew A. Lacis

    1990-01-01

    Many mechanisms, including variations in solar radiation and atmospheric aerosol concentrations, compete with anthropogenic greenhouse gases as causes of global climate change. Comparisons of available data show that solar variability will not counteract greenhouse warming and that future observations will need to be made to quantify the role of tropospheric aerosols, for example.

  20. Analysis of air pollution and greenhouse gases

    SciTech Connect

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  1. International collaboration on capture, storage and utilisation of greenhouse gases

    Microsoft Academic Search

    P. Freund

    1998-01-01

    Climate change will have world-wide implications. So it is highly appropriate that there should be international collaboration to investigate technologies for reducing emissions of greenhouse gases, the root cause of the problem. Sixteen countries, as well as three industrial sponsors, support the IEA Greenhouse Gas R&D Programme and, in many cases, industry is also involved indirectly, through the national memberships.

  2. Greenhouse effect of chlorofluorocarbons and other trace gases

    Microsoft Academic Search

    James Hansen; Andrew Lacis; Michael Prather

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had

  3. GLOBAL MITIGATION OF NON-CO2 GREENHOUSE GASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitigation of noncarbon dioxide (non-CO2) greenhouse gas emissions can be a relatively inexpensive supplement to CO2-only mitigation strategies. The non-CO2 gases include methane (CH4), nitrous oxide (N2O), and a number of high global warming potential (high- GWP) or fluorinated gases. These ga...

  4. Greenhouse gases dissolved in soil solution - often ignored, but important?

    NASA Astrophysics Data System (ADS)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2014-05-01

    Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 ?g N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous forest and grassland soils, based on concentrations up to 24 mg C L-1 and high seepage discharge. Such losses turned out to be similarly important like soil respiration, particularly during winter when temperature-dependent soil respiration declined. In conclusion, the results of the first year of our measurements provide evidence that dissolved greenhouse gases should be considered in studies which aim to assess full greenhouse gas balances, particularly in ecosystems where hydrological conditions favour microbial activity and high leaching losses.

  5. Emissions of greenhouse gases in the United States 1997

    SciTech Connect

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  6. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  7. Impact of greenhouse gases on the Earth's ozone layer

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  8. Greenhouse effect of trace gases, 1970-1980

    Microsoft Academic Search

    A. Lacis; J. Hansen; P. Lee; S. Lebedeff; T. Mitchell

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature

  9. Sources and emission of greenhouse gases in Danube Delta lakes.

    PubMed

    Pavel, Alina; Durisch-Kaiser, Edith; Balan, Sorin; Radan, Silviu; Sobek, Sebastian; Wehrli, Bernhard

    2009-08-01

    Production of methane and carbon dioxide as well as methane concentrations in surface waters and emissions to the atmosphere were investigated in two flow-through lake complexes (Uzlina-Isac and Puiu-Rosu-Rosulet) in the Danube Delta during post-flood conditions in May and low water level in September 2006. Retained nutrients fueled primary production and remineralization of bioavailable organic matter. This led to an observable net release of methane, particularly in the lakes Uzlina, Puiu and Rosu in May. Input from the Danube River, from redbuds and benthic release contributed to CH(4) concentrations in surface waters. In addition to significant river input of CO(2), this trace gas was released via aerobic remineralization within the water column and in top sediments. Emission patterns of CO(2) widely overlapped with those of CH(4). Generally, greenhouse gas emissions peaked in the lake complex adjacent to the Danube River in May due to strong winds and decreased with increasing hydrological distance from the Danube River. Intense remineralization of organic matter in the Danube Delta lakes results in a net source of atmospheric greenhouse gases. PMID:19506929

  10. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...gases from all sectors of the economy to report their greenhouse...EPA/DC), Mailcode 2822T, Attention Docket ID No. EPA-HQ-OAR-2009-0925...and across the entire U.S. economy...Washington, DC 20503, Attention: Desk Office for EPA....

  11. The Global Research Alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Global Research Alliance on Agricultural Greenhouse Gases was proposed by New Zealand at the United Nations Framework Convention on Climate Change Conference of the Parties (COP) in Copenhagen in 2009 and developed in partnership with the United States. This alliance now includes 32 member count...

  12. Integrity of the Emerging Global Markets in Greenhouse Gases

    Microsoft Academic Search

    Barry D. Solomon; Michael K. Heiman

    2010-01-01

    This article considers the integrity of the emerging emissions allowance markets for greenhouse gases (GHG) under the international emissions trading system created by the Kyoto Protocol and the parallel European Union Emissions Trading Scheme. In particular, we suggest that accepted definitions of emissions baselines, initial allocation of emission credits, verification of “additionality” for GHG reduction beyond what would have occurred

  13. Forest biogeochemistry interactions among greenhouse gases and N deposition

    Microsoft Academic Search

    Lars-Owe Nilsson

    1995-01-01

    Interactions between N deposition and the fluxes between atmosphere and forest ecosystems of the greenhouse gases CO2, CH4 and N2O are examined. It is argued that forest productivity has increased due to increased N deposition since the industrial revolution in areas where N has been limiting to forest production. It is shown that most boreal and large parts of temperate

  14. GREENHOUSE GASES FROM DEFORESTATION IN BRAZILIAN AMAZONIA: NET COMMITTED EMISSIONS

    Microsoft Academic Search

    PHILIP M. Fearnside

    1997-01-01

    Deforestation in Brazilian Amazonia is a significant source of greenhouse gases today and, with almost 90% of the originally forested area still uncleared, is a very large potential source of future emissions. The 1990 rate of loss of forest (13.8 × 103 km2\\/year) and cerrado savanna (approximately 5 × 103 km2\\/year) was responsible for releasing approximately 261 × 106 metric

  15. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  16. Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and

    E-print Network

    Dufresne, Jean-Louis

    Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation/C.N.R.S., Villeneuve d'Ascq, France Among anthropogenic perturbations of the Earth's atmosphere, greenhouse gases the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate

  17. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  18. Zevenhoven & Kilpinen Greenhouse Gases, Ozone-Depleting Gases 19.6.2001 9-1 Figure 9.1 Increasing world population

    E-print Network

    Laughlin, Robert B.

    Zevenhoven & Kilpinen Greenhouse Gases, Ozone-Depleting Gases 19.6.2001 9-1 Figure 9.1 Increasing Greenhouse gases, ozone-depleting gases 9.1 Introduction By the end of the 20th century it was widely (Ponting, 1991, Göttlicher, 1999). So-called greenhouse gases (GHGs), most importantly carbon dioxide (CO2

  19. Keeping Mars warm with new super greenhouse gases

    PubMed Central

    Gerstell, M. F.; Francisco, J. S.; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.

    2001-01-01

    Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction. PMID:11226208

  20. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere

    Microsoft Academic Search

    G. Philip Robertson; Eldor A. Paul; Richard R. Harwood

    2000-01-01

    Agriculture plays a major role in the global fluxes of the greenhouse gases carbon dioxide, nitrous oxide, and methane. From 1991 to 1999, we measured gas fluxes and other sources of global warming potential (GWP) in cropped and nearby unmanaged ecosystems. Net GWP (grams of carbon dioxide equivalents per square meter per year) ranged from 110 in our conventional tillage

  1. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy to fuel cellular functions. "We think this chemical process did not exist when life first formed on Earth," he says, "because it is based on oxygen being available, and there was little oxygen available on the early Earth." It is possible that there are anaerobic regions beneath the sea floor in which life forms like those early non-Krebs Cycle microbes may yet exist. To detect and potentially collect samples of life emerging from hydrothermal vents, Flynn and his colleagues created Medusa, a multi-sensor instrument designed for long-term observation of diked vents on the ocean floor. When the vents erupt, Medusa assesses indicators of life within the expelled water. If the results are positive, the observatory collects samples and detaches from the ocean floor, making the long journey to the surface for retrieval by scientists. One of the indicators Medusa measures is the ratio of carbon isotopes in the water, namely carbon-12 and carbon-13. Living organisms preferentially take up carbon-12, Flynn says, so examining the ratio of these isotopes can help to determine the source of carbon in an environment as either biological or non-biological. "On Mars, there is evidence of localized methane in the atmosphere, and that methane could come from biological sources or from geochemical ones," Flynn says. "Determining the background planetary carbon isotope ratios and then evaluating the specific carbon ratios in this methane would help to determine how it was formed." A long-duration observatory similar to Medusa could one day provide essential evidence for or against the presence of life on the Red Planet or beneath the ice-crusted oceans of Europa.

  2. An improved photon path length probability density function–based radiative transfer model for space-based observation of greenhouse gases

    Microsoft Academic Search

    Sergey Oshchepkov; Andrey Bril; Tatsuya Yokota

    2009-01-01

    We present an improved model to describe the photon path length probability density function (PPDF) that effectively accounts for both aerosol and thin cloud effects for rapid retrieval of greenhouse gas data from space-based high spectral resolution measurements. The reasonably simple PPDF and effective transmittance parameterization permit vertical inhomogeneity of gas absorption and three plane-parallel arbitrarily located layers to account

  3. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India

    PubMed Central

    Auffhammer, Maximilian; Ramanathan, V.; Vincent, Jeffrey R.

    2006-01-01

    Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests. The results also imply that adverse climate changes due to brown clouds and greenhouse gases contributed to the slowdown in harvest growth that occurred during the past two decades. PMID:17158795

  4. Emissions of greenhouse gases in the United States 1995

    SciTech Connect

    NONE

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  5. Fluorinated greenhouse gases in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Laube, Johannes C.; Gallacher, Eileen; Oram, David E.; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Fraser, Paul J.; Röckmann, Thomas; Sturges, William T.

    2015-04-01

    Fluorinated organic trace gases in the atmosphere are almost exclusively thought to be of anthropogenic origin. In the case of fully fluorinated alkane and cycloalkane-derivatives their IR absorption features and very long atmospheric lifetimes (on the order of thousands of years) make them very strong greenhouse gases. We here present measurements of 10 of these perfluorocarbons in the UT/LS and stratosphere as derived from deployments of regular passenger aircraft (CARIBIC project, http://www.caribic-atmospheric.com/) and the high-altitude research aircraft M55 Geophysica. In combination with long-term tropospheric records obtained from the Cape Grim observatory, Tasmania, we estimate their impact on radiative forcing expressed as CO2-equivalents. As these gases have no significant sinks in the stratosphere they could also be suitable to derive an important transport diagnostic: the so-called mean age-of-air i.e. the average stratospheric transit time of an air parcel. We evaluate this possibility for all above-mentioned species and compare their characteristics with other inert species such as SF6, SF5CF3, and long-lived chlorofluorocarbons.

  6. Signatures of Annual and Seasonal Variations of CO2 and Other Greenhouse Gases from Comparisons between NOAA TOVS Observations and Radiation Model Simulations

    Microsoft Academic Search

    Alain Chédin; Soumia Serrar; Raymond Armante; Noëlle A. Scott; Anthony Hollingsworth

    2002-01-01

    Since 1979, sensors on board the National Oceanic and Atmospheric Administration (NOAA) series of polar meteorological satellites have provided continuous measurements of the earth's surface and atmosphere. One of these sensors, the Television Infrared Observational Satellite (TIROS-N) Operational Vertical Sounder (TOVS), observes earth-emitted radiation in the infrared-with the High-Resolution Infrared Sounder (HIRS)-and in the microwave-with the Microwave Sounding Unit (MSU)-portions

  7. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    Microsoft Academic Search

    N P Myhrvold; K Caldeira

    2012-01-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore,

  8. REDUCTION OF GREENHOUSE GASES BY FIBER-LOADED LIGHTWEIGHT, HIGH-OPACITY NEWSPRINT PRODUCTION

    E-print Network

    Abubakr, Said

    REDUCTION OF GREENHOUSE GASES BY FIBER-LOADED LIGHTWEIGHT, HIGH-OPACITY NEWSPRINT PRODUCTION John H We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing investigated the reduction of greenhouse gas emissions for a hypothetical 600 metric ton/day newsprint mill

  9. Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases

    E-print Network

    Kolstad, Charles

    Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases to avoid damage from climate change and regulations limiting greenhouse gas emissions at the country level to the Socioeconomic Drivers of Greenhouse Gas Emissions. As the issue was framed (Leifman and Heil, 2005

  10. Passive and Active Remote Sensing of Greenhouse Gases in the GOSAT Project

    NASA Astrophysics Data System (ADS)

    Morino, I.; Inoue, M.; Yoshida, Y.; Kikuchi, N.; Yokota, T.; Matsunaga, T.; Uchino, O.; Tanaka, T.; Sakaizawa, D.; Kawakami, S.; Ishii, S.; Mizutani, K.; Shibata, Y.; Abo, M.; Nagasawa, C.

    2014-12-01

    The Greenhouse gases Observing SATellite (GOSAT), launched on 23 Jan. 2009, is the world's first satellite dedicated to measuring concentrations of the two major greenhouse gases, carbon dioxide (CO2) and methane (CH4), from space. Column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4) are retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard GOSAT. The present NIES full physics SWIR retrieval algorithm (ver. 02.xx) showed smaller biases and standard deviations (-1.48 ppm and 2.09 ppm for XCO2 and -5.9 ppb and 12.6 ppb for XCH4, respectively) than those of the ver. 01.xx by comparing with data of the Total Carbon Column Observing Network (TCCON). GOSAT retrievals from the GOSAT TANSO-FTS SWIR spectra for more than five years are now ready for scientific research, but may be still influenced by thin aerosols and clouds. Under GOSAT validation activities, we made aircraft observation campaigns to validate the GOSAT products and calibrate TCCON FTSs installed in Japan. In their campaigns, we also made partial column measurements of CO2 with an airborne laser absorption spectrometer, and comparison of ground-based CO2Differential Absorption Lidars with aircraft measurement data. Their active remote sensing experiments are for development of new validation methodology for passive space-based mission and fundamental development for future active space-based mission. The Ministry of the Environment, the Japan Aerospace Exploration Agency, and the National Institute for Environmental Studies also started the development of the follow-on satellite, GOSAT-2 in 2013. GOSAT-2 will be launched in 2017 - 2018. Instruments onboard GOSAT-2 are similar to current GOSAT. The SWIR passive remote sensing of greenhouse gases would be more or less affected by aerosols and thin cirrus clouds. Therefore, active remote sensing is expected to solve it and extend observations during nighttime and to be complementary with passive remote sensing which is adequate to wider observations. In this presentation, we will show results on GOSAT observations, validation activities, and lessons learnt from passive remote sensing of greenhouse gases for next-generation remote sensing.

  11. Long term changes in the ionosphere over Indian low latitudes: Impact of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Chandra, H.; Beig, G.

    2015-06-01

    Increased concentration of greenhouse gases due to anthropogenic activities warm the troposphere and have a cooling effect in the middle and upper atmosphere. Ionospheric densities and heights are affected due to cooling. Carbon dioxide is one of the most dominant gases for the cause of long term ionospheric trends along with other radiatively active greenhouse gases. Regular ionospheric soundings are made over Ahmedabad (23.1°N, 72.7°E), since 1953. Long term changes in the ionosphere as a consequence of the cooling of the mesosphere and thermosphere due to the increased concentration of greenhouse gases have been studied. Ionospheric observations over Ahmedabad, a low latitude station in the anomaly crest region, for the years 1955-2003 are examined to study the long term changes in the critical frequencies of the various ionospheric layers and the height of the maximum ionization as characterized by hPF2. A decrease in foF2 (1.9 MHz for midday, 1.4 MHz for midnight) and hPF2 (18 km for midday, 17 km for midnight) during about five decades are noted. An increase is noted in foF1 (0.4 MHz). The foF2 data are also examined over an equatorial station Kodaikanal (10.2°N, 77.5°E), situated near the magnetic equator for the years 1960-1995 and a decrease of 0.5 MHz for midday and 0.7 MHz for midnight are noted in ~35 years.

  12. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in the absence of threats from climate change and ocean acidification. Therefore, these measures represent “no regrets” policy options for the marine environment. Nevertheless, even with adaptive policies in place, continued greenhouse gas emissions increasingly risk damaging marine ecosystems and the human communities that depend on them.

  13. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  14. Quantifying emissions of greenhouse gases from South Asia through a targeted measurement campaign

    E-print Network

    Ganesan, Anita Lakshmi

    2013-01-01

    Methane (CH 4 ), nitrous oxide (N20) and sulfur hexafluoride (SF6) are powerful greenhouse gases with global budgets that are well-known but regional distributions that are not adequately constrained for the purposes of ...

  15. 76 FR 61293 - Extension of Public Comment Period: Mandatory Reporting of Greenhouse Gases: Technical Revisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of...the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of...Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems....

  16. EVALUATION OF GREENHOUSE GASES EMISSION FROM SOILS AMENDED WITH SEWAGE SLUDGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in concentration of various greenhouse gases and their possible contributions to the global warming have received considerable research intrest. Agricultural practices, fossil fuel burning, deforestation, industrial emissions, and wetlands have contributed to atmospheric increases of carbo...

  17. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    SciTech Connect

    NONE

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  18. Sedimentary basins and greenhouse gases: a serendipitous association

    Microsoft Academic Search

    Brian Hitchon; W. D. Gunter; Thomas Gentzis; R. T. Bailey

    1999-01-01

    There is a natural association of sedimentary basins and fossil fuels. Therefore, we should expect a relation between the sedimentary basin, the exploitation of its fossil fuels, and the resulting greenhouse gas emissions. Carbon dioxide is the dominant greenhouse gas resulting from the burning of fossil fuels, and it comprises more than half of all man-made greenhouse gas emissions. Among

  19. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  20. Global Mitigation Of Non-CO2 Greenhouse Gases: 2010-2030

    EPA Science Inventory

    This report illustrates the abatement potential of non-CO2 greenhouse gases, by sector and by region, from 2010-2030. This peer-reviewed update provides economists and policymakers with improved data to better understand the costs and opportunities for reducing non-CO2 greenhouse...

  1. A preliminary study of green-house gases interference for ammonia sensing in the mid UV region

    Microsoft Academic Search

    Hadi Manap; Elfed Lewis

    2011-01-01

    This paper describes a preliminary study of the possibility for greenhouse interference during ammonia measurement in the 200 nm – 230 nm region. An absorption spectrum for ammonia was compared with the greenhouse gases absorption lines to theoretically justify that there were no discernible interference effects during the ammonia concentration measurements. It was theoretically found that the primary greenhouse gases

  2. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  3. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the ozone layer here. The difference in the impact of the greenhouse gases on the ozone layer at the southern and northern polar latitudes through PCS modification is determined by the difference in temperature regimes of the Polar Regions. The mechanism of the impact of the greenhouse gases on the polar ozone by means of modification of sulphate aerosol distribution in the atmosphere has been revealed and investigated, too. Numerical experiments show that enhancement of the surface area density of sulphate aerosol in the stratosphere caused by the growth of the greenhouse gases will reduce significantly the ozone depletion during the Antarctic ozone hole.

  4. Greenhouse gases in the corn-to-fuel ethanol pathway

    Microsoft Academic Search

    1998-01-01

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota,

  5. Is recent climate change across the United States related to rising levels of anthropogenic greenhouse gases

    Microsoft Academic Search

    Marc S. Plantico; Thomas R. Karl; George Kukla; Joyce Gavin

    1990-01-01

    During the period 1948-1987, the concentration of anthropogenic greenhouse gases increased by more than 30%, and the mean annual temperature of the northern hemisphere increased by about 0.15°C. To gain a better understanding of why the US temperature record does not reflect the anticipated greenhouse warming, the authors studied the inter-relationships between trends of temperature, cloudiness, sunshine and precipitation. Both

  6. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Chang-Feng; Yen, Ming-Cheng; Lin, Tang-Huang; Wang, Jia-Lin; Schnell, Russell C.; Lang, Patricia M.; Chantara, Somporn; Lin, Neng-Huei

    2015-06-01

    Four-year ground-level measurements of the two primary greenhouse gases (carbon dioxide (CO2) and methane (CH4)) were conducted at Dongsha Island (DSI), situated in the northern South China Sea (SCS), from March 2010 to February 2014. Their mean mixing ratios are calculated to be 396.3 ± 5.4 ppm and 1863.6 ± 50.5 ppb, with an annual growth rate of +2.19 ± 0.5 ppm yr–1 and +4.70 ± 4.4 ppb yr–1 for CO2 and CH4, respectively, over the study period. Our results suggest that the Asian continental outflow driven by the winter northeast monsoon could have brought air pollutants into the northern SCS, as denoted by significantly elevated levels of 6.5 ppm for CO2 and 59.6 ppb for CH4, which are greater than the marine boundary layer references at Cape Kumukahi (KUM) in the tropical northern Pacific in January. By contrast, the summertime CH4 at DSI is shown to be lower than that at KUM by 19.7 ppb, whereas CO2 is shown to have no differences (<0.42 ppm in July) during the same period. Positive biases of the Greenhouse Gases Observing Satellite (GOSAT) L4B data against the surface measurements are estimated to be 2.4 ± 3.4 ppm for CO2 and 43.2 ± 36.8 ppb for CH4. The satellite products retrieved from the GOSAT showed the effects of anthropogenic emissions and vegetative sinks on land on a vertical profiling basis. The prevailing southeasterly winds originating from as far south as the equator or Southern Hemisphere pass through the lower troposphere in the northern SCS, forming a tunnel of relatively clean air masses as indicated by the low CH4 mixing ratios observed on the DSI in summer.

  7. The Economics of Controlling Stock Pollutants: An Efficient Strategy for Greenhouse Gases

    Microsoft Academic Search

    Falk Ita; Mendelsohn Robert

    1993-01-01

    Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as

  8. Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils

    E-print Network

    Vallino, Joseph J.

    Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

  9. Emission Potentials and Capacities of Sediments along Lower Savannah River for Greenhouse Gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission of CH4 and other greenhouse gases (CO2, & N2O) is extremely variable in both space and time. It is well known fact that Savannah River receives effluents from variety of anthropogenic activities. These activities could have significant impact on the amount of available C and other chemical ...

  10. A Comparison of the Contribution of Various Gases to the Greenhouse Effect

    Microsoft Academic Search

    Henning Rodhe

    1990-01-01

    The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions

  11. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    ERIC Educational Resources Information Center

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  12. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect

    Calabro, Paolo S. [Dipartimento di Meccanica e Materiali, Universita degli Studi Mediterranea di Reggio Calabria, via Graziella - loc. Feo di Vito, 89122 Reggio Calabria (Italy)], E-mail: paolo.calabro@unirc.it

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  13. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    Microsoft Academic Search

    DeLuchi

    1991-01-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (COâ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of

  14. Emissions of greenhouse gases from the use of transportation fuels and electricity

    Microsoft Academic Search

    DeLuchi

    1991-01-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (COâ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of

  15. Evaluation of Emission of Greenhouse Gases from Soils Amended with Sewage Sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increase in concentrations of various greenhouse gases originated by various human activities, including agricultural origin, could contribute to climate change. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in ...

  16. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes

    Microsoft Academic Search

    K. A. S MITH; F. C ONEN; K. E. D OBBIE; A. R EY

    2003-01-01

    Summary This review examines the interactions between soil physical factors and the biological processes respon- sible for the production and consumption in soils of greenhouse gases. The release of CO2 by aerobic respiration is a non-linear function of temperature over a wide range of soil water contents, but becomes a function of water content as a soil dries out. Some

  17. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect

    NONE

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  18. A 1-D modelling of climatic and chemical effects of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Vupputuri, R. K. R.; Higuchi, K.; Hengeveld, H. G.

    1995-09-01

    A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations. The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.

  19. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  20. Greenhouse warming by minor gases on early Mars

    NASA Astrophysics Data System (ADS)

    Heinrich, M. N.; Thompson, W. R.; Sagan, C.

    1992-12-01

    The early atmospheres of Earth and Mars were non-oxidizing mixtures likely derived from volcanic outgassing of a silicate mantle, with some fraction of the volatiles also contributed by impacting comets and meteorites. Here the authors investigate the potential of minor atmospheric constituents produced by ultraviolet and auroral chemistry to contribute to the thermal opacity of early Earth and Mars atmospheres. Using a very simple two-stream thermal opacity model, the authors show that HCN at 10 parts per million (ppm) and N2O at 100 ppm can each block radiation in thermal infrared windows sufficiently to increase the surface temperature by 7 K separately, or 14 K together. Small quantities of other species are also produced in such experiments. Some of these have especially complex infrared spectra and should be further investigated for their potential to help close windows in the CO2 + H2O infrared transmission. Enhancement of greenhouse warming by minor atmospheric species different from those present in today's atmosphere may have played important roles in the climate of early Earth and Mars.

  1. Greenhouse warming by minor gases on early Mars

    NASA Technical Reports Server (NTRS)

    Heinrich, M. N.; Thompson, W. R.; Sagan, C.

    1992-01-01

    The early atmospheres of Earth and Mars were non-oxidizing mixtures likely derived from volcanic outgassing of a silicate mantle, with some fraction of the volatiles also contributed by impacting comets and meteorites. Here the authors investigate the potential of minor atmospheric constituents produced by ultraviolet and auroral chemistry to contribute to the thermal opacity of early Earth and Mars atmospheres. Using a very simple two-stream thermal opacity model, the authors show that HCN at 10 parts per million (ppm) and N2O at 100 ppm can each block radiation in thermal infrared windows sufficiently to increase the surface temperature by 7 K separately, or 14 K together. Small quantities of other species are also produced in such experiments. Some of these have especially complex infrared spectra and should be further investigated for their potential to help close windows in the CO2 + H2O infrared transmission. Enhancement of greenhouse warming by minor atmospheric species different from those present in today's atmosphere may have played important roles in the climate of early Earth and Mars.

  2. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  3. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    SciTech Connect

    Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  4. What kept early Earth warm? Examining a diverse range of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Byrne, B.; Goldblatt, C.

    2013-12-01

    Over Earth's history the solar constant has increased from 70% of its current value. Over much of this period evidence has been found for a temperate climate and lack of glaciation. Enhancements in a variety of different greenhouse gases, most of which are biogenic, have been suggested to have kept the early Earth warm. However, different modelling approaches (and some model errors) have hampered comparison of different proposals. Here we present initial results of a project to calculate high-accuracy radiative forcings for all proposed greenhouse gases for early Earth (and some that have not previously been proposed). By reducing uncertainties in the radiative transfer calculations, we hope to push forward the debate on what kept early Earth warm, allowing future work to focus more on what biogeochemical processes controlled atmospheric composition.

  5. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.

    PubMed

    Guibelin, E

    2004-01-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission. PMID:15259957

  6. Methane and other greenhouse gases in the Arctic - Measurements, Process Studies and Modelling (MAMM)

    NASA Astrophysics Data System (ADS)

    Pyle, John; Cain, Michelle; Warwick, Nicola

    2014-05-01

    The Arctic is a major source of atmospheric methane and other greenhouse gases, of both natural and anthropogenic origin. Arctic greenhouse gas sources need to be quantified, by strength, geographic location, character (e.g. wetlands, gas fields, hydrates), and by temporal variation (daily, seasonally and annually), and their vulnerability to change assessed. To this end, the MAMM project was commissioned as part of the NERC Arctic Research Programme. It involves an integrated series of measurement and modelling activities. Analysis of atmospheric gas concentrations, isotopic character, and source fluxes, are being made from both the ground and from the FAAM aircraft. The measurements (historic and new) are being interpreted using a suite of models (trajectory, forward and inverse) to improve the understanding of the local/regional scale, placing the role of Arctic emissions in the context of large-scale global atmospheric change. The first measurement campaign was held in August 2012. Surface flux measurements were made at the Sodankylä research station in Finland, together with in-situ surface and aircraft measurements over a wider area. In addition to flights over the Sodankylä wetlands, the aircraft also flew out to Svalbard to investigate marine sources of methane. Further campaigns are taking place in Sweden in August and September 2013. The initial measurements have been used to infer wetland emission fluxes and confirm that Scandinavian wetlands are a major source of methane in this region. The aircraft also measured a high-CH4 plume over the sea between Norway and Svalbard, which was likely advected from mainland wetland sources. An overview of results from the field campaign will be presented, alongside results from the NAME model (the UK Met Office's Numerical Atmospheric dispersion Modelling Environment) to help understand the air mass histories of the observations.

  7. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    SciTech Connect

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  8. Exchanges of Greenhouse Gases, Water Vapor, and Heat at the Earth's Surface

    NSDL National Science Digital Library

    This report provides an overview of the exchange of greenhouse gases, their influences on climate, viability of ecosystems, distribution of biomes, quantities of surface- and ground-water, and some research projects in place to investigate these influences. Topics include lake-atmosphere carbon dioxide exchange, sequestering and exchange of atmospheric carbon dioxide in boreal and subalpine forests, volcanic carbon dioxide emissions, and the use of the eddy covariance method to measure these exchanges.

  9. Investigating high concentrations of three greenhouse gases in the Los Angeles Basin and San Bernardino Valley

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Blake, D. R.; Marrero, J.

    2013-12-01

    Following the Montreal Protocol of 1987 calling for the phase-out of CFCs and other ozone depleting substances, HCFCs and HFCs were introduced as alternatives despite still being greenhouse gases with high global warming potentials. In this study, whole air samples were collected during four research flights over Southern California aboard the NASA DC-8 Airborne Science Laboratory as part of the NASA Student Airborne Science Program. These samples were then analyzed by gas chromatography using a suite of detectors for many compounds, including HFC-134a, HCFC-22, and HFC-152a. HCFC-22 is primarily used as a refrigerant, while HFC-134a and HFC-152a are also used as aerosol propellants and foam blowing agents. High concentrations of these three compounds were observed for samples taken at low altitudes over urban areas around Los Angeles and San Bernardino. Exceptionally high concentrations were seen for all three compounds in samples taken near the Ontario and San Bernardino airports. Concentrations of HFC-134a, HCFC-22, and HFC-152a were enhanced above background levels near other airports sampled in the Los Angeles Basin and San Bernardino Valley. It is clear that concentrations of these three gases are higher in the San Bernardino Valley than in the Los Angeles Basin, and locations with exceptionally high concentrations were investigated to identify potential point sources. Concentrations of these three compounds were also compared to data from past SARP missions and data collected at Trinidad Head, California since 2005 as part of the AGAGE network. Comparison of the average values for each of these campaigns reveal that the background concentrations of HFC-134a, HCFC-22, and HFC-152a are all increasing with a strong linear trend in Southern California.

  10. Emissions of Greenhouse Gases from Urban Xi'an, China - Direct Measurements by Eddy Covariance

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; VanderSchelden, G.; O'Keeffe, P.; Waldo, S.; Erickson, M. H.; Lamb, B. K.; Jobson, B. T.; Tie, X.; Cao, J.

    2012-12-01

    Throughout the world and especially in Asia, rapid urbanization is resulting in an increasing number of very large cities. In these areas, the rate of development can outpace the perceived need for environmental regulation, and frequently there are inadequate resources available to monitor pollution or enforce compliance with those environmental regulations that do exist. These limitations obviously impact air quality on a local scale, but cities also have significant environmental impacts on regional and even global scales. In order to understand and mitigate these impacts on the surrounding environment, it is first necessary to robustly characterize the pollutant emissions themselves. This can be a significant challenge. Major discrepancies arise when comparing emissions inventories based on bottom-up compilations of source types, number, and activity levels to estimates inferred from satellite observations and other large-scale techniques. Direct measurements of neighborhood-scale emission fluxes via micrometeorological approaches provide a means to resolve these differences. Such measurements can be used to quantify the integrated vertical exchange for a wide variety of greenhouse gases and other pollutants, typically with spatial footprints of tens of square kilometers and with temporal resolutions of ~30 minutes. Here we present the results of an urban flux study conducted in Xi'an, China in August 2011. For the study a 23 m tower was erected atop the ~100 m tall administration building at Xi'an Jiaotong University. From the tower, we employed an eddy covariance approach to measure concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Here we present an analysis of the air-surface exchange of these gases. Results indicate that while our study site in Xi'an was a net source of these species, the greenhouse gas fluxes were significantly smaller than at other sites around the world and exhibited a different diurnal pattern. We attribute these results to two factors: 1) the relatively low traffic density at the Xi'an study site relative to other urban flux sites; and 2) the presence of a large urban park in the northerly sector of the study footprint, where the vegetative sink for CO2 was often greater than anthropogenic sources. Overall the analysis suggests that even in heavily urbanized regions land use and activity profiles can have significant impacts on air pollutant emissions.

  11. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  12. Assessment of Public Perception of Greenhouse Gases as Precursor to Climate Change Mitigation in Nigeria

    NASA Astrophysics Data System (ADS)

    Nwankwo, L.

    2013-12-01

    The rising concentrations of both CO2 and Non-CO2 Greenhouse Gases in the earth's atmosphere are leading to global climate change. The need to address this climate change has gained momentum in recent times, and as a result public awareness of such greenhouse gases serves as a precursor to climatic change mitigation strategy. Therefore, this study entails collection of information about public perception of Climate Change and identification of carbon dioxide, methane, fluorocarbons, and aerosols as contributors to climate forcing. The assessment was completed using conventional survey technique applied amid 1000 people in Ilorin metropolis, Nigeria. The results show 34.9%, 23.6%, 4.5%, 12.3% and 0.2% levels of recognition or understanding of climate change, carbon dioxide, methane, fluorocarbons and aerosols respectively. The results reveal that public awareness of climate change is low in the study area, while Non-CO2 Greenhouse Gases as contributor to Climate Change is extremely low compared to CO2. The study is a preliminary effort to elicit public views and therefore, would assist decision makers and enhance communication with the public in the context of Science and Environment Policy.

  13. Greenhouse gases, climate change and the transition from coal to low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Myhrvold, N. P.; Caldeira, K.

    2012-03-01

    A transition from the global system of coal-based electricity generation to low-greenhouse-gas-emission energy technologies is required to mitigate climate change in the long term. The use of current infrastructure to build this new low-emission system necessitates additional emissions of greenhouse gases, and the coal-based infrastructure will continue to emit substantial amounts of greenhouse gases as it is phased out. Furthermore, ocean thermal inertia delays the climate benefits of emissions reductions. By constructing a quantitative model of energy system transitions that includes life-cycle emissions and the central physics of greenhouse warming, we estimate the global warming expected to occur as a result of build-outs of new energy technologies ranging from 100 GWe to 10 TWe in size and 1-100 yr in duration. We show that rapid deployment of low-emission energy systems can do little to diminish the climate impacts in the first half of this century. Conservation, wind, solar, nuclear power, and possibly carbon capture and storage appear to be able to achieve substantial climate benefits in the second half of this century; however, natural gas cannot.

  14. Greenhouse Gases and Gas-Water-Rock Interactions at the Surface of Early Mars

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.; Bass, D. S.

    1998-09-01

    Consideration of multiphase equilibria is required to make realistic speculations of conditions on early Mars and can provide indications of modern exploration targets to aid characterization of that remote environment. Greenhouse gases are proposed to sustain elevated surface temperatures compatible with geomorphologic evidence for the stability of liquid water on early Mars. CO2 is commonly invoked as a greenhouse gas at pressures up to 5 bars or more, e.g., [1]. However, solid-gas equilibria show that CO2 pressure is limited by formation of CO2 ice in the upper atmosphere for surface pressure of 2 bars [2]. Recently, SO2 at 10-7 bar in a 2 bar CO2 atmosphere (0.1 ppmv SO2) has been postulated to augment warming in the upper atmosphere on early Mars [3], which could inhibit CO2 precipitation. However, oxidation of SO2 would produce sulfuric acid which dissolves in liquid water and attacks rock components, producing metal sulfate solutions and precipitating gypsum (CaSO4-2H2O). Occurrence of gypsum in SNC meteorites demonstrates conditions permitting oxidation of SO2 on Mars [4]. Equilibrium aqueous speciation calculations show that at low O2 pressure, 10-11 bar of SO2 (i.e., 4 orders of magnitude less than proposed) at equilibrium with water generates sulfuric acid of pH 0.5. Reaction path calculations indicate that silicate minerals would dissolve rapidly in this solution with precipitation of a silica phase, clay minerals, and gypsum. Precipitation of gypsum would deplete atmospheric SO2. These multiphase interactions demonstrate that greenhouse stabilization of liquid water due to an SO2 pressure of 10-7 bar is incompatible with a realistic water-rock system. In the absence of elevated concentrations of atmospheric SO2, at elevated CO2 pressure, and at near neutral pH, geochemical equilibrium models predict that the mineral nahcolite (NaHCO3) may precipitate as a consequence of gas-water-rock interactions. If observed, this mineral could be used together with other constraints as a paleo-CO2 barometer for Mars. 1. Pollack et al., 1987 Icarus 71, p. 203-224. 2. Kasting, 1991 Icarus 94, p. 1-13. 3. Yung et al., 1997. Icarus 130, p. 222-224. 4. Gooding et al., 1991. Meteoritics 26, p. 135-143.

  15. A new fully automated FTIR system for total column measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.

    2010-10-01

    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON). It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control. First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  16. A fully automated FTIR system for remote sensing of greenhouse gases in the tropics

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.

    2010-07-01

    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. First results of total column measurements at Jena, Germany show that the instrument works well and can provide diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  17. Metrology for laser spectroscopic concentration and isotope ratio measurements of atmospheric greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis; Manninen, Albert; Mohn, Joachim; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2015-04-01

    Continuous, accurate and precise measurements of greenhouse gases (GHG) and their isotopic composition are required to understand the global cycle as well as source and sink processes of these environmentally harmful substances. Part of the EMRP project HIGHGAS (Metrology for high-impact greenhouse gases) [1] focuses on spectroscopic methods for GHG isotopic composition measurements and optical transfer standards. Harmonization of terminologies and concepts used in the GHG measurement communities and the metrology community are in focus, especially for isotope ratio measurements by laser spectroscopy, where gas metrology is still at an early stage. The focus of the HIGHGAS project here is on 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O and 13C/12C and 2H/1H ratios in CH4. As an alternative and complement of gas mixture standards, optical spectroscopic transfer standards for CO2 and CO shall be developed providing concentration results that are directly traceable to the international system of units (SI). Optical transfer standards offer an alternative in situ calibration route for other GHG measurement devices operating in the field. An optical transfer standard becomes particularly interesting when measuring sticky or reactive gases where cylinder-based reference gas mixtures may not be feasible. We present an approach to perform IR-spectrometry on gases with results directly traceable to the SI. This is crucial for the development of optical spectroscopic transfer standards providing SI-traceability to field measurements. Ideas for spectroscopic isotope ratio measurements aiming at SI-traceability will be discussed. Finally, we demonstrate the current performance and limitations of our measurement approaches and project possible solutions. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] EMRP project ENV52-HIGHGAS (Metrology for high-impact greenhouse gases), available at: http://www.euramet.org/

  18. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  19. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02

  20. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  1. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Morgan, E. J.; Lavri?, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  2. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  3. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period. PMID:21780575

  4. Shipboard monitoring of non-CO2 greenhouse gases in Asia and Oceania using commercially cargo vessels

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Mukai, H.; Nojiri, Y.; Tohjima, Y.; Machida, T.; Hashimoto, S.

    2011-12-01

    The National Institute for Environmental Studies (NIES) has been performing a long-term program for monitoring trace gases of atmospheric importance over the Pacific Ocean since 1995. The NIES Voluntary Observing Ships (NIES-VOS) program currently makes use of commercial cargo vessels because they operate regularly over fixed routes for long periods and sail over a wide area between various ports (e.g., between Japan and the United States, between Japan and Australia/New Zealand, and between Japan and southeast Asia). This program allows systematic and continuous measurements of non-CO2 greenhouse gases, providing long-term datasets for background air over the Pacific Ocean and regionally polluted air around east Asia. We observe both long-lived greenhouse gases (e.g., carbon dioxide) and short-lived air pollutants (e.g., tropospheric ozone, carbon monoxide) on a continuous basis. Flask samples are collected for later laboratory analysis of carbon dioxide, methane, nitrous oxide, and carbon monoxide by using gas chromatographic techniques. In addition, we recently installed cavity ringdown spectrometers for high-resolution measurement of methane and carbon dioxide to capture their highly variable features in regionally polluted air around southeast Asia (e.g., Hong Kong, Thailand, Singapore, Malaysia, Indonesia and Philippine), which is now thought to be a large source due to expanding socioeconomic activities as well as biomass burnings. Contrasting the Japan-Australia/New Zealand and Japan-southeast Asia cruises revealed regional characteristics of sources and sinks of these atmospherically important species, suggesting the existence of additional sources for methane, nitrous oxides, and carbon monoxide in this tropical Asian region.

  5. Emission inventory for greenhouse gases in the City of Barcelona, 1987-1996

    NASA Astrophysics Data System (ADS)

    Baldasano, José M.; Soriano, Cecilia; Boada, Lluís.

    Emissions of greenhouse gases for the City of Barcelona are estimated for the period 1987-1994. The sources considered are: public and private transportation; industrial, commercial and domestic activities; and municipal solid waste disposal. The results show that the main source of CO 2 emissions in Barcelona is private vehicle transportation, which accounts, as an average for the period studied, for 35% of total emissions. The second most important source is the municipal solid waste landfill facility of the city (24% of total emissions). The percentages for the remaining sources under consideration were: 14% electricity, 12% natural gas, 5% incineration, and 3% liquefied petroleum gases. However, the values for CO 2 emissions per inhabitant over the period studied are lower than those for any other industrialized city available for comparison. This is closely related to the high percentage of electricity generation from nuclear power stations and hydro power facilities, and also to the extensive use of natural gas for domestic uses.

  6. Laboratory technique for the measurement of thermal-emission spectra of greenhouse gases: CFC-12

    NASA Astrophysics Data System (ADS)

    Evans, W. F. J.; Puckrin, E.

    1996-03-01

    A new technique has been developed to make possible the laboratory study of the infrared-emission spectra of gases of atmospheric interest. The thermal-emission spectra are in local thermodynamic equilibrium, just as they are in the atmosphere, and are not chemiluminescent. Demonstration results obtained by the use of this new technique are presented for dichlorodifluoromethane (CFC-12) at a pressure of 0.5 Torr in a cell with a path length of 5 cm. The measured cell spectra have been compared with simulations with the fascd3p radiation code. The measurements of the emission spectra of radiatively active gases may be important for the atmospheric greenhouse effect and global warming.

  7. Atmospheric Removal of Very Long-lived Greenhouse Gases in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Totterdill, A.; Kovacs, T.; Gomez Martin, J.; FENG, W.; Chipperfield, M.; Plane, J. M.

    2013-12-01

    Chlorofluorocarbons are known to have serious ozone depleting and global warming potentials. Perfluorinated compounds such as SF6, NF3, SF5CF3 and CF3CF2Cl which have very long lifetimes (ranging from a few centuries to over 3000 years) are too stable to affect stratospheric ozone but do have among the highest per molecule radiative forcing of any greenhouse pollutant, making them extremely potent greenhouse gases. Due to the stability of these gases in the lower atmosphere, mesospheric loss processes could significantly reduce their estimated atmospheric lifetimes and hence, overall climate impact. Potential sinks include reactions with metals and energetic particles such as electrons or short wavelength photons already present in the upper atmosphere. The metals, in this instance iron, sodium or potassium, are produced by meteoric ablation, while background and energetic electrons have the continuous source of photoionization and auroral precipitation, respectively. In this study we investigate the removal potentials of four very long lived gases (SF6, NF3, SF5CF3 and CF3CF2Cl). First, by four metals (Fe, Mg, Na and K), where rate coefficients are measured using the Fast Flow Tube and Pulsed Laser Flash Photolysis / Laser Induced Fluorescence techniques. Second, removal by electron attachment was investigated using a quadrupole mass spectrometer. measurements. Third, Lyman-alpha (121.56 nm) photolysis was measured in a VUV absorption cell. The resulting removal rate coefficients are currently being input into the Whole Atmosphere Community Climate Model (WACCM) to obtain lifetime measurements for these species.

  8. From SO{sub 2} to greenhouse gases: trends and events shaping future emissions trading programs in the United States

    SciTech Connect

    Joseph Kruger

    2005-06-15

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the US SO{sub 2} and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs or other initiatives that may set precedents for a future national US greenhouse gas trading scheme. This paper summarizes the literature on the 'lessons learned' from the SO{sub 2} trading program for greenhouse gas trading, including lessons about the potential differences in design that may be necessary because of the different sources, science, mitigation options, and economics inherent in greenhouse gases. The paper discusses how the programs and initiatives mentioned above have been shaped by lessons from past trading programs and whether they are making changes to the SO{sub 2} model to address greenhouse gases. It concludes with an assessment of the implications of these initiatives for a future US national greenhouse gas trading program. 91 refs., 2 tabs.

  9. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines

    SciTech Connect

    Not Available

    1994-10-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

  10. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    PubMed

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ? -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included in this study. PMID:23441917

  11. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Bergamaschi, P.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Deutscher, N. M.; Griffith, D. W. T.; Heymann, J.; Macatangay, R.; Messerschmidt, J.; Notholt, J.; Rettinger, M.; Reuter, M.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2011-10-01

    SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the SCIAMACHY and CarbonTracker carbon dioxide annual increases (2.00 ± 0.16 ppm yr-1 compared to 1.94 ± 0.03 ppm yr-1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision of about 2.2 ppm and a relative accuracy of 1.1-1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb with respect to model simulations for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and less methane retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10-20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.

  12. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Bergamaschi, P.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Deutscher, N. M.; Griffith, D. W. T.; Heymann, J.; Macatangay, R.; Messerschmidt, J.; Notholt, J.; Rettinger, M.; Reuter, M.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.

    2012-02-01

    SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr-1 compared to 1.94 ± 0.03 ppm yr-1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences) of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences) of 1.1-1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10-20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.

  13. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change

    Microsoft Academic Search

    Timothy Searchinger; Ralph Heimlich; R. A. Houghton; Fengxia Dong; Amani Elobeid; Jacinto F. Fabiosa; Simla Tokgoz; Dermot J. Hayes; Tun-Hsiang Yu

    2008-01-01

    Most prior studies have found that substituting biofuels for gasoline will reduce greenhouse gases because biofuels sequester carbon through the growth of the feedstock. These analyses have failed to count the carbon emissions that occur as farmers worldwide respond to higher prices and convert forest and grassland to new cropland to replace the grain (or cropland) diverted to biofuels. By

  14. Greenhouse Gases Emission from Land Application of Swine Waste Water: A Comparison of Three Different Swine Slurry Application Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities (including land application of animal manures) account for about 20% of the total human induced global warming budget due to emissions of greenhouse gases (GHG). Recently, there has been an increasing emphasis on controlling these emissions from livestock operations. One of...

  15. Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region

    Microsoft Academic Search

    E. Duchemin; M. Lucotte; R. Canuel; A. Chamberland

    1995-01-01

    The emission fluxes and the distribution of dissolved methane (CH4) and carbon dioxide (CO2) were determined for 11 sampling stations in two hydroelectric reservoirs (flooded since 1978 and 1993) located in the James Bay territory of northern Québec. The measured benthic fluxes for the two greenhouse gases were found to be either higher or similar to those determined at the

  16. Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano

    2013-07-01

    Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.

  17. Response of different Earth System Models to ramp-up/ramp-down greenhouse gases concentration trajectory

    NASA Astrophysics Data System (ADS)

    Sgubin, Giovanni; Swingedouw, Didier

    2013-04-01

    It has been relatively well established that, in the past, large abrupt and irreversible changes in the climate have consistently occurred when the climate system crossed certain thresholds. Given the massive amount of greenhouse gases released by human activities, which will further increase in the coming decades, it is crucial to evaluate the reversibility and inertia of the climate system in response to such an anthropogenic perturbation. Indeed, a few model projections have shown that the human contribution to greenhouse gases emission is likely to force the climate system towards potentially risky thresholds, which could dramatically alter the Earth's climate. In order to evaluate the robustness of such a scenario, we compare model results from 4 different state-of-the-art European EMSs (EC-EARTH, HadGEM2, IPSL-CM5-LR, MPI-ESM) in response to the same increase and decrease of anthropogenic forcing. More specifically, 95 years of ramp-up simulations based on the CMIP5 RCP8.5 scenario (where the radiative forcing value is gradually increased up to 8.5 W/m2) are followed by 95 years of ramp-down simulations (where the radiative value is reduced at the same rate down to its initial value). The response and the inertia of the climate system are investigated and the possibility of abrupt and/or (ir)reversible climatic changes are analysed in the different models. In particular, the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) under the ramp-up/ramp-down is addressed and its relation to the evolution of other physical parameters is pointed out. Indeed, the stability of the AMOC, which is believed to lay in a monostable or bistable regime depending on the mean climate state, is controlled by different feedback mechanisms. A classical diagnostic for determining the transition between the single and multiple equilibria regime of the AMOC is the sign of the meridional freshwater transport at 30°S in the Atlantic. We therefore outline the response of advective salt feedback under radiative forcing and we evaluate the potential existence of multiple equilibria of the AMOC for the different models considered, a key issue in evaluating the possible proximity of a critical climatic threshold.

  18. Long open path Fourier transform spectroscopy measurements of greenhouse gases in the near infrared

    NASA Astrophysics Data System (ADS)

    Griffith, David; Pöhler, Denis; Schmidt, Stefan; Hammer, Samuel; Vardag, Sanam; Levin, Ingeborg; Platt, Ulrich

    2015-04-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. But how representative are in situ measurements at one point in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. With what precision, accuracy and reliability can such measurements be made? Building on our pooled experience in ground-level open path Fourier transform spectroscopy and TCCON solar FTS in the infrared (Wollongong) and long path DOAS techniques in the UV-visible (Heidelberg), we set up a new type of open path measurement system across a 1.5 km one-way path in urban Heidelberg, Germany, using FTS in the near infrared. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability, and avenues for further improvements and extensions. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due only to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision.

  19. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  20. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  1. Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution.

    PubMed

    Eisted, Rasmus; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    The collection, transfer and transport of waste are basic activities of waste management systems all over the world. These activities all use energy and fuels, primarily of fossil origin. Electricity and fuel consumptions of the individual processes were reviewed and greenhouse gases (GHG) emissions were quantified. The emission factors were assigned a global warming potential (GWP) and aggregated into global warming factors (GWFs), which express the potential contribution to global warming from collection, transport and transfer of 1 tonne of wet waste. Six examples involving collection, transfer and transport of waste were assessed in terms of GHG emissions, including both provision and use of energy. (GHG emissions related to production, maintenance and disposal of vehicles, equipment, infrastructure and buildings were excluded.) The estimated GWFs varied from 9.4 to 368 kg CO(2)-equivalent (kg CO(2)-eq.) per tonne of waste, depending on method of collection, capacity and choice of transport equipment, and travel distances. The GHG emissions can be reduced primarily by avoiding transport of waste in private cars and by optimization of long distance transport, for example, considering transport by rail and waterways. PMID:19808734

  2. The Role of Carbon Management Technologies in Addressing Atmospheric Stabilization of Greenhouse Gases

    SciTech Connect

    Edmonds, James A. (BATTELLE (PACIFIC NW LAB)); Freund, Paul F. (WASTE MANAGEMENT); Dooley, James J. (BATTELLE (PACIFIC NW LAB)); David Williams, Bob Durie, et. al.

    2002-08-10

    Recent progress in decarbonization processes and engineered storage systems for CO2, together with preliminary cost estimates for these technologies, indicate that capture and storage of CO2 will have a major role to play in achieving deep reductions in emissions. These technologies hold the potential to reduce the cost of stabilizing the concentration of greenhouse gases, the ultimate objective of the UN Framework Convention on Climate Change (FCCC). Their value rises as the allowable level of cumulative carbon emissions declines. The value of these technologies is robust regardless of whether the world's economically recoverable oil and gas resources are eventually found to be large or small. This paper considers the economic implication of those advances in the context of long-term, global climate change mitigation strategies. This indicates the need for a broad, robust research and development strategy to reduce the cost of separating CO2 and to make accessible the widest range of storage reservoirs. It is also important to demonstrate excellent security of storage, in order to win public acceptance of the use of capture and storage techniques.

  3. The increase of Southern Ocean winds and SAM: is it caused by the ozone hole or by increased greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Roscoe, H. K.

    2010-12-01

    The amplitude of the Southern Annular Mode of variability in sea level pressure has increased significantly since station records began in the late 1950s. As expected, this has led to an increase in surface winds over the Southern Ocean in meteorological analyses. Roscoe & Haigh (2007), using data to 2006, showed that the increase in SAM correlated at high significance with both the ozone hole and the increase in greenhouse gases, but the correlation with the ozone hole was more significant. However, it was difficult to quantify the meaning of this greater significance because of the then similarity between the trends in greenhouse gases and the ozone hole - the esoteric statistical concepts associated with the Akaike Information Criterion had to be used. Now the trends have diverged significantly, so the update presented here allows us to quantify the greater degree of significance of the ozone hole, using the more familiar statistical method of Student’s t-test.

  4. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect

    Kao, C.Y.J.; Morz, E. (Los Alamos National Lab., NM (United States)); Tie, X. (Scripps Institution of Oceanography, San Diego, CA (United States))

    1991-11-01

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth's radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  5. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect

    Kao, C.Y.J.; Morz, E. [Los Alamos National Lab., NM (United States); Tie, X. [Scripps Institution of Oceanography, San Diego, CA (United States)

    1991-11-01

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth`s radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  6. From SO2 to Greenhouse Gases: Trends and Events Shaping Future Emissions Trading Programs in the United States

    Microsoft Academic Search

    Joseph Kruger

    2005-01-01

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the U.S. SO2 and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs

  7. Factors Promoting a Cool Cambrian Climate: Role of Land Surface Conditions and Atmospheric Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Shellito, L. J.

    2011-12-01

    In light of recent work suggesting episodic cooling during the Late Cambrian (~500 Ma), an Earth System Model of Intermediate Complexity is utilized to evaluate the roles of Late Cambrian continental configuration, mountain height, and atmospheric CO2 concentration on Earth's climate. The Planetary Simulator (PLASIM), developed at the Meteorological Institute of the University of Hamburg, is utilized at T21 spectral resolution (5.6° latitude x 5.6° longitude) with a 50 m deep slab ocean in four experiments. The first three experiments are run with a Late Cambrian continental configuration. Two experiments are run with an atmospheric CO2 concentration of 10 x pre-industrial (2800 ppm). This is in the range estimated for the Late Cambrian by carbon cycle modeling studies. One of these experiments utilizes a flat topography (CAMB_FLAT), and the other, includes mountains (CAMB_MTN). A third experiment is identical to CAMB_MTN, but CO2 is set to 280 ppm (CAMB_COLD). All Cambrian experiments are integrated without any vegetation, and with solar luminosity reduced by 6%. The Cambrian experiments also utilize a uniform land surface boundary condition consisting of sand with an albedo of 0.37. A fourth scenario was run with pre-industrial boundary conditions (modern geography and vegetation and 280 ppm CO2) as a control experiment (CONTROL). Despite the high level of CO2, global average temperatures in CAMB_FLAT and CAMB_MTN are cooler than that of CONTROL. In CAMB_COLD, the oceans freeze over completely and 'snowball Earth' conditions are present. These results highlight the importance of vegetation, land surface albedo, and continental position in maintaining an equable climate in modern times. They also suggest that a drop in greenhouse gases during the Cambrian, whether due to reduced natural emissions from biologic or volcanic sources, or an increase in biologic activity in the oceans, could have been responsible for the initiation of cooler climatic conditions.

  8. Impact of Historical Changes in Well-Mixed Greenhouse Gases on Tropospheric Composition

    NASA Astrophysics Data System (ADS)

    Naik, V.; Horowitz, L. W.; Ramos-Garces, F.; Schwarzkopf, M. D.; Fang, Y.

    2013-12-01

    Concentrations of well-mixed greenhouse gases (WMGGs), including ozone depleting substances (ODSs), have increased dramatically since the preindustrial times. Increases in WMGGs affect tropospheric chemistry either directly by acting as precursors for tropospheric constituents (e.g., methane (CH4) is a precursor to tropospheric ozone), or indirectly by changing climate (e.g., temperature, humidity), atmospheric dynamics and stratospheric ozone. Here, we investigate the relative contributions of combined and individual increases in carbon dioxide (CO2), CH4, nitrous oxide (N2O) and ODSs on tropospheric chemistry over the historical period (1860-2005) by applying transient sensitivity simulations of the GFDL coupled chemistry-climate model (CM3) with combined stratospheric-tropospheric chemistry. We examine changes in tropospheric ozone and its budget, tropospheric oxidizing capacity, tropopause height, and age of air resulting from changes in chemistry and dynamics induced by WMGGs. Preliminary results indicate that preindustrial to present day increases in CH4 and CO2 lead to increases in total ozone column (TOC) while N2O and ODS increases cause TOC to decrease - qualitatively consistent with previous studies. The zonal mean vertical structure of preindustrial to present day ozone changes from increases in WMGGs individually differs markedly. CO2 increases lead to tropospheric ozone decrease in the tropics with maximum decrease in the vicinity of the tropical tropopause and a uniform stratospheric ozone increase. CH4 increases cause uniform tropospheric ozone increase and lower to mid stratospheric ozone increase. Increases in N2O and ODSs, on the other hand, lead to stratospheric ozone loss with small reductions in tropospheric ozone. By examining changes in a suite of diagnostics, including tropospheric ozone budget terms, tropopause height, stratospheric chemical species, and age of air, we will elucidate the roles of chemistry and atmospheric dynamics in driving tropospheric composition changes from WMGG increases.

  9. Analysis of air pollution and greenhouse gases. Initial studies, FY 1991

    SciTech Connect

    Benkovitz, C.M.

    1992-03-01

    The current objective of the project ``Analysis of Air Pollution and Greenhouse Gases`` is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

  10. A Next-Generation Space Geodetic Technique: Profiling of Greenhouse Gases and Climate by Microwave and Infrared-Laser Occultation

    NASA Astrophysics Data System (ADS)

    Kirchengast, G.; Schweitzer, S.; Proschek, V.

    2012-04-01

    Since the pioneering GNSS radio occultation (GRO) mission GPS/Met in the mid-1990ties, and fostered by many missions since then such as CHAMP, Formosat-3/COSMIC and others, the GRO method was firmly established as a leading space geodetic technique. GRO provides vital contributions to meteorology and climate applications, like numerical weather prediction and climate change monitoring, and a range of those are covered in this session. Building on this success, further advanced techniques for future missions and science applications emerge beyond GRO. In particular, next-generation occultation between Low Earth Orbit satellites (LEO-LEO) uses GNSS-type coherent signals beyond the GRO decimeter waves at centimeter, millimeter, and micrometer wavelengths. This new technique, termed LEO-LEO microwave and infrared-laser occultation (LMIO), enables to vastly expand from the GRO refractivity-based sounding of the thermodynamic structure to a complete set of weather and climate variables, including thermodynamic ones (pressure, temperature, water vapor), greenhouse gases, wind speed, and others (Kirchengast and Schweitzer, GRL, 38, L13701, 2011; www.agu.org/pubs/crossref/2011/2011GL047617.shtml). LMIO combines microwave occultation signals at cm and mm wavelengths (within 8-25 GHz and 175-200 GHz) for thermodynamic state profiling with infrared-laser occultation signals within 2 to 2.5 ?m for greenhouse gas and line-of-sight wind profiling; greenhouse gases include water vapor (H2O), the three key long-lived ones (CO2, CH4, N2O) and others. We present the fundamentals and discuss the estimated performance of LMIO-based thermodynamic state and greenhouse gas profiling, including from quasi-realistic end-to-end performance simulations considering also clouds and aerosols. To indicate the performance, we found monthly-mean temperature and greenhouse gas profiles, assuming 30 to 40 native profiles averaged per climatological "grid cell" per month, accurate to

  11. Ground-based demonstration of imaging SWIR-FTS for space-based detection of air pollution and greenhouse gases

    NASA Astrophysics Data System (ADS)

    Imai, Tadashi; Murooka, Jumpei; Kuze, Akihiko; Suto, Hiroshi; Sato, Ryota

    2013-10-01

    Fourier transform spectrometer (FTS) has many advantages, especially for greenhouse gases and air pollution detection in the atmosphere, because a single instrument can provide wide spectral coverage and high spectral resolution with highly stabilized instrumental line function for all wavenumbers. Several channels are usually required to derive the column amount or vertical profile of a target species. Near infrared (NIR) and shortwave infrared (SWIR) spectral regions are very attractive for remote sensing applications. The GHG and CO of precursors of air pollution have absorption lines in the SWIR region, and the sensitivity against change in the amounts in the boundary layer is high enough to measure mole fractions near the Earth surface. One disadvantage of conventional space-based FTS is the spatial density of effective observation. To improve the effective numbers of observations, an imaging FTS coupled with a two-dimensional (2D)-camera was considered. At first, a mercury cadmium telluride (MCT)-based imaging FTS was considered. However, an MCT-based system requires a calibration source (black body and deep-space view) and a highly accurate and super-low temperature control system for the MCT detector. As a result, size, weight, and power consumption are increased and the cost of the instrument becomes too high. To reduce the size, weight, power consumption, and cost, a commercial 2D indium gallium arsenide (InGaAs) camera can be used to detect SWIR light. To demonstrate a small imaging SWIR-FTS (IS-FTS), an imaging FTS coupled with a commercial 2D InGaAs camera was developed. In the demonstration, the CH4 gas cell was equipped with an IS-FTS for the absorber to make the spectra in the SWIR region. The spectra of CH4 of the IS-FTS demonstration model were then compared with those of traditional FTS. The spectral agreement between the traditional and IS-FTS instruments was very good.

  12. The effect of water oxygen content on the production of greenhouse gases from shallow pond sediments

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Shallow lakes and ponds, including those commonly found in agricultural landscapes are often only a few metres deep, with surface areas <1ha. Despite this, landscapes may contain a high number of these ponds, amounting to a considerable cumulative surface area. Many of these features, both naturally formed and man-made, receive and trap runoff with high nutrient and sediment loadings. As such, the potential for the production of greenhouse gases (GHGs) through biogeochemical cycling in the pond sediments may be significant. Furthermore, the abundance of available nutrients coupled with the shallow physical characteristics of these systems, mean that short, irregular eutrophic episodes during the summer are common, causing large fluctuations in the oxygen content of the overlying water column. The oxygen content of the water column is often cited as key factor in the production of GHGs in large lake and reservoir systems. Given the limited research focusing on shallow ponds/lakes, and potential for these systems to be important sources of GHGs, the impacts of variable water oxygen content should be investigated. Here we present the results from a sediment microcosm experiment utilising sediment cores from an agricultural pond system in Cumbria, UK. Intact sediment cores were incubated in the dark at in-situ temperature and continuously fed with filtered pond water for 2 weeks. During this time the oxygen content of the water was manipulated between fully oxygenated and anaerobic. Measurements of GHG release were based on calculated dissolved gas concentrations present in the water columns of these cores. Results indicated that during times of water column anoxia, production of methane and carbon dioxide increased significantly, despite the presence of substantial quantities of nitrate in the water columns. No change in N2O production was detected. These results indicate that while representing a significant cumulative carbon store in agricultural landscapes, shallow pond and lake systems can contribute to emission of GHGs. Furthermore, the physical and ecological characteristics of these systems have the potential to significantly increase the quantity of gas produced. This understanding will be valuable when constraining both freshwater and agricultural GHG budgets.

  13. A Projection of the Impact of the Climate Change induced by Increased Greenhouse Gases on the Hydroclimate of East Asia

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jung, H.; Mechoso, C. R.; Jones, R.; Hein, D.

    2005-12-01

    The authors present a projection of the regional-scale climate change signals in East Asia induced by increased atmospheric greenhouse gases (GHGs) obtained by downscaling the global climate change scenarios generated by HadAM3P using the MAS model. The impact of the climate change induced by the increases in the atmospheric GHGs on the water cycle in East Asia is an important concern. The large population base and rapidly growing industrial activities in the region have been susceptible to the variations in water cycle that affect the frequency of weather-related natural disasters as well as water resources to sustain them. Hence, projections of future water cycle are crucial for planning for sustainable developments in the region. We compare the results from three 30-year long simulations. One represents today's climate (1961-1990) and the other two represent the future climate for the period 2071-2100 based on the SRES-A2/B2 emission scenarios (Nakicenovic et al. 2000), respectively. The downscaled control climate represents reasonably the characteristics of the climatology from observational data. In particular, the dynamical downscaling could improve warm season rainfall in the region compared to the GCM simulations. The seasonal mean temperature signal ranges 1-8 K, with larger increases in the high latitude regions which is consistent with other studies (e.g., IPCC 2001). The rainfall signals suggest increases (decreases) in summer rainfall in southern China, northern Mongolia, northern Manchuria, Korean Peninsula and Japan Islands (northern China and the South China Sea). We will also present the impact of increased GHGs on important hydrological characteristics such as the frequency of extreme events.

  14. Optimization Model for Reducing Emissions of Greenhouse Gases from Automobiles (OMEGA)

    EPA Science Inventory

    The EPA Vehicle Greenhouse Gas (VGHG) model is used to apply various technologies to a defined set of vehicles in order to meet a specified GHG emission target, and to then calculate the costs and benefits of doing so....

  15. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.; Solomon, Susan

    2014-04-01

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends in both ozone and temperature. We do so by analyzing polar cap ozone and temperature trends in reanalysis data: these clearly suggest that both trends are mainly driven by ODS in the lower stratosphere. This observation-based finding is supported by results from a stratosphere-resolving chemistry-climate model driven with time-varying ODS and WMGHG, specified in isolation and in combination. Taken together, these results provide strong evidence that ODS are the main driver of changes in the Arctic lower stratospheric temperatures and ozone, whereas WMGHG are the primary driver of changes in the upper stratosphere.

  16. Quantifying Emissions of Greenhouse Gases from South Asia Through a Targeted Measurement

    E-print Network

    hexafluoride (SF6) are powerful green- house gases with global budgets that are well-known but regional of concentrations at Darjeeling to surface emissions. The effect of topography on the derived air histories

  17. Greenhouse gases in the South Atlantic Ocean: recent trends and anomalies from continuous island and shipboard measurements

    NASA Astrophysics Data System (ADS)

    Lowry, David; Fisher, Rebecca; Lanoisellé, Mathias; France, James; Nisbet, Euan

    2013-04-01

    In-situ observation of tropical and southern Atlantic greenhouse gases is still limited. Continuous high-precision greenhouse gas measurement by CRDS in the South Atlantic started in 2010 on Ascension Is. (8° S) and near Stanley on East Falkland Is. (52° S), and in 2012 on the British Antarctic Survey ship RRS James Clark Ross, which sails annually from the UK to Antarctica and back. Both the Ascension and Falklands records show sustained inter-annual growth in both CO2 and CH4. NOAA data from a small number of stations indicate that Southern Tropical Methane has been increasing since 2007 but that growth is now slowing. This is confirmed by our new data. Strong CH4 growth of 11 ppb was observed on Ascension between July 2010 and July 2011 (winter to winter), of 7 ppb/yr from Jan 2011 to Jan 2012 (summer-to-summer) and decreased further to 4 ppb from July 2011 to July 2012. This compares with a fairly constant growth of 4-5 ppb/yr for the Falklands site. Isotopic evidence for the causes of the 2010-11 southern hemisphere sub-tropical methane anomaly is inconclusive. A slight depletion in 13C on Ascension during the period of growth might indicate that wetland emissions are the dominant cause of the anomaly, fitting with much higher than average sub-tropical rainfall during recent years, but a much longer data set is required to isolate the anomaly from the long-term trend. On 23 April 2011, Ascension experienced a 20-year event when the ITCZ moved far south of its normal position. In very clean marine air, in the space of 3 minutes the methane jumped from a normal autumn southern hemisphere level of 1763 ppb to 1795 ppb, closer to the concentrations of northern hemisphere spring, settling near to 1800 ppb for six hours, after which it rapidly fell back to 1760 ppb. Simultaneously CO2 rose from 389 to about 392 ppm, then to 396 ppm before falling back to 388 ppm. During this period there was very heavy rainfall, with nearly 300 mm on the slopes of Green Mountain and more than 200 mm in surrounding desert areas. The 35 ppb magnitude of this methane switch compares with a magnitude of 55 ppb (1825 to 1770 ppb) observed by continuous measurement on-board the James Clark Ross when crossing the ITCZ from 8° N to 8° S in October 2010. In this event, high altitude Northern hemisphere air was moving SE over NW moving trade winds until the storm brought high level air to ground level. The observations highlight the usefulness of continuous measurement at such a site and demonstrate that the meteorological boundary between the hemispheres can on occasion be very sharp.

  18. Sugarcane field renovation: influence of tillage and no-tillage in the emission of greenhouse gases (GHG).

    NASA Astrophysics Data System (ADS)

    Packer, Ana Paula; Degaspari, Iracema A. M.; Ramos, Nilza Patricia; Vilela, Viviane A. A.; do Carmo, Janaina B.; Cabral, Osvaldo M. R.; Rossi, Paulo; de Andrade, Cristiano A.

    2015-04-01

    The management of agricultural soils can play an important role in the greenhouse gases (GHG) balance, depending on the adopted practices. In the agricultural system, current GHG emissions generated by anthropogenic activities include land use, land use change and management practices, which have contributed to disrupt the C and N cycles in terrestrial ecosystems. The GHG (CO2, N2O and CH4) emissions from agricultural soils depend on the biophysical processes, and the incorporation/decomposition of organic residues. Agricultural soils preparation requires a combination of several implements, which can produce great soil disturbance as is the case of conventional tillage or minimum soil mobilization in the reduced tillage or no-tillage. Tillage breaks soil aggregates leading to enhanced organic matter decomposition and reduced C and N concentrations and no-tillage increases the stability of soil macroaggregates, reducing the emissions of CO2. In this study, we evaluated the CO2 emissions from different management practices widely used in the renewal of sugarcane fields previously planted with soybean, in an Acric Oxisol plantation in the southeast region of Brazil. The conventional tillage (CT) operation consisted of an offset disk harrowing using a tool with 36 disks x 26" and a subsoiling with an implement reaching nearly 50 cm depth. The reduced tillage (RT) was carried out with subsoiling operation in the row planting and in the no-tillage (NT), the soybean trash from the last harvest was left on the soil. The soil preparation and the establishment of four experimental plots (30 m x 30 m each) occurred within two days. During the studied period, two CO2 and N2O emission peaks were observed after the soil preparation, the first one on day 4 and the second on day 35 after a 55 mm rain. The cumulative emissions were measured during 40 days after soil preparation. We observed higher emissions in the conventional tillage (CT), and lower values in the reduced tillage (approximately 10%) and non-tillage (approximately 20%) areas. Considering the expansion of sugarcane area in 320,000 hectares during the next sugarcane season (2014/2015), the NT management practice compared to the CT could reduce the emissions of CO2 and N2O in approximately 0.2 - 0.6 T g of CO2 eq.

  19. Sources of greenhouse gases and carbon monoxide in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent with the weaker seasonality of CH4 fluxes compared with CO and CO2. Annual estimates of CO2 emissions (41 kt km-2) obtained by EC were consistent with data upscaled from the London Atmospheric Emissions Inventory (LAEI; 46 kt km-2). Good agreement between measurements and inventory data was also found for CO (measured 156 t km-2; LAEI 145 t km-2) and for N2O (measured 0.36 t km-2; LAEI 0.42 t km-2), although based on a much shorter measurement period. By contrast, a two-fold difference was found between inventory and measured CH4 fluxes (measured 75 t km-2; LAEI 34 t km-2), which could indicate an underestimation by the inventory of CH4 emissions from anthropogenic sources or the existence of unaccounted biogenic sources. Measurements of isotopic CH4 taken 2 km SE of the tower near the banks of the river Thames reveal multiple episodes of 13C-depleted morning peaks consistent with biogenic sources. We speculate that the Thames can act as an additional significant source of biogenic methane especially at low tide and after heavy rainfall, which could explain the large emissions observed in the S-SE sector.

  20. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors

    Microsoft Academic Search

    J. Zhang; K. R. Smith; Y. Ma; S. Ye; F. Jiang; W. Qi; P. Liu; M. A. K. Khalil; R. A. Rasmussen; S. A. Thorneloe

    2000-01-01

    Emissions from household stoves, especially those using solid fuels, can contribute significantly to greenhouse gas (GHG) inventories and have adverse health impacts. Few data are available on emissions from the numerous types of cookstoves used in developing countries. We have systematically measured emissions from 56 fuel\\/stove combinations in India and China, a large fraction of the combinations in use world-wide.

  1. Effect of cover crop in mitigation of greenhouse gases emission from plots amended with swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas emissions nitrous oxide, carbon dioxide, and methane (N2O, CO2 and CH4,) were measured from corn-soybean plots amended with different rates of liquid swine manure, and in the presence or absence of a rye winter cover crop. Emission measurements include two periods: 1) from October 20...

  2. "An Inconvenient Truth" Increases Knowledge, Concern, and Willingness to Reduce Greenhouse Gases

    ERIC Educational Resources Information Center

    Nolan, Jessica M.

    2010-01-01

    Since May 24, 2006 millions of people have seen the movie "An Inconvenient Truth." Several countries have even proposed using the film as an educational tool in school classrooms. However, it is not yet clear that the movie accomplishes its apparent goals of increasing knowledge and concern, and motivating people to reduce their greenhouse gas…

  3. Uncertainties in flux estimations of biogenic greenhouse gases from the world`s oceans

    SciTech Connect

    Rapsomanikis, S. [Max Planck Inst. for Chemistry, Mainz (Germany). Biogeochemistry Dept.

    1994-12-31

    The author determines the concentrations of N{sub 2}O, CH{sub 4}, OCS and (CH{sub 3}){sub 2}S (DMS) in surface waters of estuaries, shelf, shelf edge, open oceans using continuous equilibration techniques and automated gas chromatography, as described by Bange et al. Atmospheric concentrations of these gases are also determined in tandem. Horizontal profiles during cruise tracks have time resolution of up to one hour. Super- or under-saturation of surface sea waters for these gases is established, after computing equilibrium air-sea values using the high precision atmospheric concentration measurements and Henry law constants.

  4. Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region

    NASA Astrophysics Data System (ADS)

    Duchemin, E.; Lucotte, M.; Canuel, R.; Chamberland, A.

    1995-12-01

    The emission fluxes and the distribution of dissolved methane (CH4) and carbon dioxide (CO2) were determined for 11 sampling stations in two hydroelectric reservoirs (flooded since 1978 and 1993) located in the James Bay territory of northern Québec. The measured benthic fluxes for the two greenhouse gases were found to be either higher or similar to those determined at the water-air interface during the ice-free sampling periods. For the 2 year duration of the study, emission fluxes of CH4 to the atmosphere generally varied between 5 and 10 mg m-2 d-1, while those for CO2 ranged from 500 to 1100 mg m-2 d-1. Furthermore, through the use of static chambers at the water-air interface, we determined that the emission fluxes for the gases are controlled by molecular diffusion. Our calculated fluxes have been separated into two groups: (1) regular emission fluxes and (2) above-average emission fluxes. The first type comprises the majority of fluxes measured during the sampling periods (i.e., 88% for CH4 and 87% for CO2). The second group reflects unusual sampling conditions (e.g., strong winds, water column depths of less than 1 m, or flooded peatland mats floating at the surface). Although data for this group are limited, our preliminary results suggest that they may be an important component in an atmospheric emissions budget for large reservoirs. Concentration profiles for CH4 and CO2 dissolved in the water column clearly show that oxidation and/or horizontal advection of these gases are controlling factors in their subsequent release to the atmosphere. Most of the CH4 is oxidized within the first 25 cm above the flooded soil-water interface. Consequently, neither benthic emissions of CH4 and CO2 nor the type of flooded soil appear to control atmospheric emissions of these gases from hydroelectric reservoirs.

  5. Greenhouse gases from biomass and fossil fuel stoves in developing countries: A Manila pilot study

    Microsoft Academic Search

    K. R. Smith; M. A. K. KhaliP; R. A. Rasmussen; S. A. Thorneloe; F. Manegdeg; M. Apte

    1993-01-01

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were also taken. All samples were analyzed for CO 2, CO, CH 4, NzO, and total non-methane organic

  6. GREENHOUSE GASES FROM SMALL-SCALE COMBUSTION IN DEVELOPING COUNTRIES -- A PILOT STUDY IN MANILA

    EPA Science Inventory

    The report gives results of sampling of combustion gases released by household cookstoves in Manila, Philippines. n a total of 24 samples, 14 cookstoves were tested, fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Five ambient sample...

  7. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  8. Supporting Greenhouse Gas Management Strategies with Observations and Analysis - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tarasova, O. A.

    2014-12-01

    Climate-change challenges facing society in the 21st century require an improved understanding of the global carbon-cycle and of the impacts and feedbacks of past, present, and future emissions of carbon-cycle gases. Global society faces a major challenge of reducing greenhouse gas emissions to virtually zero, most notably those of CO2, while at the same time facing variable and potentially overwhelming Earth System feedbacks. How it goes about this will depend upon the nature of impending international agreements, national laws, regional strategies, and social and economic forces. The challenge to those making observations to support, inform, or verify these reduction efforts, or to address potential Earth System feedbacks, lies in harmonizing a diverse array of observations and observing systems. Doing so is not trivial. Providing coherent, regional-scale information from these observations also requires improved modelling and ensemble reanalysis, but in the end such information must be relevant and reasonably certain. The challenge to us is to ensure a globally coherent observing and analysis system to supply the information that society will need to succeed. Policy-makers, scientists, government agencies, and businesses will need the best information available for decision-making and any observing and analysis system ultimately must be able to provide a coherent story over decades.

  9. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds\\/Precipitation from Multiple Aerosol Size Distributions

    Microsoft Academic Search

    M. Z. Jacobson

    2005-01-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic

  10. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Chen, Xiaolong

    2014-12-01

    This paper explores the contributions of internal variability, greenhouse gases (GHGs), and anthropogenic aerosols (AAs) in driving the magnitude and evolution of Pacific Decadal Variability (PDV) during the twentieth century by analyzing 129 Coupled Model Intercomparison Project Phase 5 model realizations. Evidence shows that PDV phase transition is dominated by internal variability, but it is also significantly affected by external forcing agents such as GHGs and aerosols. The combined effects of GHGs and AAs favor the positive phase of PDV with stronger ocean warming in the tropics than the extratropical Pacific. The GHG forcing induces the increased surface downward longwave radiation, especially over the tropical Pacific, and results in stronger warming in that area. The AA forcing results in a stronger cooling in the North Pacific region, due to the reduced surface downward shortwave radiation via cloud-aerosol interaction: this offsets the substantial warming caused by GHG forcing.

  11. Air-water greenhouse gases exchange in two coastal systems in Cadiz Bay (SW Spain)

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Forja, Jesús

    2014-05-01

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity, causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Water surface greenhouse gas concentrations (CH4 and N2O) have been estimated in two aquatic systems of Cadiz Bay Natural Park: Rio San Pedro Creek and Sancti Petri Channel Water renewal in Rio San Pedro Creek is tidally controlled. Due to its little freshwater input, the Creek is essentially a marine system. Several fish farms are distributed on its banks discharging effluents without previous treatment. Nine sampling stations are distributed along this system 12 Km length. Sancti Petri Channel is a flow channel-ebb tides extending from the inner Cadiz Bay to the Atlantic Ocean along 17 Km. Organic matter pollution sources in this environment are straggly. There exist anthropogenic inputs such as aquaculture effluents and sewage discharges coming through the Iro River, which flows into the Channel central part. In addition there are natural organic matter inputs from surrounding marshes. It has been established 11 sampling stations crossing this system. Sampling was conducted seasonally during 2013. CH4 and N2O concentrations were obtained though a gas chromatograph connected to an equilibration system. Greenhouse gas values vary between 24 and 295 nM and 16 and 27 nM for CH4 and N2O, respectively. Gas concentrations increase close to the fish farm effluent in Rio San Pedro Creek, and next to Iro River's mouth in Sancti Petri tidal Channel. Both environments act as greenhouse gas sources into the atmosphere, showing seasonal variations. It has been estimated mean fluxes of 75.3 ?mol m-2 d-1 of CH4 and 31.9 ?mol m-2 d-1 of N2O for both systems.

  12. Ecological effects of overshooting stabilization targets for greenhouse gases for California plant species

    NASA Astrophysics Data System (ADS)

    Ries, L. P.; Hannah, L.; Thorne, J.; Seo, C.

    2008-12-01

    Stabilization of global greenhouse gas (GHG) concentrations at or below 350 ppm may be required to avoid catastrophic changes to the climate system. Although the level of stabilization is a primary concern, the pathway to reaching the target should also be considered as some pathways in reaching these goals could have more "dangerous impacts" than others. Since atmospheric GHG stands at 385pppm, achieving a 350ppm target will require overshoot - an exceedance of the target for several decades, followed by a gradual decline back to target levels. The UN Framework Convention on Climate Change aims to stabilize greenhouse gas concentrations to avoid dangerous interference with the climate. The EU has set a goal of 2 C warming. However the current trajectory of greenhouse gas emissions and associated temperature change suggest we are in danger of exceeding these goals and are committed to a certain degree of warming. Ecosystems are one benchmark of acceptable change in international policy, so are a relevant test of the value of low stabilization targets. The biological consequences of overshoot are unknown. Here we simulate the ecological effects of an overshoot strategy for the first time, for a series of California plants. We find that the portion of the species' range defined by the bioclimatic envelope is an important factor in determining the effects of an overshoot scenario and varies between species.

  13. Atmospheric science is a fascinating area of study. From sunny spells and scattered showers, to climate change and greenhouse gases, a wide range of meteorological

    E-print Network

    , to climate change and greenhouse gases, a wide range of meteorological and climate topics are examined during the M.Sc. course in Meteorology. Students get scientific training in theoretical and applied meteorology and learn about the geomagnetic and seismological work in addition to the meteorological programme

  14. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  15. Designing optimal greenhouse gas observing networks that consider performance and cost

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-01

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.

  16. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases

    SciTech Connect

    Sagan, C. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States); Chyba, C. [Univ. of Arizona, Tucson, AZ (United States)] [Univ. of Arizona, Tucson, AZ (United States)

    1997-05-23

    Atmospheric mixing ratios of {approximately}10{sup -5 {+-}1} for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing. 78 refs., 2 figs., 1 tab.

  17. Greenhouse Gases in the South Atlantic: Testing and Automation of Instrumentation for Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R.; Sriskantharajah, S.; Lanoisellé, M.; Etchells, A.; Manning, A.; Nisbet, E.

    2009-04-01

    Understanding ocean uptake of atmospheric CO2 by the Southern Ocean is important for modelling of future global warming scenarios, particularly since it was recently proposed that this sink was reducing (Le Quéré, et al., 2007). To help our understanding of this problem a new project aims to flask sample air from 5 South Atlantic sites and set up continuous monitoring at the 2 most accessible of these: Ascension Island and the Falklands. Flask sample measurements will include CO2 and CH4 mixing ratios and the ^13C measurement of both of these gases using the rapid continuous flow trace gas analysis system at Royal Holloway, University of London (RHUL). Routine precisions are ±0.03 per mil and ±0.05 per mil for CO2 and CH4, respectively (Fisher et al., 2006). A time series of ^13C in CH4 was maintained for Ascension Island from 2000-2005 and a time series for methane isotopes commenced for the Falkland Islands in autumn 2007. To meet the continuous monitoring requirements of the new project, three Picarro G1301 CO2 / CH4 / H2O Cavity Ring Down Spectrometers (CRDS) were installed at RHUL in October 2008 for testing, calibration and the development of an automated air inlet system suitable for analysis of calibration gases at the remote sites. Initial testing included calibration with NOAA calibrated and target gases, validation of the Picarro-defined H2O-correction of CO2, and derivation of an H2O-correction for CH4. Continuing checks on the H2O correction are made by having 2 instruments side-by-side taking air from the same inlet, but one having a combined Nafion / Mg-perchlorate drying system that utilizes the analysis system exhaust gas for the reverse flow through the Nafion and maintains water-levels at 0.05% for more than 2 weeks. These instruments are connected to the same air inlet as a GC measuring CH4 mixing ratio and a LiCor 6252 measuring CO2 mixing ratio at 30-minute and 1-minute intervals respectively. The third CRDS instrument is connected to a separate airline and can be switched between inlets that are within 1m of grass lawn at ground level or within 5 m of a large oak tree at canopy level. Flow rates vary between the internal pumps of the CRDS instruments, but within the range 260-300 cc/min when inlet valves are fully opened. Controlling flows below 200 cc/min significantly increases stabilisation time for cylinder gases. Likewise setting outlet pressures for NOAA and target gases at 4 psi and allowing the instrument pumps to control flow speeds up stabilization. Currently the instruments are measuring CO2, CH4 and H2O at 5-second intervals. Precisions (1 SD) of NOAA tanks, based on the final 10 minutes of a 30-minute analysis period are better than ±0.03 ppm for CO2 and ±0.3 ppb for CH4. Automated inlets and automated data retrieval will be tested during spring, for deployment on the South Atlantic islands later in 2009. Fisher, R., Lowry, D., Wilkin, O., Sriskantharajah S. & Nisbet. E.G. (2006) High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Comm. Mass. Spec. 20, 200-208. Le Quéré, C., C. Rödenbeck, E. T. Buitenhuis, T. J. Conway, R. Langenfelds, A. Gomez, C. Labuschagne, M. Ramonet, T. Nakazawa, N. Metzl, N. Gillett, and M. Heimann, Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316, 1735-1738, 2007.

  18. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  19. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly revise the estimates of future greenhouse gas emissions for Midwest agroecology.

  20. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  1. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant.

    PubMed

    Masuda, Shuhei; Suzuki, Shunsuke; Sano, Itsumi; Li, Yu-You; Nishimura, Osamu

    2015-12-01

    The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2m(-3). The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3°C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank. PMID:25439128

  2. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Smith, K. R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M. A. K.; Rasmussen, R. A.; Thorneloe, S. A.

    Emissions from household stoves, especially those using solid fuels, can contribute significantly to greenhouse gas (GHG) inventories and have adverse health impacts. Few data are available on emissions from the numerous types of cookstoves used in developing countries. We have systematically measured emissions from 56 fuel/stove combinations in India and China, a large fraction of the combinations in use world-wide. A database was generated containing emission factors of direct and indirect GHGs and other airborne pollutants such as CO 2, CO, CH 4, TNMHC, N 2O, SO 2, NO x, TSP, etc. In this paper, we report on the 28 fuel/stove combinations tested in China. Since fuel and stove parameters were measured simultaneously along with the emissions, the database allows construction of complete carbon balances and analyses of the trade-off of emissions per unit fuel mass and emissions per delivered energy. Results from the analyses show that the total emissions per unit delivered energy were substantially greater from burning the solid fuels than from burning the liquid or gaseous fuels, due to lower thermal and combustion efficiencies for solid-fuel/stove combinations. For a given biomass fuel type, increasing overall stove efficiency tends to increase emissions of products of incomplete combustion. Biomass fuels are typically burned with substantial production of non-CO 2 GHGs with greater radiative forcing, indicating that biomass fuels have the potential to produce net global warming commitments even when grown renewably.

  3. Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends.

    PubMed

    Scacchi, C C O; González-García, S; Caserini, S; Rigamonti, L

    2010-10-01

    This study focuses on the potential energetic and environmental impacts associated with the production of wheat grain-based bioethanol in Lombardia (Italy), with a "seed-to-wheel" approach (i.e. taking into account the production and use phase). Greenhouse gas emissions (GHGs) were estimated through the CML 2 baseline 2000 methodology counting the CO(2) equivalent emissions, while the energy flow indicator was estimated using the Ecoindicator 95 methodology. The impact of the different phases involved in the production and use of bioethanol have been analysed: the agricultural production of wheat grain, its transformation into bioethanol, the production of gasoline and the use of 5 different blends (from pure gasoline to pure ethanol). The results show that ethanol fuel, used in the form of blends in gasoline, can help reduce energy use and GHGs. In particular, the use of pure ethanol was found to be the best alternative presenting the lowest GHGs (saving about 32% of CO(2)eq emissions in comparison to gasoline) and the minor energy use (63% saving). Differences between low-ethanol blends and gasoline are minimal and dependent on the specific fuel consumption of the vehicle. The sensitivity analysis performed to test the robustness of results through the change of some basic assumptions (specific fuel consumption, N(2)O emissions from agricultural phase, allocation method) shows the sensitivity of GHGs saving to the adopted allocation method. PMID:20692687

  4. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  5. Recycling of glass: accounting of greenhouse gases and global warming contributions.

    PubMed

    Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution. PMID:19710108

  6. Anthropogenic effects on the subtropical jet in the Southern Hemisphere: aerosols versus long-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Collier, M. A.; Jeffrey, S. J.; Kidston, J.; Syktus, J. I.; Wong, K. K.

    2013-03-01

    We use single-forcing historical simulations with a coupled atmosphere-ocean global climate model to compare the effects of anthropogenic aerosols (AAs) and increasing long-lived greenhouse gases (LLGHGs) on simulated winter circulation in the Southern Hemisphere (SH). Our primary focus is on the subtropical jet, which is an important source of baroclinic instability, especially in the Australasian region, where the speed of the jet is largest. For the period 1950 to 2005, our simulations suggest that AAs weaken the jet, whereas increasing LLGHGs strengthen the jet. The different responses are explained in terms of thermal wind balance: increasing LLGHGs preferentially warm the tropical mid-troposphere and upper troposphere, whereas AAs have a similar effect of opposite sign. In the mid-troposphere, the warming (cooling) effect of LLGHGs (AAs) is maximal between 20S and 30S; this coincides with the descending branch of the Hadley circulation, which may advect temperature changes from the tropical upper troposphere to the subtropics of the SH. It follows that LLGHGs (AAs) increase (decrease) the mid-tropospheric temperature gradient between low latitudes and the SH mid-latitudes. The strongest effects are seen at longitudes where the southward branches of the Hadley cell in the upper troposphere are strongest, notably at those that correspond to Asia and the western Pacific warm pool.

  7. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  8. Attribution of Ozone Changes in the Near Future: Nonlinear Feedbacks between Ozone Depleting Substances and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Meul, Stefanie; Oberländer, Sophie; Langematz, Ulrike

    2014-05-01

    In the first half of the 21st century the stratospheric burden of ozone depleting substances (ODSs) is predicted to decrease due to the regulations in the Montreal Protocol and its amendments. Concomitantly, the concentrations of well-mixed greenhouse gases (GHGs) will continue to rise. As the removal of the ODSs from the stratosphere is also affected by changes in the Brewer-Dobson Circulation, the decrease of halogens will also depend on the rate of the GHG increase. Furthermore, the increasing concentrations of the GHGs methane (CH4) and nitrous oxide (N2O) can modify the halogen-ozone chemistry. Therefore, a non-linear contribution has to be included in the attribution analysis of the ozone changes to ODS and GHG changes. In this study we detect and analyze this non-linear term in a set of appropriately defined timeslice simulations for the year 2045 with the Chemistry-Climate-Model EMAC. The causal processes of the non-linear interactions are studied in more detail by separating the relative ozone changes in the contribution from chemistry (production and loss) and transport. This allows us to identify not only feedbacks between chemistry and temperature but also between chemistry and dynamics, i.e. ozone transport.

  9. Why the developing nations like India need strong capacity building efforts in greenhouse gases mitigation?

    NASA Astrophysics Data System (ADS)

    Vishal, V.; Sudhakaran, A.; Singh, T. N.

    2014-12-01

    Today, India rubs shoulders with nations like USA and China for being the major shareholders in global greenhouse emissions and has more emissions than Russia! Carbon Capture, Utilization and Storage (CCUS) has been proven as a reliable method to counter global warming and keep the 2ºC per year policy in check and is currently in the pilot stage in many developed nations. The three major requirements for CCUS are: manpower in diverse fields, implementation potential and capital. Keeping other social problems aside, India still has sufficient mankind in all spheres of research ranging from earth science, engineering, basic sciences, economy, policy making, regulation, public outreach etc. to successfully work on such challenges. India has leading academic institutions, research labs and universities in science and engineering. They also have a working power force in aspects like economy, policy making, regulation, public outreach etc. in various management institutes of repute. India, however, lacks in sufficient funding for advanced research and capacity building schemes to support projects of such scale. Deployment of facts and concepts on climate change need an approach of much greater scope than what is anticipated. The above workforces can put forth a clear picture about the various entities surrounding CCUS and provide sensible planning and implementation information through scientific research. CCUS is only possible when the direct anthropogenic emitters like fossil fuel plants modify their features to incorporate the methods associated with it. The rural population has to be educated in context to the safety of the storage sites. Above all, the Indian government must holistically divert funds for such programs and provide economic incentives to the industries for the industries. The bottom line is that India has been working in lots of aspects with not very clear cuts objectives. There are CO2 capture technologies like amine scrubbing and membrane separation that is available and immense storage potential is also seen in the Gondwana coal fields and basalt rocks of the Deccan plateau. For successful working of such ideas, the confidence of a big section of public comprising of academicians, researchers, industrialists, sustainable energy workers, politicians etc. is required apart from the key workforce.

  10. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  11. Observations of halogenated trace gases in Taiwan and Malaysia

    NASA Astrophysics Data System (ADS)

    Gooch, Lauren J.; Laube, Johannes C.; Sturges, William T.; Oram, David E.; Wang, Jia-Lin; Ou-Yang, Cheng-Feng; Lin, Neng-Huei; Mead, Iq; Rigby, Matt; White, Emily

    2015-04-01

    There are a large variety of halocarbons present in the atmosphere that significantly impact on stratospheric ozone depletion and/or global warming. Though the use of some of these compounds has been phased out and replaced under global control measures, relatively long atmospheric lifetimes, imperfect substitutes and incomplete reductions in usage mean that global concentrations of halocarbons still require regular monitoring. This is especially true for the rapidly developing East Asian region, where high emissions have been repeatedly reported in recent years. We here present results from an air sampling activity in Taiwan and Malaysia during the spring months of 2013 and 2014. A large range of halocarbons, including a number of novel gases, were investigated via high sensitivity gas chromatography mass spectrometry (GC-MS). We find periods of relatively clean air as well as episodes that appear to be impacted by urban and/or industrial emissions and examine correlations between individual species. Observed mixing ratios are compared in context with both global background data and other regional studies. Enhancements in the abundances of many halocarbons are detected with examples including the Halons 1211 and 1202 as well as the very long-lived perfluorocarbons c-C4F8, C5F12 and C7F16. We also show and evaluate unusually high mixing ratios of other globally growing halocarbons such as sulphur hexafluoride (SF6), HCFC-133a (CF3CH2Cl), and CFC-113a (CF3CCl3). Finally, we use NAME analysis to produce back-trajectories in order to assess possible regional emission sources.

  12. Uncertainty in predictions of the climate response to rising levels of greenhouse gases

    Microsoft Academic Search

    D. A. Stainforth; T. Aina; C. Christensen; M. Collins; N. Faull; D. J. Frame; J. A. Kettleborough; S. Knight; A. Martin; J. M. Murphy; C. Piani; D. Sexton; L. A. Smith; R. A. Spicer; A. J. Thorpe; M. R. Allen

    2005-01-01

    The range of possibilities for future climate evolution needs to be taken into account when planning climate change mitigation and adaptation strategies. This requires ensembles of multi-decadal simulations to assess both chaotic climate variability and model response uncertainty. Statistical estimates of model response uncertainty, based on observations of recent climate change, admit climate sensitivities-defined as the equilibrium response of global

  13. Remote sensing of some greenhouse gases by Fourier-spectrometry in Kyiv

    Microsoft Academic Search

    Angelina V. Shavrina; Alexander A. Veles

    2004-01-01

    The values of the total N2O and O3 amount (column amounts) in the atmosphere above Kyiv city were determined using observed IR spectra of direct solar radiation. The modelling of N2O and O3 spectra was carried out with MODTRAN3 (MODTRAN Report 01\\/11\\/96, The MODTRAN 2\\/3 Report and LOWTRAN 7 MODEL, Phillips Laboratory, Geophysics Directorate PL\\/G POS, 1996) program by scaling

  14. Greenhouse effect

    Microsoft Academic Search

    Dowd

    1986-01-01

    The greenhouse effect refers to the phenomenon whereby carbon dioxide and other small-molecule gases trap longwave infrared radiation (heat) in the atmosphere, thereby warming the Earth. After several years of relatively low priority, the greenhouse effect is re-emerging as a subject of concern to Congress and regulatory agencies. So also is the sister issue of ozone depletion, the breakdown of

  15. Dissolved greenhouse gases (nitrous oxide and methane) associated with the natural iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Farías, L.; Florez-Leiva, L.; Besoain, V.; Fernández, C.

    2014-08-01

    The concentrations of greenhouse gases (GHGs) like nitrous oxide (N2O) and methane (CH4) were measured in the Kerguelen Plateau Region (KPR), an area with annual microalgal bloom caused by natural Fe fertilization, which may stimulate microbes involved in GHG cycling. This study was carried out during the KEOPS 2 cruise during the austral spring of 2011. Two transects were sampled along and across the KRP, the north-south (N-S) transect (46-51° S, 72° E meridian) and the west-east (W-E) transect (66-75° E, 48.3° S latitude), both associated with the presence of a plateau, polar fronts and other mesoscale features. The W-E transect had N2O levels ranging from equilibrium (105%) to light supersaturation (120%) with respect to the atmosphere. CH4 levels fluctuated dramatically, with intense supersaturations (120-970%) in areas close to the coastal waters of Kerguelen Island and in the polar front (PF). There, Fe and nutrient fertilization seem to promote high total chlorophyll a (TChl a) levels. The distribution of both gases was more homogenous in the N-S transect, but CH4 peaked at southeastern stations of the KPR (A3 stations), where phytoplankton bloom was observed. Both gases responded significantly to the patchy distribution of particulate matter as Chl a, stimulated by Fe supply by complex mesoscale circulation. While CH4 appears to be produced mainly at the pycnoclines, N2O seems to be consumed superficially. Air-sea fluxes for N2O (from -10.5 to 8.65, mean 1.71 ?mol m-2d-1), and for CH4 (from 0.32 to 38.1, mean 10.07 ?mol m-2d-1) reflected sink and source behavior for N2O and source behavior for CH4, with considerable variability associated with a highly fluctuating wind regime and, in the case of CH4, due to its high superficial levels that had not been reported before in the Southern Ocean and may be caused by an intense microbial CH4 cycling.

  16. Greenhouse Gases Life Cycle Assessment (GHGLCA) as a decision support tool for municipal solid waste management in Iran

    PubMed Central

    2014-01-01

    Background One of the most problems in developing countries is the integrated waste management and the effects on Greenhouse Gases (GHG) emission, Life Cycle Assessment (LCA) is used in this paper as a decision supporting tool in planning Municipal Solid Waste (MSW) managements. Methods In this paper the EPA’s Waste Reduction Model (WARM) that provide GHG emission factors for waste stream components that are based on life Cycle Inventory (LCI) framework were used and The MSW management methods comprised in seven scenarios. Results The amount of GHG which was generated from Iran’s waste sector estimated about 17836079 Metric Tons of Carbon dioxide Equivalents (MT CO2e) in this study. The lowest amount of GHG was generated by LFG capture system with energy recovery (557635 MT CO2e), while Incineration of materials being sent to landfill (1756823 MT CO2e), Landfill Gas (LFG) capture system with flaring (2929150 MT CO2e) and Improved source reduction and recycling (4780278 MT CO2e) emitted fewer GHG than the other scenarios. Lowest levels of gross energy consumption occur in source reduction with recycling and composting (-89356240 Mega British Thermal Unit, M BTU), recycling and composting (-86772060 M BTU) as well as Improved source reduction with recycling and composting (-54794888 M BTU). Conclusions It appears that recycling and composting each offer significant GHG emissions and energy consumption reductions (scenarios 4, 5 and 6). Upon of the GHG emission and energy consumption results concluded that improved source reduction and recycling scenario has been the Balanced and appropriate technology for handling the solid waste streams in municipalities. PMID:24910776

  17. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud evolution accounted for the first and second indirect effects and the mixing state of aerosol particles. The optical properties of clouds were found by treating black carbon inclusions surrounded by a shell of water. The albedos of snow, sea ice, and water were calculated with radiative transfer solutions, assuming black carbon inclusions in the case of snow and sea ice. The simulations accounted for 3-D energy diffusion to the deep ocean and 2-D ocean circulation. Major conclusions are (a) the most important constituents of global warming, in terms of climate response, appear to be, in order, carbon dioxide, black carbon, and methane, (b) aerosol particles (all together) appear to act on top of greenhouse gases to enhance extremes in both regional cooling and regional warming, (b) the combination of important greenhouse gases and aerosol particles can explain observed major regions of historic warming and cooling, and (d) eliminating all anthropogenic aerosol emission could more than double current global warming but would have less of an effect than independently doubling carbon dioxide.

  18. Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation

    NASA Astrophysics Data System (ADS)

    Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Folini, Doris; Hill, Matthias; Hofer, Peter; Buchmann, Brigitte; Simmonds, Peter G.; Greally, Brian R.; O'Doherty, Simon

    2004-03-01

    At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi-continuously by gas chromatography-mass spectrometry (GCMS). Measurement data from the years 2000-2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC-substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer. The measurement data during the periods when the Jungfraujoch was under the influence of the polluted boundary layer were used in combination with concurrent air mass trajectories to allocate above baseline halocarbon concentrations to specific European source regions.

  19. Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N?O emission dynamics.

    PubMed

    Guo, Lisha; Vanrolleghem, Peter A

    2014-02-01

    An activated sludge model for greenhouse gases no. 1 was calibrated with data from a wastewater treatment plant (WWTP) without control systems and validated with data from three similar plants equipped with control systems. Special about the calibration/validation approach adopted in this paper is that the data are obtained from simulations with a mathematical model that is widely accepted to describe effluent quality and operating costs of actual WWTPs, the Benchmark Simulation Model No. 2 (BSM2). The calibration also aimed at fitting the model to typical observed nitrous oxide (N?O) emission data, i.e., a yearly average of 0.5% of the influent total nitrogen load emitted as N?O-N. Model validation was performed by challenging the model in configurations with different control strategies. The kinetic term describing the dissolved oxygen effect on the denitrification by ammonia-oxidizing bacteria (AOB) was modified into a Haldane term. Both original and Haldane-modified models passed calibration and validation. Even though their yearly averaged values were similar, the two models presented different dynamic N?O emissions under cold temperature conditions and control. Therefore, data collected in such situations can potentially permit model discrimination. Observed seasonal trends in N?O emissions are simulated well with both original and Haldane-modified models. A mechanistic explanation based on the temperature-dependent interaction between heterotrophic and autotrophic N?O pathways was provided. Finally, while adding the AOB denitrification pathway to a model with only heterotrophic N?O production showed little impact on effluent quality and operating cost criteria, it clearly affected N2O emission productions. PMID:23728837

  20. Clear-cutting is causing large emissions of greenhouse gases - are there other harvest options that can avoid these emissions?

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Vestin, P.; Sundqvist, E.; Mölder, M.; Bâth, A.; Hellström, M.; Klemedtsson, L.; Weslien, P.

    2012-04-01

    Carbon sequestration in forests can potentially be enhanced through optimized forest management strategies and thus, mitigate climate change. However, carbon dioxide is not the only greenhouse gas (GHG) that is being exchanged between a forest ecosystem and the atmosphere; also methane and nitrous oxide are involved through different processes. A full assessment of the benefits of any management practice aiming at increasing the capacity of forests to mitigate climate change has to include all greenhouse gases. The effects of clear-cutting on GHG fluxes were studied at Norunda forest in central Sweden. Two different plots were established on a new clear-cut. Both plots were clear-cut (early 2009) and subsequently site prepared. On each of the plots, a 3 m high tower was erected and equipped for flux-gradient measurements of CO2, H2O, CH4 (May 2010 -) and N2O (June 2011 -). The clear-cut became waterlogged after harvest in 2009. One of the plots was significantly wetter than the other. All plots were on average sources of CO2, with daily average fluxes ranging between -2.5 and +5.8 µmol m¬-2s-1. The ingrowth of new vegetation was faster on the wetter plot, resulting in lower average CO2 emissions. Preliminary results indicate a switch from a weak CH4 sink to a significant CH4 source at both plots with higher emission from the wetter plot. Daily average CH4 fluxes ranged between -7.0 - +208.7 µmol m¬-2h-1. There were significant N2O emissions on all plots during the main growing season of 2011, with large emissions following heavy rain events. N2O fluxes ranged between -36.2 and +403.7 µg m¬-2h-1 but without clear differences between wetter and drier plots as in the case with CO2 and CH4. Although clear-cutting is the most common harvest method in Sweden today, other methods such as selective cutting are being increasingly discussed. We therefore studied the effects of thinning on soil and ecosystem carbon fluxes in the mature part of Norunda forest, located just beside the clear-cut experiment. The CO2 fluxes from the forest were measured by eddy covariance method while soil CO2 and CH4 effluxes were measured by automatic chambers. The thinning was made in November/December 2008. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots but the soil was still a sink of CH4. The stand level flux measurements showed no effect on total ecosystem respiration, probably because of reduced autotrophic respiration from canopy layer. Initially the GPP was slightly reduced as compared to the non-thinned sector but already after 6-7 months, no effect of the thinning on GPP could be detected. The results indicate that selective harvest such as thinning has the potential to avoid the emissions that occur after a heavy disturbance such as that caused by clear-cutting. Thus, more efforts should be made to study the long-term effects on the total GHG exchange by selective harvest methods as compared to clear-cut methods.

  1. Profiling Wind and Greenhouse Gases by Infrared-laser Occultation: Algorithm and Results from Simulations in Windy Air

    NASA Astrophysics Data System (ADS)

    Plach, Andreas; Proschek, Veronika; Kirchengast, Gottfried

    2014-05-01

    We employ the Low Earth Orbit (LEO-LEO) microwave and infrared-laser occultation (LMIO) method to derive a full set of thermodynamic state variables from microwave signals and climate benchmark profiling of greenhouse gases (GHGs) and line-of-sight (l.o.s.) wind using infrared-laser signals. The focus lies on the upper troposphere/lower stratosphere region (UTLS - 5 km to 35 km). The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. In this study we focus on the infrared-laser part of LMIO, where we introduce a new, advanced wind retrieval algorithm to derive accurate l.o.s. wind profiles. The wind retrieval uses the reasonable assumption of the wind blowing along spherical shells (horizontal winds) and therefore the l.o.s. wind speed can be retrieved by using an Abel integral transform. A 'delta-differential transmission' principle is applied to two thoroughly selected infrared-laser signals placed at the wings of the highly symmetric C18OO absorption line (nominally ±0.004 cm-1 from the line center near 4767 cm-1) plus a related 'off-line' reference signal. The delta-differential transmission obtained by differencing these signals is clear from atmospheric broadband effects and is proportional to the wind-induced Doppler shift; it serves as the integrand of the Abel transform. The Doppler frequency shift calculated along with the wind retrieval is in turn also used in the GHG retrieval to correct the frequency of GHG-sensitive infrared-laser signals for the wind-induced Doppler shift, which enables improved GHG estimation. This step therefore provides the capability to correct potential wind-induced residual errors of the GHG retrieval in case of strong winds. We performed end-to-end simulations to test the performance of the new retrieval in windy air. The simulations used realistic atmospheric conditions (thermodynamic state variables and wind profiles) from an analysis field of the European Centre for Medium-Range Weather Forecasts (ECMWF). GHG profiles were taken from the Fast Atmospheric Signature Code (FASCODE) model. Three geographic regions were investigated, representing three different atmospheric conditions: Tropics (TRO) - a warm and moist atmosphere, Standard (STD) - an intermediate atmosphere at mid-latitudes, and Sub-Arctic Winter (SAW) - a cold and dry atmosphere. We will discuss the results in windy air, which show an encouraging performance both for the wind retrieval throughout the stratosphere (essentially unbiased l.o.s. winds with rms errors within 2 m/s over about 15 to 35 km) and for the GHG estimation.

  2. Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-07-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) II'. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m-2 at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the Tropics and high latitudes, are consistent with predictions of a number of previous GCM studies. Finally, direct radiative forcing of anthropogenic aerosols is predicted to induce strong regional cooling over East and South Asia. Wintertime rainfall over southeastern China and the Indian subcontinent is predicted to decrease because of the increased atmospheric stability and decreased surface evaporation, while the geographic distribution of precipitation is also predicted to be altered as a result of aerosol-induced changes in wind flow.

  3. Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    NASA Astrophysics Data System (ADS)

    Meul, S.; Oberländer-Hayn, S.; Abalichin, J.; Langematz, U.

    2015-06-01

    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the prevailing GHG concentrations. Therefore the future ozone evolution will not simply be a reversal of the past.

  4. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of landscapes and climatic variability. The monitoring is carried out in one of the stations of the ClimaDat network, which consists of eight GHG monitoring stations in highly preserved ecosystems which are very sensitive to climate change in Spain. This constant monitoring will allow relating changes in terrestrial ecosystems, hydrological processes and atmospheric transport of GHG. The goal of the presentation is to show the results obtained since September 2013 through continuous monitoring, focusing on the seasonal changes in precipitation, temperature, and CO2 and CH4 changes in atmospheric concentrations.

  5. Measurements and modeling of greenhouse gases and the planetary boundary layer for the Boston metro area and the Northeastern Megalopolis

    NASA Astrophysics Data System (ADS)

    DeCola, Philip; Jones, Taylor; Wofsy, Steven; McKain, Kathryn; Chen, Jia; Bererra, Yanina; Gottlieb, Elaine; Nehrkorn, Thomas; Hegarty, Jennifer; Eluszkiewicz, Janusz; Henderson, John; Mountain, Marikate; Hutyra, Lucy; Callahan, William

    2014-05-01

    The accuracy of greenhouse gas (GHG) emission and air quality simulations reflects the fidelity of the atmospheric transport model employed that in turn is highly dependent on the accuracy of the meteorological input data. We begin by describing a multi-scale measurement network and model-data analysis framework for the Boston Metro region, with extension to the mid-Atlantic urban corridor. Observations include a network of automated concentrations of CO2 and CH4 inside and outside the urban domain, near the surface, on towers and tall buildings, total column measurements using the sun as a source, aerosol LiDAR data defining atmospheric structure, and meteorological data. The model-data analysis framework includes a Lagrangian particle dispersion model (LPDM), the Stochastic Time-Inverted Lagrangian Transport (STILT), driven by meteorological fields from the North American Regional Reanalysis (NARR) and Weather Research and Forecasting (WRF) model, and an inversion framework. We show examples of data and discuss the observational network's sampling design and a plan for extension to the NE urban corridor of the US. These urban studies are demonstrating the feasibility and value of incorporating advanced instrumentation such as the Mini Micro Pulse LiDAR to evaluate and improve the fidelity of the WRF simulations of atmospheric transport and structure in the planetary boundary layer. We also present examples of inverse analyses assessing anthropogenic emission rates for CH4 and CO2 in the urban region of metro Boston and along the urban-rural gradient.

  6. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases”

    SciTech Connect

    Prather, Michael J. [UCI

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  7. Biogeochemistry, transport fluxes and emission of greenhouse gases from the Ogooué River (west central Africa): preliminary results after two years of monitoring

    NASA Astrophysics Data System (ADS)

    Darchambeau, François; Bouillon, Steven; Mbega, Jean-Daniel; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Ogooué River is the fourth largest river in Africa by discharge. The Ogooué Basin mostly consists of undisturbed rainforest with some savanna grassland. Yet, there is no information on the biogeochemistry, transport fluxes and greenhouse gases in this river. Here, we report initial results of a monitoring campaign whereby 2-weekly samples were collected at Lambaréné (Gabon) [10.24°E 0.69°S] between April 2012 and March 2014 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, concentration and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), chromophoric dissolved organic matter (CDOM), dissolved organic carbon (DOC and ?13C-DOC), dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct annual budgets for particulate and dissolved carbon fluxes, nutrient exports, as well as a first seasonally resolved characterisation of the GHGs emitted to the atmosphere by the Ogooué River.

  8. Laser Atmospheric Transmitter Receiver-Network (LAnTeRN): A new approach for active measurement of atmospheric greenhouse gases

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Zaccheo, T.

    2012-12-01

    The Laser Atmospheric Transmitter Receiver-Network (LAnTeRN) is a new measurement concept that will enable local, regional and continental determination of key greenhouse gases, with unparalleled accuracy and precision. This new approach will offer the ability to make low bias, high precision, quasi-continuous, measurements to the accuracies required for separating anthropogenic and biogenic sources and sinks. In 2004 ITT Exelis developed an airborne demonstration unit, based on an intensity modulated continuous wave (IM-CW) lidar approach, for actively measuring atmospheric CO2 and O2. The multi-functional fiber laser lidar (MFLL) system relies on low peak power, high reliability, and efficient telecom laser components to implement this unique measurement approach. While evaluating methods for discriminating against thin clouds for the MFLL instrument, a new measurement concept was conceived. LAnTeRN has several fundamental characteristics in common with the MFLL instrument, but is a fundamentally different implementation and capability. The key difference is that LAnTeRN operates in transmission rather than in the traditional backscatter lidar configuration, which has several distinct advantages. Operating as a forward scatter, bistatic lidar system, LAnTeRN enables consideration of continuous monitoring from a geostationary orbit to multiple locations on the ground. Having the receivers on the ground significantly lowers cost and risk compared to an all space based mission, and allows the transmitter subsystem to be implemented, near term, as a hosted payload. Furthermore, the LAnTeRN measurement approach is also applicable for ground to ground measurements where high precision measurements over a long open path is required, such as facilities monitoring, or monitoring of passive volcanoes and fault lines. Using narrow linewidth laser sources allows flexibility to select the position on the absorption feature being probed. This feature allows for weighting the absorption toward lower altitudes for the space implementation or to handle large dynamic range measurements as would be required for volcano monitoring. This presentation will discuss results from a detailed instrument performance analyses, retrieval simulations, and from initial testing of a proof of concept demonstration unit being developed by Exelis. Initial analysis indicate that measurements from a transmitter in geostationary orbit to 25 ground receivers in the eastern U.S. can retrieve column integrated CO2 values to a precision of <0.2 ppm on monthly averages and <0.06 ppm on yearly averages, using conservative estimates of cloud cover and aerosol loading. The capability for continuous monitoring over a fixed geometry makes it possible to independently characterize the atmospheric column, using existing capabilities (e.g. aircore, aircraft and in-situ instrumentation), for quantification of bias. Furthermore, the ability to selectively locate the ground receivers can enable focused studies for specific applications.

  9. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.

    PubMed

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  10. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases

    PubMed Central

    Malaver, Alexander; Motta, Nunzio; Corke, Peter; Gonzalez, Felipe

    2015-01-01

    Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology. PMID:25679312

  11. PhET Simulation: The Greenhouse Effect

    NSDL National Science Digital Library

    This simulation explores how greenhouse gases affect Earth's climate. Students can view levels of atmospheric greenhouse gases present during Earth's last Ice Age, in the year 1750, today, or some time in the future.....and observe how the Earth's temperature changes. Levels of 4 greenhouse gases are displayed: water, carbon dioxide, methane, and nitrous oxide. Add cloud cover to the simulation and observe the resulting temperature changes. Choose the tab "Glass Layers" to see what happens in an ideal greenhouse model. In the third simulation, students can adjust levels of atmospheric gases, then shoot infrared and visible photons from a photon emitter. How do the gases influence photon absorption? See Related Materials for a comprehensive student guide that explains how to use the "Greenhouse Effect" simulation to conduct a lab experiment. The experimental question: Which atmospheric gas is the best absorber of infrared photons? This item is part of a growing collection of simulations by the Physics Education Technology Project (PhET). Simulations were designed using principles from physics education research and refined based on student interviews and classroom observations.

  12. Nitric oxide and greenhouse gases emissions following the application of different cattle slurry particle size fractions to soil

    NASA Astrophysics Data System (ADS)

    Fangueiro, David; Coutinho, João; Cabral, Fernanda; Fidalgo, Paula; Bol, Roland; Trindade, Henrique

    2012-02-01

    The application to soil of different slurry particle size fractions may lead to variable gaseous soil emissions and associated differential environmental impacts. An incubation experiment was carried out during 70 d to assess the influence on nitric oxide (NO) and greenhouse gas (GHG; i.e. nitrous oxide, carbon dioxide and methane) emissions following incorporation of 4 particle size fractions, obtained through laboratorial separation from cattle slurry, to agricultural sandy loam soil (Dystric Cambisol). The response to these applied slurry fractions (>2000 ?m, 2000-500 ?m, 500-100 ?m, <100 ?m) was compared to other experimental treatments, including whole slurry (WS), ammonium sulphate (AS) and an unamended control (CON). The highest value of cumulated NO emissions (6.3 mg NO-N kg -1 dry soil) were observed from the AS treatment. The cumulated amount of NO emitted (˜1 mg NO-N kg -1 dry soil) was not significantly different between slurry fractions, thereby indicating that slurry particle size had no effect on NO emissions. The largest slurry fraction (>2000 ?m) induced significantly higher N 2O emissions (1.8 mg N 2O-N kg -1 dry soil) compared to the other smaller sized fractions (1.0 mg N 2O-N kg -1 dry soil). The >2000 ?m, fraction, being more than 55% of the slurry by weight, was the major contributor to daily and cumulative N 2O emissions. Hence, for N 2O, the application of WS to agricultural soil is a better option that amendment with the >2000 ?m, fraction. Low CH 4 emissions (<200 ?g CH 4-C kg -1 dry soil d -1) were observed, but only in treatments amended with slurry or its fractions. The CH 4 emissions were short-lived and rates returned to control levels within 3 d after the slurry application. Higher CO 2 emissions were observed in soils amended with slurry fractions when compared to application with whole slurry. Clearly, slurry separation can increase soil CO 2 emissions relative to whole slurry application. Overall, N 2O contributed 10-30% to total GHG emissions, while that of methane was negligible. The present study suggested that mechanical separation of slurry into fractions and targeted application of the finest fractions to soil is a potential suitable management tool to reduce GHG emissions. However, the largest fractions have to be used for other purposes as anaerobic digestion rather than applied to soil.

  13. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil

    Microsoft Academic Search

    Ö. Berglund; K. Berglund

    2011-01-01

    A lysimeter method using undisturbed soil columns was used to investigate the effect of water table depth and soil properties on soil organic matter decomposition and greenhouse gas (GHG) emissions from cultivated peat soils. The study was carried out using cultivated organic soils from two locations in Sweden: Örke, a typical cultivated fen peat with low pH and high organic

  14. Greenhouse gases emission and carbon sequestration in agro-ecosystems under long-term no-till: implications for global warming mitigation

    NASA Astrophysics Data System (ADS)

    Jacinthe, P.; Dick, W. A.; Lal, R.; Shrestha, R. K.; Bilen, S.

    2011-12-01

    No-till (NT) management has gained wide acceptance in US agriculture, and could contribute to global warming mitigation by offsetting fossil fuel emission. While C sequestration in NT systems is fairly well documented, the dynamics of greenhouse gases (GHG) emission is less well understood. However, the literature abounds with viewpoints and assumptions. Because of crop residue accumulation on NT surface and generally higher soil moisture, it is often assumed that production of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) is greater in NT systems compared to conventional tillage (MP). But it is also possible that long-term implementation of NT could increase soil macro-porosity, lead to the evolution of an active population of methanotrophs, and ultimately result in enhanced CH4 uptake. Field data are needed to reconcile these conflicting assumptions. A 2-year (2009-2011) study was conducted to quantify C sequestration, and compare GHG fluxes in adjacent forest and cropland under MP and long-term NT (9, 13, 36 and 48 years). The study sites were located across Ohio on soil series with similar drainage characteristics (moderately well drained, MWD) so that duration of NT management is the experimental factor. We also included a site under NT for 48 years but located on somewhat poorly-drained soil (SPD) in order to assess the impact of soil drainage. Results revealed marked effect of NT duration and soil drainage characteristics on GHG fluxes. As hypothesized, we found a positive impact of NT on CH4 uptake, but significant difference with MP management was noted at sites under NT for > 10 years. At the sites under NT for 48 years, CH4 uptake rate was 10-12 times higher in MWD than in SPD soils. When data from all sites were pooled, N2O fluxes were significantly higher under MP (2.01 mg N2O-N m-2 d-1) than under NT (0.73), but the trend varied with NT duration. While at recent (<10 y) NT sites, N2O emission was significantly lower than under MP, the reverse was observed at sites under NT for > 30 years. At these older NT sites, N2O emissions accounted for 40-60 % of the global warming potential (GWP, sum of all GHG expressed as CO2 equivalents). These findings suggest that the viability of NT farming as a climate warming mitigation strategy hinges on the adoption of N fertilizer management practices (timing, amount, type and method of application) that minimize N2O emissions from cropland under long-term NT.

  15. Gradient anaysis of biomass in Costa Rica and a first estimate of total emissions of greenhouse gases from biomass burning

    SciTech Connect

    Helmer, E.H.; Brown, S.

    1997-12-31

    One important component of sustainable development for a nation is the degree to which it can balance greenhouse gas (GHG) exchange with the atmosphere. Scientists at NHEERL-WED recently estimated the release of such GHGs from the conversion of a range of forest types in Costa Rica between 1940-1983. They also evaluated the influence of environmental gradients that affect the rates and patterns of deforestation and the carbon pools of the forest cleared on GHG emissions.

  16. Future concentrations of atmospheric greenhouse gases CO2, CFC, and CH4: An assessment on the educational level

    NASA Astrophysics Data System (ADS)

    Hoppenau, Stefan

    1992-05-01

    A model on the educational level is described to estimate effective future atmospheric CO2 concentrations. The effects of chlorofluorocarbon and methane emission and deforestation are taken into account. The influence of different emission scenarios on the time evolution of greenhouse-gas concentration are illustrated. Future global energy policies are discussed both under the aspects of rising world population and the reduction in global CO2 emissions. The model can be handled on a PC or even on a pocket calculator.

  17. Effects of ploughing on land-atmosphere exchange of greenhouse gases in a managed temperate grassland in central Scotland

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Drewer, Julia; Anderson, Margaret; Scholtes, Bob; Rees, Bob; Skiba, Ute

    2015-04-01

    Grasslands are important ecosystems covering > 20% and > 30% of EU and Scotland's land area respectively. Management practices such as grazing, fertilisation and ploughing can have significant short- and long-term effects on greenhouse gas exchange. Here we report on two separate ploughing events two years apart in adjacent grasslands under common management. The Easter Bush grassland, located 10 km south of Edinburgh (55° 52'N, 3° 2'W), comprises two fields separated by a fence and is used for grazing by sheep and cattle. The vegetation is predominantly Lolium perenne (> 90%) growing on poorly drained clay loam. The fields receive several applications of mineral fertiliser a year in spring and summer. Net ecosystem exchange (NEE) of carbon dioxide (CO2) has been monitored continuously by eddy-covariance (EC) since 2002 which has demonstrated that the site is a consistent yet variable sink of atmospheric CO2. The EC system comprises a LI-COR 7000 closed-path analyser and a Gill Instruments Windmaster Pro ultrasonic anemometer mounted atop a 2.5 m mast located along the fence line separating the fields. In addition, fluxes of nitrous oxide (N2O), methane (CH4)and CO2were measured with static chambers installed along transects in each field. Gas samples collected from the chambers were analysed by gas chromatography and fluxes calculated for each 60-minute sampling period. The ploughing events in 2012 and 2014 exhibited multiple similarities in terms of NEE. The light response (i.e. relationship between CO2 flux, and photosynthetically active radiation, PAR) of the NF and SF during the month preceding each ploughing event was of comparable magnitude in both years. Following ploughing, CO2 uptake ceased in the ploughed field for approximately one month and full recovery of the photosynthetic potential was observed after ca. 2 months. During the month following the 2014 ploughing event, the ploughed NF released on average 333 ± 17 mg CO2-C m-2 h-1. In contrast, the SF net uptake during the same period was -79 ± 19 mg CO2-C m-2 h-1. Ploughing caused a net release of carbon of 183 g CO2-C m-2 during the month following ploughing, thus turning the grassland into a potent CO2 source. Chamber measurements of CH4 and N2O exhibited high spatial variability in 2012 and no statistical difference could be established between fields and treatments. CH4 fluxes were high in both fields after ploughing which was presumably linked to air temperature. N2O fluxes in the ploughed SF reached on average 100 ?g N2O-N m-2 h-1 29 days after ploughing which corresponded to ca. 20 times the background level recorded at the site. Fluxes of N2O were however considerably larger in 2014, peaking at 2570 ?g N2O-N m-2 h-1 29 days after ploughing. Contrarily to 2012, substantial and statistically significant CH4 emissions were recorded in 2014 in the ploughed field. Whilst spatial variability was high in both years it can nevertheless be concluded that ploughing had substantial adverse short term effects on emissions and that environmental conditions greatly impacted the magnitude of CH4 and N2O fluxes.

  18. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on greenhouse gas emissions are explored. Tradeoffs between renewable energy production,contaminant removal, and mitigation of greenhouse gases are also evaluated. Results indicate that a decrease in greenhouse gas emissions of 29-43% is possible, together with an estimated increase in renewable energy production of 7-22%.

  19. The Greenhouse Effect without Feedbacks

    E-print Network

    The Greenhouse Effect without Feedbacks #12;Three Pillars Behind Climate Change! #12;1. Global. Greenhouse Gases have been on the increase. #12;3. The Greenhouse effect is a powerful theory that explains absorbed=rate emitted 30% reflected to space! #12;Computing T! no-greenhouse planet,! e.g., 78% N2, 21% O2

  20. The natural flux of greenhouse gases in the case of monitoring the flux of juvenile carbon dioxide in the Hranice Karst

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Stepišnik, Uroš; Mare?ek, Jan; Geršlová, Eva; Hammerschmiedt, Michal

    2015-04-01

    Located in the Teplice nad Bečvou district 40 km SE of Olomouc (Czech Republic), the hydrothermal Hranice Karst with the Zbrašov Aragonite Caves has been developed in the sequence of Palaeozoic limestones as a result of deep influx of thermal water charged with subcrustal carbon dioxide (CO2). This area of discharge of juvenile carbon dioxide is a unique place where one can study the long-term natural production of a greenhouse gas and confront it with the anthropogenic production. As a result, the continuous measurements of the properties of the cave microclimate with additional seasonal measurements of flux of carbon dioxide give rise to a rare pool of data that cover natural routes of greenhouse gases. Repeated seasonal analysis of the ratio of stable carbon isotopes in carbon dioxide (d13C around -5 ) (Meyberg - Rinne, 1995)has suggested the juvenile (mantle) origin of this gas. Isotopic analyses in the mineral water of dissolved gases (He) show that some part of these gases come from the upper mantle of the Earth. The lower floors of the caves are filled with carbon dioxide producing so-called gas lakes in the area. Concentrations of the gas commonly reach 40 % by volume. In 1999, for example, the average concentration in the Gallas dome was 84.9 % by volume. Flux of CO2 (g.m-2.d-1) was measured on the surface and in the cave. The homogenisation chamber and the pumping test were applied to evaluate the CO2 flux. The average CO2 flux in the soil ranged from 74 to 125 g.m-2.d-1, reflecting the venting of subcrustal CO2 in the Hranice area (Geršl et al., 2012). In the Zbrašov Aragonite Caves the CO2 concentration in the atmosphere fluctuates from 0,X to 85 % with the measured constant flux being 32 894 g.m-2.d-1. Since 2005, the CO2 concentrations in the cave area have been reported by an automatic monitoring system at 10 cave sites. CO2 concentrations are recorded in 5-min intervals. Interpretation can be put into the context of measuring concentrations of Rn, groundwater levels, and influence of the ambient conditions on the cave system and the operation of the visitor trail. The data obtained are an exceptional source of information about the behaviour of natural emissions of a greenhouse gas in the form of juvenile carbon dioxide. The hydrothermal speleothems carry unique information about production of carbon dioxide in the studied area. Based on their dating using the 230Th/234U method it can be deduced indirectly that the carbon dioxide emissions occurred as early as 84-127 thousand years ago in the area. The research was conducted with the support of the project entitled "Postdoc contracts at MENDELU technical and ekonomical research' (CZ.1.07/2.3.00/30.0031). Geršl, M. - Geršlová, E. - Šimečková, B. (2012): Subcrustal CO2 flux measurement in the Hranice hydrothermal Karst, methodology and first results. - Geoscience research reports for 2011, 45, D, 162-166. Praha. Meyberg, M. - Rinne, B. (1995): Messung des 3He/4He-Isotopenverhältnisses im Hranicka Propast (Tschechische Republik). - Die Höhle. Zeitschrift für Karst- und Höhlenkunde, 46, 1, 5-8. Wien.

  1. Global and regional emissions of HFC-125 (CHF[subscript 2]CF[subscript 3]) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories

    E-print Network

    O'Doherty, S.

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and System for Observation of halogenated Greenhouse gases in Europe (SOGE) networks for the period 1998 to 2008, combined ...

  2. Comparison of gas-solid chromatography and MM2 force field molecular binding energies for greenhouse gases on a carbonaceous surface.

    PubMed

    Rybolt, Thomas R; Bivona, Kevin T; Thomas, Howard E; O'Dell, Casey M

    2009-10-01

    Gas-solid chromatography was used to determine B(2s) (gas-solid virial coefficient) values for eight molecular adsorbates interacting with a carbon powder (Carbopack B, Supelco). B(2s) values were determined by multiple size variant injections within the temperature range of 313-553 K. The molecular adsorbates included: carbon dioxide (CO(2)); tetrafluoromethane (CF(4)); hexafluoroethane (C(2)F(6)); 1,1-difluoroethane (C(2)H(4)F(2)); 1-chloro-1,1-difluoroethane (C(2)H(3)ClF(2)); dichlorodifluoromethane (CCl(2)F(2)); trichlorofluoromethane (CCl(3)F); and 1,1,1-trichloroethane (C(2)H(3)Cl(3)). Two of these molecules are of special interest because they are "super greenhouse gases". The global warming potential, GWP, for CF(4) is 6500 and for C(2)F(6) is 9200 relative to the reference value of 1 for CO(2). The GWP index considers both radiative blocking and molecular lifetime. For these and other industrial greenhouse gases, adsorptive trapping on a carbonaceous solid, which depends on molecule-surface binding energy, could avoid atmospheric release. The temperature variations of the gas-solid virial coefficients in conjunction with van't Hoff plots were used to find the experimental adsorption energy or binding energy values (E(*)) for each adsorbate. A molecular mechanics based, rough-surface model was used to calculate the molecule-surface binding energy (Ecal(*)) using augmented MM2 parameters. The surface model consisted of parallel graphene layers with two separated nanostructures each containing 17 benzene rings arranged in linear strips. The separation of the parallel nanostructures had been optimized in a prior study to appropriately represent molecule-surface interactions for Carbopack B. Linear regressions of E(*) versus Ecal(*) for the current data set of eight molecules and the same surface model gave E(*)=0.926 Ecal(*) and r(2)=0.956. A combined set of the current and prior Carbopack B adsorbates studied (linear alkanes, branched alkanes, cyclic alkanes, ethers, and halogenated hydrocarbons) gave a data set with 33 molecules and a regression of E(*)=0.991 Ecal(*) and r(2)=0.968. These results indicated a good correlation between the experimental and the MM2 computed molecule-surface binding energies. PMID:19560156

  3. Radiative Forcing by Well-Mixed Greenhouse Gases: Estimates from Climate Models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    NASA Technical Reports Server (NTRS)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-01-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  4. Observational constraints on U.S. emissions of climate-active and ozone-depleting trace gases from a tall-tower and aircraft sampling network

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.; Miller, B. R.; Siso, C.; Sweeney, C.; Andrews, A. E.; Karion, A.; Neff, D.; Fischer, M. L.; Higgs, J.

    2010-12-01

    Air samples have been regularly collected at a number of tall tower sites and from aircraft profiling locations across the U.S. and Canada during the past 4 to 5 years. Measurements of approximately 50 trace gases in these samples provide a rich dataset of chemical markers related to urban, industrial, oceanic, biomass burning, fossil-fuel burning, atmospheric mixing, photosynthesis, and soil influences. Anthropogenic emission signals are readily apparent in the halocarbon and hydrocarbon data, upon which this talk will focus. Measured correlations between different halocarbons (especially hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs)) show variations as a function of season that are qualitatively consistent with the expected regional and seasonal patterns of use and emission of these industrially-produced chemicals. In some instances, annual mean correlation slopes between different trace gases are well described by the U.S. EPA Greenhouse Gas Emission Inventories, but for others, large differences are observed. Furthermore, interannual changes in correlation slopes are expected for gases that are being phased out (i.e., HCFCs) compared to those for which emissions may be increasing (i.e., HFCs) in the US. This presentation will focus on the regional, seasonal, and interannual variations in trace gas emissions implied from a straightforward analysis of this extensive measurement record.

  5. The "Lung": a software-controlled air accumulator for quasi-continuous multi-point measurement of agricultural greenhouse gases

    NASA Astrophysics Data System (ADS)

    Martin, R. J.; Bromley, A. M.; Harvey, M. J.; Moss, R. C.; Pattey, E.; Dow, D.

    2011-10-01

    We describe the design and testing of a flexible bag ("Lung") accumulator attached to a gas chromatographic (GC) analyzer capable of measuring surface-atmosphere greenhouse gas exchange fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes, discussed here. Secondly, it has been used for the automation of concurrent emission assessment from three sheep housed in metabolic crates with gas tracer addition and sampling multiplexed to a single GC. The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times) where a greater number of sampling points are required.

  6. The "Lung": a software-controlled air accumulator for quasi-continuous multi-point measurement of agricultural greenhouse gases

    NASA Astrophysics Data System (ADS)

    Martin, R. J.; Bromley, A. M.; Harvey, M. J.; Moss, R. C.; Pattey, E.; Dow, D.

    2011-03-01

    We describe the design and testing of a flexible bag ("Lung") accumulator attached to a gas chromatographic (GC) analyzer capable of measuring greenhouse gas emissive fluxes in a wide range of environmental/agricultural settings. In the design presented here, the Lung can collect up to three gas samples concurrently, each accumulated into a Tedlar® bag over a period of 20 min or longer. Toggling collection between 2 sets of 3 bags enables quasi-continuous collection with sequential analysis and discarding of sample residues. The Lung thus provides a flexible "front end" collection system for interfacing to a GC or alternative analyzer and has been used in 2 main types of application. Firstly, it has been applied to micrometeorological assessment of paddock-scale N2O fluxes. Secondly, it has been used for the automation of concurrent emission assessment from three flux chambers, multiplexed to a single GC. The Lung allows the same GC equipment used in laboratory discrete sample analysis to be deployed for continuous field measurement. Continuity of measurement enables spatially-averaged N2O fluxes in particular to be determined with greater accuracy, given the highly heterogeneous and episodic nature of N2O emissions. We present a detailed evaluation of the micrometeorological flux estimation alongside an independent tuneable diode laser system, reporting excellent agreement between flux estimates based on downwind vertical concentration differences. Whilst the current design is based around triplet bag sets, the basic design could be scaled up to a larger number of inlets or bags and less frequent analysis (longer accumulation times) where a greater number of sampling points are required.

  7. Comparison of Life Cycle Greenhouse Gases from Natural Gas Pathways for Medium and Heavy-Duty Vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks. PMID:25938939

  8. A research proposal on spectroscopy of gases and solids observed in the solar system

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Allamandola, L. J.; Chackerian, C., Jr.; Giver, L. P.; Goorvitch, D.

    1986-01-01

    It is well recognized and accepted that the interpretation and analysis of any type of remote planetary spectroscopic observation requires that basic molecular parameters be available. Furthermore, the newly developed capabilities of air, ground, and space borne spectrometers trained on bodies in the solar system are producing results which are extremely difficult to understand on the basis of available data. This is particularly true in the case of spectral features arising from gases and volatiles condensed as ices. With the objective to continue to extend the understanding of spectroscopic observations of solar system objects (including comets) , laboratory studies of both gas phase molecules and ices and dusts are proposed.

  9. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect

    Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  10. Biogeochemistry, transport fluxes and emission of greenhouse gases from the Niger River (West Africa): preliminary results after two years of monitoring

    NASA Astrophysics Data System (ADS)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Borges, Alberto V.

    2013-04-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km2. It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Yet, there is surprisingly little or no information on carbon (C) and nitrogen (N) cycling in this river. Here, we report initial results of a monitoring campaign whereby 2-weekly samples have been collected at Niamey (Niger) [2.01° E 13.57° N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, quantification and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), dissolved organic carbon (DOC ?13C-DOC) and dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (partial pressure of CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct an annual budget for both particulate and dissolved carbon fluxes, as well as a first seasonally resolved characterisation of the matter transported by the Niger River and of the GHGs emitted to the atmosphere.

  11. Global warming potentials; Part 7 of 7 supporting documents. Sector-specific issues and reporting methodologies supporting the general guidelines for voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992; Public review draft

    SciTech Connect

    Not Available

    1994-05-31

    This document provides methods to account for the different effects of different gases on the atmosphere. It discusses the rationale and uses for simplified measures to represent human-related effects on climate and provides a brief introduction to a major index, the global warming potential (GWP) index. Appendix 7.A analyzes the science underlying the development of indices for concerns about climate, which is still evolving, evaluates the usefulness of currently available indices, and presents the state of the art for numerical indices and their uncertainties. For concerns about climate, the Intergovernmental Panel on Climate Change (IPCC) has been instrumental in examining relative indices for comparing the radiative influences of greenhouse gases. The IPCC developed the concept of GWPs to provide a simple representation of the relative effects on climate resulting from a unit mass emission of a greenhouse gas. Alternative measures and variations on the definition of GWPs have also been considered and reported.

  12. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer [World Resources Institute, Washington, DC (United States). Sustainable Enterprise Program

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  13. Detecting ozone- and greenhouse gas-driven wind trends with observational data.

    PubMed

    Lee, Sukyoung; Feldstein, Steven B

    2013-02-01

    Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend. PMID:23372010

  14. Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary

    NASA Astrophysics Data System (ADS)

    Harley, J. F.; Carvalho, L.; Dudley, B.; Heal, K. V.; Rees, R. M.; Skiba, U.

    2015-02-01

    The spatial and seasonal dynamics of surface water fluxes of the greenhouse gases (GHG) CO2, CH4, and N2O were quantified in the Tay estuary, Scotland, on seven sampling occasions every 3 months during 2009/2010. This estuary is a relatively pristine river-dominated macrotidal estuary system of a type that is sparsely represented in global GHG flux studies. Significant spatial and temporal variability in GHG fluxes were measured, with similar spatial dynamics to that of other European estuaries. Greatest temporal and spatial variability in gas saturations were found for CH4, which was higher in the summer, with peaks in saturation occurring in the freshwater upper estuary and sharply decreasing in the mid-estuary mixing zone. Concentrations of CO2 and N2O were also generally higher in the upper to middle estuary in summer, although seasonality was less pronounced. Estimated air-sea fluxes also displayed significant spatial and temporal variability. Total annual CO2 emissions were greatest in the middle estuary zone (13.8 × 106 kg C yr-1), and lowest in the upper estuary (1.52 × 106 kg C yr-1). Seasonally, the highest CO2 emissions integrated across the estuary were in spring and autumn, with the lowest in winter. Total annual CH4 emissions were also highest in the middle estuary (0.05 × 106 kg C yr-1) and lowest in the upper estuary (0.01 × 106 kg C yr-1), whereas total N2O emissions, whilst highest in the middle estuary (2344 kg N yr-1), were lowest in the outer estuary (-435 kg N yr-1). Emissions of CH4 and N2O were substantially higher in the summer than any other season and lowest emissions were found in winter. The estimated annual exchange of both CO2 and N2O is substantially lower than those reported in other European macrotidal estuaries.

  15. Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951-2000

    NASA Astrophysics Data System (ADS)

    Chang, Wenyuan; Liao, Hong; Wang, Huijun

    2009-07-01

    A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during the years 1951-2000. Concentrations of sulfate, nitrate, primary organic carbon (POA), secondary organic carbon (SOA), black carbon (BC) aerosols, and tropospheric O3 for the years 1950 and 2000 are obtained a priori by coupled chemistry-aerosol-GCM simulations, and then monthly concentrations are interpolated linearly between 1951 and 2000. The annual concentrations of GHGs are taken from the IPCC Third Assessment Report. BC aerosol is internally mixed with other aerosols. Model results indicate that the simulated climate change over 1951-2000 is sensitive to anthropogenic changes in atmospheric components. The predicted year 2000 global mean surface air temperature can differ by 0.8°C with different forcings. Relative to the climate simulation without changes in GHGs, O3, and aerosols, anthropogenic forcings of SO{4/2-}, BC, BC+SO{4/2-}, BC+SO{4/2-}+POA, BC+SO{4/2-}+POA+SOA+NO{3/-}, O3, and GHGs are predicted to change the surface air temperature averaged over 1971-2000 in eastern China, respectively, by -0.40°C, +0.62°C, +0.18°C, +0.15°C, -0.78°C, +0.43°C, and +0.85°C, and to change the precipitation, respectively, by -0.21, +0.07, -0.03, +0.02, -0.24, -0.08, and +0.10 mm d-1. The authors conclude that all major aerosols are as important as GHGs in influencing climate change in eastern China, and tropospheric O3 also needs to be included in studies of regional climate change in China.

  16. Transport fluxes and emission of greenhouse gases of the Middle Niger River (west Africa): disproprotionate importance of the recent red floods in the Niamey region

    NASA Astrophysics Data System (ADS)

    Darchambeau, François; Bouillon, Steven; Alhou, Bassirou; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Niger River is Africa's third longest river and drains an area of ~2,120,000 km². It encompasses six hydrographic regions and crosses almost all possible ecosystem zones in West Africa. Since few decades, the Middle Niger River presents a two flood hydrograph, the local flood, or red flood, occurring during the rainy season being the more pronounced one. Here, we report initial results of a monitoring campaign whereby 2-weekly samples were collected at Niamey (Niger) [2.01°E 13.57°N] between April 2011 and March 2013 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM) concentrations, concentration and stable isotope composition of particulate organic carbon (POC and ?13C-POC) and particulate nitrogen (PN and ?15N-PN), chromophoric dissolved organic matter (CDOM), dissolved organic carbon (DOC and ?13C-DOC), dissolved inorganic carbon (DIC and ?13C-DIC), concentration of greenhouse gases (GHGs) (CO2, CH4 and N2O), as well as major elements, total alkalinity, and oxygen isotope signatures of water (?18O-H2O). This dataset allows us to construct seasonal budgets for particulate and dissolved carbon fluxes, nutrient exports, as well as a first seasonally resolved characterisation of the GHGs emitted to the atmosphere by the Middle Niger River. The red flood, concentrated on 2 months (August-September), contributed to more than 80% of the annual transport fluxes of TSM and POC and to approximately 30% of the annual transport fluxes of DIC and DOC.

  17. Reported emissions of organic gases are not consistent with?observations

    PubMed Central

    Henry, Ronald C.; Spiegelman, Clifford H.; Collins, John F.; Park, EunSug

    1997-01-01

    Regulatory agencies and photochemical models of ozone rely on self-reported industrial emission rates of organic gases. Incorrect self-reported emissions can severely impact on air quality models and regulatory decisions. We compared self-reported emissions of organic gases in Houston, Texas, to measurements at a receptor site near the Houston ship channel, a major petrochemical complex. We analyzed hourly observations of total nonmethane organic carbon and 54 hydrocarbon compounds from C-2 to C-9 for the period June through November, 1993. We were able to demonstrate severe inconsistencies between reported emissions and major sources as derived from the data using a multivariate receptor model. The composition and the location of the sources as deduced from the data are not consistent with the reported industrial emissions. On the other hand, our observationally based methods did correctly identify the location and composition of a relatively small nearby chemical plant. This paper provides strong empirical evidence that regulatory agencies and photochemical models are making predictions based on inaccurate industrial emissions. PMID:11038551

  18. Multi-Model CIMP5 projected impacts of increased greenhouse gases on the Niger basin and implications for hydropower production

    NASA Astrophysics Data System (ADS)

    Oyerinde, Ganiyu; Wisser, Dominik

    2014-05-01

    Climate change could potentially have large impacts on water availability in West Africa and the predictions are accrued with high uncertainties in this region. Countries in the Niger River basin (West Africa) plan the investment of 200 million in the installation of an additional 400MW of hydropower in the nearest future, adding to the existing 685MW. With the impacts of climate change in the basin already occurring, there is a need for comprehending the influence of future hydro-climatic changes on water resources and hydro-power generation in the basin. This study uses a hydrological model to simulate river flow under present and future conditions and evaluates the impacts of potential changes on electricity production of the largest hydroelectric dam (Kainji) in the Niger Basin. The Kainji reservoir produces 25 per cent of the current energy needs of Nigeria and was subject to large fluctuations in energy production as a result of variable inflow and operational reasons. Inflow into the reservoir was simulated using hydroclimatic data from a set of 7 regional climate models (RCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Based on observations of inflow, water level in the reservoir, and energy production we developed a simple hydroelectricity production model to simulate future energy production for the reservoir. Results suggest increases in river flow for the majority of RCM data as a result of increases in precipitation in the headwaters of the basin around 2050 and slightly decreasing trends for low emission scenarios by the end of the century. Despite this consistent increase, shifts in timing of river flow can challenge the reliable production of energy. This analysis could help assess the planning of hydropower schemes in the basin for a sustainable production of hydroelectricity in the future.

  19. MAX-DOAS observations of trace gases over Mainz: preliminary results

    NASA Astrophysics Data System (ADS)

    Alberti, Carlos; Gu, Myojeong; Remmers, Julia; Wagner, Thomas

    2014-05-01

    In this work we report on levels of trace gases in ambient atmosphere in Mainz, Germany. We measured the differential Slant Column Density (dSCD) of NO2, HCHO and O4 in the ultraviolet region of the electromagnetic spectrum using a Mini-MAX-DOAS instrument. The MAX-DOAS observations were taken at Max Planck Institute for Chemistry in Mainz, from January to March 2014, at different elevation angles. The main aim of the study is to compare the results of the Mini-MAX-DOAS instrument with those from a 'scientific' MAX-DOAS instrument operated simultaneously at the same location. We quantify systematic differences and random and errors of both data sets for different measurement conditions. The preliminary results of this MAX DOAS observations and the diurnal variation of the retrieved trace gas DSCDs will be discussed in this work.

  20. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    PubMed

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an effective means for evaluating some aspects of the current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential to improve the robustness of the next generation inventory system. PMID:22827140

  1. The greenhouse effect and climate change

    Microsoft Academic Search

    John F. B. Mitchell; J. F. B

    1989-01-01

    The physical basis of the projected changes in climate due to enhancement of the greenhouse effect is outlined. Gases important to the greenhouse effect are discussed as well as the expected changes in the concentration of greenhouse gases, potential climatic effects, and the ways of detecting changes in the climate. The potential warming due to man-made changes over the last

  2. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  3. In-Situ Greenhouse Gas Measurement Comparisons in Railroad Valley, NV to Identify Local Point Sources and Quantify their Influences on Observed Background Concentrations

    NASA Astrophysics Data System (ADS)

    Schiro, K. A.; Yates, E. L.; Sheffner, E. J.; Iraci, L. T.; Bebout, B.; Berthold, R. W.; Bruegge, C. J.; Bui, T.; DeMarines, J.; Detweiler, A. M.; Fladeland, M. M.; Kelley, C. A.; Koyler, R.; Loewenstein, M.; McKay, C.; Tadic, J.

    2011-12-01

    In the summer of 2011, researchers from NASA Ames Research Center joined a multi-institute team on a playa in Railroad Valley, Nevada to acquire ground-based and airborne observations supporting measurements from the Greenhouse Gases Observing Satellite (GOSAT). In-situ measurements of carbon dioxide (CO2) and methane (CH4) with 10 Hz temporal resolution were made using a Picarro Greenhouse Gas (GHG) Analyzer at both a ground site (Picarro G2311-f) and onboard the NASA SIERRA (Sensor Integrated Environmental Remote Research Aircraft) Unmanned Aircraft System (UAS) (Picarro G2301-f). These measurements have been compared in detail with one another, and the ground-based Picarro shows outstanding agreement with the SIERRA Picarro. This validates the ability of both instruments to measure local and regional emissions within the mixed layer. Potential GHG emission sites were identified by overflights with the SIERRA UAS and confirmed by coincident ground observations. These data comparisons, when factoring in the effects of the ground and airborne meteorological conditions, allow us to identify point sources of CO2 and CH4 within the area. Soil gas samples and sediment analysis were also conducted to help distinguish emission sources. Railroad Valley, NV is an ideal site for measuring and modeling emissions on local scales because of its remote location; resulting in clean ambient air that acts as a steady control for data retrieval and dispersion modeling. Most importantly, quantifying emissions from nearby sources allows us to achieve a greater understanding of the nature of the measurements being made across the playa. Further analysis will employ mathematical dispersion models to explore the local emissions detected with the in-situ measurements.

  4. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-01-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  5. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Greet, J.-M.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-04-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.7 Pg (+59%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are available from the following url: http://www.nies.go.jp/REAS/ .

  6. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-11-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25° × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.0 Pg (+57%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulphurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25° × 0.25° for the major sectors are available from the following URL: http://www.nies.go.jp/REAS/.

  7. SAFT-? force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.

    PubMed

    Avendaño, Carlos; Lafitte, Thomas; Adjiman, Claire S; Galindo, Amparo; Müller, Erich A; Jackson, George

    2013-03-01

    In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-? force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-? CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-? methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement refrigerant with promising properties. The description of the fluid-phase behavior and the prediction of the other thermophysical properties obtained by molecular simulation using our SAFT-? CG Mie force fields are found to be of comparable quality (and sometimes superior) to that obtained using the more sophisticated all-atom (AA) and united-atom (UA) models commonly employed in the field. We should emphasize that though the focus of our current work is on simple homonuclear models, the SAFT-? methodology is based on a group contribution methodology which is naturally suited to the development of more sophisticated heteronuclear models. PMID:23311931

  8. Reactive and nonreactive quenching of O(1D) by the potent greenhouse gases SO2F2, NF3, and SF5CF3.

    PubMed

    Zhao, Zhijun; Laine, Patrick L; Nicovich, J Michael; Wine, Paul H

    2010-04-13

    A laser flash photolysis-resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O((1)D) deactivation by three potent greenhouse gases, SO(2)F(2)(k(1)), NF(3)(k(2)), and SF(5)CF(3)(k(3)). In excellent agreement with one published study, we find that k(1)(T) = 9.0 x 10(-11) exp(+98/T) cm(3) molecule(-1) s(-1) and that the reactive quenching rate coefficient is k(1b) = (5.8 +/- 2.3) x 10(-11) cm(3) molecule(-1) s(-1) independent of temperature. We find that k(2)(T) = 2.0 x 10(-11) exp(+52/T) cm(3) molecule(-1) s(-1) with reaction proceeding almost entirely (approximately 99%) by reactive quenching. Reactive quenching of O((1)D) by NF(3) is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF(3). Deactivation of O((1)D) by SF(5)CF(3) is slow enough (k(3) < 2.0 x 10(-13) cm(3) molecule(-1) s(-1) at 298 K) that reaction with O((1)D) is unimportant as an atmospheric removal mechanism for SF(5)CF(3). The kinetics of O((1)D) reactions with SO(2) (k(4)) and CS(2) (k(5)) have also been investigated at 298 K. We find that k(4) = (2.2 +/- 0.3) x 10(-10) and k(5) = (4.6 +/- 0.6) x 10(-10) cm(3) molecule(-1) s(-1); branching ratios for reactive quenching are 0.76 +/- 0.12 and 0.94 +/- 0.06 for the SO(2) and CS(2) reactions, respectively. All uncertainties reported above are estimates of accuracy (2sigma) and rate coefficients k(i)(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of +/- 15% (2sigma). PMID:20133693

  9. The Greenhouse Effect

    NSDL National Science Digital Library

    Carol McLaren

    2000-01-01

    This site provides an overview of the Earth's atmospheric greenhouse effect by briefly exploring the atmospheres of nearby planets and discussing the greenhouse gases of our atmosphere, such as, water vapor, carbon dioxide, methane, ozone, and nitrous oxide. Students will learn that the heat-trapping ability of a greenhouse is influenced by a number of factors, including the transparency of the greenhouse cover, and color and texture of the planet's surfaces. This site serves as a resource for and includes links to two classroom activities.

  10. A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions

    E-print Network

    Prinn, Ronald G.

    With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

  11. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions.

    PubMed

    James, E K; Olivares, F L; de Oliveira, A L; dos Reis, F B; da Silva, L G; Reis, V M

    2001-04-01

    Sugar cane (Saccharum spp.) variety SP 70-1143 was inoculated with Gluconacetobacter diazotrophicus strain PAL5 (ATCC 49037) in two experiments. In experiment 1 the bacteria were inoculated into a modified, low sucrose MS medium within which micropropagated plantlets were rooted. After 10 d there was extensive anatomical evidence of endophytic colonization by G. diazotrophicus, particularly in lower stems, where high numbers of bacteria were visible within some of the xylem vessels. The identity of the bacteria was confirmed by immunogold labelling with an antibody raised against G. diazotrophicus. On the lower stems there were breaks caused by the separation of the plantlets into individuals, and at these 'wounds' bacteria were seen colonizing the xylem and intercellular spaces. Bacteria were also occasionally seen entering leaves via damaged stomata, and subsequently colonizing sub-stomatal cavities and intercellular spaces. A localized host defence response in the form of fibrillar material surrounding the bacteria was associated with both the stem and leaf invasion. In experiment 2, stems of 5-week-old greenhouse-grown plants were inoculated by injection with a suspension of G. diazotrophicus containing 10(8) bacteria ml(-1). No hypersensitive response (HR) was observed, and no symptoms were visible on the leaves and stems for the duration of the experiment (7 d). Close to the point of inoculation, G. diazotrophicus cells were observed within the protoxylem and the xylem parenchyma, where they were surrounded by fibrillar material that stained light-green with toluidine blue. In leaf samples taken up to 4 cm from the inoculation points, G. diazotrophicus cells were mainly found within the metaxylem, where they were surrounded by a light green-staining material. The bacteria were growing in relatively low numbers adjacent to the xylem cell walls, and they were separated from the host-derived material by electron-transparent 'haloes' that contained material that reacted with the G. diazotrophicus antibody. PMID:11413211

  12. Mapping Greenhouse Gas Emissions Where You Live

    NSDL National Science Digital Library

    United States Environmental Protection Agency

    2014-04-30

    In this lesson plan, learners examine some of the of greenhouse gas emissions sources in their community. To investigate the sources of greenhouse gas emissions, learners use the Environmental Protection Agency’s (EPA) Facility Level Information on GreenHouse gases Tool (FLIGHT). The FLIGHT Tool is a publicly accessible repository of data submitted to EPA by power plants, factories, refineries, and other U.S. facilities that emit large amounts of greenhouse gases.

  13. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    Microsoft Academic Search

    Ruth DeFries; Frédéric Achard; Sandra Brown; Martin Herold; Daniel Murdiyarso; Bernhard Schlamadinger; Carlos de Souza

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent

  14. Ahimsa Media -For Educators -The Greenhouse Effect The Greenhouse Effect: Extension Activity

    E-print Network

    Mojzsis, Stephen J.

    Ahimsa Media - For Educators - The Greenhouse Effect The Greenhouse Effect: Extension Activity By Erica Hargreave Extensions Have students brainstorm ways they can reduce greenhouse gases at home, play and school. Visit a local organization that is successfully reducing greenhouse gas emissions

  15. Spatial variability of greenhouse gases emissions (CO2, CH4, N2O) in a tropical hydroelectric reservoir flooding primary forest (Petit Saut Reservoir, French Guiana)

    NASA Astrophysics Data System (ADS)

    Cailleaud, Emilie; Guérin, Frédéric; Bouillon, Steven; Sarrazin, Max; Serça, Dominique

    2014-05-01

    At the Petit Saut Reservoir (PSR, French Guiana, South America), vertical profiles were performed at 5 stations in the open waters (OW) and 6 stations in two shallow flooded forest (FF) areas between April 2012 and September 2013. Measurements included physico-chemical parameters, ammonium, nitrate and dissolved greenhouse gas (CO2, CH4, N2O) concentrations, dissolved and particulate organic carbon (DOC, POC) and nitrogen (PN), ?13C-POC and ?15N-PN . The diffusive fluxes were calculated from surface concentrations. The aim of this study was to estimate the spatial variations of greenhouse gas emissions at a dentrical hydroelectric reservoir located in the tropics and flooding primary forest. Twenty years after impoundment, the water column of the PSR is permanently and tightly stratified thermally in the FF whereas in the OW, the thermal gradients are not as stable. The different hydrodynamical behaviours between the two different zones have significant consequences on the biogeochemistry: oxygen barely diffuses down to the hypolimnion in the FF whereas destratification occurs sporadically during the rainy season in the OW. Although we found the same range of POC in the FF and the OW (2.5-29 ?mol L-1) and 20% more DOC at the bottom of OW than in the FF (229-878 ?mol L-1), CO2 and CH4 concentrations were always significantly higher in the FF (CO2: 11-1412 ?mol L-1, CH4: 0.001-1015 ?mol L-1) than in the OW. On average, the CO2 concentrations were 30-40% higher in the FF than in the OW and the CH4 concentrations were three times higher in the FF than in the OW. The ?13C-POC and C:N values did not suggest substantial differences in the sources of OM between the FF and OW. At all stations, POC at the bottom has an isotopic signature slightly lighter than the terrestrial OM in the surrounding forest whereas the isotopic signature of surface POM would result from phytoplankton and methanotrophs. The vertical profiles of nitrogen compounds reveal that the main source of nitrogen in the water column of the PSR is the NH4+ produced during the mineralisation of the OM at the bottom of the reservoir. In OW, the production of NO3- and N2O is enhanced compared to the FF. As a result, N2O concentrations are three times higher at the bottom of OW but surface concentrations are similar in the FF and OW. CO2 diffusive fluxes are 40% higher and CH4 diffusive fluxes are three times higher in FF (CO2: 42±20 mmol m-2 d-1 ; CH4: 0.7±1.4 mmol m-2 d-1) than in OW (CO2: 27±17 mmol m-2 d-1 ; CH4: 0.2±0.3 mmol m-2 d-1). In shallow FF, average CH4 ebullition is 3±10 mmol m-2 d-1 whereas ebullition was never observed in OW. N2O emissions did not exhibit any spatial variability (9±4 ?mol m-2 d-1). At the PSR, FF which represents one third of the surface area, is responsible of half of the GHG emissions from the reservoir. This implies that the emissions from most of the tropical reservoirs flooding primary forest need to be reassessed since FF environments are usually overlooked.

  16. The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform\\/efficiency improvement and scenario for 2000–2010

    Microsoft Academic Search

    Hamid Davoudpour; Mohammad Sadegh Ahadi

    2006-01-01

    Iran's demographic profile is sharply youth oriented and this upcoming generation's needs for employment and housing, coupled with low-energy efficiency vectors and consumption patterns, has created a constant rise in energy demand and greenhouse gas (GHGs) emissions in the residential sector. Improved energy efficiency as a national policy lynchpin for demand reduction and GHGs mitigation, has become commonplace. OPEC countries

  17. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-print Network

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  18. Greenhouse gas emissions from a managed grassland

    Microsoft Academic Search

    S. K. Jones; R. M. Rees; U. M. Skiba; B. C. Ball

    2005-01-01

    Managed grasslands contribute to global warming by the exchange of the greenhouse gases carbon dioxide, nitrous oxide and methane. To reduce uncertainties of the global warming potential of European grasslands and to assess potential mitigation options, an integrated approach quantifying fluxes from all three gases is needed. Greenhouse gas emissions from a grassland site in the SE of Scotland were

  19. Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach

    NASA Astrophysics Data System (ADS)

    Rafique, Rashad; Kumar, Sandeep; Luo, Yiqi; Xu, Xianli; Li, Dejun; Zhang, Wei; Asam, Zaki-ul-Zaman

    2014-07-01

    Greenhouse gas (GHG) emissions play an important role in regulating the Earth surface temperature. GHG emissions from soils are sensitive to climate change and land management practices. According to general circulation model (GCM) predictions, the Earth will experience a combination of increased temperature and altered precipitation regimes which may result in an increase or a decrease of GHG exchange. The effect of climate change on GHG emissions can be examined through both experiments and by applying process-based models, which have become more popular. The performance of those models can be improved significantly by appropriate calibration procedures. The objectives of this study are to: (i) calibrate the DAYCENT model using advance parameter estimation (PEST) software and to (ii) examine simulated GHG dynamics at daily and seasonal time-scales under a climate change scenario of increased temperature (2 °C) and a precipitation regime change where 40% of precipitation during the dry season was redistributed to the wet season. The algorithmic calibration improved the model performance by reducing the sum of weighted squared residual differences by up to 223% (decreased from 1635 to 505 g N2O-N ha- 1 d- 1) for N2O and 22% (decreased from 623 to 507% WFPS) for water filled pore space (WFPS) simulation results. In the altered climate scenario, total N2O and CO2 fluxes decreased by 9% (from 2.31 to 2.10 kg N2O-N ha- 1 yr- 1) and 38% (from 1134.08 to 699.56 kg CO2 ha- 1 yr- 1) respectively, whereas CH4 fluxes increased by 10% (from 1.62 to 1.80 kg CH4 ha- 1 yr- 1). Our results show a larger impact of altered climate on CO2 as compared to N2O and CH4 emissions. The main difference in all GHG emissions was observed in summer period due to drought conditions created by reduced precipitation and increased temperatures. However, the GHG dynamics can also be attributed to no-till practices which play an important role in changing the soil moisture conditions for aerobic and anaerobic microsites. These results are based on a process-based model, therefore, we suggest performing experimental studies to examine the GHG emissions under increased temperature and especially under altered precipitation regimes.

  20. Retrieval of vertical profiles of multiple trace gases from MAX-DOAS observations during the MADCAT Campaign in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Xie, Pinhua; Wagner, Thomas; Li, Ang; Luo, Yuhan; Remmers, Julia; Horbanski, Martin; Friess, Udo

    2014-05-01

    In order to promote the development of passive DOAS technique and solve some critical problems including e.g. accurate retrievals of trace gas slant column densities (SCD), profile retrievals of trace gases and aerosol, and the effects of cloud, the Multi Axis DOAS-Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max-Planck institute for Chemistry in Mainz, Germany from June to August 2013. Within this campaign, spectra of scattered sun light were taken by our two-dimensional scanning MAX-DOAS (2D-MAX-DOAS) instrument and a Mini-MAX-DOAS instrument from the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. In this presentation, firstly we show the retrieved differential SCDs of O4, NO2, HCHO, HONO and CHOCHO based on the observations of the 2D-MAX-DOAS. Based on these dSCDs we acquired the vertical profiles of these trace gases and aerosol extinction using optimal estimation method. We compare the aerosol optical depth (AOD) from MAX-DOAS with simultaneous observations from an AERONET instrument as well as the near surface volume mixing ratio (VMR) of NO2 from MAX-DOAS with those from a CE-DOAS instrument from the IUP Heidelberg group and found in general good agreement. In addition we apply a cloud classification scheme based on our MAX-DOAS observations to identify different kinds of weather during the MAD-CAT campaign.

  1. Indices for comparing greenhouse gas emissions: integrating science and economics

    Microsoft Academic Search

    Milind Kandlikar

    1996-01-01

    Abatement of greenhouse gases is a key element of possible policy responses to global warming. Comprehensive abatement strategies view the greenhouse abatement issue as one involving multiple gases and not CO2 alone. These strategies require the formulation of greenhouse gas indices that will allow for an evaluation of the trade offs involved. This paper uses an optimal control methodology to

  2. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  3. Influence of orography on variability of a non-CO2 greenhouse gases concentrations measured at Kasprowy Wierch station, Tatra, Poland

    NASA Astrophysics Data System (ADS)

    Necki, J.; Chmura, L.; Zimnoch, M.

    2012-04-01

    Kasprowy Wierch is a mountain peak in north-western Tatra mountain ridge, where meteorological station was settled in year 1936. As the station is situated in the convergence area of three large valleys it suffers from breeze wind and from frequent katabatic winds as well. Unfortunately vertical constituent of wind is not measured at the station. Prevailing wind direction pattern in this part of Europe is western circulation. However 75-years record consistently indicate south as the predominant direction of wind at Kasprowy Wierch. Two of the valleys coming toward this mountain peak are forcing the transport of air exactly from that direction. Since 1994 trace gas analysis is performed at the station. In year 1996 automated gas chromatograph was installed at the station and data are collected till nowadays. "In situ" concentrations of CH4, N2O and SF6 are measured every 16 minutes. Since 2010 also H2 and CO are observed at the station. Especially carbon monoxide concentration may be used as a proxy for determination of cases when local emission contaminates the air coming to the station. Usually location of the station in high mountain assures large distance from sources of the observed gases. Some tracers connected with human activity like carbon monoxide or sulphur hexafluoride may indicate proximity of anthropogenic sources of N2O and CH4, which might substantially change the composition of air surrounding the station. Valley breezes occur frequently in each mountain area. It has a large influence on air composition meas-ured at the mountain stations. It can be clearly noticed in CH4 and N2O records and at much smaller rate in SF6 concentration as well. Diurnal cycle of methane and nitrous oxide concentrations reflects substantial change of its value usually shortly after the sunrise. During the summer season a valley breeze transports to the station an air enriched in CH4 and N2O from the peat lands located along the foothill of Tatra mountains. Additionally ni-trous oxide is emitted from arable lands representing almost half of the terrain bordering with Tatra. In case of Kasprowy Wierch methane enhancement may reach even 150ppb usually in July and August. Average diurnal amplitude remains at 30ppb. Variations of nitrous oxide concentration remains is usually characterized by amplitude of 3ppb. Sulphur hexafluoride amplitude remains usually below 1.5ppt. In winter, mean diurnal amplitude of methane abundance recorded at Kasprowy Wierch decrease to 10ppb as most of the terrain including peat lands is shielded by a deep snow cover. N2O reproduces also decreased variations in opposition to SF6 which tend to represent much stronger fluctuation with impaired diurnal frequency. Global circulation models doesn't take to account valley breeze wind. This is one of the reasons why model results of trace gas concentration for mountainous sites are incoherent with measurements. The research leading to these results has received funding from the European Community's Seventh Frame-work Programs (FP7/2007-2013) under grant agreement n° 244122 (GHG-Europe) and n° 284274 (InGOS).

  4. Mitigating Greenhouse Gas Emissions: Voluntary Reporting

    NSDL National Science Digital Library

    1997-01-01

    This document, provided by the US Energy Information Agency, summarizes emission data reported for 1995 as part of the Voluntary Reporting of Greenhouse Gases Program. Global warming is caused by increasing quantities of greenhouse gases being emitted into the atmosphere. Such gases include carbon dioxide, methane, nitrous oxide, and toxic pollutants. Estimates of temperature increase range from 2-6.5 degrees Fahrenheit in the next 100 years.

  5. Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects On the Environment

    E-print Network

    Murty, Katta G.

    Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects gases in the stratosphere than in the whole atmosphere. This indicates that the increasing volumes, greenhouse gases, stratosphere, atmosphere, atmospheric and oceanic temperatures, ozone hole phenomenon

  6. Direct observations of reactive atmospheric gases at ZOTTO station in the middle of Siberia as a base for large-scale modeling of atmospheric chemistry over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey; Belikov, Igor; Shtabkin, Yury; Moiseenko, Konstantin; Pankratova, Natalia; Vasileva, Anastasia; Rakitin, Vadim; Heimann, Martin

    2015-04-01

    Direct observations of atmospheric air composition are very important for a comprehensive understanding of atmospheric chemistry over Northern Eurasia and its variability and trends driven by abrupt climatic and ecosystem changes and anthropogenic pressure. Atmospheric air composition (including greenhouse gases and aerosols), its trends and variability is still insufficiently known for most of the nearly uninhabited areas of Northern Eurasia. This limits the accuracy of both global and regional models, which simulate climatological and ecosystem changes in this highly important region. From that point of view, the Zotino Tall Tower Observatory (ZOTTO) in the middle of Siberia (near 60N, 90E), launched in 2006 and governed by a scientific international consortium plays an important role providing unique information about concentrations of greenhouse and reactive trace gases, as well as aerosols. Simulations of surface concentrations of O3, NOx and CO performed by global chemical-transport model GEOS-Chem using up-to-date anthropogenic and biogenic emissions databases show very good agreement with values observed at ZOTTO in 2007-2012. Observed concentration of ozone has a pronounced seasonal variation with a clear peak in spring (40-45 ppbv in average and up to 80 ppbv in extreme cases) and minimum in winter. Average ozone level is about 20 ppbv that corresponds to the background conditions. Enhanced concentration in March-July is due to increased stratospheric-tropospheric exchange. In autumn and winter distribution of ozone is close to uniform. NOx concentration does not exceed 1 ppb that is typical for background areas but may vary by order and some more in few hours. Higher surface NOx(=NO+NO2) concentrations during day time generally correspond to higher ozone when NO/NO2 ratio indicates on clean or slightly polluted conditions. CO surface concentration has a vivid seasonal course and varies from about 100 ppb in summer till 150 ppb in winter. But during polluted cases which are quite regular CO may increase till 400 ppb and more. Most uncertainties are due to the wild fires, which are often in different regions of Siberia. Numerical assessment of climatically important natural and anthropogenic emission sources influencing observed CO and O3 concentrations and their seasonal variability was made using GEOS-Chem model. According to the results, during the cold period CO concentrations in the surface layer is largely driven atmospheric transport from anthropogenic sources in Western Europe (up to 20 ppb), south of European Russia (up to 35 ppb) and south-western Siberia (up to 28 ppb). During the warm season they are usually affected by air transport from eastern Siberia, where the main contribution to the CO emissions are biogenic VOC oxidation (up to 15 ppb) and wildfires (up to 12 ppb). Transport of pollutants from south-western Siberia can add about 2,5 ppb to the ozone summer level in Central Siberia. In wintertime this factor leads to a reduced surface ozone level by 2 ppb. The contribution of large remote emission sources (Europe) is estimated within 1 ppb. Generally the simulation results indicate a significant role of long-range air transport in addition to regional natural and anthropogenic sources of air pollution which determine the total balance of surface CO. These processes need to be considered in quantitative analyses of the factors that determine the long-term photochemical system evolution in the lower troposphere over the continental regions of Northern Eurasia. This work was supported by the Russian Scientific Fund under grant 14-47-00049.

  7. Minimizing Greenhouse Emissions in Vehicle Routing Gilbert Laporte, Ph.D., frsc

    E-print Network

    Bustamante, Fabián E.

    Minimizing Greenhouse Emissions in Vehicle Routing Gilbert Laporte, Ph.D., frsc Canada Research the industrial revolution 393 ppmv in April 2012 · Greenhouse gas (GHG) emissions (CO2, methane, nitrous dioxide;Greenhouse gases (GHGs) Greenhouse gases, such as carbon dioxide (CO2), cause the average global temperature

  8. Global Warming Observations

    E-print Network

    Schofield, Jeremy

    Global Warming Observations: 1. Global temperature has been gradually rising in recent years #15 in range 8000 12000 nm { CFC's, methane and N 2 O important for global warming even though concentra- tions in concentration of \\greenhouse gases" like CO 2 What determines global temperature? Energy budget of earth: 1

  9. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    EPA Science Inventory

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  10. Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Kawaragi, Ko; Sekine, Yasuhito; Kadono, Toshihiko; Sugita, Seiji; Ohno, Sohsuke; Ishibashi, Ko; Kurosawa, Kosuke; Matsui, Takafumi; Ikeda, Susumu

    2009-05-01

    Shock-induced devolatilization in hypervelocity impacts has been considered to play important roles in the atmospheric evolution and mass extinctions in Earth's history. Although the chemical composition of shock-induced gas species from carbonate rocks has been considered as a key to understand the environmental change after the Chicxulub impact, it has not been investigated extensively before. Here, we conduct direct measurements of the chemical composition (CO/CO 2) of shock-induced gas species from calcite (CaCO 3) using both a laser gun system and an isotopic labeling technique. The CO/CO 2 ratio of the shock-induced gas species from calcite is measured to be 2.02 ± 0.41, suggesting that gaseous CO has been dominant in the shock-induced gases in the Chicxulub impact. In order to evaluate the environmental effects of the injection of CO gas, we investigated the post-impact atmospheric chemistry by incorporating our experimental results into a tropospheric photochemical model. The results suggest that an intense (2-5 °C) global warming would have lasted for several years after a Chicxulub-size impact mainly due to the greenhouse effect of tropospheric O 3, which is produced via photochemical reactions associated with CO gas. Such an intense global warming could have damaged the biosphere in the mass extinction at the Cretaceous-Paleogene (K-P) boundary.

  11. Manure Gases

    MedlinePLUS

    ... The gases of most concern are ammonia and hydrogen sulfide. Other gases of concern include methane and ... present? Since most of these gases in particular hydrogen sulfide are heavier-than-air, they tend to ...

  12. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget

    NASA Astrophysics Data System (ADS)

    Teodoru, C. R.; Nyoni, F. C.; Borges, A. V.; Darchambeau, F.; Nyambe, I.; Bouillon, S.

    2015-04-01

    Spanning over 3000 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. We present data on greenhouse gas (GHG: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) concentrations and fluxes, as well as data that allow for characterization of sources and dynamics of carbon pools collected along the Zambezi River, reservoirs and several of its tributaries during 2012 and 2013 and over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity along the aquatic continuum. All GHG concentrations showed high spatial variability (coefficient of variation: 1.01 for CO2, 2.65 for CH4 and 0.21 for N2O). Overall, there was no unidirectional pattern along the river stretch (i.e., decrease or increase towards the ocean), as the spatial heterogeneity of GHGs appeared to be determined mainly by the connectivity with floodplains and wetlands as well as the presence of man-made structures (reservoirs) and natural barriers (waterfalls, rapids). Highest CO2 and CH4 concentrations in the main channel were found downstream of extensive floodplains/wetlands. Undersaturated CO2 conditions, in contrast, were characteristic of the surface waters of the two large reservoirs along the Zambezi mainstem. N2O concentrations showed the opposite pattern, being lowest downstream of the floodplains and highest in reservoirs. Among tributaries, highest concentrations of both CO2 and CH4 were measured in the Shire River, whereas low values were characteristic of more turbid systems such as the Luangwa and Mazoe rivers. The interannual variability in the Zambezi River was relatively large for both CO2 and CH4, and significantly higher concentrations (up to 2-fold) were measured during wet seasons compared to the dry season. Interannual variability of N2O was less pronounced, but higher values were generally found during the dry season. Overall, both concentrations and fluxes of CO2 and CH4 were well below the median/average values for tropical rivers, streams and reservoirs reported previously in the literature and used for global extrapolations. A first-order mass balance suggests that carbon (C) transport to the ocean represents the major component (59%) of the budget (largely in the form of dissolved inorganic carbon, DIC), while 38% of the total C yield is annually emitted into the atmosphere, mostly as CO2 (98%), and 3% is removed by sedimentation in reservoirs.

  13. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Ceulemans, Reinhart

    2013-04-01

    The increasing demand for renewable energy may lead to the conversion of millions of hectares into bioenergy plantations with a possible substantial transitory carbon (C) loss. In this study we report on the greenhouse gas fluxes (CO2, CH4, and N2O) measured using eddy covariance of a short-rotation bioenergy poplar plantation converted from agricultural fields. During the first six months after the establishment of the plantation (June-Dec 2010) there were substantial CO2, CH4, and N2O emissions (a total of 5.36 ± 0.52 Mg CO2eq ha-1 in terms of CO2 equivalents). Nitrous oxide loss mostly occurred during a week-long peak emission after an unusually large rainfall. This week-long N2O emission represented 52% of the entire N2O loss during one and an half years of measurements. As most of the N2O loss occurred in just this week-long period, accurately capturing these emission events are critical to accurate estimates of the GHG balance of bioenergy. While initial establishment (Jun-Dec 2010) of the plantation resulted in a net CO2 loss into the atmosphere (2.76 ± 0.16 Mg CO2eq ha-1), in the second year (2011) there was substantial net CO2 uptake (-3.51 ± 0.56 Mg CO2eq ha-1). During the entire measurement period, CH4 was a source to the atmosphere (0.63 ± 0.05 Mg CO2eq ha-1 in 2010, and 0.49 ± 0.05 Mg CO2eq ha-1 in 2011), and was controlled by water table depth. Importantly, over the entire measurement period, the sum of the CH4 and N2O losses was much higher (3.51 ± 0.52 Mg CO2eq ha-1) than the net CO2 uptake (-0.76 ± 0.58 Mg CO2eq ha-1). As water availability was an important control on the GHG emission of the plantation, expected climate change and altered rainfall pattern could increase the negative environmental impacts of bioenergy.

  14. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    NASA Astrophysics Data System (ADS)

    Oney, B.; Henne, S.; Gruber, N.; Leuenberger, M.; Bamberger, I.; Eugster, W.; Brunner, D.

    2015-05-01

    We describe a new rural network of four densely placed (< 100 km apart), continuous atmospheric carbon (CO2, CH4, and CO) measurement sites in north-central Switzerland and analyze their suitability for regional-scale (~ 100 to 500 km) carbon flux studies. We characterize each site by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO. The Beromünster measurements are made on a tall tower (212 m) located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background) vary diurnally from -4 to +4 ppmv on average, and are simulated to come from nearly the entire Swiss Plateau, where 50% of surface influence is simulated to be within 130 to 260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (< 50 km) pasture and forest fluxes exert the most simulated surface influence, except during convective summertime days when the site is mainly influenced by the eastern Swiss Plateau, which results in summertime regional CO2 signals varying diurnally from -5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites). The Gimmiz site measurements are made on a small tower (32 m) in flat terrain. Here, strong summertime regional signals (-5 to +60 ppmv CO2) stem from large, nearby (< 50 km) crop and anthropogenic fluxes of the Seeland region, except during warm or windy days when simulated surface influence is of regional scale (< 250 km). The Lägern-Hochwacht measurements are made on a small tower (32 m) on top of the steep Lägern crest, where simulated surface influence is typically of regional scale (130 to 300 km) causing summertime regional signals to vary from -5 to +8 ppmv CO2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich cause the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at Früebüel site. We find that the suitability of the datasets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km) atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography, and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be necessary to determine the impact of these limitations on our ability to derive reliable regional-scale carbon flux estimates in the complex Swiss landscape.

  15. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  16. Observation of low-field Fano-Feshbach resonances in ultracold gases of dysprosium

    E-print Network

    Baumann, Kristian; Lu, Mingwu; Lev, Benjamin L

    2013-01-01

    We report the observation of resonance-like loss in the trap population of ultracold dysprosium as a function of magnetic field, which we attribute to anisotropy-induced Fano-Feshbach resonances arising from Dy's large magnetic dipole moment and nonzero electronic orbital angular momentum. We recorded these resonances for four different isotopes, three bosonic and one fermionic, over a field range of 0-6 G and show that the number of resonances changes significantly as a function of temperature, even in the nK regime. Most of the observed resonances are of very narrow width. The fermionic isotope, unlike its bosonic counterparts, possesses nonzero nuclear spin and exhibits a much higher density of resonances.

  17. Combining Bayesian methods and aircraft observations to constrain the HO. + NO2 reaction rate

    Microsoft Academic Search

    B. H. Henderson; R. W. Pinder; J. Crooks; R. C. Cohen; A. G. Carlton; H. O. T. Pye; W. Vizuete

    2011-01-01

    Tropospheric ozone is the third strongest greenhouse gas, and has the highest uncertainty in radiative forcing of the top five greenhouse gases. Throughout the troposphere, ozone is produced by radical oxidation of nitrogen oxides (NOx = NO + NO2). In the upper troposphere (8-10 km), current chemical transport models under-estimate nitrogen dioxide (NO2) observations. Improvements to simulated NOx emissions from

  18. Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins

    Microsoft Academic Search

    Y. K. Kharaka; D. R. Cole; S. D. Hovorka; W. D. Gunter; K. G. Knauss; B. M. Freifeld

    2006-01-01

    To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick sandstone section of the Frio Formation, a regional brine and oil reservoir in the U.S. Gulf Coast. Fluid samples obtained from the injection and observation wells before CO2 injection showed a Na-Ca-Cl type

  19. Gas-water-rock interactions in Frio Formation following COâ injection: Implications for the storage of greenhouse gases in sedimentary basins

    Microsoft Academic Search

    Y. K. Kharaka; D. R. Cole; S. D. Hovorka; W. D. Gunter; K. G. Knauss; B. M. Freifeld

    2006-01-01

    To investigate the potential for the geologic storage of COâ in saline sedimentary aquifers, 1600 t of COâ were injected at 1500 m depth into a 24-in-thick sandstone section of the Frio Formation, a regional brine and oil reservoir in the U.S. Gulf Coast. Fluid samples obtained from the injection and observation wells before COâ injection showed a Na-CaCl-type brine

  20. IEA Greenhouse Gas R&D Programme

    NSDL National Science Digital Library

    The IEA Greenhouse Gas Programme is an international collaboration that evaluates technologies for reducing emissions of greenhouse gases, disseminates the results of these studies and identifies targets for research, development and demonstration. The program operates under the auspices of the International Energy Agency. The key areas of study for the IEA GGP include climate change, emission reduction and carbon dioxide capture and storage.

  1. The Berkeley Atmospheric CO2 Observation Network (BEACON): Measuring Greenhouse Gases and Criteria Pollutants within the Urban Dome

    NASA Astrophysics Data System (ADS)

    Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.

    2012-12-01

    Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.

  2. Observation of stratospheric trace gases related to ozone depletion in the Antarctic spring

    SciTech Connect

    De Zafra, R.L.; Parrish, A.; Solomon, P.; Barrett, J.W.; Connor, B.; Jaramillo, M. (State Univ. of New York, Stony Brook (USA))

    1987-01-01

    During the first National Ozone Expedition (NOZE I), which ran from 21 August to early November 1986 at McMurdo Station, the authors made frequent measurements of chlorine monoxide (CIO), ozone (O{sub 3}), nitrous oxide (N{sub 2}O), and occasional measurements of hydrogen cyanide. Observations were made with a ground-based millimeters wave spectrometer capable of detecting and measuring the pressure broadened rotational emission lines of these molecules in the 260-280 gigahertz frequency range. The spectral bandpass and resolution of the instrument is sufficient to recover altitude distributions over a range of approximately 20-55 kilometers and to detect emission from as low as approximately 13-15 kilometers. Results are given and discussed on the levels of chlorine monoxide, nitrous oxide, and ozone found.

  3. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  4. Assessment report on NRP subtheme “gGeenhouse Gases”

    Microsoft Academic Search

    J. G. de Beer

    1995-01-01

    The aim of the subtheme Greenhouse gases of the Dutch National Research programme on (NRP) is to quantify the sources and sinks of the major greenhouse gases to enable estimates of the future atmospheric concentration. The major part of the projects in this theme is focused on the Dutch situation, but the results can be extrapolated countries or regions. The

  5. Recent trends of inorganic chlorine and halogenated source gases above the Jungfraujoch and Kitt Peak stations derived from high-resolution FTIR solar observations

    NASA Astrophysics Data System (ADS)

    Mahieu, Emmanuel; Rinsland, Curtis P.; Gardiner, Tom; Zander, Rodolphe; Demoulin, Philippe; Chipperfield, Martyn P.; Ruhnke, Roland; Chiou, Linda S.; de Mazière, Martine

    2010-05-01

    The longest series of Fourier Transform Infrared (FTIR) high spectral resolution solar absorption observations are available from the Jungfraujoch and Kitt Peak stations, located at 46.5°N and 30.9°N, respectively. State-of-the-art interferometers are operated at these sites within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). These instruments allow to record spectra on a regular basis, under clear-sky conditions, using a suite of optical filters which altogether cover the 2 to 16 micron spectral range. Numerous absorption features characterized in the HITRAN compilations (e.g. Rothman et al., 2008) are encompassed in this mid-infrared region. Their analyses with either the SFIT-1 or SFIT-2 algorithm allow retrieving total columns of the target gases. Moreover, information on their distribution with altitude can generally be derived when using SFIT-2 which implements the Optimal Estimation Method of Rodgers (1990). Among the two dozen gases of atmospheric interest accessible to the ground-based FTIR technique, we have selected here a suite of long-lived halogenated species: HCl, ClONO2, CCl2F2, CCl3F, CHClF2, CCl4 and SF6. Time series available from the two sites will be presented, compared and critically discussed. In particular, changes in the abundances of theses gases since the peak in inorganic chlorine (Cly, which occurred in 1996-1997) and their intra-annual variability will be characterized with a statistical tool using bootstrap resampling (Gardiner et al., 2008). Trends and their associated uncertainties will be reported and put into perspective with the phase-out regulations of the production of ozone depleting substances adopted and implemented by the Montreal Protocol, its Amendments and Adjustments. For instance, the trends affecting the reservoir species HCl, ClONO2, and their summation which is a good proxy of the total inorganic chlorine, have been calculated using all available daily mean measurements from January 1996 onwards. The following values were obtained for Jungfraujoch, when using 1996 as the reference year: -0.90±0.10%/yr for HCl, -0.92±0.26 %/yr for ClONO2, and -0.96±0.14 %/yr for Cly; in all cases, the uncertainties define the 95% confidence interval around the trend values. For Kitt Peak (covering 1977-2009 but with far fewer measurements than from Jungfraujoch), the corresponding trends are: -0.55±0.34 %/yr for HCl, -1.27±0.84 %/yr for ClONO2 and -0.61±0.51 %/yr for Cly, they are statistically consistent with the Jungfraujoch rates of decrease. Further trend data will be presented at the EGU General Assembly while supplementary information on Jungfraujoch results will be available from communications at the same meeting by Duchatelet et al. (2010), Lejeune et al (2010) and Rinsland et al (2010). Comparisons with model data are also foreseen. Acknowledgments The University of Liège contribution to present work has primarily been supported by the AGACC and SECPEA projects funded by the Belgian Federal Science Policy Office (BELSPO), Brussels. We further acknowledge the support of the GEOMon European project. Work at the NASA Langley Research Center was supported by NASA's Upper Atmospheric Chemistry and Modeling Program (ACMAP). References Duchatelet et al., Updating hydrogen fluoride (HF) FTIR time series above Jungfraujoch: comparison of two retrieval algorithms and impact of line shape models, this issue, 2010. Gardiner, T., A. Forbes, M. De Mazière et al., Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719-6727, 2008. Lejeune et al., Optimized approach to retrieve information on the Tropospheric and Stratospheric Carbonyl Sulfide (OCS) vertical distributions above Jungfraujoch from high-resolution FTIR solar spectra, this issue, 2010. Rinsland et al., Long-term trend of carbon tetrachloride (CCl4) from ground-based high-resolution infrared solar spectra recorded at the Jungfraujoch, this issue, 2010. Rodgers, C.D., Char

  6. Costs of reducing greenhouse gas emissions in the USA and Canada

    Microsoft Academic Search

    W David Montgomery

    1996-01-01

    A number of possible policy responses can be adopted in order to address the prospect of increasing greenhouse gases in the earth's atmosphere. These include mitigation measures, that reduce greenhouse gas emissions or enhance the processes that remove greenhouse gases from the atmosphere, adaptation measures that reduce the consequences or damages from climate change, and information measures, including scientific research

  7. Seventh grade students' mental models of the greenhouse effect

    Microsoft Academic Search

    Daniel P. Shepardson; Soyoung Choi; Dev Niyogi; Umarporn Charusombat

    2011-01-01

    This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a ‘greenhouse’ for growing plants; Model 2, greenhouse gases

  8. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  9. Delivery of micrometeoritic greenhouse gases and

    Microsoft Academic Search

    M. Maurette; A. Brack; J. Duprat; C. Engrand

    2004-01-01

    (1) Processed micrometeorites in Astrobiology. In previous studies, we considered the contribution of unmelted micrometeorites in astrobiology. We now argue that even processed micrometeorites that are destroyed upon atmospheric entry could have participated in the birth of life on Earth. Unweathered micrometeorites from our new \\

  10. Solar greenhouse

    SciTech Connect

    Baldwin, R.E.

    1980-04-01

    A solar greenhouse is disclosed wherein plants are grown and utilized as collectors to absorb solar radiation and produce heat laden humidified air through the process of evapotranspiration. This humidified air is then further heated by solar energy. Energy is then extracted from the humidified air by cooling the air and condensing the water vapor within the air. The extracted heat can then be stored and utilized as required to heat the greenhouse and plants.

  11. Electronegative gases

    SciTech Connect

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

  12. 75 FR 43889 - Proposed Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Subpart G, Ammonia Manufacturing; Subpart V, Nitric Acid Production; Subpart X, Petrochemical Production; Subpart Y, Petrochemical Production; Subpart OO, Suppliers of Industrial Greenhouse Gases; and Subpart...

  13. Relative and absolute emissions of anthropogenic trace gases around the US based on paired atmospheric observations of fossil fuel CO2 from 14C

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S.; Montzka, S. A.; Andrews, A. E.; Sweeney, C.; Miller, B. R.; Wolak, C.; Dlugokencky, E. J.; Southon, J. R.; Turnbull, J. C.; LaFranchi, B. W.; Guilderson, T. P.; Fischer, M. L.; Tans, P. P.

    2012-12-01

    The small radiocarbon fraction of atmospheric CO2 (~1:10^12 14C:C) has proven to be an ideal tracer for the fossil fuel derived component of observed CO2 (Cff) over large industrialized land areas. A growing number of 14CO2 measurements are now being made in air sampled from a network of tall towers and airborne profiling sites around the US alongside measurements of CO2, CO, CH4, N2O, SF6, and a large suite of halo- and hydro-carbons. Cff paired with boundary-layer enhancements of more than 20 other anthropogenic gases measured in the same samples allow us to determine apparent emissions ratios for each gas with respect to Cff (where apparent ratios refer to those at the time of observation rather than at the time of emission). Here we compare seasonal and spatial variability of apparent emissions ratios for regions of significant urban and industrial emissions around the US, including sites in California, Texas, the mid-west, south-east and north-east . Statistically significant and coherent spatial and seasonal patterns in apparent emissions ratios are determined for many gases over multiple years. These can in turn be combined with appropriate spatial footprints over which the emissions of fossil fuel derived CO2 has been independently determined based on inventories and process models in order to estimate absolute emissions of the correlate gases in different regions, following simple scaling methods we have outlined previously [Miller et al. 2012, J. Geophys. Res., doi:10.1029/2011JD017048]. This approach provides some of the first reliable "top down", observationally-based emissions estimates for these gases, many of which influence climate, air quality and stratospheric ozone. Unlike most "bottom up" inventories, our estimates of absolute trace gas emissions are accompanied by quantifiable estimates of uncertainty.

  14. 75 FR 82254 - Action To Ensure Authority To Implement Title V Permitting Programs Under the Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ...Deterioration and Title V Greenhouse Gas Tailoring Rule...nationwide scope or effect and if in taking...permitting sources of greenhouse gases. This action...nationwide scope and effect for the purposes...nationwide scope or effect'' and for jurisdiction...Environmental protection, Greenhouse gases,...

  15. CD Greenhouse

    NSDL National Science Digital Library

    Watsonville Environmental Science Workshop

    2011-01-01

    In this activity, learners plant seeds and watch them sprout and grow inside a CD case. This is a creative way to introduce learners to the process of germination as well as plant anatomy and elements of habitat. Learners will be surprised that they can construct a functioning greenhouse inside a simple CD case.

  16. Comparing the effects of greenhouse gas emissions on global warming

    E-print Network

    Eckaus, Richard S.

    1990-01-01

    Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

  17. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    Microsoft Academic Search

    Luiz Pinguelli Rosa; Marco Aurelio dos Santos; Bohdan Matvienko; Ednaldo Oliveira dos Santos; Elizabeth Sikar

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to

  18. Assessing the uncertainty associated with national greenhouse gas emission inventories

    Microsoft Academic Search

    Wilfried Winiwarter; Kristin Rypdal

    2001-01-01

    The uncertainty associated with the Austrian Greenhouse Gas emission inventory has been determined for the gases CO2, CH4 and N2O and for the overall greenhouse potential. Expert interviews were conducted to obtain uncertainties in inventory input data. Based on these interviews, error distributions were developed and combined using Monte-Carlo analysis. Results for all sources and gases combined indicate an overall

  19. Study of the Effects on Student Knowledge and Perceptions of Activities Related to Submetering the 6th Grade Wing of a Middle School, to Displaying the Carbon Footprint, and to Efforts to Reduce Energy Consumption and Greenhouse Gases

    ERIC Educational Resources Information Center

    Peck, Rick

    2009-01-01

    The purpose of the study was to determine the effects upon student knowledge and perceptions regarding greenhouse gas emissions as a result of an intervention relying upon the submetering the 6th grade wing of a Middle School, displaying the information regarding electrical consumption and carbon footprint, and reducing the electrical consumption…

  20. Spring Greenhouse Bedding Plants

    E-print Network

    1 Spring Greenhouse Bedding Plants Spring GreenhouseSpring GreenhouseSpring GreenhouseSpring Greenhouse Bedding PlantsBedding PlantsBedding PlantsBedding Plants Purdue University Authors: Raymond A others. In the northern part of the country, these plants are typically grown in greenhouses in late

  1. Soil organic matter: Distribution, genesis, and management to reduce greenhouse gas emissions

    Microsoft Academic Search

    Mark G. Johnson; Elissa R. Levine; Jeffrey S. Kern

    1995-01-01

    In this paper we describe the accumulation of soil organic matter (SOM) during pedogenesis and the processes that can lead to the emission of greenhouse gases (CO2, CH4, N2O) to the atmosphere via SOM decomposition and denitrification. We discuss the role of management on SOM accumulation and loss, and the potential for controlling emission or comsumption of greenhouse gases by

  2. Reducing Freight Greenhouse Gas Emissions in the California Corridor: The potential of short sea shipping

    E-print Network

    Zou, Bo; Smirti, Megan; Hansen, Mark

    2008-01-01

    Hansen Abstract Greenhouse gases (GHG), the gases that cause climate change,Hansen unknowns exist due to the nascent body of literature on SSS and climate change.Hansen INTRODUCTION Greenhouse gas (GHG) emissions and the resulting acceleration of climate change

  3. GREENHOUSE GAS ANALYSIS OF SOLAR-THERMAL ELECTRICITY GENERATION

    Microsoft Academic Search

    M. LENZEN

    1999-01-01

    Solar-thermal electricity generation contributes to climate change because it incurs the emission of greenhouse gases during the provision of services and the production of materials needed for the construction and operation of solar power plants. These greenhouse gas costs (GGC) can be determined using either material inventories in physical units or monetary cost breakdowns. Solar-only plants employing parabolic troughs, central

  4. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  5. Simple model of photo acoustic system for greenhouse effect

    Microsoft Academic Search

    Akiko Fukuhara; Fumitoshi Kaneko; Naohisa Ogawa

    2010-01-01

    The green house effect is caused by the gases which absorb infrared ray (IR) emitted by the earth. It is worthwhile if we can adjudicate on which gas causes the greenhouse effect in our class. For this purpose, one of our authors, Kaneko has designed an educational tool for testing greenhouse effect \\\\cite{Kaneko}. This system (hereafter abbreviated PAS) is constructed

  6. From Solar Dimming to Solar Brightening: Observations, Modeling, Impacts

    Microsoft Academic Search

    M. Wild; A. Ohmura; J. Feichter; P. Stier; A. Robock; H. Li

    2005-01-01

    Recent evidence suggests that the amount of solar radiation reaching the earth surface is not stable over time but exhibits significant decadal variations. These variations, in addition to the changes in thermal radiation induced by alterations in greenhouse gases, cause changes in radiative forcings which may significantly affect surface climate. Observations from the Global Energy Balanced Archive (GEBA) and Baseline

  7. Soil Greenhouse Gas Emissions from a Subtropical Mangrove in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lai, D. Y. F.; Xu, J.

    2014-12-01

    The concept of "blue carbon" has received increasing attention recently, which points to the potential role of vegetated coastal wetlands in carbon sequestration. Yet, the magnitude and controls of greenhouse gas emissions from coastal wetland ecosystems, especially mangroves in the subtropical regions, are still largely unknown. In this study, we conducted chamber measurements in the Mai Po Marshes Nature Reserve of Hong Kong at monthly intervals to characterize the spatial and temporal variability of the emission of greenhouse gases, including CO2, CH4 and N2O from mangrove soils, and examine the influence of environmental and biotic variables on greenhouse gas fluxes. We found the highest mean CH4 and N2O emissions in autumn and the highest CO2 flux in summer. Along the tidal gradient, we observed significantly higher CH4 and N2O emissions from the middle zones and landward zones, respectively, while no clear spatial variation of CO2 emissions was observed. There were significantly higher soil greenhouse gas emissions from sites dominated by Avicennia marina than those dominated by Kandelia obovata, which might be due to the presence of pneumatophores which facilitated gas transport. We found a significant, negative correlation between CH4 flux and soil NO3-N concentration, while CO2 flux was positively correlation with total Kjeldahl nitrogen content. Soil temperature was positively correlated with the emissions of all three greenhouse gases, while water table depth was positively and negatively correlated with CH4 and N2O emissions, respectively. Our findings demonstrate the high spatial and temporal variability of greenhouse gas emissions from mangrove soils which could be attributed in part to the differences in environmental conditions and dominant plant species.

  8. Can Grazing Reduce Greenhouse Gas Emissions from Dairy Farms?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases (GHG) have become a common topic the past few years as more concern is developing over global climate change and the potential impact of these gases on our environment. So do our farms emit GHG? If so, how much and does the use of grazing affect these losses? A study was conducted u...

  9. Agricultural opportunities to mitigate greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a source for three primary greenhouse gases (GHG): carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It can also be a sink for CO2 through carbon (C) sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestrati...

  10. Global and Regional Greenhouse Gas Emissions Scenarios

    Microsoft Academic Search

    Tom Kram; Tsuneyuki Morita; Keywan Riahi; R. Alexander Roehrl; Sascha Van Rooijen; Alexei Sankovski; Bert De Vries

    2000-01-01

    This article presents a set of 30 greenhouse gas (GHG) emissions scenarios developed by six modeling teams. The scenarios describe trajectories up to 2100 by four world regions. Today the distribution of both income and GHG emissions is very unbalanced between various world regions. Furthermore, the relative importance of individual gases and sources of emission differ from region to region.

  11. Automotive Emissions and the Greenhouse Effect

    NSDL National Science Digital Library

    2012-07-17

    In this activity about global climate change, learners will conduct an experiment and collect data to compare the amount of carbon dioxide (CO2) in four different sources of gases. Learners will then determine the CO2 contribution from automobiles and brainstorm ways they can reduce their carbon footprint. This lesson guide includes background information about the greenhouse effect and handouts for learners.

  12. Policy Analysis of the Greenhouse Effect (PAGE)

    EPA Science Inventory

    PAGE09 is a spreadsheet probabilistic model written in Microsoft Office Excel. The model calculates regional and global impacts of climate change, and social costs of different greenhouse gases. It also calculates the costs of abatement and adaptation. It is an Integrated Assessm...

  13. The greenhouse effect: Damages, costs and abatement

    Microsoft Academic Search

    Robert U. Ayres; Jörg Walter

    1991-01-01

    The buildup of so-called “greenhouse gases” in the atmosphere — CO2 in particular-appears to be having an adverse impact on the global climate. This paper briefly reviews current expectations with regard to physical and biological effects, their potential costs to society, and likely costs of abatement. For a “worst case” scenario it is impossible to assess, in economic terms, the

  14. Ground-based Millimeter-wave Observations of Water Vapor Emission (183 GHz) at Atacama, Chile

    Microsoft Academic Search

    T. Kuwahara; A. Mizuno; T. Nagahama; H. Maezawa; A. Morihira; N. Toriyama; S. Murayama; M. Matsuura; T. Sugimoto; S. Asayama

    2006-01-01

    We report a ground-based mm-wave observation of the stratospheric and mesospheric water vapor in Atacama Chile in December 2005 Stratospheric water vapor is an important trace gas in the middle atmosphere because it is a source of odd hydrogen influencing ozone chemistry and is one of the greenhouse gases which affect the radiation balance in the middle atmosphere Previous observations

  15. Methods for exploring management options to reduce greenhouse gas emissions from tropical grazing systems

    Microsoft Academic Search

    S. Mark Howden; David H. White; Greg M. Mckeon; Joe C. Scanlan; John O. Carter

    1994-01-01

    Increasing atmospheric concentrations of ‘greenhouse gases’ are expected to result in global climatic changes over the next decades. Means of evaluating and reducing greenhouse gas emissions are being sought. In this study an existing simulation model of a tropical savanna woodland grazing system was adapted to account for greenhouse gas emissions. This approach may be able to be used in

  16. An integrated model for the assessment of the greenhouse effect: The Dutch approach

    Microsoft Academic Search

    Jan Rotmans; HANS DE BOOIS; Robert J. Swart

    1990-01-01

    This paper describes a simulation policy model of the combined greenhouse effects of trace gases. With this model, the Integrated Model for the Assessment of the Greenhouse Effect (IMAGE) scenarios for the future impact of the greenhouse effect can be made, based on different assumptions for technological and socio-economic developments. The contribution of each trace gas can be estimated separately.

  17. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  18. Can the envisaged reductions of fossil fuel CO 2 emissions be detected by atmospheric observations?

    Microsoft Academic Search

    Ingeborg Levin; Christian Rödenbeck

    2008-01-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas.\\u000a Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions\\u000a changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO2), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes

  19. Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands

    Microsoft Academic Search

    Anand K. Inamdar; V. Ramanathan; Norman G. Loeb

    2004-01-01

    region. The window cooling rates are only about 10% to 20% of the above range and approach rapidly to near-zero values for surface temperatures less than 288 K. The nonwindow component of the greenhouse effect and cooling rates are shown to be more sensitive to upper troposphere water vapor, while the window greenhouse effect and cooling rates are shown to

  20. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the Earth and the rest of the inner solar were made by collecting the solids, to the rather efficient exclusion of the gases. In this grand separation the noble gases, because they are noble, were partitioned strongly into the gas phase. The resultant generalization is that the noble gases are very scarce in the materials of the inner solar system, whence their common synonym "rare gases."This scarcity is probably the most important single feature to remember about noble-gas cosmochemistry. As illustration of the absolute quantities, for example, a meteorite that contains xenon at a concentration of order 10 -10 cm3STP g -1 (4×10-15 mol g-1) would be considered relatively rich in xenon. Yet this is only 0.6 ppt (part per trillion, fractional abundance 10-12) by mass. In most circumstances, an element would be considered efficiently excluded from some sample if its abundance, relative to cosmic proportions to some convenient reference element, were depleted by "several" orders of magnitude. But a noble gas would be considered to be present in quite high concentration if it were depleted by only four or five orders of magnitude (in the example above, 10-10 cm3STP g-1 of xenon corresponds to depletion by seven orders of magnitude), and one not uncommonly encounters noble-gas depletion of more than 10 orders of magnitude.The second most important feature to note about noble-gas cosmochemistry is that while a good deal of the attention given to noble gases really is about chemistry, traditionally a good deal of attention is also devoted to nuclear phenomena, much more so than for most other elements. This feature is a corollary of the first feature noted above, namely scarcity. A variety of nuclear transmutation processes - decay of natural radionuclides and energetic particle reactions - lead to the production of new nuclei that are often new elements. Most commonly, the quantity of new nuclei originating in nuclear transmutation is very small compared to the quantity already present in the sample in question,

  1. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research. PMID:18839604

  2. What do near-term observations tell us about long-term developments in greenhouse gas emissions?

    SciTech Connect

    Van Vuuren, Detlef; Edmonds, James A.; Smith, Steven J.; Calvin, Katherine V.; Karas, Joseph F.; Kainuma, M.; Nakicenovic, Nebojsa; Riahi, Keywan; van Ruijven, Bas; Swart, Robert; Thomson, Allison M.

    2010-10-26

    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term developments in the global energy system and land-use patterns and the associated emissions. The phenomena that determine these longterm developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years). Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales. In this letter, we discuss some of differences between the factors that operate on in the short and long term and use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments. Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends. The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce them.

  3. Greenhouse effect

    SciTech Connect

    Not Available

    1990-05-01

    Concerns about global warming stem from mounting scientific evidence that increasing concentrations of carbon dioxide and other trace gases produce by man are starting to alter the earth's temperature. This report provides information on the scientific understanding of the global warming phenomenon and DOE's research efforts to fill information gaps on the issue, the nature of program planning and criteria used by DOE for evaluating global warming research and development, DOE leadership on the global warming issue and efforts to integrate its various activities into energy policy and planning considerations, and proposed policy and/or program changes made by responsible agencies or groups for improving energy efficiency and/or reducing energy-related emission with potential climate change effects.

  4. Direct electrical observation of plasma wave-related effects in GaN-based two-dimensional electron gases

    SciTech Connect

    Zhao, Y.; Chen, W.; Li, W.; Zhu, M.; Yue, Y.; Song, B.; Encomendero, J.; Xing, H.; Fay, P., E-mail: pfay@nd.edu [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sensale-Rodriguez, B. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-10-27

    In this work, signatures of plasma waves in GaN-based high electron mobility transistors were observed by direct electrical measurement at room temperature. Periodic grating-gate device structures were fabricated and characterized by on-wafer G-band (140–220?GHz) s-parameter measurements as a function of gate bias voltage and device geometry. A physics-based equivalent circuit model was used to assist in interpreting the measured s-parameters. The kinetic inductance extracted from the measurement data matches well with theoretical predictions, consistent with direct observation of plasma wave-related effects in GaN-channel devices at room temperature. This observation of electrically significant room-temperature plasma-wave effects in GaN-channel devices may have implications for future millimeter-wave and THz device concepts and designs.

  5. Measuring fluxes of trace gases at regional scales by Lagrangian observations: Application to the CO2 Budget and Rectification

    E-print Network

    inverse analysis that combines a priori information with observations to yield optimal estimates of tracer that sample the upstream tracer boundary condition, or to analyze the data and provide optimized parameters for estimates of daytime ecosystem uptake of CO2, but constraints on nighttime respiration fluxes were weaker

  6. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated functionally into future greenhouse constructions in space.

  7. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  8. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  9. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  10. Gases: Characteristics and Properties

    NSDL National Science Digital Library

    Brieske, Joel A.

    The first site related to ideal gas, called Ideal and Real Gas Laws, is maintained by Liina Ladon of Townsen University (1). Visitors can read about the properties of ideal gases, what the ideal gas law is, how to use it, and much more. The next site, titled Gas Laws, (2) is offered by the Ohio State University Department of Chemistry. This interactive site contains Shockwave movies of animations and audio files that describe what a gas is, the Ideal Gas Law equation, mixtures of gases, and problems using the ideal gas law. The University of Oregon site, Virtual Laboratory, teaches about the ideal gas law on the Welcome to the Pressure Chamber page (3). Those who enjoy online interaction will enjoy being able to control the action of a piston in a pressure chamber to see how the gases inside react. The fourth site includes another fun multimedia activity related to ideal gases provided by the Department of Physics and Astronomy at Western Washington University. The Air Filled Balloon in Liquid Nitrogen (4) movie shows an actual experiment of the effects on a balloon that's covered with liquid nitrogen. The page contains some additional information on the science behind the observations. The next site, called Ideal Gas Equations (5) is an online calculator that's part of Kean University's Department of Geology and Meteorology Web site. Users can calculate the pressure, volume, or temperature of a gas by inputting known variables into the various forms. Several methods and variations of calculating the values are provided as well as brief instructions. The next page from North Carolina State University's Basic Concepts in Environmental Science Web site is called Characteristics of Gases (6). Part of a larger learning module, the lesson plans objective is to use the ideal gas law to determine gas volumes at different absolute temperatures and absolute pressures. Everything needed to conduct the activity is provided including links to a volume calculator and practice problems. The seventh site is another animation that illustrates how gases react, called Molecular Model for an Ideal Gas (7). By changing the number of molecules in the chamber, their velocity, and the pressure and width of the container, users get to see how the molecules react to the conditions. The last site, Gases and Their Properties, is maintained by the Electronic Teaching Assistance Program(8). Students learn about the history of gas science, how gas laws describe ideal gases, what Dalton's Law and Graham's Law are, and much more.

  11. Gardening with Greenhouses

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  12. Greenhouse Raspberry Production Guide

    E-print Network

    Walter, M.Todd

    Greenhouse Raspberry Production Guide For winter or year-round production Department.fruit.cornell.edu/berry.html Production Guide Greenhouse Raspberry For winter or year-round production #12;#12;Greenhouse Raspberry Production Guide About this Guide The Greenhouse Raspberry Production Guide was origi- nally written

  13. The NOAA Annual Greenhouse Gas Index - 2010 Update

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Montzka, Stephen A.; Conway, Thomas J.; Dlugokencky, Ed; Elkins, James W.; Masarie, Kenneth A.; Schnell, Russell C.; Tans, Pieter P.

    2010-05-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 70 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2008, the AGGI was 1.26, indicating that global radiative forcing by long-lived greenhouse gases had increased 26% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its contribution to radiative forcing. In this presentation, preliminary values for 2009 will be evaluated and discussed with respect to the contributions from CO2, CH4,nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other evolving greenhouse gases.

  14. Greenhouse effect and the global climate. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning terrestrial climatic changes known as the greenhouse effect. The greenhouse effect is an accumulation of carbon dioxide and other gases that retain solar-induced heat, thereby increasing the average global temperature. Modeling studies, measurements of atmospheric gases, pollutants and temperatures, studies of climatic records for occurrence of similar changes (paleoclimatology), prediction of environmental changes due to the greenhouse effect, government energy policy as a result of possible climate change, and the contributions of manmade and natural pollutants to the greenhouse effect are among the topics discussed. (Contains a minimum of 52 citations and includes a subject term index and title list.)

  15. Greenhouse Gas Emissions at Smith College: A Comprehensive Inventory from 1990-2004 and Suggestions for Future Emissions Reductions

    Microsoft Academic Search

    Elizabeth Thomas

    Anthropogenic emissions of greenhouse gases are known to be causing an increase in atmospheric greenhouse gas concentrations well above natural levels. This drastic increase may be causing global warming that is resulting in worldwide climate change. As part of an agreement with Clean Air-Cool Planet, whose mission is to address the issue of global warming, Smith College conducted a greenhouse

  16. Multiforced statistical assessments of greenhouse-gas-induced surface air temperature change 1890 1985

    NASA Astrophysics Data System (ADS)

    Schönwiese, Christian-D.; Stähler, Ursula

    1991-07-01

    Based on univariate correlation and coherence analyses and considering the physical basis of the relationships, a simple multiforced (multiple) statistical concept is used which correlates observational climatic time series simultaneously with volcanic, solar, ENSO, and the anthropogenic greenhouse gases forcing. This is appropriate to remove some natural climate noise in the observed data and to evaluate the components (signals) possibly due to the anthropogenic greenhouse gas forcing (CO2, or “equivalent” CO2 implying additional gases) during industrial time. In this paper, we apply this technique to 100 global “box” data time series 1890 1985, of the surface air temperature, using observed data from Hansen and Lebedeff. The results are presented in terms of latitudinal-seasonal and regional trends, where the observed trend patterns are compared with the hypothetical signals (statistical assessments) possibly due to anthropogenic greenhouse forcing. These latter signals can be amplified to enable a comparison with corresponding results from general circulation model (GCM) CO2 doubling experiments. These observed-statistical assessments lead to results which are, at least qualitatively and in respect to the zonal mean temperatures, very similar to some GCM experiments indicating the maximum CO2 doubling signals (statistical assessment > 12 K) in the arctic winter. However, these signals are moderate in the tropics and in the Southern Hemisphere (global average 2.8 4.4 K). As far as the “industrial” signals are concerned (observed period) these signals are somewhat larger (maximum 7 K, global average 0.5 0.9 K) than the observed trends (maximum 5 K, global average 0.5 K). Phase shifts of cause and effect may amplify these signals but are very uncertain.

  17. The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland

    Microsoft Academic Search

    Martin Beniston; Henry F. Diaz

    2004-01-01

    The heat wave that affected many parts of Europe during the course of summer 2003 may be a harbinger of summers that could occur more regularly in a future climate, under enhanced greenhouse gas concentrations. Switzerland was not exempt from the 2003 heat wave and, indeed, the previous absolute maximum temperature record dating back to the middle of the 20th

  18. Greenhouse gas mitigation technologies, an overview of the CO 2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme

    Microsoft Academic Search

    Pierce Riemer

    1996-01-01

    The IEA Greenhouse gas R&D programme is an international collaboration supported by 16 countries and several industrial organisations. During the first three years (phase 1) the programme has evaluated technologies for reducing emissions of greenhouse gases from power stations. The main types of fossil fuel power plant were investigated and the costs and emissions associated with power generation were calculated.

  19. U.S. Greenhouse Gas Emissions

    NSDL National Science Digital Library

    The Environmental Protection Agency (EPA) has tracked the national trend in greenhouse gas emissions and removals since 1990. This website provides access to the reports they have created since then, and the reports represent the collaborative efforts of hundreds of experts from academic institutions, consultants, and other government agencies. Visitors can download the reports, or take a look at their respective executive summary. Each summary contains "an overview of recent trends, anthropogenic sources and sinks of greenhouse gases, and an explanation of the relative importance of emissions and removals from each source category." Users of the website are also encouraged to look over the overviews for different emissions, such as carbon dioxide and methane. The site is rounded out by a list of greenhouse gas inventories from other countries and global emission projections.

  20. GLOBAL ANTROPOGENIC NON-CO2 GREENHOUSE GAS EMISSIONS: 1990-2020

    EPA Science Inventory

    This report will synthesize available data on emissions of non-CO2 greenhouse gases by gas, source category, and country or region. Historic emissions data, as well as projected emission levels will be provided....

  1. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the carbon sequestration leading to a strong compensation of the GHG effects. However, if digestion of harvested biomass is also attributed to the GHG budget of the non-grazed meadows, they become dominated by CH4 emission from enteric fermentation. The results show that the comparison of GHG budgets of grazed and non-grazed grasslands is difficult and needs clearly defined system boundaries.

  2. The Dynamic Greenhouse Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  3. Peru`s national greenhouse gas inventory, 1990. Peru climate change country study

    SciTech Connect

    NONE

    1996-07-01

    The aim of this study has been to determine the Inventory and to propose greenhouse gases mitigation alternatives in order to face the future development of the country in a clean environmental setting, improving in this way the Peruvian standard of life. The main objective of this executive summary is to show concisely the results of the National Inventory about greenhouse gases emitted by Peru in 1990.

  4. Using Thermal Infrared Absorption and Emission to Determine Trace Gases

    NASA Astrophysics Data System (ADS)

    Clerbaux, Cathy; Drummond, James R.; Flaud, Jean-Marie; Orphal, Johannes

    The light emerging from the top of the atmosphere in the greater part of the infrared region is thermal radiation from the Earth's surface. The resultant spectra obtained depend on the temperature difference between the emitting feature and absorbing gas. In this region the greenhouse gases, carbon dioxide, CO2, methane, CH4, ozone, O3, and water, H2O, are observed as well as carbon monoxide, CO, a product indicative of fossil fuel combustion, methanol, CH3OH, from biomass burning, and ammonia, NH3, from agriclulture. Chapter 3 describes the techniques for retrieving atmospheric abundances of these and other species from a number of satellite instruments, and concludes with suggestions for future developments.

  5. Simulation of greenhouse energy consumption

    Microsoft Academic Search

    H. Shimizu; S. Moriizumi

    2002-01-01

    The energy cost of greenhouses is a major concern in greenhouse management during winter time. Greenhouse energy consumption per day can be reduced by lowering the greenhouse temperature since energy consumption is approximately a linear function of the difference between inside and outside air temperature of the greenhouse. However, lower greenhouse temperature requires longer growth period. Total energy consumption is

  6. NOAA Annual Greenhouse Gas Index (AGGI) - Update 2008

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Hofmann, D. J.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masarie, K.; Montzka, S. A.; Schnell, R. C.; Tans, P. P.

    2009-04-01

    For the past 30 years, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to climate assessments (e.g., the quadrennial IPCC Climate Reports, as well as National Assessments, such as those under the auspices of the US Climate Change Science Program). Recently, efforts to make these data more useful and available have been undertaken through release of the NOAA Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi . This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 70 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. For the year 2007, the AGGI was 1.24, i.e. global radiative forcing by long-lived greenhouse gases has increased 24% since 1990. The increase in the contribution form carbon dioxide (CO2) alone was about 32% over this interval. Reductions in the growth rates of methane and the CFCs have effectively tempered the increase of CO2 since 1990. During the 1980s CO2 accounted for about 50-60%% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 90% of this increase. The contribution from methane (CH4) in 2007 increased for the first time since 1999. Preliminary values for 2008 will be evaluated and discussed with respect to the contributions from CO2, CH4,nitrous oxide (N2O), chlorofluorocarbons (CFCs), and other evolving greenhouse gases in this presentation.

  7. Greenhouse gas emissions from the Tubul-Raqui estuary (central Chile 36°S)

    NASA Astrophysics Data System (ADS)

    Daniel, Inger; DeGrandpre, Michael; Farías, Laura

    2013-12-01

    The Tubul-Raqui estuary is a coastal system off central Chile at 37°S, adjacent to an active coastal upwelling area, which undergoes rapid changes associated with natural and anthropogenic perturbations. Biogenic greenhouse gas cycling and the gas saturation levels are good indicators of microbial metabolism and trophic status in estuaries. The dissolved greenhouse gases CO2, CH4 and N2O and other biological and chemical variables were spatially recorded in this estuary over two seasons (summer and winter) and over one-half of one tidal cycle. Tidal and spatial variability of these gases indicated they had different origins within the system. Surface waters were always oversaturated in CO2 (up to 578%) and CH4 (up to 6200%) with respect to the atmosphere. But while CO2 seems to come from marine and in situ metabolism, CH4 appears to be more influenced by fluvial and adjacent salt marsh areas. In contrast, N2O was mostly undersaturated and sediments seem to be largely responsible for its consumption. Strong seasonal variability was also observed in CO2 and CH4 fluxes, being tenfold (from -319 to 714 mmol m-2 d-1) and fivefold (from 0.33 to 2.5 mmol m-2 d-1) higher, respectively, in the austral summer compared to winter. In contrast, only small seasonal differences in N2O fluxes were found ranging from -59 to 28 µmol m-2 d-1. These temporal patterns can be explained not only in terms of hydrological and nutrient balances within the system, but also by the influence of wind-driven upwelling processes. Additionally, potential effects of changes in nutrient load and freshwater discharge on net ecosystem metabolism (i.e., autotrophy or heterotrophy) and therefore, on the production/removal of greenhouse gases in this system were explored.

  8. Hydrodynamics of unitary Fermi gases

    NASA Astrophysics Data System (ADS)

    Young, Ryan E.

    Unitary fermi gases have been widely studied as they provide a tabletop archetype for re- search on strongly coupled many body systems and perfect fluids. Research into unitary fermi gases can provide insight into may other strongly interacting systems including high temperature superconductor, quark-gluon plasmas, and neutron stars. Within the unitary regime, the equilib- rium transport coefficients and thermodynamic properties are universal functions of density and temperature. Thus, unitary fermi gases provide a archetype to study nonperturbative many-body physics, which is of fundamental significance and crosses several fields. This thesis reports on two topics regarding unitary fermi gases. A recent string theory conjecture gives a lower bound for the dimensionless ratio of shear viscosity of entropy, ?/s ? 4pi /kb . Unitary fermi gases are a candidate for prefect fluids, yet ?/s is well above the string theory bound. Using a stochastic formulation of hydrodynamics, we calculate a lower bound for this ratio accounting for the momentum dissipation from fluctuations. This lower bound is in good agreement with both theoretical and experimental results. The second question addressed is the simulation of elliptic flow. Elliptic flow, first observed in 2002, is a characteristic of strongly coupled systems and has been studied in both quark-gluon plasmas and unitary fermi gases. As such, simulations of these systems are of interest. We test a variety of lattice Boltzmann models and compare the simulation results to the theoretical and experimental findings.

  9. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF3CF3, CHF3, C2F6, c-C3F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-09-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1 corresponding to a reactive branching ratio of 0.87 ± 0.13. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10-14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3, kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2? and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies.

  10. Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14

    NASA Astrophysics Data System (ADS)

    Baasandorj, M.; Hall, B. D.; Burkholder, J. B.

    2012-12-01

    The contribution of atmospherically persistent (long-lived) greenhouse gases to the radiative forcing of Earth has increased over the past several decades. The impact of highly fluorinated, saturated compounds, in particular perfluorinated compounds, on climate change is a concern because of their long atmospheric lifetimes, which are primarily determined by stratospheric loss processes, as well as their strong absorption in the infrared "window" region. A potentially key stratospheric loss process for these compounds is their gas-phase reaction with electronically excited oxygen atoms, O(1D). Therefore, accurate reaction rate coefficient data is desired for input to climate change models. In this work, rate coefficients, k, were measured for the reaction of O(1D) with several key long-lived greenhouse gases, namely NF3, SF5CF3, CHF3 (HFC-23), C2F6, c-C4F8, n-C5F12, and n-C6F14. Room temperature rate coefficients for the total reaction, kTot, corresponding to loss of O(1D), and reactive channel, kR, corresponding to the loss of the reactant compound, were measured for NF3 and SF5CF3 using competitive reaction and relative rate methods, respectively. kR was measured for the CHF3 reaction and improved upper-limits were determined for the perfluorinated compounds included in this study. For NF3, kTot was determined to be (2.55 ± 0.38) × 10-11 cm3 molecule-1 s-1 and kR, which was measured using CF3Cl, N2O, CF2ClCF2Cl (CFC-114), and CF3CFCl2 (CFC-114a) as reference compounds, was determined to be (2.21 ± 0.33) × 10-11 cm3 molecule-1 s-1. For SF5CF3, kTot = (3.24 ± 0.50) × 10-13 cm3 molecule-1 s-1 and kR < 5.8 × 10×14 cm3 molecule-1 s-1 were measured, where kR is a factor of three lower than the current recommendation of kTot for use in atmospheric modeling. For CHF3 kR was determined to be (2.35 ± 0.35) × 10-12 cm3 molecule-1 s-1, which corresponds to a reactive channel yield of 0.26 ± 0.04, and resolves a large discrepancy among previously reported values. The quoted uncertainties are 2? and include estimated systematic errors. Upper-limits for kR for the C2F6, c-C4F8, n-C5F12, and n-C6F14 reactions were determined to be 3.0, 3.5, 5.0, and 16 (in units of 10-14 cm3 molecule-1 s-1), respectively. The results from this work are compared with results from previous studies. As part of this work, infrared absorption band strengths for NF3 and SF5CF3 were measured and found to be in good agreement with recently reported values.

  11. Greenhouse gas fluxes from no-till rotated corn in the Upper Midwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined soil surface fluxes of greenhouse gases (carbon dioxide, nitrous oxide, methane) from no-till, dryland corn (Zea mays L.) in eastern South Dakota and tested the effect of rotation on greenhouse gas fluxes from corn. The corn was grown within a randomized, complete block study that incl...

  12. Greenhouse gas emissions and the surface transport of freight in Canada

    E-print Network

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence emission profile of Canada's surface freight transportation sector from 1990 to 2012 ­ the end of the first annual reduction of greenhouse gases of 6% below 1990 levels between 2008 and 2012. The transportation

  13. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    Microsoft Academic Search

    Gregg Marland; Tristram O. West; Bernhard Schlamadinger; Lorenza Canella

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve

  14. Radiative Forcing - Measured at Earth's Surface - Corroborate the Increasing Greenhouse Effect

    Microsoft Academic Search

    Rolf Philipona; B. Duerr; Christoph Marty; Atsumu Ohmura; Martin Wild

    2004-01-01

    The Intergovernmental Panel of Climate Change (IPCC) confirmed concentrations of atmospheric greenhouse gases and radiative forcing to increase as a result of human activities. Nevertheless, changes in radiative forcing related to increasing greenhouse gas concentrations could not be detected with instrumental measurements at Earth's surface so far. Here we show that atmospheric longwave downward radiation significantly increased (+5.2 Wm-2) partly

  15. Greenhouse effect and sea level rise: a challenge for this generation

    Microsoft Academic Search

    M. C. Barth; J. G. Titus

    1984-01-01

    These papers elaborate on how to deal with a catastrophic result of the ''greenhouse effect'' -- a global warming that could raise the sea level several feet by the end of the century. Topics of discussion include: physical impact of sea level rise, coastal geomorphic responses, climate sensitivity to increasing greenhouse gases and control of erosion. Inundation and salinity intrusion

  16. Greenhouse Gas Mitigation in a Carbon Constrained World: The Role of Carbon Capture and Storage

    Microsoft Academic Search

    Barbara Praetorius; Katja Schumacher

    2008-01-01

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: Energy efficiency, fuel switching, introduction of carbon dioxide capture and storage along with renewable generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The role of energy technologies is considered crucial in climate change mitigation. In particular, carbon capture and storage (CCS) promises

  17. Chemical gradient of selected organic trace gases in the Tropical Tropopause Layer observed during the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2013)

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Atlas, E. L.; Lueb, R.; Hendershot, R.; Gabbard, S.; Zhu, X.; Pope, L.

    2013-12-01

    Hydrocarbons and short-lived organic halogen gases play an important role in the chemistry of the upper troposphere/lower stratosphere (UT/LS) region. The characterization of these gases not only provides information on air mass sources and transport time scales, but also defines the reactive halogen budget and the conditions for the stratospheric chemistry that affects ozone depletion rates. As part of the transition between troposphere and stratosphere, nonmethane hydrocarbons (NMHC) and halocarbons reach the Tropical Tropopause Layer (TTL) where chemical and physical processes determine their fate. However, very limited data are available regarding composition, seasonality and variability of these gases, since only high altitude aircraft can reach this region of the atmosphere (>13-14 Km). A new whole air sampler (GWAS) was developed to study the trace gas chemistry in this region of the upper troposphere and lower stratosphere. The sampler collects up to 90 samples per flight for measurement of a wide range of hydrocarbons, halocarbons, organic nitrates and solvents. During the Airborne Tropical Tropopause Experiment (ATTREX) field project, carried out during February-March 2013, we flew the GWAS system on 5 research flights. A total of 388 samples were collected during flights of approximately 24 hours, which sampled air over the tropical Pacific Ocean at altitudes from 9 to 19 km. The sample collection focused on obtaining measurements across the TTL region. Approximately 45 vertical profiles of the TTL were sampled with our instrument during this mission. Measurements of trace gases were carried out at Dryden Flight Research Center using a combination of gas chromatography with mass spectrometric, flame ionization, and electron capture detectors. Supporting measurements were done at the University of Miami (UM) laboratory. The distribution, vertical structure, and variability of selected hydrocarbon and organic halogen trace gases in the TTL region will be presented here.

  18. Can the Infrared Radiation that Causes the Enhanced Greenhouse Effect Be Put to Better Use?

    Microsoft Academic Search

    Ron Zevenhoven

    2008-01-01

    Increasing levels of certain greenhouse gases (GHGs), most importantly CO2 in the earths atmosphere, lead to climate change and global warming as a result of these gases interacting with thermal infrared (TIR) radiation from earth to space. Here, the option of modifying this radiation is analyzed which would result in modified TIR radiation that would interact less with atmospheric CO2.

  19. Special Issue From the 4th USDA Greenhouse Gas Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  20. Estimating greenhouse gas emissions from a waste lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cost-effective approach was used to investigate the relationship between emission of the greenhouse gases (GHG) CO2, CH4, and N2O and energy fluxes from a swine waste lagoon. Energy fluxes were calculated using the Penman method. The energy fluxes showed a diurnal pattern as expected of such flux...

  1. Greenhouse gas mitigation potential with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The land use impacts, such as nitrous oxide (N2O) emissions and soil carbon sequestration, are associated with the largest changes in life cycle greenhouse gases from growing bioenergy crops. The biogeochemical model DAYCENT simulates fluxes of carbon (C) and nitrogen (N) between the atmosphere, veg...

  2. Greenhouse gas fluxes in response to corn stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils play a critical role in mitigating the increasing levels of atmospheric greenhouse gases (GHGs) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Identifying optimal management strategies (tillage, irrigation, fertilization) for the removal of corn stover as a...

  3. Underice Circulation and Greenhouse Gas Evasion in Arctic Lakes

    NASA Astrophysics Data System (ADS)

    MacIntyre, S.; Sadro, S.

    2014-12-01

    Arctic lakes are ice-covered nine months of the year during which time greenhouse gases increase in near bottom waters and increased discharge associated with snowmelt supplies additional greenhouse gases and dissolved organic carbon into the lakes. We tested the hypothesis that evasion of greenhouse gases depends on the duration of the mixing period after ice off by quantifying the greenhouse gases produced over the winter, those introduced at snowmelt, and those remaining after stratification set up in five lakes in the Alaskan Arctic whose area ranged from 1 ha to 150 ha. Horizontal CTD and oxygen transects taken in one lake while the lake was ice covered and afterwards illustrated the path of incoming snowmelt water, numerous locations with hypoxia, and gravity current formation due to warming of bottom waters under the ice which also moderated stratification dynamics. Temperature-gradient microstructure profiling prior to and after ice off illustrated limited mixing despite heating when ice was present and winds after ice off. None of the lakes had fully mixed at ice off. The fraction of carbon dioxide emitted in spring depended on intensity of wind, density stratification, and lake morphometry, as described by the Lake number, and time for stratification to set up. We hypothesize that the fraction of methane which evades can be quantified by dimensionless indices which incorporate residence time and reaction times. Use of dimensionless numbers which incorporate hydrodynamics and rates of biogeochemical reactions enable scaling up across the landscape.

  4. Comparative assessment of greenhouse gas mitigation of hydrogen passenger trains

    Microsoft Academic Search

    Y. Haseli; G. F. Naterer; I. Dincer

    2008-01-01

    This paper examines a comparative assessment in terms of CO2 emissions from a hydrogen passenger train in Ontario, Canada, particularly comparing four specific propulsion technologies: (1) conventional diesel internal combustion engine (ICE), (2) electrified train, (3) hydrogen ICE, and (4) hydrogen PEM fuel cell (PEMFC) train. For the electrified train, greenhouse gases from electricity generation by natural gas and coal-burning

  5. GLOBAL GREENHOUSE GAS EMISSIONS FROM RESERVOIRS: A MATTER OF METHANE

    EPA Science Inventory

    More than a decade ago, St. Louis et al. demonstrated that, collectively, manmade reservoirs play an important role in the global balance of greenhouse gases (GHGs). To update and build upon this important seminal work, we compiled reservoir CO2, CH4, and N2O flux estimates from...

  6. Greenhouse Effect, Sea Level Rise, and Coastal Drainage Systems

    Microsoft Academic Search

    James G. Titus; Chin Y. Kuo; Michael J. Gibbs; Tom B. LaRoche; M. Keith Webb; Jesse O. Waddell

    1987-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century, which would raise sea level a few feet and alter precipitation patterns. Both of these changes would have major impacts on the operation of coastal drainage systems. However, because sea level rise and climate change resulting from the greenhouse effect

  7. Northern hemisphere temperature trends: A possible greenhouse gas effect

    Microsoft Academic Search

    David J. Karoly

    1989-01-01

    Radiosonde temperature data from 147 stations in the Northern Hemisphere for the period 1964-85 have been used to investigate recent temperature trends in the troposphere and lower stratosphere. Experiments with atmospheric general circulation models indicate that increased concentrations of greenhouse gases in the atmosphere will lead to reduced temperatures in the stratosphere as well as increased temperatures in the troposphere.

  8. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  9. Greenhouse effect, sea level rise, and coastal zone management

    Microsoft Academic Search

    James G. Titus

    1986-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century by a mechanism known as the greenhouse effect. Such a warming could cause sea level to rise two to five feet by expanding ocean water, melting mountain glaciers, and perhaps eventually causing polar glaciers to melt and slide into the

  10. Introduction Integrated assessment of uncertainties in greenhouse gas emissions

    E-print Network

    for International Studies, Brown University, Providence, RI, USA e Goddard Institute for Space Studies, Columbia. The time frame of a century or more involved in any analysis of climate change, as well as, the complexity of greenhouse gases (GHGs)? Are there ways of "bending down" the curve of ever increasing radiative forcing

  11. Mitigating greenhouse gas emissions from beef cattle housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  12. Agricultural greenhouse gas flux determination via remote sensing and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious concerns have been raised about increasing levels of atmospheric greenhouse gases (GHGs) and associated climate change. For every degree in global temperature increase, grain production yields are expected to decrease 10%, while the global human population continues to increase by roughly 8...

  13. A Test of Model Validation from Observed Temperature Trends

    Microsoft Academic Search

    S. F. Singer

    2006-01-01

    How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov\\/Library\\/sap\\/sap1-1\\/finalreport\\/default.htm),

  14. Industrial Non-Energy, Non-CO 2 Greenhouse Gas Emissions

    Microsoft Academic Search

    Jørgen Fenhann

    2000-01-01

    In this article we project emissions of three groups of greenhouse gases—perfluorocarbons (PFCs), sulphur hexafluoride (SF6), and hydrofluorocarbons (HFCs)—through the year 2100. These gases were added to the gases CO2, CH4 and N2O under the 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change. The emission projections are based on the projections for population and GDP, as

  15. Electrical breakdown of gases

    Microsoft Academic Search

    J. M. Meek; J. D. Craggs

    1978-01-01

    A collection of individual works on electrical discharges is presented. Topics covered include: fundamental processes in the electrical breakdown of gases; vacuum breakdown; spark breakdown in uniform fields; corona discharge; spark breakdown in non-uniform fields; breakdown voltage characteristics; irradiation and time lags; high-frequency breakdown of gases; laser-induced electrical breakdown of gases; spark channels; and electrode phenomena. (GHT)

  16. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  17. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...conditions and then applying the density value for CO 2 at standard conditions...revised standard conditions, the density of CO 2 is 0.001868 metric...d) * * * (1) When a unit is a fluidized bed boiler, is equipped with a...

  18. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ...rate measurements are corrected for density. Allow the span of CO 2 monitors...flow of a CO 2 stream measure density of that CO 2 stream in order...d) * * * (1) When a unit is a fluidized bed boiler, is equipped with a...

  19. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming

    Microsoft Academic Search

    Henrik Svensen; Sverre Planke; Luc Chevallier; Anders Malthe-Sørenssen; Fernando Corfu; Bjørn Jamtveit

    2007-01-01

    The climate change in the Toarcian (Early Jurassic) was characterized by a major perturbation of the global carbon cycle. The event lasted for approximately 200,000 years and was manifested by a global warming of ?6 °C, anoxic conditions in the oceans, and extinction of marine species. The triggering mechanisms for the perturbation and environmental change are however strongly debated. Here, we present

  20. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ...the use of ``C'' on a dry basis. Sampling for pressure...pressure from the nearest NOAA weather service station as a...basis (one wet and one dry) and that, if needed...pressure from the nearest NOAA weather service station....

  1. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ...the use of ``C'' on a dry basis. Sampling for pressure...pressure from the nearest NOAA weather service station as a default...basis (one wet and one dry) and that, if needed...pressure from the nearest NOAA weather service station. We...

  2. 4. Perspective view, greenhouse, from the southwest. The greenhouse is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view, greenhouse, from the southwest. The greenhouse is the portion of the seed house to the right (south) of the double doors. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  3. Separation of polar gases from nonpolar gases

    DOEpatents

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  4. Greenhouse Gas Emissions Inventory

    E-print Network

    Subramanian, Venkat

    Greenhouse Gas Emissions Inventory Volume 1: Fiscal Years 1990-2009 Published: October 2009 #12 The production of the first Greenhouse Gas Emissions Inventory for Washington University in St. Louis (WUSTL;Washington University in St. Louis i GHG Emissions Inventory (Vol. 1: FY1990-2009) ACKNOWLEDGEMENTS

  5. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in-flight calibrations, provided ground calibrations and testing were performed regularly. Comparisons between in situ CRDS measurements and flask measurements are consistent with expected measurement uncertainties for CH4 and CO, but differences are larger than expected for CO2. Biases and standard deviations of comparisons with flask samples suggest that atmospheric variability, flask-to-flask variability, and possible flask sampling biases may be driving the observed flask versus in situ CO2 differences rather than the CRDS measurements.

  6. A simple demonstration of the greenhouse effect

    SciTech Connect

    Adelhelm, M.; Hoehn, E.G. (Paedagogische Hochschule Ludwigsburg (Germany))

    1993-01-01

    One of the greatest threats humankind may face in the future is the expected warming of the atmosphere within the next decades, caused by the release of infrared-absorbing gases especially carbon dioxide, into the atmosphere. For an increase of atmospheric CO[sub 2] concentration to twice its present value, model calculations predict an increase in temperature of the lower atmosphere of 1.5 to 4.5 C, with concomitant dramatic effects on vegetation, climate, and ocean levels. Much has been published about causes, effects, and possible strategies for abatement of this greenhouse effect', and this important topic in science curricula.

  7. Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi

    1999-01-01

    Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.

  8. Measuring the Isotopic Composition of Solar Wind Noble Gases

    E-print Network

    5 Measuring the Isotopic Composition of Solar Wind Noble Gases Alex Meshik, Charles Hohenberg, Olga and processes leading to the variations observed and how the present solar wind noble gases may differ from and breccias, implanted with solar wind noble gases, did provide a needed ground truth, neither by themselves

  9. MRI using hyperpolarized noble gases.

    PubMed

    Kauczor, H; Surkau, R; Roberts, T

    1998-01-01

    The aim of this study was to review the physical basis of MRI using hyperpolarized noble gases as well as the present status of preclinical and clinical applications. Non-radioactive noble gases with a nuclear spin 1/2 (He-3, Xe-129) can be hyperpolarized by optical pumping. Polarization is transferred from circularly polarized laser light to the noble-gas atoms via alkali-metal vapors (spin exchange) or metastable atoms (metastability exchange). Hyperpolarization results in a non-equilibrium polarization five orders of magnitude higher than the Boltzmann equilibrium compensating for the several 1000 times lower density of noble gases as compared with liquid state hydrogen concentrations in tissue and allows for short imaging times. Hyperpolarization can be stored sufficiently long (3 h to 6 days) to allow for transport and application. Magnetic resonance systems require a broadband radio-frequency system - which is generally available for MR spectroscopy - and dedicated coils. The hyperpolarized gases are administered as inhalative "contrast agents" allowing for imaging of the airways and airspaces. Besides the known anesthetic effect of xenon, no adverse effects are observed in volunteers or patients. Pulse sequences are optimized to effectively use the non-renewable hyperpolarization before it decays or is destroyed, using fast low-flip-angles strategies to allow for dynamic/breath-hold imaging of highly diffusible (He) or soluble (Xe) gases with in vivo T1-times well below 1 min. Since helium is not absorbed in considerable amounts, its application is restricted to the lung. Xe-129 is also under investigation for imaging of white matter disease and functional studies of cerebral perfusion. Magnetic resonance imaging using hyperpolarized gases is emerging as a technical challenge and opportunity for the MR community. Preliminary experience suggests potential for functional imaging of pulmonary ventilation and cerebral perfusion. PMID:9601972

  10. The power sector in China and India: greenhouse gas emissions reduction potential and scenarios for 1990–2020

    Microsoft Academic Search

    Carolien Kroeze; Jaklien Vlasblom; Joyeeta Gupta; Christiaan Boudri; Kornelis Blok

    2004-01-01

    Emissions of greenhouse gases from China and India are expected to increase in the coming two decades. The objectives of this study are two-fold: (1) to quantify the technical potential of various options to reduce emissions of greenhouse gases from the electricity sector in China and India in the year 2020, and (2) to evaluate a business-as-usual (BAU) scenario plus

  11. What Factors Impact a Greenhouse?

    NSDL National Science Digital Library

    This activity has students use a model to investigate factors in greenhouse heating and cooling. The type of surface that sunlight first encounters is the most important factor. Forests, grasslands, ocean surfaces, ice caps, deserts, and cities all absorb, reflect, and radiate radiation differently. As a result of this activity students will be able to identify at least three factors affecting the heat-trapping ability of a greenhouse, explain the factors important in the atmosphere's heat trapping ability, and understand the influence of albedo on earth's temperature. The student guide has an overall description of the activity, a list of materials, the procedure, and observations and questions. The instructor guide contains detailed background material, learning goals, alignment to national standards, grade level/time, details on materials and preparation, procedure, assessment ideas, and modifications for alternative learners.

  12. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  13. Greenhouses and Shadehouses

    USGS Multimedia Gallery

    Typical goose grazing lawns along the Smith River in the Teshekpuk Lake Special Area of the National Petroleum Reserve - Alaska.  Greenhouses and Shadehouses are used by USGS biologists to assess the effects of climate change on plant quality and phenology....

  14. Review of U.S. and European Regional Modeling Studies of Policies Intended to Reduce Transportation Greenhouse Gas Emissions

    Microsoft Academic Search

    Robert A. Johnston

    2008-01-01

    With the enactment of a new federal transportation law in 2005, State and regional transportation plans and programs are for the first time required to achieve the objectives of the SAFETEA-LU planning process, which focus on enhancing mobility and supporting economic development, while minimizing conventional emissions and greenhouse gas emissions. In 2007, the U.S. Supreme Court held that greenhouse gases

  15. An assessment of the energy inputs and greenhouse gas emissions in sugar beet ( Beta vulgaris) production in the UK

    Microsoft Academic Search

    J. Tzilivakis; D. J. Warner; M. May; K. A. Lewis; K. Jaggard

    2005-01-01

    Reducing the energy derived from fossil fuels within agricultural systems has important implications for decreasing atmospheric emissions of greenhouse gases, thus assisting the arrest of global warming. The identification of crop production methods that maximise energy efficiency and minimise greenhouse gas emissions is vital. Sugar beet is grown in a variety of locations and under a variety of agronomic conditions

  16. Ancillary Benefits of Reduced Air Pollution in the United States from Moderate Greenhouse Gas Mitigation Policies in the Electricity Sector

    Microsoft Academic Search

    Dallas Burtraw; Karen Palmer; Alan Krupnick; Michael Toman; Anthony Paul; Cary Bloyd

    2001-01-01

    This paper considers how moderate actions to slow atmospheric accumulation of greenhouse gases from fossil fuel use also could reduce conventional air pollutants in the United States. The benefits that result would be “ancillary” to greenhouse gas abatement. Moreover, the benefits would tend to accrue locally and in the near term, while benefits from reduced climate change mostly accrue globally

  17. 77 FR 41051 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule Step 3 and GHG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ...Deterioration and Title V Greenhouse Gas Tailoring Rule...Step 1, which took effect on January 2, 2011...Here, the scope and effect of this rulemaking extends...nationwide scope or effect'' and for venue to...dioxide equivalents, Greenhouse gases,...

  18. Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels

    Microsoft Academic Search

    Hong Huo; Michael Wang; Cary Bloyd; Vicky Putsche

    2009-01-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches

  19. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information exists about sources and sinks of greenhouse gases (GHGs) affected by management practices to account for net emissions from agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net global warming potential (GWP) and greenhouse gas...

  20. Noble gases in meteorites

    Microsoft Academic Search

    Donald D. Bogard

    1971-01-01

    The measurement of isotopic abundances of the noble gases in meteorites and other extraterrestrial samples became a large and active field during the past decade, especially within the last four years. The five stable noble gases proved to be excellent keys for unlocking the secrets of past physical events in the solar system and are used in studies of such

  1. Comparing greenhouse gasses

    E-print Network

    Reilly, John M.; Babiker, Mustafa H.M.; Mayer, Monika.

    Controlling multiple substances that jointly contribute to climate warming requires some method to compare the effects of the different gases because the physical properties (radiative effects, and persistence in the ...

  2. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  3. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  4. Chemistry of Carbon Gases in Volcanic Gases on Io

    NASA Astrophysics Data System (ADS)

    Schaefer, L.; Fegley, B., Jr.

    2004-11-01

    We use chemical equilibrium calculations to model the chemistry of carbon in volcanic gases on Io (Schaefer and Fegley 2004, ApJ, in review). The calculations covered temperatures from 500 - 2000 K, pressures from 10-8 to 10+2 bars, and bulk O/S atomic ratios from ˜ 0 to 3. These conditions overlap the nominal conditions at Pele, where T = 1760 K, P = 0.01 bar, and O/S ˜ 1.5. Bulk C/S atomic ratios ranging from 10-4 to 10-1 are used in the equilibrium calculations, with a nominal value of 10-3 based upon upper limits for carbon on Io from Voyager observations of the Loki plume. Carbon monoxide and CO2 are the two major carbon gases under nearly all conditions studied. Carbonyl sulfide and CS2 are orders of magnitude less abundant. Consideration of different loss processes including photolysis, condensation, and kinetic reactions in the plume indicates that photolysis is probably the major loss process for all gases. Both CO and CO2 should be observable in volcanic plumes and in Io's atmosphere at abundances of several hundred parts per million by volume for a bulk C/S atomic ratio of 10-3. This work is supported by the NASA Planetary Atmospheres program.

  5. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  6. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J. [Wisconsin Electric Power Company, Milwaukee, WI (United States)

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  7. Modeling Greenhouse Gas Energy Technology Responses to Climate Change

    SciTech Connect

    Edmonds, James A.; Clarke, John F.; Dooley, James J.; Kim, Son H.; Smith, Steven J.

    2004-07-01

    Models of the global energy system can help shed light on the competition and complementarities among technologies and energy systems both in the presence and absence of actions to affect the concentration of greenhouse gases. This paper explores the role of modeling in the analysis of technology deployment in addressing climate change. It examines the competition among technologies in a variety of markets, and explores conditions under which new markets, such as for hydrogen and carbon disposal, or modern commercial biomass, could emerge. Carbon capture and disposal technologies are shown have the potential to play a central role in controlling the cost of stabilizing the concentration of greenhouse gases, the goal of the UN Framework Convention on Climate Change.

  8. Characteristics of trace gases and aerosols at top of urban canopy layer in Nanjing of China from one year observational study

    NASA Astrophysics Data System (ADS)

    Wang, Tijian

    2013-04-01

    To understand the physical and chemical processes of air pollution formation in urban and their linkage with climate change in Yangtze River Delta(YRD), the fast developing area in China, a monitoring site was built on the top of a high building in the center of Nanjing. The site was set up to investigate the long term variations of trace gases and aerosols, which may play important roles in air pollution and climate change in regional scale. From one year measurement records, the annual average concentrations of ozone, sulfur dioxide, carbon monoxide, carbon dioxide, nitric oxide, total reactive nitrogen, water vapor are reported as 161.9±19.4 ppb, 93.8±8.9 ppb, 3856.7±412.1 ppb, 565.1±20.0 ppm, 173.6±15.6 ppb, 230.8±24.9 ppb, 34.76±7.2x10-3, respectively. PM10, PM2.5, visibility, black carbon, back scattering of particles(BSP), single scattering albedo(SSA), aerosol optical depth(AOD) and Angstrom wavelength exponent (AWE) are 115±113.1 ?g/m3, 54±46.1 ?g/m3, 9780±5594 m, 3055.9±2102.3 ng/m3, 66.3±97.5 Mm-1, 0.5±2.4, 0.7±0.38 and 1.22±0.28, respectively. Measurement show that the levels of air pollutants in YRD in East China are high compared to Pearl River Delta(PRD) in South China and Jing-Jin-Ji (JJJ) in North China, suggesting a possible stronger effect on atmospheric environment, climate change and human health in this region, which should be further addressed in the future study.

  9. Use of portable FTIR spectrometers for detecting greenhouse gas emissions of the megacity Berlin - Part 2: Observed time series of XCO2 and XCH4

    NASA Astrophysics Data System (ADS)

    Hase, F.; Frey, M.; Blumenstock, T.; Groß, J.; Kiel, M.; Kohlhepp, R.; Mengistu Tsidu, G.; Schäfer, K.; Sha, M. K.; Orphal, J.

    2015-03-01

    Five portable Bruker EM27/SUN FTIR spectrometers have been used for the accurate and precise observation of column averaged abundances of CO2 and CH4 around the megacity Berlin. In the first part of this work (Frey et al., 2015) we have presented the various measures that were undertaken to ensure that the observations are consistent between sites, accurate and precise. Here, we present the recorded time series of XCH4 and XCO2 and demonstrate that the CO2 emissions of Berlin can be clearly identified in the observations. A simple dispersion model is applied which indicates a total strength of the Berlin source of about 0.8 t CO2 s-1. In the Supplement of this work, we provide the measured dataset and auxiliary data. We hope that the model community will exploit this unique dataset for state-of-the art inversion studies of CO2 and CH4 sources in the Berlin area.

  10. Greenhouse Gas Emissions from Coal Gasification Power Generation Systems

    Microsoft Academic Search

    John A. Ruether; Massood Ramezan; Peter C. Balash

    2004-01-01

    Life cycle assessments (LCA) of coal gasification-based electricity generation technologies for emissions of greenhouse gases (GHG), principally CO2, are computed. Two approaches for computing LCAs are compared for construction and operation of integrated coal gasification combined cycle (IGCC) plants: a traditional process-based approach, and one based on economic input-output analysis named Economic Input-Output Life Cycle Assessment (EIO-LCA). It is shown

  11. Greenhouse gas emissions from tropical peatlands of Kalimantan,Indonesia

    Microsoft Academic Search

    Abdul Hadi; Kazuyuki Inubushi; Yuichiro Furukawa; Erry Purnomo; Muhammad Rasmadi; Haruo Tsuruta

    2005-01-01

    Greenhouse gas emissions were measured from tropical peatlands of Kalimantan, Indonesia. The effect of hydrological zone and land-use on the emission of N2O, CH4 and CO2 were examined. Temporal and annual N2O, CH4 and CO2 were then measured. The results showed that the emissions of these gases were strongly affected by land-use and hydrological zone. The emissions exhibited seasonal changes.

  12. Integrated Belowground Greenhouse Gas Flux Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.

    2013-12-01

    Soil greenhouse gas (GHG) emissions play a significant role as biotic feedbacks to climate change. However, these complex processes, involving C, N, and O2 substrates and inhibitors, interactions with plant processes, and environmental influences of temperature, moisture, and gas transport, remain challenging to simulate in process models. Because CO2, CH4, and N2O production and consumption processes are inter-linked through common substrates and the contrasting effects of O2 as either an essential substrate or a potential inhibitor, the simulation of fluxes of any one gas must be consistent with mechanistic simulations and observations of fluxes of the other gases. Simulating the fluxes of one gas alone is a simpler task, but simulating all three gases simultaneously would provide multiple constraints and would afford greater confidence that the most important mechanisms are aptly simulated. A case in point is the challenge of resolving the apparent paradox of observed simultaneous CO2 production by aerobic respiration, CH4 uptake (oxidation), CH4 production, and N2O uptake (reduction) in the same soil profile. Consumption of atmospheric N2O should occur only under reducing conditions, and yet we have observed uptake of atmospheric CH4 (oxidation) and N2O (reduction) simultaneously. One of the great challenges of numerical modeling is determining the appropriate level of complexity when representing the most important environmental controllers. Ignoring complexity, such as simulating microbial processes with only simple Q10 functions, often results in poor model performance, because soil moisture and substrate supply can also be important factors. On the other hand, too much complexity, while perhaps mechanistically compelling, may result in too many poorly constrained parameters. Here we explore a parsimonious modeling framework for consistently integrated mechanistic and mathematical representation of the biophysical processes of belowground GHG production and consumption. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates soil enzymatic processes using Michaelis-Menten (M-M), Arrhenius, and diffusion equations to account for both temperature and substrate supply controls of trace gas emissions. This parsimonious simplification is somewhat analogous to early 'big leaf' canopy process models, because it simulates soil reactions as a 'big microsite' in the soil. By combining M-M and Arrhenius kinetics, DAMM mechanistically demonstrates that the temperature dependency inherent in the Arrhenius function for Vmax is not always an important controller of the reaction rate when limited substrate concentrations are near their respective Km's. The role of soil water content in DAMM is to control rates of diffusion of O2 and soluble carbon substrates. When applied to methanogenesis and denitrification, O2 must be simulated as an inhibitor of rather than a substrate, either through either classical M-M equations for noncompetitive inhibition or by simulating the inhibitory effect of O2 by decreasing in the enzymatic capacity, which is numerically represented by the pre-exponential ?-value in the Arrhenius equation for calculating Vmax. With the advent of new laser technology for fast response measurements of CO2, CH4, and N2O fluxes by eddy covariance and soil chambers, it will be possible soon to test this multiple constraint modeling approach for soil GHGs.

  13. Studies say - tentatively - that greenhouse warming is here

    Microsoft Academic Search

    R. A. Kerr

    1995-01-01

    Published studies on greenhouse warming have been ambivalent as to whether warming has arrived. Now two independent studies of the climate record have incriminated the green-house effect in global warming, although they fall short of convicting it. Researchers at the Max Planck Institute for Meteorology in Hamburg are confident they have exonerated natural climatic variability, saying the observed global warming

  14. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating

    Microsoft Academic Search

    Hüseyin Benli; Ayd?n Durmu?

    2009-01-01

    The use of renewable energy for greenhouse heating in winter and cold days, helps to save fossil fuels and conserve green farm environment on the one hand, and on the other hand, enhances the quality of agricultural products, reduces production costs and limits the release of greenhouse gases. In this study, a ground-source heat pump-phase change material (GSHP-PCM) latent heat

  15. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. Photochemistry of biogenic gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1989-01-01

    The relationship between the biosphere and the atmosphere is examined, emphasizing the composition and photochemistry and chemistry of the troposphere and stratosphere. The reactions of oxygen, ozone, and hydroxyl are reviewed and the fate of the biogenic gases ammonia, methane, reduced sulfur species, reduced halogen species, carbon monoxide, nitric oxide, nitrous oxide, nitrogen, and carbon dioxide are described. A list is given of the concentration and sources of the various gases.

  17. Detecting human influence in observed changes in precipitation

    NASA Astrophysics Data System (ADS)

    Polson, Debbie; Hegerl, Gabriele; Bollasina, Massimo; Wilcox, Laura; Zhang, Xuebin; Osborn, Timothy; Balan Sarojini, Beena

    2015-04-01

    Human induced changes to the precipitation could cause some of the most serious impacts of climate change, with potential consequences for water resources, health, agriculture and ecosystems. However, quantifying and understanding the drivers of changes to precipitation is challenging due to its large spatial and temporal variability, the lack of long-term observational records over much of the globe and the counteracting affects of greenhouse gases and aerosols. Nevertheless, detection and attribution studies have shown that human influence has changed both global and regional precipitation over the latter half of the 20th century. Using climates models to derive fingerprints of external forcing, we are able to show that greenhouse gas warming has driven large scale changes in precipitation. Greenhouse gas forcing is detectable in observed changes to zonal mean precipitation over land (Polson et al., 2012a). It has also been shown to have caused the intensification of the water cycle, enhancing existing patterns of the precipitation in the tropics and subtropics, over both land and ocean (Polson et al., 2012b). While at global scales, the influence of greenhouse gases is detectable in observations, separating the response of precipitation to anthropogenic aerosol forcing is more difficult. However, in some regions the influence of aerosols dominate, making it possible to detect aerosol forcing. Observed precipitation in the monsoon regions underwent substantial changes during the second half of the twentieth century, with drying from the 1950s to mid-1980s and increasing precipitation in recent decades. Climate model simulations are used to derive fingerprints of individual climate forcings (i.e., greenhouse gas, anthropogenic aerosol, and natural) and detection and attribution methods applied to determine which, if any, have driven these changes to monsoon precipitation. Even when accounting for internal variability of the climate, a clear signal of anthropogenic aerosol forcing is detectable in the observed changes, with aerosols causing an overall decrease to monsoon precipitation over the second half of the 20th century. Polson, D., G. C. Hegerl, X. Zhang, and T. J. Osborn, 2013a: Causes of Robust Seasonal Land Precipitation Changes. J. Climate, 26, 6679-6697. Polson, D., G. C. Hegerl, R. P. Allan, and B. Balan Sarojini 2013b: Have greenhouse gases intensified the contrast between wet and dry regions?, Geophys. Res. Lett., 40, 4783-4787doi:10.1002/grl.50923.

  18. Binary adsorption behaviour of methane and nitrogen gases

    Microsoft Academic Search

    V. P. Mulgundmath; F. H. Tezel; F. Hou; T. C. Golden

    Separation of methane and nitrogen gases is critical in the upgrading of LFG (Landfill gas), natural gas and coal bed gas\\u000a in order to have a commercial heating value for methane. From an environmental point of view, methane capture from landfill\\u000a gas is essential to prevent greenhouse gas emissions. Adsorption could be a beneficial process to capture low purity methane

  19. The ice-core record - Climate sensitivity and future greenhouse warming

    Microsoft Academic Search

    C. Lorius; D. Raynaud; J. Jouzel; J. Hansen; H. Le Treut

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the

  20. The Greenhouse Effect Temperature Equilibrium

    E-print Network

    Walter, Frederick M.

    The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all (Wein's Law). Our atmosphere is not completely transparent at these wavelengths, because the greenhouse

  1. 4, 23292384, 2007 Greenhouse gas

    E-print Network

    Boyer, Edmond

    BGD 4, 2329­2384, 2007 Greenhouse gas balance of NE Siberian tundra M. K. van der Molen et al The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE, 2329­2384, 2007 Greenhouse gas balance of NE Siberian tundra M. K. van der Molen et al. Title Page

  2. Guidelines for Greenhouse Raspberry Production

    Microsoft Academic Search

    UMass Extension

    Greenhouse Raspberry Production Summary: Greenhouse raspberry production is a system of growing floricane fruiting raspberries in containers that can be moved into a greenhouse after the plants' chilling requirement has been met (around 800 - 1000 hrs @ < 45°F). This is usually accomplished by the middle of December under outdoor conditions in New England. Once moved indoors, they will

  3. How do improved injection heights and trace gas emission factors from biomass burning affect the performance of a global model against satellite and ground-based observations of trace gases?

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-Francois; Bauwens, Maite; Sofiev, Mikhail; van Leeuwen, Thijs; van der Werf, Guido; De Smedt, Isabelle; Van Roozendael, Michel; George, Maya; Clerbaux, Cathy

    2014-05-01

    Vegetation fires are major contributors of trace gases and aerosols in the atmosphere affecting its composition and chemistry at different scales. The accurate quantification of fire emissions and their potential atmospheric impact is hampered by the strong spatiotemporal variability of this source, despite significant progress achieved over the last years in the development of fire emission inventories using fire detection and burned area mapping from satellite, as well as new constraints from inverse modelling studies of atmospheric trace gases. This study is motivated by recent developments regarding (i) the derivation of vertical profile of smoke released by wildland fires, and (ii) the spatiotemporal variability in biomass burning emission factors, both representing important sources of uncertainty in biomass burning emissions. More specifically, monthly 3D global maps of the injected smoke fraction in the atmosphere, deduced from records of active fires from the MODIS instrument combined with a plume-top height parameterization (Sofiev et al. 2013), exhibit strong seasonal variations which are expected to be more representative of real atmospheric conditions than a unique injection profile as currently used in global models. Furthermore, accounting for the variability in space and time of trace gas emission factors from biomass burning (van Leeuwen et al. 2011, 2013), rather than static emission factors as in most studies, is a more physically plausible hypothesis owing to the strong spatiotemporal variability in different environmental parameters influencing the emission factors. Here, we use the IMAGES global atmospheric model to evaluate the impact of improved injection heights and trace gas emission factors from biomass burning. To this purpose, different scenarios are designed with pyrogenic emissions emitted either at the surface, or according to the static latitude-dependent AEROCOM profile (Dentener et al. 2006), or using the injection heights of Sofiev et al. (2013), whereas either static or dynamic emission factors are used to convert biomass burnt into emitted trace gases. The surface mixing ratios and total columns of key compounds over biomass burning regions in each of these sensitivity cases are confronted with satellite and ground-based observations. Finally, the relevance of these parameters in the context of inverse modelling of emissions is assessed through source inversion experiments using the IMAGES model constrained by HCHO columns retrieved from the GOME-2 sounder.

  4. Rapid chemical evolution of tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and halogen-containing gases

    NASA Astrophysics Data System (ADS)

    Kelly, Peter J.; Kern, Christoph; Roberts, Tjarda J.; Lopez, Taryn; Werner, Cynthia; Aiuppa, Alessandro

    2013-06-01

    We report results from an observational and modeling study of reactive chemistry in the tropospheric plume emitted by Redoubt Volcano, Alaska. Our measurements include the first observations of Br and I degassing from an Alaskan volcano, the first study of O3 evolution in a volcanic plume, as well as the first detection of BrO in the plume of a passively degassing Alaskan volcano. This study also represents the first detailed spatially-resolved comparison of measured and modeled O3 depletion in a volcanic plume. The composition of the plume was measured on June 20, 2010 using base-treated filter packs (for F, Cl, Br, I, and S) at the crater rim and by an instrumented fixed-wing aircraft on June 21 and August 19, 2010. The aircraft was used to track the chemical evolution of the plume up to ~ 30 km downwind (2 h plume travel time) from the volcano and was equipped to make in situ observations of O3, water vapor, CO2, SO2, and H2S during both flights plus remote spectroscopic observations of SO2 and BrO on the August 19th flight. The airborne data from June 21 reveal rapid chemical O3 destruction in the plume as well as the strong influence chemical heterogeneity in background air had on plume composition. Spectroscopic retrievals from airborne traverses made under the plume on August 19 show that BrO was present ~ 6 km downwind (20 min plume travel time) and in situ measurements revealed several ppbv of O3 loss near the center of the plume at a similar location downwind. Simulations with the PlumeChem model reproduce the timing and magnitude of the observed O3 deficits and suggest that autocatalytic release of reactive bromine and in-plume formation of BrO were primarily responsible for the observed O3 destruction in the plume. The measurements are therefore in general agreement with recent model studies of reactive halogen formation in volcanic plumes, but also show that field studies must pay close attention to variations in the composition of ambient air entrained into volcanic plumes in order to unambiguously attribute observed O3 anomalies to specific chemical or dynamic processes. Our results suggest that volcanic eruptions in Alaska are sources of reactive halogen species to the subarctic troposphere.

  5. Greenhouse gas growth rates

    Microsoft Academic Search

    James Hansen; Makiko Sato

    2004-01-01

    We posit that feasible reversal of the growth of atmospheric CH4 and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO2 at an achievable level of anthropogenic CO2 emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as

  6. Could plants help tame the greenhouse

    SciTech Connect

    Baskin, Y.

    1993-03-19

    It's easy to see how climate change might affect the globe's vegetation, driving hardwood forests into regions now covered with evergreens and causing deserts to shift. It's less easy to picture the other side of the coin: biology's impact on the atmosphere. So mathematician Berrien Moore III of the University of New Hampshire, who heads the International Geosphere-Biosphere Program task force on global analysis, interpretation, and modeling, staged a simple demonstration. He modeled the effects of a biosphere fertilized by increased CO[sub 2] - and found that it could first help, then hinder, human efforts to slow the buildup of greenhouse gases. To simulate such a biotic carbon sink, Moore combined a simple model of CO[sub 2] uptake by the ocean with an equally simple model of its uptake by photosynthesis on land and its release by deforestation and plant decay. He then forced this simple ocean-atmosphere-vegetation model with fossil fuel CO[sub 2] emissions from 1860 to the present. As expected, his model ended up with too much carbon in the atmosphere. So he turned up photosynthesis, fertilizing plant growth in his model, until the rate of CO[sub 2] buildup just matched the observed increase. Moore then explored how this terrestrial carbon sink would respond if the CO[sub 2] buildup slowed. The result: If you were to cap the rate of CO[sub 2] emissions from fossil fuel burning, [this terrestrial] sink would reduce the atmospheric lifetime of CO[sub 2] by a factor of four or five. This cleansing effect would operate on timescales of years or decades, compared with centuries for the ocean, says Moore - fast enough to aid human efforts to slow the CO[sub 2] buildup. However, it doesn't do it forever. If at some point emissions cuts and the terrestrial sink succeeded in reducing atmospheric CO[sub 2], plant growth would drop and CO[sub 2] levels would bounce back up as all the extra biomass rotted away.

  7. An Introduction to Greenhouse Production. Second Edition.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual is presented in its first revision, providing a current, basic text for those preparing for greenhouse and floriculture work. Its fourteen chapters are: Overview of the Greenhouse Industry; Greenhouse Structures; Controlling the Greenhouse Environment; Greenhouse Equipment and Lighting; Greenhouse Irrigation Systems; Root Media…

  8. Greenhouse and Field Nursery Evaluation for Potato Common Scab Tolerance in a Tetraploid Population

    E-print Network

    Douches, David S.

    Greenhouse and Field Nursery Evaluation for Potato Common Scab Tolerance in a Tetraploid Population were also observed, but they are skewed toward susceptibility. A greenhouse-based screening procedure with a pathogenic S. scabies strain MSDPZ at a concentration of 3 X 108 CFU/ml. This greenhouse assay effectively

  9. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    PubMed

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso. PMID:20651250

  10. Measurements of Trace Gases in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.; Park, S.; Weinstock, E. M.; Swartz, W. H.; Mahoney, M. J.

    2008-01-01

    A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.

  11. (Solar pods (greenhouses))

    SciTech Connect

    Kerr, R.T.

    1985-01-01

    Detailed instructions for the construction of solar pads are presented. The materials necessary for constructing the solar pad are made available in kit form. A list of the materials includes: dome shaped double glazing; end plates and supports; 2 x 4's; a snow support rib; and pressure strips. Assembly of the structure is made easy with an electric drill and simple hand tools. The solar pads resemble miniature greenhouses and are used for year round horticulture. (BCS)

  12. Research activity of the greenhouse gas measurements using optical remote sensing in Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Asai, K.

    2009-12-01

    Japan might be one of the most active countries dedicating themselves to studying the greenhouse gas (GHG) measurements using optical remote sensing not only on the ground but also from space. There are two reasons; one of them ascends to the Kyoto Protocol, agreed in December 1997 in Kyoto, an ancient city of Japan until 19th centuries, was designed to address the international response to serious climate change due to greenhouse gases. The other reason is due to a revision of the Basic Environment Law of Japan in order to meet the Kyoto Protocol in 1998. The State makes efforts to ensure international collaboration so as to effectively promote the monitoring, observation and measurement of the environmental situation with regard to global warming. Main activities are listed in a Table1. They are divided into two categories, i.e. the Greenhouse gases Observing SATellite (GOSAT), launched on Jan.23, 2009 and active remote sensing using lidar technology. In case of GOSAT, an initial analysis of carbon dioxide and methane concentrations was obtained for clear-sky scenes over land. In the future, after further calibration and validation of the data, observation data and corresponding analyzed products will be made available. On the other hand, studies of the laser remote sensing for measuring GHG have been actively carrying out to achieve reliable data with a higher accuracy at wavelengths of 1.6micron meter (Tokyo Metropolitan University, JAXA, Mitsubishi Electric Co.) and 2 micron meter (National Institute of Information and Communications Technology). As well-known, one of the most interests regarding atmospheric CO2 measurements is that carbon dioxide molecule measured are due to anthropological emission from fossil fuel burning or due to natural one from forest fires etc. We proposed a newly advanced CO2/CO DIAL using a hybrid of pulsed Tm,Ho:YLF and pulsed OPO pumped by it for better understanding them. Now, our effort is directed to find out the most suitable wavelength pairs to be selected.Activities of optical remote sensing for GHG in Japan

  13. The role of hydrodynamic transport in greenhouse gas fluxes at a wetland with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Gilson, E.; Knox, S. H.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.; Variano, E. A.

    2013-12-01

    In wetlands with emergent vegetation, the hydrodynamic transport of dissolved gases is often neglected because emergent plants transport gases directly and limit wind-driven air-water gas exchange by sheltering the water surface. Nevertheless, wetland hydrodynamics, and thermally-driven stirring in particular, have the potential to impact gas fluxes in these environments. We are evaluating the importance of hydrodynamic dissolved gas transport at a re-established marsh on Twitchell Island in the Sacramento-San Joaquin Delta (California, USA). At this marsh, the U.S. Geological Survey has previously observed rapid accumulation of organic material (carbon sequestration) as well as very high methane emissions. To assess the role of hydrodynamics in the marsh's greenhouse gas fluxes, we measured dissolved carbon dioxide and methane in the water column on a bi-weekly basis beginning in July 2012. We employed a model for air-water gas fluxes in wetlands with emergent vegetation that predicts gas transfer velocities from meteorological conditions. Modeled air-water gas fluxes were compared with net gas fluxes measured at the marsh via the eddy covariance technique. This comparison revealed that hydrodynamic transport due to thermal convection was responsible for approximately one third of net carbon dioxide and methane fluxes. The cooling at the water surface driving thermal convection occurred each night and was most pronounced during the warmest months of the year. These finding have implications for the prediction and management of greenhouse gas fluxes at re-established marshes in the Sacramento-San Joaquin Delta and other similar wetlands.

  14. Using eddy covariance and Earth observation products to investigate the Indian Ocean as a source/sink of trace gases to the atmosphere

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alex; Steinhoff, Tobias; Marandino, Christa

    2015-04-01

    According to well known climatologies for CO2 and DMS, the southwest Indian Ocean shows strong seasonality in surface water concentrations. Available CO2 observations show values around equilibrium from November to April, followed by a strong decrease that results in an undersaturation of around 80 µatm in July/August. Consequently, this area is an important sink for atmospheric CO2. In contrast this region is predicted to be a hotspot for DMS emissions. Maximum surface concentrations are expected in northern hemisphere winter (NH). However, the air-sea gas exchange is largely influenced by the monsoon circulation, hence it is computed to peak in June/July. Furthermore these climatologies are based on low spatial and temporal resolution observations, which is especially important when dealing with a seasonally reversing ocean-atmosphere system. Given the evidence that the Indian Ocean is changing faster than other ocean basins, it is important to understand the mechanisms that drive air-sea exchange in this significant sink/source region. Here we present preliminary data obtained during a cruise starting in Durban, South Africa and ending in Male, Maledives, from July to August 2014. For the first time, eddy covariance air-sea fluxes and concentration gradient measurements for CO2 and DMS were obtained simultaneously in the southwestern Indian Ocean. We will derive gas transfer coefficients (k) from these direct measurements and correlate with wind speed (u) and other parameters measured on board in order to investigate the mechanisms behind gas transfer. Furthermore, we will examine the intercomparison of DMS and CO2 so as to focus on the effect of solubility on gas exchange. In addition, we will use a range of outputs from remote sensing platforms to assist the interpretation of the in situ data (e.g. significant wave heights, existence of diurnal warming, impact of SST skin on the CO2 fluxes, rain frequency and intensity, existence of SST fronts). The correction of k values for the ocean skin temperature and the effect of rain on gas transfer processes are of special interest in this region, given the high degree of warming and the monsoon circulation in the Indian Ocean.

  15. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  16. Desert Amplification of Greenhouse Gas Warming

    NASA Astrophysics Data System (ADS)

    Cook, K. H.

    2013-12-01

    Surface temperatures over the Sahara and Arabian Deserts are increasing at a rate that is 3.5 times that of the global mean. These regions have warmed by 1.4 K between 1980 and 2012. In the tropical (and global) mean, added energy incident at the surface due to increased concentrations of greenhouse gases is used partly to increase the surface temperature, and partly to evaporate water. The resulting atmospheric water vapor anomaly is effectively mixed vertically and horizontally throughout the tropics on annual time scales, and amplifies the greenhouse effect (increased longwave back radiation to the surface) everywhere, including over the deserts. But, on the desert surface, evaporative cooling is disabled and the enhanced longwave energy incident on the surface serves only to increase surface temperature. Despite the fact that this desert amplification mechanism should operate over any dry surface, the other deserts of the world are not exhibiting accelerated warming. Each of these deserts is smaller than the Sahara/Arabian Desert area, and various regional processes dominate over the desert amplification mechanism.

  17. Photoionization in Gases

    Microsoft Academic Search

    R. N. Varney; L. B. Loeb

    1935-01-01

    The balanced space charge positive ion detector, used in the experiments on ionization by positive alkali ions has been used in the study of photoionization in gases. The following experiments were performed: (1) A hydrogen discharge tube, operated by either a 1000- or an 8000-volt transformer, was set up so that the radiation emitted could pass through a fluorite window

  18. Gases in Seawater

    Microsoft Academic Search

    P. D. Nightingale; P. S. Liss

    2003-01-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate,

  19. Monte Carlo analysis of uncertainties in the Netherlands greenhouse gas emission inventory for 1990–2004

    Microsoft Academic Search

    Andrea Ramírez; Corry de Keizer; Jeroen P. Van der Sluijs; Johannes Gerardus Jozef Olivier; Laurens Brandes

    2008-01-01

    This paper presents an assessment of the value added of a Monte Carlo analysis of the uncertainties in the Netherlands inventory of greenhouse gases over a Tier 1 analysis. It also examines which parameters contributed the most to the total emission uncertainty and identified areas of high priority for the further improvement of the accuracy and quality of the inventory.

  20. The Greenhouse Theory of Climate Change: A Test by an Inadvertent Global Experiment

    Microsoft Academic Search

    V. Ramanathan

    1988-01-01

    Since the dawn of the industrial era, the atmospheric concentrations of several radiatively active gases have been increasing as a result of human activities. The radiative heating from this inadvertent experiment has driven the climate system out of equilibrium with the incoming solar energy. According to the greenhouse theory of climate change, the climate system will be restored to equilibrium

  1. Remote sensing of soil carbon and greenhouse gas dynamics across agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate assessments of the overall impact of the GRACEnet strategies for enhancing soil C sequestration and reducing greenhouse gases emissions requires extending results from small plot of field experiments to regional and national scales. This spatial scaling task is nontrivial because the mechan...

  2. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  3. Impacts of Current and Previous Land Use on Greenhouse Gas Fluxes for Biofuel Cropping Systems

    Microsoft Academic Search

    S. Del Grosso; W. Parton; P. Adler; S. Ogle

    2008-01-01

    Biofuel cropping systems are both a source and sink of greenhouse gases (GHG). Fertilizer and pesticide manufacture and transport, farm machinery operation, and processing of biomass into fuel all lead to carbon dioxide (CO2) emissions, but the largest GHG sources for biofuel systems are often soil nitrous oxide (N2O) emissions and loss of organic carbon as a result of land

  4. Impacts of Ultraviolet Radiation on Aquatic Ecosystems: Greenhouse Gas Emissions and Implications for Hydroelectric Reservoirs

    Microsoft Academic Search

    Julie Bastien

    Ultraviolet radiation (UV) affects carbon dynamics in aquatic ecosystems. Photooxidation of dissolved organic matter (DOM) can produce greenhouse gases (GHG) and the effects of UV on primary and secondary production can influence the flux of carbon (C) between aquatic ecosystems and the atmosphere. Products of photooxidation include: DOM of lower molecular weight, carbon dioxide (CO2) and carbon monoxide (CO). Lower

  5. Enzymes, Total Organic Carbon, Microbial Biomass, and Greenhouse Gas Efflux in a Central Missouri Soybean Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen enter the atmosphere primarily as carbon dioxide (CO2) and nitrous oxide (N2O), respectively, partly due to anthropogenic effects of industrial and agricultural processes. The effects of these greenhouse gases (GHG) on global climate change and the environment require a better un...

  6. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2030

    EPA Science Inventory

    This report provides information on historical and projected estimates of emissions of non-CO2 greenhouse gases from anthropogenic sources. It includes over 20 individual source categories from the energy, industrial processes, agriculture, and waste sectors. It covers 92 countr...

  7. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Microsoft Academic Search

    H. Lin; Y. Jin; L. Giglio; J. A. Foley; J. T. Randerson

    2010-01-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system,

  8. Hydroelectricity, an option to reduce greenhouse gas emissions from thermal power plants

    Microsoft Academic Search

    André Chamberland; S. Levesque

    1996-01-01

    Fossil-fueled power plants for electricity generation are a major source of greenhouse gases (GHGs). These plants can be replaced effectively by nuclear power, hydroelectricity and other less significant options such as biomass, hydrogen, wind and solar power. Among the replacement options, nuclear power is unpopular for various reasons. Hydrogen must be produced from either natural gas or electrolysis, and might

  9. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  10. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remot...

  11. Agricultural management and greenhouse gas flux: cropland management in eastern and central US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils are the primary source of nitrous oxide (N2O) and a minor source of methane (CH4), two important biogenic greenhouse gases (GHG) that are contributing to catastrophic global climate change. Nitrous oxide emissions are expected to increase by 35-60% worldwide as pressure to increa...

  12. Experimental research on the effects of water application on greenhouse gas emissions from beef cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of water application (e.g., through rainfall or sprinkler system) on emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled laboratory conditions. Soil/ma...

  13. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of the three most important long-lived greenhouse gases (GHG) have increased measurably over the past two centuries. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 35%, 155%, and 18%, respectively, since 1750. ...

  14. Integrated and comprehensive estimation of greenhouse gas emissions from land systems

    Microsoft Academic Search

    Cris Brack; Gary Richards; Robert Waterworth

    2006-01-01

    Exchanges of carbon and nitrogen between the atmosphere and terrestrial ecosystems involve a complex set of interactions affected by both natural and management processes. Understanding these processes is important for managing ecosystem productivity and sustainability. Management processes also affect the net outcome of exchanges of greenhouse gases between terrestrial ecosystems and the atmosphere. In developing a national carbon accounting system

  15. Micrometeorological Mass Balance Measurements of Greenhouse Gas Emissions from Composting Green-waste

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.

    2013-12-01

    Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.

  16. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations. PMID:25019173

  17. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  18. The greenhouse gambit

    SciTech Connect

    Dogan, D. (Investor Responsibility Research Center, Washington, DC (United States). Environmental Information Service)

    1992-01-01

    While forecasts of the economic costs and benefits of ameliorating global warming remain speculative, so, too, are the climate change projections that gird the debate. The consensus among most of the scientific community is that a doubling of atmospheric carbon dioxide is likely to raise the mean global temperature of the Earth 3 to 8 degrees Fahrenheit by 2050. To put this forecast in some perspective, the planet was about 10 degrees cooler during the last Great Ice Age and about 10 degrees warmer dozing the Age of the Dinsosaurs. Accordingly, the warming could bring about dramatic changes in climate. But a prudent investor must be careful not to invest too much in pat assumptions about the greenhouse effect. The climate may have many surprises in store. Indeed, it has surprised climate forecasters already by not warming nearly as fast as their general circulation models have suggested it would. This book examines four industries with the most at stake in the greenhouse debate: agriculture, forest products, automobiles and electric power. All of these industries essentially face two choices: Act now to blunt the possible momentum of climate change, or wait and see if the basic forecast is correct, accommodating any change as it occurs. These choices involve a trade-off between further information-gathering to ensure a proper course of action and implementing a strategy, quickly to its intended effect. Such a trade-off is the essence of risk, the stuff of investing. For the purposes of this book, it defines the greenhouse gambit.''

  19. Greenhouse gas emissions tool

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Power plants were the largest stationary source of direct greenhouse gas (GHG) emissions in the United States in 2010, according to data from the Environmental Protection Agency's (EPA) GHG Reporting Program, the agency announced on 11 January. The GHG data set, which includes reports from more than 6700 facilities, provides information that the public can search to identify local sources of emissions and that businesses can use to track emissions. Gina McCarthy, assistant administrator for EPA's Office of Air and Radiation, said the program is “a transparent, powerful data resource available to the public” and that it provides “a critical tool” for businesses and others to find efficiencies to reduce emissions.

  20. Strategies for solar greenhouses utilization

    SciTech Connect

    Locher, V.A. (Inner Spaces, Monterey, MA); Airhart, D.L.

    1980-01-01

    This study identifies basic questions needing answers before the solar greenhouse can offer a truly appropriate technology or be an effective social change agent. Comparison of 18 solar greenhouses in Massachusetts was made to evaluate how well these systems are operating and what areas need improvements or modifications. The potential for effective solar greenhouse utilization is being decreased partly by problems of design but mostly by lack of long-term funding, inattention to principles of greenhouse management, and inadequate training or horticultural skills for crop production.

  1. Powdery mildew (Leveillula taurica) on greenhouse and field peppers in Ontario – host range, cultivar response and disease management strategies

    Microsoft Academic Search

    R. F. Cerkauskas; G. Ferguson; M. Banik

    2011-01-01

    Leveillula taurica was observed on field pepper at various sites in south-western Ontario in 2005–2007. The field isolates collected from these sites were similar to a greenhouse isolate based on morphological observations. Host range of greenhouse and field isolates was similar, with minor sporulation on potato, carrot and several weeds. The greenhouse pepper cultivar ‘Samanta’ was the most susceptible to

  2. Vibrational Relaxation in Gases

    Microsoft Academic Search

    J. D. Lambert; R. Salter

    1959-01-01

    The velocity of ultrasonic waves has been measured in a number of gases at 25 degrees C and for values of the ratio, ultrasonic frequency\\/pressure, ranging from 2 × 105 to 2 × 107 c s-1 atm-1. Dispersion, corresponding to a single vibrational relaxation process was shown by acetylene, CD3Br and hexafluoro-ethane; and, to a double relaxation process, by ethane.

  3. The Greenhouse Culture Oral History

    E-print Network

    Scholz, Jared; Sipp, Kalah; Stratton, Emily

    2013-06-26

    Oral history interview with Jared Scholz and Kalah Sipp conducted by Emily Stratton in Lawrence, Kansas, on June 26, 2013. Jared Scholz is the founder and Senior Pastor of The Greenhouse Culture; Kalah Sipp is The Greenhouse Culture’s Administrative...

  4. Passive Greenhouses and Ecological Reconstruction

    Microsoft Academic Search

    V. E. Balas; M. M. Balas; M. V. Putin-Racovita

    2008-01-01

    This paper is discussing the ecological reconstruction opportunity opened by the extended use of the energetic passive greenhouses, independent of any conventional infrastructure (water, gas, electricity). A specific passive greenhouse configuration is considered: the main heating device is a heat pump extracting energy from cold underground water. A dc wind generator is supplying the small amount of energy necessary for

  5. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles

    Microsoft Academic Search

    A. Elgowainy; A. Burnham; M. Wang; J. Molburg; A. Rousseau

    2009-01-01

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel\\/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW

  6. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R [eds.] [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  7. The Drivers of Climate Change -- Tracking Global Greenhouse Gas Trends and their Warming Influence

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Montzka, S. A.; Dlugokencky, E. J.; Hall, B. D.; Masarie, K. A.; Elkins, J. W.; Dutton, G. S.; Miller, B. R.

    2014-12-01

    Of the National Physical Climate Indicators, two stand out as primary drivers of climate change - the Global Monthly Average of Carbon Dioxide Concentration and the Annual Greenhouse Gas Index. Both of these are products of high quality, long-term, globally distributed monitoring of greenhouse gases in the atmosphere. To support monitoring of the trends of these gases over decades, NOAA maintains the WMO World Calibration Scales for the major contributors to radiative forcing and its own universally accepted scales for most of the minor greenhouse gases. Maintenance of these scales over time ensures the consistency of measurements from decade to decade. Further quality control through use of internal and external comparisons of on-going measurements places tight constraints on spatial and temporal bias. By far the most influential greenhouse gas contributing to radiative forcing is carbon dioxide (CO2). Its amount at Mauna Loa is reported on-line daily and its global trend updated monthly on NOAA's global monitoring website and at climate.gov. This is one of the most closely watched records of atmospheric composition, as its accelerating rate of increase is a constant reminder that society has yet to deal successfully with its emissions of this gas. Much of CO2 emitted remains in the atmosphere for 1000s of years, which is why it is of substantial concern. But atmospheric CO2 is not alone in warming the planet and driving climate change. Many other gases contribute in a lesser way to this long-term trend and are captured along with CO2 in NOAA's Annual Greenhouse Gas Index (AGGI). The AGGI is a normalized compilation of the radiative forcing (RF) of five major long-lived greenhouse gases (96% of RF) and 15 minor gases (4% of RF). Because it does not include short lived gases (< ~10 years), it measures a robust RF trend that represents the warming influence society has already committed itself to living in. This presentation discusses the development of these two indexes and their national and global use.

  8. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27mgCO2m(-2)h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14?molm(-2)h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  9. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    Microsoft Academic Search

    N. C. Sturchio; F. Bellucci; M. A. Gonzalez-Meler; L. Heraty; J. A. Kozak

    2010-01-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http:\\/\\/epa.gov\\/climatechange\\/emissions\\/downloads10\\/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates

  10. Model sensitivity to MACC anthropogenic and biogenic emissions: Global simulations and evaluation for reactive gases

    NASA Astrophysics Data System (ADS)

    Stein, O.; Schultz, M. G.; Bouarar, I.; Clark, H.; Katragkou, E.; Leitao, J.; Heil, A.

    2012-04-01

    The EU projects MACC (Monitoring Atmospheric Composition and Climate, 2009-2011) and MACC-II (2011-2014) prepare for the operational Global Monitoring for Environment and Security (GMES) atmospheric core service which is envisaged to start in 2014. Besides global service lines for greenhouse gases and aerosols, emphasis is put also on global monitoring and forecasting of reactive gases. The MACC reanalysis and forecast simulations benefit from the multi-sensor approach for data assimilation of ozone, CO and NO2 observations. Currently the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) is coupled to the chemical transport model MOZART-3 to represent in detail the chemical conversion as well as major source and sink processes. A global emission inventory for reactive gases has been developed as part of the MACC project. Based upon the ACCMIP emissions for the year 2000 these emissions are extrapolated for years after 2000 with the Representative Concentration Pathway RCP8.5 scenario and extended for VOCs and several other species. This inventory composes the MACCity anthropogenic emission inventory (Granier et al. 2011). During the MACC project it became apparent that using the MACCity emissions in reanalysis simulations for recent years led to an underestimation of CO concentrations in the Northern Hemisphere when compared to independent observations. In order to give insight into the reasons for this behavior we conducted MOZART offline simulations for the year 2008 to test the sensitivity of the chemical transport model to the varying emissions. Therefore we ran MOZART with different sets of emissions: 1. MACCity emissions, 2. The GEMS/RETRO emission inventory, 3. MACCity emissions, but with increased traffic CO emissions. While using the emission inventory developed in the RETRO and GEMS projects gives quite reasonable tropospheric concentrations for the key species, the MACCity emissions are too low, particularly during NH winter. Increasing the MACCity CO traffic emissions by a factor of 2.5 results in a much better representation of surface and satellite observations for most parts of the world. This points to a significant underestimation of traffic CO emissions in the MACCity emission inventory, which is potentially amplified by an unrealistic emission reduction 2000-2010 in the RCP8.5 scenario. Biogenic emissions used in MOZART for MACC come from the MEGANv3 emission database. We will also show the impact of using an alternative emission inventory for Europe (NATAIR) on reactive gases for the global scale.

  11. University of Oregon Greenhouse Policy 2014 Overview of Greenhouse Facility

    E-print Network

    occur: - Broken windows (do not approach broken glass, especially if overhead) - Unable to secure.m. to 11 a.m. Monday thru Friday, by phone 24/7, or by appointment. The Greenhouses are staffed seven days

  12. Greenhouse gas trading starts up

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  13. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  14. Greenhouse Earth: A Traveling Exhibition

    Microsoft Academic Search

    W. H. Booth; S. Caesar

    1992-01-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to

  15. Greenhouse gas growth rates

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2004-11-01

    We posit that feasible reversal of the growth of atmospheric CH4 and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO2 at an achievable level of anthropogenic CO2 emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as 1°C. A 1°C limit on global warming, with canonical climate sensitivity, requires peak CO2 440 ppm if further non-CO2 forcing is +0.5 W/m2, but peak CO2 520 ppm if further non-CO2 forcing is -0.5 W/m2. The practical result is that a decline of non-CO2 forcings allows climate forcing to be stabilized with a significantly higher transient level of CO2 emissions. Increased "natural" emissions of CO2, N2O, and CH4 are expected in response to global warming. These emissions, an indirect effect of all climate forcings, are small compared with human-made climate forcing and occur on a time scale of a few centuries, but they tend to aggravate the task of stabilizing atmospheric composition.

  16. Greenhouse gas growth rates

    PubMed Central

    Hansen, James; Sato, Makiko

    2004-01-01

    We posit that feasible reversal of the growth of atmospheric CH4 and other trace gases would provide a vital contribution toward averting dangerous anthropogenic interference with global climate. Such trace gas reductions may allow stabilization of atmospheric CO2 at an achievable level of anthropogenic CO2 emissions, even if the added global warming constituting dangerous anthropogenic interference is as small as 1°C. A 1°C limit on global warming, with canonical climate sensitivity, requires peak CO2 ? 440 ppm if further non-CO2 forcing is +0.5 W/m2, but peak CO2 ? 520 ppm if further non-CO2 forcing is -0.5 W/m2. The practical result is that a decline of non-CO2 forcings allows climate forcing to be stabilized with a significantly higher transient level of CO2 emissions. Increased “natural” emissions of CO2, N2O, and CH4 are expected in response to global warming. These emissions, an indirect effect of all climate forcings, are small compared with human-made climate forcing and occur on a time scale of a few centuries, but they tend to aggravate the task of stabilizing atmospheric composition. PMID:15536130

  17. Greenhouse Labs Connecting Science and Industry

    E-print Network

    Lagergren, Jens

    Greenhouse Labs Connecting Science and Industry #12;"Något motsvarande Greenhouse Labs har inte kemi." jessica martinsson, sprint bioscience #12;Greenhouse Labs är en miljö speciellt utformad för Greenhouse Labs blir du en del av en gemenskap och tar plats i kemins nya skyltfönster. Du har access till

  18. Greenhouse Policies and Procedures Dept. of Biology

    E-print Network

    Segraves, Kari A.

    Greenhouse Policies and Procedures Dept. of Biology Syracuse University Implemented 1 March 2012 Greenhouse manager: Paul Logue Greenhouse Committee: David Althoff, Heather Coleman, Jason Fridley, Paul Logue #12;2 Facilities The state of the art greenhouse on the 5th floor of LSC has ten independently

  19. Greenhouse Earth: A Traveling Exhibition

    SciTech Connect

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

  20. New Mexico solar greenhouse study

    SciTech Connect

    Morris, W.S.; Reiniger, C.

    1982-01-01

    Throughout New Mexico, attached solar greenhouses have proliferated since innovators in passive solar applications pefected the technology in the late 1960s and early 1970s. Current popularity has been accelerated by escalating fuel costs and increasing interest in self-help and self-sufficiency movements. A community study team of New Mexico residents interviewed 150 solar greenhouse owners from March to October 1979 to obtain information on the social/community, technological, legal/political, and economic/financial aspects and impacts of solar greenhouses. A user experience and attitude profile is presented as well as an economic analysis of questionnaire data. Most solar greenhouses surveyed produce heat at a cost that compares favorably with present conventional fuel costs and have simple payback periods of four to eight years. The study indicates that there are no serious barriers to solar greenhouse technology, although increased education, greater tax incentives, and low-interest loans would stimulate greater use of solar greenhouses by low-income residents.

  1. Diffusivity of Lattice Gases

    NASA Astrophysics Data System (ADS)

    Quastel, Jeremy; Valkó, Benedek

    2013-10-01

    We consider one-component lattice gases with local dynamics and a stationary product Bernoulli measure on {{Z}^d}. We study the scaling exponents of the space-time correlations of the system in equilibrium at a given density. We consider a variance-like quantity computed from the correlations called the diffusivity (connected to the Green-Kubo formula) and give rigorous upper and lower bounds on it that depend on the dimension and the local behavior of the macroscopic flux function. Our results identify the cases in which the system scales superdiffusively; these cases have been predicted before, using non-rigorous scaling arguments. Our main tool is the resolvent method: the estimates are the result of a careful analysis of a complicated variational problem.

  2. Kinetic Molecular Theory of Gases

    NSDL National Science Digital Library

    David N. Blauch

    Applets dealing with the meaning of the Maxwell distribution of gases and pressure of gases are discussed. The Maxwell distribution experiment allow the user to explore the most probable speed of gas molecules. The pressure experiment allows the user to explore the effects of size and mass on collision rate, direction, and relative speed of gas molecules within a fixed volume.

  3. Elevated CO2 and warming effects on soil carbon sequestration and greenhouse gas exchange in agroecosystems: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrations of CO2 and other greenhouse gases (GHGs) have been increasing dramatically in earth’s atmosphere since the industrial revolution, and are expected to continue increasing from ~385 ppmv today to more than 600 ppmv by the end of this century. Global surface temperatures are expected to ...

  4. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize\\/soybean rotation ecosystem

    Microsoft Academic Search

    T. K. Bavin; T. J. Griffis; J. M. Baker; R. T. Venterea

    2009-01-01

    Agricultural ecosystems have been viewed with the potential to sequester atmospheric carbon dioxide (CO2) by increasing soil organic carbon (SOC) through reduced tillage and cover cropping practices. There remains considerable uncertainty, however, regarding the carbon (C) sink\\/source potential of these systems and few studies have examined C dynamics in conjunction with other important greenhouse gases. The objective of this study

  5. Assessment of Soil Microbial Communities Associated With Greenhouse Gas Efflux from a Secondary Forest in Central Missouri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen enters the atmosphere in the form of the greenhouse gases (GHG) carbon dioxide (CO2) and nitrous oxide (N2O) partly as a result of industrial and agricultural processes. The effects of GHG on global climate change and the environment require better understanding of the processes ...

  6. The effect of catena position on greenhouse gas emissions from Dambo located termite (odontotermes transvaalensis) mounds from Central Zimbabwe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) is one of the most important greenhouse gases. The global warming potentials (GWP) of nitrous oxide (N2O) is 310 more, than that of carbon dioxide (CO2) during a 100 year time scale on molecule for molecule basis. Natural sources of N2O include wetlands. Sub-Saharan Africa is occ...

  7. Understanding the relationships between microbial biomass, enzymes and greenhouse gas efflux in a secondary forest in Missouri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) concentrations are increasing at annual rates of 0.5%, 0.75% and 0.75%, respectively. Documented research has established links between soil physical and chemical properties and efflux of greenhouse gases; however a need exists for closer e...

  8. Quantifying nitrogen fluxes and their influence on the greenhouse gas balance - recent findings of the NitroEurope Integrated Project

    NASA Astrophysics Data System (ADS)

    Reis, S.; Sutton, M. A.; Nemitz, E.; Beier, C.; Butterbach-Bahl, K.; Cellier, P.; de Vries, W.; Erisman, J.; Zechmeister-Boltenstern, S.; Bleeker, A.; Nitroeurope Ip Consortium

    2010-12-01

    The generation of reactive nitrogen (Nr) by human activities to stimulate agricultural productivity and the unintended formation of Nr in combustion processes both have major impacts on the global environment. Effects of excess Nr include the deterioration of air quality, water quality, soil quality and a decline in biodiversity. One of the most controversial impacts of nitrogen, however, is on the greenhouse gas balance. While recent papers have highlighted a possible benefit of nitrogen in enhancing rates of carbon sequestration, there remain many trade-offs between nitrogen and greenhouse gas exchange. The result is that the net effect of Nr on the global radiative balance has yet to be fully quantified. To better understand these relationships requires intense measurement and modelling of Nr fluxes at various temporal and spatial scales in order to make the link between different nitrogen forms and their fate in the environment. It is essential to measure fluxes for a wide range of ecosystems considering the biosphere-atmosphere exchange of the Nr components and greenhouse gases, as well as the fixation of di-nitrogen and its creation by denitrification. Long-term observations are needed for representative ecosystems, together with results from experiments addressing the responses of the key nitrogen and greenhouse gas fluxes to different global change drivers. The NitroEurope Integrated Project (in short NEU IP), funded under the 6th Framework Programme of the European Commission, has developed and applied a strategy for quantifying these different terms on multiple scales. With the project nearing completion, this presentation reports selected preliminary findings. It highlights the first estimates of Nr inputs and net green-house gas exchange for a series of 13 flux ‘supersites’, complemented by the emerging results of Nr concentrations and related N inputs at a network of 58 ‘inferential sites’, which extend the European representativity of the results. In addition, new low cost methods to measure nitrogen fluxes will be reported, which have been extensively tested at those sites. Results from this 3-tier flux network are underpinned by emerging findings from an extensive network of manipulation sites. A combination of modelling at plot, landscape and European scales is used to upscale the results. Finally the talk will illustrate how nitrogen mitigation techniques are being considered at the European scale, including an estimation of the scale of costs involved in simultaneously mitigating nitrous oxide, ammonia and nitrate losses.

  9. Gases in Seawater

    NASA Astrophysics Data System (ADS)

    Nightingale, P. D.; Liss, P. S.

    2003-12-01

    The annual gross and net primary productivity of the surface oceans is similar in size to that on land (IPCC, 2001). Marine productivity drives the cycling of gases such as oxygen (O2), dimethyl sulfide (DMS), carbon monoxide (CO), carbon dioxide (CO2), and methyl iodide (CH3I) which are of fundamental importance in studies of marine productivity, biogeochemical cycles, atmospheric chemistry, climate, and human health, respectively. For example, ˜30% of the world's population (1,570 million) is thought to be at risk of iodine-deficiency disorders that impair mental development (WHO, 1996). The main source of iodine to land is the supply of volatile iodine compounds produced in the ocean and then transferred to the atmosphere via the air-surface interface. The flux of these marine iodine species to the atmosphere is also thought to be important in the oxidation capacity of the troposphere by the production of the iodine oxide radical ( Alicke et al., 1999). A further example is that the net flux of CO2 from the atmosphere to the ocean, ˜1.7±0.5 Gt C yr-1, represents ˜30% of the annual release of anthropogenic CO2 to the atmosphere (IPCC, 2001). This net flux is superimposed on a huge annual flux (90 Gt C yr-1) of CO2 that is cycled "naturally" between the ocean and the atmosphere. The long-term sink for anthropogenic CO2 is recognized as transfer to the ocean from the atmosphere. A final example is the emission of volatile sulfur, in the form of DMS, from the oceans. Not only is an oceanic flux from the oceans needed to balance the loss of sulfur (a bioessential element) from the land via weathering, it has also been proposed as having a major control on climate due to the formation of cloud condensation nuclei (Charlson et al., 1987). Indeed, the existence of DMS and CH3I has been used as evidence in support of the Gaia hypothesis (Lovelock, 1979).There are at least four main processes that affect the concentration of gases in the water column: biological production and consumption, photochemistry, air-sea exchange, and vertical mixing. We will not discuss the effect of vertical mixing on gases in seawater and instead refer the reader to Chapter 6.08. Nor will we consider the deeper oceans as this region is discussed in chapters on benthic fluxes and early diagenesis (Chapter 6.11), the biological pump (Chapter 6.04), and the oceanic calcium carbonate cycle (Chapter 6.19) all in this volume. We will discuss the cycling of gases in surface oceans, including the thermocline, and in particular concentrate on the exchange of various volatile compounds across the air-sea interface.As we will show, while much is known about the cycling of gases such as CO2 and DMS in the water column, frustratingly little is known about many of the chemical species for which the ocean is believed to be a significant source to the atmosphere. We suspect the passage of time will reveal that the cycling of volatile compounds containing selenium and iodine may well prove as complex as that of DMS. Early studies of DMS assumed that it was produced from a precursor compound, dimethylsulfoniopropionate (DMSP), known to be present in some species of phytoplankton, and that the main sink in the water column was exchange across the air-sea interface. We now know that DMSP and DMS are both rapidly cycled in water column by a complex interaction between phytoplankton, microzooplankton, bacteria, and viruses (see Figure 1). Some detailed process experiments have revealed that only ˜10% of the total DMS produced (and less than 1.3% of the DMSP produced) is transferred to the atmosphere, with the bulk of the DMS and DMSP, either being recycled in the water column or photo-oxidized (Archer et al., 2002b).

  10. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres.

    PubMed

    Goldblatt, Colin; Watson, Andrew J

    2012-09-13

    The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in a runaway greenhouse state. PMID:22869797

  11. Dynamics of Greenhouse Gas Release in Thaw Lake Terrain

    NASA Astrophysics Data System (ADS)

    Plug, L.; Werner, B.

    2006-12-01

    Geomorphic feedbacks to changing climate are nonlinearities that can dominate melting of permafrost (IPCC, 2001). In permafrost lowland regions underlain by ice-rich permafrost, comprising about 5 percent of Earth's land surface, the principal means of permafrost melting and therefore release of greenhouse gases via decomposition of organic soils might be thaw lake expansion by coupled processes of heat transfer, thaw- derived subsidence, and gravity-driven mass movement. We describe a three-dimensional cellular model for thaw lake landscape evolution in which surface elevation, depth to permafrost, temperature gradient, ice content, undecomposed organic soil content and water depth are tracked at each cell. These quantities change through abstractions of thaw lake dynamics, derived in part from coupled two-dimensional thermal-geomorphic simulations of lake expansion (West and Plug, 2006). Modeled lakes initiate, expand, partly or fully drain, and permafrost and ground ice re-form (depending on climate) in modeled landscapes at rates consistent with measurements and paleo-environmental reconstructions. At least two levels of self-organization and associated emergent behavior occur in the model: 1) The timescale over which modeled lakes evolve far exceeds that of heat conduction, subsidence and erosion processes; 2) landscapes react to climate perturbations more slowly than lakes, because slowly-evolving morphology and ground-ice distribution (imposed by previous thermokarst) govern the response of the landscape to subsequent climate forcing. Rates of greenhouse gas emissions from selected regions of Northern Alaska and NW Canada are projected over timescales of 100 to 10,000 y for a range of climate scenarios. Owing to emergent behaviour, the bulk rate at which permafrost melts and greenhouse gases are released depends on past history extending to millenia, which itself depends both on mean trends and extremes in climate. Supported by Natural Science and Engineering Research Council and the Andrew W. Mellon Foundation.

  12. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  13. Greenhouse gas dynamics of municipal solid waste alternatives.

    PubMed

    Eschenroeder, A

    2001-10-01

    Previous greenhouse gas studies comparing landfilling with combustion of municipal solid waste (MSW) are limited to examinations of the emissions weighted by their relative radiative activity. This paper adds another dimension by analyzing the atmospheric response to these emissions. The heart of the analysis is a time-dependent model using a perturbation analysis of the IS92a results of the Intergovernmental Panel on Climate Change (IPCC). Using as inputs the emissions from the two technologies, the model calculates atmospheric concentration histories. Scenarios for a landfill and a combustor envision each accepting 1000 Mg refuse/day for a 30-year operating period followed by a 70-year postclosure period. The baseline scenario examines the basic greenhouse impact of each technology. The other scenario adds active gas collection at the landfill and energy offset credits for avoided power plant carbon emissions. For both scenarios, CH4 and trace gases from the landfill persist in the atmosphere, and they are relatively potent at forcing IR heating. The combination of these features place the landfill much higher than previously expected on the greenhouse impact scale. For the baseline scenario, the time-integrated radiative forcing from landfilling is 115 times that of combustion, and this ratio is 45 for the second scenario. PMID:11686246

  14. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas 

    E-print Network

    Saugier, Luke Duncan

    2004-09-30

    Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources...

  15. Reactivity of rock and well in a geological storage of CO2 : role of co-injected gases

    Microsoft Academic Search

    S. Renard; J. Sterpenich; J. Pironon

    2009-01-01

    The CO2 capture and geological storage from high emitting sources (coal and gas power plants) is one of a panel of solutions proposed to reduce the global greenhouse gas emissions. Different pre- , post- or oxy-combustion capture processes are now available to separate associated gases (SOx, NOx, etc...) and the CO2. However, complete purification of CO2 is unachievable for cost

  16. Methane Greenhouses and Anti-Greenhouses During the Archean Era

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Pavlov, A. A.

    2002-12-01

    Climate and life are coupled today through the biogeochemical carbon cycle, but they may have been even more tightly coupled in the distant past when atmospheric O2 levels were lower. The finding of mass-independently fractionated S isotopes in Archean rocks confirms that pO2 was very low, probably <10-13 times the present level, prior to 2.3 Ga (1). The Sun was also some 20 percent less luminous at this time (2). High CO2 levels were initially proposed to solve this `faint young Sun problem' (3); however, these levels are in conflict in data from paleosols (4). CH4 is an alternative greenhouse gas which could have kept the Archean climate warm if present at concentrations of 0.01-0.1 percent by volume (5). The primary source of methane is biological. CH4 is produced by methanogenic bacteria that today live in anaerobic environments such as the intestines of ruminants and the water-logged soils underlying rice paddies. During the Archean, however, methanogens should have been widespread, and the methane they produced would have had a long photochemical lifetimes, around 10,000 years (6). Most methanogens are thermophiles or hyperthermophiles, and those which are more thermophilic have shorter doubling times than those that prefer cooler temperatures. This suggests that a positive feedback loop may have existed, whereby methanogens warmed the climate by releasing CH4, which in turn promoted the proliferation of faster-growing methanogens. This positive feedback would have been halted, however, once the ratio of CH4 to CO2 in the atmosphere exceeded unity. At this point, polymerization of CH4 by solar UV radiation would have caused the formation of an organic haze layer similar to that observed today on Titan. Such a haze layer would have cooled the climate by creating an `anti-greenhouse effect.' This creates an overall negative feedback loop that may have been responsible for maintaining a stable Archean climate. The rise of O2 at 2.3 Ga disrupted this equilibrium and may well have triggered widespread, possibly Snowball, Huronian glaciation. References: 1) Farquhar, J., Bao, H. and Thiemans, M. Science 289, 756-758 (2000). 2) Gough, D. O. Solar Phys. 74, 21-34 (1981). 3) Walker, J. C. G., Hays, P. B. and Kasting, J. F. J. Geophys. Res. 86, 9776-9782 (1981). 4) Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. and Freedman, R. J. Geophys. Res. 105, 11,981-11,990 (2000). 5) Pavlov, A. A., Kasting, J. F. and Brown, L. L. J. Geophys. Res. 106, 23,267-23,287 (2001). 6) Rye, R., Kuo, P. H. and Holland, H. D. Nature 378, 603-605 (1995).

  17. Discharges In Electronegative Gases

    NASA Astrophysics Data System (ADS)

    Franklin, R. N.

    2008-10-01

    This talk will come in three parts. First, the early work in electronegative plasmas, principally by Emeleus and co-workers in Iodine, and by Massey and co-workers in Oxygen. They were at opposite ends of the ``spectrum'' of electronegativity - the ratio of negative ion density to electron density. Secondly, we cover in more detail work in Oxygen, where in retrospect we know that too many parameters were included to reveal the underlying structure of electronegative plasmas. That is associated with Edgley and von Engel, and later with Ferriera and co-workers. From there until the present day we describe work coming from different directions, showing that by questioning prior assumptions, we have arrived at our present understanding. The basic elements are, that in general there is a negative ion core, surrounded by a conventional plasma, and that at low pressures the situation is significantly different from higher pressures. The talk will seek to avoid mathematical complexity and concentrate on the physics, explaining the reason for previous differences, and show the way forward for a more Complete understanding of the very complex problem of strongly electronegative plasmas and their structure when diluted by rare gases. All of this involves a multiplicity of ion species of both signs, and a variety of reaction rates.

  18. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Kurylo, Michael (Technical Monitor)

    2004-01-01

    We seek funding from NASA for the third year (2005) of the four-year period January 1, 2003 - December 31, 2006 for continued support of the MIT contributions to the multi-national global atmospheric trace species measurement program entitled Advanced Global Atmospheric Gases Experiment (AGAGE). The case for real-time high-frequency measurement networks like AGAGE is very strong and the observations and their interpretation are widely recognized for their importance to ozone depletion and climate change studies and to verification issues arising from the Montreal Protocol (ozone) and Kyoto Protocol (climate). The proposed AGAGE program is distinguished by its capability to measure over the globe at high frequency almost all of the important species in the Montreal Protocol and almost all of the significant non-CO2 gases in the Kyoto Protocol.

  19. Investigating and Using Biomass Gases

    NSDL National Science Digital Library

    Eric Benson

    2012-07-03

    In this activity, learners will be introduced to biomass gasification and will generate their own biomass gases. Learners generate these gases everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Learners will also evaluate which biomass fuel is the best either according to their own criteria or by examining the volume of gas produced by each type of fuel.

  20. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.