Science.gov

Sample records for grizzly bears reducing

  1. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  2. Active fans and grizzly bears: Reducing risks for wilderness campers

    NASA Astrophysics Data System (ADS)

    Sakals, M. E.; Wilford, D. J.; Wellwood, D. W.; MacDougall, S. A.

    2010-03-01

    Active geomorphic fans experience debris flows, debris floods and/or floods (hydrogeomorphic processes) that can be hazards to humans. Grizzly bears ( Ursus arctos) can also be a hazard to humans. This paper presents the results of a cross-disciplinary study that analyzed both hydrogeomorphic and grizzly bear hazards to wilderness campers on geomorphic fans along a popular hiking trail in Kluane National Park and Reserve in southwestern Yukon Territory, Canada. Based on the results, a method is proposed to reduce the risks to campers associated with camping on fans. The method includes both landscape and site scales and is based on easily understood and readily available information regarding weather, vegetation, stream bank conditions, and bear ecology and behaviour. Educating wilderness campers and providing a method of decision-making to reduce risk supports Parks Canada's public safety program; a program based on the principle of user self-sufficiency. Reducing grizzly bear-human conflicts complements the efforts of Parks Canada to ensure a healthy grizzly bear population.

  3. Plant consumption by grizzly bears reduces biomagnification of salmon-derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides.

    PubMed

    Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S

    2013-04-01

    The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically <2% of intake) but surprisingly high following plant consumption (>100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced. PMID:23401324

  4. Geophagy by yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Green, G.I.; Swalley, R.

    1999-01-01

    We documented 12 sites in the Yellowstone ecosystem where grizzly bears (Ursus arctos horribilis) had purposefully consumed soil (an activity known as geophagy). We also documented soil in numerous grizzly bear feces. Geophagy primarily occurred at sites barren of vegetation where surficial geology had been modified by geothermal activity. There was no evidence of ungulate use at most sites. Purposeful consumption of soil by bears peaked first from March to May and again from August to October, synchronous with peaks in consumption of ungulate meat and mushrooms. Geophageous soils were distinguished from ungulate mineral licks and soils in general by exceptionally high concentrations of potassium (K) and high concentrations of magnesium (Mg) and sulphur (S). Our results do not support the hypotheses that bears were consuming soil to detoxify secondary compounds in grazed foliage, as postulated for primates, or to supplement dietary sodium, as known for ungulates. Our results suggest that grizzly bears could have been consuming soil as an anti-diarrheal.

  5. Myrmecophagy by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    2001-01-01

    I used data collected during a study of radio-marked grizzly bears (Ursus arctos horribilis) in the Yellowstone region from 1977 to 1992 to investigate myrmecophagy by this population. Although generally not an important source of energy for the bears (averaging 8 mm long) nested in logs over small ants (6 mm long) nested under stones. Optimal conditions for consumption of ants occurred on the warmest sites with ample substrate suitable for ant nests. For ants in mounds, this occurred at low elevations at non-forested sites. For ants in logs, this occurred at low elevations or on southerly aspects where there was abundant, large-diameter, well-decomposed woody debris under an open forest canopy. Grizzly bears selected moderately decomposed logs 4a??5 dm in diameter at midpoint. Ants will likely become a more important food for Yellowstone's grizzly bears as currently important foods decline, owing to disease and warming of the regional climate.

  6. Effects of exotic species on Yellowstone's grizzly bears

    USGS Publications Warehouse

    Reinhart, D.P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstones grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  7. Prospects for Yellowstone grizzly bears

    USGS Publications Warehouse

    Knight, R.R.; Eberhardt, L.L.

    1987-01-01

    Recent analyses of data on the grizzly bear (Ursus arctos horribilis) population of Yellowstone National Park and its environs suggest the likelihood of a continuing decline in numbers if losses of fully adult females are not reduced. The size of the population is not known, and a simple projection model has been used to identify some inconsistencies in the available index data. Population dynamics calculations, based on Lotka's equation or a stochastic model, indicate a continuing decrease in numbers, although continued observations through radio-telemetry are needed to verify these trends. The margin between stabilizing the population and a continued decrease appears to be roughly the loss of 2 fully adult female bears per year. At present, the risk of extirpation of this population over the next 30 years appears to be small. Continued monitoring of survivorship will be needed, particularly because "recovery" of the population may be mainly characterized by a shift in the pattern of mortality, from adults to subadults, and not necessarily a reduction in absolute number of losses.

  8. Monitoring grizzly bear population trends

    USGS Publications Warehouse

    Eberhardt, L.L.; Knight, R.R.; Blanchard, B.M.

    1986-01-01

    A simple different equation model was developed to provide additional perspective on observed mortality and trend data on Yellowstone grizzly bears (Ursus arctos horribilis). Records of mortalities of adult females from 1959 to 1985 were utilized, in conjunction with data on females with cubs. The overall downward trend of observed numbers of females with cubs generally agrees with the model calculations but does not adequately reflect mortality from 1970 to 1974. The model may be useful in developing a composite index of population trend.

  9. Movements of Yellowstone grizzly bears

    USGS Publications Warehouse

    Blanchard, Bonnie M.; Knight, Richard R.

    1991-01-01

    Ninety-seven grizzly bears Ursus arctos horribilis were radio-located 6299 times during 1975–1987. Annual range sizes differed by sex, age, reproductive status and amount of precipitation. Females exhibited greater fidelity to seasonal and annual ranges than males. Weaned female offspring generally remained in the vicinity of the maternal range, while weaned males often made substantial movements to unexplored country. Average total home range size was 884 km2 for females and 3757 km2 for males. Males consistently exhibited greater indices of movement and range sizes than females. All cohorts had larger mean ranges during this study than during the period 1959–1969 when the population had access to open garbage dumps. Movements and elevational distribution of all cohorts were related to availability of whitebark pine Pinus albicaulis seeds. We hypothesized that females with cubs-of-the-year and yearlings were displaced from most productive habitats during seasons and years of limited food availability.

  10. Response of Yellowstone grizzly bears to changes in food resources: A synthesis. Final report to the Interagency Grizzly Bear Committee and Yellowstone Ecosystem Subcommittee

    USGS Publications Warehouse

    Interagency Grizzly Bear Study Team; van Manen, Frank T.; Cecily M, Costello; Haroldson, Mark A.; Daniel D, Bjornlie; Michael R, Ebinger; Kerry A, Gunther; Mary Frances, Mahalovich; Daniel J, Thompson; Megan D, Higgs; Irvine, Kathryn M.; Kristin, Legg; Daniel, Tyers; Landenburger, Lisa; Steven L, Cain; Frey, Kevin L.; Aber, Bryan C.; Schwartz, Charles C.

    2013-01-01

    The Yellowstone grizzly bear (Ursus arctos) was listed as a threatened species in 1975 (Federal Register 40 FR:31734-31736). Since listing, recovery efforts have focused on increasing population size, improving habitat security, managing bear mortalities, and reducing bear-human conflicts. The Interagency Grizzly Bear Committee (IGBC; partnership of federal and state agencies responsible for grizzly bear recovery in the lower 48 states) and its Yellowstone Ecosystem Subcommitte (YES; federal, state, county, and tribal partners charged with recovery of grizzly bears in the Greater Yelowston Ecosystem [GYE]) tasked the Interagency Grizzly Bear Study Team to provide information and further research relevant to three concerns arising from the 9th Circuit Court of Appeals November 2011 decision: 1) the ability of grizzly bears as omnivores to find alternative foods to whitebark pine seeds; 2) literature to support their conclusions; and 3) the non-intuitive biological reality that impacts can occur to individuals without causing the overall population to decline. Specifically, the IGBC and YES requested a comprehensive synthesis of the current state of knowledge regarding whitebark pinbe decline and individual and population-level responses of grizzly bears to changing food resources in the GYE. This research was particularly relevant to grizzly bear conservation given changes in the population trajectory observed during the last decade.

  11. Trophic cascades from wolves to grizzly bears in Yellowstone.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2014-01-01

    We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P < 0·001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (0·3% vs. 5·9%) and August (7·8% vs. 14·6%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. Overall, these results are consistent with a trophic

  12. Potential energetic effects of mountain climbers on foraging grizzly bears

    USGS Publications Warehouse

    White, D., Jr.; Kendall, K.C.; Picton, H.D.

    1999-01-01

    Most studies of the effects of human disturbance on grizzly bears (Ursus arctos horribilis) have not quantified the energetic effects of such interactions. In this study, we characterized activity budgets of adult grizzly bears as they foraged on aggregations of adult army cutworm moths (Euxoa auxiliaris) in the alpine of Glacier National Park, Montana, during 1992, 1994, and 1995. We compared the activity budgets of climber-disturbed bears to those of undisturbed bears to estimate the energetic impact of climber disturbance. When bears detected climbers, they subsequently spent 53% less time foraging on moths, 52% more time moving within the foraging area, and 23% more time behaving aggressively, compared to when they were not disturbed. We estimated that grizzly bears could consume approximately 40,000 moths/day or 1,700 moths/hour. At 0.44 kcal/moth, disruption of moth feeding cost bears approximately 12 kcal/minute in addition to the energy expended in evasive maneuvers and defensive behaviors. To reduce both climber interruption of bear foraging and the potential for aggressive bear-human encounters, we recommend routing climbers around moth sites used by bears or limiting access to these sites during bear-use periods.

  13. Conservation of the Yellowstone grizzly bear

    USGS Publications Warehouse

    Mattson, David J.; Reid, Matthew M.

    1991-01-01

    We review literature relevant to the conservation of Yellowstone's grizzly bear population and appraise the bear's long-term viability. We conclude that the population is isolated and vulnerable to epidemic perturbation and that the carrying capacity of the habitat is likely to shift downward under conditions of climate change. Viability analyses based on the assumption that future habitats will closely resemble those existing at present have limited applicability; more information is needed on the autecology of important bear foods and on the implications of landscape-scale changes for bear population dynamics. Optimism over prospects of long-term persistence for Yellowstone's grizzly bears does not seem to be warranted and management of this population should be conservative and not unduly swayed on short-term positive trends.

  14. Demography of the Yellowstone grizzly bears

    USGS Publications Warehouse

    Pease, C.M.; Mattson, D.J.

    1999-01-01

    We undertook a demographic analysis of the Yellowstone grizzly bears (Ursus arctos) to identify critical environmental factors controlling grizzly bear vital rates, and thereby to help evaluate the effectiveness of past management and to identify future conservation issues. We concluded that, within the limits of uncertainty implied by the available data and our methods of data analysis, the size of the Yellowstone grizzly bear population changed little from 1975 to 1995. We found that grizzly bear mortality rates are about double in years when the whitebark pine crop fails than in mast years, and that the population probably declines when the crop fails and increases in mast years. Our model suggests that natural variation in whitebark pine crop size over the last two decades explains more of the perceived fluctuations in Yellowstone grizzly population size than do other variables. Our analysis used demographic data from 202 radio-telemetered bears followed between 1975 and 1992 and accounted for whitebark pine (Pinus albicaulis) crop failures during 1993-1995. We used a maximum likelihood method to estimate demographic parameters and used the Akaike Information Criteria to judge the significance of various independent variables. We identified no independent variables correlated with grizzly bear fecundity. In order of importance, we found that grizzly bear mortality rates are correlated with season, whitebark pine crop size (mast vs. nonmast year), sex, management-trapping status (never management-trapped vs. management-trapped once or more), and age. The mortality rate of bears that were management-trapped at least once was almost double that of bears that were never management-trapped, implying a source/sink (i.e., never management-trapped/management-trapped) structure. The rate at which bears move between the source and sink, estimated as the management-trapping rate (h), is critical to estimating the finite rate of increase, I>I?. We quantified h by

  15. Grizzly bear habitat research in Glacier National Park, Montana

    USGS Publications Warehouse

    Martinka, C.J.; Kendall, K.C.

    1986-01-01

    Grizzly bear habitat research began in 1967 and is continuing in Glacier National Park, MT. Direct observations and fecal analysis revealed a relatively definable pattern of habitat use by the bears. Habitat data were subsequently used to develop management models and explore the relationships between grizzlies and park visitors. Current research strategy is based on the concept that humans are an integral components of grizzly bear habitat. A geographic information system is being developed to assist in the application of habitat data. In addition, the behavioral response of grizzlies to annual changes in food production is being studied. Management that addresses bears, humans, and their habitat as a system is proposed.

  16. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Gunther, Kerry A.; Shoemaker, Rebecca; Frey, Kevin L.; Haroldson, Mark A.; Cain, Steven L; van Manen, Frank T.; Fortin, Jennifer K.

    2014-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE) are opportunistic omnivores that eat a great diversity of plant and animal species. Changes in climate may affect regional vegetation, hydrology, insects, and fire regimes, likely influencing the abundance, range, and elevational distribution of the plants and animals consumed by GYE grizzly bears. Determining the dietary breadth of grizzly bears is important to document future changes in food resources and how those changes may affect the nutritional ecology of grizzlies. However, no synthesis exists of all foods consumed by grizzly bears in the GYE. We conducted a review of available literature and compiled a list of species consumed by grizzly bears in the GYE. We documented >266 species within 200 genera from 4 kingdoms, including 175 plant, 37 invertebrate, 34 mammal, 7 fungi, 7 bird, 4 fish, 1 amphibian, and 1 algae species as well as 1 soil type consumed by grizzly bears. The average energy values of the ungulates (6.8 kcal/g), trout (Oncorhynchus spp., 6.1 kcal/g), and small mammals (4.5 kcal/g) eaten by grizzlies were higher than those of the plants (3.0 kcal/g) and invertebrates (2.7 kcal/g) they consumed. The most frequently detected diet items were graminoids, ants (Formicidae), whitebark pine seeds (Pinus albicaulis), clover (Trifolium spp.), and dandelion (Taraxacum spp.). The most consistently used foods on a temporal basis were graminoids, ants, whitebark pine seeds, clover, elk (Cervus elaphus), thistle (Cirsium spp.), and horsetail (Equisetum spp.). Historically, garbage was a significant diet item for grizzlies until refuse dumps were closed. Use of forbs increased after garbage was no longer readily available. The list of foods we compiled will help managers of grizzly bears and their habitat document future changes in grizzly bear food habits and how bears respond to changing food resources.

  17. Grizzly bear hair reveals toxic exposure to mercury through salmon consumption.

    PubMed

    Noël, Marie; Spence, Jody; Harris, Kate A; Robbins, Charles T; Fortin, Jennifer K; Ross, Peter S; Christensen, Jennie R

    2014-07-01

    Mercury obtained from the diet accumulates in mammalian hair as it grows thus preserving a record of mercury intake over the growth period of a given hair segment. We adapted a microanalysis approach, using laser ablation inductively coupled plasma mass spectrometry, to characterize temporal changes in mercury exposure and uptake in wild and captive grizzly bears. Captive grizzlies fed diets containing known and varied amounts of mercury provided data to allow prediction of Hg ingestion rates in wild bears. Here, we show, for the first time, that 70% of the coastal grizzly bears sampled had Hg levels exceeding the neurochemical effect level proposed for polar bears. In a context where the international community is taking global actions to reduce Hg emissions through the "Minamata Convention on Mercury", our study provides valuable information on the exposure to mercury of these grizzly bears already under many threats. PMID:24904971

  18. Population dynamics of Yellowstone grizzly bears

    USGS Publications Warehouse

    Knight, Richard R.; Eberhardt, L.L.

    1985-01-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review and further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population.

  19. Grizzly bear habitat selection is scale dependent.

    PubMed

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  20. Whitebark pine, grizzly bears, and red squirrels

    USGS Publications Warehouse

    Mattson, D.J.; Kendall, K.C.; Reinhart, D.P.

    2001-01-01

    Appropriately enough, much of this book is devoted to discussing management challenges and techniques. However, the impetus for action—the desire to save whitebark pine (Pinus albicaulis)—necessarily arises from the extent to which we cherish it for its beauty and its connections with other things that we value. Whitebark pine is at the hub of a fascinating web of relationships. It is the stuff of great stories (cf. Quammen 1994). One of the more interesting of these stories pertains to the dependence of certain grizzly bear (Ursus arctos horribilis) populations on its seeds, and the role that red squirrels (Tamiasciurus hudsonicus) play as an agent of transfer between tree and bear.

  1. Use of lodgepole pine cover types by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  2. Grizzly bear-human conflicts in the Yellowstone Ecosystem, 1992-2000

    USGS Publications Warehouse

    Gunther, K.A.; Haroldson, M.A.; Cain, S.L.; Copeland, J.; Frey, K.; Schwartz, C.C.

    2004-01-01

    For many years, the primary strategy for managing grizzly bears (Ursus arctos) that came into conflict with humans in the Greater Yellowstone Ecosystem (GYE) was to capture and translocate the offending bears away from conflict sites. Translocation usually only temporarily alleviated the problems and most often did not result in long-term solutions. Wildlife managers needed to be able to predict the causes, types, locations, and trends of conflicts to more efficiently allocate resources for pro-active rather than reactive management actions. To address this need, we recorded all grizzly bear-human conflicts reported in the GYE during 1992-2000. We analyzed trends in conflicts over time (increasing or decreasing), geographic location on macro- (inside or outside of the designated Yellowstone Grizzly Bear Recovery Zone [YGBRZ]) and micro- (geographic location) scales, land ownership (public or private), and relationship to the seasonal availability of bear foods. We recorded 995 grizzly bear-human conflicts in the GYE. Fifty-three percent of the conflicts occurred outside and 47% inside the YGBRZ boundary. Fifty-nine percent of the conflicts occurred on public and 41% on private land. Incidents of bears damaging property and obtaining anthropogenic foods were inversely correlated to the abundance of naturally occurring bear foods. Livestock depredations occurred independent of the availability of bear foods. To further aid in prioritizing management strategies to reduce conflicts, we also analyzed conflicts in relation to subsequent human-caused grizzly bear mortality. There were 74 human-caused grizzly bear mortalities during the study, primarily from killing bears in defense of life and property (43%) and management removal of bears involved in bear-human conflicts (28%). Other sources of human-caused mortality included illegal kills, electrocution by downed power-lines, mistaken identification by American black bear (Ursus americanus) hunters, and vehicle strikes

  3. 22. Photocopy of photograph (from 'The Grizzly Bear', September 1909) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (from 'The Grizzly Bear', September 1909) EXTERIOR, CLOSE-UP OF SOUTH FRONT & WEST SIDE RUINOUS STATE, 1909 - Mission San Francisco Solano de Sonoma, First & Spain Streets, Sonoma, Sonoma County, CA

  4. Population dynamics of Yellowstone grizzly bears

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-04-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review an further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population. 12 references, 9 figures, 6 tables.

  5. Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears

    USGS Publications Warehouse

    Podruzny, Shannon; Reinhart, D.P.; Mattson, David J.

    1999-01-01

    Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.

  6. Grizzly bear nutrition and ecology studies in Yellowstone National Park

    USGS Publications Warehouse

    Robbins, Charles T.; Schwartz, Charles C.; Gunther, Kerry A.; Servheen, Christopher

    2006-01-01

    T HE CHANCE TO SEE a wild grizzly bear is often the first or second reason people give for visiting Yellow - stone National Park. Public interest in bears is closely coupled with a desire to perpetuate this wild symbol of the American West. Grizzly bears have long been described as a wilderness species requiring large tracts of undisturbed habitat. However, in today’s world, most grizzly bears live in close proximity to humans (Schwartz et al. 2003). Even in Yellowstone National Park, the impacts of humans can affect the long-term survival of bears (Gunther et al. 2002). As a consequence, the park has long supported grizzly bear research in an effort to understand these impacts. Most people are familiar with what happened when the park and the State of Montana closed open-pit garbage dumps in the late 1960s and early 1970s, when at least 229 bears died as a direct result of conflict with humans. However, many may not be as familiar with the ongoing changes in the park’s plant and animal communities that have the potential to further alter the park’s ability to support grizzly bears.

  7. Consumption of pondweed rhizomes by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Podruzny, S.R.; Haroldson, M.A.

    2005-01-01

    Pondweeds (Potamogeton spp.) are common foods of waterfowl throughout the Northern Hemisphere. However, consumption of pondweeds by bears has been noted only once, in Russia. We documented consumption of pondweed rhizomes by grizzly bears (Ursus arctos) in the Yellowstone region, 1977-96, during investigations of telemetry locations obtained from 175 radiomarked bears. We documented pondweed excavations at 25 sites and detected pondweed rhizomes in 18 feces. We observed grizzly bears excavating and consuming pondweed on 2 occasions. All excavations occurred in wetlands that were inundated during and after snowmelt, but dry by late August or early September of most years. These wetlands were typified by the presence of inflated sedge (Carex vesicaria) and occurred almost exclusively on plateaus of Pliocene-Pleistocene detrital sediments or volcanic rhyolite flows. Bears excavated wetlands with pondweeds when they were free of standing water, most commonly during October and occasionally during spring prior to the onset of terminal snowmelt. Most excavations were about 4.5 cm deep, 40 cubic decimeter (dm3) in total volume, and targeted the thickened pondweed rhizomes. Starch content of rhizomes collected near grizzly bear excavations averaged 28% (12% SD; n = 6). These results add to the documented diversity of grizzly bear food habits and, because pondweed is distributed circumboreally, also raise the possibility that consumption of pondweed by grizzly bears has been overlooked in other regions.

  8. Density dependence, whitebark pine, and vital rates of grizzly bears

    USGS Publications Warehouse

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  9. Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.

    PubMed

    Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl

    2014-10-01

    Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. PMID:24762089

  10. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    PubMed

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. PMID:20347821

  11. Cannibalism and predation on black bears by grizzly bears in the Yellowstone ecosystem, 1975-1990

    USGS Publications Warehouse

    Mattson, D.J.; Knight, R.R.; Blanchard, B.M.

    1992-01-01

    We documented one instance of an adult male grizzly bear preying upon a black bear and four instances where circumstantial evidence suggested that grizzly bears (two cubs-of-the-year, one yearling female that was injured, and one adult male) had been preyed upon by conspecifics. We also examined feces of grizzly bears for bear remains. Remains of bears tended to be more common in spring feces and did not differ in frequency between early and late years of the study. Our observations generally support existing hypotheses concerning cannibalism among bears.

  12. Chromatographic (TLC) differentiation of grizzly bear and black bear scats

    USGS Publications Warehouse

    Picton, Harold D.; Kendall, Katherine C.

    1994-01-01

    While past work concluded that thin-layer chromatography (TLC) was inadequate for the separation of grizzly (Ursus arctos horribilis) and black bear (U. americanus) scats, our study found differences adequate for species separation. A key was constructed using 19 of 40 data points recorded on each(N)=356 profiles of 178) know-species scat. Accuracy was best for late summer scats (94%). Methods for specimen preparation, analysis, and reading the TLC profiles are discussed. Factors involved in scat variation were tested.

  13. Grizzly bear density in Glacier National Park, Montana

    USGS Publications Warehouse

    Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David

    2008-01-01

    We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.

  14. Predicting Grizzly Bear Density in Western North America

    PubMed Central

    Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552

  15. Predicting grizzly bear density in western North America.

    PubMed

    Mowat, Garth; Heard, Douglas C; Schwarz, Carl J

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552

  16. Review of oil and gas exploitation impacts on grizzly bears

    SciTech Connect

    Schallenberger, A.

    1980-01-01

    It is concluded that available information indicates that impacts of oil and gas exploitation should be considered primarily detrimental for grizzly bears in northwestern Montana. Research has shown that grizzlies tend to react strongly to aircraft, especially helicopters. Marked animals previously captured by aircraft show the greatest reaction. Helicopter disturbance may cause den abandonment. Biologists suggest that road development has contributed to a decline in numbers of bears by accelerating habitat loss and increasing hunting and poaching pressure. Use of river valleys for transportation corridors, campsites, and other activities magnifies the effect of human presence by concentrating it in some of the most vulnerable and essential grizzly habitat. Bear-human conflicts may increase as a result of secondary development such as recreation, logging, livestock grazing, and construction of subdivisions.

  17. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    PubMed

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  18. How much lox is a grizzly bear worth?

    PubMed

    Chase, Jonathan

    2012-01-01

    Using grizzly bears as surrogates for "salmon ecosystem" function, the authors develop a generalizable ecosystem-based management framework that enables decision makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish. PMID:22505846

  19. Biological consequences of relocating grizzly bears in the Yellowstone ecosystem

    USGS Publications Warehouse

    Blanchard, Bonnie M.; Knight, Richard R.

    1995-01-01

    Relocating grizzly bears (Ursus arctos) from human/bear conflict situations has been a standard management procedure. Using data from Yellowstone National Park, we present components of situations that may affect the outcome of a relocation. Survival rates of transported bears were lower (lx = 0.83) (P = 0.001) than those not transported (lx = 0.89). Survival was largely affected by whether the bear returned to the capture site (P = 0.029). Return rate was most affected by distance transported (P = 0.012) and age-sex group (P = 0.014). Return rates decreased at distances -75 km, and subadult females returned least (P = 0.050) often. Because of low survival and high return rates, transporting grizzly bears should be considered a final action to eliminate a conflict situation. However, transporting females must be considered a viable management technique because transports of some individuals have resulted in contributions to the population through successful reproduction.

  20. Science and management of Rocky Mountain grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Herrero, S.; Wright, R.G.; Pease, C.M.

    1996-01-01

    The science and management of grizzly bears (Ursus arctos horribilis) in the Rocky Mountains of North America have spawned considerable conflict and controversy. Much of this can be attributed to divergent public values, but the narrow perceptions and incomplete and fragmented problem definitions of those involved have exacerbated an inherently difficult situation. We present a conceptual model that extends the traditional description of the grizzly bear conservation system to include facets of the human domain such as the behavior of managers, elected officials, and the public. The model focuses on human-caused mortality, the key determinant of grizzly bear population growth in this region and the interactions and feedback loops among humans that have a major potential influence on bear mortality. We also briefly evaluate existing information and technical methods relevant to understanding this complex human-biophysical system. We observe not only that the extant knowledge is insufficient for prediction (and in some cases for description), but also that traditional positivistic science alone is not adequate for dealing with the problems of grizzly bear conservation. We recommend changes in science and management that could improve learning and responsiveness among the involved individuals and organizations, clarify some existing uncertainty, and thereby increase the effectiveness of grizzly bear conservation and management. Although adaptive management is a promising approach, we point out some keya??as yet unfulfilleda??contingencies for implementation of a method such as this one that relies upon social processes and structures that promote open learning and flexibility in all facets of the policy process.

  1. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    PubMed

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and

  2. Interactions between wolves and female grizzly bears with cubs in Yellowstone National Park

    USGS Publications Warehouse

    Gunther, Kerry A.; Smith, Douglas W.

    2004-01-01

    Gray wolves (Canis lupus) were extirpated from Yellowstone National Park (YNP) by the 1920s through predator control actions (Murie 1940,Young and Goldman 1944, Weaver 1978), then reintroduced into the park from 1995 to 1996 to restore ecological integrity and adhere to legal mandates (Bangs and Fritts 1996, Phillips and Smith 1996, Smith et al. 2000). Prior to reintroduction, the potential effects of wolves on the region’s threatened grizzly bear (Ursus arctos) population were evaluated (Servheen and Knight 1993). In areas where wolves and grizzly bears are sympatric, interspecific killing by both species occasionally occurs (Ballard 1980, 1982; Hayes and Baer 1992). Most agonistic interactions between wolves and grizzly bears involve defense of young or competition for carcasses (Murie 1944, 1981; Ballard 1982; Hornbeck and Horejsi 1986; Hayes and Mossop 1987; Kehoe 1995; McNulty et al. 2001). Servheen and Knight (1993) predicted that reintroduced wolves could reduce the frequency of winter-killed and disease-killed ungulates available for bears to scavenge, and that grizzly bears would occasionally usurp wolf-killed ungulate carcasses. Servheen and Knight (1993) hypothesized that interspecific killing and competition for carcasses would have little or no population level effect on either species.

  3. Use of ungulates by Yellowstone grizzly bears Ursus arctos

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Previous results of fecal analysis from the Yellowstone area and the known abilities of grizzly bears Ursus arctos to acquire and digest tissue from vertebrates suggested that grizzlies in this ecosystem obtained substantial energy from ungulates. This issue was addressed using observations from radio-marked grizzly bears, 1977a??1992. Ungulates potentially contributed the majority of energy required for activity during the non-denning season for both adult female and male grizzlies. Most of this energy (95%) was estimated to come from the largest-bodied ungulate species (elk Cervus elaphus, bison Bison bison, and moose Alces alces), with greatest proportional contributions by scavenged adult male bison (16%), scavenged calf and yearling elk (10%) and adult female elk that were killed (8%) or scavenged (8%). Grizzlies acquired 30% of total edibles from ungulates by predation, of which 13% (or 4% of the total) came from predation on elk calves. Most scavenging occurred during the spring and was associated with the abundance and relative availability of different types of carrion. Predation and scavenging did not appear to be compensatory. Rather, total consumption of ungulates varied inversely with consumption of whitebark pine Pinus albicaulis seeds. The relative frequency of predation to scavenging increased with ungulate density. Contrary to previous suppositions, neither total ungulate use nor frequency of predation increased during the study, despite large increases in some ungulate populations. As expected by the identified trade-offs, Yellowstone grizzlies seemed to prey selectively upon moose, probably because of their solitary habits and forested surroundings, but otherwise favored vulnerable smaller-bodied ungulates such as elk calves. No predation on adult bison was observed.

  4. MEDULLOBLASTOMA IN A GRIZZLY BEAR (URSUS ARCTOS HORRIBLIS).

    PubMed

    Mitchell, Jeffrey W; Thomovsky, Stephanie A; Chen, Annie V; Layton, Arthur W; Haldorson, Gary; Tucker, Russell L; Roberts, Gregory

    2015-09-01

    A 3-yr-old female spayed grizzly bear (Ursus arctos horribilis) was evaluated for seizure activity along with lethargy, inappetence, dull mentation, and aggressive behavior. Magnetic resonance (MR) examination of the brain revealed a contrast-enhanced right cerebellar mass with multifocal smaller nodules located in the left cerebellum, thalamus, hippocampus, and cerebrum with resultant obstructive hydrocephalus. Cerebrospinal fluid analysis revealed mild mononuclear pleocytosis, with differentials including inflammatory versus neoplastic processes. Blood and cerebrospinal fluid were also submitted for polymerase chain reaction and agar gel immunodiffusion to rule out infectious causes of meningitis/encephalitis. While awaiting these results, the bear was placed on steroid and antibiotic therapy. Over the next week, the bear deteriorated; she died 1 wk after MR. A complete postmortem examination, including immunohistochemisty, revealed the cerebellar mass to be a medulloblastoma. This is the only case report, to the authors' knowledge, describing a medulloblastoma in a grizzly bear. PMID:26352975

  5. Acquired arteriovenous fistula in a grizzly bear (Ursus arctos horribilis).

    PubMed

    Tuttle, Allison D; MacLean, Robert A; Linder, Keith; Cullen, John M; Wolfe, Barbara A; Loomis, Michael

    2009-03-01

    A captive adult male grizzly bear (Ursus arctos horribilis) was evaluated due to multifocal wounds of the skin and subcutaneous tissues sustained as a result of trauma from another grizzly bear. On presentation, one lesion that was located in the perineal region seemed to be a deep puncture with purple tissue protruding from it. This perineal wound did not heal in the same manner or rate as did the other wounds. Twenty-five days after initial detection, substantial active hemorrhage from the lesion occurred and necessitated anesthesia for examination of the bear. The entire lesion was surgically excised, which later proved curative. An acquired arteriovenous fistula was diagnosed via histopathology. Arteriovenous fistulas can develop after traumatic injury and should be considered as a potential complication in bears with nonhealing wounds. PMID:19368261

  6. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    USGS Publications Warehouse

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  7. Denning of grizzly bears in the Yellowstone National Park area

    USGS Publications Warehouse

    Judd, Steven L.; Knight, Richard R.; Blanchard, Bonnie M.

    1986-01-01

    Radiotelemetry was used to locate 101 grizzly bear (Ursus arctos) dens from 1975 to 1980; 35 dens were examined on the ground. Pregnant females denned in late October, and most other bears denned by mid-November. Duration of denning average 113, 132, and 170 days for males, females, and females with new cubs, respectively. Males emerged from mid-February to late March, followed by single females and females with yearlings and 2-year-olds. Females with new cubs emerged from early mid-April. Den sites were associated with moderate tree cover (26%-75% canopy cover) on 30°-60° slopes. Dens occurred on all aspects, although northerly exposures were most common. Grizzly bears usually dug new dens but occasionally used natural cavities or a den from a previous year. Males usually dug larger dens than females with young. Eight excavated and 2 natural dens of the 35 examined dens were used for more than 1 year.

  8. Grizzly bear predation rates on caribou calves in northeastern Alaska

    USGS Publications Warehouse

    Young, D.D., Jr.; McCabe, T.R.

    1997-01-01

    During June 1993 and 1994, 11 radiocollared and 7 unmarked grizzly bears (Ursus arctos) were monitored visually (observation) from fixed-wing aircraft to document predation on calves of the Porcupine Caribou (Rangifer tarandus) Herd (PCH) in northeastern Alaska. Twenty-six (72%) grizzly bear observations were completed (???60 min) successfully (median duration = 180 min; ??95% CI = 136-181 min; range = 67-189 min) and 10 were discontinued (duration ???24 min) due to disturbance to the bear, or unfavorable weather conditions. Of the 26 successfully completed observations, 15 (58%) included predatory activity (encounter) directed at caribou calves and 8 (31%) included kills. Of 32 encounters, 9 resulted in kills, for a success rate of 28%. The median duration of encounters was 1 minute (??95% CI = 1-2 min; range = 1-6 min; n = 32;), and the median time spent at a kill was 14 minutes (??95% CI = 9-23 min; range = 6-56 min; n = 9). Sows with young (n = 4) killed more frequently (75%; P = 0.0178) than barren sows, boars, and consorting pairs combined (17%; n = 18). Estimated kill rate was highest for sows with young (6.3 kills/bear/day; n = 4), followed by barren sows (4.6 kills/bear/day; n = 5), boars (1.9 kills/bear/day; n = 5), and, finally, consorting pairs (1.0 kills/bear/day; n = 8). Estimated kill rate obtained via conventional radiotracking point surveys (4.8 kills/bear/day) was higher than that obtained via concurrent bear observations (3.1 kills/bear/day). Our research provides baseline estimates of predation rates by grizzly bears on caribou calves that will enhance the capability of wildlife professionals in managing populations of both predators and their prey.

  9. GRIZZLY

    Energy Science and Technology Software Center (ESTSC)

    2012-12-17

    Grizzly is a simulation tool for assessing the effects of age-related degradation on systems, structures, and components of nuclear power plants. Grizzly is built on the MOOSE framework, and uses a Jacobian-free Newton Krylov method to obtain solutions to tightly coupled thermo-mechanical simulations. Grizzly runs on a wide range of hardware, from a single processor to massively parallel machines.

  10. Climate and reproduction of grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Picton, Harold D.

    1978-01-01

    Controversy surrounds the conflicts between the requirements of human safety and the preservation of grizzly bears (Ursus arctos horribilis) in western North America. It has been difficult to separate the effect of factors such as the closure of garbage dumps from that of the climate. It has also proved difficult to relate climatic data to changes in the populations of large mammals. I report here a correlation of climatic change with fluctuations in the sizes of litters of grizzly bears born in Yellowstone National Park, Wyoming, during 1958–1976. The decrease in litter sizes observed since the closure of garbage dumps seems to be largely a consequence of unfavourable weather during the periods of the final fattening of the mother, winter sleep, birth, lactation and early spring foraging. This study represents one of the few times that the effects of climate have been demonstrated for large omnivorous or carnivorous mammals.

  11. Coefficients of Productivity for Yellowstone's Grizzly Bear Habitat

    USGS Publications Warehouse

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (<100 m) or far away from forest/nonforest edges, and areas inside or outside of ungulate winter ranges. Densities of bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  12. Fluctuating asymmetry and testing isolation of Montana grizzly bear populations

    USGS Publications Warehouse

    Picton, Harold D.; Palmisciano, D.A.; Nelson, Gerald

    1990-01-01

    Fluctuating asymmetry of adult skulls was used to test he genetic isolation of the Yellowstone grizzly bear population from its nearest neighbor. An overall summary statistic was used in addition to 16 other parameters. Tests found the males of the Yellowstone populaion to be more vaiable than those of the North Conitinental Divide Exosystem. Evidence for precipitaiton effects is also included. This test tends to support the existing management haypothesis that the Yellowstone population is isolatied.

  13. New challenges for grizzly bear management in Yellowstone National Park

    USGS Publications Warehouse

    van Manen, Frank T.; Gunther, Kerry A.

    2016-01-01

    A key factor contributing to the success of grizzly bear Ursus arctos conservation in the Greater Yellowstone Ecosystem has been the existence of a large protected area, Yellowstone National Park. We provide an overview of recovery efforts, how demographic parameters changed as the population increased, and how the bear management program in Yellowstone National Park has evolved to address new management challenges over time. Finally, using the management experiences in Yellowstone National Park, we present comparisons and perspectives regarding brown bear management in Shiretoko National Park.

  14. The Impact of Roads on the Demography of Grizzly Bears in Alberta

    PubMed Central

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species. PMID:25532035

  15. The impact of roads on the demography of grizzly bears in Alberta.

    PubMed

    Boulanger, John; Stenhouse, Gordon B

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species. PMID:25532035

  16. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    PubMed

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears. PMID:21187098

  17. Using climate data to predict grizzly bear litter size

    USGS Publications Warehouse

    Picton, Harold D.; Knight, Richard R.

    1986-01-01

    A 5-year double-bind test was conducted to test the predictive capability of a previously published (Picton 1978) regression (Y= 2.01 + 0.042x), which described the relationship between the littler size of grizzly bears (Ursus arctos horribilis) and an index of climate plus carrion availability (climate-carrion index). This regression showed an efficient in excess of 99% in predicting the observed grizzly bear littler size. The predictions made using the climate-carrion index had a mean absolute error of less than 25% of forecasts using other methods. The updated climate-carrion index regression, which includes all of the 16 years for which data are available, is Y= 2.009 + 0.042x (r = 0.078; P N = 16). We concluded that the climate-carrion index can be a helpful tool in predicting grizzly bear littler size. The relation of this information to the effects of the closure of Yellowstone Park garbage dumps is discussed.

  18. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  19. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms. PMID:19940994

  20. Exploitation of pocket gophers and their food caches by grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    2004-01-01

    I investigated the exploitation of pocket gophers (Thomomys talpoides) by grizzly bears (Ursus arctos horribilis) in the Yellowstone region of the United States with the use of data collected during a study of radiomarked bears in 1977-1992. My analysis focused on the importance of pocket gophers as a source of energy and nutrients, effects of weather and site features, and importance of pocket gophers to grizzly bears in the western contiguous United States prior to historical extirpations. Pocket gophers and their food caches were infrequent in grizzly bear feces, although foraging for pocket gophers accounted for about 20-25% of all grizzly bear feeding activity during April and May. Compared with roots individually excavated by bears, pocket gopher food caches were less digestible but more easily dug out. Exploitation of gopher food caches by grizzly bears was highly sensitive to site and weather conditions and peaked during and shortly after snowmelt. This peak coincided with maximum success by bears in finding pocket gopher food caches. Exploitation was most frequent and extensive on gently sloping nonforested sites with abundant spring beauty (Claytonia lanceolata) and yampah (Perdieridia gairdneri). Pocket gophers are rare in forests, and spring beauty and yampah roots are known to be important foods of both grizzly bears and burrowing rodents. Although grizzly bears commonly exploit pocket gophers only in the Yellowstone region, this behavior was probably widespread in mountainous areas of the western contiguous United States prior to extirpations of grizzly bears within the last 150 years.

  1. Possible effects of elk harvest on fall distribution of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, M.A.; Schwartz, C.C.; Cherry, S.; Moody, D.

    2004-01-01

     The tradition of early elk (Cervus elaphus) hunting seasons adjacent to Yellowstone National Park (YNP), USA, provides grizzly bears (Ursus arctos horribilis) with ungulate remains left by hunters. We investigated the fall (Aug–Oct) distribution of grizzly bears relative to the boundaries of YNP and the opening of September elk hunting seasons. Based on results from exact tests of conditional independence, we estimated the odds of radiomarked bears being outside YNP during the elk hunt versus before the hunt. Along the northern boundary, bears were 2.40 times more likely to be outside YNP during the hunt in good whitebark pine (Pinus albicaulis) seed-crop years and 2.72 times more likely in poor seed-crop years. The level of confidence associated with 1-sided confidence intervals with a lower endpoint of 1 was approximately 94% in good seed-crop years and 61% in poor years. Along the southern boundary of YNP, radiomarked bears were 2.32 times more likely to be outside the park during the hunt in good whitebark pine seed-crop years and 4.35 times more likely in poor seed-crop years. The level of confidence associated with 1-sided confidence intervals with a lower endpoint of 1 was approximately 93% in both cases. Increased seasonal bear densities and human presence in early hunt units increases potential for conflicts between bears and hunters. Numbers of reported hunting-related grizzly bear mortalities have increased in the Greater Yellowstone Ecosystem (GYE) during the last decade, and nearly half of this increase is due to bear deaths occurring in early hunt units during September. Human-caused grizzly bear mortality thresholds established by the U.S. Fish and Wildlife Service (USFWS) have not been exceeded in recent years. This is because agency actions have reduced other sources of human-caused mortalities, and because population parameters that mortality thresholds are based on have increased. Agencies must continue to monitor and manage hunter

  2. Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears

    USGS Publications Warehouse

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Gunther, K.A.; Crock, J.G.; Haroldson, M.A.; Waits, L.; Robbins, C.T.

    2004-01-01

    Spawning cutthroat trout (Oncorhynchus clarki (Richardson, 1836)) are a potentially important food resource for grizzly bears (Ursus arctos horribilis Ord, 1815) in the Greater Yellowstone Ecosystem. We developed a method to estimate the amount of cutthroat trout ingested by grizzly bears living in the Yellowstone Lake area. The method utilized (i) the relatively high, naturally occurring concentration of mercury in Yellowstone Lake cutthroat trout (508 ± 93 ppb) and its virtual absence in all other bear foods (6 ppb), (ii) hair snares to remotely collect hair from bears visiting spawning cutthroat trout streams between 1997 and 2000, (iii) DNA analyses to identify the individual and sex of grizzly bears leaving a hair sample, (iv) feeding trials with captive bears to develop relationships between fish and mercury intake and hair mercury concentrations, and (v) mercury analyses of hair collected from wild bears to estimate the amount of trout consumed by each bear. Male grizzly bears consumed an average of 5 times more trout/kg bear than did female grizzly bears. Estimated cutthroat trout intake per year by the grizzly bear population was only a small fraction of that estimated by previous investigators, and males consumed 92% of all trout ingested by grizzly bears.

  3. 75 FR 14496 - Endangered and Threatened Wildlife and Plants; Reinstatement of Protections for the Grizzly Bear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Endangered Wildlife (72 FR 14866). In that rule, we determined that the Yellowstone grizzly bear population... (Rausch 1963, p. 43; Servheen 1999, pp. 50-53). The original 1975 grizzly bear listing (40 FR 31734- 31736... form in the March 29, 2007, final rule (72 FR 14866), which again set forth the listed entity as...

  4. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates. PMID:25154102

  5. Consumption of fungal sporocarps by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, David J.; Podruzny, Shannon; Haroldson, Mark A.

    2002-01-01

    Sign of grizzly bears (Ursus arctos horribilis) consuming fungal sporocarps (mushrooms and truffles) was observed on 68 occasions during a study of radiomarked bears in the Yellowstone region, 1977–96. Sporocarps also were detected in 96 grizzly bear feces. Most fungi consumedby Yellowstone's grizzlybearsweremembersofthe Boletaceae(Suillus spp.), Russulaceae (Russula spp. and Lactarius sp.), Morchellaceae (Morchella elata), and Rhizopogonaceae. Consumption of false truffles (Rhizopogon spp.) was indicated by excavations that were deeper, on average (1.1 dm), than excavations for mushrooms (0.6 dm). Consumption of sporocarps was most frequent during September (7% of all activity), although median numbers of sporocarps excavated at feeding sites peaked during both August and September (22–23 excavations/site). Almost all consumption (75%) occurred on edaphically harsh sites typically dominated by lodgepole pine (Pinus contorta). At broad scales, consumption of sporocarps was most likely where these types of lodgepole pine-dominated sites were extensive or where high-elevation sites supporting mature whitebarkpine (P albicaulis) were rare. The number of sporocarps excavated atafeeding site was greatest when conecrops of whitebarkpine were smallandinstands with abundantlodgepolepine. At finescales, consumption of fungi was positively associated with lodgepolepine basalarea and negatively associated with total ground vegetation cover. Because of the strong association of sporocarp consumption with lodgepole pine and its disassociation at broad scales with availability of whitebark pineseeds, consumption of mushrooms and truffles by grizzly bears will likely increase in the Yellowstone ecosystem with global warming. Lodgepole pine is predicted to increase and whitebark pine to decline with global warming.

  6. Methods to estimate distribution and range extent of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, Mark A.; Schwartz, Charles C.; , Daniel D. Bjornlie; , Daniel J. Thompson; , Kerry A. Gunther; , Steven L. Cain; , Daniel B. Tyers; Frey, Kevin L.; Aber, Bryan C.

    2014-01-01

    The distribution of the Greater Yellowstone Ecosystem grizzly bear (Ursus arctos) population has expanded into areas unoccupied since the early 20th century. Up-to-date information on the area and extent of this distribution is crucial for federal, state, and tribal wildlife and land managers to make informed decisions regarding grizzly bear management. The most recent estimate of grizzly bear distribution (2004) utilized fixed-kernel density estimators to describe distribution. This method was complex and computationally time consuming and excluded observations of unmarked bears. Our objective was to develop a technique to estimate grizzly bear distribution that would allow for the use of all verified grizzly bear location data, as well as provide the simplicity to be updated more frequently. We placed all verified grizzly bear locations from all sources from 1990 to 2004 and 1990 to 2010 onto a 3-km × 3-km grid and used zonal analysis and ordinary kriging to develop a predicted surface of grizzly bear distribution. We compared the area and extent of the 2004 kriging surface with the previous 2004 effort and evaluated changes in grizzly bear distribution from 2004 to 2010. The 2004 kriging surface was 2.4% smaller than the previous fixed-kernel estimate, but more closely represented the data. Grizzly bear distribution increased 38.3% from 2004 to 2010, with most expansion in the northern and southern regions of the range. This technique can be used to provide a current estimate of grizzly bear distribution for management and conservation applications.

  7. Food habits of Yellowstone grizzly bears, 1977-1987

    USGS Publications Warehouse

    Mattson, David J.; Blanchard, Bonnie M.; Knight, Richard R.

    1990-01-01

    Food habits of grizzly bears were studied for 11 years in the Yellowstone area of Wyoming, Montana, and Idaho by analyzing scats. Ungulate remains constituted a major portion of early-season scats, graminoids of May and June scats, and whitebark pine seeds of late-season scats. Berries composed a minor portion of scats during all months. The diet varied most among years during May, September, and October, and was most diverse during August. Defecation rates peaked in July and were low in April through June. Among-years differences in scat content were substantial; estimates of average scat composition took 4-6 years to stabilize. Major trends in diet were evident and reflected long-term variation. We suggest that long-term studies are necessary to adequately document bears' food habits in variable environments; the Yellowstone grizzly bears' diet varied with seasonal and yearly availability of high-quality foods, lack of berries and large fluctuations in the size of pine seed crops were major factors limiting bear density in the Yellowstone area, and the availability of edible human refuse buffered the limitations imposed by inadequate berry and pine seed crops prior to the 1970s.

  8. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    USGS Publications Warehouse

    Barber-Meyer, Shannon M.

    2015-01-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223–233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review.

  9. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    PubMed

    Barber-Meyer, Shannon M

    2015-05-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223-233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review. PMID:25732302

  10. Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 2004

    USGS Publications Warehouse

    Schwartz, C.C.; Haroldson, M.A.; Gunther, K.; Moody, D.

    2006-01-01

    The US Fish and Wildlife Service (USFWS) proposed delisting the Yellowstone grizzly bear (Ursus arctos horribilis) in November 2005. Part of that process required knowledge of the most current distribution of the species. Here, we update an earlier estimate of occupied range (1990–2000) with data through 2004. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 481) with cubs of the year, locations of radiomarked bears (n = 170), and spatially unique locations of conflicts, confrontations, and mortalities (n = 1,075). Although each data set was constrained by potential sampling bias, together they provided insight into areas in the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution of 37,258 km2 (1990–2004) extends beyond the distribution map generated with data from 1990–2000 (34,416 km2 ). Range expansion is particularly evident in parts of the Caribou–Targhee National Forest in Idaho and north of Spanish Peaks on the Gallatin National Forest in Montana.

  11. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  12. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.

    PubMed

    Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael

    2009-12-01

    Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears. PMID:20029525

  13. Demography and genetic structure of a recovering grizzly bear population

    USGS Publications Warehouse

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  14. Home Range Size Variation in Female Arctic Grizzly Bears Relative to Reproductive Status and Resource Availability

    PubMed Central

    Edwards, Mark A.; Derocher, Andrew E.; Nagy, John A.

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal’s home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family. PMID:23844162

  15. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family. PMID:23844162

  16. Disseminated pleomorphic myofibrosarcoma in a grizzly bear (Ursus arctos horribilis).

    PubMed

    Mete, A; Woods, L; Famini, D; Anderson, M

    2012-01-01

    The pathological and diagnostic features of a widely disseminated pleomorphic high-grade myofibroblastic sarcoma are described in a 23-year-old male brown bear (Ursus arctos horribilis). Firm, solid, white to tan neoplastic nodules, often with cavitated or soft grey-red necrotic centres, were observed throughout most internal organs, subcutaneous tissues and skeletal muscles on gross examination. Microscopically, the tumour consisted of pleomorphic spindle cells forming interlacing fascicles with a focal storiform pattern with large numbers of bizarre polygonal multinucleate cells, frequently within a collagenous stroma. Immunohistochemistry, Masson's trichrome stain and transmission electron microscopy designated the myofibroblast as the cell of origin. This is the first case of a high-grade myofibrosarcoma in a grizzly bear. PMID:22297075

  17. Factors influencing human-grizzly bear interactions in a backcountry setting

    USGS Publications Warehouse

    Chester, James M.

    1980-01-01

    Interactins between humans and 7 species of wildlife, including grizzly bears (Ursus arctos horribilis), were investigated in backcountry areas of the Gallatin Range, Yellowstone National Park, during the summers of 1973 and 1974. Grizzly bear distribution, movements, and behavior and human behavior were examined. Because grizzlies utilized areas with elevations much in excess of the study area's average trail elevation, he likelihood of the off-trail party observing a grizzly bear was 3-4 times greater than that of a trail-traveling party. During the hiking season, grizzliess exhibited an elevational migration. The frequencies of on-trail and combined on- and off-trail observations and sign discoveries per party tended to peak during those periods that grizzlies were found at low elevations. Activitiy patterns of grizzlies at the point of first observation or after the bears had become aware of the human presence did not indicate behavioral traits likely to accentuate the possibilities of human-bear confrontations. Some backcountry travelers engaged in activites that could increase detrimental encounters with grizzly bears.

  18. Grizzly bear: habitat relationships in the Yellowstone area

    USGS Publications Warehouse

    Blanchard, Bonnie M.

    1983-01-01

    Habitat use by grizzly bears (Ursus arctos) was studied from 1977 through 1979 in a 20,000-km2 area with Yellowstone National Park in the center. Of 1826 aerial radio locations of 46 instrumental grizzlies, 90% were in timber. Three-fourths of the locations were 100 m or less from an edge between timber and an opening. Timber over 3 m tall with a canopy cover of 26-75% accounted for 50% of all activity sites from March through November. The Abies lasiocarpa/Vaccinium scoparium community alone contained 23% of the total activity sites and 35% of the forested activity sites. Of 507 observations of feeding activity, 45% were recorded in timber over 3 m tall with a canopy cover of 26-100%, 34% in timber with a 0.1-25% canopy cover, 20% in open habitats, and 3% in timber less than 3 m tall. Ninety-nine percent of examined day beds were in forested communities.

  19. Carnivore re-colonisation: Reality, possibility and a non-equilibrium century for grizzly bears in the southern Yellowstone ecosystem

    USGS Publications Warehouse

    Pyare, Sanjay; Cain, S.; Moody, D.; Schwartz, C.; Berger, J.

    2004-01-01

    Most large native carnivores have experienced range contractions due to conflicts with humans, although neither rates of spatial collapse nor expansion have been well characterised. In North America, the grizzly bear (Ursus arctos) once ranged from Mexico northward to Alaska, however its range in the continental USA has been reduced by 95-98%. Under the U. S. Endangered Species Act, the Yellowstone grizzly bear population has re-colonised habitats outside Yellowstone National Park. We analysed historical and current records, including data on radio-collared bears, (1) to evaluate changes in grizzly bear distribution in the southern Greater Yellowstone Ecosystem (GYE) over a 100-year period, (2) to utilise historical rates of re-colonisation to project future expansion trends and (3) to evaluate the reality of future expansion based on human limitations and land use. Analysis of distribution in 20-year increments reflects range reduction from south to north (1900-1940) and expansion to the south (1940-2000). Expansion was exponential and the area occupied by grizzly bears doubled approximately every 20 years. A complementary analysis of bear occurrence in Grand Teton National Park also suggests an unprecedented period of rapid expansion during the last 20-30 years. The grizzly bear population currently has re-occupied about 50% of the southern GYE. Based on assumptions of continued protection and ecological stasis, our model suggests total occupancy in 25 years. Alternatively, extrapolation of linear expansion rates from the period prior to protection suggests total occupancy could take > 100 years. Analyses of historical trends can be useful as a restoration tool because they enable a framework and timeline to be constructed to pre-emptively address the social challenges affecting future carnivore recovery. ?? 2004 The Zoological Society of London.

  20. Extirpations of grizzly bears in the contiguous United States of America, 1850-2000

    USGS Publications Warehouse

    Mattson, David J.; Merrill, Troy

    2002-01-01

    We investigated factors associated with the distribution of grizzly bears (Ursus arctos horribilis) in 1850 and their extirpation during 1850–1920 and 1920–1970 in the contiguous United States. We used autologistic regression to describe relations between grizzly bear range in 1850, 1920, and 1970 and potential explanatory factors specified for a comprehensive grid of cells, each 900 km2 in size. We also related persistence, 1920–1970, to range size and shape. Grizzly bear range in 1850 was positively related to occurrence in mountainous ecoregions and the ranges of oaks (Quercus spp.), piñon pines (Pinus edulis and P. monophylla), whitebark pine (P. albicaulis), and bison (Bos bison) and negatively related to occurrence in prairie and hot desert ecoregions. Relations with salmon (Oncorynchus spp.) range and human factors were complex. Persistence of grizzly bear range, 1850–1970, was positively related to occurrence in the Rocky Mountains, whitebark pine range, and local size of grizzly bear range at the beginning of each period, and negatively related to number of humans and the ranges of bison, salmon, and piñon pines. We speculate that foods affected persistence primarily by influencing the frequency of contact between humans and bears. With respect to current conservation, grizzly bears survived from 1920 to 1970 most often where ranges at the beginning of this period were either larger than 20,000 km2 or larger than 7,000 km2 but with a ratio of perimeter to area of <2. Without reductions in human lethality after 1970, there would have been no chance that core grizzly bear range would be as extensive as it is now. Although grizzly bear range in the Yellowstone region is currently the most robust of any to potential future increases in human lethality, bears in this region are threatened by the loss of whitebark pine.

  1. Movements of radio-instrumented grizzly bears within the Yellowstone area

    USGS Publications Warehouse

    Judd, Steven L.; Knight, Richard R.

    1980-01-01

    Grizzly bear (Ursus arctos horribilis) movement patterns were studied with the aid of 18 radio-instrumented grizzly bears in 1975 and 1976. Five bears gave minimal information because of death, transmitter failure, or loss of transmitters. Seasonal home range information is presented for 13 bears. Two bears, trapped inside Yellowstone National Park, included areas outside of the park in their home ranges. Twelve bears trapped outside included parts of the park in their home ranges. Three females with young gave no indication of having smaller home ranges than other individuals. Movement patterns prior to denning and dates of denning varied among individual bears.

  2. Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Green, Gerald I.; Mattson, D.J.; Peek, J.M.

    1997-01-01

    We studied the spring use of ungulate carcasses by grizzly bears (Ursus arctos horribilis) on ungulate winter ranges in Yellowstone National Park. We observed carcasses and bear tracks on survey routes that were travelled biweekly during spring of 1985-90 in the Firehole-Gibbon winter range and spring of 1987-90 in the Northern winter range. The probability that grizzly bears used a carcass was positively related to elevation and was lower within 400 m of a road, or within 5 km of a major recreational development compared to elsewhere. Carcass use peaked in April, coincident with peak ungulate deaths. Grizzly bears also were more likely to use carcasses in the Firehole-Gibbon compared to Northern Range study area. We attributed the effects of study area and elevation to the fact that grizzly bears den and are first active in the spring at high elevations and to differences in densities of competing scavengers. Probability of grizzly bear use was strongly related to body mass of carcasses on the Northern Range where densities of coyotes (Canis latrans) and black bears (U. americanus) appeared to be much higher than in the Firehole-Gibbon study area. We suggest that additional restrictions on human activity in ungulate winter ranges or movement of carcasses to remote areas could increase grizzly bear use of carrion. Fewer competing scavengers and greater numbers of adult ungulates vulnerable to winter mortality could have the same effect.

  3. Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem

    USGS Publications Warehouse

    French, Steven P.; French, Marilynn G.; Knight, Richard R.

    1994-01-01

    The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.

  4. Selection of microsites by grizzly bears to excavate biscuitroots (Lomatium cous)

    USGS Publications Warehouse

    Mattson, D.J.

    1997-01-01

    Roots of the biscuitroot (Lomatium cous) are a common food of grizzly bears (Ursus arctos horribilis) in drier parts of their southern range. I used random sampling and locations of radiomarked bears in the Yellowstone ecosystem to investigate the importance of mass and starch content of roots, digability of the site, and density of plants relative to selection of sites by grizzly bears to dig biscuitroots. Where biscuitroots were present, most differences between dug and undug sites were related to digability of the site and mass and starch content of roots. Grizzly bears more often dug in sites where average milligrams of starch per kilogram of pull per root (a??energy gain) was high. Density of biscuitroots was not related to selection of sites by grizzly bears. Mass of biscuitroot stems also provided relatively little information about mass of roots. Distribution of biscuitroots was associated with increased cover of rocks and exposure to wind, and with decreased slopes and cover of forbs. Digs by grizzly bears were associated with the presence of biscuitroots, proximity to edge of forest, and increased cover of rocks. Results were consistent with previously observed tendencies of grizzly bears to concentrate their feeding within 50-100 m of cover.

  5. Prevalence of Trichinella spp. in black bears, grizzly bears, and wolves in the Dehcho Region, Northwest Territories, Canada, including the first report of T. nativa in a grizzly bear from Canada.

    PubMed

    Larter, Nicholas C; Forbes, Lorry B; Elkin, Brett T; Allaire, Danny G

    2011-07-01

    Samples of muscle from 120 black bears (Ursus americanus), 11 grizzly bears (Ursus arctos), and 27 wolves (Canis lupus) collected in the Dehcho Region of the Northwest Territories from 2001 to 2010 were examined for the presence of Trichinella spp. larvae using a pepsin-HCl digestion assay. Trichinella spp. larvae were found in eight of 11 (73%) grizzly bears, 14 of 27 (52%) wolves, and seven of 120 (5.8%) black bears. The average age of positive grizzly bears, black bears, and wolves was 13.5, 9.9, and approximately 4 yr, respectively. Larvae from 11 wolves, six black bears, and seven grizzly bears were genotyped. Six wolves were infected with T. nativa and five with Trichinella T6, four black bears were infected with T. nativa and two with Trichinella T6, and all seven grizzly bears were infected with Trichinella T6 and one of them had a coinfection with T. nativa. This is the first report of T. nativa in a grizzly bear from Canada. Bears have been linked to trichinellosis outbreaks in humans in Canada, and black bears are a subsistence food source for residents of the Dehcho region. In order to assess food safety risk it is important to monitor the prevalence of Trichinella spp. in both species of bear and their cohabiting mammalian food sources. PMID:21719845

  6. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74

    USGS Publications Warehouse

    Mealey, Stephen Patrick

    1980-01-01

     The natural food habits of grizzly bears (Ursus arctos horribilis Ord) in Yellowstone National Park were investigated in 1973-74 to identify the grizzly's energy sources and trophic level(s), nutrient use, and distribution. Food consumption was determined by scat analysis and field observations. Food quality and digestibility were estimated by chemical analysis. Grizzlies were distributed in 3 distinctive feeding economies: valley/plateau, a grass/rodent economy where grizzlies were intensive diggers; mountain, primarily a grass/springbeauty/root economy where grizzlies were casual diggers; and lake, primarily a fish/grass economy where grizzlies were fishers. The economies occured in areas with fertile soils; distribution of bears within each was related to the occurrence of succulent plants. The feeding cycle in the valley/plateau and mountain economies followed plant phenology. Grizzlies fed primarily on meat before green-up and on succulent herbs afterwards; meat, corms, berries, and nuts became important during the postgrowing season. Succulent grasses and sedges with an importance value percentage of 78.5 were the most important food items consumed. Protein from animal tissue was more digestible than protein from plant tissue. Storage fats were more digestible than structural fats. Food energy and digestibility were directly related. Five principle nutrient materials (listed with their percentage digestibilities) contributed to total energy intake: protein from succulent herbs, 42.8; protein and fat from animal material, 78.1; fat and protein from pine nuts, 73.6; starch, 78.8; and sugar from berries and fruits, digestibility undetermined. Protein from succulent herbs, with a nutritive value percentage of 77.3, was the grizzlies' primary energy source. Because succulent, preflowering herbs had higher protein levels than dry, mature herbs, grizzly use of succulent herbs guaranteed them the highest source of herbaceous protein. Low protein digestibility of

  7. Size and growth patterns of the Yellowstone grizzly bear

    USGS Publications Warehouse

    Blanchard, Bonnie M.

    1987-01-01

    Weights and/or measurements of 151 grizzly bears (Ursus arctos) captured 261 times were recorded from 1975 to 1985. Males were consistently heavier than females within all age classes beginning at age 2. Mean weight for 65 captive males (5+ years old) was 192 kg and 135 kg for 63 adult females (5+ years old). Mean monthly weights by sex and age class indicated adults lost weight from den emergence through July, generally regaining emergence weight by August. Weaned yearlings lost weight July-Septmber, whereas unweaned yearlings gained weight during the same period. Sexual dimorphism in body measurements within age classes was apparent in cubs and became significant in all body measurements by age 3. Girth was the measurement most closely correlated with weight for both males and females. Adults feeding at garbage dumps weighted more than bears relying on natural food sources. Bears were smaller and weighed less in this study than during the period 1959-70, when major dumps were available as a food source. Mean annual weights of nondump females were highly correlated with annual habitat productivity indices for Yellowstone Park. Correlations between mean adult female weight an cub litter size (r) = 0.92) and mean age at 1st cub production (r = -0.52) were apparent. In general, females with reliable high-energy foods tended to attain larger body sizes, mature at an earlier age, and have larger cub litters than females using relatively low-energy foods.

  8. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    PubMed

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. PMID:19816856

  9. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    USGS Publications Warehouse

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  10. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.

    PubMed

    Cattet, Marc; Stenhouse, Gordon; Bollinger, Trent

    2008-10-01

    We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data. PMID:18957653

  11. Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

    PubMed Central

    Artelle, Kyle A.; Anderson, Sean C.; Cooper, Andrew B.; Paquet, Paul C.; Reynolds, John D.; Darimont, Chris T.

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. PMID:24223134

  12. Projected future abundance of the Yellowstone grizzly bear

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1984-01-01

    Reproduction begins at age 5 and cubs are produced at an average interval of just over 3 years. Summing the numbers of different females with cubs that were counted over 3 successive years thus gives an estimate of a minimal number of fully adult females in the population during the 1st year of any 3-year period. In view of the declines in both population index and key population parameters, it is highly dsirable to attempt a projection of the likely future course of the Yellowstone population. Such projections are usually accomplished with the Leslie matrix model, but there are two difficulties in the present situation. One is that, in the Leslie model, reproduction is expressed as a fraction of females in 1 year that produce young that are fully independent in the next year. Young grizzlies normally do not become independent of the female until about age 2, whereas reproductive rates are recorded at about 6 months of age (i.e., when females emerge from winter dens with cubs). The second problem is that the small present population may be importantly influenced by chance events. The authors have thus devised a stochastic model of the female bear population, implemented in repeated computer simulations.

  13. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    PubMed

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. PMID:24223134

  14. Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, Charles C.; Haroldson, Mark A.; White, Gary C.; Harris, Richard B.; Cherry, Steve; Keating, Kim A.; Moody, Dave; Servheen, Christopher

    2006-01-01

    During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded in range. Understanding temporal, environmental, and spatial variables responsible for this change is useful in evaluating what likely influenced grizzly bear demographics in the GYE and where future management efforts might benefit conservation and management. We used recent data from radio-marked bears to estimate reproduction (1983–2002) and survival (1983–2001); these we combined into models to evaluate demographic vigor (lambda [λ]). We explored the influence of an array of individual, temporal, and spatial covariates on demographic vigor.

  15. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park. PMID:25732407

  16. USE OF SULFUR AND NITROGEN STABLE ISOTOPES TO DETERMINE THE IMPORTANCE OF WHITEBARK PINE NUTS TO YELLOWSTONE GRIZZLY BEARS

    EPA Science Inventory

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in ...

  17. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    PubMed

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears. PMID:23677350

  18. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    USGS Publications Warehouse

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  19. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Costello, Cecily M; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L; Gunther, Kerry A.; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  20. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    PubMed

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas. PMID:24963393

  1. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas. PMID:24963393

  2. Trichinellosis acquired in Nunavut, Canada in September 2009: meat from grizzly bear suspected.

    PubMed

    Houzé, S; Ancelle, T; Matra, R; Boceno, C; Carlier, Y; Gajadhar, A A; Dupouy-Camet, J

    2009-01-01

    Five cases of trichinellosis with onset of symptoms in September 2009, were reported in France, and were probably linked to the consumption of meat from a grizzly bear in Cambridge Bay in Nunavut, Canada. Travellers should be aware of the risks of eating raw or rare meat products in arctic regions, particularly game meat such as bear or walrus meat. PMID:19941776

  3. Moose, caribou, and grizzly bear distribution in relation to road traffic in Denali National Park, Alaska

    USGS Publications Warehouse

    Yost, A.C.; Wright, R.G.

    2001-01-01

    Park managers are concerned that moose (Alces alces), caribou (Rangifer tarandus), and grizzly bears (Ursus arctos) may be avoiding areas along the 130 km road through Denali National Park as a result of high traffic volume, thus decreasing opportunities for visitors to view wildlife. A wildlife monitoring system was developed in 1996 that used 19 landscape level viewsheds, stratified into four sections based on decreasing traffic along the road corridor. Data were collected from 22 samplings of all viewsheds during May-August in 1996 and 1997. In 1997, nine backcountry viewsheds were established in three different areas to determine whether density estimates for each species in the backcountry were higher than those for the same animals in similar road-corridor areas. Densities higher than those in the road corridor were found in one backcountry area for moose and in two backcountry areas for grizzly bears. None of the backcountry areas showed a higher density of caribou. We tested hypotheses that moose, caribou, and grizzly bear distributions were unrelated to the road and traffic. Moose sightings were lower than expected within 300 m of the road. More caribou and grizzly bears than expected occurred between 601 and 900 m from the road, while more moose and fewer caribou than expected occurred between 900 and 1200 m from the road. Bull moose in stratum 1 were distributed farther from the road than bulls and cows in stratum 4; cows in stratum 1 and bulls in stratum 2 were distributed farther from the road than cows in stratum 4. Grizzly bears in stratum 2 were distributed farther from the road than bears in stratum 3. The distribution of moose sightings suggests traffic avoidance, but the spatial pattern of preferred forage may have had more of an influence. Caribou and grizzly bear distributions indicated no pattern of traffic avoidance.

  4. Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets.

    PubMed

    Christensen, Jennie R; MacDuffee, Misty; Macdonald, Robie W; Whiticar, Michael; Ross, Peter S

    2005-09-15

    Nitrogen and carbon stable isotope signatures in growing hair reveal that while some British Columbia grizzly bears (Ursus arctos horribilis) rely entirely on terrestrial foods, others switch in late summer to returning Pacific salmon (Oncorynchus spp.). Implications for persistent organic pollutant (POP) concentrations and patterns measured in the two feeding groups of grizzly bears were profound. While the bears consuming a higher proportion of terrestrial vegetation ("interior" grizzlies) exhibited POP patterns dominated bythe more volatile organochlorine (OC) pesticides and the heavier polybrominated diphenyl ethers (PBDEs: e.g., BDE-209), the bears consuming salmon were dominated by the more bioaccumulative POPs (e.g., DDT, chlordanes, and BDE-47). The ocean-salmon-bear pathway appeared to preferentially select for those contaminants with intermediate partitioning strength from water into lipid (log Kow approximately 6.5). This pattern reflects an optimum contaminant log Kow range for atmospheric transport, deposition into the marine environment, uptake into marine biota, accumulation through the food web, and retention in the bear tissues. We estimate that salmon deliver 70% of all OC pesticides, up to 85% of the lower brominated PBDE congeners, and 90% of PCBs found in salmon-eating grizzly bears, thereby inextricably linking these terrestrial predators to contaminants from the North Pacific Ocean. PMID:16201616

  5. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    USGS Publications Warehouse

    Haroldson, M.A.; Gunther, K.A.; Reinhart, D.P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  6. Population growth of Yellowstone grizzly bears: Uncertainty and future monitoring

    USGS Publications Warehouse

    Harris, R.B.; White, Gary C.; Schwartz, C.C.; Haroldson, M.A.

    2007-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem of the US Rocky Mountains have recently increased in numbers, but remain vulnerable due to isolation from other populations and predicted reductions in favored food resources. Harris et al. (2006) projected how this population might fare in the future under alternative survival rates, and in doing so estimated the rate of population growth, 1983–2002. We address issues that remain from that earlier work: (1) the degree of uncertainty surrounding our estimates of the rate of population change (λ); (2) the effect of correlation among demographic parameters on these estimates; and (3) how a future monitoring system using counts of females accompanied by cubs might usefully differentiate between short-term, expected, and inconsequential fluctuations versus a true change in system state. We used Monte Carlo re-sampling of beta distributions derived from the demographic parameters used by Harris et al. (2006) to derive distributions of λ during 1983–2002 given our sampling uncertainty. Approximate 95% confidence intervals were 0.972–1.096 (assuming females with unresolved fates died) and 1.008–1.115 (with unresolved females censored at last contact). We used well-supported models of Haroldson et al. (2006) and Schwartz et al. (2006a,b,c) to assess the strength of correlations among demographic processes and the effect of omitting them in projection models. Incorporating correlations among demographic parameters yielded point estimates of λ that were nearly identical to those from the earlier model that omitted correlations, but yielded wider confidence intervals surrounding λ. Finally, we suggest that fitting linear and quadratic curves to the trend suggested by the estimated number of females with cubs in the ecosystem, and using AICc model weights to infer population sizes and λ provides an objective means to monitoring approximate population trajectories in addition to demographic

  7. Sustainable grizzly bear mortality calculated from counts of females with cubs-of-the-year: An evaluation

    USGS Publications Warehouse

    Mattson, David J.

    1997-01-01

    Unduplicated counts of female grizzly bears Ursus arctos horribilis with cubs-of-the-year are currently used to estimate minimum population sizes used, in turn, to calculate allowable (assumed to equal sustainable) mortality for grizzly bear populations in the contiguous United States of America. This calculation assumes that unduplicated counts are an unbiased and accurate indicator of population size and that the ratios of minimum population size and known mortality to their respective totals are equal. Neither of these assumptions can be directly tested. However in this paper I use data from the Yellowstone ecosystem, 1977–1990, to evaluate two directly related but alternate hypotheses: (1) annual variation in unduplicated counts is explained by factors extraneous to the number of adult females in the population (i.e. search effort and sightability of females with cubs); and (2) there is >10% risk of allowing unsustainable mortality (actual mortality rate >6%) given a plausible, uniform range of population and mortality ratios. My results are consistent with accepting both of these hypotheses. I therefore concluded that unduplicated counts varied without a known relationship to population size and that, by normal standards, the method currently adopted for management of grizzly bear populations in the contiguous United States was not a conservative basis for calculating maximum allowable mortality. I suggest that using lower mortality rates and conservative bounds of confidence limits for the estimated parameters used in calculations of allowable mortality could substantially reduce the risk of unintentionally allowing excessive mortality.

  8. Persistent or not persistent? Polychlorinated biphenyls are readily depurated by grizzly bears (Ursus arctos horribilis).

    PubMed

    Christensen, Jennie R; Letcher, Robert J; Ross, Peter S

    2009-10-01

    Major pharmacokinetic processes influencing polychlorinated biphenyl (PCB) accumulation in mammals include uptake, biotransformation, respiration, and excretion. We characterized some of the factors underlying PCB accumulation/loss by evaluating PCB concentrations and patterns in pre- and posthibernation grizzly bears (Ursus arctos horribilis) and their prey. The PCB congeners with vicinal meta- and para-chlorine unsubstituted hydrogen positions consistently showed loss both before and during hibernation, supporting the idea of a dominant role for biotransformation. Retention of all other studied congeners relative to that of PCB 194 varied widely (from <1 to 100%) and was highly correlated with log octanol-water partition coefficient (p < 0.0001). A lack of loss for most of these other congeners during hibernation supports the notion that excretion (e.g., fecal or urinary) or lack of uptake during the feeding season underlies their lack of accumulation, because hibernating bears do not eat or excrete. We estimate that grizzly bears retain less than 10% of total PCBs taken up from their diet. Our results suggest that for grizzly bears, depuration of PCBs via biotransformation is important (explaining approximately 40% of loss), but that nonbiotransformation processes, such as excretion, may be more important (explaining approximately 60% of loss). These findings, together with the approximately 91% loss of the persistent PCB 153 congener relative to PCB 194 in grizzly bears, raise important questions about how one defines persistence of PCBs in wildlife and may have bearing on the interpretation of food-web biomagnification studies. PMID:19480534

  9. Predatory behavior of grizzly bears feeding on elk calves in Yellowstone National Park

    USGS Publications Warehouse

    French, Steven P.; French, Marilynn G.

    1990-01-01

    Grizzly bears (Ursus arctos horribilis) were observed preying on elk calves (Cervus elaphus) on 60 occasions in Yellowstone National Park, with 29 confirmed kills. Some bears were deliberate predators and effectively preyed on elk calves for short periods each spring, killing up to 1 calf daily. Primary hunting techniques were searching and chasing although some bears used a variety of techniques during a single hunt. They hunted both day and night and preyed on calves in the open and in the woods. Excess killing occurred when circumstances permitted. One bear caught 5 calves in a 15-minute interval. Elk used a variety of antipredator defenses and occasionally attacked predacious bears. The current level of this feeding behavior appears to be greater than previously reported. This is probably related to the increased availability of calves providing a greater opportunity for learning, and the adaptation of a more predatory behavior by some grizzly bears in Yellowstone.

  10. Genetic analysis of individual origins supports isolation of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, Mark A.; Schwartz, Charles; Kendall, Katherine C.; Gunther, Kerry A.; Moody, David S.; Frey, Kevin L.; Paetkau, David

    2010-01-01

    The Greater Yellowstone Ecosystem (GYE) supports the southernmost of the 2 largest remaining grizzly bear (Ursus arctos) populations in the contiguous United States. Since the mid-1980s, this population has increased in numbers and expanded in range. However, concerns for its long-term genetic health remain because of its presumed continued isolation. To test the power of genetic methods for detecting immigrants, we generated 16-locus microsatellite genotypes for 424 individual grizzly bears sampled in the GYE during 1983–2007. Genotyping success was high (90%) and varied by sample type, with poorest success (40%) for hair collected from mortalities found ≥1 day after death. Years of storage did not affect genotyping success. Observed heterozygosity was 0.60, with a mean of 5.2 alleles/marker. We used factorial correspondence analysis (Program GENETIX) and Bayesian clustering (Program STRUCTURE) to compare 424 GYE genotypes with 601 existing genotypes from grizzly bears sampled in the Northern Continental Divide Ecosystem (NCDE) (FST  =  0.096 between GYE and NCDE). These methods correctly classified all sampled individuals to their population of origin, providing no evidence of natural movement between the GYE and NCDE. Analysis of 500 simulated first-generation crosses suggested that over 95% of such bears would also be detectable using our 16-locus data set. Our approach provides a practical method for detecting immigration in the GYE grizzly population. We discuss estimates for the proportion of the GYE population sampled and prospects for natural immigration into the GYE.

  11. Excavation of red squirrel middens by grizzly bears in the whitebark pine zone

    USGS Publications Warehouse

    Mattson, D.J.; Reinhart, D.P.

    1997-01-01

    7. Grizzly bears would benefit from the minimization of roads and other human facilities in the whitebark pine zone and from increases in the availability of whitebark pine seeds, potentially achieved by increasing the numbers of cone-producing whitebark pine trees, especially in lower elevations of the whitebark pine zone where red squirrels are more abundant.

  12. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    PubMed

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  13. Grizzly bear (Ursus arctos horribilis) locomotion: gaits and ground reaction forces.

    PubMed

    Shine, Catherine L; Penberthy, Skylar; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2015-10-01

    Locomotion of plantigrade generalists has been relatively little studied compared with more specialised postures even though plantigrady is ancestral among quadrupeds. Bears (Ursidae) are a representative family for plantigrade carnivorans, they have the majority of the morphological characteristics identified for plantigrade species, and they have the full range of generalist behaviours. This study compared the locomotion of adult grizzly bears (Ursus arctos horribilis Linnaeus 1758), including stride parameters, gaits and analysis of three-dimensional ground reaction forces, with that of previously studied quadrupeds. At slow to moderate speeds, grizzly bears use walks, running walks and canters. Vertical ground reaction forces demonstrated the typical M-shaped curve for walks; however, this was significantly more pronounced in the hindlimb. The rate of force development was also significantly higher for the hindlimbs than for the forelimbs at all speeds. Mediolateral forces were significantly higher than would be expected for a large erect mammal, almost to the extent of a sprawling crocodilian. There may be morphological or energetic explanations for the use of the running walk rather than the trot. The high medial forces (produced from a lateral push by the animal) could be caused by frontal plane movement of the carpus and elbow by bears. Overall, while grizzly bears share some similarities with large cursorial species, their locomotor kinetics have unique characteristics. Additional studies are needed to determine whether these characters are a feature of all bears or plantigrade species. PMID:26254319

  14. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    PubMed

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains. PMID:22567089

  15. Despotism and Risk of Infanticide Influence Grizzly Bear Den-Site Selection

    PubMed Central

    Libal, Nathan S.; Belant, Jerrold L.; Leopold, Bruce D.; Wang, Guiming; Owen, Patricia A.

    2011-01-01

    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations ( = 1,412 m, SE = 52) and steeper slopes ( = 21.9°, SE = 1.1) than adult male (elevation:  = 1,209 m, SE = 76; slope:  = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring. PMID:21935378

  16. Despotism and risk of infanticide influence grizzly bear den-site selection.

    PubMed

    Libal, Nathan S; Belant, Jerrold L; Leopold, Bruce D; Wang, Guiming; Owen, Patricia A

    2011-01-01

    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations (mean= 1,412 m, SE = 52) and steeper slopes (mean = 21.9°, SE = 1.1) than adult male (elevation: mean = 1,209 m, SE = 76; slope: mean = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring. PMID:21935378

  17. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Daniel D, Bjornlie; van Manen, Frank T.; Michael R, Ebinger; Haroldson, Mark A.; Daniel J, Thompson; Cecily M, Costello

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  18. Whitebark Pine, Population Density, and Home-Range Size of Grizzly Bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  19. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    PubMed

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  20. Yellowstone grizzly bear mortality, human habituation, and whitebark pine seed crops

    USGS Publications Warehouse

    Mattson, David J.; Blanchard, Bonnie M.; Knight, Richard R.

    1992-01-01

    The Yellowstone grizzly bear (Ursus arctos horribilis) population may be extirpated during the next 100-200 years unless mortality rates stabilize and remain at acceptable low levels. Consequently, we analyzed relationships between Yellowstone grizzly bear mortality and frequency of human habituation among bears and size of the whitebark pine (Pinus albicaulis) seed crop. During years of large seed crops, bears used areas within 5 km of roads and 8 km of developments half as intensively as during years of small seed crops because whitebark pine's high elevation distribution is typically remote from human facilities. On average, management trappings of bears were 6.2 times higher, mortality of adult females 2.3 times higher, and mortality of subadult males 3.3 times higher during years of small seed crops. We hypothesize that high mortality of adult females and subadult males during small seed crop years was a consequence of their tendency to range closest (of all sex-age cohorts) to human facilities; they also had a higher frequency of human habituation compared with adult males. We also hypothesize that low morality among subadult females during small seed crop years was a result of fewer energetic stressors compared with adult females and greater familiarity with their range compared with subadult males; mortality was low even though they ranged close to humans and exhibited a high frequency of human habituation. Human-habituated and food-conditioned bears were 2.9 times as likely to range within 4 km of developments and 3.1 times as often killed by humans compared with nonhabituated bears. We argue that destruction of habituated bears that use native foods near humans results in a decline in the overall ability of bears to use available habitat; and that the number and extent of human facilities in occupied grizzly bear habitat needs to be minimized unless habituated bears are preserved and successful ways to manage the associated risks to humans are developed.

  1. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    USGS Publications Warehouse

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  2. Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA

    USGS Publications Warehouse

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Merrill, T.

    2006-01-01

    We used multiple logistic regression to model how different landscape conditions contributed to the probability of human-grizzly bear conflicts on private agricultural ranch lands. We used locations of livestock pastures, traditional livestock carcass disposal areas (boneyards), beehives, and wetland-riparian associated vegetation to model the locations of 178 reported human-grizzly bear conflicts along the Rocky Mountain East Front, Montana, USA during 1986-2001. We surveyed 61 livestock producers in the upper Teton watershed of north-central Montana, to collect spatial and temporal data on livestock pastures, boneyards, and beehives for the same period, accounting for changes in livestock and boneyard management and beehive location and protection, for each season. We used 2032 random points to represent the null hypothesis of random location relative to potential explanatory landscape features, and used Akaike's Information Criteria (AIC/AICC) and Hosmer-Lemeshow goodness-of-fit statistics for model selection. We used a resulting "best" model to map contours of predicted probabilities of conflict, and used this map for verification with an independent dataset of conflicts to provide additional insights regarding the nature of conflicts. The presence of riparian vegetation and distances to spring, summer, and fall sheep or cattle pastures, calving and sheep lambing areas, unmanaged boneyards, and fenced and unfenced beehives were all associated with the likelihood of human-grizzly bear conflicts. Our model suggests that collections of attractants concentrated in high quality bear habitat largely explain broad patterns of human-grizzly bear conflicts on private agricultural land in our study area. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Modeling survival: application of the Andersen-Gill model to Yellowstone grizzly bears

    USGS Publications Warehouse

    Johnson, Christopher J.; Boyce, Mark S.; Schwartz, Charles C.; Haroldson, Mark A.

    2004-01-01

     Wildlife ecologists often use the Kaplan-Meier procedure or Cox proportional hazards model to estimate survival rates, distributions, and magnitude of risk factors. The Andersen-Gill formulation (A-G) of the Cox proportional hazards model has seen limited application to mark-resight data but has a number of advantages, including the ability to accommodate left-censored data, time-varying covariates, multiple events, and discontinuous intervals of risks. We introduce the A-G model including structure of data, interpretation of results, and assessment of assumptions. We then apply the model to 22 years of radiotelemetry data for grizzly bears (Ursus arctos) of the Greater Yellowstone Grizzly Bear Recovery Zone in Montana, Idaho, and Wyoming, USA. We used Akaike's Information Criterion (AICc) and multi-model inference to assess a number of potentially useful predictive models relative to explanatory covariates for demography, human disturbance, and habitat. Using the most parsimonious models, we generated risk ratios, hypothetical survival curves, and a map of the spatial distribution of high-risk areas across the recovery zone. Our results were in agreement with past studies of mortality factors for Yellowstone grizzly bears. Holding other covariates constant, mortality was highest for bears that were subjected to repeated management actions and inhabited areas with high road densities outside Yellowstone National Park. Hazard models developed with covariates descriptive of foraging habitats were not the most parsimonious, but they suggested that high-elevation areas offered lower risks of mortality when compared to agricultural areas.

  4. Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 1990-2000

    USGS Publications Warehouse

    Schwartz, Charles C.; Haroldson, Mark A.; Gunther, Kerry A.; Moody, D.

    2002-01-01

    The Yellowstone grizzly bear (Ursus arctos horribilis) has been expanding its range during the past 2 decades and now occupies historic habitats that had been vacant. A current understanding of the distribution of grizzly bears within the ecosystem is useful in the recovery process and to help guide the state and federal land management agencies and state wildlife agencies of Idaho, Wyoming, and Montana as they prepare management plans. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 300) with cubs-of-the-year, information from radiomarked bears (n = 105), and locations of conflicts, confrontations, and mortalities (n = 1,235). Although each data set was constrained by potential sampling bias, together they provided insight into areas within the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution (1990–2000) extends beyond the recovery zone identified in the U.S. Fish and Wildlife Service (USFWS) Recovery Plan. Range expansion is particularly evident in the southern portion of the ecosystem in Wyoming. A comparison of our results from the 1990s to previously published distribution maps show an approximate increase in occupied habitat of 48% and 34% from the 1970s and 1980s, respectively. We discuss data biases and problems implicit to the analysis

  5. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606

  6. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.

    PubMed

    Costello, Cecily M; Cain, Steven L; Pils, Shannon; Frattaroli, Leslie; Haroldson, Mark A; van Manen, Frank T

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46-47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this

  7. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears

    USGS Publications Warehouse

    Costello, Cecily M; Cain, Steven L; Pils, Shannon R; Frattaroli, Leslie; Haroldson, Mark A.; van Manen, Frank T.

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in

  8. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears

    PubMed Central

    Costello, Cecily M.; Cain, Steven L.; Pils, Shannon; Frattaroli, Leslie; Haroldson, Mark A.; van Manen, Frank T.

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in

  9. Immobilization of grizzly bears (Ursus arctos) with dexmedetomidine, tiletamine, and zolazepam.

    PubMed

    Teisberg, Justin E; Farley, Sean D; Nelson, O Lynne; Hilderbrand, Grant V; Madel, Michael J; Owen, Patricia A; Erlenbach, Joy A; Robbins, Charles T

    2014-01-01

    Safe and effective immobilization of grizzly bears (Ursus arctos) is essential for research and management. Fast induction of anesthesia, maintenance of healthy vital rates, and predictable recoveries are priorities. From September 2010 to May 2012, we investigated these attributes in captive and wild grizzly bears anesthetized with a combination of a reversible α2 agonist (dexmedetomidine [dexM], the dextrorotatory enantiomer of medetomidine) and a nonreversible N-methyl-d-aspartate (NMDA) agonist and tranquilizer (tiletamine and zolazepam [TZ], respectively). A smaller-than-expected dose of the combination (1.23 mg tiletamine, 1.23 mg zolazepam, and 6.04 µg dexmedetomidine per kg bear) produced reliable, fast ataxia (3.7 ± 0.5 min, x̄±SE) and workable anesthesia (8.1 ± 0.6 min) in captive adult grizzly bears. For wild bears darted from a helicopter, a dose of 2.06 mg tiletamine, 2.06 mg zolazepam, and 10.1 µg dexmedetomidine/kg produced ataxia in 2.5 ± 0.3 min and anesthesia in 5.5 ± 1.0 min. Contrary to published accounts of bear anesthesia with medetomidine, tiletamine, and zolazepam, this combination did not cause hypoxemia or hypoventilation, although mild bradycardia (<50 beats per min) occurred in most bears during the active season. With captive bears, effective dose rates during hibernation were approximately half those during the active season. The time to first signs of recovery after the initial injection of dexMTZ was influenced by heart rate (P<0.001) and drug dose (P<0.001). Intravenous (IV) injection of the reversal agent, atipamezole, significantly decreased recovery time (i.e., standing on all four feet and reacting to the surrounding environment) relative to intramuscular injection. Recovery times (25 ± 8 min) following IV injections of the recommended dose of atipamezole (10 µg/µg of dexmedetomidine) and half that dose (5 µg/µg) did not differ. However, we recommend use of the full dose based on the appearance of a more complete

  10. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, K.C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.

  11. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis

    NASA Technical Reports Server (NTRS)

    Varney, J. R.; Craighead, J. J.; Sumner, J.

    1973-01-01

    Multispectral scanner images taken by the ERTS-1 satellite in August and October, 1972, were examined to determine if they would be useful in identifying and mapping favorable habitat for grizzly bears. It was possible to identify areas having a suitable mixture of alpine meadow and timber, and to eliminate those which did not meet the isolation requirements of grizzlies because of farming or grazing activity. High altitude timbered areas mapped from satellite imagery agreed reasonably well with the distribution of whitebark pine, an important food species. Analysis of satellite imagery appears to be a valuable supplement to present ground observation methods, since it allows the most important areas to be identified for intensive study and many others to be eliminated from consideration. A sampling plan can be developed from such data which will minimize field effort and overall program cost.

  12. Population trend of the Yellowstone grizzly bear as estimated from reproductive and survival rates

    USGS Publications Warehouse

    Eberhardt, L. L.; Blanchard, B. M.; Knight, R. R.

    1993-01-01

    The trend of the Yellowstone grizzly bear (Ursus arctos horribilis) population was estimated using reproductive rates calculated from 22 individual females and survival rates from 400 female bear-years. The point estimate of the rate of increase was 4.6%, with 95% confidence limits of 0 and 9%. Caution in interpreting this result is advised because of possible biases in the population parameter estimates. The main prospects for improving present knowledge of the population trend appear to be further study of possible biases in the parameter estimates, and the continued use of radiotelemetry to increase the number of samples on which the estimates are based.

  13. Defining landscapes suitable for restoration of grizzly bears (Ursus arctos) in Idaho

    USGS Publications Warehouse

    Merrill, Troy; Mattson, D.J.; Wright, R.G.; Quigley, Howard B.

    1999-01-01

    Informed management of large carnivores depends on the timely and useful presentation of relevant information. We describe an approach to evaluating carnivore habitat that uses pre-existing qualitative and quantitative information on humans and carnivores to generate coarse-scale maps of habitat suitability, habitat productivity, potential reserves, and areas of potential conflict. We use information pertinent to the contemplated reintroduction of grizzly bears Ursus arctos horribilis into central Idaho to demonstrate our approach. The approach uses measures of human numbers, their estimated distribution, road and trail access, and abundance and quality of bear foods to create standardized indices that are analogues of death and birth rates, respectively; the first subtracted from the second indicates habitat suitability (HS). We calibrate HS to sightings of grizzly bears in two ecosystems in northern Idaho and develop an empirical model from these same sightings based on piece-wise treatment of the variables contained in HS. Depending on whether the empirical model or HS is used, we estimate that there is 14 800 km2 of suitable habitat in two blocks or 37 100 km2 in one block in central Idaho, respectively. Both approaches show suitable habitat in the current Evaluation Area and in an area of southeastern Idaho centered on the Palisades Reservoir. Areas of highly productive habitat are concentrated in northern and western Idaho and in the Palisades area. Future conflicts between humans and bears are most likely to occur on the western and northern margins of suitable habitat in central Idaho, rather than to the east, where opposition to reintroduction of grizzly bears is currently strongest.

  14. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations

    PubMed Central

    2013-01-01

    Background Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and ‘capture’ (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. Results We found sex and age explained the most variance in body mass, condition and length (R2 from 0.48–0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R2 from 0.04–0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R2 from 0.01–0.08), while annual rate of landscape change explained additional variance in body length (R2 of 0.03). Human footprint and population density had no observed effect on body size. Conclusions These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual’s birth thus illustrating silver spoon

  15. Grizzly bear management in Yellowstone National Park: The heart of recovery in the Yellowstone Ecosystem

    USGS Publications Warehouse

    Schwartz, C.C.; Gunther, K.

    2006-01-01

    Grizzly bear (Ursus arctos) management in the Greater Yellowstone Ecosystem (GYE) in the past quarter century has resulted in more than doubling of the population from around 200 to more than 500, expansion of range back into habitats where the bear has extirpated more than a century ago, and a move toward removal from the U.S. Endangered Species list. At the center of this success story are the management programs in Yellowstone National Park (YNP). Regulations that restrict human activity, camping, and food storage, elimination of human food and garbage as attractants, and ranger attendance of roadside bears have all resulted in the population of grizzlies in YNP approaching carrying capacity. Recent studies suggest, however, that YNP alone is too small to support the current population, making management beyond the park boundary important and necessary to the demographics of the population as a whole. Demographic analyses suggest a source-sink dynamic exists within the GYE, with YNP and lands outside the park within the Grizzly Bear Recovery Zone (RZ) representing source habitats, whereas lands beyond the RZ constitute sinks. The source-sink demography in the GYE is indicative of carnivore conservation issues worldwide where many national parks or preserves designed to protect out natural resources are inadequate in size or shape to provide all necessary life history requirements for these wide-ranging species. Additionally, wide-ranging behavior and long-distance dispersal seem inherent to large carnivores, so mortality around the edges is virtually inevitable, and conservation in the GYE is inextricably linked to management regimes not only within YNP, but within the GYE as a whole. We discuss those needs here.

  16. Hibernation-associated changes in persistent organic pollutant (POP) levels and patterns in British Columbia grizzly bears (ursus arctos horribilis).

    PubMed

    Christensen, Jennie R; MacDuffee, Misty; Yunker, Mark B; Ross, Peter S

    2007-03-15

    We hypothesized that depleted fat reserves in grizzly bears (Ursus arctos horribilis) following annual hibernation would reveal increases in persistent organic pollutant (POP) concentrations compared to those present in the fall. We obtained fat and hair from British Columbia grizzly bears in early spring 2004 to compare with those collected in fall 2003, with the two tissue types providing contaminant and dietary information, respectively. By correcting for the individual feeding habits of grizzlies using a stable isotope-based approach, we found that polychlorinated biphenyls (sigmaPCBs) increased by 2.21x, polybrominated diphenylethers (sigmaPBDEs) increased by 1.58x, and chlordanes (sigmaCHL) by 1.49x in fat following hibernation. Interestingly, individual POPs elicited a wide range of hibernation-associated concentration effects (e.g., CB-153, 2.25x vs CB-169, 0.00x), resulting in POP pattern convergence in a PCA model of two distinct fall feeding groups (salmon-eating vs non-salmon-eating) into a single spring (post-hibernation) group. Our results suggest that diet dictates contaminant patterns during a feeding phase, while metabolism drives patterns during a fasting phase. This work suggests a duality of POP-associated health risks to hibernating grizzly bears: (1) increased concentrations of some POPs during hibernation; and (2) a potentially prolonged accumulation of water-soluble, highly reactive POP metabolites, since grizzly bears do not excrete during hibernation. PMID:17410772

  17. Grizzly bear denning and potential conflict areas in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Podruzny, Shannon; Cherry, Steve; Schwartz, Charles C.; Landenburger, Lisa

    2002-01-01

    Increasing winter use of steep, high-elevation terrain by backcountry recreationists has elevated concern about disturbance of denning grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). To help identify areas where such conflicts might occur, we developed a spatially explicit model to predict potential denning areas in the GYE. Using a scan area of 630 m around each location, we assigned site attributes to 344 den locations of radio-trackedg rizzly bears from 1975-99. Attributesi dentified as predictorsf or the analysis included elevation, slope, an index of solar radiation, and forest cover. We used the Mahalanobis distance statistic to model the similarity between sites used by denning bears and each cell in the data layers. We used the final Mahalanobis distance model to produce maps of the study area. Potential denning habitat, based upon the model, is abundantw ithin the GYE. Ourr esultsc an be used by land managementa gencies to identifyp otentialc onflict sites and minimize effects of regulated activities on denning grizzly bears. We illustrate how the Gallatin National Forest (GNF) used the model to examine the overlap between potential snowmobile use areas and potential denning habitat as part of a Biological Assessment submitted to the U.S. Fish and Wildlife Service.

  18. Grizzly bear population vital rates and trend in the Northern Continental Divide Ecosystem, Montana

    USGS Publications Warehouse

    Mace, R.D.; Carney, D.W.; Chilton-Radandt, T.; Courville, S.A.; Haroldson, M.A.; Harris, R.B.; Jonkel, J.; McLellan, B.; Madel, M.; Manley, T.L.; Schwartz, C.C.; Servheen, C.; Stenhouse, G.; Waller, J.S.; Wenum, E.

    2012-01-01

    We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued.

  19. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    NASA Technical Reports Server (NTRS)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  20. Impacts of rural development on Yellowstone wildlife: linking grizzly bear Ursus arctos demographics with projected residential growth

    USGS Publications Warehouse

    Schwartz, Charles C.; Gude, Patricia H.; Landenburger, Lisa; Haroldson, Mark A.; Podruzny, Shannon

    2012-01-01

    Exurban development is consuming wildlife habitat within the Greater Yellowstone Ecosystem with potential consequences to the long-term conservation of grizzly bears Ursus arctos. We assessed the impacts of alternative future land-use scenarios by linking an existing regression-based simulation model predicting rural development with a spatially explicit model that predicted bear survival. Using demographic criteria that predict population trajectory, we portioned habitats into either source or sink, and projected the loss of source habitat associated with four different build out (new home construction) scenarios through 2020. Under boom growth, we predicted that 12 km2 of source habitat were converted to sink habitat within the Grizzly Bear Recovery Zone (RZ), 189 km2 were converted within the current distribution of grizzly bears outside of the RZ, and 289 km2 were converted in the area outside the RZ identified as suitable grizzly bear habitat. Our findings showed that extremely low densities of residential development created sink habitats. We suggest that tools, such as those outlined in this article, in addition to zoning and subdivision regulation may prove more practical, and the most effective means of retaining large areas of undeveloped land and conserving grizzly bear source habitat will likely require a landscape-scale approach. We recommend a focus on land conservation efforts that retain open space (easements, purchases and trades) coupled with the implementation of ‘bear community programmes’ on an ecosystem wide basis in an effort to minimize human-bear conflicts, minimize management-related bear mortalities associated with preventable conflicts and to safeguard human communities. Our approach has application to other species and areas, and it has illustrated how spatially explicit demographic models can be combined with models predicting land-use change to help focus conservation priorities.

  1. Macronutrient Optimization and Seasonal Diet Mixing in a Large Omnivore, the Grizzly Bear: A Geometric Analysis

    PubMed Central

    Coogan, Sean C. P.; Raubenheimer, David; Stenhouse, Gordon B.; Nielsen, Scott E.

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density

  2. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    PubMed

    Coogan, Sean C P; Raubenheimer, David; Stenhouse, Gordon B; Nielsen, Scott E

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density

  3. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  4. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data.

    PubMed

    Ebinger, Michael R; Haroldson, Mark A; van Manen, Frank T; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J; Gunther, Kerry A; Fortin, Jennifer K; Teisberg, Justin E; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C

    2016-07-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore. PMID:26971522

  5. Grizzly bear denning chronology and movements in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, Mark A.; Ternent, Mark A.; Gunther, Kerry A.; Schwartz, Charles C.

    2002-01-01

    Den entrance and emergence dates of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem are important to management agencies that wish to minimize impacts of human activities on bears. Current estimates for grizzly bear denning events use data that were collected from 1975–80. We update these estimates by including data obtained from 1981–99. We used aerial telemetry data to estimate week of den entry and emergence by determining the midpoint between the last known active date and the first known date denned, as well as the last known date denned and the first known active date. We also investigated post emergence movement patterns relative to den locations. Mean earliest and latest week of den entry and emergence were also determined. Den entry for females began during the fourth week in September, with 90% denned by the fourth week of November. Earliest den entry for males occurred during the second week of October, with 90% denned by the second week of December. Mean week of den entry for known pregnant females was earlier than males. Earliest week of den entry for known pregnant females was earlier than other females and males. Earliest den emergence for males occurred during the first week of February, with 90% of males out of dens by the fourth week of April. Earliest den emergence for females occurred during the third week of March; by the first week of May, 90% of females had emerged. Male bears emerged from dens earlier than females. Denning period differed among classes and averaged 171 days for females that emerged from dens with cubs, 151 days for other females, and 131 days for males. Known pregnant females tended to den at higher elevations and, following emergence, remained at higher elevation until late May. Females with cubs remained relatively close (<3 km) to den sites until the last 2 weeks in May. Timing of denning events was similar to previous estimates for this and other grizzly bear populations in the southern Rocky

  6. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-01

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. PMID:25100064

  7. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

    USGS Publications Warehouse

    Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M; Bjornlie, Daniel D; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L; Cross, Paul C.

    2016-01-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  8. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    PubMed

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources. PMID:18488618

  9. Human perspectives and conservation of grizzly bears in Banff National Park, Canada.

    PubMed

    Chamberlain, Emily C; Rutherford, Murray B; Gibeau, Michael L

    2012-06-01

    Some conservation initiatives provoke intense conflict among stakeholders. The need for action, the nature of the conservation measures, and the effects of these measures on human interests may be disputed. Tools are needed to depolarize such situations, foster understanding of the perspectives of people involved, and find common ground. We used Q methodology to explore stakeholders' perspectives on conservation and management of grizzly bears (Ursus arctos horribilis) in Banff National Park and the Bow River watershed of Alberta, Canada. Twenty-nine stakeholders participated in the study, including local residents, scientists, agency employees, and representatives of nongovernmental conservation organizations and other interest groups. Participants rank ordered a set of statements to express their opinions on the problems of grizzly bear management (I-IV) and a second set of statements on possible solutions to the problems (A-C). Factor analysis revealed that participants held 4 distinct views of the problems: individuals associated with factor I emphasized deficiencies in goals and plans; those associated with factor II believed that problems had been exaggerated; those associated with factor III blamed institutional flaws such as disjointed management and inadequate resources; and individuals associated with factor IV blamed politicized decision making. There were 3 distinct views about the best solutions to the problems: individuals associated with factor A called for increased conservation efforts; those associated with factor B wanted reforms in decision-making processes; and individuals associated with factor C supported active landscape management. We connected people's definitions of the problem with their preferred solutions to form 5 overall problem narratives espoused by groups in the study: the problem is deficient goals and plans, the solution is to prioritize conservation efforts (planning-oriented conservation advocates); the problem is flawed

  10. Effect of Season and High Ambient Temperature on Activity Levels and Patterns of Grizzly Bears (Ursus arctos)

    PubMed Central

    McLellan, Michelle L.; McLellan, Bruce N.

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4–27.3°C) and hot (27.9–40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory. PMID:25692979

  11. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    PubMed

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory. PMID:25692979

  12. Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A

    2011-04-01

    Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population. PMID:21153738

  13. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  14. Evaluation of rules to distinguish unique female grizzly bears with cubs in Yellowstone

    USGS Publications Warehouse

    Schwartz, C.C.; Haroldson, M.A.; Cherry, S.; Keating, K.A.

    2008-01-01

    The United States Fish and Wildlife Service uses counts of unduplicated female grizzly bears (Ursus arctos) with cubs-of-the-year to establish limits of sustainable mortality in the Greater Yellowstone Ecosystem, USA. Sightings are dustered into observations of unique bears based on an empirically derived rule set. The method has never been tested or verified. To evaluate the rule set, we used data from radiocollared females obtained during 1975-2004 to simulate populations under varying densities, distributions, and sighting frequencies. We tested individual rules and rule-set performance, using custom software to apply the rule-set and duster sightings. Results indicated most rules were violated to some degree, and rule-based dustering consistently underestimated the minimum number of females and total population size derived from a nonparametric estimator (Chao2). We conclude that the current rule set returns conservative estimates, but with minor improvements, counts of unduplicated females-with-cubs can serve as a reasonable index of population size useful for establishing annual mortality limits. For the Yellowstone population, the index is more practical and cost-effective than capture-mark-recapture using either DNA hair snagging or aerial surveys with radiomarked bears. The method has useful application in other ecosystems, but we recommend rules used to distinguish unique females be adapted to local conditions and tested.

  15. The effects of automated scatter feeders on captive grizzly bear activity budgets.

    PubMed

    Andrews, Nathan L P; Ha, James C

    2014-01-01

    Although captive bears are popular zoo attractions, they are known to exhibit high levels of repetitive behaviors (RBs). These behaviors have also made them particularly popular subjects for welfare research. To date, most research on ursid welfare has focused on various feeding methods that seek to increase time spent searching for, extracting, or consuming food. Prior research indicates an average of a 50% reduction in RBs when attempts are successful and, roughly, a 50% success rate across studies. This research focused on decreasing time spent in an RB while increasing the time spent active by increasing time spent searching for, extracting, and consuming food. The utility of timed, automated scatter feeders was examined for use with captive grizzly bears (Ursis arctos horribilis). Findings include a significant decrease in time spent in RB and a significant increase in time spent active while the feeders were in use. Further, the bears exhibited a wider range of behaviors and a greater use of their enclosure. PMID:24467390

  16. Re-evaluation of Yellowstone grizzly bear population dynamics not supported by empirical data: response to Doak & Cutler

    USGS Publications Warehouse

    van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Harris, Richard B.; Higgs, Megan D.; Cherry, Steve; White, Gary C.; Schwartz, Charles C.

    2014-01-01

    Doak and Cutler critiqued methods used by the Interagency Grizzly Bear Study Team (IGBST) to estimate grizzly bear population size and trend in the Greater Yellowstone Ecosystem. Here, we focus on the premise, implementation, and interpretation of simulations they used to support their arguments. They argued that population increases documented by IGBST based on females with cubs-of-the-year were an artifact of increased search effort. However, we demonstrate their simulations were neither reflective of the true observation process nor did their results provide statistical support for their conclusion. They further argued that survival and reproductive senescence should be incorporated into population projections, but we demonstrate their choice of extreme mortality risk beyond age 20 and incompatible baseline fecundity led to erroneous conclusions. The conclusions of Doak and Cutler are unsubstantiated when placed within the context of a thorough understanding of the data, study system, and previous research findings and publications.

  17. Appraising status of the Yellowstone grizzly bear population by counting females with cubs-of-the-year

    USGS Publications Warehouse

    Knight, Richard R.; Blanchard, Bonnie M.; Eberhardt, L. L.

    1995-01-01

    The grizzly bear (Ursus arctos horriblilis) in the lower United States was declared threatened in 1975 under the Endangered Species Act of 1973 (16 U.S.C. 15-31-1544). According to that Act, the U.S. Fish and Wildlife Service had to prepare a plan to recover populations to levels where the species could be conserved and delisted from its threatened status. The Recovery Plan (U.S. Fish and Wildlife Service 1993) uses counts of distinct females with cubs-of-the-year as a recovery parameter in several grizzly bear ecosystems. The total number of these females is assumed to be the minimum number with cubs born in the current year. To our knowledge, this technique, its methodology, and value as a population indicator have never been adequately explained or discussed. Thus, we describe the methodology and assess its potential for continued use in the Yellowstone ecosystem.

  18. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    PubMed

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility. PMID:26168055

  19. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada

    PubMed Central

    Braid, Andrew C. R.; Nielsen, Scott E.

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility. PMID:26168055

  20. Estimating total human-caused mortality from reported mortality using data from radio-instrumented grizzly bears

    USGS Publications Warehouse

    Cherry, S.; Haroldson, M.A.; Robison-Cox, J.; Schwartz, C.C.

    2002-01-01

    Tracking mortality of the Yellowstone grizzly bear (Ursus arctos horribilis) is an essential issue of the recovery process. Problem bears removed by agencies are well documented. Deaths of radiocollared bears are known or, in many cases, can be reliably inferred. Additionally, the public reports an unknown proportion of deaths of uncollared bears. Estimating the number of non-agency human-caused mortalities is a necessary element that must be factored into the total annual mortality. Here, we describe a method of estimating the number of such deaths from records of reported human-caused bear mortalities. We used a hierarchical Bayesian model with a non-informative prior distribution for the number of deaths. Estimates of reporting rates developed from deaths of radio-instrumented bears from 1983 to 2000 were used to develop beta prior probability distributions that the public will report a death. Twenty-seven known deaths of radio-instrumented bears occurred during this period with 16 reported. Additionally, fates of 23 radio-instrumented bears were unknown and are considered possible unreported mortalities. We describe 3 ways of using this information to specify prior distributions on the probability a death will be reported by the public. We estimated total deaths of noninstrumented bears in running 3-year periods from 1993 to 2000. Thirty-nine known deaths of non-instrumented bears were reported during this period, ranging from 0 to 7/year. Seven possible mortalities were recorded. We applied the method to both sets of mortality data. Results from this method can be combined with agency removals and deaths of collared bears to produce defensible estimates of total mortality over relevant periods and to incorporate uncertainty when evaluating mortality limits established for the Yellowstone grizzly bear population. Assumptions and limitations of this procedure are discussed.

  1. Geographic pattern of serum antibody prevalence for Brucella spp. in caribou, grizzly bears, and wolves from Alaska, 1975-1998.

    PubMed

    Zarnke, Randall L; Ver Hoef, Jay M; DeLong, Robert A

    2006-07-01

    Blood samples were collected from 2,635 caribou (Rangifer tarandus), 1,238 grizzly bears (Ursus arctos), and 930 wolves (Canis lupus) from throughout mainland Alaska during 1975-98. Sera were tested for evidence of exposure to Brucella spp. Serum antibody prevalences were highest in the northwestern region of the state. In any specific area, antibody prevalences for caribou and wolves were of a similar magnitude, whereas antibody prevalence for bears in these same areas were two to three times higher. PMID:17092888

  2. Factors leading to different viability predictions for a grizzly bear data set

    USGS Publications Warehouse

    Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.

    1996-01-01

    Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.

  3. Estimating numbers of females with cubs-of-the-year in the Yellowstone grizzly bear population

    USGS Publications Warehouse

    Keating, K.A.; Schwartz, C.C.; Haroldson, M.A.; Moody, D.

    2001-01-01

    For grizzly bears (Ursus arctos horribilis) in the Greater Yellowstone Ecosystem (GYE), minimum population size and allowable numbers of human-caused mortalities have been calculated as a function of the number of unique females with cubs-of-the-year (FCUB) seen during a 3- year period. This approach underestimates the total number of FCUB, thereby biasing estimates of population size and sustainable mortality. Also, it does not permit calculation of valid confidence bounds. Many statistical methods can resolve or mitigate these problems, but there is no universal best method. Instead, relative performances of different methods can vary with population size, sample size, and degree of heterogeneity among sighting probabilities for individual animals. We compared 7 nonparametric estimators, using Monte Carlo techniques to assess performances over the range of sampling conditions deemed plausible for the Yellowstone population. Our goal was to estimate the number of FCUB present in the population each year. Our evaluation differed from previous comparisons of such estimators by including sample coverage methods and by treating individual sightings, rather than sample periods, as the sample unit. Consequently, our conclusions also differ from earlier studies. Recommendations regarding estimators and necessary sample sizes are presented, together with estimates of annual numbers of FCUB in the Yellowstone population with bootstrap confidence bounds.

  4. Morphological variability and molecular identification of Uncinaria spp. (Nematoda: Ancylostomatidae) from grizzly and black bears: new species or phenotypic plasticity?

    PubMed

    Catalano, Stefano; Lejeune, Manigandan; van Paridon, Bradley; Pagan, Christopher A; Wasmuth, James D; Tizzani, Paolo; Duignan, Pádraig J; Nadler, Steven A

    2015-04-01

    The hookworms Uncinaria rauschi Olsen, 1968 and Uncinaria yukonensis ( Wolfgang, 1956 ) were formally described from grizzly ( Ursus arctos horribilis) and black bears ( Ursus americanus ) of North America. We analyzed the intestinal tracts of 4 grizzly and 9 black bears from Alberta and British Columbia, Canada and isolated Uncinaria specimens with anatomical traits never previously documented. We applied morphological and molecular techniques to investigate the taxonomy and phylogeny of these Uncinaria parasites. The morphological analysis supported polymorphism at the vulvar region for females of both U. rauschi and U. yukonensis. The hypothesis of morphological plasticity for U. rauschi and U. yukonensis was confirmed by genetic analysis of the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA. Two distinct genotypes were identified, differing at 5 fixed sites for ITS-1 (432 base pairs [bp]) and 7 for ITS-2 (274 bp). Morphometric data for U. rauschi revealed host-related size differences: adult U. rauschi were significantly larger in black bears than in grizzly bears. Interpretation of these results, considering the historical biogeography of North American bears, suggests a relatively recent host-switching event of U. rauschi from black bears to grizzly bears which likely occurred after the end of the Wisconsin glaciation. Phylogenetic maximum parsimony (MP) and maximum likelihood (ML) analyses of the concatenated ITS-1 and ITS-2 datasets strongly supported monophyly of U. rauschi and U. yukonensis and their close relationship with Uncinaria stenocephala (Railliet, 1884), the latter a parasite primarily of canids and felids. Relationships among species within this group, although resolved by ML, were unsupported by MP and bootstrap resampling. The clade of U. rauschi, U. yukonensis, and U. stenocephala was recovered as sister to the clade represented by Uncinaria spp. from otariid pinnipeds. These results support the absence of strict

  5. Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears.

    PubMed

    Kamath, Pauline L; Haroldson, Mark A; Luikart, Gordon; Paetkau, David; Whitman, Craig; van Manen, Frank T

    2015-11-01

    Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers. PMID:26510936

  6. Multiple estimates of effective population size for monitoring a long-lived vertebrate: An application to Yellowstone grizzly bears

    USGS Publications Warehouse

    Kamath, Pauline L.; Haroldson, Mark A.; Luikart, Gordon; Paetkau, David; Whitman, Craig L.; van Manen, Frank T.

    2015-01-01

    Effective population size (Ne) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different Ne estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (Nb) and Ne during 1982–2007. We also used multisample methods to estimate variance (NeV) and inbreeding Ne (NeI). Single-sample estimates revealed positive trajectories, with over a fourfold increase in Ne (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. NeV (240–319) and NeI (256) were comparable with the harmonic mean single-sample Ne (213) over the time period. Reanalysing historical data, we found NeV increased from ≈80 in the 1910s–1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (Ne/Nc) was stable and high (0.42–0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of Ne can complement demographic-based monitoring of Nc and vital rates, providing a valuable tool for wildlife managers.

  7. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis. PMID:18037367

  8. First report of Taenia arctos (Cestoda: Taeniidae) from grizzly (Ursus arctos horribilis) and black bears (Ursus americanus) in North America.

    PubMed

    Catalano, Stefano; Lejeune, Manigandan; Verocai, Guilherme G; Duignan, Pádraig J

    2014-04-01

    The cestode Taenia arctos was found at necropsy in the small intestine of a grizzly (Ursus arctos horribilis) and a black bear (Ursus americanus) from Kananaskis Country in southwestern Alberta, Canada. The autolysis of the tapeworm specimens precluded detailed morphological characterization of the parasites but molecular analysis based on mitochondrial DNA cytochrome c oxidase subunit 1 gene confirmed their identity as T. arctos. This is the first report of T. arctos from definitive hosts in North America. Its detection in Canadian grizzly and black bears further supports the Holarctic distribution of this tapeworm species and its specificity for ursids as final hosts. Previously, T. arctos was unambiguously described at its adult stage in brown bears (Ursus arctos arctos) from Finland, and as larval stages in Eurasian elk (Alces alces) from Finland and moose (Alces americanus) from Alaska, USA. Given the morphological similarity between T. arctos and other Taenia species, the present study underlines the potential for misidentification of tapeworm taxa in previous parasitological reports from bears and moose across North America. The biogeographical history of both definitive and intermediate hosts in the Holarctic suggests an ancient interaction between U. arctos, Alces spp., and T. arctos, and a relatively recent host-switching event in U. americanus. PMID:24382413

  9. Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range.

    PubMed

    Edwards, Mark A; Derocher, Andrew E

    2015-02-01

    In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. PMID:25498148

  10. Natural landscape features, human-related attractants, and conflict hotspots: A spatial analysis of human-grizzly bear conflicts

    USGS Publications Warehouse

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Burchfield, J.A.; Belsky, J.M.

    2005-01-01

    There is a long history of conflict in the western United States between humans and grizzly bears (Ursus arctos) involving agricultural attractants. However, little is known about the spatial dimensions of this conflict and the relative importance of different attractants. This study was undertaken to better understand the spatial and functional components of conflict between humans and grizzly bears on privately owned agricultural lands in Montana. Our investigations focused on spatial associations of rivers and creeks, livestock pastures, boneyards (livestock carcass dump sites), beehives, and grizzly bear habitat with reported human-grizzly bear conflicts during 1986-2001. We based our analysis on a survey of 61 of 64 livestock producers in our study in the Rocky Mountain East Front, Montana. With the assistance of livestock and honey producers, we mapped the locations of cattle and sheep pastures, boneyards, and beehives. We used density surface mapping to identify seasonal clusters of conflicts that we term conflict hotspots. Hotspots accounted for 75% of all conflicts and encompassed approximately 8% of the study area. We also differentiated chronic (4 or more years of conflicts) from non-chronic hotspots (fewer than 4 years of conflict). The 10 chronic hotpots accounted for 58% of all conflicts. Based on Monte Carlo simulations, we found that conflict locations were most strongly associated with rivers and creeks followed by sheep lambing areas and fall sheep pastures. Conflicts also were associated with cattle calving areas, spring cow-calf pastures, summer and fall cattle pastures, and boneyards. The Monte Carlo simulations indicated associations between conflict locations and unprotected beehives at specific analysis scales. Protected (fenced) beehives were less likely to experience conflicts than unprotected beehives. Conflicts occurred at a greater rate in riparian and wetland vegetation than would be expected. The majority of conflicts occurred in a

  11. Spatial Analysis of Factors Influencing Long-Term Stress in the Grizzly Bear (Ursus arctos) Population of Alberta, Canada

    PubMed Central

    Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  12. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  13. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints. PMID:27085998

  14. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models

    PubMed Central

    Whittington, Jesse; Sawaya, Michael A.

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative

  15. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth

  16. Evaluating estimators for numbers of females with cubs-of-the-year in the Yellowstone grizzly bear population

    USGS Publications Warehouse

    Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.

    2007-01-01

    Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.

  17. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States

    USGS Publications Warehouse

    Proctor, M.F.; Paetkau, David; McLellan, B.N.; Stenhouse, G.B.; Kendall, K.C.; Mace, R.D.; Kasworm, W.F.; Servheen, C.; Lausen, C.L.; Gibeau, M.L.; Wakkinen, W.L.; Haroldson, M.A.; Mowat, G.; Apps, C.D.; Ciarniello, L.M.; Barclay, R.M.R.; Boyce, M.S.; Schwartz, C.C.; Strobeck, C.

    2012-01-01

    Population fragmentation compromises population viability, reduces a species ability to respond to climate change, and ultimately may reduce biodiversity. We studied the current state and potential causes of fragmentation in grizzly bears over approximately 1,000,000 km 2 of western Canada, the northern United States (US), and southeast Alaska. We compiled much of our data from projects undertaken with a variety of research objectives including population estimation and trend, landscape fragmentation, habitat selection, vital rates, and response to human development. Our primary analytical techniques stemmed from genetic analysis of 3,134 bears, supplemented with radiotelemetry data from 792 bears. We used 15 locus microsatellite data coupled withmeasures of genetic distance, isolation-by-distance (IBD) analysis, analysis of covariance (ANCOVA), linear multiple regression, multi-factorial correspondence analysis (to identify population divisions or fractures with no a priori assumption of group membership), and population-assignment methods to detect individual migrants between immediately adjacent areas. These data corroborated observations of inter-area movements from our telemetry database. In northern areas, we found a spatial genetic pattern of IBD, although there was evidence of natural fragmentation from the rugged heavily glaciated coast mountains of British Columbia (BC) and the Yukon. These results contrasted with the spatial pattern of fragmentation in more southern parts of their distribution. Near the Canada-US border area, we found extensive fragmentation that corresponded to settled mountain valleys andmajor highways. Genetic distances across developed valleys were elevated relative to those across undeveloped valleys in central and northern BC. In disturbed areas, most inter-area movements detected were made by male bears, with few female migrants identified. North-south movements within mountain ranges (Mts) and across BC Highway 3 were more common

  18. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos)

    PubMed Central

    Carlson, Ruth I.; Cattet, Marc R. L.; Sarauer, Bryan L.; Nielsen, Scott E.; Boulanger, John; Stenhouse, Gordon B.; Janz, David M.

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic–pituitary–adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50–100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change. PMID:27293753

  19. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    PubMed

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change. PMID:27293753

  20. Stress and Reproductive Hormones in Grizzly Bears Reflect Nutritional Benefits and Social Consequences of a Salmon Foraging Niche

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230

  1. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230

  2. Flexure Bearing Reduces Startup Friction

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  3. Prospects for Yellowstone grizzlies

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-12-01

    Recent analyses of data on the grizzly population of Yellowstone National Park and its environs suggest the likelihood of a continuing decline in numbers, if losses of fully adult females are not reduced. Current size of the population is not known, but a simple projection model has been used to identify some inconsistencies in the index data. Population dynamics calculations, based on Lotka's equation or a stochastic model, indicate a continuing decrease in numbers. The margin between stabilization of the population and a continued decrease appears to be roughly the loss of one fully adult female bear per year. At present, the risk of extirpation over the next 30 years appears to be small. Continued monitoring of survivorship will be needed, particularly since ''recovery'' of the population may be mainly characterized by a shift in the pattern of mortality, and not necessarily in absolute number of losses. 5 refs., 4 figs.

  4. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    PubMed

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  5. Interthalamic hematoma secondary to cerebrovascular atherosclerosis in an aged grizzly bear (Ursus arctos horribilis) with primary cardiac schwannoma.

    PubMed

    Miller, Andrew David; McDonough, Sean

    2008-12-01

    A 38-year-old intact female Grizzly bear (Ursus arctos horribilis) was evaluated for progressive seizure activity, pale mucous membranes, deficient pupillary light and menace responses, and irregular shallow respiration. Because of poor response to treatment, the animal was euthanized. Gross examination revealed abundant hemorrhage in both lateral ventricles; a large, encapsulated mass within the rostral interthalamic region; and a well-demarcated, round white mass in the apex of the right ventricle. Histologic examination of the interthalamic mass revealed a resolving hematoma composed of stratified layers of fibrin and white blood cells that was surrounded by a thick fibrous capsule. Most meningeal and intraparenchymal blood vessels had multifocal degeneration, fragmentation, and fraying of the internal elastic lamina with prominent intimal proliferations and plaques. The plaques were formed by small numbers of lipid-laden macrophages (foam cells) that were intermixed with occasional lymphocytes and plasma cells. The cardiac mass was composed of pallisading and interlacing spindle cells with parallel nuclei and abundant, pale eosinophilic cytoplasm consistent with a schwannoma. PMID:19110714

  6. Assessment of pesticide residues in army cutworm moths (Euxoa auxiliaris) from the Greater Yellowstone Ecosystem and their potential consequences to foraging grizzly bears (Ursus arctos horribilis)

    USGS Publications Warehouse

    Robison, H.L.; Schwartz, C.C.; Petty, J.D.; Brussard, P.F.

    2006-01-01

    During summer, a grizzly bear (Ursus arctos horribilis) in the Greater Yellowstone Ecosystem (GYE) (USA) can excavate and consume millions of army cutworm moths (Euxoa auxiliaris) (ACMs) that aggregate in high elevation talus. Grizzly bears in the GYE were listed as threatened by the US Fish and Wildlife Service in 1975 and were proposed for delisting in 2005. However, questions remain about key bear foods. For example, ACMs are agricultural pests and concern exists about whether they contain pesticides that could be toxic to bears. Consequently, we investigated whether ACMs contain and transport pesticides to bear foraging sites and, if so, whether these levels could be toxic to bears. In 1999 we collected and analyzed ACMs from six bear foraging sites. ACMs were screened for 32 pesticides with gas chromatography with electron capture detection (GC-ECD). Because gas chromatography with tandem mass spectrometry (GC-MS/MS) can be more sensitive than GC-ECD for certain pesticides, we revisited one site in 2001 and analyzed these ACMs with GC-MS/MS. ACMs contained trace or undetectable levels of pesticides in 1999 and 2001, respectively. Based on chemical levels in ACMs and numbers of ACMs a bear can consume, we calculated the potential of chemicals to reach physiological toxicity. These calculations indicate bears do not consume physiologically toxic levels of pesticides and allay concerns they are at risk from pesticides transported by ACMs. If chemical control of ACMs changes in the future, screening new ACM samples taken from bear foraging sites may be warranted. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Landscape features and attractants that predispose grizzly bears to risk of conflicts with humans: A spatial and temporal analysis on privately owned agricultural land

    NASA Astrophysics Data System (ADS)

    Wilson, Seth Mark

    Grizzly bear (Ursus arctos) deaths in the US tend to be concentrated on the periphery of core habitats. These deaths were often preceded by conflicts with humans. Management removals of "nuisance" and or habituated grizzly bears are a leading cause of death in many populations. This exploratory study focuses on the conditions that lead to human-grizzly bear conflicts on private lands near core habitat. I examined spatial associations among reported human-grizzly bear conflicts during 1986--2001, landscape features, and agricultural-attractants in north-central Montana. I surveyed 61 of a possible 64 active livestock related land users and I used geographic information system (GIS) techniques to collect information on cattle and sheep pasture locations, seasons of use, and bone yard (carcass dumps) and beehive locations. I used GIS spatial analyses, univariate tests, and logistic regression models to explore the associations among conflicts, landscape features, and attractants. A majority (75%) of conflicts were found in distinct seasonal conflict hotspots. Conflict hotspots with spatial overlap were associated with riparian vegetation, bone yards, and beehives in close proximity to one another and accounted for 62% of all conflicts. Consistently available seasonal attractants in overlapping hotspots such as calving areas, sheep lambing areas and spring, summer, and fall sheep and cattle pastures appear to perpetuate the occurrence of conflicts. I found that lambing areas and spring and summer sheep pastures were strongly associated with conflict locations as were cattle calving areas, spring cow/calf pastures, fall pastures, and bone yards. Logistic regression modeling revealed that the presence of riparian vegetation within a 1.6 km search radius strongly influenced the likelihood of conflict. After controlling for riparian vegetation, I found that unmanaged bone yards, unfenced and fenced beehives, all increased the odds of conflict. For every 1 km moved away

  8. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear

    PubMed Central

    Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.; Janz, David M.

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  9. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  10. Positive Reinforcement Training for Blood Collection in Grizzly Bears (Ursus arctos horribilis) Results in Undetectable Elevations in Serum Cortisol Levels: A Preliminary Investigation.

    PubMed

    Joyce-Zuniga, Nicole M; Newberry, Ruth C; Robbins, Charles T; Ware, Jasmine V; Jansen, Heiko T; Nelson, O Lynne

    2016-01-01

    Training nonhuman animals in captivity for participation in routine husbandry procedures is believed to produce a lower stress environment compared with undergoing a general anesthetic event for the same procedure. This hypothesis rests largely on anecdotal evidence that the captive subjects appear more relaxed with the trained event. Blood markers of physiological stress responses were evaluated in 4 captive grizzly bears (Ursus arctos horribilis) who were clicker-trained for blood collection versus 4 bears who were chemically immobilized for blood collection. Serum cortisol and immunoglobulin A (IgA) and plasma β-endorphin were measured as indicators of responses to stress. Plasma β-endorphin was not different between the groups. Serum IgA was undetectable in all bears. Serum cortisol was undetectable in all trained bears, whereas chemically immobilized bears had marked cortisol elevations (p < .05). The highest cortisol elevations were found in 2 bears with extensive recent immobilization experience. These findings support the use of positive reinforcement training for routine health procedures to minimize anxiety. PMID:26847149

  11. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. PMID:26005744

  12. Audubon Wildlife Adventures. Grizzly Guidebook. School Edition.

    ERIC Educational Resources Information Center

    National Audubon Society, Washington, DC.

    This program introduces the young computer players to the world of the grizzly bear, the largest land carnivore in North America. Through a series of four interactive stories, players learn of the bear's habits and human activities that have brought it close to extinction. Playing the part of a park ranger, a research biologist or a natural…

  13. Insights into the latent multinomial model through mark-resight data on female grizzly bears with cubs-of-the-year

    USGS Publications Warehouse

    Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D

    2013-01-01

    Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.

  14. Plight of the Cabinet Mountains grizzlies

    SciTech Connect

    Fischer, H.

    1982-01-01

    The effects of mineral and petroleum exploration and development and logging on grizzly bears in the Cabinet Mountains region of Montana is discussed. The author points out that such activities might cut the bears off from other bear populations in the Glacier National park and the Bob Marshall Wilderness. It is maintained, that in order for the bears to survive, they must range beyond the Cabinet Mountains and that extensive human activities in the area would damage their range. (JMT)

  15. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees. PMID:17483732

  16. Bears, Big and Little. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  17. GRIZZLY/FAVOR Interface Project Report

    SciTech Connect

    Dickson, Terry L; Williams, Paul T; Yin, Shengjun; Klasky, Hilda B; Tadinada, Sashi; Bass, Bennett Richard

    2013-06-01

    As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.

  18. Textured bearing surface in artificial joints to reduce macrophage activation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yoshitaka; Nishi, Naoki; Chikaura, Hiroto; Nakashima, Yuta; Miura, Hiromasa; Higaki, Hidehiko; Mizuta, Hiroshi; Iwamoto, Yukihide; Fujiwara, Yukio; Komohara, Yoshihiro; Takeya, Motohiro

    2015-12-01

    Micro slurry-jet erosion has been proposed as a precision machining technique for the bearing surfaces of artificial joints in order to reduce the total amount of polyethylene wear and to enlarge the size of the wear debris. The micro slurry-jet erosion method is a wet blasting technique which uses alumina particles as the abrasive medium along with compressed air and water to create an ideal surface. Pin-on-disc wear tests with multidirectional sliding motion on the textured surface of a \\text{Co}-\\text{Cr}-\\text{Mo} alloy counterface for polyethylene resulted in both a reduction of wear as well as enlargement of the polyethylene debris size. In this study, primary human peripheral blood mononuclear phagocytes were incubated with the debris, and it was elucidated that the wear debris generated on the textured surface regulated secretion of the proinflammatory cytokines IL-6 and TNF-α, indicating a reduction in the induced tissue reaction and joint loosening.

  19. Reducing Stress-Corrosion Cracking in Bearing Alloys

    NASA Technical Reports Server (NTRS)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  20. Noninvasive methods for monitoring bear population trends

    USGS Publications Warehouse

    Kendall, Katherine

    2010-01-01

    The U.S. Geological Survey began a grizzly bear research project in 2009 in the Northern Continental Divide Ecosystem (NCDE) of northwestern Montana. This work uses hair collection and DNA analysis methods similar to those used in the 2004 Northern Divide Grizzly Bear Project. However, instead of producing a snapshot of population size, the objectives of this new work are to estimate population growth rates by collecting hair at natural bear rubs along trails, roads, and fence and power lines. This approach holds promise of providing reliable estimates of population trends in an efficient, cost-effective, and unobtrusive way.

  1. Grizzly Gulch Fire, South Dakota

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Burning next door to the South Dakota towns of Deadwood and Lead, the Grizzly Gulch fire forced the evacuation of many residents in the first week of July, 2002. In addition, smoke closed many of the roads in the area. At the time the fire's behavior was extreme, with 'torching, spotting, and running.' In other words, the fire was primarily burning along the ground, with entire trees occasionally erupting into flame (torching). At the same time, burning embers were being thrown ahead of the fire (spotting). In some areas the fire was spreading from the crown of one tree to another (running). (This glossary of fire terms has a good list of definitions) The above image shows the fire on the morning of July 1, 2002. Actively burning areas, concentrated on the east (right) side of the fire, are colored red and orange. Dark red areas indicate burn scars, while forest and other vegetation appears green. The exposed rock of the Homestake gold mine, now the National Underground Science Laboratory, is pinkish-brown. The total extent of the fire is oulined in yellow. The image was acquired by the Enhanced Thematic Mapper plus (ETM+) aboard the Landsat 7 satellite. More news about current wildfires in the United States is available from the National Fire Information Center. Image provided by the USGS EROS Data Center Satellite Systems Branch.

  2. Alterations in bone forming cells due to reduced weight bearing

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; Morey-Holton, E.

    1984-01-01

    A reduction in new bone formation occurred as a result of space flight (Cosmos 1129) and in the suspended animal model of Morey-Holton (1979, 1980). The results indicate that alkaline phosphatase activity of the bone-forming cells is also reduced under these conditions, and the cells in the diaphysis are more affected than those in the metaphyseal region. In addition, these cells show (1) reduced proline incorporation into bone matrix, and (2) increased intracellular lysosomal activity. A change in the cytoskeleton could be the common factor in explaining these results. This suggestion is futher supported by the previous observations that colchicine injections result in decreased osteoblastic function.

  3. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    USGS Publications Warehouse

    Rode, K.D.; Amstrup, Steven C.; Regehr, E.V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long-term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a longterm data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population. ?? 2010 by the Ecological Society of America.

  4. Reduced body size and cub recruitment in polar bears associated with sea ice decline.

    PubMed

    Rode, Karyn D; Amstrup, Steven C; Regehr, Eric V

    2010-04-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long-term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long-term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population. PMID:20437962

  5. Grizzly Substation Fiber Optics : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-02-01

    This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

  6. 3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO WEST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  7. 4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO EAST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  8. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park

    PubMed Central

    Sawaya, Michael A.; Kalinowski, Steven T.; Clevenger, Anthony P.

    2014-01-01

    Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation. PMID:24552834

  9. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park.

    PubMed

    Sawaya, Michael A; Kalinowski, Steven T; Clevenger, Anthony P

    2014-04-01

    Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation. PMID:24552834

  10. Bearings-only tracking in a distributed sensor network using reduced sufficient statistics

    NASA Astrophysics Data System (ADS)

    Anderson, Kraig L.; Iltis, Ronald A.

    1994-07-01

    A distributed parameter estimation algorithm is presented for a general nonlinear measurement model with additive Gaussian noise. We show that the Bayes-closed estimation algorithm developed by Kulhavy, when extended to the multisensor case leads to a linear fusion rule, regardless of the form of a local a posteriori densities. Specifically, the Kulhavy algorithm generates a set of reduced sufficient statistics representing the local sensor densities, which are simply added and subtracted at the global processor to obtain optimum fusion. We discuss various approximations to the Bayes-closed algorithm which leads to a practical parameter estimator for the nonlinear measurement model, and apply such an approximate technique to the bearings-only tracking problem. The performance of the distributed tracker is compared to an alternative algorithm based on the extended Kalman filter (EKF) implemented in modified polar coordinates. It is shown that the Bayes-closed estimator does not diverge in the sense of an ordinary EKF, and hence the Bayes-closed technique can be employed in both a unidirectional and bidirectional transmission mode.

  11. Investigation of a Method to Reduce Cavitation in Diesel Engine Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Honaker, Robert W.

    1998-01-01

    Sonoluminescence is the effect of producing light from sound and occurs when a gas bubble is trapped in a fluid filled cavity and is forced to collapse under a barrage of sound waves. Frenzel and Schultes discovered this phenomenon in 1934 while exposing acoustic waves to photographic plates. This effect was not well understood until 1988 when Crum and Gaitan discovered the necessary conditions for producing single bubble sonoluminescence in the laboratory. The luminescence is a result of the bubble violently collapsing from sound waves and this shares a close association with vibratory cavitation. Cavitation erosion is known to cause damage to rotational machinery when the collapse is near to surfaces due to the high pressures associated with bubble collapse. With these high pressures and temperatures there is a considerable amount of damage to the outside layer of a bearing, thereby, reducing its useful life. An experiment was constructed to generate sonoluminescence in the laboratory in order to obtain a greater understanding of this phenomenon and its association with bubble cavitation. Most of the research was done to investigate how to obtain single bubble sonoluminescence under different conditions and to determine how to detect it. Success in this has inspired several theories on how to use the methods for generating sonoluminescence to control cavitation in fluids under industrial conditions.

  12. 7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ORE BIN AND CHUTE TO BEGINNING OF CONVEYOR BELT, SOUTH VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. Immobilization of Wyoming bears using carfentanil and xylazine.

    PubMed

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine. PMID:23778620

  14. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    USGS Publications Warehouse

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  15. The stability of oxyamphiboles: Existence of Ferric-bearing minerals under the reducing conditions on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Straub, Darcy W.; Burns, Roger G.

    1993-01-01

    An enigma of Venusian mineralogy is the suggestion that Fe(3+)-bearing minerals exist under the reducing conditions of the Venusian atmosphere. Analysis of the spectrophotometric data from the Venera 13 and 14 missions, combined with the laboratory reflectance spectral measurements of oxidized basalts at elevated temperatures, led to the suggestion that metastable hematite might exist on Venus. Heating experiments at 475 C when f(sub O2) approximately 10(exp -24) demonstrated that the hematite to magnetite conversion is rapid indicating metastable hematite is not present on Venus. In addition to hematite, several other ferric oxide and silicate minerals have been proposed to occur on Venus, including laihunite or ferrifayalite, Fe(3+)-bearing tephroite, oxyamphiboles, and oxybiotites. Heating experiments performed on these Fe(3+)-bearing minerals under temperature-f(sub O2) conditions existing on Venus suggest that only oxyamphiboles and oxybiotites may be stable on the surface of Venus.

  16. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    USGS Publications Warehouse

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, D.C.; Marcot, B.G.; Durner, G.M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  17. Biodegradation reduces magnetization in oil bearing rocks: magnetization results of a combined chemical and magnetic study

    NASA Astrophysics Data System (ADS)

    Emmerton, S.; Muxworthy, A. R.; Sephton, M. A.; Williams, W.

    2012-12-01

    A relationship between hydrocarbons and their magnetic signatures has been alluded to for decades but this is the first study to combine geochemical and magnetic data. We report an extended study that identifies a definitive connection between magnetic mineralogy and biodegradation within oil-bearing rocks. Samples from Colombia, Canada Indonesia and the UK were collected and magnetically characterized. A negative linear regression in log space between magnetic susceptibility and the percentage of extractable organic matter was observed for individual reservoirs. To determine if this relationship is due to the activity of bacteria or migration of the oil, the percentage of oil components; aliphatic, aromatics, polars and resins and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy of the samples. Geochemical biomarker data revealed that all oil samples were derived from mature type-II kerogen, which was deposited in oxygen-poor environments allowing for an investigation into biodegradation variations. Biodegradation is the decrease of oil quality through the conversion of aliphatic hydrocarbons to polar constituents mainly through the activity of bacteria. A distinct decrease in magnetic susceptibility was correlated to decreasing oil quality (loss of aliphatic hydrocarbons, more biodegraded), which cannot be rejected at 99% confidence. Further magnetic characterization revealed that the high quality, low biodegradation oils from Colombia have a higher magnetic susceptibility (10-3-10-4 m3kg-1) and are dominated by pseudo-single domain grains of magnetite. The lower quality oils i.e., the UK, Canadian and Indonesian samples, displayed decreased magnetic susceptibility (10-5-10-6 m3kg-1) and pseudo-single domain to multidomain grains of magnetite and hematite. Magnetite and pyrrhotite framboidal material were found in all but the Canadian samples. Therefore, with decreasing oil quality there is a progressive

  18. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  19. Contrasting past and current numbers of bears visiting Yellowstone cutthroat trout streams

    USGS Publications Warehouse

    Haroldson, Mark A.; Schwartz, Charles C.; , JUSTIN E. TEISBERG; , Kerry A. Gunther; , JENNIFER K. FORTIN; , CHARLES T. ROBBINS

    2014-01-01

    Spawning cutthroat trout (Oncorhynchus clarkii bouvieri) were historically abundant within tributary streams of Yellowstone Lake within Yellowstone National Park and were a highly digestible source of energy and protein for Yellowstone’s grizzly bears (Ursus arctos) and black bears (U. americanus). The cutthroat trout population has subsequently declined since the introduction of non-native lake trout (Salvelinus namaycush), and in response to effects of drought and whirling disease (Myxobolus cerebralis). The trout population, duration of spawning runs, and indices of bear use of spawning streams had declined in some regions of the lake by 1997–2000. We initiated a 3-year study in 2007 to assess whether numbers of spawning fish, black bears, and grizzly bears within and alongside stream corridors had changed since 1997– 2000. We estimated numbers of grizzly bears and black bears by first compiling encounter histories of individual bears visiting 48 hair-snag sites along 35 historically fished streams.We analyzed DNA encounter histories with Pradel-recruitment and Jolly-Seber (POPAN) capture-mark-recapture models. When compared to 1997–2000, the current number of spawning cutthroat trout per stream and the number of streams with cutthroat trout has decreased. We estimated that 48 (95% CI¼42–56) male and 23 (95% CI¼21–27) female grizzly bears visited the historically fished tributary streams during our study. In any 1- year, 46 to 59 independent grizzly bears (8–10% of estimated Greater Yellowstone Ecosystem population) visited these streams. When compared with estimates from the 1997 to 2000 study and adjusted for equal effort, the number of grizzly bears using the stream corridors decreased by 63%. Additionally, the number of black bears decreased between 64% and 84%. We also document an increased proportion of bears of both species visiting front-country (i.e., near human development) streams. With the recovery of cutthroat trout, we suggest bears

  20. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    SciTech Connect

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  1. The Grizzly Powerhouse: A modern high-head hydrogenerating facility

    SciTech Connect

    Siebensohn, F.B.

    1995-12-31

    With the emphasis on the modernization of existing plants, there are not all that many new hydropower stations being built nowadays. A noteworthy exception from this trend is the Grizzly Powerhouse, located in the High Sierra near Quincy in northern California. This new $75 million facility is an addition to the existing 65 MW Bucks Creek hydroelectric project on the North Fork Feather River watershed in Plumas County, that is owned and operated by Pacific Gas and Electric Company. The Grizzly project is a cooperative development between Pacific Gas and Electric and the City of Santa Clara. The City paid for the powerhouse and will receive its electricity for at least 30 years. Pacific Gas and Electric has an option to buy the Grizzly project thereafter. The energy generated serves about 15,000 homes in Santa Clara and meets approximately seven percent of the City`s current peak power needs. AMERICAN HYDRO CORPORATION of York, Pennsylvania was the Prime Contractor for the supply of the power generation equipment, and as such was responsible for the performance of the system components. These included the turbine with the inlet/shut-off valve, the pressure relief valve, the governor and the generator with its excitation system.

  2. Hormonal, hypothalamic and striatal responses to reduced body weight gain are attenuated in anorectic rats bearing small tumors.

    PubMed

    Pourtau, Line; Leemburg, Susan; Roux, Pascale; Leste-Lasserre, Thierry; Costaglioli, Patricia; Garbay, Bertrand; Drutel, Guillaume; Konsman, Jan Pieter

    2011-05-01

    Lack of compensatory or even reduced food intake is frequently observed in weight-losing cancer patients and contributes to increased morbidity and mortality. Our previous work has shown increased transcription factor expression in the hypothalamus and ventral striatum of anorectic rats bearing small tumors. mRNA expression of molecules known to be involved in pathways regulating appetite in these structures was therefore assessed in this study. Given that pain, pro-inflammatory cytokines and metabolic hormones can modify food intake, spinal cord cellular activation patterns and plasma concentrations of cytokines and hormones were also studied. Morris hepatoma 7777 cells injected subcutaneously in Buffalo rats provoked a 10% lower body weight and 15% reduction in food intake compared to free-feeding tumor-free animals 4 weeks later when the tumor represented 1-2% of body mass. No differences in spinal cord activation patterns or plasma concentration of pro-inflammatory cytokines were observed between groups. However, the changes in plasma ghrelin and leptin concentrations found in food-restricted weight-matched rats in comparison to ad libitum-fed animals did not occur in anorectic tumor-bearing animals. Real-time PCR showed that tumor-bearing rats did not display the increase in hypothalamic agouti-related peptide mRNA observed in food-restricted weight-matched animals. In addition, microarray analysis and real-time PCR revealed increased ventral striatal prostaglandin D synthase expression in food-restricted animals compared to anorectic tumor-bearing rats. These findings indicate that blunted hypothalamic AgRP mRNA expression, probably as a consequence of relatively high leptin and low ghrelin concentrations, and reduced ventral striatal prostaglandin D synthesis play a role in maintaining cancer-associated anorexia. PMID:21334429

  3. Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation.

    PubMed

    Iaizzo, Paul A; Laske, Timothy G; Harlow, Henry J; McClay, Carolyn B; Garshelis, David L

    2012-03-01

    Even mildly hypothermic body or limb temperatures can retard healing processes in mammals. Despite this, we observed that hibernating American black bears (Ursus americanus Pallas, 1780) elicit profound abilities in mounting inflammatory responses to infection and/or foreign bodies. In addition, they resolve injuries during hibernation while maintaining mildly hypothermic states (30-35 °C) and without eating, drinking, urinating or defecating. We describe experimental studies on free-ranging bears that document their abilities to completely resolve cutaneous cuts and punctures incurred during or prior to hibernation. We induced small, full-thickness cutaneous wounds (biopsies or incisions) during early denning, and re-biopsied sites 2-3 months later (near the end of denning). Routine histological methods were used to characterize these skin samples. All biopsied sites with respect to secondary intention (open circular biopsies) and primary intention (sutured sites) healed, with evidence of initial eschar (scab) formation, completeness of healed epidermis and dermal layers, dyskeratosis (inclusion cysts), and abilities to produce hair follicles. These healing abilities of hibernating black bears are a clear survival advantage to animals injured before or during denning. Bears are known to have elevated levels of hibernation induction trigger (delta-opioid receptor agonist) and ursodeoxycholic acid (major bile acid within plasma, mostly conjugated with taurine) during hibernation, which may relate to these wound-healing abilities. Further research as to the underlying mechanisms of wound healing during hibernation could have applications in human medicine. Unique approaches may be found to improve healing for malnourished, hypothermic, diabetic and elderly patients or to reduce scarring associated with burns and traumatic injuries. PMID:22405448

  4. Quantitative Alterations in the Function of Bone Forming Cells Due to Reduced Weight Bearing

    NASA Technical Reports Server (NTRS)

    Doty, S. B.

    1985-01-01

    Rats subjected to spaceflight or suspended in a non-weight bearing position for 2 to 3 weeks, show a significant reduction in new bone formation. This reduction is associated with a decrease in akaline phosphatase activity in the differentiated osteoblast population. Those cells in the siaphyseal region of bone are more affected than the same cell type in metaphyseal bone. Measurements of alkaline phosphate activity in specific regions of bone, and the autoradiographic localization of H(3) proline in bone forming areas are described. Concomitant with decreased bone matrix synthesis, the osteoblast population also demonstrate changes in the Golgi/lysosomal complex as a result of whole animal suspension. Morphometric techniques are being applied for quantitation of the lysosomal population and the percentage of lysosomal or Golgi bodies containing acid phosphatase activity.

  5. 3D J-Integral Capability in Grizzly

    SciTech Connect

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  6. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    SciTech Connect

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  7. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  8. Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; Li, Bing; He, Zhengjia

    2015-10-01

    A novel reduced-order modeling method is presented in this paper for dynamics analysis of rotating impeller-shaft-bearing assembly with cracked impellers. Based on three-dimensional finite element model, the complex component mode synthesis (CMS) method is employed to generate an efficient reduced-order model (ROM) for studying the effects of crack on the global vibration of the rotating assembly. First, a modeling framework for impeller-shaft-bearing systems in rotating frame is presented. Rotational effects, including Coriolis matrix and centrifugal softening, have been taken into account. Then, the governing equation of motion of the damped gyroscopic system is reduced by the complex CMS method. Finally, the obtained ROM is employed to study the effects of crack on assembly's vibration. During the steady-state response analysis, external excitations on the impeller due to rotor-stator interactions have been taken into account, which was however neglected in previous investigations on rotordynamics. Numerical results show that the lower-order eigenvalues and the unbalance response of the assembly are not sensitive to the local crack on impeller. Nevertheless, the flexible coupling between impeller and shaft becomes more complex when the air flow-induced excitations are considered. Under EO1 traveling wave excitations, a crack leads to slight changes in the assembly's response. In contrast, the effect of crack becomes significant when the assembly is excited by EO2 and higher EO excitations. Moreover, the nonlinear crack breathing effects affect the assembly's response obviously. Finally, a potential technique for detecting the crack on impeller during operation is discussed.

  9. Dissolution of Uranium-Bearing Minerals and Mobilization of Uranium by Organic Ligands in a Biologically Reduced Sediment

    SciTech Connect

    Luo, Wensui; Gu, Baohua

    2011-01-01

    The stability and mobility of uranium (U) is a concern following its reductive precipitation or immobilization by techniques such as bioremediation at contaminated sites. In this study, the influences of complexing organic ligands such as citrate and ethylenediaminetetraacetate (EDTA) on the mobilization of U were investigated in both batch and column flow systems using a contaminated and bioreduced sediment. Results indicate that both reduced U(IV) and oxidized U(VI) in the sediment can be effectively mobilized with the addition of EDTA or citrate under anaerobic conditions. The dissolution and mobilization of U appear to be correlated to the dissolution of iron (Fe)- or aluminum (Al)-bearing minerals, with EDTA being more effective (with R2 0.89) than citrate (R2 <0.60) in dissolving these minerals. The column flow experiments confirm that U, Fe, and Al can be mobilized by these ligands under anoxic conditions, although the cumulative amounts of U removal constituted ~0.1% of total U present in this sediment following a limited period of leaching. This study concludes that the presence of complexing organic ligands may pose a long-term concern by slowly dissolving U-bearing minerals and mobilizing U even under a strict anaerobic environment.

  10. Reduced white fat mass in adult mice bearing a truncated Patched 1

    PubMed Central

    Li, Zili; Zhang, Heng; Denhard, Leslie A.; Liu, Lan-Hsin; Zhou, Huaxin; Lan, Zi-Jian

    2008-01-01

    Hedgehog (Hh) signaling emerges as a potential pathway contributing to fat formation during postnatal development. In this report, we found that Patched 1 (Ptc1), a negative regulator of Hh signaling, was expressed in the epididymal fat pad of adult mice. Reduced total white fat mass and epididymal adipocyte cell size were observed in naturally occurring spontaneous mesenchymal dysplasia (mes) adult mice (Ptc1mes/mes), which carry a deletion of Ptc1 at the carboxyl-terminal cytoplasmic region. Increased expression of truncated Ptc1, Ptc2 and Gli1, the indicators of ectopic activation of Hh signaling, was observed in epididymal fat pads of adult Ptc1mes/mes mice. In contrast, expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, adipocyte P2 and adipsin were reduced in epididymal fat pads of adult Ptc1mes/mes mice. Taken together, our results indicate that deletion of carboxyl-terminal tail of Ptc1 can lead to the reduction of white fat mass during postnatal development. PMID:18274621

  11. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter

    PubMed Central

    Bedore, Jake; Martyn, Amanda C.; Li, Anson K. C.; Dolinar, Eric A.; McDonald, Ian S.; Coupland, Stuart G.; Prado, Vania F.; Prado, Marco A.; Hill, Kathleen A.

    2015-01-01

    Background Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. Methods & Results A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. Significance This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina. PMID:26226617

  12. Transplanting normal vascular proangiogenic cells to tumor-bearing mice triggers vascular remodeling and reduced hypoxia in tumors

    PubMed Central

    Sasajima, Junpei; Mizukami, Yusuke; Sugiyama, Yoshiaki; Nakamura, Kazumasa; Kawamoto, Toru; Koizumi, Kazuya; Fujii, Rie; Motomura, Wataru; Sato, Kazuya; Suzuki, Yasuaki; Tanno, Satoshi; Fujiya, Mikihiro; Sasaki, Katsunori; Shimizu, Norihiko; Karasaki, Hidenori; Kono, Toru; Kawabe, Jun-ichi; Ii, Masaaki; Yoshiara, Hiroki; Kamiyama, Naohisa; Ashida, Toshifumi; Bardeesy, Nabeel; Chung, Daniel C.; Kohgo, Yutaka

    2011-01-01

    Blood vessels deliver oxygen and nutrients to tissues and vascular networks are spatially organized to meet metabolic needs for maintaining homeostasis. In contrast, the vasculature of tumors is immature and leaky, resulting in insufficient delivery of nutrients and oxygen. Vasculogenic processes occur normally in adult tissues to repair “injured” blood vessels, leading us to hypothesize that bone marrow mononuclear cells (BMMNC) may be able to restore appropriate vessel function in tumor vasculature. Culturing BMMNC with endothelial growth medium resulted in the early outgrowth of spindle-shaped attached cells expressing CD11b/Flt1/Tie2/c-Kit/CXCR4 with pro-angiogenic activity. Intravenous administration of these cultured vascular proangiogenic cells (VPC) into nude mice bearing pancreatic cancer xenografts and Pdx1-Cre;LSL-KrasG12D;p53lox/+ genetically engineered mice that develop pancreatic ductal adenocarcinoma significantly reduced areas of hypoxia without enhancing tumor growth. The resulting vasculature structurally mimicked normal vessels with intensive pericyte coverage. Increases in the vascularized area within VPC-injected xenografts were visualized with the ultrasound diagnostic system during injection of a microbubble-based contrast agent (Sonazoid), indicating a functional “normalization” of the tumor vasculature. In addition, gene expression profiles on the VPC-transplanted xenografts revealed a marked reduction in major factors involved in drug resistance and “stemness” of cancer cells. Together, our findings identify a novel alternate approach to regulate abnormal tumor vessels, offering the potential to improve delivery and efficacy of anti-cancer drugs to hypoxic tumors. PMID:20631070

  13. Transplanting normal vascular proangiogenic cells to tumor-bearing mice triggers vascular remodeling and reduces hypoxia in tumors.

    PubMed

    Sasajima, Junpei; Mizukami, Yusuke; Sugiyama, Yoshiaki; Nakamura, Kazumasa; Kawamoto, Toru; Koizumi, Kazuya; Fujii, Rie; Motomura, Wataru; Sato, Kazuya; Suzuki, Yasuaki; Tanno, Satoshi; Fujiya, Mikihiro; Sasaki, Katsunori; Shimizu, Norihiko; Karasaki, Hidenori; Kono, Toru; Kawabe, Jun-ichi; Ii, Masaaki; Yoshiara, Hiroki; Kamiyama, Naohisa; Ashida, Toshifumi; Bardeesy, Nabeel; Chung, Daniel C; Kohgo, Yutaka

    2010-08-01

    Blood vessels deliver oxygen and nutrients to tissues, and vascular networks are spatially organized to meet the metabolic needs for maintaining homeostasis. In contrast, the vasculature of tumors is immature and leaky, resulting in insufficient delivery of nutrients and oxygen. Vasculogenic processes occur normally in adult tissues to repair "injured" blood vessels, leading us to hypothesize that bone marrow mononuclear cells (BMMNC) may be able to restore appropriate vessel function in the tumor vasculature. Culturing BMMNCs in endothelial growth medium resulted in the early outgrowth of spindle-shaped attached cells expressing CD11b/Flt1/Tie2/c-Kit/CXCR4 with proangiogenic activity. Intravenous administration of these cultured vascular proangiogenic cells (VPC) into nude mice bearing pancreatic cancer xenografts and Pdx1-Cre;LSL-Kras(G12D);p53(lox/+) genetically engineered mice that develop pancreatic ductal adenocarcinoma significantly reduced areas of hypoxia without enhancing tumor growth. The resulting vasculature structurally mimicked normal vessels with intensive pericyte coverage. Increases in vascularized areas within VPC-injected xenografts were visualized with an ultrasound diagnostic system during injection of a microbubble-based contrast agent (Sonazoid), indicating a functional "normalization" of the tumor vasculature. In addition, gene expression profiles in the VPC-transplanted xenografts revealed a marked reduction in major factors involved in drug resistance and "stemness" of cancer cells. Together, our findings identify a novel alternate approach to regulate abnormal tumor vessels, offering the potential to improve the delivery and efficacy of anticancer drugs to hypoxic tumors. PMID:20631070

  14. Light Water Reactor Sustainability Program Status Report on the Grizzly Code Enhancements

    SciTech Connect

    Stephen R. Novascone; Benjamin W. Spencer; Jason D. Hales

    2013-09-01

    This report summarizes work conducted during fiscal year 2013 to work toward developing a full capability to evaluate fracture contour J-integrals to the Grizzly code. This is a progress report on ongoing work. During the next fiscal year, this capability will be completed, and Grizzly will be capable of evaluating these contour integrals for 3D geometry, including the effects of thermal stress and large deformation. A usable, limited capability has been developed, which is capable of evaluating these integrals on 2D geometry, without considering the effects of material nonlinearity, thermal stress or large deformation. This report presents an overview of the approach used, along with a demonstration of the current capability in Grizzly, including a comparison with an analytical solution.

  15. TBM tunnel friction values for the Grizzly Powerhouse Project

    SciTech Connect

    Stutsman, R.D.; Rothfuss, B.D.

    1995-12-31

    Tunnel boring machine (TBM) driven water conveyance tunnels are becoming increasingly more common. Despite advances in tunnel engineering and construction technology, hydraulic performance data for TBM driven tunnels remains relatively unavailable. At the Grizzly Powerhouse Project, the TBM driven water conveyance tunnel was designed using friction coefficients developed from a previous PG&E project. A range of coefficients were selected to bound the possible hydraulic performance variations of the water conveyance system. These friction coefficients, along with the water conveyance systems characteristics, and expected turbine characteristics, were used in a hydraulic transient analysis to determine the expected system pressure fluctuations, and surge chamber performance. During startup test data, these performance characteristics were measured to allow comparison to the original design assumptions. During construction of the tunnel, plaster casts were made of the actual excavated tunnel unlined and fiber reinforced shotcrete lined surfaces. These castings were used to measure absolute roughness of the surfaces so that a friction coefficient could be developed using the Moody diagram and compare them against the design values. This paper compares the assumed frictional coefficient with computed coefficients from headlosses measured during startup testing, and plaster cast measurement calculations. In addition, a comparison of coefficients will be presented for an other TBM driven water conveyance tunnel constructed in the 1980`s.

  16. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  17. Modeling multi-scale resource selection for bear rub trees in northwestern Montana

    USGS Publications Warehouse

    Morgan Henderson, Matthew J.; Hebblewhite, Mark; Mitchell, Michael S.; Stetz, Jeffrey B.; Kendall, Katherine C.; Carlson, Ross T.

    2015-01-01

    Both black (Ursus americanus) and grizzly bears (U. arctos) are known to rub on trees and other objects, producing a network of repeatedly used and identifiable rub sites. In 2012, we used a resource selection function to evaluate hypothesized relationships between locations of 887 bear rubs in northwestern Montana, USA, and elevation, slope angle, density of open roads and distance from areas of heightened plant-productivity likely containing forage for bears. Slope and density of open roads were negatively correlated with rub presence. No other covariates were supported as explanatory variables. We also hypothesized that bear rubs would be more strongly associated with closed roads and developed trails than with game trails. The frequencies of bear rubs on 30 paired segments of developed tracks and game trails were not different. Our results suggest bear rubs may be associated with bear travel routes, and support their use as “random” sampling devices for non-invasive spatial capture–recapture population monitoring.

  18. Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat

    NASA Astrophysics Data System (ADS)

    Hilker, Thomas; Coops, Nicholas C.; Gaulton, Rachel; Wulder, Michael A.; Cranston, Jerome; Stenhouse, Gordon

    2011-01-01

    An increasing number of studies have demonstrated the impact of landscape disturbance on ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion techniques of sensors with complimentary characteristics can help to improve the spatial and temporal resolution of satellite-based mapping techniques. Classification of different disturbance types from satellite observations is difficult, yet important, especially in an ecological context as different disturbance types might have different impacts on vegetation recovery, wildlife habitats, and food resources. We demonstrate a possible approach for classifying common disturbance types by means of their spatial characteristics. First, landscape level change is characterized on a near biweekly basis through application of a data fusion model (spatial temporal adaptive algorithm for mapping reflectance change) and a number of spatial and temporal characteristics of the predicted disturbance patches are inferred. A regression tree approach is then used to classify disturbance events. Our results show that spatial and temporal disturbance characteristics can be used to classify disturbance events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance was identified as the most powerful predictor of the disturbance type, together with the patch core area, patch size, and contiguity.

  19. 78 FR 17708 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ...: Background Restoring an endangered or threatened animal or plant to the point where it is again a secure... species native to the United States where a plan will promote the conservation of the species. Recovery plans describe site- specific actions necessary for the conservation of the species; establish...

  20. 78 FR 29774 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    .... SUPPLEMENTARY INFORMATION: On March 22, 2013 we published a Federal Register notice (78 FR 17708) announcing the.... Matt Hogan, Acting Regional Director, Denver, Colorado. BILLING CODE 4310-55-P...

  1. DNA Fingerprinting to monitor grizzly bear populations in the Greater Glacier Area

    USGS Publications Warehouse

    Kendall, Katherine; Dave, Schirokauer; Peterson, Kris; Waits, Lisette P.

    2001-01-01

    A study area of 8,100 km² (2 million acres) was established where 126 8 x 8 km (64 km²) grid cells were identified for placement of traps. Trapping was carried out during five 2- week trap sessions. Some 620 hair traps were placed in the field; samples were retrieved between May 19th and August 12th, 1998. Approximately 7,200 hair samples were collected that year. Hair was found at 80% of the traps where the average number of hair samples per trap site was 14. Forty percent of the samples had 5 or more hair follicles. Preliminary results of sampling indicate that DNA was extracted from 90-100% of the hair samples (N=300). Eight hundred miles of trail were surveyed between June 1 and October 9. Thirteen hundred hair samples were collected from rub trees along trails. Seven hundred scat samples were collected from trails.

  2. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  3. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    SciTech Connect

    Spencer, Benjamin; Hoffman, William; Sen, Sonat; Rabiti, Cristian; Dickson, Terry; Bass, Richard

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  4. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: a reassessment

    USGS Publications Warehouse

    Schwartz, Charles C.; Teisberg, Justin E.; Fortin, Jennifer K.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2014-01-01

    Use of naturally occurring stable isotopes to estimate assimilated diet of bears is one of the single greatest breakthroughs in nutritional ecology during the past 20 years. Previous research in the Greater Yellowstone Ecosystem (GYE), USA, established a positive relationship between the stable isotope of sulfur (δ34S) and consumption of whitebark pine (Pinus albicaulis) seeds. That work combined a limited sample of hair, blood clots, and serum. Here we use a much larger sample to reassess those findings. We contrasted δ34S values in spring hair and serum with abundance of seeds of whitebark pine in samples collected from grizzly (Ursus arctos) and American black bears (U. americanus) in the GYE during 2000–2010. Although we found a positive relationship between δ34S values in spring hair and pine seed abundance for grizzly bears, the coefficients of determination were small (R2 ≤ 0.097); we failed to find a similar relationship with black bears. Values of δ34S in spring hair were larger in black bears and δ34S values in serum of grizzly bears were lowest in September and October, a time when we expect δ34S to peak if whitebark pine seeds were the sole source of high δ34S. The relationship between δ34S in bear tissue and the consumption of whitebark pine seeds, as originally reported, may not be as clean a method as proposed. Data we present here suggest other foods have high values of δ34S, and there is spatial heterogeneity affecting the δ34S values in whitebark pine, which must be addressed.

  5. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  6. Bear feeding activity at alpine insect aggregation sites in the Yellowstone ecosystem

    USGS Publications Warehouse

    Mattson, David J.; Gillin, Colin M.; Benson, Scott A.; Knight, Richard R.

    1991-01-01

    Bears (Ursidae) were observed from fixed-wing aircraft on or near alpine talus in the Shoshone National Forest between 15 June and 15 September in 1981–1989. Bears fed on insect aggregations at 6 known and 12 suspected alpine talus sites, disproportionately more at elevations > 3350 m, on slopes > 30°, and on south- and west-facing aspects. While at these sites, bears almost exclusively ate invertebrates, typically army cutworm moths (Euxoa auxiliaris). Subadult grizzly bears (Ursus arctos horribilis) appeared to be underrepresented at the sites, and proportionate representation of adult females with young appeared to decrease between 15 June and 15 September. Overall, observations of bears at these sites increased between 1981 and 1989. We suggest that alpine insect aggregations are an important food source for bears in the Shoshone National Forest, especially in the absence of high-quality foraging alternatives in July and August of most years.

  7. Enhanced anti-tumor activity and reduced toxicity by combination andrographolide and bleomycin in ascitic tumor-bearing mice.

    PubMed

    Guo, Huizhen; Zhang, Zhenbiao; Su, Zuqing; Sun, Chaoyue; Zhang, Xie; Zhao, Xiaoning; Lai, Xiaoping; Su, Ziren; Li, Yucui; Zhan, Janis Yaxian

    2016-04-01

    Bleomycin (BLM) is an effective anti-carcinogen. With the main detrimental effects of inducing pulmonary fibrosis on patients, its clinical use is limited. Developing agents that enhance the efficacy and attenuate the side effects of cancer chemotherapy are critical. Andrographolide (Andro), an active diterpenoid labdane component extracted from Andrographis panicula, is generally prescribed for treatment of inflammatory associated diseases. The study showed that BLM combined with Andro was significantly more effective than BLM alone on inhibiting the tumor growth, arresting the cell cycle at G0/G1 phase, promoting the capase-3 and capase-8 activity to induce cancer cell apoptosis. The underlying mechanisms may be related to the transcriptional regulation of P53/P21/Cyclin pathways. Moreover, BLM induced pulmonary fibrosis in tumor-bearing mice, but BLM combined with Andro dramatically alleviated the lesion in pulmonary fibrosis by activating the SOD, suppressing MDA and HYP production, in the meanwhile attenuating the IL-1β, TNF- α, IL-6 and TGF-β1 level. These mechanisms were associated with its effect on inhibition of protein expression of TGF-β, α-SMA, p-Smad2/3, enhanced expression of Smad7. Thus, it demonstrated that Andro might be a potential adjuvant therapeutic agent for BLM. PMID:26874212

  8. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, M.A.; Amstrup, S.; Garner, G.; Vyse, E.R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  9. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation

    PubMed Central

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-01-01

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer. PMID:26592552

  10. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool