Sample records for greenhouse production

  1. Development of salt production technology using prism greenhouse method

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Jaziri, A. A.; Prihanto, A. A.; Arisandi, D. M.; Kurniawan, A.

    2018-01-01

    The main problem of salt production in Indonesia is low productivity and quality because the technology used commonly by Indonesian salt farmers is traditional method. This research aims to increase production of salt by using the prism greenhouse method. The prism greenhouse method is a salt production system with a combination of several salt production technologies, including geomembrane, threaded filter, and prism greenhouse technology. This research method used descriptive method. The results of this study were the productivity increased threefold, and the quality of salt produced also increased in terms of the content of NaCl from 85% to 95%. In addition, salt production with the prism greenhouse method has several advantages, such as faster harvest time, weather resistance, easy to use, and higher profit than traditional methods.

  2. Preliminary design of a low-cost greenhouse for salt production in Indonesia

    NASA Astrophysics Data System (ADS)

    Jaziri, A. A.; Guntur; Setiawan, W.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    Salt is an assential material of industry, not only in food industry point of view but also in various industries such as chemical, oil drilling, and animal feed industries, even less than half of salt needs used to household consumption. It is crucial to ensure salt production in Indonesia reaches the national target (3.7 million tons) due to relatively low technology and production level. Thus salt production technology is developed to facilitate farmers consisted of geomembrane and filtering-threaded technology. However, the use of those technologies in producing salt was proved less effective due to unpredictable weather conditions. Therefore, greenhouse technology is proposed to be used for salt production for several good reasons. This paper describes the preliminary design of a low-cost greenhouse designed as a pyramid model that uses bamboo, mono-layer and high density polyethylene plastics. The results confirmed that the yield of salt produced by greenhouse significantly incresed compared with prior technology and the NaCl content increased as well. The cost of greenhouse was IDR 5,688,000 and easy to assembly.

  3. An Introduction to Greenhouse Production. Second Edition.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual is presented in its first revision, providing a current, basic text for those preparing for greenhouse and floriculture work. Its fourteen chapters are: Overview of the Greenhouse Industry; Greenhouse Structures; Controlling the Greenhouse Environment; Greenhouse Equipment and Lighting; Greenhouse Irrigation Systems; Root Media…

  4. Milled Paulownia tomentosa as a substrate component in greenhouse annual production

    USDA-ARS?s Scientific Manuscript database

    Recent research has indicated the potential of wood fiber products as alternative substrate components. This study was conducted to determine the effects of Paulowinia tomentosa amended substrates on production of greenhouse grown annuals. Paulownia (PT) was used alone (100% PT) and combined with di...

  5. Localising livestock protein feed production and the impact on land use and greenhouse gas emissions.

    PubMed

    Sasu-Boakye, Y; Cederberg, C; Wirsenius, S

    2014-08-01

    Livestock farmers in Sweden usually grow feed grains for livestock but import protein feed from outside Sweden. Aside from the economic implications, some environmental issues are associated with this practice. We used life cycle assessment to evaluate the impact of local protein feed production on land use and greenhouse gas emissions, compared with the use of imported protein feed, for pig meat and dairy milk produced in Sweden. Our results showed that local production reduced greenhouse gas emissions by 4.5% and 12%, respectively, for pigs and dairy cows. Land use for feed production in Sweden increased by 11% for pigs and 25% for dairy cows, but total land use decreased for pig production and increased for dairy milk production. Increased protein feed cultivation in Sweden decreased inputs needed for animal production and improved some ecological processes (e.g. nutrient recycling) of the farm systems. However, the differences in results between scenarios are relatively small and influenced to an extent by methodological choices such as co-product allocation. Moreover, it was difficult to assess the contribution of greenhouse emissions from land use change. The available accounting methods we applied did not adequately account for the potential land use changes and in some cases provided conflicting results. We conclude that local protein feed production presents an opportunity to reduce greenhouse gas emissions but at a cost of increasing land occupation in Sweden for feed production.

  6. Production, management, and environment symposium: Environmental footprint of livestock production - Greenhouse gas emissions and climate change

    USDA-ARS?s Scientific Manuscript database

    This manuscript is the introduction to the 2015 Production, Management, and Environment symposium titled “Environmental Footprint of Livestock ProductionGreenhouse Gas Emissions and Climate Change” that was held at the Joint Annual Meeting of the ASAS and ADSA at the Rosen Shingle Creek Resort in...

  7. Drivers of Microbial Metabolic Activity, Biogeochemical Cycling and Associated Greenhouse Gas Production in Streambed Sediments

    NASA Astrophysics Data System (ADS)

    Comer-Warner, S.; Krause, S.; Gooddy, D.; Blaen, P.; Brekenfeld, N.; Wexler, S.; Kaiser, J.

    2017-12-01

    Hotspots of enhanced biogeochemical reactivity are produced where groundwater and surface water mixes in streambed sediments. This enhanced reactivity is due to elevated residence times and nutrient concentrations found in these areas, leading to increased rates of microbial metabolic activity. Streambed sediments, therefore, may be important in reducing catchment-wide nutrient concentrations through increased cycling. However, they also have the potential to produce high concentrations of greenhouse gases (CO2, CH4 and N2O), as end-products of respiration and intermediate products of denitrification. The hydrological and biogeochemical drivers of streambed C and N cycling, are still insufficiently understood. Here we present results from biogeochemical sampling and tracer experiments in an agricultural sandstone stream in the UK. Nutrient, DOC and greenhouse gas concentrations, as well as d13CCO2, were measured in the streambed sediment in multilevel piezometers, and nutrient concentrations, as well as d15NNO3 and d18ONO3, were measured in Diffusive Equilibrium in Thin-film Gels. Tracer experiments using both conservative (Fluorescein and NaCl) and smart (Resazurin-Resorufin) tracers were performed to determine in-stream metabolism, transient storage and solute transport times in sub-reaches of the stream. Our results show large differences in nutrient and greenhouse gas concentrations between sub-reaches dominated by gravel sediments and those dominated by sandy sediments, as well as seasonally. This suggests temperature, sediment type and residence time are key controls on streambed nutrient cycling and greenhouse gas production. The results of this study have important implications for future greenhouse gas estimates from streams and rivers, particularly as the contribution of sediment greenhouse gas production is recognised as increasingly significant.

  8. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  9. Greenhouse gas and carbon profile of the U.S. forest products industry value chain

    Treesearch

    Linda S. Heath; Van Maltby; Reid Miner; Kenneth E. Skog; James E. Smith; Jay Unwin; Brad Upton

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity...

  10. Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey

    NASA Astrophysics Data System (ADS)

    Cemek, Bilal; Güler, Mustafa; Arslan, Hakan

    2017-04-01

    This study aimed to identify the most suitable growing periods for greenhouse production in Turkey in order to make valuable contribution to economic viability. Data collected from the meteorological databases of 81 provinces was used to determine periodic climatological requirements of greenhouses in terms of cooling, heating, natural ventilation, and lighting. Spatial distributions of mean daily outside temperatures and greenhouse heating requirements were derived using ordinary co-kriging (OCK) supported by Geographical Information System (GIS). Mean monthly temperatures throughout the country were found to decrease below 12 °C in January, February, March, and December, indicating heating requirements, whereas temperatures in 94.46 % of the country rose above 22 °C in July, indicating cooling requirements. Artificial lighting is not a requirement in Turkey except for November, December, and January. The Mediterranean, Aegean, Marmara, and Black Sea Regions are more advantageous than the Central, East, and Southeast Anatolia Regions in terms of greenhouse production because the Mediterranean and Aegean Regions are more advantageous in terms of heating, and the Black Sea Region is more advantageous in terms of cooling. Results of our study indicated that greenhouse cultivation of winter vegetables is possible in certain areas in the north of the country. Moreover, greenhouses could alternatively be used for drying fruits and vegetables during the summer period which requires uneconomical cooling systems due to high temperatures in the Mediterranean and Southeastern Anatolian Regions.

  11. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development.

    PubMed

    Louwen, Atse; van Sark, Wilfried G J H M; Faaij, André P C; Schropp, Ruud E I

    2016-12-06

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.

  12. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  13. Overview of Production Sector in the Greenhouse Gas Inventory- September 2012 Workshop

    EPA Pesticide Factsheets

    View a presentation on the production sector in the GHG inventory, presented at the Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas (GHG) Emissions and Sinks on Thursday, September 13, 2012.

  14. Soil greenhouse gas production: Relations to soil attributes in a sugarcane production area, southern Brazil

    USDA-ARS?s Scientific Manuscript database

    The production of the main soil greenhouse gases (GHG: CO2, CH4 and N2O) is influenced by agricultural practices that cause changes in soil physical, chemical and biological attributes, directly affecting their emission to the atmosphere. The aim of this study was to investigate the infield soil CO2...

  15. A life cycle greenhouse gas inventory of a tree production system

    Treesearch

    Alissa Kendall; E. Gregory McPherson

    2012-01-01

    PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....

  16. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    PubMed Central

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  17. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    PubMed

    Cloyd, Raymond A

    2015-04-09

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  18. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies

    PubMed Central

    Cloyd, Raymond A.

    2015-01-01

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems. PMID:26463188

  19. Life cycle greenhouse gas and energy assessment of winegrape production in California

    USDA-ARS?s Scientific Manuscript database

    Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...

  20. Developing hygiene protocols against mechanically transmitted pathogens in greenhouse tomato production systems

    USDA-ARS?s Scientific Manuscript database

    Greenhouse tomato propagation and production require intensive crop work that promotes the spread of mechanically transmitted pathogens (e.g. fungi, bacteria, viruses and viroids). Therefore, a clean seed program is very important to prevent any un-intentional introduction of seed-borne pathogens t...

  1. Agriculture: Nurseries and Greenhouses

    EPA Pesticide Factsheets

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  2. Chapter 5: Quantifying greenhouse gas sources and sinks in animal production systems

    USDA-ARS?s Scientific Manuscript database

    The purpose of this publication is to develop methods to quantify greenhouse gas emissions (GHG) from U.S. agriculture and forestry. This chapter provides guidance for reporting GHG emissions from animal production systems. In particular, it focuses on methods for estimating emissions from beef cat...

  3. Measuring and mitigating agricultural greenhouse gas production in the U.S. Great Plains 1870-2000

    USDA-ARS?s Scientific Manuscript database

    In the last 150 years the Great Plains region of the United States has become a major center of agricultural production for the global market. The initial agricultural settlement of this area and subsequent changes in production content and farming techniques have resulted in significant greenhouse ...

  4. Greenhouse Production: A Series of Learning Activity Packages.

    ERIC Educational Resources Information Center

    Gibson, J. C.; And Others

    Designed for use when the student or the class is expected to grow a crop using the high school greenhouse, these learning activity packages are sequenced in typical greenhouse cropping fashion: (1) poinsettias in the fall, (2) Easter lilies (bulb crop) in the winter, (3) bedding plants (seed crop) in the spring, and (4) a nursery crop (from…

  5. An Introduction to Greenhouse Production.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual provides a basic text for those preparing for greenhouse and floriculture work. At the beginning of each chapter, competencies are listed, along with related math and science concepts, and a list of "terms to know"; figures, tables, and photographs may be included. At the end of each chapter, a self-check can be made…

  6. Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions of milk production

    USDA-ARS?s Scientific Manuscript database

    Assessing and improving the sustainability of dairy production systems is essential to secure future food production. This requires a holistic approach that reveals trade-offs between emissions of the different greenhouse gases (GHG) and nutrient-based pollutants and ensures that interactions betwee...

  7. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.

    PubMed

    Bakhtiari, Amir Abbas; Hematian, Amir; Sharifi, Azin

    2015-10-01

    Population growth and world climate changes are putting high pressure on agri-food production systems. Exacerbating use of energy sources and expanding the environmental damaging symptoms are the results of these difficult situations. This study was conducted to determine the energy balance for saffron production cycle and investigate the corresponding greenhouse gas (GHG) emissions in Iran. Saffron (Crocus sativus L.) is one of the main spice that historically cultivated in Iran. Data were obtained from 127 randomly selected saffron growers using a face to face questionnaire technique. The results revealed that in 5 years of saffron production cycle, the overall input and output energy use were to be 163,912.09 and 184,868.28 MJ ha(-1), respectively. The highest-level of energy consumption belongs to seeds (23.7 %) followed by chemical fertilizers (23.4 %). Energy use efficiency, specific energy, net energy, and energy productivity of saffron production were 1.1, 13.4 MJ kg(-1), 20,956.2 MJ ha(-1), and 0.1 kg MJ(-1), respectively. The result shows that the cultivation of saffron emits 2325.5 kg CO2 eq. ha(-1) greenhouse gas, in which around 46.5 % belonged to electricity followed by chemical fertilizers. In addition the Cobb-Douglas production function was applied into EViews 7 software to define the functional relationship. The results of econometric model estimation showed that the impact of human labor, electricity, and water for irrigation on stigma, human labor, electricity, and seed on corm and also human labor and farmyard manure (FYM) on flower and leaf yield were found to be statistically significant. Sensitivity analysis results of the energy inputs demonstrated that the marginal physical productivity (MPP) worth of electricity energy was the highest for saffron stigma and corm, although saffron flower and leaf had more sensitivity on chemicals energy inputs. Moreover, MPP values of renewable and indirect energies were higher than non-renewable and

  8. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  9. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  10. Greenhouse Gas Emissions of Beef Cattle Production in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Kannan, N.; Niraula, R.; Saleh, A.; Osei, E.; Cole, A.; Todd, R.; Waldrip, H.; Aljoe, H.

    2017-12-01

    A five-year USDA-funded study titled "Resilience and vulnerability of beef cattle production in the Southern Great Plains under changing climate, land use, and markets" was initiated as a multi-institutional collaboration involving Texas Institute for Applied Environmental Research (TIAER)—Tarleton State University, United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) in El Reno, Oklahoma, USDA—ARS in Bushland, Texas, Kansas State University, Oklahoma State University, University of Oklahoma, and the Noble Research Institute in Ardmore, Oklahoma. The project goal is to safeguard and promote regional beef production while mitigating its environmental footprint. Conducting a full Life Cycle Analysis (LCA) is one of the major objectives of the study, in addition to field experiments, extension, outreach, and education. Estimation of all the resource use and greenhouse gas emissions are parts of the LCA. A computer model titled Animal Production Life Cycle Analysis Tool (APLCAT) is developed and applied to conduct the LCA on beef cattle production in the study region. The model estimates water use, energy requirements, and emissions of enteric methane, manure methane, nitrous oxide, and carbon dioxide. Also included in the LCA analysis are land-atmospheric exchanges of methane, nitrous oxide, carbon dioxide and the global warming potential. Our study is focused on the cow-calf and stocker phases of beef cattle production. The animal production system in the study region is predominantly forage based with protein and energy supplements when needed. Spring calving typical to the study region. In the cow-calf phase animals typically graze native prairie although introduced pasture grazing is also prevalent. Stockers use winter pasture as the major feed. The results of greenhouse gas emissions summarized per kg of hot carcass weight or animal fed will be presented.

  11. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  12. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential

  13. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae).

    PubMed

    Gradish, Angela E; Scott-Dupree, Cynthia D; Shipp, Les; Harris, C Ron; Ferguson, Gillian

    2010-02-01

    Bumble bees [Bombus impatiens (Cresson)] are widely used for supplemental pollination of greenhouse vegetables and are at risk of pesticide exposure while foraging. The objective of this study was to determine the lethal and sub-lethal effects of four insecticides (imidacloprid, abamectin, metaflumizone and chlorantraniliprole) and three fungicides (myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil) used or with potential for use in Ontario greenhouse vegetable production to B. impatiens. Imidacloprid, abamectin, and metaflumizone were harmful to worker bees following direct contact, while chlorantraniliprole and all fungicides tested were harmless. Worker bees fed imidacloprid-contaminated pollen had shortened life spans and were unable to produce brood. Worker bees consumed less pollen contaminated with abamectin. Metaflumizone, chlorantraniliprole and all fungicides tested caused no sub-lethal effects in bumble bee micro-colonies. We conclude that the new reduced risk insecticides metaflumizone and chlorantraniliprole and the fungicides myclobutanil, potassium bicarbonate and cyprodinil + fludioxonil are safe for greenhouse use in the presence of bumble bees. This information can be used preserve greenhouse pollination programs while maintaining acceptable pest management.

  14. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.

    PubMed

    Koga, Nobuhisa; Tajima, Ryosuke

    2011-03-01

    To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw

  15. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  16. Greenhouse Crop Production; A Student Handbook, Teacher Education Series, Volume 10 Number 3s.

    ERIC Educational Resources Information Center

    1969

    This study guide, developed by the Department of Agricultural Education of The Pennsylvania State University and field-tested by 54 teachers, is for student use in a unit on greenhouse crop production. Learning objectives, key questions, vocabulary terms, subject matter, and references are included for each of these problem areas: (1) Occupational…

  17. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    USDA-ARS?s Scientific Manuscript database

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  18. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China.

    PubMed

    Xu, Li; Lu, Anxiang; Wang, Jihua; Ma, Zhihong; Pan, Ligang; Feng, Xiaoyuan; Luan, Yunxia

    2015-12-01

    The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Dairy Greenhouse Gas Emission Model: Reference Manual

    USDA-ARS?s Scientific Manuscript database

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  20. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  1. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production.

    PubMed

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-12-23

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards.

  2. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China.

    PubMed

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui

    2013-11-01

    Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.

  3. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  4. Greenhouse gas balances in low-productive drained boreal peatlands - is climate-friendly management possible?

    NASA Astrophysics Data System (ADS)

    Ojanen, Paavo; Minkkinen, Kari; Heikkinen, Tiina; Penttilä, Timo

    2016-04-01

    Five million hectares of peatland has been drained for forestry in Finland. About 20% of that, i.e. one million hectares, has been estimated to be so low-productive that the profitability of keeping them in forestry is questionable. At the same time, drainage has introduced changes in the ecosystem functions of these peatlands, including fluxes of greenhouse gases. Options to manage such peatlands include for example 1) no measures, i.e. leaving the drained peatlands as they are 2) increasing intensity by e.g. repetitive fertilisations and 3) restoration back to functional peatlands. Here we estimate the greenhouse gas impacts of these three management options. We collected GHG and organic carbon flux data from 50 low-productive peatlands under these management options over two years 2014-2015. Gas fluxes (CO2, CH4, N2O) were measured with closed chambers. Litter production rates of different plants above and below ground were estimated using litter traps (trees), biomass sampling (roots), through-grow nets (mosses), allometric biomass models (other vasculars) and published turnover rates (roots, other vasculars). Characteristics for estimating tree stand biomass increment were measured at each site from circular sample plots. In this presentation we will estimate the GHG impacts for the different management options, and aim to find the most climate-friendly options for the management of low-productive peatlands in the short and long term. This work was funded by Life+ LIFE12/ENV/FI/150.

  5. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production

    NASA Astrophysics Data System (ADS)

    Stapel, Janina G.; Schwamborn, Georg; Schirrmeister, Lutz; Horsfield, Brian; Mangelsdorf, Kai

    2018-04-01

    In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.

  6. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    PubMed

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  7. Urban Options Solar Greenhouse Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  8. [Risk of reproductive disorders in greenhouse workers].

    PubMed

    Jurewicz, Joanna; Hanke, Wojciech

    2007-01-01

    This study reviews the evidence on the association between work in greenhouses and reproductive disorders. The analysis indicate that employment in greenhouses may increase the risk of birth defects, preterm delivery and spontaneous abortion, and also may affect birth weight. The obtained results showed that employment in the agriculture production sector (greenhouses) of more than 10 years decreased the median sperm concentration in men. The data on the effect of employment in greenhouses on the time to pregnancy are unequivocal, but most of them suggest that there is a relationship between the decreased fecundity ratio and greenhouse work, mostly due to exposure to pesticides. The literature review indicates a great need to increase awareness among greenhouse workers occupationally exposed to pesticides about potential negative effects of these chemicals on their health.

  9. Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Adam R.; Yeskoo, Tim; McNally, Michael S.

    The Bakken formation has contributed to the recent rapid increase in U.S. oil production, reaching a peak production of >1.2 × 106 barrels per day in early 2015. In this study, we estimate the energy intensity and greenhouse gas (GHG) emissions from 7271 Bakken wells drilled from 2006 to 2013. We model energy use and emissions using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) model, supplemented with an open-source drilling and fracturing model, GHGfrack. Overall well-to-refinery-gate (WTR) consumption of natural gas, diesel, and electricity represent 1.3%, 0.2%, and 0.005% of produced crude energy content, respectively. Fugitive emissions are modeledmore » for a “typical” Bakken well using previously published results of atmospheric measurements. Flaring is a key driver of emissions: wells that flared in 2013 had a mean flaring rate that was ≈500 standard cubic feet per barrel or ≈14% of the energy content of the produced crude oil. Resulting production-weighted mean GHG emissions in 2013 were 10.2 g of CO2 equivalent GHGs per megajoule (henceforth, gCO2eq/MJ) of crude. Between-well variability gives a 5–95% range of 2–28 gCO2eq/MJ. If flaring is completely controlled, Bakken crude compares favorably to conventional U.S. crude oil, with 2013 emissions of 3.5 gCO2eq/MJ for nonflaring wells, compared to the U.S. mean of ≈8 gCO2eq/MJ.« less

  10. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  11. DairyGHG: a tool for evaluating the greenhouse gas emissions and carbon footprint of dairy production systems

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions and their potential impact on the environment have become important national and international concerns. Dairy production, along with all other animal agriculture, is a recognized source of GHG emissions, but little information exists on the net emissions from our farm...

  12. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk.

    PubMed

    Hu, Wenyou; Huang, Biao; Tian, Kang; Holm, Peter E; Zhang, Yanxia

    2017-01-01

    Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable samples were collected from three typical intensive GVP systems along the Yellow Sea of China. Mean concentrations of Cd, As, Hg, Pb, Cu and Zn in greenhouse soils were 0.21, 7.12, 0.05, 19.81, 24.95 and 94.11 mg kg -1 , respectively. Compared to rootstalk and fruit vegetables, leafy vegetables had relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively lower transfer factors of rootstalk and fruit vegetables and higher STVs suggest that these types of vegetables are more suitable for cultivation in greenhouse soils. This study will provide an useful reference for controlling heavy metals and developing sustainable GVP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  14. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on

  15. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    PubMed

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  16. Evaluation of gypsum rates on greenhouse crop production

    USDA-ARS?s Scientific Manuscript database

    This study was to determine the potential of an added value distribution channel for gypsum waste by evaluating various greenhouse crops with captious pH and calcium needs. Three studies consisting of: Zonal geranium (Pelargonium x hortorum) and petunia (Petunia x hybrida); tomato (Solanum lycoper...

  17. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  18. Household scale of greenhouse design in Merauke

    NASA Astrophysics Data System (ADS)

    Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni

    2018-05-01

    Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.

  19. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  20. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

    PubMed

    Oonincx, Dennis G A B; van Itterbeeck, Joost; Heetkamp, Marcel J W; van den Brand, Henry; van Loon, Joop J A; van Huis, Arnold

    2010-12-29

    Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH(3)), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. An experiment was conducted to quantify production of carbon dioxide (CO₂) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH₄) and nitrous oxide (N₂O) as well as NH₃ by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO₂ and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO₂ production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH₃ by insects was lower than for conventional livestock. This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH₃ emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.

  1. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    PubMed

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reduction of greenhouse gases by fiber-loaded lightweight, high-opacity newsprint production

    Treesearch

    John H. Klungness; Matthew L. Stroika; Said M. Abubakr

    1999-01-01

    We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian Standard Freeness or additional energy use. We investigated the reduction of greenhouse gas emissions for a...

  3. Greenhouse Management Curriculum Guide for Vocational Agriculture/Agribusiness. Curriculum Development. Bulletin No. 1824.

    ERIC Educational Resources Information Center

    University of Southwestern Louisiana, Lafayette.

    This document contains teacher's materials for an 8-unit course in greenhouse management for 11th and 12th graders. The units are as follows: Producing Annual Bedding Plants; Foliage Plants; General Greenhouse Management; Poinsettia Production; Vegetable Bedding Plant Production: Tomatoes, Peppers, and Eggplants; Production of Potted…

  4. Operation GREENHOUSE-1951

    DTIC Science & Technology

    1983-06-15

    GREENHOUSE, DOG. 107 28 Runit Island radiological safety survey results following GREENHOUSE, DOG. 108 29 Estimate of maximum possible exposure at Parry...Enjebi Island radiological safety survey results following GREENHOUSE, EASY. 116 35 GREENHOUSE, EASY flight patterns. 118 36 Surface radex area and ship...positions during GREENHOUSE, GEORGE. 120 37 GREENHOUSE, GEORGE flight patterns. 122 38 Eleleron, Aomon, and Bijire island radiological safety survey

  5. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Effect of a Reduction in Microbial Diversity on Greenhouse Gas Production in Alaskan Tundra Soils.

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Oechel, W. C.; Lipson, D.

    2017-12-01

    Atmospheric methane accounts for 20% of the warming potential of all greenhouse gases, has increased by 150% since pre-industrial times, and has the potential to double again over the next century. Microbially mediated CH4 emissions from natural wetlands represent the highest uncertainty in relative contributions to atmospheric CH4 levels of all CH4 sources, with Arctic wetlands currently experiencing twice the rate of warming as the rest of the planet. Notwithstanding the central role that the soil microbial community plays, and the high uncertainty in CH4 emissions from this ecosystem, surprisingly little research has been done to directly connect the microbial community structure to methane production rates. This is especially disconcerting given that most current CH4 emission models completely neglect microbial characteristics, despite the fact that the soil microbial community is predicted to be heavily impacted by a changing climate. Here, the effect of an artificial reduction in soil microbial α-diversity was investigated with regard to methane production and respiration rates. The microbial community was serially diluted followed by re-inoculation of sterilized Arctic soils in a mesocosm experiment. Methane production and respiration rates were measured, metagenomic sequencing was performed to determine microbial community diversity measures, and the effect of the oxidation state of iron was investigated. Preliminary results indicate that microbial communities with reduced α-diversity have lowered respiration rates in these soils. Analyses are ongoing and are expected to provide critical observations linking the role of soil microbial community diversity and greenhouse gas production in Arctic tundra ecosystems.

  7. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption

    PubMed Central

    Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold

    2010-01-01

    Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900

  8. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  9. Analysis of materials used for Greenhouse roof covering - structure using CFD

    NASA Astrophysics Data System (ADS)

    Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.

    2018-04-01

    Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.

  10. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    NASA Astrophysics Data System (ADS)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  11. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Majid, E-mail: majid_qau86@yahoo.com; Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620; Zaidi, Syed Mujtaba Hasnian

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, andmore » 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy

  12. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Bounous, Michele; Baudino, Claudio

    2013-08-01

    This study examined the emissions produced during the pre-farm, farm and post-farm phases of the production cycle of raspberries and giant American whortleberries (blueberries) cultivated in one of the best-adapted areas in northern Italy. The pre-farm phase included the greenhouse gas emissions from the production of plants in the nursery and the transportation of the plants to the production farms. The farm phase involved the emissions of greenhouse gases from chemical products, the water used for irrigation, the generation of waste, and the consumption of electricity and other energy. The post-farm phase comprised the transportation of the products to the distribution centre (DC) and their storage in the DC. The use phase is not included in the system, nor is transportation from the supermarket to the home of the final consumer, but the disposal of the packaging is nevertheless taken into account. Indeed, the use of traditional plastic materials during both the field phase (nursery and cultivation) and the post-harvesting phase (packaging) produced the greatest estimated impact. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    USDA-ARS?s Scientific Manuscript database

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  14. Extraction of Greenhouse Areas with Image Processing Methods in Karabuk Province

    NASA Astrophysics Data System (ADS)

    Yildirima, M. Z.; Ozcan, C.

    2017-11-01

    Greenhouses provide the environmental conditions to be controlled and regulated as desired while allowing agricultural products to be produced without being affected by external environmental conditions. High quality and a wide variety of agricultural products can be produced throughout the year. In addition, mapping and detection of these areas has great importance in terms of factors such as yield analysis, natural resource management and environmental impact. Various remote sensing techniques are currently available for extraction of greenhouse areas. These techniques are based on the automatic detection and interpretation of objects on remotely sensed images. In this study, greenhouse areas were determined from optical images obtained from Landsat. The study was carried out in the greenhouse areas in Karabuk province. The obtained results are presented with figures and tables.

  15. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    PubMed

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  16. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  17. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Ma, Zhihong; Han, Ping; Luan, Yunxia; Lu, Anxiang

    2015-07-15

    The occurrence of 15 antibiotics in soil and manure samples from 11 large-scale greenhouse vegetable production (GVP) bases in Beijing, China was investigated. Results showed that the greenhouse soils were ubiquitously contaminated with antibiotics, and that antibiotic concentrations were significantly higher in greenhouses than in open field soils. The mean concentrations of four antibiotic classes decreased in the following order: tetracyclines (102μg/kg)>quinolones (86μg/kg)>sulfonamides (1.1μg/kg)>macrolides (0.62μg/kg). This investigation also indicated that fertilization with manure and especially animal feces might be the primary source of antibiotics. A risk assessment based on the calculated risk quotients (RQs) demonstrated that oxytetracycline, chlortetracycline, norfloxacin, ciprofloxacin and enrofloxacin could pose a high risk to soil organisms. These results suggested that the ecological effects of antibiotic contamination in GVP bases and their potential adverse risks on human health need to be given special attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Greenhouse gases and greenhouse effect

    NASA Astrophysics Data System (ADS)

    Chilingar, G. V.; Sorokhtin, O. G.; Khilyuk, L.; Gorfunkel, M. V.

    2009-09-01

    Conventional theory of global warming states that heating of atmosphere occurs as a result of accumulation of CO2 and CH4 in atmosphere. The writers show that rising concentration of CO2 should result in the cooling of climate. The methane accumulation has no essential effect on the Earth’s climate. Even significant releases of the anthropogenic carbon dioxide into the atmosphere do not change average parameters of the Earth’s heat regime and the atmospheric greenhouse effect. Moreover, CO2 concentration increase in the atmosphere results in rising agricultural productivity and improves the conditions for reforestation. Thus, accumulation of small additional amounts of carbon dioxide and methane in the atmosphere as a result of anthropogenic activities has practically no effect on the Earth’s climate.

  19. Gardening with Greenhouses

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  20. 4. Perspective view, greenhouse, from the southwest. The greenhouse is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view, greenhouse, from the southwest. The greenhouse is the portion of the seed house to the right (south) of the double doors. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  2. Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China

    NASA Astrophysics Data System (ADS)

    Wang, Weiqi; Sardans, Jordi; Wang, Chun; Zeng, Congsheng; Tong, Chuan; Asensio, Dolores; Peñuelas, Josep

    2017-09-01

    Paddy fields are a major global anthropogenic source of greenhouse gases. China has the second largest area under rice cultivation, so determining the relationships between the emission of greenhouse gases and soil carbon content, nutrient availabilities and concentrations and physical properties is crucial for minimizing the climatic impacts of rice agriculture. We examined soil nutrients and other properties, greenhouse-gas production and their relationships in 26 paddy fields throughout the province of Fujian in China, one of the most important provinces for rice production. High P and K concentrations, contents and availabilities were correlated with low rates of CO2 production, whereas high C and N contents were correlated with high rates of CH4 production. Mean annual precipitation (MAP) and rates of gas production were not clearly correlated, at least partly due to the management of flooding that can mask the effect of precipitation. Higher mean annual temperatures and soil Fe contents favored the production of N2O. C, N, P and K concentrations and their ratios, especially the C:K and N:K ratios, and P availability were correlated with CO2 and CH4 production across the province, with higher C:K and N:K ratios correlated positively with increased CO2 production and available P correlated negatively with CH4 production. A management strategy to avoid excessive C accumulation in the soil and to increase P availability and decrease available Fe contents would likely decrease the production of greenhouse gases.

  3. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    PubMed

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  4. A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    PubMed Central

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system. PMID:22163799

  5. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    PubMed

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.

  6. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    PubMed

    Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this

  7. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production

    PubMed Central

    You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in

  8. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  9. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  10. Greenhouse Operation and Management. Instructor Guide and Student Reference. Missouri Agricultural Education. Volume 21, Number 3.

    ERIC Educational Resources Information Center

    Wells, Judith A.; And Others

    These student and instructor materials for a one-semester course intended for high school juniors and seniors teach the following 24 lessons: (1) the scope and development of greenhouse production; (2) the economic importance of greenhouse crops; (3) careers in greenhouse operation and management; (4) greenhouse parts, structures, and coverings;…

  11. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design.

  12. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  13. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  14. Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation.

    PubMed

    Korai, Punhoon Khan; Xia, Xin; Liu, Xiaoyu; Bian, Rongjun; Omondi, Morris Oduor; Nahayo, Alphonse; Pan, Genxing

    2018-01-16

    The role of extractable pool of biochar in crop productivity and soil greenhouse gas (GHGs) emission is not yet clear. In this study, two biochars with and without extraction was added to a paddy before rice transplantation at 20 t·ha -1 . Crop yield, plant traits and greenhouse gas emission monitored throughout a rice-wheat rotation. Between the biochar treatments, changes in bulk density and microbial biomass carbon were insignificant. However, the increase in organic carbon was similar between maize and wheat biochars while higher under bulk wheat biochar than extracted one. The increase in available P and K was higher under wheat than maize biochar regardless of extraction. Moreover, the increase in plant traits and grain yield, in rice season only, was higher under bulk than extracted biochars. Yet, there was no difference in changes in GHGs emission between bulk and extracted biochars regardless of feedstock. Nevertheless, increased methane emission for rice season was lower under extracted biochars than bulk ones. Overall, crop productivity rather than GHGs emission was affected by treatment of extraction of biochars. Thus, use of unextracted biochar is recommended for improving soil crop productivity in the paddy soils.

  15. Regulations for Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  16. Robotic System For Greenhouse Or Nursery

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim

    1993-01-01

    Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.

  17. Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.

    2014-12-01

    Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.

  18. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model.

    PubMed

    Kok, Akke; van Middelaar, Corina E; Mostert, Pim F; van Knegsel, Ariëtte T M; Kemp, Bas; de Boer, Imke J M; Hogeveen, Henk

    2017-01-01

    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.

  19. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  20. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    USDA-ARS?s Scientific Manuscript database

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  1. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  2. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    PubMed

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  3. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    EPA Science Inventory

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  4. Methane production as key to the greenhouse gas budget of thawing permafrost

    NASA Astrophysics Data System (ADS)

    Knoblauch, Christian; Beer, Christian; Liebner, Susanne; Grigoriev, Mikhail N.; Pfeiffer, Eva-Maria

    2018-04-01

    Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change1,2. Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils3-6 and a stronger permafrost carbon-climate feedback from drained (oxic) soils1,7. Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2-Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account8. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO2-C kgC-1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 ± 138 g CO2-Ce kgC-1) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.

  5. Effects of industrial and agricultural waste amendment on soil greenhouse gas production in a paddy field in Southeastern China

    NASA Astrophysics Data System (ADS)

    Wang, Weiqi; Neogi, Suvadip; Lai, Derrick Y. F.; Zeng, Congsheng; Wang, Chun; Zeng, Dongping

    2017-09-01

    Controlling the production and subsequent emissions of greenhouse gases (GHGs) from paddy fields is crucial to minimize the climatic impacts arising from crop production. The application of chemical or biological amendments is one possible way to limit the production of GHGs in paddy soils. Yet, few existing studies have examined the impacts of applying fertilizers originated from industrial and agricultural wastes on soil GHG production and its governing factors in subtropical paddy fields. In this study, we examined the effects of various agricultural and industrial amendments, including biochar, steel slag, shell slag, gypsum slag, and slag-derived silicate and calcium fertilizers, on the production potential of GHGs in an early paddy field in southeast China. The mean CO2 production rates from soils amended with steel slag as well as silicate and calcium fertilizers were significantly higher than those of the controls by 13.4% and 18.6%, respectively (P < 0.05). Mean soil CH4 production rates from the plots amended with steel slag, biochar, shell slag, and gypsum slag were significantly lower than those of the controls by 42.5%, 36.1%, 60.8%, and 61.8%, respectively (P < 0.05). Meanwhile, we found no significant difference in mean soil N2O production rates between the control and any of the treatments (P > 0.05). Overall, the soil production rate of CO2 was positively correlated with that of CH4 (P < 0.05), but negatively correlated with that of N2O (P < 0.05). When compared to the controls, the ratio of soil CO2:CH4 production increased significantly in the plots receiving biochar, and silicate and calcium fertilizer amendments (P < 0.05), while that of CO2:N2O production increased significantly only in the biochar-amended plots. Soil CH4:N2O production ratio decreased significantly in the plots amended with steel slag and gypsum slag, as compared to the controls (P < 0.05). Our results suggest that the application of biochar, shell slag and gypsum slag would

  6. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?

    NASA Astrophysics Data System (ADS)

    Valin, H.; Havlík, P.; Mosnier, A.; Herrero, M.; Schmid, E.; Obersteiner, M.

    2013-09-01

    In this letter, we investigate the effects of crop yield and livestock feed efficiency scenarios on greenhouse gas (GHG) emissions from agriculture and land use change in developing countries. We analyze mitigation associated with different productivity pathways using the global partial equilibrium model GLOBIOM. Our results confirm that yield increase could mitigate some agriculture-related emissions growth over the next decades. Closing yield gaps by 50% for crops and 25% for livestock by 2050 would decrease agriculture and land use change emissions by 8% overall, and by 12% per calorie produced. However, the outcome is sensitive to the technological path and which factor benefits from productivity gains: sustainable land intensification would increase GHG savings by one-third when compared with a fertilizer intensive pathway. Reaching higher yield through total factor productivity gains would be more efficient on the food supply side but halve emissions savings due to a strong rebound effect on the demand side. Improvement in the crop or livestock sector would have different implications: crop yield increase would bring the largest food provision benefits, whereas livestock productivity gains would allow the greatest reductions in GHG emission. Combining productivity increases in the two sectors appears to be the most efficient way to exploit mitigation and food security co-benefits.

  7. Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area.

    PubMed

    Mariani, Luigi; Cola, Gabriele; Bulgari, Roberta; Ferrante, Antonio; Martinetti, Livia

    2016-08-15

    The Euro-Mediterranean area is the seat of a relevant greenhouse activity, meeting the needs of important markets. A quantitative assessment of greenhouse energy consumption and of its variability in space and time is an important decision support tool for both greenhouse-sector policies and farmers. A mathematical model of greenhouse energy balance was developed and parameterized for a state-of-the-art greenhouse to evaluate the heating requirements for vegetables growing. Tomato was adopted as reference crop, due to its high energy requirement for fruit setting and ripening and its economic relevance. In order to gain a proper description of the Euro-Mediterranean area, 56 greenhouse areas located within the ranges 28°N-72°N and 11°W-55°E were analyzed over the period 1973-2014. Moreover, the two 1973-1987 and 1988-2014 sub-periods were separately studied to describe climate change effects on energy consumption. Results account for the spatial variability of energy needs for tomato growing, highlighting the strong influence of latitude on the magnitude of heat requirements. The comparison between the two selected sub-periods shows a decrease of energy demand in the current warm phase, more relevant for high latitudes. Finally, suggestions to reduce energy consumptions are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  9. Operation Greenhouse: Communications

    DTIC Science & Technology

    1951-01-01

    jottication •__ By,. , Dtsl•-bution1 TECHNICAL REPORT mailability Code’s Avait and -or Dist Special COMMUNICATIONS OPERATION GREENHOUSE 1951 COMMANDED BY...stem GREENHOUSE to include technical informa- therefrom. tion and operational experience not desirable Details of operation, such as call sign, fre- for...Atomic planning, organization, and engineering for Weapons Proving Ground. Where, in this re- Operation GREENHOUSE , since the solution port, reference is

  10. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  11. Gaining ground in the modeling of land-use change greenhouse gas emissions associated with biofuel production

    NASA Astrophysics Data System (ADS)

    Dunn, J.; Mueller, S.; Kwon, H.; Wang, M.; Wander, M.

    2012-12-01

    Land-use change (LUC) resulting from biofuel feedstock production and the associated greenhouse gas (GHG) emissions are a hotly-debated aspect of biofuels. Certainly, LUC GHG emissions are one of the most uncertain elements in life cycle analyses (LCA) of biofuels. To estimate LUC GHG emissions, two sets of data are necessary. First, information on the amount and type of land that is converted to biofuel feedstock production is required. These data are typically generated through application of computable general equilibrium (CGE) models such as Purdue University's Global Trade Analysis Project (GTAP) model. Second, soil carbon content data for the affected land types is essential. Recently, Argonne National Laboratory's Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) has been updated with CGE modeling results that estimate the amount and type of LUC world-wide from production of ethanol from corn, corn stover, miscanthus, and switchgrass (Mueller et al. 2012). Moreover, we have developed state-specific carbon content data, determined through modeling with CENTURY, for the two most dominant soil types in the conterminous 48 U.S. states (Kwon et al. 2012) to enable finer-resolution results for domestic LUC GHG emissions for these ethanol production scenarios. Of the feedstocks examined, CCLUB estimates that LUC GHG emissions are highest for corn ethanol (9.1 g CO2e/MJ ethanol) and lowest for miscanthus (-12 g CO2e/MJ ethanol). We will present key observations from CCLUB results incorporated into Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model, which is a LCA tool for transportation fuels and advanced vehicle technologies. We will discuss selected issues in this modeling, including the sensitivity of domestic soil carbon emission factors to modeling parameters and assumptions about the fate of harvested wood products. Further, we will discuss efforts to update CCLUB with county

  12. Greenhouse Evaluation of Air-Assist Delivery Parameters for Mature Poinsettias

    USDA-ARS?s Scientific Manuscript database

    Understanding the performance characteristics of application equipment is important for helping make the most efficacious applications. While handguns making high volume applications are common in greenhouse production, it is difficult to achieve uniform distribution of product in a timely manner. ...

  13. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  14. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    PubMed

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO 2 eq kg -1 rice, 45.54 kg CO 2 eq kg -1 mutton meat and 2.4 kg CO 2 eq kg -1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO 2 eq kg -1 product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  15. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    PubMed

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Managed forest carbon estimates for the US greenhouse gas inventory, 1990-2008

    Treesearch

    Linda S. Heath; James E. Smith; Kenneth E. Skog; David J. Nowak; Christopher W. Woodall

    2011-01-01

    Land-use change and forestry is the major category featuring carbon sequestration in the annual US Greenhouse Gas Inventory, required by the United Nations Framework Convention on Climate Change. We describe the National Greenhouse Gas Inventory and present the sources of our data and methods and the most recent results. Forests and forest products in the United States...

  17. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    NASA Astrophysics Data System (ADS)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  18. Operating and Maintaining the Greenhouse.

    ERIC Educational Resources Information Center

    Gresser, Priscilla A.

    This learning guide is designed to assist vocational agriculture students in mastering 20 tasks involved in the operation and maintenance of a greenhouse. Addressed in the individual sections of the guide are the following topics: identification of greenhouse designs, greenhouse construction, basic greenhouse maintenance to conserve energy,…

  19. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: A dynamic stochastic simulation model

    PubMed Central

    van Middelaar, Corina E.; Mostert, Pim F.; van Knegsel, Ariëtte T. M.; Kemp, Bas; de Boer, Imke J. M.; Hogeveen, Henk

    2017-01-01

    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health. PMID:29077739

  20. Characterization and detection of emerging viroids in North American greenhouse tomatoes

    USDA-ARS?s Scientific Manuscript database

    Tomato is an economically important vegetable in many countries around the world, with major productions in China, the U.S., Spain, Italy, India, Turkey, and Egypt. Although, most of the tomato production is field grown, there is a growing trend in protective production (greenhouse). Nearly 40% of...

  1. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  2. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    PubMed

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  3. Analytical methods for quantifying greenhouse gas flux in animal production systems.

    PubMed

    Powers, W; Capelari, M

    2016-08-01

    Given increased interest by all stakeholders to better understand the contribution of animal agriculture to climate change, it is important that appropriate methodologies be used when measuring greenhouse gas (GHG) emissions from animal agriculture. Similarly, a fundamental understanding of the differences between methods is necessary to appropriately compare data collected using different approaches and design meaningful experiments. Sources of carbon dioxide, methane, and nitrous oxide emissions in animal production systems includes the animals, feed storage areas, manure deposition and storage areas, and feed and forage production fields. These 3 gases make up the primary GHG emissions from animal feeding operations. Each of the different GHG may be more or less prominent from each emitting source. Similarly, the species dictates the importance of methane emissions from the animals themselves. Measures of GHG flux from animals are often made using respiration chambers, head boxes, tracer gas techniques, or in vitro gas production techniques. In some cases, a combination of techniques are used (i.e., head boxes in combination with tracer gas). The prominent methods for measuring GHG emissions from housing include the use of tracer gas techniques or direct or indirect ventilation measures coupled with concentration measures of gases of interest. Methods for collecting and measuring GHG emissions from manure storage and/or production lots include the use of downwind measures, often using photoacoustic or open path Fourier transform infrared spectroscopy, combined with modeling techniques or the use of static chambers or flux hood methods. Similar methods can be deployed for determining GHG emissions from fields. Each method identified has its own benefits and challenges to use for the stated application. Considerations for use include intended goal, equipment investment and maintenance, frequency and duration of sampling needed to achieve desired representativeness

  4. Contribution of milk production to global greenhouse gas emissions. An estimation based on typical farms.

    PubMed

    Hagemann, Martin; Ndambi, Asaah; Hemme, Torsten; Latacz-Lohmann, Uwe

    2012-02-01

    Studies on the contribution of milk production to global greenhouse gas (GHG) emissions are rare (FAO 2010) and often based on crude data which do not appropriately reflect the heterogeneity of farming systems. This article estimates GHG emissions from milk production in different dairy regions of the world based on a harmonised farm data and assesses the contribution of milk production to global GHG emissions. The methodology comprises three elements: (1) the International Farm Comparison Network (IFCN) concept of typical farms and the related globally standardised dairy model farms representing 45 dairy regions in 38 countries; (2) a partial life cycle assessment model for estimating GHG emissions of the typical dairy farms; and (3) standard regression analysis to estimate GHG emissions from milk production in countries for which no typical farms are available in the IFCN database. Across the 117 typical farms in the 38 countries analysed, the average emission rate is 1.50 kg CO(2) equivalents (CO(2)-eq.)/kg milk. The contribution of milk production to the global anthropogenic emissions is estimated at 1.3 Gt CO(2)-eq./year, accounting for 2.65% of total global anthropogenic emissions (49 Gt; IPCC, Synthesis Report for Policy Maker, Valencia, Spain, 2007). We emphasise that our estimates of the contribution of milk production to global GHG emissions are subject to uncertainty. Part of the uncertainty stems from the choice of the appropriate methods for estimating emissions at the level of the individual animal.

  5. The Dairy Greenhouse Gas Model: A Tool for estimating greenhouse gas emissions and the carbon footprint of dairy production systems

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions and their potential impact on the environment has become an important national and international concern. Animal agriculture is a recognized source of GHG emissions, but good information does not exist on the net emissions from our farms. A software tool called the Dai...

  6. The Dynamic Greenhouse Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  7. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    .... 211112 Natural gas liquid extraction facilities. Underground Coal Mines........ 212113 Underground... natural gas liquids in addition to suppliers of petroleum products. 2. Summary of Comments and Responses... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday...

  8. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  9. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy intensive steps in enzyme

  11. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  12. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism.

    PubMed

    Houdijk, J G M; Tolkamp, B J; Rooke, J A; Hutchings, M R

    2017-09-01

    Here we provide the first known direct measurements of pathogen challenge impacts on greenhouse gas production, yield and intensity. Twin-rearing ewes were ad libitum fed pelleted lucerne from day -32 to 36 (day 0 is parturition), and repeatedly infected with 10,000 Teladorsagia circumcincta infective larvae (n=16), or sham-dosed with water (n=16). A third group of 16 ewes were fed at 80% of uninfected ewes' feed intake during lactation. Methane emissions were measured in respiration chambers (day 30-36) whilst total tract apparent nutrient digestibility around day 28 informed calculated manure methane and nitrous oxide emissions estimates. Periparturient parasitism reduced feed intake (-9%) and litter weight gain (-7%) and doubled maternal body weight loss. Parasitism reduced daily enteric methane production by 10%, did not affect the methane yield per unit of dry matter intake but increased the yield per unit of digestible organic matter intake by 14%. Parasitism did not affect the daily calculated manure methane and nitrous oxide production, but increased the manure methane and nitrous oxide yields per unit of dry matter intake by 16% and 4%, respectively, and per unit of digestible organic matter intake by 46% and 31%, respectively. Accounting for increased lucerne input for delayed weaning and maternal body weight loss compensation, parasitism increased the calculated greenhouse gas intensity per kg of lamb weight gain for enteric methane (+11%), manure methane (+32%) and nitrous oxide (+30%). Supplemented with the global warming potential associated with production of pelleted lucerne, we demonstrated that parasitism increased calculated global warming potential per kg of lamb weight gain by 16%, which was similar to the measured impact of parasitism on the feed conversion ratio. Thus, arising from a pathogen-induced feed efficiency reduction and modified greenhouse gas emissions, we demonstrated that ovine periparturient parasitism increases greenhouse gas

  13. [Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].

    PubMed

    Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing

    2014-06-01

    Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.

  14. Soil genotoxicity induced by successive applications of chlorothalonil under greenhouse conditions.

    PubMed

    Jin, Xiangxiang; Cui, Ning; Zhou, Wei; Khorram, Mahdi Safaei; Wang, Donghong; Yu, Yunlong

    2014-05-01

    Greenhouse production of vegetables has been developed rapidly in China. High temperature and humidity inside the greenhouse make this environment more suitable for fast reproduction of fungal diseases. Fungicides are among the chemicals used extensively in the greenhouse to prevent crops from invasive infections by phytopathogens; however, little is known about the accumulation of fungicides in soil and their effect on soil quality under greenhouse conditions. In the present study, the accumulation of the fungicide chlorothalonil (CT) and its toxic metabolite hydroxy-chlorothalonil (HCT) in soil as well as their related soil genotoxicity under greenhouse conditions was investigated. The results indicated that both CT and HCT accumulated in soil with repeated applications of CT, and the accumulation level was strongly correlated to application dosage and its frequency. In addition, soil genotoxicity, which was measured by Vicia faba, also increased with the accumulation of CT and HCT, and the main contributor to this phenomenon was CT rather than HCT. The data demonstrated that successive applications of fungicides may result in their accumulation in soil and thus a decline in soil quality. © 2014 SETAC.

  15. Regulations for Greenhouse Gas Emissions from Commercial Trucks & Buses

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  16. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  17. Mitigating cadmium accumulation in greenhouse lettuce production using biochar.

    PubMed

    Zheng, Ruilun; Sun, Guoxin; Li, Cui; Reid, Brian J; Xie, Zubin; Zhang, Bo; Wang, Qinghai

    2017-03-01

    Greenhouse experiments were conducted to investigate the influence of rice straw biochar (RSB) on soil cadmium (Cd) availability and accumulation in lettuce. The RSB was applied either in bands or broadcast in the test site of four greenhouses with soil Cd concentrations ranging from 1.70-3.14 μg g -1 . Biochar doses applied in bands were half of those broadcast. The Cd levels in the shoots of lettuce were observed to be reduced by up to 57% with increasing RSB application rate (0, 6, 12, 18 t ha -1 ). Following RSB application, shoot Cd concentrations of lettuce were reduced to below the Chinese threshold value set for food, and hazard quotients for Cd associated with vegetable consumption were reduced from 0.70-1.11 to 0.42-0.65. A decrease in soil bulk density (11%) and increases in water holding capacity (16%), available phosphorus (30%), available potassium (197%), and lettuce yield (15%) were observed after RSB application. Multiple linear regression analysis suggested that the soil extractable Cd level (but not biomass dilution) and soil bulk density, as influenced by RSB addition, were the dominant contributors to the shoot Cd levels in lettuce and lettuce yield, respectively. These results highlight the potential for RSB to mitigate the phytoaccumulation of Cd and thereby to reduce human exposure from vegetable consumption. Application of biochar in band, rather than broadcasting over the entire area, represents an opportunity to halve the biochar cost while retaining a good remediation effect.

  18. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city

    NASA Astrophysics Data System (ADS)

    Yau, Y. Y.; Thibodeau, B.; Not, C.

    2018-06-01

    Greenhouse gas emissions embodied in trade is a growing concern for the international community. Multiple studies have highlighted drawbacks in the territorial and production-based accounting of greenhouse gas emissions because it neglects emissions from the consumption of goods in trade. This creates weak carbon leakage and complicates international agreements on emissions regulations. Therefore, we estimated consumption-based emissions using input-output analysis and life cycle assessment to calculate the greenhouse gas emissions hidden in meat and dairy products in Hong Kong, a city predominately reliant on imports. We found that emissions solely from meat and dairy consumption were higher than the city’s total greenhouse gas emissions using conventional production-based calculation. This implies that government reports underestimate more than half of the emissions, as 62% of emissions are embodied in international trade. The discrepancy emphasizes the need of transitioning climate targets and policy to consumption-based accounting. Furthermore, we have shown that dietary change from a meat-heavy diet to a diet in accordance with governmental nutrition guidelines could achieve a 67% reduction in livestock-related emissions, allowing Hong Kong to achieve the Paris Agreement targets for 2030. Consequently, we concluded that consumption-based accounting for greenhouse gas emissions is crucial to target the areas where emissions reduction is realistically achievable, especially for import-reliant cities like Hong Kong.

  19. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  20. Occupational asthma in greenhouse workers.

    PubMed

    Monsó, Eduard

    2004-03-01

    A prevalence of asthma over 5% has been reported in flower farmers,and work inside greenhouses has emerged as an additional risk factor. Workplace determinants behind this high prevalence has been examined, and a prevalence of sensitization to workplace allergens over 30% has been reported being pollens, moulds, and Tetranychus urticae allergens the main sensitizers. Bronchial challenge tests in the workplace have demonstrated occupational asthma in more than 20% of the sensitized greenhouse growers. Air contamination inside greenhouses is mainly related to moulds, and is facilitated by the high indoor temperature and humidity. Cladosporium, Penicillium, Aspergillus, and Alternaria and a wide range of flower pollens are able to sensitize the greenhouse worker and cause occupational asthma. Tetranychus urticae have allergens shared with other mites, but the low prevalence of cross-sensitization between them confirm that Tetranychus urticae contains species-specific allergens that may cause respiratory symptoms. Additionally, working inside greenhouses has been related to an increase in the prevalence of chronic bronchitis in nonsmokers. The cultivation of greenhouse crops may cause occupational asthma through sensitization to workplace pollens, moulds, and Tetranychus urticae allergens. In greenhouse flower growers, skin testing identifies sensitization to these allergens in one third of the growers, and more than one fifth of the sensitized workers will develop occupational asthma. Greenhouse work has also been related to chronic bronchitis in nonsmokers, suggesting a causal effect of greenhouse air contaminants on this disease as well.

  1. Production of Greenhouse Gases in The Atmosphere of Early Mars

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  2. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.

    PubMed

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-01

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic

  3. Mechatronic description of a laser autoguided vehicle for greenhouse operations.

    PubMed

    Sánchez-Hermosilla, Julián; González, Ramón; Rodríguez, Francisco; Donaire, Julián G

    2013-01-08

    This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control).

  4. Optimization of greenhouse gas emissions in second-hand consumer product recovery through reuse platforms.

    PubMed

    Fortuna, Lorena M; Diyamandoglu, Vasil

    2017-08-01

    Product reuse in the solid waste management sector is promoted as one of the key strategies for waste prevention. This practice is considered to have favorable impact on the environment, but its benefits have yet to be established. Existing research describes the perspective of "avoided production" only, but has failed to examine the interdependent nature of reuse practices within an entire solid waste management system. This study proposes a new framework that uses optimization to minimize the greenhouse gas emissions of an integrated solid waste management system that includes reuse strategies and practices such as reuse enterprises, online platforms, and materials exchanges along with traditional solid waste management practices such as recycling, landfilling, and incineration. The proposed framework uses material flow analysis in combination with an optimization model to provide the best outcome in terms of GHG emissions by redistributing product flows in the integrated solid waste management system to the least impacting routes and processes. The optimization results provide a basis for understanding the contributions of reuse to the environmental benefits of the integrated solid waste management system and the exploration of the effects of reuse activities on waste prevention. A case study involving second-hand clothing is presented to illustrate the implementation of the proposed framework as applied to the material flow. Results of the case study showed the considerable impact of reuse on GHG emissions even for small replacement rates, and helped illustrate the interdependency of the reuse sector with other waste management practices. One major contribution of this study is the development of a framework centered on product reuse that can be applied to identify the best management strategies to reduce the environmental impact of product disposal and to increase recovery of reusable products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B

    2014-07-01

    This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.

  6. Evaluating the mitigation of greenhouse gas emissions and adaptation in dairy production.

    USDA-ARS?s Scientific Manuscript database

    Process-level modeling at the farm scale provides a tool for evaluating strategies for both mitigating greenhouse gas emissions and adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to predict performance...

  7. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gasmore » (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.« less

  8. Biological methanogenesis and the CO2 greenhouse effect

    NASA Technical Reports Server (NTRS)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  9. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  10. Design and performance considerations of evaporative-pad, waste-heat greenhouses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    1978-01-01

    Rising fuel costs and limited fuel availability have forced greenhouse operators to seek alternative means of heating their greenhouses in an effort to reduce production costs and conserve energy. One such alternative uses power plant reject heat, which is contained in the condenser cooling water, and a bank of evaporative pads to provide winter heating. The design technique used to size the evaporative pad system to meet both summer cooling and winter heating demands is described. Additionally, a computational scheme that simulates the system performance is presented. This analytical model is used to determine the greenhouse operating conditions that maintainmore » the vegetation in its thermal comfort zone. The evaporative pad model uses the Merkel total heat approximation and an experimentally derived transfer coefficient. Energy balance considerations on the vegetation provide a means of viewing optimal vegetation growth in terms of greenhouse environmental factors. In general, the results indicate that the vegetation can be maintained within its thermal comfort zone if sufficient warm water is available to the pads and the air stream flow is properly adjusted.« less

  11. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  12. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  13. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    NASA Astrophysics Data System (ADS)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  14. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    PubMed

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    To analyse trends in greenhouse gas (GHG) emissions from production and consumption of animal products in Sweden, life cycle emissions were calculated for the average production of pork, chicken meat, beef, dairy and eggs in 1990 and 2005. The calculated average emissions were used together with food consumption statistics and literature data on imported products to estimate trends in per capita emissions from animal food consumption. Total life cycle emissions from the Swedish livestock production were around 8.5 Mt carbon dioxide equivalents (CO2e) in 1990 and emissions decreased to 7.3 Mt CO2e in 2005 (14% reduction). Around two-thirds of the emission cut was explained by more efficient production (less GHG emission per product unit) and one-third was due to a reduced animal production. The average GHG emissions per product unit until the farm-gate were reduced by 20% for dairy, 15% for pork and 23% for chicken meat, unchanged for eggs and increased by 10% for beef. A larger share of the average beef was produced from suckler cows in cow-calf systems in 2005 due to the decreasing dairy cow herd, which explains the increased emissions for the average beef in 2005. The overall emission cuts from the livestock sector were a result of several measures taken in farm production, for example increased milk yield per cow, lowered use of synthetic nitrogen fertilisers in grasslands, reduced losses of ammonia from manure and a switch to biofuels for heating in chicken houses. In contrast to production, total GHG emissions from the Swedish consumption of animal products increased by around 22% between 1990 and 2005. This was explained by strong growth in meat consumption based mainly on imports, where growth in beef consumption especially was responsible for most emission increase over the 15-year period. Swedish GHG emissions caused by consumption of animal products reached around 1.1 t CO2e per capita in 2005. The emission cuts necessary for meeting a global temperature

  15. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  16. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    PubMed

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...The EPA is proposing to amend specific provisions of the Greenhouse Gas Reporting Rule to provide greater clarity and flexibility to facilities subject to reporting emissions from certain source categories. These source categories will report greenhouse gas (GHG) data for the first time in September of 2012. The proposed changes are not expected to significantly change the overall calculation and monitoring requirements of the Greenhouse Gas Reporting Rule or add additional requirements for reporters, but are expected to correct errors and clarify existing requirements in order to facilitate accurate and timely reporting. The EPA is also proposing confidentiality determinations for four new data elements for the fluorinated gas production source category of the Greenhouse Gas Reporting Rule. Lastly, we are proposing an amendment to Table A-7 of the general provisions to add a data element used as an input to an emission equation in the fluorinated gas production source category.

  18. Using Market Forces to Reduce Greenhouse Gas Emissions Through Product-Level Life Cycle Analysis and Eco-Labeling

    NASA Astrophysics Data System (ADS)

    Sweeney, J. F.; Davis, S. J.

    2007-12-01

    Established protocols allow entity-level accounting of greenhouse gas (GHG) emissions. The information contained within GHG inventories is used by entities to manage their carbon footprint and to anticipate future exposure to compulsory GHG markets or taxes. The efficacy of such inventories, as experienced by the consumer, can be improved upon by product-level GHG inventories applying the methods of traditional life cycle analysis (LCA). A voluntary product-level assessment of this type, coupled with an eco-label, would 1) empower consumers with information about the total embodied GHG content of a product, 2) allow companies to understand and manage GHG emissions outside the narrow scope of their entities, and 3) drive reduction of GHG emissions throughout product value chains. The Climate Conservancy (TCC) is a non-profit organization founded to help companies calculate their GHG emissions at the level of individual product units, and to inform consumers about the GHG intensity of the products they choose to purchase. With the assistance of economists, policy experts and scientists, TCC has developed a useful metric for reporting product-level GHG emissions that allows for a normalized comparison of a product's GHG intensity irrespective of industry sector or competitors, where GHG data are often unavailable or incomplete. Using this metric, we envision our Climate Conscious label becoming an important arbiter of choice for consumers seeking ways to mitigate their climate impacts without the need for governmental regulation.

  19. The Peculiar Negative Greenhouse Effect Over Antarctica

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  20. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  1. Effect of greenhouse vegetable farming duration on Zinc accumulation in Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yu, Peiying; Cui, Shuang; Chen, Xin; Shi, Yi

    2018-02-01

    Greenhouse vegetable production (GVP) has rapidly expanded, and reqiures more attention due to its heavy metal contamination. In this study, different cultivation greenhouses of 1, 2, 3, 5 and 13 years were selected to investigate the effects of GVP duration on Zn accumulation. The results revealed high Zn (total Zn and available Zn) accumulation in GVP surface layers (0-20 cm), and Zn contents in 0-20 cm soil layers were positively correlated with GVP duration (P<0.01). Zn accumulation was mainly attributed to manure fertilizer application due to higher concentrations of Zn in manures. For greenhouse sustainability, reduction of manure application and reasonable use of passivation materials may alleviate metal phytoavailability and the health risk.

  2. Dynamic modeling and verification of an energy-efficient greenhouse with an aquaponic system using TRNSYS

    NASA Astrophysics Data System (ADS)

    Amin, Majdi Talal

    Currently, there is no integrated dynamic simulation program for an energy efficient greenhouse coupled with an aquaponic system. This research is intended to promote the thermal management of greenhouses in order to provide sustainable food production with the lowest possible energy use and material waste. A brief introduction of greenhouses, passive houses, energy efficiency, renewable energy systems, and their applications are included for ready reference. An experimental working scaled-down energy-efficient greenhouse was built to verify and calibrate the results of a dynamic simulation model made using TRNSYS software. However, TRNSYS requires the aid of Google SketchUp to develop 3D building geometry. The simulation model was built following the passive house standard as closely as possible. The new simulation model was then utilized to design an actual greenhouse with Aquaponics. It was demonstrated that the passive house standard can be applied to improve upon conventional greenhouse performance, and that it is adaptable to different climates. The energy-efficient greenhouse provides the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems.

  3. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films

    NASA Astrophysics Data System (ADS)

    Yao, Zhisheng; Zheng, Xunhua; Liu, Chunyan; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus

    2017-01-01

    In China, rice production is facing unprecedented challenges, including the increasing demand, looming water crisis and on-going climate change. Thus, producing more rice at lower environmental cost is required for future development, i.e., the use of less water and the production of fewer greenhouse gas (GHG) per unit of rice. Ground cover rice production systems (GCRPSs) could potentially address these concerns, although no studies have systematically and simultaneously evaluated the benefits of GCRPS regarding yields and considering water use and GHG emissions. This study reports the results of a 2-year study comparing conventional paddy and various GCRPS practices. Relative to conventional paddy, GCRPSs had greater rice yields and nitrogen use efficiencies (8.5% and 70%, respectively), required less irrigation (-64%) and resulted in less total CH4 and N2O emissions (-54%). On average, annual emission factors of N2O were 1.67% and 2.00% for conventional paddy and GCRPS, respectively. A cost-benefit analysis considering yields, GHG emissions, water demand and labor and mulching costs indicated GCRPSs are an environmentally and economically profitable technology. Furthermore, substituting the polyethylene film with a biodegradable film resulted in comparable benefits of yield and climate. Overall, GCRPSs, particularly with biodegradable films, provide a promising solution for farmers to secure or even increase yields while reducing the environmental footprint.

  4. Characterization of whitefly and whitefly-borne virus populations in tomato- and sweet pepper-growing greenhouses in the Cartago province, Costa Rica

    USDA-ARS?s Scientific Manuscript database

    Crop production in greenhouse environments requires special care. Poor management can favor pest related problems which can lead to economic losses. Whiteflies and whitefly-borne viruses are major constraints to the production of tomato and sweet pepper both in field and greenhouses settings. Limit...

  5. Predicting greenhouse gas emissions from beef cattle feedyard manure

    USDA-ARS?s Scientific Manuscript database

    Improved predictive models for nitrous oxide and methane are crucial for assessing the greenhouse gas (GHG) footprint of beef cattle production. Biochemical process based models to predict GHG from manure rely on information derived from studies on soil and only limited study has been conducted on m...

  6. Predicting greenhouse gas emissions from beef cattle feedyard manure

    USDA-ARS?s Scientific Manuscript database

    Improved predictive models for nitrous oxide and methane are crucial for assessing the greenhouse gas (GHG) footprint of beef cattle production. Biochemical process-based models to predict GHG from manure rely on information derived from studies on soil and only limited study has been conducted on m...

  7. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  8. Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China.

    PubMed

    Tian, Kang; Hu, Wenyou; Xing, Zhe; Huang, Biao; Jia, Mengmeng; Wan, Mengxue

    2016-12-01

    The evaluation of heavy metals (HMs) in greenhouse soils is crucial for both environmental monitoring and human health; thus, it is imperative to determine their concentrations, identify their sources and assess their potential risks. In this study, eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 167 surface soils were investigated in two representative greenhouse vegetable systems of China: perennial solar greenhouse (SG) and seasonal plastic greenhouse (PG). The results indicated accumulations of Cd, Cu, Hg and Zn in the SG soils and Cd, Pb, Hg and Zn in the PG soils, with higher concentrations than the background values. In particular, Cd and Hg exhibited high levels of pollution under both GVP systems due to their positive Igeo values. Principle component analysis (PCA) and correlation analysis suggested that Cd, Cu, Hg and Zn in the SG soils and Cd, Hg and Zn in the PG soils were mainly related to intensive farming practices; Pb in the PG soils was significantly affected by atmospheric deposition. The results showed that soil characteristics, in particular soil organic matter, total nitrogen and total phosphorus, exerted significant influence on Hg, Cu, Cd, and Zn under the SG system. However, the HMs in the PG soils were weakly affected by soil properties. Overall, this study provides comparative research on the accumulation, potential risks and sources of HMs in two typical greenhouse soils in China, and our findings suggest that, Cd and Hg in both greenhouse soils could potentially represent environmental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production.

    PubMed

    Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C

    2017-09-01

    Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most ofmore » which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas

  11. Design and layout of a small commercial greenhouse operation

    Treesearch

    John W. Bartok

    2002-01-01

    This information sheet outlines the major requirements and factors that should be considered by someone contemplating starting a small greenhouse operation for the production of tree seedlings, nursery stock, perennials, herbs or other specialized crops. It can also be used when planning an expansion of an existing business.

  12. Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype

    NASA Astrophysics Data System (ADS)

    Boscheri, G.; Kacira, M.; Patterson, L.; Giacomelli, G.; Sadler, P.; Furfaro, R.; Lobascio, C.; Lamantea, M.; Grizzaffi, L.

    2012-10-01

    Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.

  13. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    PubMed

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  14. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  15. Agricultural greenhouse gas flux determination via remote sensing and modeling

    USDA-ARS?s Scientific Manuscript database

    Serious concerns have been raised about increasing levels of atmospheric greenhouse gases (GHGs) and associated climate change. For every degree in global temperature increase, grain production yields are expected to decrease 10%, while the global human population continues to increase by roughly 8...

  16. The effect on climate change impacts for building products when including the timing of greenhouse gas emissions

    Treesearch

    Richard D Bergman

    2012-01-01

    Greenhouse gases (GHGs) trap infrared radiation emitting from the Earth’s surface to generate the “greenhouse effect” thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...

  17. Applied research and implementation of microbial control agents for pest control: greenhouse crops

    USDA-ARS?s Scientific Manuscript database

    Greenhouse crop production has experienced strong growth in recent decades, reaching nearly 4 million hectare in 2010. Due to favorable environmental conditions and constant availability of host plants, arthropod pests are a major production constraint that has elicited parallel increases in pestici...

  18. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  19. Carbon Geography. The political economy of congressional support for legislation intended to mitigate greenhouse gas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRAGG, MICHAEL I.; ZHOU, YUYU; GURNEY, KEVIN

    2012-04-20

    Over the last five years, the U.S Congress has voted on several pieces of legislation intended to sharply reduce the nation’s greenhouse gas emissions. Given that climate change is a world public bad, standard economic logic would predict that the United States would -free rideII and wait for other nations to reduce their emissions. Within the Congress, there are clear patterns to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of pro-greenII votes on such legislation. Conservatives consistently vote against such legislation. Controlling for a Representative’s ideology, representatives frommore » richer districts and districts with a lower per-capita carbon dioxide footprint are more likely to vote in favor of climate change mitigation legislation. Representatives from districts where industrial emissions represent a larger share of greenhouse gas emissions are more likely to vote no.« less

  20. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  1. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  2. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions

  3. A Hiatus of the Greenhouse Effect.

    PubMed

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  4. A Hiatus of the Greenhouse Effect

    PubMed Central

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  5. A Hiatus of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  6. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  7. Water level, vegetation composition and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, M.; Augustin, J.; Burlo, A.; Yarmashuk, T.; Chuvashova, H.; Thiele, A.; Freibauer, A.; Tikhonov, V.; Hoffmann, M.

    2015-10-01

    Rewetting of temperate continental cutover peatlands generally implies the creation of flooded areas, which are - dependent on water depth - colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis. Reeds of Typha and Phragmites are reported to be large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. This paper describes the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse emissions were measured with manual chambers in weekly to few - weekly intervals over a two years period and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions were generally associated with net ecosystem CO2 uptake. Small sedges were minor methane emitters and net CO2 sinks, while Phragmites australis sites released large amounts of methane and sequestered very much CO2. Variability of both fluxes increased with site productivity. Floating mats composed of Carex tussocks and Typha latifolia were a source for both methane and CO2. We conclude that shallow, stable flooding is a better measure to arrive at low GHG emissions than deep flooding, and that the risk of high GHG emissions consequent on rewetting is larger for eutrophic than for mesotrophic peatlands.

  8. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong

    2016-09-01

    To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies

  9. Observational determination of the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  10. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  11. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  12. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting.

    PubMed

    Galliou, F; Markakis, N; Fountoulakis, M S; Nikolaidis, N; Manios, T

    2018-05-01

    Olive mill wastewater (OMW) is generated during the production of olive oil. Its disposal is still a major environmental problem in Mediterranean countries, despite the fact that a large number of technologies have been proposed up to date. The present work examines for the first time a novel, simple and low-cost technology for OMW treatment combining solar drying and composting. In the first step, OMW was dried in a chamber inside a solar greenhouse using swine manure as a bulking agent. The mean evaporation rate was found to be 5.2 kg H 2 O/m 2 /d for a drying period of 6 months (February-August). High phenol (75%) and low nitrogen (15%) and carbon (15%) losses were recorded at the end of the solar drying process. The final product after solar drying was rich in nutrients (N: 27.8 g/kg, P: 7.3 g/kg, K: 81.6 g/kg) but still contained significant quantities of phenols (18.4 g/kg). In order to detoxify the final product, a composting process was applied as a second step with or without the use of grape marc as bulking agent. Results showed that the use of grape marc as a bulking agent at a volume ratio of 1:1 achieved a higher compost temperature profile (60 °C) than 2:1 (solar drying product: grape marc) or no use (solar drying product). The end product after the combination of solar drying and composting had the characteristics of an organic fertilizer (57% organic carbon) rich in nutrients (3.5% N, 1% P, 6.5% K) with quite low phenol content (2.9 g/kg). Finally, the use of this product for the cultivation of pepper plants approved its fertility which was found similar with commercial NPK fertilizers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Arbuscular mycorrhizal fungi increased early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions.

    PubMed

    Turjaman, Maman; Tamai, Yutaka; Santoso, Erdy; Osaki, Mitsuru; Tawaraya, Keitaro

    2006-10-01

    Nontimber forest products (NTFPs) represent an important source of income to millions of people in tropical forest regions, but some NTFP species have decreased in number and become endangered due to overexploitation. There is increasing concern that the planting stocks of Dyera polyphylla and Aquilaria filaria are not sufficient to sustain the yield of NTFPs and promote forest conservation. The objective of this study was to determine the effect of two arbuscular mycorrhizal (AM) fungi, Glomus clarum and Gigaspora decipiens, on the early growth of two NTFP species, D. polyphylla and A. filaria, under greenhouse conditions. The seedlings of both species were inoculated with G. clarum or G. decipiens, or uninoculated (control) under greenhouse conditions. Percentage of AM colonization, plant growth, survival rate, and nitrogen (N) and phosphorus (P) concentrations were measured after 180 days of growth. The percentage of AM colonization of D. polyphylla and A. filaria ranged from 87 to 93% and from 22 to 39%, respectively. Colonization by G. clarum and G. decipiens increased plant height, diameter, and shoot and root dry weights. Shoot N and P concentrations of the seedlings were increased by AM colonization by as much as 70-153% and 135-360%, respectively. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than in the control seedlings. The results suggest that AM fungi can accelerate the establishment of the planting stocks of D. polyphylla and A. filaria, thereby promoting their conservation ecologically and sustaining the production of these NTFPs economically.

  14. Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas.

    PubMed

    Sanyé-Mengual, Esther; Cerón-Palma, Ileana; Oliver-Solà, Jordi; Montero, Juan Ignacio; Rieradevall, Joan

    2013-01-15

    As urban populations increase so does the amount of food transported to cities worldwide, and innovative agro-urban systems are being developed to integrate agricultural production into buildings; for example, by using roof top greenhouses (RTGs). This paper aims to quantify and compare, through a life cycle assessment, the environmental impact of the current linear supply system with a RTG system by using a case study for the production of tomatoes. The main results indicate that a change from the current linear system to the RTG system could result in a reduction, per kilogram of tomatoes (the functional unit), in the range of 44.4-75.5% for the different impact categories analysed, and savings of up to 73.5% in energy requirements. These savings are associated with re-utilisation of packaging systems (55.4-85.2%), minimisation of transport requirements (7.6-15.6%) and reduction of the loss of product during transportation and retail stages (7.3-37%). The RTG may become a strategic factor in the design of low-carbon cities in Mediterranean areas. Short-term implementation in the city of Barcelona could result in savings of 66.1 tonnes of CO₂ eq. ha(-1) when considering the global warming potential, and of 71.03 t ha(-1) when considering that the transformation from woodland to agricultural land is avoided. Copyright © 2012 Society of Chemical Industry.

  15. Thoughts from the Greenhouse

    ERIC Educational Resources Information Center

    Sonstrom, Wendy Jean

    2006-01-01

    In this article, the author compares the functions of a graduate adult education program and a greenhouse. A graduate adult education program is a place where, like in a greenhouse, exciting new hybrids can be developed--working with people outside the school of education, in different disciplines and beyond the university's walls, sharing what…

  16. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  17. Calculation of greenhouse gas emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Atta, Pascal Atta; N'guessan, Yao; Morin, Celine; Voirol, Anne Jaecker; Descombes, Georges

    2017-02-01

    The electricity in Côte d'Ivoire is mainly produced from fossil energy sources. This causes damages on environment due to greenhouse gas emissions (GHG). The aim of this paper is to calculate the greenhouse gas (GHG) emissions of jatropha oil and jatropha biodiesel as alternative fuels for electricity production in Côte d'Ivoire by using Life Cycle Assessment (LCA) methodology. The functional unit in this LCA is defined as 1 kWh of electricity produced by the combustion of jatropha oil or jatropha biodiesel in the engine of a generator. Two scenarios, called short chain and long chain, were examined in this LCA. The results show that 0.132 kg CO2 equivalent is emitted for the scenario 1 with jatropha oil as an alternative fuel against 0.6376 kg CO2 equivalent for the scenario 2 with jatropha biodiesel as an alternative fuel. An 87 % reduction of kg CO2 equivalent is observed in scenario 1 and a 37 % reduction of kg CO2 equivalent is observed in the scenario 2, when compared with a Diesel fuel.

  18. A Greenhouse for Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Rahaim, Christopher P.; Czysz, Paul A.

    2008-01-01

    A detailed design study for a deployable greenhouse for Mars mission is has been completed. The greenhouse has been designed so that it has a life span of at least 20 years, a leakage rate of no more that 1% of the total volume per day at the target working pressure of 50 kPa and provides at least six crewmembers with approximately twenty five percent of their food supply. Artificial light is provided by high intensity red and blue light emitting diodes, but sunlight is also used by installing small Lexan windows on the rooftop. The greenhouse structure is a rigid IM7/977-3 graphite/epoxy sandwich structure with a footprint of 38 m2. Radioisotope thermal electric generators are used to produce power for the greenhouse and its subsystems and the plants are grown in nested pockets located on vertical cylinders which allows for a growth area of 48 m2. An aeroponic water and nutrient delivery system is used in order to reduce the greenhouse water usage. Harvesting and planting is achieved through the use of robotics specifically designed for this mission. The greenhouse structure and subsystems have a total weight of less than 10 metric tons. In this paper the design highlights of several of the subsystems of the greenhouse design will be summarized.

  19. The greenhouse emissions footprint of free-range eggs.

    PubMed

    Taylor, R C; Omed, H; Edwards-Jones, G

    2014-01-01

    Eggs are an increasingly significant source of protein for human consumption, and the global poultry industry is the single fastest-growing livestock sector. In the context of international concern for food security and feeding an increasingly affluent human population, the contribution to global greenhouse-gas (GHG) emissions from animal protein production is of critical interest. We calculated the GHG emissions footprint for the fastest-growing sector of the UK egg market: free-range production in small commercial units on mixed farms. Emissions are calculated to current Intergovernmental Panel on Climate Change and UK standards (PAS2050): including direct, indirect, and embodied emissions from cradle to farm gate compatible with a full product life-cycle assessment. We present a methodology for the allocation of emissions between ruminant and poultry enterprises on mixed farms. Greenhouse gas emissions averaged a global warming potential of 2.2 kg of CO2e/dozen eggs, or 1.6 kg of CO2equivalent (e)/kg (assuming average egg weight of 60 g). One kilogram of protein from free-range eggs produces 0.2 kg of CO2e, lower than the emissions from white or red meat (based on both kg of meat and kg of protein). Of these emissions, 63% represent embodied carbon in poultry feed. A detailed GHG emissions footprint represents a baseline for comparison with other egg production systems and sources of protein for human consumption. Eggs represent a relatively low-carbon supply of animal protein, but their production is heavily dependent on cereals and soy, with associated high emissions from industrial nitrogen production, land-use change, and transport. Alternative sources of digestible protein for poultry diets are available, may be produced from waste processing, and would be an effective tool for reducing the industry's GHG emissions and dependence on imported raw materials.

  20. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  1. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China.

    PubMed

    Zhang, Haidong; Huang, Biao; Dong, Linlin; Hu, Wenyou; Akhtar, Mohammad Saleem; Qu, Mingkai

    2017-03-01

    Greenhouse vegetable cultivation with substantive manure and fertilizer input on soils with an elevated geochemical background can accumulate trace metals in soils and plants leading to human health risks. Studies on trace metal accumulation over a land use shift duration in an elevated geochemical background scenario are lacking. Accumulation characteristics of seven trace metals in greenhouse soil and edible plants were evaluated along with an assessment of the health risk to the consumers. A total of 118 greenhouse surface soils (0-20cm) and 30 vegetables were collected from Kunming City, Yunnan Province, southwestern China, and analyzed for total Cd, Pb, Cu, Zn, As, Hg, and Cr content by ICP-MS and AFS. The trace metals were ordered Cu>Cd>Hg>Zn>Pb>As>Cr in greenhouse soils accumulation level, and the geo-accumulation index suggested the soil more severely polluted with Cd, Cu, Hg and Zn. The greenhouse and open-field soils had significant difference in Cd, Cr and Zn. The duration of shift from paddy to greenhouse land-use significantly influenced trace metal accumulation with a dramatic change during five to ten year greenhouse land-use, and continuous increase of Cd and Hg. A spatial pattern from north to south for Cd and Hg and a zonal pattern for Cu and Zn were found. An anthropogenic source primarily caused trace metal accumulation, where the principal component analysis/multiple linear regression indicated a contribution 61.2%. While the assessment showed no potential risk for children and adults, the hazard health risks index was greater than one for adolescents. The extended duration of land use as greenhouses caused the trace metal accumulation, rotation in land use should be promoted to reduce the health risks. Copyright © 2016. Published by Elsevier Inc.

  2. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  3. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments].

    PubMed

    Levinskikh, M A; Veselova, T D; Il'ina, G M; Dzhalilova, Kh Kh; Sychev, V N; Derendiaeva, T A; Salisbury, F; Cambell, W; Bubenheim, D

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  4. The role of nuclear energy in mitigating greenhouse warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhousemore » warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.« less

  5. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses

    PubMed Central

    Roldán, Juan Jesús; Garcia-Aunon, Pablo; Garzón, Mario; de León, Jorge; del Cerro, Jaime; Barrientos, Antonio

    2016-01-01

    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments. PMID:27376297

  6. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    NASA Astrophysics Data System (ADS)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  7. Identification of conditions for successful aphid control by ladybirds in greenhouses

    USDA-ARS?s Scientific Manuscript database

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...

  8. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  9. Study on the context-aware middleware for ubiquitous greenhouses using wireless sensor networks.

    PubMed

    Hwang, Jeonghwang; Yoe, Hyun

    2011-01-01

    Wireless Sensor Network (WSN) technology is one of the important technologies to implement the ubiquitous society, and it could increase productivity of agricultural and livestock products, and secure transparency of distribution channels if such a WSN technology were successfully applied to the agricultural sector. Middleware, which can connect WSN hardware, applications, and enterprise systems, is required to construct ubiquitous agriculture environment combining WSN technology with agricultural sector applications, but there have been insufficient studies in the field of WSN middleware in the agricultural environment, compared to other industries. This paper proposes a context-aware middleware to efficiently process data collected from ubiquitous greenhouses by applying WSN technology and used to implement combined services through organic connectivity of data. The proposed middleware abstracts heterogeneous sensor nodes to integrate different forms of data, and provides intelligent context-aware, event service, and filtering functions to maximize operability and scalability of the middleware. To evaluate the performance of the middleware, an integrated management system for ubiquitous greenhouses was implemented by applying the proposed middleware to an existing greenhouse, and it was tested by measuring the level of load through CPU usage and the response time for users' requests when the system is working.

  10. Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control

    PubMed Central

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results. PMID:22389597

  11. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control.

    PubMed

    Pawlowski, Andrzej; Guzman, Jose Luis; Rodríguez, Francisco; Berenguel, Manuel; Sánchez, José; Dormido, Sebastián

    2009-01-01

    Monitoring and control of the greenhouse environment play a decisive role in greenhouse production processes. Assurance of optimal climate conditions has a direct influence on crop growth performance, but it usually increases the required equipment cost. Traditionally, greenhouse installations have required a great effort to connect and distribute all the sensors and data acquisition systems. These installations need many data and power wires to be distributed along the greenhouses, making the system complex and expensive. For this reason, and others such as unavailability of distributed actuators, only individual sensors are usually located in a fixed point that is selected as representative of the overall greenhouse dynamics. On the other hand, the actuation system in greenhouses is usually composed by mechanical devices controlled by relays, being desirable to reduce the number of commutations of the control signals from security and economical point of views. Therefore, and in order to face these drawbacks, this paper describes how the greenhouse climate control can be represented as an event-based system in combination with wireless sensor networks, where low-frequency dynamics variables have to be controlled and control actions are mainly calculated against events produced by external disturbances. The proposed control system allows saving costs related with wear minimization and prolonging the actuator life, but keeping promising performance results. Analysis and conclusions are given by means of simulation results.

  12. Greenhouse Gases

    MedlinePlus

    ... Information Administration (EIA) does not estimate emissions of water vapor. Research by NASA suggests a stronger impact from the indirect human effects on water vapor concentrations. Ozone is technically a greenhouse gas ...

  13. Solar greenhouse workshop; video documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, B.; Devine B.; Taylor, C.

    1980-01-01

    A 38 minute video-tape documentary of the building of an attached solar greenhouse is presented. The tape follows the construction process from foundation preparation to greenhouse completion. The tape allows greater outreach to potential builders of solar greenhouses than a conventional construction workshop. It allows viewers to appreciate the simplicity of construction, and encourages, by example, interested people to start building. The process of making the documentary is briefly described, as are its potential uses. Copies of the video-tape are available, for the cost of the tape alone, from Antioch Video, Antioch College, Yellow Springs, Ohio 45387.

  14. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    PubMed

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  15. Has your greenhouse gone virtual?

    USDA-ARS?s Scientific Manuscript database

    Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...

  16. Estimation of pathways of the production of greenhouse gases in the tropical swamp forest in Thailand by stable isotope investigation.

    PubMed

    Boontanon, Narin; Ueda, Shingo; Wada, Eitaro

    2008-09-01

    Dynamics of greenhouse gases (N(2)O and CH(4)) with the dry-wet cycle along with the variation of oxidation-reduction boundaries were investigated in the tropical wetland in monsoon Asia. It was clarified that the production of N(2)O and CH(4) was closely related to the development of a redox boundary in the Bang Nara River systems. An intermittent increase in N(2)O was observed at the beginning of the rainy season, when a large amount of easily decomposable organic matter was introduced into the river. After 10 days, when dissolved oxygen was consumed completely at the middle reaches, the emission of CH(4) became maximal due to the possible occurrence of denitrification. The distribution of stable isotope ratios in N(2)O clearly demonstrated that nitrification is the major process for its production. Furthermore, the production of N(2)O in this study area was found to vary in time and space with changes in the redox boundary along the water flow.

  17. Voluntary Reporting of Greenhouse Gases

    EIA Publications

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  18. Engineering concepts for inflatable Mars surface greenhouses

    NASA Technical Reports Server (NTRS)

    Hublitz, I.; Henninger, D. L.; Drake, B. G.; Eckart, P.

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Engineering concepts for inflatable Mars surface greenhouses.

    PubMed

    Hublitz, I; Henninger, D L; Drake, B G; Eckart, P

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    PubMed Central

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  1. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  2. Warming Mars Using Artificial Super-Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Marinova, M. M.; McKay, C. P.; Hashimoto, H.

    Artificial super-greenhouse gases will be needed in terraforming Mars. They could be used to initiate warming and also to supplement the greenhouse effect of a breathable oxygen/nitrogen atmosphere containing a limited amount of carbon dioxide. The leading super-greenhouse gas candidates are SF6 and perfluorocarbons (PFCs) such as CF4 and C2F6. The transmission spectra of C2F6, CF2Cl2, and CF3Cl were analyzed, and their specific absorption bands quantitatively assessed. A detailed band model was used to accurately calculate and compare the greenhouse warming of Earth and Mars given different temperature profiles and concentrations of the gases. The results show that for the current Mars, 0.1 Pa (10-6 atm) of a single super-greenhouse gas will result in a warming of about 3 K. The synthesis of this amount of gas requires about 1020 J, equivalent to ~ 70 minutes of the total solar energy reaching Mars. Super-greenhouse gases are a viable method for warming up a planet alone and are certainly practical in combination with other methods.

  3. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  4. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al

  5. Policy suggestions to carry out the research on the standards of greenhouse gas emission allowances in key industries

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Liu, Mei; Zong, Jianfang; Guo, Huiting; Sun, Liang

    2018-05-01

    On the basis of summarizing and combing the functions and effects of the long-term implementation of the serial standards on the limitation of energy consumption per unit product in China, this paper focuses on the analysis of the practical demands of the green house gas emission allowances for key industrial enterprises, and puts forward the suggestions on the formulation of relevant standards. The differences and connections between the present standards of the energy consumption per unit product and future standards of greenhouse gas emission allowances in the key industries are discussed. The proposal is provided to the administrations with helpful guidelines and promotes enterprises to establish the clearer GHG emission reduction strategies and to reduce their greenhouse gas emissions. These suggestions will provide guarantee for realizing the target of reducing greenhouse gas emissions in China.

  6. Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products

    PubMed Central

    Marinangeli, Christopher P. F.; Tremorin, Denis

    2018-01-01

    Incorporating low cost pulses, such as yellow peas, that are rich in nutrients and low in fertilizer requirements, into daily food items, can improve the nutritional and sustainability profile of national diets. This paper systematically characterized the effect of using Canadian grown whole yellow pea and refined wheat flours on nutritional density and carbon footprint in cereal-based food products. Canada-specific production data and the levels of 27 macro- and micronutrients were used to calculate the carbon footprint and nutrient balance score (NBS), respectively, for traditional and reformulated pan bread, breakfast cereal, and pasta. Results showed that partial replacement of refined wheat flour with yellow pea flour increased the NBS of pan bread, breakfast cereal, and pasta by 11%, 70%, and 18%, and decreased the life cycle carbon footprint (kg CO2 eq/kg) by 4%, 11%, and 13%, respectively. The cultivation stage of wheat and yellow peas, and the electricity used during the manufacturing stage of food production, were the hotspots in the life cycle. The nutritional and greenhouse gas (GHG) data were combined as the nutrition carbon footprint score (NCFS) (NBS/g CO2 per serving), a novel indicator that reflects product-level nutritional quality per unit environmental impact. Results showed that yellow pea flour increased the NCFS by 15% for pan bread, 90% for breakfast cereal, and 35% for pasta. The results and framework of this study are relevant for food industry, consumers, as well as global and national policy-makers evaluating the effect of dietary change and food reformulation on nutritional and climate change targets. PMID:29659497

  7. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  8. Spatially-explicit estimates of greenhouse-gas payback times for perennial cellulosic biomass production on open lands in the Lake States

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.

    2015-12-01

    The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.

  9. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2013-05-07

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  10. Paludiculture as a chance for peatland and climate: the greenhouse gas balance of biomass production on two rewetted peatlands does not differ from the natural state

    NASA Astrophysics Data System (ADS)

    Günther, Anke; Huth, Vytas; Jurasinski, Gerald; Albrecht, Kerstin; Glatzel, Stephan

    2015-04-01

    In Europe, rising prices for farm land make it increasingly difficult for government administrations to compete with external investors during the acquisition of land for wetland conservation. Thus, adding economic value to these, otherwise "lost", areas by combining extensive land use with nature conservation efforts could increase the amount of ground available for wetland restoration. Against this background, the concept of paludiculture aims to provide biomass for multiple purposes from peatlands with water tables high enough to conserve the peat body. However, as plants have been shown to contribute to greenhouse gas exchange in peatlands, manipulating the vegetation (by harvesting, sowing etc.) might alter the effect of the restored peatlands on climate. Here, we present greenhouse gas data from two experimental paludiculture systems on formerly drained intensive grasslands in northern Germany. In a fen that has been rewetted more than 15 years ago three species of reed plants were harvested to simulate biomass production for bioenergy and as construction material. And in a peat bog that has been converted from drained grassland to a field with a controlled water table around ground surface Sphagnum mosses were cultivated to provide an alternative growing substrate for horticulture. In both systems, we determined carbon dioxide, methane, and nitrous oxide exchange using closed chambers over two years. Additionally, water and peat chemistry and environmental parameters as recorded by a weather station were analyzed. Both restored peatlands show greenhouse gas balances comparable to those of natural ecosystems. Nitrous oxide was not emitted in either system. Fluctuations of the emissions reflect changes in weather conditions across the study years. In the fen, relative emission patterns between plant species were not constant over time. We did not find a negative short-term effect of biomass harvest or Sphagnum cultivation on net greenhouse gas balances

  11. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    EPA Science Inventory

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  12. Using waste oil to heat a greenhouse

    Treesearch

    Marla Schwartz

    2009-01-01

    During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...

  13. Sonic Anemometry to Measure Natural Ventilation in Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s−1) reaching 36.3% when wind speed was lower (uo = 2 m s−1). PMID:22163728

  14. Sonic anemometry to measure natural ventilation in greenhouses.

    PubMed

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  15. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    PubMed

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  16. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  17. The Influence of Climate, Soil and Pasture Type on Productivity and Greenhouse Gas Emissions Intensity of Modeled Beef Cow-Calf Grazing Systems in Southern Australia

    PubMed Central

    Bell, Matthew J.; Cullen, Brendan R.; Eckard, Richard J.

    2012-01-01

    Simple Summary Livestock production systems and the agricultural industries in general face challenges to meet the global demand for food, whilst also minimizing their environmental impact through the production of greenhouse gas (GHG) emissions. Livestock grazing systems in southern Australia are low input and reliant on pasture as a low-cost source of feed. The balance between productivity and GHG emission intensity of beef cow-calf grazing systems was studied at sites chosen to represent a range of climatic zones, soil and pasture types. While the climatic and edaphic characteristics of a location may impact on the emissions from a grazing system, management to efficiently use pasture can reduce emissions per unit product. Abstract A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq.) intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively), whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively). Enteric fermentationand nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity

  18. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  19. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    PubMed Central

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    greenhouse production. PMID:28848565

  20. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    PubMed

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    greenhouse production.

  1. The Greenhouse Effect: Science and Policy.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  2. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops

    PubMed Central

    Prado, Sara G.; Jandricic, Sarah E.; Frank, Steven D.

    2015-01-01

    Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels. PMID:26463203

  3. Farm Simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    USDA-ARS?s Scientific Manuscript database

    Farms both produce greenhouse gas emissions that drive human-induced climate change and are impacted by that climate change. Whole farm and global climate models provide useful tools for studying the benefits and costs of greenhouse gas mitigation and the adaptation of farms to changing climate. The...

  4. Greenhouse gas exchange over grazed systems

    NASA Astrophysics Data System (ADS)

    Felber, R.; Ammann, C.; Neftel, A.

    2012-04-01

    Grasslands act as sinks and sources of greenhouse gases (GHG) and are, in conjunction with livestock production systems, responsible for a large share of GHG emissions. Whereas ecosystem scale flux measurements (eddy covariance) are commonly used to investigate CO2 exchange (and is becoming state-of-the-art for other GHGs, too), GHG emissions from agricultural animals are usually investigated on the scale of individual animals. Therefore eddy covariance technique has to be tested for combined systems (i.e. grazed systems). Our project investigates the ability of field scale flux measurements to reliably quantify the contribution of grazing dairy cows to the net exchange of CO2 and CH4. To quantify the contribution of the animals to the net flux the position, movement, and grazing/rumination activity of each cow are recorded. In combination with a detailed footprint analysis of the eddy covariance fluxes, the animal related CO2 and CH4 emissions are derived and compared to standard emission values derived from respiration chambers. The aim of the project is to test the assumption whether field scale CO2 flux measurements adequately include the respiration of grazing cows and to identify potential errors in ecosystem Greenhouse gas budgets.

  5. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  6. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  7. Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhu, Z.; Shang, B.; Kang, G.; Zhu, H.; Xin, H.

    Gaseous emissions from animal feeding operations may be influenced by production stage, genetics, dietary type and nutritional plan, housing type, manure handling schemes, and climatic conditions. This study was conducted to quantify annual emission rates (ERs) of greenhouse gases (GHGs)—methane (CH 4), carbon dioxide (CO 2) and nitrous oxide (N 2O) from naturally ventilated swine gestation (GE), farrowing (FA), nursery (NU) and growing-finishing (GF) barns under typical operational conditions in suburban Beijing, China. Variables relative to the GHG ERs were measured every two months for a one-year period, with each measurement episode lasting 72 h. Air exchange rate of the naturally ventilated barns was estimated using CO 2 balance method. The annual mean daily GHG ERs (mean ± SD), expressed in gd-1AU-1(AU=animal unit=500 live body weight), for the GE, FA, NU, and GF barns were, respectively, 5920±440,7490±110,29670±1090 and 16730±1060 for CO 2; 9.6±1.9,9.6±3.6,58.4±21.8 and 32.1±11.7 for CH 4; and 0.75±0.56,0.54±0.15,1.29±0.37 and 0.86±0.75 for N 2O. The GHG ER values from the current study paralleled those reported in the literature in some cases but differed considerably in other cases. This outcome of similarity and disparity confirms the need to exercise caution when applying literature data to estimation of GHG emissions under various production systems. Results of this study are expected to contribute to the global GHG inventory.

  8. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    NASA Technical Reports Server (NTRS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  9. Where do California's greenhouse gases come from?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc

    2009-12-11

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaborationmore » between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.« less

  10. Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion

    USDA-ARS?s Scientific Manuscript database

    The United States Renewable Fuel Standards (RFS2) established under the Energy Independence and Security Act of 2007 requires greenhouse gas (GHG) emissions to be lower for biofuels relative to fossil fuel combustion. However, there is an extensive debate in the literature about the potential to red...

  11. Greenhouse effects on Venus

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  12. Non-CO2 greenhouse gases and climate change.

    PubMed

    Montzka, S A; Dlugokencky, E J; Butler, J H

    2011-08-03

    Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.

  13. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    PubMed

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. Published by Elsevier Ltd.

  14. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  15. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  16. Control allocation-based adaptive control for greenhouse climate

    NASA Astrophysics Data System (ADS)

    Su, Yuanping; Xu, Lihong; Goodman, Erik D.

    2018-04-01

    This paper presents an adaptive approach to greenhouse climate control, as part of an integrated control and management system for greenhouse production. In this approach, an adaptive control algorithm is first derived to guarantee the asymptotic convergence of the closed system with uncertainty, then using that control algorithm, a controller is designed to satisfy the demands for heat and mass fluxes to maintain inside temperature, humidity and CO2 concentration at their desired values. Instead of applying the original adaptive control inputs directly, second, a control allocation technique is applied to distribute the demands of the heat and mass fluxes to the actuators by minimising tracking errors and energy consumption. To find an energy-saving solution, both single-objective optimisation (SOO) and multiobjective optimisation (MOO) in the control allocation structure are considered. The advantage of the proposed approach is that it does not require any a priori knowledge of the uncertainty bounds, and the simulation results illustrate the effectiveness of the proposed control scheme. It also indicates that MOO saves more energy in the control process.

  17. Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates

    USDA-ARS?s Scientific Manuscript database

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops. Sphagnum peat moss is a primary constituent of these substrates and its harvest from endangered ecosystems has become a worldwide concern. Ethanol-extracted, coarse-ground corn (Zea mays L. ‘Sil...

  18. Greenhouse gas emissions of realistic dietary choices in Denmark: the carbon footprint and nutritional value of dairy products

    PubMed Central

    Werner, Louise Bruun; Flysjö, Anna; Tholstrup, Tine

    2014-01-01

    Background Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider the nutritional value of alternative food choices. Objective The objective of this study was to elucidate the role of dairy products in overall nutrition and to clarify the effects of dietary choices on GHGE, and to combine nutritional value and GHGE data. Methods We created eight dietary scenarios with different quantity of dairy products using data from the Danish National Dietary Survey (1995–2006). Nutrient composition and GHGE data for 71 highly consumed foods were used to estimate GHGE and nutritional status for each dietary scenario. An index was used to estimate nutrient density in relation to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. Results The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e/day. Conclusions When optimizing a diet with regard to sustainability, it is crucial to account for the nutritional value and not solely focus on impact per kg product. Excluding dairy products from the diet does not necessarily mitigate climate change but in contrast may have nutritional consequences. PMID:24959114

  19. Greenhouse gas emissions of realistic dietary choices in Denmark: the carbon footprint and nutritional value of dairy products.

    PubMed

    Werner, Louise Bruun; Flysjö, Anna; Tholstrup, Tine

    2014-01-01

    Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider the nutritional value of alternative food choices. The objective of this study was to elucidate the role of dairy products in overall nutrition and to clarify the effects of dietary choices on GHGE, and to combine nutritional value and GHGE data. We created eight dietary scenarios with different quantity of dairy products using data from the Danish National Dietary Survey (1995-2006). Nutrient composition and GHGE data for 71 highly consumed foods were used to estimate GHGE and nutritional status for each dietary scenario. An index was used to estimate nutrient density in relation to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e/day. When optimizing a diet with regard to sustainability, it is crucial to account for the nutritional value and not solely focus on impact per kg product. Excluding dairy products from the diet does not necessarily mitigate climate change but in contrast may have nutritional consequences.

  20. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  1. Monitoring soil greenhouse gas emissions from managed grasslands

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  2. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  3. Solar Greenhouses and Sunspaces: Lessons Learned.

    ERIC Educational Resources Information Center

    Thomas, Stephen G.; And Others

    Solar technology systems are being studied, managed, built and offered as an effective alternative energy option. This publication presents background material for the building and operation of better sunspaces and greenhouses. Recent developments in solar technology are explained and information on solar greenhouse and sunspace is provided (in…

  4. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  5. Interpretation of Series National Standards of China on “Greenhouse Gas Emissions Accounting and Reporting for Enterprises”

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei

    2018-05-01

    Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including <Greenhouse Gas Emissions Accounting and Reporting for Industrial Enterprises>> and the requirements of the greenhouse gas emissions accounting and reporting in 10 sectors including power generation, power grid, iron and steel, chemical engineering, electrolytic aluminum, magnesium smelting, plate glass, cement, ceramics and civil aviation, which proposes unified requirements of “what to calculate and how to calculate” the greenhouse gas emission for enterprises. This paper focuses on the detailed interpretation of the main contents of the first 11 national standards, so as to provide technical supports for users of the standards and to comprehensively promote the emission reduction of greenhouse gas at the enterprise level.

  6. The enhancement of clear sky greenhouse effect in HIRS

    NASA Astrophysics Data System (ADS)

    Gastineau, Guillaume; Soden, Brian; Jackson, Darren; O'Dell, Chris; Stephens, Graeme

    2010-05-01

    The High-resolution Infrared Radiation Sounder (HIRS) observations are used to understand the atmospheric response at the top of the atmosphere, induced by the anthropogenic emission of greenhouse gases. The HIRS brightness temperature channels are used to regress the Outgoing Longwave Radiation (OLR), and the greenhouse effect, in clear sky conditions, over the period 1981-2004. Here, we find that since 1981, the OLR remains relatively stable, compared to the greenhouse effect that has significant increased, because of the surface temperature changes. With a multi-model ensemble of coupled model simulations, we show that the greenhouse gases emissions, and the water vapor feedback, account for this observed enhancement of the greenhouse effect. This study further reinforce our confidence that anthropogenic greenhouse gases emission are causing a large part of the recent climate changes.

  7. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  8. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    NASA Astrophysics Data System (ADS)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  9. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  10. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    Uttarakhand) due to the subtle water stress condition with lesser soil moisture content into the ground. Among the 13 districts, the maximum net emissions of carbon and nitrogen compounds have been observed in 7 districts (accounting for high biomass and forest cover loss by the 2016 forest fire), whereas, the rest of the 6 districts acts as the sequester of greenhouse compounds. This new approach having the potentiality of quantifying the losses of ecosystem productivity due to forest fires and could be used in broader aspects if more accurate field based observation can be obtained in the near future.

  11. Greenhouse gas emissions from fen soils used for forage production in northern Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; Taube, Friedhelm

    2016-09-01

    A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2-C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2-C eq. ha-1 a-1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2-C eq. (GJ net energy lactation; NEL)-1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean ≤ 20 cm below the surface).

  12. Intraguild Predation Among Biological Control Agents Used in Greenhouse Floriculture Crops: A Preliminary Review

    USDA-ARS?s Scientific Manuscript database

    Literature on intraguild predation (IGP) in greenhouse floriculture (GHFC) was reviewed. Despite production practices that could increase the incidence IGP, no studies concretely showed that IGP disrupts GHFC biocontrol. Further studies need to include large-scale trials over entire crop cycles. H...

  13. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  14. Greenhouse intelligent control system based on microcontroller

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.

  15. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  16. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  17. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

    PubMed Central

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  18. Accounting for Greenhouse Gas Emissions from Reservoirs

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  19. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.

    PubMed

    Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S

    2012-01-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.

  20. Improving Empirical Approaches to Estimating Local Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Blackhurst, M.; Azevedo, I. L.; Lattanzi, A.

    2016-12-01

    Evidence increasingly indicates our changing climate will have significant global impacts on public health, economies, and ecosystems. As a result, local governments have become increasingly interested in climate change mitigation. In the U.S., cities and counties representing nearly 15% of the domestic population plan to reduce 300 million metric tons of greenhouse gases over the next 40 years (or approximately 1 ton per capita). Local governments estimate greenhouse gas emissions to establish greenhouse gas mitigation goals and select supporting mitigation measures. However, current practices produce greenhouse gas estimates - also known as a "greenhouse gas inventory " - of empirical quality often insufficient for robust mitigation decision making. Namely, current mitigation planning uses sporadic, annual, and deterministic estimates disaggregated by broad end use sector, obscuring sources of emissions uncertainty, variability, and exogeneity that influence mitigation opportunities. As part of AGU's Thriving Earth Exchange, Ari Lattanzi of City of Pittsburgh, PA recently partnered with Dr. Inez Lima Azevedo (Carnegie Mellon University) and Dr. Michael Blackhurst (University of Pittsburgh) to improve the empirical approach to characterizing Pittsburgh's greenhouse gas emissions. The project will produce first-order estimates of the underlying sources of uncertainty, variability, and exogeneity influencing Pittsburgh's greenhouse gases and discuss implications of mitigation decision making. The results of the project will enable local governments to collect more robust greenhouse gas inventories to better support their mitigation goals and improve measurement and verification efforts.

  1. A spatio-temporal analysis for regional enhancements of greenhouse gas concentration with GOSAT and OCO-2

    NASA Astrophysics Data System (ADS)

    Kasai, K.; Shiomi, K.; Konno, A.; Tadono, T.; Hori, M.

    2017-12-01

    Global observation of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) with high spatio-temporal resolution and accurate estimation of sources and sinks are important to understand greenhouse gases dynamics. Greenhouse Gases Observing Satellite (GOSAT) has observed column-averaged dry-air mole fractions of CO2 (XCO2) and CH4 (XCH4) over 8 years since January 2009 with 3-day repeat cycle. Orbiting Carbon Observatory-2 (OCO-2) has observed XCO2 on orbit since July 2014 with 16-day repeat cycle. The objective of this study investigates regional enhancements of greenhouse gases concentrations using GOSAT and OCO-2 data. We use two retrieved datasets as GOSAT observation data. One is ACOS GOSAT/TANSO-FTS Level 2 Standard Product B7.3 by NASA/JPL, and the other is NIES TANSO-FTS SWIR L2 Product V02. As OCO-2 observation data, OCO-2 Operational L2 Data Version 7 is used. ODIAC dataset is also used for classification of regional enhancements into anthropogenic and biogenic sources. Before analyzing these datasets, outliers are screened by using "quality flag", "outcome flag" and "warn level" in land or water parts, and the "M-gain" data observed by GOSAT are removed. Then, the monthly mean XCO2 and XCH4 of all greenhouse gases datasets is calculated from the daily mean XCO2 and XCH4 to correct the weight by the difference in the number of observation points. Biases among datasets are assessed by comparing the monthly mean XCO2 and XCH4. Also, anomalies of XCO2 and XCH4 are computed by subtracting the monthly mean from individual observations. The positive and negative anomalies are candidates for regional enhancements and uptake, respectively. To detect the regional enhancements from the satellite observation datasets, the results of spatio-temporal analysis of the anomalies are also reported.

  2. Low simulated radiation limit for runaway greenhouse climates

    NASA Astrophysics Data System (ADS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-08-01

    The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.

  3. Greenhouse Impact Due to the Use of Combustible Fuels: Life Cycle Viewpoint and Relative Radiative Forcing Commitment

    PubMed Central

    Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-01-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels. PMID:18521657

  4. Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment.

    PubMed

    Kirkinen, Johanna; Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-09-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

  5. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    NASA Astrophysics Data System (ADS)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  6. Comparing chemical and biological control strategies for twospotted spider mites (Acari: Tetranychidae) in commercial greenhouse production of bedding plants.

    PubMed

    Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A

    2009-02-01

    Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.

  7. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  8. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... for passenger automobiles and light trucks. (1) For a given individual model year's production of... production of that model type/footprint combination for the appropriate model year. (C) The resulting...

  9. Multiagency Initiative to Provide Greenhouse Gas Information

    NASA Astrophysics Data System (ADS)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  10. A new Masters program in Greenhouse Gas Management and Accounting at Colorado State University

    NASA Astrophysics Data System (ADS)

    Conant, R. T.; Ogle, S. M.

    2015-12-01

    Management guru Peter Drucker said that "what gets measured gets managed." But the unstated implication is that what doesn't get measured doesn't get managed. Accurate quantification of greenhouse gas mitigation efforts is central to the clean technology sector. Very soon professionals of all kinds (business people, accountants, lawyers) will need to understand carbon accounting and crediting. Over the next few decades food production is expected to double and energy production must triple in order to meet growing global demands; sustainable management of land use and agricultural systems will be critical. The food and energy supply challenges are inextricably linked to the challenge of limiting anthropogenic impacts on climate by reducing the concentration of greenhouse gases (GHG) in the atmosphere. To avoid serious disruption of the climate system and stabilize GHG concentrations, society must move aggressively to avoid emissions of CO2, CH4, and N2O and to actively draw down CO2 already in the atmosphere. A new cadre of technically adept professionals is needed to meet these challenges. We describe a new professional Masters degree in greenhouse gas management and accounting at Colorado State University. This effort leverages existing, internationally-recognized expertise from across campus and partners from agencies and industry, enabling students from diverse backgrounds to develop the skills needed to fill this emerging demand.

  11. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  12. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions

  13. Spatially-Explicit Estimates of Greenhouse Gas Emissions from Fire and Land-Use Change in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Spera, S. A.; Coe, M. T.; Costa, C., Jr.

    2014-12-01

    Understanding the multiple types of land-use changes that can occur within an ecosystem provides a comprehensive picture of the human's impact on natural systems. We use the Cerrado (savanna) of Brazil to examine the primary and secondary impacts of land-use change on greenhouse gas emissions. The primary land-use changes include fires for land-clearing, conversions to pasture and row-crop agriculture, and shifting management practices of agricultural lands. Secondary land-use changes include savanna degradation due to fires that escape from intended burn areas. These escape fires typically have a lower combustion completion coefficient than clearing fires, so it is important to distinguish them to correctly estimate the regional greenhouse gas budget. We have created a first-order spatio-temporal model of greenhouse gas emissions that can be easily modified for other savanna regions using globally available data products as inputs. Our data inputs are derived from publically available remote sensing imagery. Initial biomass is estimated by Baccini et al. 2012, which is derived from LiDAR and MODIS imagery. All other input data sets give annual estimates. Clearing of the savanna is documented by LAPIG of Universidade Federal de Goias using MODIS (MOD13Q1), LANDSAT and CBERS images. MODIS burned area products delineate annual fires; in combination with the savanna clearing database we determine primary and escape fires. Pastures and row-crop agriculture are documented by LAPIG and Spera et al. 2014, respectively. The row-crop agriculture dataset enables us to estimate greenhouse gas emissions associated with specific crops (e.g., soy or maize) and management (e.g., fertilizer use). Recent contributions to the literature have provided many in situ measurements from the land-use changes of interest needed to estimate a regional greenhouse gas budget, including combustion coefficients of savanna sub-types, carbon emission soil stocks, nitrogen emissions from fertilizer

  14. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... passenger automobiles and light trucks. (1) For a given individual model year's production of passenger... multiplied by the total production of that model type/footprint combination for the appropriate model year...

  15. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... passenger automobiles and light trucks. (1) For a given individual model year's production of passenger... the total production of that model type/footprint combination for the appropriate model year. (C) The...

  16. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  17. Fuel use and greenhouse gas emissions of world fisheries

    NASA Astrophysics Data System (ADS)

    Parker, Robert W. R.; Blanchard, Julia L.; Gardner, Caleb; Green, Bridget S.; Hartmann, Klaas; Tyedmers, Peter H.; Watson, Reg A.

    2018-04-01

    Food production is responsible for a quarter of anthropogenic greenhouse gas (GHG) emissions globally. Marine fisheries are typically excluded from global assessments of GHGs or are generalized based on a limited number of case studies. Here we quantify fuel inputs and GHG emissions for the global fishing fleet from 1990-2011 and compare emissions from fisheries to those from agriculture and livestock production. We estimate that fisheries consumed 40 billion litres of fuel in 2011 and generated a total of 179 million tonnes of CO2-equivalent GHGs (4% of global food production). Emissions from the global fishing industry grew by 28% between 1990 and 2011, with little coinciding increase in production (average emissions per tonne landed grew by 21%). Growth in emissions was driven primarily by increased harvests from fuel-intensive crustacean fisheries. The environmental benefit of low-carbon fisheries could be further realized if a greater proportion of landings were directed to human consumption rather than industrial uses.

  18. THE GREENHOUSE EFFECT OF THE ARCTIC ATMOSPHERE.

    DTIC Science & Technology

    Some of this absorbed heat is radiated back to the earth’s surface. This process is generally called the ’ greenhouse effect ’ of the atmosphere...of the terrestrial radiation escapes through the atmosphere. The values for two equations representing the ’ greenhouse effect ’ are discussed. Both

  19. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    PubMed

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  20. 13. Greenhouse, east elevation. The boardandbatten wall covers an opening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Greenhouse, east elevation. The board-and-batten wall covers an opening that was originally fitted with windows which allowed sunlight into the greenhouse. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  2. Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.

    2008-12-01

    Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.

  3. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  4. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    PubMed

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils.

    PubMed

    Kalkhajeh, Yusef Kianpoor; Huang, Biao; Hu, Wenyou; Holm, Peter E; Bruun Hansen, Hans Christian

    2017-04-01

    Chinese greenhouse vegetable production can cause eutrophication of fresh waters due to heavy use of fertilizers. To address this, phosphorus (P) leaching was compared between two major greenhouse vegetable soils from Jiangsu Province, Southeast China: clayey and acid-neutral Guli Orthic Anthrosols and sandy and alkaline Tongshan Ustic Cambosols. A total of 20 intact soil columns were collected based on differences in total P content varying between 1360 and 11,220 mg kg -1 . Overall, six leaching experiments were carried out with collection of leachates over 24 h. Very high P concentrations, with a mean of 3.43 mg L -1 , were found in the leachates from P rich Tongshan soils. In contrast, P leaching from fine-textured but less P rich Guli soils rarely exceeded the suggested environmental P threshold of 0.1 mg L -1 . Strong linear correlations were found between different soil test P measures (STPs) or degree of P saturations (DPSs) and dissolved reactive P (DRP) for Tongshan soil columns. The correlations with Olsen P (r 2  = 0.91) and DPS based on MehlichIII extractable calcium (DPS M3-Ca ) (r 2  = 0.87) were the most promising. An Olsen P value above 41 mg kg -1 or a DPS M3-Ca above 3.44% led to DRP leaching exceeding 0.1 mg L -1 . Accordingly, more than 80% of Tongshan soils resulted in DRP leaching exceeding the environmental P threshold. In conclusion P rich alkaline sandy soils used for greenhouse vegetable production are at high risk of P mobilization across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Micrometeorites in the Post-lunar Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Maurette, Michel

    On the Earth, an astonishing balance between the absorption and scattering of solar radiation by the early Earth produced the remarkable benign greenhouse effect favourable to the origin and evolution of life. Indeed, the first constraint on any scenario is that the early oceans were not boiling or freezing! It is generally considered that the temperature has to be sufficiently high to prevent freezing at a time when the solar luminosity was smaller than today. But it has to be kept sufficiently low by some mysterious feedback effect, in order to protect the Earth from a runaway greenhouse effect, which led to a surface temperature of about 450 °C on Venus. In fact, the long-lasting micrometeorite thermospheric volcanism effective after the Moon-forming impact, should have ruled the post-lunar greenhouse effect that was critical for the birth of life. Indeed, this impact eradicated at once all atmospheric ingredients of the pre-lunar greenhouse effect at a time when the young Earth was already almost fully outgassed. Subsequently, micrometeorites released simultaneously greenhouse gases for heating and smoke particles for cooling. These micrometeorite ashes resided temporarily within a kind of giant thermospheric cocoon, which might have functioned as a self-regulating IR heater during the period of low solar luminosity. Indeed, it was simultaneously heated up from the inside through the aerodynamical braking of micrometeorites.

  7. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    PubMed

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-06-24

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.

  8. [Greenhouse gardeners and sickness absence. A questionnaire study among greenhouse gardeners in Aarhus region].

    PubMed

    Pallesen, Ellen; Nielsen, Claus Vinther; Drews, Birgit Mammen

    2007-02-26

    The aim of the study was to examine sickness absence and risk factors for sickness absence in a population of greenhouse gardeners in the county of Arhus. The study was cross sectional and based on data from questionnaires sent to all employees and greenhouse gardens in the county. Greenhouse gardeners had an average of four days of sickness absence a year. Self-rated health was poorer than average of the Danish population in general. Female gender, age below 40 years, troublesome relationships to family and friends, "poor" physical working environment and job insecurity were all predictors for increased risk of sickness absence lasting more than two weeks a year. Sickness absence was low compared to the average of the Danish labour market. Considering poorer self-rated health and frequent occurrence of some of the above-mentioned predictors for increased risk of sickness absence--female gender, age below 40 years and for women, high exposure to "poor" physical working environment--an average sickness absence of only four days was a puzzle. The data from the study were not sufficient to explain this paradox. It might be due to compensating factors at work or at a personal level. It might be due to information bias, as sickness absence could be underestimated, but agreement between reported sickness absence from employees and greenhouse gardens diminished that probability. It might have been a consequence of selection bias, the "healthy workers'" effect. Employees with considerable sickness absence might have been dismissed for long-term absence or might have quit the job because they were not able to cope with it.

  9. Perfluoroalkyl Amines: A New Class of Long-Lived Greenhouse Gases?

    NASA Astrophysics Data System (ADS)

    Young, C. J.; Mabury, S. A.

    2008-12-01

    Polyfluorinated compounds have the potential to act as potent greenhouse gases, due to absorption of the carbon-fluorine bond in the atmospheric window. Perfluoroalkyl amines are a class of thermally and chemically stable compounds marketed for use in numerous applications, including electronic testing and heat transfer. To assess the potential for climate impact, the radiative efficiency and atmospheric lifetime of perfluorotributyl amine (PFBAm) were determined. PFBAm was shown to have a radiative efficiency of 0.86 W m-2 ppb-1, which is higher than any compound yet detected in the atmosphere. The lifetime of this compound is likely limited by photolysis in the mesosphere, on the timescale of 800 years. The potential for perfluoroalkyl amines to behave as greenhouse gases is only realized if they are present in the atmosphere. The perfluorotripropyl and perfluorotrihexyl amine congeners are listed as high-production chemicals, with production in the range of hundreds of tonnes between 1986 and 2002 (1). An air sampling, extraction and analysis method employing thermal desorption, cryofocusing and GC-MS with negative chemical ionization has been developed to detect perfluoroalkyl amines in the atmosphere. Results and implications of the air sampling study will be discussed. (1)Howard, P. H.; Meylan, W. "EPA Great Lakes Study for Identification of PBTs to Develop Analytical Methods: Selection of Additional PBTs - Interim Report," EPA Contract No. EP-W-04-019, 2007.

  10. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. Copyright © 2015. Published

  11. Greenhouse Gas Emissions Driven by the Transportation of Goods Associated with French Consumption.

    PubMed

    Hawkins, Troy R; Dente, Sebastien M R

    2010-11-15

    The transportation of goods plays a significant role in the overall greenhouse gas emissions from consumption. This study investigates the connections between French household consumption and production and transportation-related emissions throughout product supply chains. Here a two-region, environmentally extended input-output model is combined with a novel detailed, physical-unit transportation model to examine the connection between product, location of production, choice of transport mode, and greenhouse gas emissions. Total emissions associated with French household consumption are estimated to be 627 MtCO2e, or 11 tCO2e per capita. Of these, 3% are associated with the transportation of goods within France and 10% with transport of goods outside or into France. We find that most transport originating in northern Europe is by road, whereas most transport from other regions is conducted by sea and ocean transport. Rail, inland water, and air transportation play only a minor role in terms of mass, tonne-kilometers, and greenhouse gas emissions. By product, transport of coal and coke and intermediate goods make the largest contribution to overall freight transport emissions associated with French household consumption. In terms of mass, most goods are transported by road while in terms of tonne-kilometers, sea and ocean transport plays the largest role. Road transport contributes the highest share to the transport of all goods with the exceptions of coal and coke and petroleum. We examine the potential for emissions reductions associated with shifting 10% of direct imports by air freight to sea and ocean or road transport and find that the potential reductions are less than 0.03% of total emissions associated with French consumption. We also consider shifting 10% of direct imports by road transport to rail or inland water and find potential reductions on the order of 0.4−0.5% of the total or 3−4% of the freight transport emissions associated with French

  12. Energy use and greenhouse gas emissions in organic and conventional grain crop production: accounting for nutrient inflows

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a large source of greenhouse gas (GHG) emissions with large energy requirements. Previous research has shown that organic farming and conservation tillage practices can reduce environmental impacts from agriculture. We used the Farm Energy Analysis Tool (FEAT) to quantify the energy u...

  13. [Analyzing the factors of influencing the musculoskeletal disorders of greenhouse vegetable farmers].

    PubMed

    Dong, Hong-yun; Li, Hong-jun; Yu, Su-fang

    2012-03-01

    To study the prevalence of musculoskeletal disorders (MSDs) among greenhouse vegetable farmers and to explore the risk factors of MSDs. A household questionnaire survey was conducted to investigate 203 greenhouse vegetable farmers and 127 non-greenhouse vegetable farmers in February, 2011. The one-year prevalence rates of MSDs were 70.0% and 33.9% among greenhouse vegetable farmers and non-greenhouse vegetable farmers, respectively. The three main positions of MSDs in greenhouse farmers were low back, knee (s) and shoulder (s). Age, working years, body weight and usage of rolling machine were statistically associated with MSDs of greenhouse farmers, ORadj values were 1.17, 1.82, 1.08 and 0.07, respectively. The prevalence of MSDs is high in greenhouse workers. Low back pain, knee (s), and shoulder (s) disorders are the main disorders. Age, working years, body weight and usage of rolling machine are main risk factors for the development of MSDs in greenhouse farmers.

  14. Multi-purpose greenhouse of changeable geometry (MGCG)

    NASA Astrophysics Data System (ADS)

    Kordium, V.; Kornejchuk, A.

    In the frames of scientific program of National Cosmic Agency of Ukraine the multipurpose greenhouse is being developed. It is destined for the performance of biological and biotechnological experiments as well as for planting of fast growing vegetable cultures for crew ration enrichment and positive psychological influence under the conditions of long-term flight in the international space station or in other cosmic flying objects. Main principle of greenhouse arrangement is the existence of unified modules. Their sets and combinations permit to form executively different space greenhouse configurations. The minimal structural greenhouse unit suitable either for construction of total configuration or for autonomous functioning, is a carrying composite platform (CCP). The experimental vegetative module (EVM) and the module, supporting microclimate needed inside EVM, are launched to CCP. The amount of these modules and their configuration depend on quantity and complexity of tasks to be solved as well as on duration of their performance. These modules form the experimental block. Four modules of much larger sizes, which form experimentally technological block, are used for further studies of objectives approved in the experimental block. The technologies developed for growing plants are used in the third, technological block, which is a one large vegetative module. All three greenhouse blocks can be changed in their sizes in three dimensions, and function either in a complete greenhouse structure, or autonomously. The control is performed from a board computer, or, if necessary, it is governed with automation devices placed on a front panel of blocks. All three blocks are pulled out along the directing base into the station passage, and this makes free access to the base modules, convenient work with them, and à good survey.

  15. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China.

    PubMed

    Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi

    2014-01-01

    Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.

  16. Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China

    PubMed Central

    Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi

    2014-01-01

    Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs. PMID:24747982

  17. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    PubMed

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  18. Using a wood stove to heat greenhouses

    Treesearch

    Gloria Whitefeather-Spears

    2009-01-01

    The Red Lake Tribal Forestry Greenhouse in Red Lake, MN, utilizes four types of outdoor furnaces for heating through the fall, winter, and spring. The WoodMaster® is a highly efficient, wood-fired furnace that provides forced-air heat to the greenhouse. The HeatmorTM furnace is an economical wood-fired alternative that can provide lower...

  19. Light valve based on nonimaging optics with potential application in cold climate greenhouses

    NASA Astrophysics Data System (ADS)

    Valerio, Angel A.; Mossman, Michele A.; Whitehead, Lorne A.

    2014-09-01

    We have evaluated a new concept for a variable light valve and thermal insulation system based on nonimaging optics. The system incorporates compound parabolic concentrators and can readily be switched between an open highly light transmissive state and a closed highly thermally insulating state. This variable light valve makes the transition between high thermal insulation and efficient light transmittance practical and may be useful in plant growth environments to provide both adequate sunlight illumination and thermal insulation as needed. We have measured light transmittance values exceeding 80% for the light valve design and achieved thermal insulation values substantially exceeding those of traditional energy efficient windows. The light valve system presented in this paper represents a potential solution for greenhouse food production in locations where greenhouses are not feasible economically due to high heating cost.

  20. Accounting For Greenhouse Gas Emissions From Flooded Lands

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  1. Computer simulation of energy use, greenhouse gas emissions and process economics of the fluid milk process

    USDA-ARS?s Scientific Manuscript database

    On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...

  2. Benefits of sustainable waste management in the vegetable greenhouse industry.

    PubMed

    Cheuk, William; Lo, Kwang Victor; Branion, Richard M R; Fraser, Bud

    2003-11-01

    This study investigated the benefits of an on-site sustainable solid waste treatment and utilization system for the greenhouse industry. The composts made from greenhouse wastes were tested and found to contain high nutrient values and good physical properties, and could be used as high quality growing media. The finished composts were tested in a greenhouse against the conventional growth media (sawdust) and resulted in a 10% yield increase by using the compost. An economic analysis was conducted to show the economic benefits of on-site composting for a greenhouse operation. Based on a four-hectare tomato or pepper greenhouse, and amortizing the capital equipment over five years, the net annual cost of composting represents a savings of dollars 8,000 annually.

  3. Empirical Quantification of the Runaway Greenhouse Limit on Earth

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Dewey, M. C.

    2015-12-01

    There have been many modeling studies of the runaway greenhouse effect and the conditions required to produce one on an Earth-like planet, however these models have not been verified with empirical evidence. It has been suggested that the Earth's tropics may be near a state of localized runaway greenhouse, meaning the surface temperature and atmospheric composition in those areas could cause runaway greenhouse, were it not for the tempering effects of meridional heat transport and circulation (Pierrehumbert, 1995). Using the assumption that some areas of the Earth's tropics may be under these conditions, this study uses measurements of the atmospheric properties, surface properties, and radiation budgets of these areas to quantify a radiation limit for runaway greenhouse on Earth, by analyzing the dependence of outgoing longwave radiation (OLR) at the top of the atmosphere on surface temperature and total column water vapour. An upper limit on OLR for clear-sky conditions was found between 289.8 W/m2 and 292.2 W/m2, which occurred at surface temperatures near 300K. For surface temperatures above this threshold, total column water vapour increased, but OLR initially decreased and then remained relatively constant, between 273.6 W/m2 and 279.7 W/m2. These limits are in good agreement with recent modeling results (Goldblatt et al., 2013), supporting the idea that some of the Earth's tropics may be in localized runaway greenhouse, and that radiation limits for runaway greenhouse on Earth can be empirically derived. This research was done as part of Maura Dewey's undergraduate honours thesis at the University of Victoria. Refs: Robert T. Pierrehumbert. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Sciences, 52(10):1784-1806, 1995. Colin Goldblatt, Tyler D. Robinson, Kevin J. Zahnle, and David Crisp. Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience, 6:661-667, 2013.

  4. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.

    PubMed

    Brandt, Adam R

    2012-01-17

    Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.

  5. Developing and demonstrating low-energy climate control and production techniques for greenhouse-grown citrus and ornamental crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodnaruk, W.H. Jr.

    1983-04-01

    The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/supmore » 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.« less

  6. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    PubMed Central

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  7. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea.

    PubMed

    Kim, Jeong Myeong; Roh, An-Sung; Choi, Seung-Chul; Kim, Eun-Jeong; Choi, Moon-Tae; Ahn, Byung-Koo; Kim, Sun-Kuk; Lee, Young-Han; Joa, Jae-Ho; Kang, Seong-Soo; Lee, Shin Ae; Ahn, Jae-Hyung; Song, Jaekyeong; Weon, Hang-Yeon

    2016-12-01

    Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca 2+ , Mg 2+ , Na + , and K + ), available P 2 O 5 , organic matter, and NO 3 -N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R 2 = 0.1683, P < 0.001) and diversity (pH: R 2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca 2+ , Mg 2+ , Na + , and K + . Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop

  8. 5. Greenhouse and storeroom, west elevation. Portions of the storeroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Greenhouse and storeroom, west elevation. Portions of the storeroom might predate the greenhouse construction (1760-1761), however the two structures were not linked until late in the eighteenth century or early in the nineteenth century. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  9. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langhans, R.W.

    1994-12-31

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. This report describes the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses. Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with programmable, accurate temperature, relative humidity (RH) and irradiance control over wide ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research results directly to the greenhouse or outside. It was realized thatmore » sunlight and outside conditions could not be mimicked. Growth chambers are also used to study irradiance and spectral fluxes. Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 90% RH and ambient to 1000 ppm CO{sub 2}), and commonly independent of outside conditions. Irradiance requirements for growth rooms are similar to those of growth chambers. Growth rooms are also used for growing a large number of plants in a uniform standard environment condition and in commercial horticulture for tissue culture, seed germination (plugs) and seedling growth. Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially greenhouses were used to extend the growing season. Then as heating systems, and cooling systems improved, they were used year round. Low light during the winter months reduced plant growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to increase growth to rates close to that in summer months. Supplementary lighting is used during low light periods of the year and anytime to ensure consistent total daily irradiance for research plants.« less

  10. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However

  11. Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop

    PubMed Central

    Duval, Benjamin D.; Anderson-Teixeira, Kristina J.; Davis, Sarah C.; Keogh, Cindy; Long, Stephen P.; Parton, William J.; DeLucia, Evan H.

    2013-01-01

    Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46–76 Mg dry mass⋅ha−1). Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq⋅m−2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions. PMID:23991028

  12. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  13. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  14. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function

    USGS Publications Warehouse

    Antoninka, Anita; Bowker, Matthew A.; Reed, Sasha C.; Doherty, Kyle

    2016-01-01

    Mosses are an often-overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to precipitation, and reproduce vegetatively. With these qualities, dryland mosses have the potential to be an excellent dryland restoration material. Unfortunately, dryland mosses are often slow growing in nature, and ex situ cultivation methods are needed to enhance their utility. Our goal was to determine how to rapidly produce, vegetatively, Syntrichia caninervis and S. ruralis, common and abundant moss species in drylands of North America and elsewhere, in a greenhouse. We manipulated the length of hydration on a weekly schedule (5, 4, 3, or 2 days continuous hydration per week), crossed with fertilization (once at the beginning, monthly, biweekly, or not at all). Moss biomass increased sixfold for both species in 4 months, an increase that would require years under dryland field conditions. Both moss species preferred short hydration and monthly fertilizer. Remarkably, we also unintentionally cultured a variety of other important biocrust organisms, including cyanobacteria and lichens. In only 6 months, we produced functionally mature biocrusts, as evidenced by high productivity and ecosystem-relevant levels of N2 fixation. Our results suggest that biocrust mosses might be the ideal candidate for biocrust cultivation for restoration purposes. With optimization, these methods are the first step in developing a moss-based biocrust rehabilitation technology.

  15. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia.

    PubMed

    Kusin, Faradiella Mohd; Akhir, Nurul Izzati Mat; Mohamat-Yusuff, Ferdaus; Awang, Muhamad

    2017-02-01

    The environmental impacts with regard to agro-based biofuel production have been associated with the impact of greenhouse gas (GHG) emissions. In this study, field GHG emissions during plantation stage of palm oil-based biofuel production associated with land use changes for oil palm plantation development have been evaluated. Three different sites of different land use changes prior to oil palm plantation were chosen; converted land-use (large and small-scales) and logged-over forest. Field sampling for determination of soil N-mineralisation and soil organic carbon (SOC) was undertaken at the sites according to the age of palm, i.e. <5 years (immature), 5-20 and >21 years (mature oil palms). The field data were incorporated into the estimation of nitrous oxide (N 2 O) and the resulting CO 2 -eq emissions as well as for estimation of carbon stock changes. Irrespective of the land conversion scenarios, the nitrous oxide emissions were found in the range of 6.47-7.78 kg N 2 O-N/ha resulting in 498-590 kg CO 2 -eq/ha. On the other hand, the conversion of tropical forest into oil palm plantation has resulted in relatively higher GHG emissions (i.e. four times higher and carbon stock reduction by >50%) compared to converted land use (converted rubber plantation) for oil palm development. The conversion from previously rubber plantation into oil palm plantation would increase the carbon savings (20% in increase) thus sustaining the environmental benefits from the palm oil-based biofuel production.

  16. Net global warming potential and greenhouse gas intensity

    USDA-ARS?s Scientific Manuscript database

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  17. Workplace concentrations and exposure assessment of monoterpenes in rosemary- and lavender-growing greenhouses.

    PubMed

    Tani, Akira; Nozoe, Susumu

    2012-01-01

    Monoterpenes can positively or negatively affect human health depending on their concentrations. To assess the atmospheric risk for greenhouse workers, monoterpene concentrations and personal exposure in herb-growing greenhouses were measured. Monoterpene concentrations in a commercial greenhouse, where rosemary (Rosmarinus officinalis L.) and lavender (Lavandula angustifolia L.) were grown in pots, were measured every 4 hours on 11 days spread across a year. In a small experimental greenhouse, typical horticultural tasks were conducted to determine the factors increasing monoterpene concentrations. Concentrations of α-pinene, camphene, β-pinene, limonene and cineole in the farmer's greenhouse were higher in winter than in summer because of longer ventilation periods of the greenhouse in summer. Further, the concentrations of these compounds were high (but <2 parts per billion in volume [ppbv]) when horticultural tasks were conducted inside the greenhouse. In a small experimental greenhouse, moving pots and cutting shoots increased ambient monoterpene concentrations to 10 ppbv. Spraying water also increased monoterpene concentrations but to a lesser extent. When performing tasks, greenhouse workers were exposed to monoterpene concentrations 2-3 times higher than the concentration in the ambient greenhouse air. Our measurement results reveal that monoterpene emissions are stimulated by horticultural tasks, even by spraying water. Our calculation result suggests that if ventilation is limited, the concentrations can reach levels high enough to cause sensory irritation in greenhouse workers. Greenhouse workers should be cautious when performing tasks for hours in tightly closed herb-growing greenhouses.

  18. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  19. Ecosystem recovery: a neglected factor in greenhouse gas emission from permafrost degradation.

    NASA Astrophysics Data System (ADS)

    van Huissteden, J.; Mi, Y.; Gallagher, A.; Budishchev, A.

    2012-04-01

    It is estimated that northern soils hold nearly twice as much carbon as the atmosphere. Permafrost degradation caused by a warming climate will destabilize this carbon store. Part of this carbon will enter the atmosphere as CO2 or CH4, contributing to a positive feedback on climate warming. However, a neglected factor is the recovery of ecosystems after permafrost thaw. Modeling of thaw lake expansion and drainage has shown that thaw lake expansion by climatic warming is strongly limited by lake drainage. Thaw lakes are drained or filled in with sediment, followed by recolonization by generally productive wetland ecosystems. Decomposition of soil carbon also releases nutrients, enhancing vegetation recolonization in types of permafrost degradation features. Examples from the Kytalyk/Chokurdagh research site in the Indigirka lowlands of northeastern Siberia illustrate that ecosystem recovery after localized permafrost degradation may effectively counteract carbon loss. The research site is located in a drained Early Holocene thaw lake basin, and is presently a greenhouse gas sink during the growing season. Formation of thaw ponds has increased strongly recently. Although fresh ponds may be emitting CO2 and CH4, they are rapidly invaded by vegetation which decreases net greenhouse gas emission, although the ponds continue to be a source of CH4. Areas of intense mass wasting by permafrost slides are colonized by a productive pioneer vegetation, contributing to stabilization of the soil and enhancing CO2 uptake. It is therefore essential that not only the greenhouse gas emission related to permafrost degradation is quantified, but also the carbon sinks and recovery rates. Paleo-environmental and geomorphological studies may help to quantify recovery processes, in particular those processes that leave their trace in the sedimentary record. For instance Pleistocene and younger thaw lake deposits in Europe and Siberia may provide information on carbon loss and carbon

  20. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the following methods...

  1. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    NASA Astrophysics Data System (ADS)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  2. How ground-based observations can support satellite greenhouse gas retrievals

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  3. A proposal for climate stability on H2-greenhouse planets

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2015-12-01

    A terrestrial planet in an orbit far outside of the standard habitable zone could maintain surface liquid water as a result of H2-H2 collision-induced absorption by a thick H2 atmosphere. Without a stabilizing climate feedback, however, habitability would be accidental and likely brief. We propose a stabilizing climate feedback for such a planet that requires only biological production of H2 to balance net loss to space that has some optimal temperature, and operates less efficiently at higher temperatures. A stable feedback is possible on such a planet through which a perturbation increasing temperature decreases H2 production, which decreases H2 greenhouse warming and therefore temperature. The potential of such a feedback makes H2-warmed planets more attractive astrobiological targets.

  4. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-01-01

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987

  5. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.

    PubMed

    Bradley, Geoffrey G; Punja, Zamir K

    2010-11-01

    Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.

  6. 10. Detail view, greenhouse, south wall. These groundlevel openings were ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view, greenhouse, south wall. These ground-level openings were part of the original heating system used to warm the greenhouse. The openings were likely related to the flues, while a larger opening to the west (not in photograph) contained an exterior-fed iron stove. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  7. Non-CO2 Greenhouse Gases: International Emissions and Projections

    EPA Pesticide Factsheets

    EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.

  8. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2018-05-18

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  10. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    PubMed

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-09-01

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Assessment of psychosocial risks faced by workers in Almería-type greenhouses, using the Mini Psychosocial Factor method.

    PubMed

    Montoya-García, M E; Callejón-Ferre, A J; Pérez-Alonso, J; Sánchez-Hermosilla, J

    2013-03-01

    This work reports the use of the Mini Psychosocial Factor (MPF) method for assessing the psychosocial risks faced by agricultural workers in the greenhouses of Almería (Spain) with the aim of improving their health. The variables Rhythm, Mobbing, Relationships, Health, Recognition, Autonomy, Emotional Involvement, Support, Compensation, Control, Demands, and Mental Load were recorded using a pre-validated questionnaire containing 15 questions. The sex, age, and nationality of the respondents (n = 310) were also recorded, as were the type of greenhouse in which each worked, the size of the greenhouse, and the crop grown. The results showed psychosocial risks to exist for the workers. Multiple correspondence analysis, however, showed that moderate risks can be offset by new prevention programmes that improve Spanish legislation in terms of workers' salaries, worker-employer social days, work timetables to facilitate family life, and training courses. This could improve the work environment and health of Almería's greenhouse workers as well as their productivity. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  13. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  14. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  15. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  16. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  17. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    PubMed

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  18. Cloudy Greenhouse on Noachian Mars

    NASA Astrophysics Data System (ADS)

    Toon, Owen B.; Wolf, E.; Urata, R. A.

    2013-10-01

    Urata and Toon (Icarus, Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate 226, 229-250, 2013) show that a cloudy greenhouse, which likely needs to be induced by a large impact, can create a stable Martian climate during the Noachian with global average temperatures just below the freezing point. We also find, if frozen seas or extensive snowfields were present at mid-latitudes, that precipitation rates can be around 10 cm/yr, which is 10% of current terrestrial values, in certain regions. The regions favored with high precipitation rates vary with obliquity, and so they will sweep across the regions observed to have river valley networks over time. More than 200 mbar of CO2 must be present to maintain the greenhouse, mainly because efficient heat transport to the poles is required to prevent the water from being cold trapped at the poles. The era with extensive precipitation thus ended with the lowering of CO2 pressures below 200 mbar. In this talk we discuss the results of this modeling work for Mars and contrast it with similar work for the Archaen Earth, where we are not able to create a cloudy greenhouse, and instead water clouds cool the planet.

  19. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  20. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    PubMed Central

    Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.

    2013-01-01

    Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  1. Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)

    NASA Astrophysics Data System (ADS)

    Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos

    2014-05-01

    Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.

  2. FETC Programs for Reducing Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases causemore » forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.« less

  3. Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production.

    PubMed

    Hughes, David J; West, Jonathan S; Atkins, Simon D; Gladders, Peter; Jeger, Michael J; Fitt, Bruce Dl

    2011-09-01

    The U.K. government has published plans to reduce U.K. agriculture's greenhouse gas (GHG) emissions. At the same time, the goal of global food security requires an increase in arable crop yields. Foliar disease control measures such as fungicides have an important role in meeting both objectives. It is estimated that U.K. winter barley production is associated with GHG emissions of 2770 kg CO2 eq. ha(-1) of crop and 355 kg CO2 eq. t(-1) of grain. Foliar disease control by fungicides is associated with decreases in GHG emissions of 42-60 kg CO2 eq. t(-1) in U.K. winter barley and 29-39 kg CO2 eq. t(-1) in U.K. spring barley. The sensitivity of these results to the impact of disease control on yield and to variant GHG emissions assumptions is presented. Fungicide treatment of the major U.K. arable crops is estimated to have directly decreased U.K. GHG emissions by over 1.5 Mt CO2 eq. in 2009. Crop disease control measures such as fungicide treatment reduce the GHG emissions associated with producing a tonne of grain. As national demand for food increases, greater yields as a result of disease control also decrease the need to convert land from non-arable to arable use, which further mitigates GHG emissions. Copyright © 2011 Society of Chemical Industry.

  4. Greenhouse Gas Mitigation Options Database and Tool - Data ...

    EPA Pesticide Factsheets

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop

  5. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets

    NASA Astrophysics Data System (ADS)

    Heller, Martin C.; Willits-Smith, Amelia; Meyer, Robert; Keoleian, Gregory A.; Rose, Donald

    2018-04-01

    Human food systems are a key contributor to climate change and other environmental concerns. While the environmental impacts of diets have been evaluated at the aggregate level, few studies, and none for the US, have focused on individual self-selected diets. Such work is essential for estimating a distribution of impacts, which, in turn, is key to recommending policies for driving consumer demand towards lower environmental impacts. To estimate the impact of US dietary choices on greenhouse gas emissions (GHGE) and energy demand, we built a food impacts database from an exhaustive review of food life cycle assessment (LCA) studies and linked it to over 6000 as-consumed foods and dishes from 1 day dietary recall data on adults (N = 16 800) in the nationally representative 2005–2010 National Health and Nutrition Examination Survey. Food production impacts of US self-selected diets averaged 4.7 kg CO2 eq. person‑1 day‑1 (95% CI: 4.6–4.8) and 25.2 MJ non-renewable energy demand person‑1 day‑1 (95% CI: 24.6–25.8). As has been observed previously, meats and dairy contribute the most to GHGE and energy demand of US diets; however, beverages also emerge in this study as a notable contributor. Although linking impacts to diets required the use of many substitutions for foods with no available LCA studies, such proxy substitutions accounted for only 3% of diet-level GHGE. Variability across LCA studies introduced a ±19% range on the mean diet GHGE, but much of this variability is expected to be due to differences in food production locations and practices that can not currently be traced to individual dietary choices. When ranked by GHGE, diets from the top quintile accounted for 7.9 times the GHGE as those from the bottom quintile of diets. Our analyses highlight the importance of utilizing individual dietary behaviors rather than just population means when considering diet shift scenarios.

  6. [Comparison of productivity of different vitamin green technologies under the space station conditions].

    PubMed

    Levinskikh, M A

    2002-01-01

    At present, fresh plant products for nutrition of the International space station (ISS) crews are delivered from Earth in small quantities. Regular supply of additional fresh greens could be positive for improvement as of nutrition, so psychophysical state of ISS crews. Vitamin greens can be produced with the use of various technologies: planting leaf cultures in greenhouses, forcing the greens from onions and root vegetables (onion, garlic, chicory, beet, parsley etc.), and germinating seeds. Purpose of this study was to compare productivity of these technologies in order to specify inputs for designers of a vitamin greenhouse to be mounted in the space station and a Martian vehicle. Based on comparison of the productivity of various technologies, specific productivity of different greenhouses per a unit of power consumption, and a volume unit it will be maximal if used for germinating seeds and minimal if used for growing leaf vegetables in a greenhouse with a cylindrical crop surface.

  7. [Evaluation indices of greenhouse gas mitigation technologies in cropland ecosystem].

    PubMed

    Li, Jian-zheng; Wang, Ying-chun; Wang, Li-gang; Li, Hu; Qiu, Jian-jun; Wang, Dao-long

    2015-01-01

    In spite of the increasing studies on greenhouse gas (GHG) emissions mitigation technologies, there is still a lack of systematic indices for evaluation of their overall impacts in croplands. In this study, we collected all the indices relating to greenhouse gas emissions and analyzed each index following the principles of representativeness, objectivity, completeness, dominance and operability. Finally, we proposed evaluation indices for mitigation technologies based on the current situation of China. Crop yield per unit area was proposed as a constrained index, and greenhouse gas emissions intensity, defined as GHG emissions per unit of produced yield, was proposed as comprehensive index to evaluate the greenhouse effect of various croplands mitigation technologies. Calculation of GHG emissions intensity involved yield, change of soil organic carbon, direct N2O emissions, paddy CH4 emissions and direct and indirect emissions from inputs into croplands. By following these evaluation indices, the greenhouse effect of the technologies could be well evaluated, which could provide scientific basis for their further adoption.

  8. Seasonal variation of early diagenesis and greenhouse gas production in coastal sediments of Cadiz Bay: Influence of anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Burgos, Macarena; Ortega, Teodora; Bohórquez, Julio; Corzo, Alfonso; Rabouille, Christophe; Forja, Jesús M.

    2018-01-01

    Greenhouse gas production in coastal sediments is closely associated with the early diagenesis processes of organic matter and nutrients. Discharges from anthropogenic activities, particularly agriculture, fish farming and waste-water treatment plants supply large amounts of organic matter and inorganic nutrients that affect mineralization processes. Three coastal systems of Cadiz Bay (SW Spain) (Guadalete River, Rio San Pedro Creek and Sancti Petri Channel) were chosen to determine the seasonal variation of organic matter mineralization. Two sampling stations were selected in each system; one in the outer part, close to the bay, and another more inland, close to a discharge point of effluent related to anthropogenic activities. Seasonal variation revealed that metabolic reactions were driven by the annual change of temperature in the outer station of the systems. In contrast, these reactions depended on the amount of organic matter reaching the sediments in the outermost part of the systems, which was higher during winter. Oxygen is consumed in the first 0.5 cm indicating that suboxic and anoxic processes, such as denitrification, sulfate reduction and methanogenesis are important in these sediments. Sulfate reduction seems to account for most of the mineralization of organic matter at the marine stations, while methanogenesis is the main pathway at the sole freshwater station of this study, located inside the estuary of the Guadalete River, because of the lack of sulfate as electron acceptor. Results point to denitrification being the principal process of N2O formation. Diffusive fluxes varied between 2.6 and 160 mmol m-2 d-1 for dissolved inorganic carbon (DIC); 0.9 and 164.3 mmol m-2 d-1 for TA; 0.8 and 17.4 μmol m-2 d-1 for N2O; and 0.1 μmol and 13.1 mmol m-2 d-1 for CH4, indicating that these sediments act as a source of greenhouse gases to the water column.

  9. Methane production as key to the greenhouse gas budget of thawing permafrost on climate relevant time scales

    NASA Astrophysics Data System (ADS)

    Knoblauch, C.; Beer, C.; Liebner, S.; Schütt, A.; Grigoriev, M.; Pfeiffer, E. M.

    2017-12-01

    Permafrost in circum-arctic soils stores as much carbon as the global atmosphere. Permafrost thaw liberates organic matter, which is mineralized by microorganisms to carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) may form a positive feedback to atmospheric CO2 and CH4 concentrations and accelerate climate change. The microbial formation of CH4, which has 28 to 45 times the global warming potential (GWP) of CO2 (100 years time scale), requires anoxic conditions. Current studies indicate that permafrost thaw at the bottom of well drained (oxic) soils cause a higher formation of GHGs than in water saturated (anoxic) soils since more CO2 is formed under oxic conditions and only small amounts of CH4 are formed from permafrost organic matter under anoxic conditions. Here we show through 7-year laboratory incubations and molecular analysis of Siberian permafrost that low CH4 production from permafrost organic matter is due to the lack of active methanogens. Equal amounts of permafrost organic carbon are mineralized to CO2 and CH4 under anoxic conditions after an active methanogenic community has established. Field measurements demonstrate that recently thawed permafrost organic matter is a substantial source for CH4 if primed with surface soil. An organic carbon decomposition model, calibrated with the collected long-term incubation data, predicts a higher loss of permafrost carbon under oxic conditions but a twice as high production of CO2-C equivalents under anoxic conditions when considering a GWP of 28 for CH4. Combining these model results with observed permafrost carbon profile data, up-scaled carbon stocks and thaw depth projections suggests a global formation of 3 - 10 Pg CO2-C from thawing permafrost in oxic soils compared to 0.2 - 0.6 Pg CO2-C and 0.2- 0.8 Pg CH4-C in anoxic soils until 2100. However, based on CO2-C equivalents the GHG production in anoxic soils (2 - 9 Pg CO2-C equivalents) is similar to those in oxic soils

  10. Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses

    PubMed Central

    Riddick, Eric W.

    2017-01-01

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usually did not correlate with aphid reduction. The ratio of aphid reduction/release rate was slightly less for larvae than adults in some studies, suggesting that larvae were less effective (than adults) in suppressing aphids. Some adult releases were inside cages, thereby limiting adult dispersion from plants. Overall, the ratio of aphid reduction/release rate was greatest for ladybird adults of the normal strain (several species combined), but least for adults of a flightless Harmonia axyridis strain. The combined action of ladybirds and hymenopteran parasitoids could have a net positive effect on aphid population suppression and, consequently, on host (crop) plants. However, ladybird encounters with aphid-tending or foraging ants must be reduced. Deploying ladybirds to help manage aphids in greenhouses and similar protective structures is encouraged. PMID:28350349

  11. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  12. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  13. Greenhouse Gas Reductions: SF6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Diana

    2012-04-20

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we savemore » taxpayers over $208,000 each year.« less

  14. How do farm models compare when estimating greenhouse gas emissions from dairy cattle production?

    PubMed

    Hutchings, N J; Özkan Gülzari, Ş; de Haan, M; Sandars, D

    2018-01-09

    The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DairyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet)×two soil types (sandy and clayey)×two feeding systems (grass only and grass/maize). The milk yield per cow, follower:cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO2e)/ha per year, with a range of 1.9 t CO2e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant

  15. Study on highway transportation greenhouse effect external cost estimation in China

    NASA Astrophysics Data System (ADS)

    Chu, Chunchao; Pan, Fengming

    2017-03-01

    This paper focuses on estimating highway transportation greenhouse gas emission volume and greenhouse gas external cost in China. At first, composition and characteristics of greenhouse gases were analysed about highway transportation emissions. Secondly, an improved model of emission volume was presented on basis of highway transportation energy consumption, which may be calculated by virtue of main affecting factors such as the annual average operation miles of each type of the motor vehicles and the unit consumption level. the model of emission volume was constructed which considered not only the availability of energy consumption statistics of highway transportation but also the greenhouse gas emission factors of various fuel types issued by IPCC. Finally, the external cost estimation model was established about highway transportation greenhouse gas emission which combined emission volume with the unit external cost of CO2 emissions. An example was executed to confirm presented model which ranged from 2011 to 2015 Year in China. The calculated result shows that the highway transportation total emission volume and greenhouse gas external cost are growing up, but the unit turnover external cost is steadily declining. On the whole overall, the situation is still grim about highway transportation greenhouse gas emission, and the green transportation strategy should be put into effect as soon as possible.

  16. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  17. Greenhouse gas emissions from traditional and biofuels cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  18. Biochar as a tool to reduce the agricultural greenhouse-gas burden-knowns, unknowns, and future research needs

    USDA-ARS?s Scientific Manuscript database

    Agriculture and land use change has significantly increased atmospheric emissions of greenhouse gasses (GHG) such as nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategi...

  19. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  20. Millipedes and centipedes in German greenhouses (Myriapoda: Diplopoda, Chilopoda)

    PubMed Central

    2014-01-01

    Abstract A review is given of all the literature records of millipedes and centipedes that have been found in German greenhouses together with additional records for 29 such sites. Species lists are given for 46 greenhouses investigated throughout Germany. Thirty-five diplopod and 18 chilopod species were found to occur in greenhouses, of which 15 (3 Chilopoda, 12 Diplopoda) are restricted to this type of habitat. First records for Germany include Anadenobolus monilicornis (Porat, 1876), Epinannolene cf. trinidadensis Chamberlin, 1918, Epinannolene sp., Mesoiulus gridellii Strasser, 1934, Leptogoniulus sorornus (Butler, 1876), Rhinotus purpureus (Pocock, 1894), Cryptops doriae Pocock, 1891, Lamyctes coeculus (Brölemann, 1889) and Tygarrup javanicus (Attems, 1907). The millipedes Oxidus gracilis (C. L. Koch, 1847) and Amphitomeus attemsi (Schubart, 1934) and the centipedes Lithobius forficatus (Linnaeus, 1758) and Cryptops hortensis (Donovan, 1810) are the species most frequently found in greenhouses. PMID:24891823

  1. 6. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND TILTING WINDOW WALLS AND ROOF FACING SOUTHEAST. - Hawthorne Naval Ammunition Depot, Greenhouse, Personnel & Industrial Area, Hawthorne, Mineral County, NV

  2. 5. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND TILTING WINDOW WALLS AND ROOF FACING NORTHWEST. - Hawthorne Naval Ammunition Depot, Greenhouse, Personnel & Industrial Area, Hawthorne, Mineral County, NV

  3. Greenhouse gas emissions from soil under changing environmental conditions

    USDA-ARS?s Scientific Manuscript database

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  4. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korecko, J.; Jirka, V.; Sourek, B.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that couldmore » be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)« less

  5. 7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  6. Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience.

    PubMed

    Brownbridge, Michael; Buitenhuis, Rose

    2017-11-28

    Historically, greenhouse floriculture has relied on synthetic insecticides to meet its pest control needs. But, growers are increasingly faced with the loss or failure of synthetic chemical pesticides, declining access to new chemistries, stricter environmental/health and safety regulations, and the need to produce plants in a manner that meets the 'sustainability' demands of a consumer driven market. In Canada, reports of thrips resistance to spinosad (Success™) within 6-12 months of its registration prompted a radical change in pest management philosophy and approach. Faced with a lack of registered chemical alternatives, growers turned to biological control out of necessity. Biological control now forms the foundation for pest management programs in Canadian floriculture greenhouses. Success in a biocontrol program is rarely achieved through the use of a single agent, though. Rather, it is realized through the concurrent use of biological, cultural and other strategies within an integrated plant production system. Microbial insecticides can play a critical supporting role in biologically-based integrated pest management (IPM) programs. They have unique modes of action and are active against a range of challenging pests. As commercial microbial insecticides have come to market, research to generate efficacy data has assisted their registration in Canada, and the development and adaptation of integrated programs has promoted uptake by floriculture growers. This review documents some of the work done to integrate microbial insecticides into chrysanthemum and poinsettia production systems, outlines current use practices, and identifies opportunities to improve efficacy in Canadian floriculture crops. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  8. Extraction and Analysis of Regional Emission and Absorption Events of Greenhouse Gases with GOSAT and OCO-2

    NASA Astrophysics Data System (ADS)

    Kasai, K.; Shiomi, K.; Konno, A.; Tadono, T.; Hori, M.

    2016-12-01

    Global observation of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) with high spatio-temporal resolution and accurate estimation of sources and sinks are important to understand greenhouse gases dynamics. Greenhouse Gases Observing Satellite (GOSAT) has observed column-averaged dry-air mole fractions of CO2 (XCO2) and CH4 (XCH4) over 7 years since January 2009 with wide swath but sparse pointing. Orbiting Carbon Observatory-2 (OCO-2) has observed XCO2 jointly on orbit since July 2014 with narrow swath but high resolution. We use two retrieved datasets as GOSAT observation data. One is ACOS GOSAT/TANSO-FTS Level 2 Full Product by NASA/JPL, and the other is NIES TANSO-FTS L2 column amount (SWIR). By using these GOSAT datasets and OCO-2 L2 Full Product, the biases among datasets, local sources and sinks, and temporal variability of greenhouse gases are clarified. In addition, CarbonTracker, which is a global model of atmospheric CO2 and CH4 developed by NOAA/ESRL, are also analyzed for comparing between satellite observation data and atmospheric model data. Before analyzing these datasets, outliers are screened by using quality flag, outcome flag, and warn level in land or sea parts. Time series data of XCO2 and XCH4 are obtained globally from satellite observation and atmospheric model datasets, and functions which express typical inter-annual and seasonal variation are fitted to each spatial grid. Consequently, anomalous events of XCO2 and XCH4 are extracted by the difference between each time series dataset and the fitted function. Regional emission and absorption events are analyzed by time series variation of satellite observation data and by comparing with atmospheric model data.

  9. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  10. Product environmental footprint of strawberries: Case studies in Estonia and Germany.

    PubMed

    Soode-Schimonsky, Eveli; Richter, Klaus; Weber-Blaschke, Gabriele

    2017-12-01

    The environmental impacts of strawberries have been assessed in several studies. However, these studies either present dissimilar results or only focus on single impact categories without offering a comprehensive overview of environmental impacts. We applied the product environmental footprint (PEF) methodology to broadly indicate the environmental impacts of various strawberry production systems in Germany and Estonia by 15 impact categories. Data for the 7 case studies were gathered from two farms with organic and two farms with conventional open field production systems in Estonia and from one farm with conventional open field and one farm with a polytunnel and greenhouse production system in Germany. The greenhouse production system had the highest environmental impact with a PEF of 0.0040. In the field organic production systems, the PEF was 0.0029 and 0.0028. The field conventional production systems resulted in a PEF of 0.0008, 0.0009 and 0.0002. Polytunnel PEF was 0.0006. Human toxicity cancer effects, particulate matter and human toxicity non-cancer effects resulted in the highest impact across all analysed production systems. The main contributors were electricity for cooling, heating the greenhouse and the use of agricultural machinery including fuel burning. While production stage contributed 85% of the total impact in the greenhouse, also other life cycle stages were important contributors: pre-chain resulted in 71% and 90% of impact in conventional and polytunnels, respectively, and cooling was 47% in one organic system. Environmental impact from strawberry cooling can be reduced by more efficient use of the cooling room, increasing the strawberry yield or switching from oil shale electricity to other energy sources. Greenhouse heating is the overall impact hotspot even if it based on renewable resources. A ranking of production systems based on the environmental impact is possible only if all relevant impacts are included. Future studies should aim

  11. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    PubMed

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. Copyright © 2016

  12. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  13. Transit Greenhouse Gas Management Compendium

    DOT National Transportation Integrated Search

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  14. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application

    USDA-ARS?s Scientific Manuscript database

    Manure management at dairy production facilities, including anaerobic digestion (AD) and solid-liquid separation (SLS), has a strong potential for the abatement of greenhouse gas (GHG) and ammonia (NH3) emissions. This study evaluated the effects of AD, SLS, and AD+SLS on GHG and NH3 emissions durin...

  15. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    PubMed

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  16. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  17. 1. GREENHOUSES, LOCATED EAST OF HOUSE, LOOKING NORTHWEST; ROOF OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GREENHOUSES, LOCATED EAST OF HOUSE, LOOKING NORTHWEST; ROOF OF DAIRY BARN CAN BE SEEN IN BACKGROUND - Chatham, Greenhouses, .2 mile Northeast of intersection State Routes 218 & 3, Falmouth, Stafford County, VA

  18. 2. VIEW SOUTHEAST, LEANTO GREENHOUSES OF MAIN HEADHOUSE (BUILDINGS 22. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHEAST, LEAN-TO GREENHOUSES OF MAIN HEADHOUSE (BUILDINGS 22. 23) - U.S. Plant Introduction Station, Main Headhouse & Lean-to Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  19. [Soils salinity content of greenhouse in Shanghai suburb].

    PubMed

    Yao, Chun-Xia; Chen, Zhen-Lou; Xu, Shi-Yuan

    2007-06-01

    Salinity content and characteristic of farmland soil in Shanghai suburb was studied. Result indicates that soils in greenhouse in Shanghai suburb are partially salted. Soils of suburb where melons or vegetables grow in Shanghai city, 88.52% soil is non-salted while 10.37% mildly salted, 0.74% obviously salted and 0.37% badly salted. Anions component of salt salinity in soil are mainly SO4(2-), Cl-, NO3(-) and cations component are mainly Ca2+, Na+, Mg2+, K+. These ions are mostly from fertilizer auxiliary component or fertilizer transformation component besides some original deposition in soil. The formation of soil secondary salted in greenhouse cultivation in suburbs of Shanghai has a close relationship with improper fertilization or employing too much fertilizer. Soil salinity is different with different cultivation mode and utilization time. From high to low, sequence of soil salinity content in 0 - 20 cm cultivation layer of different crop mode is greenhouse vegetable soil, melon soil, vegetable melon rotation soil and hypaethral vegetable soil respectively. In the same region, salinity in greenhouse soil continually increases and accumulates from underlayer to surface along with more utilization years.

  20. In vitro mineral nutrition of Curcuma longa L. affects production of volatile compounds in rhizomes after transfer to the greenhouse.

    PubMed

    El-Hawaz, Rabia F; Grace, Mary H; Janbey, Alan; Lila, Mary Ann; Adelberg, Jeffrey W

    2018-06-18

    Turmeric is a rich source of bioactive compounds useful in both medicine and cuisine. Mineral concentrations effects (PO 4 3- , Ca 2+ , Mg 2+ , and KNO 3 ) were tested during in vitro rhizome development on the ex vitro content of volatile constituents in rhizomes after 6 months in the greenhouse. A response surface method (D-optimal criteria) was repeated in both high and low-input fertilizer treatments. Control plants were grown on Murashige and Skoog (MS) medium, acclimatized in the greenhouse and grown in the field. The volatile constituents were investigated by GC-MS. The total content of volatiles was affected by fertilizer treatments, and in vitro treatment with Ca 2+ and KNO 3 ; but PO 4 3- and Mg 2+ had no significant effect. The content was higher in the high-input fertilizer treatments (49.7 ± 9 mg/g DM) with 4 mM Ca 2+ , 60 mM KNO 3 and 5 mM NH 4 + , than the low-input fertilizer (26.6 ± 9 mg/g DM), and the MS control (15.28 ± 2.7 mg/g DM; 3 mM Ca 2+ , 20 mM K + , 39 mM NO 3 - , 20 mM NH 4 + , 1.25 mM PO 4 3- , and 1.5 mM Mg 2+ ). The interaction of Ca 2+ with KNO 3 affected curcumenol isomer I and II, germacrone, isocurcumenol, and β-elemenone content. Increasing in vitro phosphate concentration to 6.25 mM increased ex vitro neocurdione and methenolone contents. These results show that minerals in the in vitro bioreactor medium during rhizome development affected biosynthesis of turmeric volatile components after transfer to the greenhouse six months later. The multi-factor design identified 1) nutrient regulation of specific components within unique phytochemical profile for Curcuma longa L. clone 35-1 and 2) the varied phytochemical profiles were maintained with integrity during the greenhouse growth in high fertility conditions.

  1. 3. VIEW NORTH, INTERIOR OF GREENHOUSE #1 (BUILDING 5), TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH, INTERIOR OF GREENHOUSE #1 (BUILDING 5), TAKEN FROM SHED (BUILDING 20) - U.S. Plant Introduction Station, Greenhouse Nos. 1 & 2, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  2. 3. VIEW EAST, NORTH AND WEST FRONT OF QUARANTINE GREENHOUSES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST, NORTH AND WEST FRONT OF QUARANTINE GREENHOUSES (BUILDINGS 26, 28, 29, 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  3. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    PubMed

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.

  4. 22. Greenhouse, south elevation. This winter 2002 view was taken ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Greenhouse, south elevation. This winter 2002 view was taken by Joseph Elliot while conducting photographic documentation of the landscape. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  5. Evaluation of greenhouse gas emissions from waste management approaches in the islands.

    PubMed

    Chen, Ying-Chu

    2017-07-01

    Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.

  6. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia.

    PubMed

    Zhang, Siduo; Bi, Xiaotao Tony; Clift, Roland

    2013-12-01

    The purpose of this study was to evaluate the anticipated environmental benefits from integrating a dairy farm and a greenhouse; the integration is based on anaerobic digestion of manures to produce biogas energy, biogenic CO2, and digested slurry. A full Life Cycle Assessment (LCA) has been conducted on six modeled cases applicable in British Columbia, to evaluate non-renewable energy consumption, climate change, acidification, eutrophication, respiratory effects and human toxicity. Compared to conventional practice, an integrated system has the potential to nearly halve eutrophication and respiratory effects caused by inorganic emissions and to reduce non-renewable energy consumption, climate change, and acidification by 65-90%, while respiratory effects caused by organic emissions become negative as co-products substitute for other materials. Co-digestion of other livestock manures, greenhouse plant waste, or food and food processing waste with dairy manure can further improve the performance of the integrated system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Analyzing the greenhouse gas impact potential of smallholder development actions across a global food security program

    NASA Astrophysics Data System (ADS)

    Grewer, Uwe; Nash, Julie; Gurwick, Noel; Bockel, Louis; Galford, Gillian; Richards, Meryl; Costa Junior, Ciniro; White, Julianna; Pirolli, Gillian; Wollenberg, Eva

    2018-04-01

    This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under ‘business-as-usual’ development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates.

  8. 'Home made' model to study the greenhouse effect and global warming

    NASA Astrophysics Data System (ADS)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  9. 4. VIEW EAST, GREENHOUSE #2 (BUILDING 6) CONNECTED TO NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST, GREENHOUSE #2 (BUILDING 6) CONNECTED TO NORTH FRONT OF PACKING SHED (BUILDING 20) - U.S. Plant Introduction Station, Greenhouse Nos. 1 & 2, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  10. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  11. [An analysis of nutritional and harmful components of vegetables grown in plastic greenhouses].

    PubMed

    Yao, H; Yan, W; Li, G; Chen, Y; Guo, W; Wang, G; Xu, Z; Feng, C; Liu, K; Jin, D

    1999-09-01

    To study the changes in nutritional and harmful components of vegetables grown in plastic greenhouses. In plastic greenhouses, microclimate and air concentrations of carbon monoxide, carbon dioxide, fluoride and respirable particulate were measured, and chlorophyll, total sugar, crude fiber, nitrite, fluoride, arsenic and some mineral elements in vegetables were determined as compared with those grown in the open-air fields. Greenhouse appeared a lower wind speed and darker illumination. Contents of chlorophyll a an b, total chlorophyll, reduced vitamin C, crude fiber in vegetables grown in greenhouse all were lower than those grown in open-air fields. Contents of potassium, calcium, magnesium, iron, zinc, copper and phosphorous were all lower in the vegetables grown in greenhouse than those grown in open-air fields. The contents of chlorophyll reducing Vitamin C. Lower wind speed and inadequate illumination in greenhouse affected photosynthesis and uptake of water in vegetables causing changes in their nutritional components. But, no contamination of burning coal was found in vegetables grown in greenhouse.

  12. Greenhouse Gas Emissions from Calf- and Yearling-Fed Beef Production Systems, With and Without the Use of Growth Promotants

    PubMed Central

    Basarab, John; Baron, Vern; López-Campos, Óscar; Aalhus, Jennifer; Haugen-Kozyra, Karen; Okine, Erasmus

    2012-01-01

    Simple Summary A spring calving herd (~350 beef cows) over two production cycles was used to compare the whole-farm greenhouse gas (GHG) emissions among calf-fed vs. yearling-fed production systems, with and without growth implants. Farm GHG emissions initially included enteric CH4, manure CH4 and N2O, cropping N2O, and energy use CO2. The carbon footprint ranged from 19.9–22.5 kg CO2e per kg carcass weight. Including soil organic carbon loss from annual cropping and carbon sequestration from perennial pastures and haylands further reduced the carbon footprint by 11–16%. The carbon footprint of beef was reduced by growth promotants (4.9–5.1%) and by calf-fed beef production (6.3–7.5%). Abstract A spring calving herd consisting of about 350 beef cows, 14–16 breeding bulls, 60 replacement heifers and 112 steers were used to compare the whole-farm GHG emissions among calf-fed vs. yearling-fed production systems with and without growth implants. Carbon footprint ranged from 11.63 to 13.22 kg CO2e per kg live weight (19.87–22.52 kg CO2e per kg carcass weight). Enteric CH4 was the largest source of GHG emissions (53–54%), followed by manure N2O (20–22%), cropping N2O (11%), energy use CO2 (9–9.5%), and manure CH4 (4–6%). Beef cow accounted for 77% and 58% of the GHG emissions in the calf-fed and yearling-fed. Feeders accounted for the second highest GHG emissions (15% calf-fed; 35–36% yearling-fed). Implants reduced the carbon footprint by 4.9–5.1% compared with hormone-free. Calf-fed reduced the carbon footprint by 6.3–7.5% compared with yearling-fed. When expressed as kg CO2e per kg carcass weight per year the carbon footprint of calf-fed production was 73.9–76.1% lower than yearling-fed production, and calf-fed implanted was 85% lower than hormone-free yearling-fed. Reducing GHG emissions from beef production may be accomplished by improving the feed efficiency of the cow herd, decreasing the days on low quality feeds, and reducing the age

  13. Influence of Anthropogenic Nutrient Additions on Greenhouse Gas Production Rates at Water-soil Interfaces in an Urban Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Brigham, B. A.; O'Mullan, G. D.; Bird, J. A.

    2014-12-01

    The tidal Hudson River Estuary (HRE) receives significant inputs of readily dissolvable carbon (C) and nitrogen (N) from incomplete wastewater treatment and sewer overflow during storm events associated with NYC and other urban centers. Nutrient deposition may alter C utilization in the estuarine water column, associated sediments and surrounding wetlands. In these anaerobic systems, we hypothesize that microbial activity is limited by the availability of easily-degradable C (not electron acceptors), which acts as a co-metabolite and provides energy for organic matter decomposition. Sporadic transport of highly C enriched storm derived runoff may substantially enhance greenhouse gas (GHG) production rates through the utilization of stored C pools. To test our hypothesis carbon dioxide (CO2) and methane (CH4) process rates (1) were evaluated from soil cores removed from three distinct HRE wetland sites (Saw Mill Creek, Piermont, and Iona Island Marsh(s)) across a salinity gradient and incubated under varying nutrient treatments. Further, CO2 and CH4 surface water effluxes (2) were quantified from multiple river cruises spanning two years at varying distance from nutrient sources associated with NYC. Incubation experiments from wetland soil core experiments demonstrated that readily degradable C but not inorganic N additions stimulated GHG production (200 - 350 ug C g-1 of dry soil day-1) threefold compared to negative controls. The HRE was found to be both a CO2 and CH4 source under all conditions. The greatest GHG efflux (300 - 3000 nmoles C m-2 day-1) was quantified in mid-channel, tributary, and near shore sites in close proximity to NYC which following precipitation events demonstrated 2-20X increased GHG efflux. These results demonstrate that anthropogenic C additions associated with dense urban centers have the potential to enhance anaerobic microbial degradation of organic matter and subsequent GHG production.

  14. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    PubMed

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Greenhouse effect may not be all bad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senft, D.

    1990-10-01

    Evidence is presented that indicates US temperatures decreased by a fraction of a degree during the past 70 years contrary to the estimates of some researchers concerned with the greenhouse effect. There is general agreement that the carbon dioxide concentrations in the atmosphere will double by the late or mid 21st century. Experiments on cotton growth under increased temperature and carbon dioxide concentrations indicate sizeable gains in yield. This increased yield is exhibited by citrus trees and is projected for other crops. There is a concomitant need for more water and fertilizer. Increased populations of parasitic mites and insects alsomore » occur. Climatic changes are seen as being more gradual than previously thought. The possible increases in food production under these changes in climate are one positive element in the emerging scenario.« less

  16. Microtrap assembly for greenhouse gas and air pollution monitoring

    DOEpatents

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  17. Ideas of Elementary Students about Reducing the "Greenhouse Effect."

    ERIC Educational Resources Information Center

    Francis, Claire; And Others

    1993-01-01

    Presents the results of a questionnaire given to 563 elementary students to study their ideas of actions that would reduce the greenhouse effect. Most of the children (87%) appreciated that planting trees would help reduce global warming. During interviews it was discovered that children were confused between the greenhouse effect and ozone layer…

  18. Stuccoed building within greenhouse complex, north and west (front) sides, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Stuccoed building within greenhouse complex, north and west (front) sides, looking south towards building no. 121 (tennis courts) across W. Pennington Ave. - Fitzsimons General Hospital, Greenhouse, West Pennington Avenue, East of Building No. 139, Aurora, Adams County, CO

  19. 1. VIEW SOUTHWEST, EAST FRONT OF GREENHOUSE #1 (BUILDING 5), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWEST, EAST FRONT OF GREENHOUSE #1 (BUILDING 5), WITH NORTH FRONT OF SHED (BUILDING 20) IN DISTANCE - U.S. Plant Introduction Station, Greenhouse Nos. 1 & 2, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  20. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    PubMed

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  1. Kasza: design of a closed water system for the greenhouse horticulture.

    PubMed

    van der Velde, Raphaël T; Voogt, Wim; Pickhardt, Pieter W

    2008-01-01

    The need for a closed and sustainable water system in greenhouse areas is stimulated by the implementation in the Netherlands of the European Framework Directive. The Dutch national project Kasza: Design of a Closed Water System for the Greenhouse Horticulture will provide information how the water system in a greenhouse horticulture area can be closed. In this paper the conceptual design of two systems to close the water cycle in a greenhouse area is described. The first system with reverse osmosis system can be used in areas where desalination is required in order to be able to use the recycle water for irrigation of all crops. The second system with advanced oxidation using UV and peroxide can be applied in areas with more salt tolerant crops and good (low sodium) water sources for irrigation. Both systems are financially feasible in new greenhouse areas with substantial available recycle water. (c) IWA Publishing 2008.

  2. Preschoolers Explore Greenhouses by Visiting a Greenhouse, Making a Model, and Growing Plants

    ERIC Educational Resources Information Center

    Perkins, Leann M.; Stoycheva, Dessy

    2016-01-01

    This practical lesson on greenhouses implements standards of the Next Generation Science Standards ("K-2 ETS I-2"; "K-LS1-1") and the preschool objectives from the Teaching Strategies GOLD. Teaching Strategies GOLD is an assessment tool available online and in print that can be used with any developmentally appropriate early…

  3. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    PubMed

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P < 0.01) reduced the bioaccumulation of chromium (Cr), As, Cd, Pb, and nickel (Ni) in stalks, leaves, and fruits of Phaseolus vulgaris L. Similarly, PNB and SSB amendments significantly (P ≤ 0.05) reduced inorganic As species like arsenite (As (III)) and arsenate (As (V)). Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P < 0.01) reduced but nitrous oxide (N 2 O) emissions first increased and then decreased amended with both biochars. Current findings demonstrate that SSB and PNB are two beneficial soil amendments simultaneous mitigating greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  4. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  5. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments.

    PubMed

    Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat

    2016-10-01

    Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values <1 and a bioconcentration coefficient for roots >1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.

  6. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  7. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    PubMed

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  8. Stakeholder Workshop Presentations: EPA Greenhouse Gas Data on Petroleum and Natural Gas Systems

    EPA Pesticide Factsheets

    View the summary and presentations from the November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  9. PERSPECTIVE VIEW SOUTH WEST FROM STREET, NOTE IMPRINT FROM GREENHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW SOUTH WEST FROM STREET, NOTE IMPRINT FROM GREENHOUSE ROOF LINE WHEN STRUCTURE WAS USED AS NURSERY-GREENHOUSE - New York State Soldiers & Sailors Home, Sign Shop, Department of Veterans Affairs Medical Center, 76 Veterans Avenue, Bath, Steuben County, NY

  10. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  11. Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.

    PubMed

    López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli

    2012-10-16

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.

  12. Global warming description using Daisyworld model with greenhouse gases.

    PubMed

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The Germination of Several Tree Species in Plastic Greenhouses

    Treesearch

    Howard M. Phipps

    1969-01-01

    The technique of growing tree seedlings in plastic greenhouses is being evaluated for red pine, jack pine, white spruce, and yellow birch at the Chittenden Nursery in northern Lower Michigan. Both a long growing season and a normal-length growing season in plastic greenhouses were compared with standard outdoor nursery beds (control). First-year results showed that...

  14. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.

    PubMed

    Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X

    2016-11-15

    Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil

  15. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... COUNCIL ON ENVIRONMENTAL QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and..., ``Federal Greenhouse Gas Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed... Greenhouse Gas Accounting and Reporting that establishes Government-wide requirements for measuring and...

  16. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  17. Comparative statistical component analysis of transgenic, cyanophycin-producing potatoes in greenhouse and field trials.

    PubMed

    Schmidt, Kerstin; Schmidtke, Jörg; Mast, Yvonne; Waldvogel, Eva; Wohlleben, Wolfgang; Klemke, Friederike; Lockau, Wolfgang; Hausmann, Tina; Hühns, Maja; Broer, Inge

    2017-08-01

    Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.

  18. 4. VIEW SOUTH/SOUTHEAST, NORTH FRONT OF QUARANTINE GREENHOUSE #1 (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTH/SOUTHEAST, NORTH FRONT OF QUARANTINE GREENHOUSE #1 (BUILDING 28) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  19. 6. VIEW SOUTH/SOUTHEAST, NORTH FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SOUTH/SOUTHEAST, NORTH FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  20. Effect of land use on greenhouse gas emission in tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Six, Johan

    2017-04-01

    Tropical ecosystems play an important role for the regional and global climate system through the exchange of greenhouse gases and provide important ecosystems services such as carbon sequestration, produce, and biodiversity. Human activities have, however, resulted in intensive transformation of tropical ecosystems impacting the cycling of nutrients, water and carbon underlying the greenhouse gas emissions. At the same time, best-bet agricultural practices can reduce greenhouse gas emission, those directly emitted from the agricultural fields, but also indirectly through less demand on new land and hence forest conservation. Here, I will provide some insights into the main factors affecting the exchange of greenhouse gases from the plot to continental scale through some specific case studies. Experimental data, stable isotopes and modeling results will be presented.

  1. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  2. Environmental impacts of food trade via resource use and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dalin, Carole; Rodríguez-Iturbe, Ignacio

    2016-03-01

    Agriculture will need to significantly intensify in the next decades to continue providing essential nutritive food to a growing global population. However, it can have harmful environmental impacts, due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes. Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and water availability, the environmental impact of producing food is highly dependent on its origin. For this reason, food trade can either increase or reduce the overall environmental impacts of agriculture, depending on whether or not the impact is greater in the exporting region. Here, we review current scientific understanding of the environmental impacts of food trade, focusing on water and land use, pollution and greenhouse gas emissions. In the case of water, these impacts are mainly beneficial. However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear. Overall, there is an urgent need for a more comprehensive, integrated approach to estimate the global impacts of food trade on the environment. Second, research is needed to improve the evaluation of some key aspects of the relative value of each resource depending on the local and regional biophysical and socio-economic context. Finally, to enhance the impact of such evaluations and their applicability in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater exhaustion will be required.

  3. Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan.

    PubMed

    Ahmed, Egbal Mohammed; Abaas, Osama; Ahmed, Mohammed; Ismail, Mohd Rodzi

    2011-01-01

    This study was conducted in Date Palm Technology Company Limited, Shambat, Khartoum State. To evaluate performance of three types of evaporative cooling pads for greenhouses (celdek pads, straw pads and sliced wood pads), as compared to the conditions outside the greenhouses (control), for pads. Performance evaluation includes environmental parameters (temperature and relative humidity at 8 am, 1 pm and 6 pm) and crop parameters (length and stem diameter, leaves number and width, fruit length and diameter, fruit weight and dry matter and yield). The results obtained for the temperature at 8 am showed that there was no significant difference (0.05) inside the greenhouses, while a high significant difference between the conditions inside and outside of the greenhouses was found. Significant differences were found at 1 pm and 6 pm between all treatments as compared to the conditions outside the greenhouses, and the results obtained for relative humidity showed high significant differences at 8 am and 1 pm inside the greenhouses and between inside and outside the greenhouse, respectively, while there was no significant difference at 6 pm inside the greenhouses and between inside and outside the greenhouses. On the other hand, the results obtained for crop parameters showed that there were significant differences between all parameters inside the greenhouses and outside the greenhouses; however, the greenhouses with sliced wood pads gave the highest yield and the greenhouses with straw pads gave the least and conditions outside gave the lowest. This study indicated that the sliced wood pads are better than the other evaporative cooling pads.

  4. Greenhouse gases: low methane leakage from gas pipelines.

    PubMed

    Lelieveld, J; Lechtenböhmer, S; Assonov, S S; Brenninkmeijer, C A M; Dienst, C; Fischedick, M; Hanke, T

    2005-04-14

    Using natural gas for fuel releases less carbon dioxide per unit of energy produced than burning oil or coal, but its production and transport are accompanied by emissions of methane, which is a much more potent greenhouse gas than carbon dioxide in the short term. This calls into question whether climate forcing could be reduced by switching from coal and oil to natural gas. We have made measurements in Russia along the world's largest gas-transport system and find that methane leakage is in the region of 1.4%, which is considerably less than expected and comparable to that from systems in the United States. Our calculations indicate that using natural gas in preference to other fossil fuels could be useful in the short term for mitigating climate change.

  5. A mental picture of the greenhouse effect. A pedagogic explanation

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.

    2017-05-01

    The popular picture of the greenhouse effect emphasises the radiation transfer but fails to explain the observed climate change. An old conceptual model for the greenhouse effect is revisited and presented as a useful resource in climate change communication. It is validated against state-of-the-art data, and nontraditional diagnostics show a physically consistent picture. The earth's climate is constrained by well-known and elementary physical principles, such as energy balance, flow, and conservation. Greenhouse gases affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place. Such an increase is seen in the reanalyses, and the outgoing long-wave radiation has become more diffuse over time, consistent with an increased influence of greenhouse gases on the vertical energy flow from the surface to the top of the atmosphere. The reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical energy flow. The increased overturning can explain a slowdown in the global warming, and the association between these aspects can be interpreted as an entanglement between the greenhouse effect and the hydrological cycle, where reduced energy transfer associated with increased opacity is compensated by tropospheric overturning activity.

  6. Teleconsultations reduce greenhouse gas emissions.

    PubMed

    Oliveira, Tiago Cravo; Barlow, James; Gonçalves, Luís; Bayer, Steffen

    2013-10-01

    Health services contribute significantly to greenhouse gas emissions. New models of delivering care closer to patients have the potential to reduce travelling and associated emissions. We aimed to compare the emissions of patients attending a teleconsultation - an outpatient appointment using video-conferencing equipment - with those of patients attending a face-to-face appointment. We estimated the total distances travelled and the direct and indirect greenhouse gas emissions for 20,824 teleconsultations performed between 2004 and 2011 in Alentejo, a Portuguese region. These were compared to the distances and emissions that would have resulted if teleconsultations were not available and patients had to attend face-to-face outpatient appointments. Estimates were calculated using survey data on mode of transport, and national aggregate data for car engine size and fuel. A sensitivity analysis using the lower and upper quartiles for survey distances was performed. Teleconsultations led to reductions in distances and emissions of 95%. 2,313,819 km of travelling and 455 tonnes of greenhouse gas emissions were avoided (22 kg of carbon dioxide equivalent per patient). The incorporation of modes of transport and car engine size and fuel in the analysis led to emission estimates which were 12% smaller than those assuming all patients used an average car. The availability of remote care services can significantly reduce road travel and associated emissions. At a time when many countries are committed to reducing their carbon footprint, it is desirable to explore how these reductions could be incorporated into technology assessments and economic evaluations.

  7. Building and using our sun-heated greenhouse. Grow vegetables all year-round

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nearing, H.; Nearing, S.

    1977-01-01

    Experience with unheated greenhouses in Maine and Vermont is described from the viewpoint of vegetarian, homesteading organic gardeners. The necessity of extending the growing season in the north in order to have fresh vegetables year round is discussed. Locating, building, and maintaining soil and growing conditions in the greenhouse are included. Plants for each season in the greenhouse are discussed. (MHR)

  8. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  9. 9. Detail view, greenhouse, fragment of Doric frieze located in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view, greenhouse, fragment of Doric frieze located in the south wall (Note the decorative mortar work known as galleting in which small stones are imbedded on the surface of the mortar. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  10. 18. Detail view, greenhouse, north wall (Note the type of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view, greenhouse, north wall (Note the type of stone used in the wall construction, the degradation of the interior stucco, and one of the pockets for a former floor joist). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  11. Towards a Global Greenhouse Gas Information System (GHGIS)

    NASA Astrophysics Data System (ADS)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  12. 5. VIEW SOUTH/SOUTHEAST. NORTH FRONT OF QUARANTINE GREENHOUSES #2 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTH/SOUTHEAST. NORTH FRONT OF QUARANTINE GREENHOUSES #2 AND #3 (BUILDINGS 29, 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  13. Variation in plasma cholinesterase activity among greenhouse workers, fruitgrowers, and slaughtermen.

    PubMed Central

    Lander, F; Lings, S

    1991-01-01

    The purpose of the study was to compare the plasma cholinesterase (ChE) activities of 100 greenhouse workers and 43 fruitgrowers engaged in spraying insecticides with those of 113 slaughtermen who served as controls. The ChE activity in the greenhouse workers and fruitgrowers was not significantly lower than in the controls. Nevertheless the ChE activity of greenhouse workers declined with increasing exposure. The wearing of protective gloves appears to be of particular value for the safety of workers. PMID:2015206

  14. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm.

    PubMed

    Fillingham, M A; VanderZaag, A C; Burtt, S; Baldé, H; Ngwabie, N M; Smith, W; Hakami, A; Wagner-Riddle, C; Bittman, S; MacDonald, D

    2017-12-01

    Recent developments in composting technology enable dairy farms to produce their own bedding from composted manure. This management practice alters the fate of carbon and nitrogen; however, there is little data available documenting how gaseous emissions are impacted. This study measured in-situ emissions of methane (CH 4 ), carbon dioxide (CO 2 ), nitrous oxide (N 2 O), and ammonia (NH 3 ) from an on-farm solid-liquid separation system followed by continuously-turned plug-flow composting over three seasons. Emissions were measured separately from the continuously-turned compost phase, and the compost-storage phase prior to the compost being used for cattle bedding. Active composting had low emissions of N 2 O and CH 4 with most carbon being emitted as CO 2 -C and most N emitted as NH 3 -N. Compost storage had higher CH 4 and N 2 O emissions than the active phase, while NH 3 was emitted at a lower rate, and CO 2 was similar. Overall, combining both the active composting and storage phases, the mean total emissions were 3.9×10 -2 gCH 4 kg -1 raw manure (RM), 11.3gCO 2 kg -1 RM, 2.5×10 -4 g N 2 O kg -1 RM, and 0.13g NH 3 kg -1 RM. Emissions with solid-separation and composting were compared to calculated emissions for a traditional (unseparated) liquid manure storage tank. The total greenhouse gas emissions (CH 4 +N 2 O) from solid separation, composting, compost storage, and separated liquid storage were reduced substantially on a CO 2 -equivalent basis compared to traditional liquid storage. Solid-liquid separation and well-managed composting could mitigate overall greenhouse gas emissions; however, an environmental trade off was that NH 3 was emitted at higher rates from the continuously turned composter than reported values for traditional storage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    PubMed

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    PubMed

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse

  17. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or

  18. Design on automatic rolling system for agricultural greenhouse

    NASA Astrophysics Data System (ADS)

    Fu, Li; Fu, Xiuwei; Zhang, Yanxiao

    2018-03-01

    The automatic rolling system of agricultural greenhouse is introduced in this paper. The opening degree of greenhouse according to changes in light intensity and temperature is adjusted. When the current is too large or the motor is blocked or lost, the buzzer is alarmed and warned someone the controlling system badly. When the temperature is higher than the default value, the fan is moved by the micro-controller controls, otherwise the heating rod so that the temperature reaches the preset range.

  19. 14. Interior view, greenhouse, from the door in the west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior view, greenhouse, from the door in the west wall. The timbers extending horizontally across the east wall and pocketed into the stone north and south walls would have originally supported the window sash. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  20. 17. Interior view, greenhouse, north wall taken from the ground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior view, greenhouse, north wall taken from the ground. Stucco-painted white-covered the interior walls in order to seal-off any drafts and to reflect the sunlight entering through the east-facing windows. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing Greenhouse Gases (GHGs) 71.13 Section 71.13 Protection of Environment ENVIRONMENTAL... § 71.13 Enforceable commitments for further actions addressing Greenhouse Gases (GHGs) (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as...

  2. 40 CFR 71.13 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... actions addressing greenhouse gases (GHGs). 71.13 Section 71.13 Protection of Environment ENVIRONMENTAL... § 71.13 Enforceable commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions—(1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as...

  3. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... actions addressing Greenhouse Gases (GHGs) 71.13 Section 71.13 Protection of Environment ENVIRONMENTAL... § 71.13 Enforceable commitments for further actions addressing Greenhouse Gases (GHGs) (a) Definitions—(1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as...

  4. 40 CFR 71.13 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions addressing greenhouse gases (GHGs). 71.13 Section 71.13 Protection of Environment ENVIRONMENTAL... § 71.13 Enforceable commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions—(1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as...

  5. 40 CFR 71.13 - Enforceable commitments for further actions addressing Greenhouse Gases (GHGs)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions addressing Greenhouse Gases (GHGs) 71.13 Section 71.13 Protection of Environment ENVIRONMENTAL... § 71.13 Enforceable commitments for further actions addressing Greenhouse Gases (GHGs) (a) Definitions—(1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as...

  6. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres.

    PubMed

    Goldblatt, Colin; Watson, Andrew J

    2012-09-13

    The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in

  7. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences.

    PubMed

    Zhang, Nannan; Bai, Zhaohai; Luo, Jiafa; Ledgard, Stewart; Wu, Zhiguo; Ma, Lin

    2017-11-15

    The dairy industry in China was rapidly expanded and intensified from 1980 to 2010, engendering potential long-term impacts on the environment and natural resources. However, impacts of dairy intensification on nitrogen (N) and phosphorus (P) losses and greenhouse gas (GHG) emissions were unknown. This study was undertaken to examine these relations using the NUtrient flows in Food chains, Environment and Resources use (NUFER)-dairy model. Results showed that milk yield increased by 64% from 1980 to 2010 on average, and the use of concentrate feeds increased by 57% associated with a shift of production from traditional and grassland systems to collective and industrialized systems. At herd level, the N use efficiency (NUE; conversion of N inputs to products) doubled from 7 to 15%, and the P use efficiency (PUE) increased from 10 to 17%, primarily resulting from increased milk yield per cow. In contrast, at the system level, NUE showed a small increase (from 10 to 15%, associated with reduced gaseous losses) while PUE decreased from 46 to 30% due to a large increase in manure discharges. This is attributed to decoupling of feed and dairy production, as the proportion of manure N and P recycled to cropland decreased by 52% and 54%, respectively. Despite this, the average total N loss decreased from 63 to 48gkg -1 milk, and the average GHG emissions from 1.7 to 1.1kgCO 2 equivalentkg -1 milk associated with increased per-cow productivity. However, average P loss increased from 1.4 to 2.8gPkg -1 milk due to higher discharge rate to wastewater and landfill in collective and industrialized systems. Anyhow, average N and P losses exceeded levels in developed countries. There were large regional variations in nutrient use efficiency, nutrient losses and GHG emissions in China, largely determined by the dairy production structure. Average N losses and GHG emissions per unit of milk showed a negative correlation with production intensification based on the proportion of

  8. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  9. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons

  10. Towards European organisation for integrated greenhouse gas observation system

    NASA Astrophysics Data System (ADS)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  11. [Evaluation of super dwarf wheat growth and development in greenhouse "Svet" during cultivation in inhabited pressurized chamber

    NASA Technical Reports Server (NTRS)

    Sychev, V. N.; Levinskikh, M. A.; Podol'skii, I. G.; Ivanova, I. E.; Nefedova, E. L.; Livanskaia, O. G.; Derendiaeva, T. A.; Mikhailov, N. I.; Salisbury, F. B.; Bingham, G. E.; hide

    1998-01-01

    Goals of the 3-month experiment GREENHOUSE using the equipment of greenhouse SVET (ECO-PSY-95) were to feature growth and development of wheat through the entire cycle of ontogeny under the maximally mimicked MIR environment, and to try out the procedures and timeline of space experiment GREENHOUSE-2 as a part of the fundamental biology investigations within the MIR/NASA space science program. Irradiation intensity (PAR) was 65 W/m2 and 38 W/m2 in the experiment and laboratory control, respectively. Values of other environmental parameters were MIR average (18-25 degrees C, relative air humidity in the interval between 40% and 75%, total gas pressure of about 660 to 860 mm Hg, partial oxygen pressure within the range from 140 to 200 mm Hg, partial carbon dioxide pressure up to 7 mm Hg). Experimental results showed that wheat cultivation in inhabited chamber under a modified lighting unit providing greater irradiation of the crop area produced more plant mass although seed production dropped. Low grain content in ears could be the aftermath of the gaseous trace contaminants in the chamber atmosphere.

  12. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.

    PubMed

    Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J

    2010-07-01

    Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.

  13. Nursery and Greenhouse Worker. Student Material. Competency Based Education Curriculum.

    ERIC Educational Resources Information Center

    Long, Diana

    This secondary-level, competency-based curriculum contains 11 modules for Nursery and Greenhouse Worker. A companion teacher's guide is available separately--see note. Each module contains a number of West Virginia-validated Nursery and Greenhouse Worker tasks/competencies with a performance guide listing the steps needed to perform each task,…

  14. Reducing Urban Greenhouse Gas Footprints.

    PubMed

    Pichler, Peter-Paul; Zwickel, Timm; Chavez, Abel; Kretschmer, Tino; Seddon, Jessica; Weisz, Helga

    2017-11-07

    Cities are economically open systems that depend on goods and services imported from national and global markets to satisfy their material and energy requirements. Greenhouse Gas (GHG) footprints are thus a highly relevant metric for urban climate change mitigation since they not only include direct emissions from urban consumption activities, but also upstream emissions, i.e. emissions that occur along the global production chain of the goods and services purchased by local consumers. This complementary approach to territorially-focused emission accounting has added critical nuance to the debate on climate change mitigation by highlighting the responsibility of consumers in a globalized economy. Yet, city officials are largely either unaware of their upstream emissions or doubtful about their ability to count and control them. This study provides the first internationally comparable GHG footprints for four cities (Berlin, Delhi NCT, Mexico City, and New York metropolitan area) applying a consistent method that can be extended to other global cities using available data. We show that upstream emissions from urban household consumption are in the same order of magnitude as cities' overall territorial emissions and that local policy leverage to reduce upstream emissions is larger than typically assumed.

  15. [Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field.

    PubMed

    Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei

    2016-03-01

    A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.

  16. European trends in greenhouse gases emissions from integrated solid waste management.

    PubMed

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  17. Establishing a Regional Nitrogen Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive Smallholder Maize Production

    PubMed Central

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Zhang, Weifeng; Zhang, Fusuo

    2014-01-01

    The overuse of Nitrogen (N) fertilizers on smallholder farms in rapidly developing countries has increased greenhouse gas (GHG) emissions and accelerated global N consumption over the past 20 years. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from 1,726 on-farm experiments to optimize N management across 12 agroecological subregions in the intensive Chinese smallholder maize belt. The grain yield and GHG emission intensity of this regional N management approach was investigated and compared to field-specific N management and farmers' practices. The regional N rate ranged from 150 to 219 kg N ha−1 for the 12 agroecological subregions. Grain yields and GHG emission intensities were consistent with this regional N management approach compared to field-specific N management, which indicated that this regional N rate was close to the economically optimal N application. This regional N management approach, if widely adopted in China, could reduce N fertilizer use by more than 1.4 MT per year, increase maize production by 31.9 MT annually, and reduce annual GHG emissions by 18.6 MT. This regional N management approach can minimize net N losses and reduce GHG emission intensity from over- and underapplications, and therefore can also be used as a reference point for regional agricultural extension employees where soil and/or plant N monitoring is lacking. PMID:24875747

  18. Microbiological profile of greenhouses in a farm producing hydroponic tomatoes.

    PubMed

    Orozco, Leopoldo; Rico-Romero, Leticia; Escartín, Eduardo F

    2008-01-01

    Produce, including tomatoes, has been implicated in several outbreaks of foodborne illness. A number of the sources of contamination for produce grown in open fields are known. However, as an alternative agricultural system, hydroponic greenhouses are reasonably expected to reduce some of these sources. The objective of the present study was to determine the microbiological profile of tomatoes grown in greenhouses at a Mexican hydroponic farm with a high technological level and sanitary agricultural practices (SAPs) in place. Tomatoes and other materials associated with the farm were analyzed for the presence of Salmonella enterica and populations of Escherichia coli, coliforms, and Enterobacteriaceae. Tomatoes showed median levels of 0.8 log CFU per tomato for Enterobacteriaceae, < 0.5 log CFU per tomato for coliforms, and 0.5 most probable number per tomato for E. coli. Despite the physical barriers that the facilities provide and the implemented SAPs, we found that 2.8% of tomatoes were contaminated with Salmonella and 0.7% with E. coli. Other Salmonella-positive materials were puddles, soil, cleaning cloths, and sponges. Samples from the nursery and greenhouses were positive for E. coli, whereas Salmonella was found only in the latter. Although hydroponic greenhouses provide physical barriers against some sources of enteric bacterial contamination, these results show that sporadic evidence of fecal contamination and the presence of Salmonella can occur at the studied greenhouse farm.

  19. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  20. Greenhouse effect simulator - An educational application

    NASA Astrophysics Data System (ADS)

    Machado, Alan Freitas; Viveiros, Bruno Martins; da Silva, Claudio Elias

    2016-12-01

    Using the program "Modellus", we intend to create a simple simulation to show the impacts that the Greenhouse Effect might have, in a didactic and friendly way, in order to expose this notions to high and middle school students. In order to do so, we created a program that will simulate a sweep, through the Troposphere, and create two lines in a graphic, one showing the temperatures behavior, in normal conditions, and the other showing how the temperature behaves in the presence of excess of Greenhouse gases. The main purpose of the project is to use the model in schools and try to make kids more conscious of their roles in our so society, showing them the consequences of the tendency of our acts, stimulating them to be more proactives to change the future.

  1. Assessing the greenhouse impact of natural gas

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.

    2012-06-01

    The global warming impact of substituting natural gas for coal and oil is currently in debate. We address this question here by comparing the reduction of greenhouse warming that would result from substituting gas for coal and some oil to the reduction which could be achieved by instead substituting zero carbon energy sources. We show that substitution of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are ˜1% of production, which is similar to today's probable leakage rate of ˜1.5% of production, the 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate must be more than 10 to 15% of production for gas substitution not to reduce warming, and for longer transitions the leakage must be much greater. But even if the leakage was so high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit would be realized shortly after methane emissions ceased because methane is removed quickly from the atmosphere whereas CO2 is not. The benefits of substitution are unaffected by heat exchange to the ocean. CO2 emissions are the key to anthropogenic climate change, and substituting gas reduces them by 40% of that possible by conversion to zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon energy sources must eventually be introduced.

  2. Dynamic Measurements of Greenhouse Gas Respirations Caused by Changing Oxygen Levels

    NASA Astrophysics Data System (ADS)

    Fleck, D.; Saad, N.

    2015-12-01

    The necessity for constant monitoring of greenhouse gases (GHGs) is clearly evident now more than ever. Moreover, interpreting and understanding the processes that dictate the production and consumption of these gases will allow for proper management of GHGs in order to mitigate its detrimental climate effects. Presence of oxygen, or lack of it, is the driving force for determining pathways within biochemical redox reactions. Experiments to find correlations between oxygen and greenhouse gases have helped us understand photosynthesis, denitrification and beyond. Within the past few years measurements of O2 and nitrous oxide have been used over a wide ranging array of disciplines; from studying avenues for redox chemistry to characterizing gas profiles in sputum of cystic fibrosis patients. We present a full analysis solution, based on cavity ring-down spectroscopy, for simultaneous measurements of N2O, CO2, CH4, H2O, NH3, and O2 concentrations in soil flux, in order to better understand dynamics of ecological and biogeochemical processes. The stability and high temporal resolution of the five-species CRDS analyzer, coupled with a continuous high-precision O2 measurement (1-σ <200ppm) produces a complete picture of biogeochemical processes, for which a multitude of additional research experiments can be conceived. Adding another dimension to explore to help determine the rate at which these greenhouse gases are produced or consumed, allows scientists to further address fundamental scientific questions. Data is presented showing precision, drift and limitations of the O2 sensor measurement as well as the validity of spectroscopic corrections with the CRDS analyzer caused by changing O2. Experimental data is also presented to explore correlations of soil respiration rates of N2O, CO2 and CH4 due to differing soil O2 contents at varying timescales from minutes to days.

  3. Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    PubMed Central

    Niboyet, Audrey; Brown, Jamie R.; Dijkstra, Paul; Blankinship, Joseph C.; Leadley, Paul W.; Le Roux, Xavier; Barthes, Laure; Barnard, Romain L.; Field, Christopher B.; Hungate, Bruce A.

    2011-01-01

    Background Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. Methodology/Principal Findings We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N2O) emissions in a grassland ecosystem. We examined the responses of soil N2O emissions, as well as the responses of the two main microbial processes contributing to soil N2O production – nitrification and denitrification – and of their main drivers. We show that the fire disturbance greatly increased soil N2O emissions over a three-year period, and that elevated CO2 and enhanced nitrogen supply amplified fire effects on soil N2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. Conclusions/Significance Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence. PMID:21687708

  4. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    2012-06-01

    We review the theory of the greenhouse effect and climate feedback. We also compare the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan.

  5. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  6. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  7. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  8. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    NASA Astrophysics Data System (ADS)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  9. Greenhouse gases accounting and reporting for waste management--a South African perspective.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2010-11-01

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    PubMed

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated. ©2011 Macmillan Publishers Limited. All rights reserved

  11. Spray table evaluation of insecticidal mortality for southern green stink bug, Nezara viridula L. (Pentatomidae: Heteroptera) on greenhouse-grown cotton

    USDA-ARS?s Scientific Manuscript database

    Insecticidal mortality of southern green stink bug, Nezara viridula on greenhouse-grown cotton was investigated on a spray table. Treatments of synthetic pyrethroids and neoniconitoids were compared with those of dicrotophos at 8 oz formulated product per acre as the producer’s standard, and an unt...

  12. Modeling greenhouse gas emissions from dairy farms.

    PubMed

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  13. MAGGnet: An international network to foster mitigation of agricultural greenhouse gases

    USDA-ARS?s Scientific Manuscript database

    Research networks provide a framework for review, synthesis, and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a greenhouse gas (GHG) research network referred to as MAGGnet (Managing Agricultural Greenhouse ...

  14. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  15. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    ERIC Educational Resources Information Center

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  16. Impact Assessment of Salinization Affected Soil on Greenhouse Crops using SALTMED

    NASA Astrophysics Data System (ADS)

    Pappa, Polyxeni; Daliakopoulos, Ioannis; Tsanis, Ioannis; Varouchakis, Emmanouil

    2015-04-01

    Here we assess the effects of soil salinization on greenhouse crops and the potential benefits of rainwater harvesting as a soil amelioration technology. The study deals with the following scenarios: (a) variation of irrigation water salinity from 3,000 μS/cm to 500 μS/cm through mixing with rainwater, (b) crop substitution for increased tolerance and (c) climatic variability to account for the impact of climate change. In order to draw meaningful conclusions, a model that takes into account vegetation interaction, soil, irrigation water and climate variables is required. The SALTMED model is a reliable and tested physical process model that simulates evapotranspiration, plant water uptake, water and solute transport to estimate crop yield and biomass production under all irrigation systems. SALTMED is tested with the above scenarios in the RECARE FP7 Project Case Study of Timpaki, in the Island of Crete, Greece. Simulations are conducted for typical cultivations of Solanum lycopersicum, Capsicum anuumm and Solanum melongena. Preliminary results indicate the optimal combination from a set of solutions concerning the soil and water parameters can be beneficial against the salinization threat. Future research includes the validation of the results with field experiments. Keywords: salinization, greenhouse, tomato, SALTMED, rainwater, RECARE

  17. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...EPA is amending specific provisions in the greenhouse gas reporting rule to clarify certain provisions, to correct technical and editorial errors, and to address certain questions and issues that have arisen since promulgation. These final changes include generally providing additional information and clarity on existing requirements, allowing greater flexibility or simplified calculation methods for certain sources, amending data reporting requirements to provide additional clarity on when different types of greenhouse gas emissions need to be calculated and reported, clarifying terms and definitions in certain equations and other technical corrections and amendments.

  18. Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Hublitz, Inka

    Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night

  19. 75 FR 43889 - Proposed Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Proposed Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas Reporting Rule... Greenhouse Gas Reporting Rule and Proposed Amendment to Special Rules Governing Certain Information Obtained... the Mandatory Reporting of Greenhouse Gases Rule,'' also signed today. This action addresses only the...

  20. Measurements of Greenhouse Gases around the Sacramento Area: The Airborne Greenhouse Emissions Survey (AGES) Campaign

    NASA Astrophysics Data System (ADS)

    Karion, A.; Fischer, M. L.; Turnbull, J. C.; Sweeney, C.; Faloona, I. C.; Zagorac, N.; Guilderson, T. P.; Saripalli, S.; Sherwood, T.

    2009-12-01

    The state of California is leading the United States by enacting legislation (AB-32) to reduce greenhouse gas emissions to 1990 levels by 2020. The success of reduction efforts can be gauged with accurate emissions inventories and potentially verified with atmospheric measurements of greenhouse gases (GHGs) over time. Measurements of multiple GHGs and associated trace gas species in a specific region also provide information on emissions ratios for source apportionment. We conducted the Airborne Greenhouse Emissions Survey (AGES) campaign to determine emissions signature ratios for the sources that exist in the San Francisco Bay and Sacramento Valley areas. Specifically, we attempt to determine the emissions signatures of sources that influence ongoing measurements made at a tall-tower measurement site near Walnut Grove, CA. For two weeks in February and March of 2009, a Cessna 210 was flown throughout the Sacramento region, making continuous measurements of CO2, CH4, and CO while also sampling discrete flasks for a variety of additional tracers, including SF6, N2O, and 14C in CO2 (Δ14CO2). Flight paths were planned using wind predictions for each day to maximize sampling of sources whose emissions would also be sampled contemporaneously by the instrumentation at the Walnut Grove tower (WGC), part of the ongoing California Greenhouse Gas Emissions Measurement (CALGEM) project between NOAA/ESRL’s Carbon Cycle group and Lawrence Berkeley National Laboratory (LBNL). Flights were performed in two distinct patterns: 1) flying across a plume upwind and downwind of the Sacramento urban area, and 2) flying across the Sacramento-San Joaquin Delta from Richmond to Walnut Grove, a region consisting of natural wetlands as well as several power plants and refineries. Results show a variety of well-correlated mixing ratio signals downwind of Sacramento, documenting the urban signature emission ratios, while emissions ratios in the Delta region were more variable, likely due