Science.gov

Sample records for ground observations potential

  1. Seafloor ground rotation observations: potential for improving signal-to-noise ratio on horizontal OBS components

    NASA Astrophysics Data System (ADS)

    Lindner, Fabian; Wassermann, Joachim; Schmidt-Aursch, Mechita; Schreiber, Ulrich; Igel, Heiner

    2015-04-01

    It is well known that the horizontal components of ocean bottom seismometer (OBS) records have a very poor signal-to-noise (S/N) ratio compared to the vertical components, the difference substantially exceeding that of terrestrial records. This is unfortunate as 1) OBS experiments are expensive and the main possibility to gather data in offshore areas, and 2) today we are more and more interested in modelling complete waveforms including all three components aiming at optimally constraining geophysical parameters for inverse problems for Earth's structure and seismic sources. Despite the fact that it is expected that tilting is the major cause of this high S/N - to our knowledge - this effect has never been directly observed. The reason is that (standard) instruments for the measurement of uncontaminated rotational ground motions with the required sensitivity still do not exist. Here, we report observations from an experiment we carried out in the North Sea, close to the island of Helgoland in the summer of 2014. A commercial fibre-optic gyro (usually used for navigation purposes) recording ground rotation rate with a sensitivity of approx. 10-7 rad/s was mounted on an OBS system together with a broadband seismometer. The system was lowered to the seafloor for about a week. To investigate a potential connection between rotational ground motions around the two horizontal axes (i.e., tilting) we calculate the coherence between the corresponding motion components (e.g., rotations around x-axis and translational motions along y-axis, and vice versa). We find very high correlations, on average exceeding 0.73 in the period interval 7-13 seconds. Correlations seem to increase with noise amplitude. Rotation rate amplitudes are in the range of 10-6 -10-5 rad/s. This clearly indicates that the horizontal translational components are severely contaminated by rotations around the horizontal axes. The ground rotation observations allow correcting for this effect thereby

  2. Ground potential rise monitor

    DOEpatents

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  3. Orbit of potentially hazardous asteroids using Gaia and ground-based observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2011-12-01

    Potentially Hazardous Asteroids (PHAs) are Near Earth Asteroids characterized by a Minimum Orbital Intersection Distance (MOID) with Earth less to 0,05 A.U and an absolute magnitude H<22. Those objects have sometimes a so significant close approach with Earth that they can be put on a chaotic orbit. This kind of orbit is very sensitive for exemple to the initial conditions, to the planetary theory used (for instance JPL's model versus IMCCE's model) or even to the numerical integrator used (Lie Series, Bulirsch-Stoer or Radau). New observations (optical, radar, flyby or satellite mission) can improve those orbits and reduce the uncertainties on the Keplerian elements.

  4. Ground potential rise monitor

    DOEpatents

    Allen, Zachery W.; Zevenbergen, Gary A.

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  5. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    NASA Astrophysics Data System (ADS)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub

  6. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance.

    PubMed

    Al-Hamdan, Mohammad Z; Crosson, William L; Limaye, Ashutosh S; Rickman, Douglas L; Quattrochi, Dale A; Estes, Maurice G; Qualters, Judith R; Sinclair, Amber H; Tolsma, Dennis D; Adeniyi, Kafayat A; Niskar, Amanda Sue

    2009-07-01

    This study describes and demonstrates different techniques for surface fitting daily environmental hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 microm (PM2.5) for the purpose of integrating respiratory health and environmental data for the Centers for Disease Control and Prevention (CDC) pilot study of Health and Environment Linked for Information Exchange (HELIX)-Atlanta. It presents a methodology for estimating daily spatial surfaces of ground-level PM2.5 concentrations using the B-Spline and inverse distance weighting (IDW) surface-fitting techniques, leveraging National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) data to complement U.S. Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM2.5 from the EPA database for the year 2003 as well as PM2.5 estimates derived from NASA's satellite data. Hazard data have been processed to derive the surrogate PM2.5 exposure estimates. This paper shows that merging MODIS remote sensing data with surface observations of PM,2. not only provides a more complete daily representation of PM,2. than either dataset alone would allow, but it also reduces the errors in the PM2.5-estimated surfaces. The results of this study also show that although the IDW technique can introduce some numerical artifacts that could be due to its interpolating nature, which assumes that the maxima and minima can occur only at the observation points, the daily IDW PM2.5 surfaces had smaller errors in general, with respect to observations, than those of the B-Spline surfaces. Finally, the methods discussed in this paper establish a foundation for environmental public health linkage and association studies for which determining the concentrations of an environmental hazard such as PM2.5 with high accuracy is critical. PMID:19645271

  7. Methods for Characterizing Fine Particulate Matter Using Satellite Remote-Sensing Data and Ground Observations: Potential Use for Environmental Public Health Surveillance

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Limaye, Ashutosh S.; Rickman, Douglas L.; Quattrochi, Dale A.; Estes, Maurice G.; Qualters, Judith R.; Niskar, Amanda S.; Sinclair, Amber H.; Tolsma, Dennis D.; Adeniyi, Kafayat A.

    2007-01-01

    This study describes and demonstrates different techniques for surfacing daily environmental / hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) for the purpose of integrating respiratory health and environmental data for the Centers for Disease Control and Prevention (CDC s) pilot study of Health and Environment Linked for Information Exchange (HELIX)-Atlanta. It described a methodology for estimating ground-level continuous PM2.5 concentrations using B-Spline and inverse distance weighting (IDW) surfacing techniques and leveraging National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) data to complement The Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM2.5 from the EPA database for the year 2003 as well as PM2.5 estimates derived from NASA s satellite data. Hazard data have been processed to derive the surrogate exposure PM2.5 estimates. The paper has shown that merging MODIS remote sensing data with surface observations of PM2.5 not only provides a more complete daily representation of PM2.5 than either data set alone would allow, but it also reduces the errors in the PM2.5 estimated surfaces. The results of this paper have shown that the daily IDW PM2.5 surfaces had smaller errors, with respect to observations, than those of the B-Spline surfaces in the year studied. However the IDW mean annual composite surface had more numerical artifacts, which could be due to the interpolating nature of the IDW that assumes that the maxima and minima can occur only at the observation points. Finally, the methods discussed in this paper improve temporal and spatial resolutions and establish a foundation for environmental public health linkage and association studies for which determining the concentrations of an environmental hazard such as PM2.5 with good accuracy levels is critical.

  8. Ground observations of kinetic Alfven waves

    SciTech Connect

    Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.

    1985-01-01

    Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.

  9. Lightning: Ground observations of gamma radiation

    NASA Astrophysics Data System (ADS)

    Jayanthi, U. B.; Gusev, A. A.; Neri, J. A. C.; Pugacheva, G. I.; Talavera, K. C.

    Recent satellite and ground observations of emissions in x and gamma-rays ascribing association with lightning phenomena have triggered interest in this natural phenomena The incentive for this Ground Gamma Radiation GGR experiment in the Brazilian Geomagnetic Anomaly BGA region is due to the absence of satellite data As a first step we want to test and calibrate the system with rocket triggered lightning flashes in the International Lightning facility in our Campus The lightning associated gamma rays can be inferred as due to bremsstrahlung associated with electrons released moments after the return stroke and the likely radiation associated with radioactive decay products in the interactions of protons generated in the lightning with the atmospheric constituents Initially in 2005 to observe the later phenomena a very large area NaI Tl detector of 40 cm diameter with a PHA system monitoring every 10 s was set up near the two rocket launchers for the induced lightning In few months of operation in 2005 increases in gamma-rays above the ground radiation flux are observed due to many rain precipitation events and in one lightning event coincident with the rocket launch To identify the association of emission due to the lightning we investigated both the decay period and the spectral information of these gamma rays The radon progeny in rain has an associated decay period of sim 30 min but however the decay time associated with the lightning is different Although the spectral information indicates a power law index for both

  10. Potential Flow Analysis of Dynamic Ground Effect

    NASA Technical Reports Server (NTRS)

    Feifel, W. M.

    1999-01-01

    Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.

  11. Assessing ground water development potential using landsat imagery.

    PubMed

    Mutiti, Samuel; Levy, Jonathan; Mutiti, Christine; Gaturu, Ndung'u S

    2010-01-01

    Seven villages in southeastern Kenya surround Mt. Kasigau and depend on the mountain's cloud forest for their water supply. Five of these villages have regularly experienced water shortages, and all village water supplies were contaminated with Escherichia coli bacteria. There is a need to economically find new sources of fresh ground water. Remote sensing offers a relatively quick and cost-effective way of identifying areas with high potential for ground water development. This study used spectral properties of features on Landsat remote sensing imagery to map linear features, soil types, surface moisture, and vegetation. Linear features represented geologic or geomorphologic features indicating either shallow ground water or areas of increased subsurface hydraulic conductivity. Regarding soil type, black soils were identified as potential indicators of shallow aquifers based on their relatively lower elevation and association with river valleys. A vegetation map was created using unsupervised classification, and three of the resulting vegetation classes were observed to be commonly associated with wet areas and/or ground water discharge. A wetness map, created using tasseled cap analysis, was used to identify all areas of high ground moisture, including those that corresponded to vegetated areas. The linear features, soil type, vegetation, and wetness maps were overlaid to produce a composite that highlighted areas with the highest potential for ground water development. Electrical resistivity surveys confirmed that areas highlighted by the composite image had relatively shallow depths to the water table. Some figures in this paper are available in color in the online version of the paper. PMID:19210559

  12. Reducing discrepancies in ground and satellite-observed eruption heights

    NASA Astrophysics Data System (ADS)

    Tupper, Andrew; Wunderman, Rick

    2009-09-01

    The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982-2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested.

  13. Challenges and Rewards in Ground-Based Observing

    NASA Astrophysics Data System (ADS)

    Reardon, Kevin P.

    2016-05-01

    DKIST will be largest ground-based project in solar physics, and will offer access and data to the whole community. In pursuit of exciting science, many users may have their first encounters with high-resolution, ground-based solar observations. New facilities, space or ground-based, all bring particular signatures in their data. While tools or processed datasets might serve to minimize such non-solar signatures, it is nonetheless important for users to understand the impacts on observation planning, the nature of the corrections applied, and any residual effects on their data.In this talk I will review some of the instrumental and atmospheric signatures that are important for ground-based observing, in particular in planning for the potential capabilities of the DKIST Data Center. These techniques include image warping, local PSF deconvolution, atmospheric dispersion correction, and scattered light removal. I will present examples of data sets afflicted by such problems as well as some of the algorithms used in characterizing and removing these contributions. This will demonstrate how even with the challenges of observing through a turbulent atmosphere, it is possible to achieve dramatic scientific results.

  14. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  15. Asteroseismology: Ground based efforts and the need for space observations

    NASA Technical Reports Server (NTRS)

    Gilliland, Ronald L.

    1994-01-01

    Detection of the oscillations expected to be present on solar-like stars is very difficult. Photometric observations from the ground suffer from two problems: (1) an atmospheric scintillation noise that drops only slowly with telescope aperture size, and (2) mode frequency spacings that require nearly continuous observations over at least several days for resolution. I will review the very limited possibilities for asteroseismology of solar-like stars from ground-based photometric observations. FRESIP could provide an excellent opportunity for pursuing asteroseismology observations of a far richer nature than can be contemplated from the ground.

  16. Challenges and Opportunities for Ground-based Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.

    2013-12-01

    I summarize the current status of ground-based helioseismic observations, in particular the two operational networks GONG and BiSON. I then discuss requirements for continued and future ground-based observations based on key science drivers, finishing with a discussion of SPRING, a proposed future high-spatial-resolution network that would provide helioseismic data and a broad range of synoptic data products.

  17. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  18. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    NASA Technical Reports Server (NTRS)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  19. Recent Advances in Magnetoseismology Using Network Observations by Ground Magnetometers

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.

    2011-12-01

    The rise of modern, synchronized networks of ground magnetometers in recent years has inspired and advanced research and development in magnetoseismology. Like the practice in other geophysical disciplines, magnetoseismology can infer the structure of the magnetosphere from the observations of normal-mode frequencies of the magnetic field. It can also time and locate impulsive events by measuring the signal arrival time at multiple ground stations. We highlight recent advances in using network observations by ground magnetometers for both types of magnetoseismic research. In the area of normal-mode magnetoseismology the increase in ground magnetometers has enabled ever more station pairs suitable for the gradient analysis. We demonstrate progress in automatic detection of field line resonance frequencies and the results that reveal longitudinal structure of the plasmasphere. As a relatively young research topic, travel-time magnetoseismology has shown its capability to time and locate sudden impulses and substorm onsets by using ground-based magnetometer observations. These initial successes in turn motivated detailed examination of MHD wave propagation in the magnetosphere. In the end we discuss how these magnetoseismic studies shed light on the regions in the world where future establishment of ground magnetometers is desirable.

  20. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero

  1. 7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BULLET GLASS OBSERVATION WINDOW AT GROUND LEVEL ON WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  2. Analysis of UV Satellite and Ground Observed data for Sardinia

    NASA Astrophysics Data System (ADS)

    Cervone, Guido; Manca, Germana; Johnson, Kathleen

    Ultraviolet (UV) radiation in the 280 to 400 nanometers range has been found to be one of the primary cause for skin cancer. The correlation between UV radiation and skin cancer prevention is of global concern. Satellite observations from Nimbus7 (1978-1993), EarthProbe (1996-2004) and OMI/AURA (2004-present) provide long term UV time-series that can be used to study and compute the risk associated with exposure to harmful radiation. Additionally, several ground installations exist to acquire UV radiation data that can be paired with satellite observations. The current work presents the data mining analysis of UV time series from 1978 to present for the Italian region of Sardinia. Satellite observations are paired with ground measurements to provide historical averages of UV radiation, and daily maps of current exposure. A Geographical Information System (GIS) is used to fuse UV data with ground characteristics. The use of GIS is fundamental to calculate the real value of UV on the ground. It is known that the incidence of solar radiation, and consequently of UV, is modified by topography and surface features. Topography plays a important rule, because it is a major factor that determines the spatial variability of insulation and UV being a part of direct insulation. variation in elevation orientation (slope and aspect), and shadow cast by topographical features, determine the UV insulation in a given area or point.

  3. Ground-based observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.

    2015-10-01

    I will described the campaign of observations from ground-based (and Earth orbiting) telescopes that supports the Rosetta mission. Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at #1000km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This not only helps to complete our understanding of the activity of 67P, but also allows us to compare it with other comets that are only observed from the ground, and in that way extend the results of the Rosetta mission to the wider population. The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it will be considerably brighter, approaching its perihelion in August, and at Northern declinations. I will show results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from early 2015 observations. I will also describe the varied observations that will be included in the campaign post-perihelion, and how all of these results fit around what we are learning about 67P from Rosetta.

  4. Potential risk of microplastics transportation into ground water

    NASA Astrophysics Data System (ADS)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (p<0.05) than the burrows of those earthworms without microplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (p<0.05) with the presence of microplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  5. Terrestrial Gamma Flashes Observed from Nearby Thunderstorms at Ground Level

    NASA Astrophysics Data System (ADS)

    Cherry, M. L.; Chason, N.; Granger, D.; Guzik, T. G.; Pleshinger, D.; Rodi, J.; Stacy, J. G.; Stewart, M.; Zimmer, N.

    2014-12-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located on the campus of Louisiana State University in Baton Rouge, Louisiana. Since July 2010, TETRA has detected 37 millisecond bursts of gamma rays at energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. The ability to observe ground-level Terrestrial Gamma Flashes from close to the source allows a unique analysis of the storm cells producing these events. A description of the observations, the results of the analysis, and plans for future measurements will be presented.

  6. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  7. Earth observation data payload ground segments at DLR for GMES

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan; Diedrich, Erhard; Maass, Holger; Mikusch, Eberhard

    2008-07-01

    The European Global Monitoring of Environment and Security (GMES) programme involves missions of the European Space Agency (ESA), EUMETSAT and also missions, originating from European national space agencies and private operators. These missions will be complemented by further missions from non-European operators to close gaps in data provision. The German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) is involved in national and private missions contributing to the fleet of GMES satellites. Apart from operating as one of the major Processing and Archiving Centers (PAC) for the ESA EO Missions, DFD is developing the data payload ground segment for the German national missions TerraSAR-X, TanDEM-X and EnMAP. DFD is also operations partner of European Space Imaging, receiving, processing and distributing submetric Ikonos data. Likewise, it is partner of EUROMAP, ensuring the European coverage for Indian Earth Observation satellites such as ResouceSat and CartoSat. A brief description of the missions, its ground segment and significance for GMES is given. Harmonizing the availability of data and products for European GMES users and managing the various data and information flows within a heterogeneous and distributed data payload ground segment is a challenging task.

  8. Ground-water levels in observation wells in Oklahoma, 1975

    USGS Publications Warehouse

    Goemaat, Robert L.

    1977-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  9. The Need for Synoptic Solar Observations from the Ground

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-04-01

    Synoptic observations are indispensable in studies of long-term effects pertinent to variation in solar radiative output, space weather and space climate, as well as for understanding the physics of global processes taking place on our nearest star. Synoptic data also allow putting the Sun in the context of stellar evolution. Historically, the main-stay of such observations has been groundbased although the improving longevity of space-borne instruments puts some space missions into the category of synoptic facilities. Space- and groundbased (synoptic) observations are complementary to each other; neither is inferior or superior to the other. Groundbased facilities can have a long-term (50 years+) operations horizon, and in comparison with their spacebased counterparts, they are less expensive to operate and have fewer restrictions on international collaboration and data access. The instruments can be serviced, upgraded, and cross-calibrated to ensure the continuity and uniformity of long-term data series. New measurements could be added in response to changes in understanding the solar phenomena. Some drawbacks such as day-night cycle and the variable atmospheric seeing can be mitigated e.g., by creating global networks and by employing adaptive optics. Furthermore, the groundbased synoptic observations can serve as a backbone and a back-up to spacebased observations. Here I review some existing groundbased synoptic facilities, describe plans for future networks, and outline the current efforts in strengthening the international collaboration in synoptic solar observations from the ground.

  10. Some unreliable types of ground-water observation wells

    USGS Publications Warehouse

    Remson, Irwin; Fox, G.S.

    1954-01-01

    Several primary requirements must be fulfilled by any observation well that is to be used as an indicator of ground-water levels over considerable distances. First of all, the water level inside the well must be the same as that outside of the well. the water level inside the well must be able to adjust to water -level fluctuations in the aquifer within a certain period of time, that time dependent upon the type of study for which the observations are to be used. Finally, to be of value in most areal studies, the water level outside the well must be representative of the level throughout the aquifer, and not reflect merely some speical local condition. Should any of these requirements remain unsatisfied, the derived data may be misleading. 

  11. Giant pulsations on the afternoonside: Geostationary satellite and ground observations

    NASA Astrophysics Data System (ADS)

    Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan V.; Russell, Christopher T.

    2015-10-01

    Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North America. For a long-lasting event on 29 February 2012, which spanned ˜08-18h magnetic local time, we show that basic Pg properties did not change with the local time, although the period of the pulsations was longer at later local time due to increasing mass loading. There is evidence that the Pgs resulted from fundamental poloidal mode standing Alfvén waves, both on the morning and afternoonsides. Oscillations of energetic particles associated with the field oscillations exhibited an energy-dependent phase, which has previously been reported and explained by drift resonance. A statistical analysis of the ground magnetic field data (L = 3.8-7.4) covering 2008-2013 confirms that afternoon Pgs are not unusual. We identified a total of 105 Pg events (about 70% (30%) of the events occurred during non-storm (late storm recovery) periods), 31 of which occurred on the afternoonside. The afternoon Pgs occur under solar wind and geomagnetic conditions that are similar to the morning Pgs, but the afternoon Pgs tend to have short durations and occur frequently in winter instead of around spring and fall equinoxes that are favored by the morning Pgs.

  12. Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting

    PubMed Central

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry “Suva Vrela” near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions. PMID:24358140

  13. Multisatellite and ground-based observations of transient ULF waves

    SciTech Connect

    Potemra, T.A.; Zanetti, L.J.; Takahashi, K.; Erlandson, R.E. ); Luehr, H. ); Marklund, G.T.; Block, L.P.; Blomberg, L.G. ); Lepping, R.P. )

    1989-03-01

    A unique alignment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE and Viking satellites with respect to the EISCAT Magnetometer Cross has provided an opportunity to study transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite. These observations were acquired during a relatively quiet period on April 24, 1986, during the Polar Region and Outer Magnetosphere International Study (PROMIS) period. An isolated 4-mHz (4-min period) pulsation was detected on the ground which was associated with transverse magnetic field oscillations observed by Viking at a {approximately} 2-R{sub E} altitude above the auroral zone and by CCE at {approximately} 8-R{sub E} in the equatorial plane on nearly the same flux tube. CCE detected a compressional oscillation in the magnetic field with twice the period ({approximately} 10 min) of the transverse waves, and with a waveform nearly identical to an isolated oscillation in the solar wind plasma density measured by IMP 8. The authors conclude that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations inside the magnetosphere at the same frequency which also enhanced resonant oscillations at approximately twice the frequency that were already present. The ground magnetic field variations are due to ionospheric Hall currents driven by the electric field of the standing Alfven waves. The time delay between surface and satellite data acquired at different local times supports the conclusion that the periodic solar wind density variation excites a tailward traveling large-scale magnetosphere wave train which excites local field line resonant oscillations. They conclude that these transient magnetic field variations are not associated with magnetic field reconnection or flux transfer events.

  14. A genetic algorithm for ground-based telescope observation scheduling

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Veillet, Christian; Thanjavur, Karun

    2012-09-01

    A prototype genetic algorithm (GA) is being developed to provide assisted and ultimately automated observation scheduling functionality. Harnessing the logic developed for manual queue preparation, the GA can build suitable sets of queues for the potential combinations of environmental and atmospheric conditions. Evolving one step further, the GA can select the most suitable observation for any moment in time, based on allocated priorities, agency balances, and realtime availability of the skies' condition.

  15. Stepped leaders observed in ground operations of ADELE

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Kelley, N.; Lowell, A.; Martinez-McKinney, F.; Dwyer, J. R.; Splitt, M. E.; Lazarus, S. M.; Cramer, E. S.; Levine, S.; Cummer, S. A.; Lu, G.; Shao, X.; Ho, C.; Eastvedt, E. M.; Trueblood, J.; Edens, H. E.; Hunyady, S. J.; Winn, W. P.; Rassoul, H. K.

    2010-12-01

    While the Airborne Detector for Energetic Lightning Emissions (ADELE) was designed primarily to study high-energy radiation associated with thunderstorms at aircraft altitude, it can also be used as a mobile ground-based instrument when mounted in a van. ADELE contains scintillation detectors optimized for faint and bright events and a flat-plate antenna measuring dE/dt. In July and August 2010, ADELE was brought to Langmuir Laboratory in New Mexico as a stationary detector and to the Florida peninsula (based at the Florida Institute of Technology in Melbourne) for rapid-response (storm-chasing) operations. In ten days of chasing, stepped-leader x-ray emission was observed from at least four close CG flashes, a much higher rate of success than can be achieved from a stationary detector or array. We will present these four events as well as the results of a study of candidate events of lesser statistical significance. We will also discuss the optimization of lightning-chasing strategies, science goals for future ground campaigns, and what additional instrumentation would be most scientifically beneficial. In the latter category, a proximity sensor (comparing flash and thunder arrival times) and a field mill are particularly important.

  16. Canopy Cover Predictions using Ground Observations and Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.

    1999-01-01

    Maps of vegetation status are needed at many scales, from the field level to monitor ecosystem condition to the global level to understand the carbon cycle. Status is quantified by such variables as leaf area index, biomass, and fraction of canopy cover. Current methods of predicting vegetation variables use remote sensing data to provide a spatially exhaustive data source. In a study in western Montana, several hundred ground observations made by the US Forest Service on tenth-acre conifer plots were used to develop aspatial regression and geostatistical prediction models. Normalized Difference Vegetation Index (NDVI) values from Landsat Thematic Mapper images were used as ancillary data. These models were then used to predict canopy cover at unsampled locations in a 97 square kilometer region on the boundary of the Flathead National Forest and the Bob Marshall Wilderness. Independent data from two dates six years apart were used for validation. Given the assumption that actual canopy cover remained relatively unchanged within this time period, partial validation can be achieved by measuring the correspondence of the two maps. This criterion results in ranking the aspatial regression maps as less accurate than the geostatistically generated maps. The geostatistical approach emphasizes ground measurements more heavily than does aspatid regression. Geostatistical simulations of canopy cover also provide a means of describing uncertainty about the patterns of canopy cover.

  17. Characteristics of negative lightning leaders to ground observed by TVLS

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Jiang, Zhidong; Shi, Lihua; Niu, Zhencong; Zhang, Peng

    2015-12-01

    The Thunder and VHF lightning Locating System (termed TVLS) is established and utilized to observe leader behaviors of negative cloud to ground (CG) flashes. This system takes advantages of VHF broadband interferometer and thunder imaging technique, which could provide the temporal and quasi-3D spatial evolution of lightning discharges. In conjunction with synchronized electric field changes (E-changes) and electric field derivatives (dE/dt) records, 10 leaders from two CG flashes are presented and analyzed. Based on the characteristic evolution of leader velocities, E-changes, dE/dt waveforms and VHF intervals, three stepped leaders, five dart leaders and two dart-stepped leaders are identified. The stepped leaders behave impulsive while approaching ground, with average speed (1.3∼3.9)×105 m/s. All normal dart leaders presented here exhibit irregular (or termed "chaotic") fluctuations in E-change and dE/dt waveforms, with the similar speeds ((1.0∼2.9)×107 m/s) and durations ((300∼700) μs) of the "chaotic" leaders observed by other investigators. The irregular fluctuations would be weak if the channels keep conductive until the leader enters the less conductive branches, coinciding with VHF radiations in time sequence. The dart-stepped leader could be divided into the dart stage and the stepped stage by a transition region, which usually lies around the branch junctions of previous active channel. The dart stage resembles the normal dart leader, and the stepped stage usually associates with regular pulse trains in E-change and dE/dt waveforms.

  18. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  19. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  20. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  1. Spatial mapping of ground-based observations of total ozone

    NASA Astrophysics Data System (ADS)

    Chang, K.-L.; Guillas, S.; Fioletov, V. E.

    2015-10-01

    Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.

  2. Simulation experiments of gravitational potential determination using clocks onboard satellite and on ground

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, WenBin; Zhang, Shuangxi

    2016-04-01

    Here we present simulation results for determining the gravitational potential using high-frequency-stability microwave links between satellite and ground station. Two precise clocks (oscillators) are equipped onboard a satellite and at a ground station. Based on Doppler cancelling technique, the gravitational potential difference between the satellite and the ground station can be determined. In the simulations, we use multi satellites and multi observations in different periods, and results show that most offset values are in the order of 0.1 m (in equivalent height), and standard deviation is around 0.1 m. With quick development of atomic clocks, our proposed approach is prospective in the near future. This study is supported by National 973 Project China (grant No. 2013CB733301 and 2013CB733305) and NSFC (grant Nos. 41174011, 41210006, 41429401).

  3. Ground-based observations of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Thomas, N.

    A series of ground-based 1-D spatially resolved, high resolution spectra (in SII, SIII, and OII) of the Io plasma torus were acquired in October 1999, around the time of the Galileo I24 passage through the IPT. In a previous paper (Thomas et al., JGR, 106, 26277, 2001), we have presented the initial results from these observations. In this presentation, we will describe recent more detailed analysis which seems to be lending further insight into the structure of the IPT. In particular, we have used an "onion-peeling" technique to remove line of sight effects from the observations. The resulting profiles, show the so-called ribbon region (5.7 RJ) being clearly separated from the cold torus (5.3 RJ) by a region of lower SII emission. SIII emission is now shown to be almost completely absent in the cold torus. The ratio of these two species is seen to rise systematically and almost linearly with jovicentric distance from the cold torus through to the warm torus (beyond 6.0 RJ). Models can be used to interpret this behaviour in terms of changing electron temperature with distance. We compare our results with the only other measurement of this property which was based on Voyager 1 PLS observations. We further show that the peak of OII emission is not centred at the, what we now call, the sulphur ribbon. We attempt to derive the relative composition of the three major species in the torus as a function of jovicentric distance using our data.

  4. Ali Observatory in Tibet: a unique northern site for future CMB ground-based observations

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2015-08-01

    Ground-based CMB observations have been performed at the South Pole and the Atacama desert in Chile. However, a significant fraction of the sky can not be observed from just these two sites. For a full sky coverage from the ground in the future, a northern site for CMB observation, in particular CMB polarization, is required. Besides the long-thought site in Greenland, the high altitude Tibet plateau provides another opportunity. I will describe the Ali Observatory in Tibet, located at N32°19', E80°01', as a potential site for ground-based CMB observations. The new site is located on almost 5100m mountain, near Gar town, where is an excellent site for both infrared and submillimeter observations. Study with the long-term database of ground weather stations and archival satellite data has been performed. The site has enough relative height on the plateau and is accessible by car. The Shiquanhe town is 40 mins away by driving, and a recently opened airport with 40 mins driving, the site also has road excess, electricity, and optical fiber with fast internet. Preliminary measurement of the Precipitable Water Vapor is ~one quarter less than 0.5mm per year and the long term monitoring is under development. In addition, surrounding higher sites are also available and could be further developed if necessary. Ali provides unique northern sky coverage and together with the South Pole and the Atacama desert, future CMB observations will be able to cover the full sky from ground.

  5. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  6. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  7. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  8. Public Remote Observing of Potentially Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Hammergren, M.

    2003-05-01

    Since the mid-1990.s, the Adler Planetarium has engaged in a program of public remote observing using the ARC 3.5-meter telescope at the Apache Point Observatory. The impact on regular science programs is minimized by scheduling the public observing during evening twilight on the first Friday of every month, when the Planetarium is open for extended hours. We have recently begun to observe faint, potentially hazardous near-Earth asteroids for which further astrometry is desired. The observations and initial analyses are performed and displayed in real-time in our CyberSpace electronic gallery before a live audience. Audience participation is useful and is actively encouraged. In particular, the asteroids often are first spotted in sequences of images by a member of the audience. Young children have recovered potentially hazardous asteroids. Further data reduction is accomplished with commercially available software. The program is straightforward in concept and execution, and is accessible to audiences of all ages. Since it unambiguously involves real science, it directly addresses the public understanding of research. We believe this program may be copied easily by other institutions that have remote observing assets.

  9. Linking Space-Borne and Ground-Based Observations Observed Around Substorm Onset to Magnetospheric Processes

    NASA Technical Reports Server (NTRS)

    Kepko, Larry; Spanswick, Emma; Angelopoulos, Vassilis; Donovan, Eric

    2011-01-01

    The combined THEMIS five spacecraft in-situ and ground magnetic and camera arrays have advanced considerably our understanding of the causal relationship between midtail plasma flows, transient ionospheric features, and ground magnetic signatures. In particular, recent work has shown a connection between equatorward moving visible ionospheric transients and substorm onset, in both 6300 nm and white-light emissions. Although both observations detail pre-onset auroral features the interpretations differ substantially. We first provide a brief summary of these observations, highlighting in particular areas where the two observations differ, and suggest reasons for the differences. We then detail how these observations relate to dynamical magnetospheric processes, and show how they constrain models of transient convection. Next, we pull together observations and models of Pi2 generation, substorm current wedge (SCW) initiation and dipolarization to present a self-consistent description of the dynamical processes and communicative pathways that occur just prior to and during substorm expansion onset. Finally, we present a summary of open questions and suggest a roadmap for future work.

  10. Self-potential observations during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-02-01

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However, for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of microcracks and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of ˜35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  11. Agreements between ground-based and satellite-based observations. [of earth magnetospheric currents

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Weimer, D.; Iijima, T.; Ahn, B.-H.; Kamide, Y.

    1990-01-01

    The polar ionospheric parameters obtained by the meridian chain of magnetometers are compared with those obtained by satellites, and a number of ionospheric quantities including the distribution of the electric potential, field-aligned currents, ionospheric currents and their equatorial counterparts, and the relationship between the AE index and the cross-polar cap potential is determined. It is noted that the agreement observed between the ground-based and satellite-based results allows to reduce the search for the driving mechanism of the ionospheric Pedersen current to identifying the driving mechanism of the Pedersen counterpart current in the equatorial plane.

  12. OTD Observations of Continental US Ground and Cloud Flashes

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2007-01-01

    Lightning optical flash parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) derived from almost five years of Optical Transient Detector (OTD) data are analyzed. Hundreds of thousands of OTD flashes occurring over the continental US are categorized according to flash type (ground or cloud flash) using US National Lightning Detection Network TM (NLDN) data. The statistics of the optical characteristics of the ground and cloud flashes are inter-compared on an overall basis, and as a function of ground flash polarity. A standard two-distribution hypothesis test is used to inter-compare the population means of a given lightning parameter for the two flash types. Given the differences in the statistics of the optical characteristics, it is suggested that statistical analyses (e.g., Bayesian Inference) of the space-based optical measurements might make it possible to successfully discriminate ground and cloud flashes a reasonable percentage of the time.

  13. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  14. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Grounds for review; potential dismissal or denial for failure to raise or support grounds. 2425.6 Section 2425.6 Administrative Personnel FEDERAL LABOR RELATIONS AUTHORITY, GENERAL COUNSEL OF THE FEDERAL LABOR RELATIONS AUTHORITY AND FEDERAL SERVICE IMPASSES PANEL FEDERAL LABOR...

  15. Ice shelf flexure at Antarctic grounding lines observed by high resolution satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Wild, Christian; Ryan, Michelle; Marsh, Oliver; McDonald, Adrian; King, Matt; Floricioiu, Dana; Wiesmann, Andreas; Price, Daniel

    2015-04-01

    Climate change is expected to impact Antarctic ice sheets primarily through changes in the oceans. This will be felt most strongly near the grounding line, where the ice sheet first comes into contact with ocean water and becomes an ice shelf. The primary objective of this work is to make use of satellite techniques for better monitoring and interpretation of the link between floating ice shelves and grounded ice. By measuring the flexure of ice due to tides we can obtain critical data to derive information on ice properties. Satellites can measure tidal bending over discrete time intervals and over large areas, whereas ground stations monitor ice dynamics continuously at discrete points. By the combination of the two we derive a complete picture of vertical ice displacement by tides for different grounding line geometries. Our field site is the Southern McMurdo Ice Shelf in the western Ross Sea region at which horizontal ice dynamics can be neglected which simplifies corresponding satellite data analysis. During a field survey in 2014/15, we acquired data of tidal flexure along a straight line perpendicular to the grounding line using 8 ground stations equipped with differential GPS receivers and high precision tiltmeters. The most landward station was located close to the grounding line, and the last station was placed 5 km away at a point which was assumed to be freely floating. Additional data acquired for the flexure analysis are ice thickness, snow and ice stratigraphy and basal ice properties using ground radar systems; as well as information of snow morphology from snow pits and ice cores. During the same period a series of TerraSAR-X 11-day repeat pass satellite data have been acquired to map tidal displacement using differential SAR interferometry (DInSAR). Before the onset of the melting season in December all interferograms show generally high coherence and are suitable for tidal flexure analysis. The ice shelf in the area is around 200m thick, and

  16. Self-potential observations during hydraulic fracturing

    SciTech Connect

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  17. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters

  18. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the

  19. Ground-Based Observations of Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Ringuette, R. A.; Cannady, N.; Case, G. L.; Cherry, M. L.; Granger, D.; Isbert, J.; Stewart, M.

    2010-10-01

    First seen from space by the BATSE gamma ray telescope in the 1990s, Terrestrial Gamma ray Flashes (TGFs) consist of extremely fast bursts of high energy (up to 40 MeV) gamma rays correlated with intense lightning from thunderstorms. Spacecraft experiments are sensitive to very large events, but ground-based detectors closer to the thunderstorms may provide data on the intensity spectrum of smaller events. Four detectors consisting of NaI scintillators viewed by photomultipliers have been placed on rooftops at LSU's Baton Rouge campus to monitor TGFs. The setup and design of the ground-based experiment will be discussed.

  20. Processing electronic photos of Mercury produced by ground based observation

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    New images of Mercury have been obtained by processing of ground based observations that were carried out using the short exposure technique. The disk of the planet extendeds usually from 6 to 7 arc seconds, with the linear size of the image in a focal plane of the telescope about 0.3-0.5 mm on the average. Processing initial millisecond electronic photos of the planet is very labour-consuming. Some features of processing of initial millisecond electronic photos by methods of correlation stacking were considered in (Ksanfomality et al., 2005; Ksanfomality and Sprague, 2007). The method uses manual selection of good photos including a so-called pilot- file, the search for which usually must be done manually. The pilot-file is the most successful one, in opinion of the operator. It defines the future result of the stacking. To change pilot-files increases the labor of processing many times. Programs of processing analyze the contents of a sample, find in it any details, and search for recurrence of these almost imperceptible details in thousand of other stacking electronic pictures. If, proceeding from experience, the form and position of a pilot-file still can be estimated, the estimation of a reality of barely distinct details in it is somewhere in between the imaging and imagination. In 2006-07 some programs of automatic processing have been created. Unfortunately, the efficiency of all automatic programs is not as good as manual selection. Together with the selection, some other known methods are used. The point spread function (PSF) is described by a known mathematical function which in its central part decreases smoothly from the center. Usually the width of this function is accepted at a level 0.7 or 0.5 of the maxima. If many thousands of initial electronic pictures are acquired, it is possible during their processing to take advantage of known statistics of random variables and to choose the width of the function at a level, say, 0.9 maxima. Then the

  1. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  2. Identification of Potential Fishing Grounds Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  3. Differences in the Optical Characteristics of Continental US Ground and Cloud Flashes as Observed from Space

    NASA Technical Reports Server (NTRS)

    Koshak, William

    2007-01-01

    Continental US lightning flashes observed by the Optical Transient Detector (OTD) are categorized according to flash type (ground or cloud flash) using US National Lightning Detection Network (TM) (NLDN) data. The statistics of the ground and cloud flash optical parameters (e.g., radiance, area, duration, number of optical groups, and number of optical events) are inter-compared. On average, the ground flash cloud-top emissions are more radiant, illuminate a larger area, are longer lasting, and have more optical groups and optical events than those cloud-top emissions associated with cloud flashes. Given these differences, it is suggested that the methods of Bayesian Inference could be used to help discriminate between ground and cloud flashes. The ability to discriminate flash type on-orbit is highly desired since such information would help researchers and operational decision makers better assess the intensification, evolutionary state, and severe weather potential of thunderstorms. This work supports risk reduction activities presently underway for the future launch of the GOES-R Geostationary Lightning Mapper (GLM).

  4. Ground magnetometer detection of a large-M Pc 5 pulsation observed with the STARE radar

    SciTech Connect

    Allan, W.; Poulter, E.M.; Glassmeier, K.; Nielsen, E.

    1983-01-01

    Ground-based magnetometer observations are used to confirm the properties of a large azimuthal wave number Pc 5 pulsation observed previously with the STARE radar. The magnetometer and STARE results allow an estimate to be made of the ionospheric height-integrated Hall conductivity, as well as supporting theories that predict 90/sup 0/ rotation of polarization between ionosphere and ground. The properties of the observed vertical magnetic component at the ground are also found to be consistent with recent theory.

  5. Observations of ground clutter using a millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Sekine, Matsuo; Musha, Toshimitsu; Chikara, Sakae; Saji, Keiichi; Hagiwara, Seiji

    1990-02-01

    Ground clutter was measured using a millimeter-wave radar with frequency 34.86 GHz, which is located on the campus of the University of Electro-Communications. The pulsewidth of the radar was 30 nsec. Thus the spatial resolution was as small as 4.5 m. It is found that the clutter amplitude distribution obeys a Weibull distribution with shape parameter c = 0.497 to 0.675 at depression angles of 0.8 to 1.9 deg when reflectors are ordinary terrain and such structures as landing strips at airport and buildings. To improve target detectability in such Weibull distributed ground clutter, a Weibull CFAR system will be required.

  6. Features of positive ground flashes observed in Kathmandu Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath

    2016-07-01

    Lightning vertical electric fields pertinent to the subtropical thunderstorms occurring over the rugged terrain have been measured and recorded at a hilly station Kathmandu, Nepal. In the present work, waveforms of the positive ground flashes have been selected from all the records and were analyzed. To the best of our knowledge, this is the first time that fine structure of electric field signature pertinent to the positive return stroke; have been analyzed and presented from Nepal. One hundred and thirty three (133) of the total of four hundred twenty-five (425) flashes were selected from seven thunderstorm days and analyzed. Of the data recorded for seven days, 133 flashes (31.3%) were positive flashes and 276 flashes (64.9%) were cloud flashes. Majority of the positive ground flashes were found to be single stroke ones, whereas, the average number of strokes per flash is found to be 1.1 with a maximum value of 4. Majority of the positive ground flashes were found either lacking the initial breakdown process and the leader stage or these processes could not be detected. The return strokes are found to be succeeded by large in cloud activity in the continuing current portion of the flash. The average zero-crossing time of the positive return strokes was found to be 60.45 μs with a range of 447.81 μs and the average rise time was found to be 9.44 μs with a range of 42.56 μs.

  7. Students as Ground Observers for Satellite Cloud Retrieval Validation

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Costulis, P. Kay; Young, David F.; Rogerson, Tina M.

    2004-01-01

    The Students' Cloud Observations On-Line (S'COOL) Project was initiated in 1997 to obtain student observations of clouds coinciding with the overpass of the Clouds and the Earth's Radiant Energy System (CERES) instruments on NASA's Earth Observing System satellites. Over the past seven years we have accumulated more than 9,000 cases worldwide where student observations are available within 15 minutes of a CERES observation. This paper reports on comparisons between the student and satellite data as one facet of the validation of the CERES cloud retrievals. Available comparisons include cloud cover, cloud height, cloud layering, and cloud visual opacity. The large volume of comparisons allows some assessment of the impact of surface cover, such as snow and ice, reported by the students. The S'COOL observation database, accessible via the Internet at http://scool.larc.nasa.gov, contains over 32,000 student observations and is growing by over 700 observations each month. Some of these observations may be useful for assessment of other satellite cloud products. In particular, some observing sites have been making hourly observations of clouds during the school day to learn about the diurnal cycle of cloudiness.

  8. Ground-based lidar observations of ozone aerosol and temperature

    SciTech Connect

    Heaps, W.S.

    1987-09-01

    Several theories have been proposed to explain the recently discovered, springtime ozone depletion over Antarctica, but additional data is necessary to establish what processes are producing this phenomenon. The preliminary results of the 1986-1987 National Ozone Expedition indicate that nitrogen oxides were present smaller amounts than anticipated and that chlorine compounds were more prevalent. These findings support chemical theories based on chlorine or chlorine-bromine chemical mechanisms are affecting the level of ozone in the stratosphere; however, not all climate dynamic theories are discounted by these data. The objective is to use a ground-based laser radar system (lidar) in an upward-looking mode to record ozone profiles, aerosol content, and temperature profiles. Although the system was not principally designed for these measurements, the author has modified it slightly to collect these data.

  9. Cross-validation of spaceborne radar and ground polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven Matthew

    There is great potential for spaceborne weather radar to make significant observations of the precipitating medium on global scales. The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall in the tropics from space using radar. The Precipitation Radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit at 350 km altitude and 35 degree inclination. The PR is a single frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant, which can be as high as 10--15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR returns. Direct inter-comparison of meteorological measurements between space and ground radar observations can be used to evaluate spaceborne processing algorithms. Though conceptually straightforward, this can be a challenging task. Differences in viewing aspects between space and earth point observations, propagation frequencies, resolution volume size and time synchronization mismatch between measurements can contribute to direct point-by-point inter-comparison errors. The problem is further complicated by spatial geometric distortions induced into the space-based observations caused by the movements and attitude perturbations of the spacecraft itself. A method is developed to align space and ground radar observations so that a point-by-point inter-comparison of measurements can be made. Ground-based polarimetric observations are used to estimate the attenuation of PR signal returns along individual PR beams, and a technique is formulated to determine the true PR return from GR measurements via theoretical modeling of specific attenuation (k) at PR wavelength with ground-based S-band radar observations. The statistical behavior of the parameters

  10. Ground observation of electromagnetic emissions related to clusters of earthquakes

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Singh, Birbal

    2010-05-01

    ULF-VLF data obtained from three ground based experiments working at Agra station (geograph. Lat. 27.20N, Long. 780E) in India namely measurement of ultra low frequency (ULF) magnetic field emissions using a 3-component search coil magnetometer, vertical component of very low frequency (VLF) electric field emissions with a borehole antenna, and phase and amplitude of fixed frequency VLF transmitter signals using AbsPAL receiver are analysed in search of possible precursors of two major seismic activities that occurred in Sumatra (Indonesia) during post-tsunami period between January and April, 2005. These two major seismic events occurred as clusters of earthquakes during 27-29 January and 28-30 March, 2005. The results show that barring borehole all the experiments showed precursors due to these clusters of earthquakes. Such precursors were not seen in the case of isolated large magnitude earthquakes. Further, the precursory duration was influenced by the magnetic storm which occurred about a week before the clusters. The mechanism of ULF propagation to long distances between Sumatra and Agra, and perturbations in the ionosphere before the clusters are discussed.

  11. Cloud cover retrieved from ground-base observation using Skyviewer : A validation with human observations

    NASA Astrophysics Data System (ADS)

    Kim, Bu-Yo; Jee, Joon-Bum; Zo, Il-Sung; Lee, Kyu-Tae

    2016-04-01

    Cloud cover is used in various fields of research in addition to weather forecasts; however, the ground observation of cloud cover is conducted by human observers, a method with low objectivity, temporal and spatial resolutions. Therefore, to address these problems, we have developed an improved algorithm to calculate cloud cover using sky image data obtained with Skyviewer equipment. The algorithm uses a variable threshold of the Red Blue Ratio (RBR) determined from the frequency distributions of the Green Blue Ratio (GBR) to calculate cloud cover more accurately than existing algorithms. To verify the accuracy of the algorithm, we conducted daily, monthly, seasonal and yearly statistical analysis on human observations of cloud cover obtained every hour from 0800 to 1700 LST for the entire year of 2012 at Gangwon Regional Meteorological Administration (GRMA), Korea. A daily case study compared the images of 1200 LST cases by season and pixel images of cloud cover calculated by the algorithm. The selected weekly cases yielded a high correlation of 0.93 with GRMA data. A monthly case study showed low RMSEs and high correlations for December (RMSE=1.64 tenths and r=0.92) and August (RMSE=1.43 tenths and r=0.91). In addition, seasonal cases yielded a high correlation of 0.9 and 87% consistency within ±2 tenths for winter and a correlation of 0.83 and 82% consistency for summer, when cases of cloud-free or overcast conditions are frequent. Annual analysis showed that the bias of GRMA and Skyviewer for the year of 2012 was -0.36 tenth, with cloud cover of the GRMA data being greater, whilst RMSE was 2.12 tenths. Considering the spatial inconsistency of the data used in the analysis, GRMA and Skyviewer showed a high correlation (0.87) and 80% consistency for cases with a difference in cloud cover of within ±2 tenths.

  12. Multisatellite and ground-based observations of transient ULF waves

    NASA Technical Reports Server (NTRS)

    Potemra, T. A.; Zanetti, L. J.; Takahashi, K.; Luehr, H.; Lepping, R. P.

    1989-01-01

    Transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite are presently studied in light of observations obtained during a fortuitous alignment of the AMPTE and Viking satellites with respect to the EISCAT Magnetometer Cross. It is found that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations within the magnetosphere at the same frequency, thereby enhancing resonant oscillations at approximately twice the frequency which were already present. Support is seen for the periodic solar wind density variation's exciting of a tailward-traveling large-scale magnetosphere wave train which excites local field line resonant oscillations.

  13. Satellite observations of ground water changes in New Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE consists of two satellites with a separation of about 200 km.  By accurately measuring the separation between the twin satellites, the differences in the gravity field can be determined. Monthly observ...

  14. Ground and satellite observations of auroral fragmentation into patches

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Nishi, Katsuki

    2016-07-01

    We review characteristic auroral fragmentation which is the process by which uniform aurora is broken into several fragments to form auroral patches, based on the all-sky camera observations at Tromsoe, Norway and THEMIS chain in Canada. The auroral fragmentation occurs as finger-like structures developing predominantly in meridional direction with speeds of several tens m/s and scale sizes of several tens kilometers without any shearing motion. These features suggest that pressure-driven instability in the balance between the earthward magnetic-tension force and the tailward pressure gradient force in the magnetosphere is the main driving force of the auroral fragmentation. Thus, these observations indicate that auroral fragmentation associated with pressure-driven instability is a process that creates auroral patches. Auroral fragmentation is seen from midnight to dawn local time and usually appears at the beginning of the substorm recovery phase, near the low latitude boundary of the auroral region. One example of plasma and magnetic field observations by the THEMIS satellite in the conjugate magnetosphere shows diamagnetic anti-phase variations of magnetic and plasma pressures with time scales of several to tens minutes associated with the auroral fragmentation. This observation also supports the idea of pressure-driven instability to cause the auroral fragmentation into patches.

  15. Electrical Potential Transfer Through Grounding and the Concern for Facility and Worker Safety

    SciTech Connect

    Konkel, Herbert

    1998-09-13

    Electrical grounding is probably the most over-looke~ ignored, and misunderstood part of electrical energy source circuits. A faulty ground circuit am have lethal potential to the worker, can damage electrical equipment" or components, and can lead to higher consequences. For example, if the green-wire ground return circuit (in a three-wire power circuit) is fhulty or is open (someone cut the prong, etc.) a person can receive an electrical shock by touching the conductive enclosure, and the result can be lethal. If high explosives are involved m the process, sneak electrical energy paths may cause electrical threats that lead to ignition, which results to higher damage consequences. Proper electrical grounding is essential to mitigate the electrical hazard and improve work place safety. A designer must ask the question, "What grounding is proper?" continuously through a process design and in its application. This question must be readdressed with any process change, including tiom layout, equipment, or procedure changes. Electrical grounding varies ilom local work area grounding to the multi-point grounding found in large industrial areas. These grounding methods become more complex when the designer adds bonding to the grounding schemes to mitigate electrostatic discharge (ESD) and surfkce potentials resulting from lightning currents flowing through the facility structure. Figure 1 shows a typical facility power distribution circuit and the current flow paths resulting ffom a lightning discharge to a facility. This paper discusses electrical grounding methods and their characteristics and identifies potential sneak paths into a process for hazardous electrical energy.

  16. Spontaneous channelization in permeable ground: theory, experiment, and observation

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Jensen, Bill; Kudrolli, Arshad; Rothman, Daniel H.

    2004-03-01

    Landscapes that are rhythmically dissected by natural drainage channels exist in various geologic and climatic settings. Such landscapes are characterized by a length-scale for the lateral spacing between channels. We observe a small-scale version of this process in the form of beach rills and reproduce channelization in a table-top seepage experiment. On the beach as well as in the experiments, channels are spontaneously incised by surface flow, but once initiated, they grow due to water emerging from underground. Field observation and experiment suggest the process can be described in terms of flow through a homogeneous porous medium with a freely shaped water table. According to this theory, small deformations of the underground water table amplify the flux into the channel and lead to further growth, a phenomenon we call ‘Wentworth instability’. Piracy of groundwater can occur over distances much larger than the channel width. Channel spacing coarsens with time, until channels reach their maximum length.

  17. A discussion of the ground-based radio observations

    NASA Technical Reports Server (NTRS)

    Kerr, F. J.

    1971-01-01

    It is reasserted that the Gum nebula is not a single nebula but appears to be composed of several different entities. All the surveys of the southern sky in the continuum, recombination line, H I, and OH were considered. The large amount of high frequency radio emission from the small nebula is noted. The outer part of the Gum nebula has not been seen in any radio observations so far. Only the inner part has been observed to date. It is not justifiable to work out any parameters for the whole nebula by taking an average over the whole solid angle subtended by the big nebula. There appears to be a large difference in density between the small nebula and the big one.

  18. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  19. Ground-based VLBI observations of orbiters and landers.

    NASA Astrophysics Data System (ADS)

    Cimo, G.; Duev, D.; Molera Calves, G.; Bocanegra Bohamon, T.; Pogrebenko, S.; Gurvits, L.

    2015-10-01

    Phase referencing near-field VLBI observations and radial Doppler measurements of spacecraft provide ultra-precise estimates of spacecraft state vectors. These measurements can be used for a variety of scientific applications, both fundamental and applied, including planetary science, improvement of ephemerides, ultra-precise celestial mechanics of planetary systems, gravimetry, spacecraft orbit determination, and fundamental physics. Precise determination of the lateral position of spacecraft on the celestial sphere is the main deliverable of the Planetary Radio Interferometry and Doppler Experiment (PRIDE). This technique is complementary to radio science experiments and addresses those areas of spacecraft mission science objectives that require accurate estimation of spacecraft state vector.

  20. An Overview of JAXA's Ground-Observation Activities for HAYABUSA Reentry

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Yamamoto, Masa-Yuki; Abe, Shinsuke; Ishihara, Yoshiaki; Iiyama, Ohmi; Kakinami, Yoshihiro; Hiramatsu, Yoshihiro; Furumoto, Muneyoshi; Takayanagi, Hiroki; Suzuki, Toshiyuki; Yanagisawa, Toshifumi; Kurosaki, Hirohisa; Shoemaker, Michael; Ueda, Masayoshi; Shiba, Yasuo; Suzuki, Masaharu

    2011-10-01

    On 2010 June 13, the HAYABUSA asteroid explorer returned to Earth and underwent a super-orbital atmospheric reentry. In order to recover the sample return capsule and to take ground-based measurements, the Japan Aerospace Exploration Agency organized a ground-observation team and performed optical tracking of the capsule, spectroscopy of the fireball, and measurements of infrasounds and shock waves generated by the fireball. In this article, an overview of the ground-based observation is presented, and an outline of the preliminary results derived from observations is reported.

  1. Analysis of simultaneous Skylab and ground based flare observations

    NASA Technical Reports Server (NTRS)

    Kulander, J. L.

    1976-01-01

    HeI and HeII resonance line data from Skylab were reduced, analyzed and compared with HeI D3 line intensities taken simultaneously from the Lockheed Rye Canyon Solar Observatory. Computer codes were developed for the calculation of total He line intensities and line profiles from model flare regions. These codes incorporate simultaneous solution of the line and continuum transport equations as needed together with the statistical equilibrium equations for a 30 level HeI, HeII, HeIII system. The energy level model consists of all terms through principal quantum number four. Interpretation of the observed data in terms of these parametric solutions and with simultaneous solution of the transport equations are discussed.

  2. Potential of radiotelescopes for atmospheric line observations: I. Observation principles and transmission curves for selected sites

    NASA Astrophysics Data System (ADS)

    Schneider, Nicola; Urban, Joachim; Baron, Philippe

    2009-10-01

    Existing and planned radiotelescopes working in the millimetre (mm) and sub-millimetre wavelengths range provide the possibility to be used for atmospheric line observations. To scrutinize this potential, we outline the differences and similarities in technical equipment and observing techniques between ground-based aeronomy mm-wave radiometers and radiotelescopes. Comprehensive tables summarizing the technical characteristics of existing and future (sub)-mm radiotelescopes are given. The advantages and disadvantages using radiotelescopes for atmospheric line observations are discussed. In view of the importance of exploring the sub-mm and far-infrared wavelengths range for astronomical observations and atmospheric sciences, we present model calculations of the atmospheric transmission for selected telescope sites (DOME-C/Antarctica, ALMA/Chajnantor, JCMT and CSO on Mauna Kea/Hawaii, KOSMA/Swiss Alpes) for frequencies between 0 and 2000 GHz ( 150μm) and typical atmospheric conditions using the forward model MOLIERE (version 5). For the DOME-C site, the transmission over a larger range of up to 10 THz ( 30μm) is calculated in order to demonstrate the quality of an Earth-bound site for mid-IR observations. All results are available on a dedicated webpage.

  3. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  4. Generation Mechanism of Earth Potential Difference Signal during Seismic Wave Propagation and its Observation Condition

    NASA Astrophysics Data System (ADS)

    Okubo, Kan; Yamamoto, Keisuke; Takayama, Masakazu; Takeuchi, Nobunao

    We have observed the co-seismic electromagnetic phenomena such as earth potential difference (EPD) variation in many observation sites of both Miyagi and Akita Prefectures. So far, in any earthquakes we observed clear signals of the EPD variation. However, the amplitude of observed EPD signals are very different at each site. To explain this difference, firstly we assumed the EPD generation mechanism to be the streaming potential. Secondarily, the underground circumstance is modeled as the composer of groundwater table, capillary tubes and fine tubes. The model how EPD variation signals appear is postulated to explain the observed data. The relative position of the ground water table against the buried electrodes is examined to explain the observed data. The groundwater table may be very sensitive to the appearance of the EPD variation. If electrodes were buried a few meters below the ground surface, we could observe the EPD signals in the case of shallow groundwater table.

  5. Observation and Calculation of the Quasibound Rovibrational Levels of the Electronic Ground State of H2+

    NASA Astrophysics Data System (ADS)

    Beyer, Maximilian; Merkt, Frédéric

    2016-03-01

    Although the existence of quasibound rotational levels of the X+ 2Σg+ ground state of H2+ was predicted a long time ago, these states have never been observed. Calculated positions and widths of quasibound rotational levels located close to the top of the centrifugal barriers have not been reported either. Given the role that such states play in the recombination of H (1 s ) and H+ to form H2+, this lack of data may be regarded as one of the largest unknown aspects of this otherwise accurately known fundamental molecular cation. We present measurements of the positions and widths of the lowest-lying quasibound rotational levels of H2+ and compare the experimental results with the positions and widths we calculate using a potential model for the X+ state of H2+ which includes adiabatic, nonadiabatic, relativistic, and radiative corrections to the Born-Oppenheimer approximation.

  6. Preliminary Space VLBI Requirements for Observing Time on Ground Radio Telescopes

    NASA Technical Reports Server (NTRS)

    Meier, David L.; Murphy, David W.; Preston, Robert A.

    1992-01-01

    An initial estimate has been made of the observing time required on ground radio telescopes by the space VLBI missions Radioastron and VSOP. Typical science programs have been adopted for both missions.

  7. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  8. Potential New Lidar Observations for Cloud Studies

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  9. vsini observations of potential exoplanet parent stars

    NASA Astrophysics Data System (ADS)

    Stankov, A.; Schulz, R.; Erd, C.; Ho, T.; Stüwe, J.; Smit, H.

    2013-09-01

    We present spectroscopic measurements for a sample of 19 stars with spectral types F, G, and K, suitable to host exoplanets. The relative strengths of the Ca II H and K emission lines were measured and from these the projected rotational velocities, v sin i, will be determined. Theory states that the v sin i value is smaller if the observed star hosts exoplanets [1]. This is valid for stars later than spectreal type F 5 [2]. The v sin i information can be used to prioritize a target star catalog for a project that is aiming at discovering new exoplanets. Here we describe this project in more detail and show first results for selected target stars.

  10. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  11. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  12. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  13. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  14. 14 CFR 121.561 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 121.561 Section 121.561... meteorological conditions and irregularities of ground facilities or navigation aids. (a) Whenever he...

  15. Ground-based Observations of the Solar Sources of Space Weather

    NASA Astrophysics Data System (ADS)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground

  16. Satellite Cloud Data Validation through MAGIC Ground Observation and the S'COOL Project: Scientific Benefits grounded in Citizen Science

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M.; Rogerson, T.

    2013-12-01

    The Students' Cloud Observation On-Line (S'COOL) Project was launched in 1997 as the Formal Education and Public Outreach arm of the Clouds and the Earth's Radiant Energy System (CERES) Mission. ROVER, the Citizen Scientist area of S'COOL, started in 2007 and allows participants to make 'roving' observations from any location as opposed to a fixed, registered classroom. The S'COOL Project aids the CERES Mission in trying to answer the research question: 'What is the Effect of Clouds on the Earth's Climate'. Participants from all 50 states, most U.S. Territories, and 63 countries have reported more than 100,500 observations to the S'COOL Project over the past 16 years. The Project is supported by an intuitive website that provides curriculum support and guidance through the observation steps; 1) Request satellite overpass schedule, 2) Observe clouds, and 3) Report cloud observations. The S'COOL Website also hosts a robust database housing all participants' observations as well as the matching satellite data. While the S'COOL observation parameters are based on the data collected by 5 satellite missions, ground observations provide a unique perspective to data validation. Specifically, low to mid level clouds can be obscured by overcast high-level clouds, or difficult to observe from a satellite's perspective due to surface cover or albedo. In these cases, ground observations play an important role in filling the data gaps and providing a better, global picture of our atmosphere and clouds. S'COOL participants, operating within the boundary layer, have an advantage when observing low-level clouds that affect the area we live in, regional weather patterns, and climate change. S'COOL's long-term data set provides a valuable resource to the scientific community in improving the "poorly characterized and poorly represented [clouds] in climate and weather prediction models'. The MAGIC Team contacted S'COOL in early 2012 about making cloud observations as part of the MAGIC

  17. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  18. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    EPA Science Inventory

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  19. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  20. Statistical study of propagation characteristics of Pc1 pearl structures using conjugate ground-satellite observations

    NASA Astrophysics Data System (ADS)

    Jun, C. W.; Shiokawa, K.; Takahashi, K.; Paulson, K. W.; Schofield, I.; Connors, M. G.; Poddelskiy, I.; Shevtsov, B.; Kletzing, C.; Wygant, J. R.

    2015-12-01

    We investigated statistical characteristics of pearl structures (amplitude modulation) of Pc1 pulsations using conjugate observations with the ground induction magnetometers located at Athabasca (ATH, L = 4.3) in Canada and Magadan (MGD, L = 2.7) in Russia and the Van Allen Probes (RBSP-A and B) satellites located in the inner magnetosphere for a 1-year period (August 2012 to August 2013). We consider a ground magnetometer and a satellite to be conjugate when the satellite footprint is located within 1000 km of the ground magnetometer. From a survey of data acquired during the conjunction periods, we found 42 pearl Pc1events. These events were classified into four categories: structured Pc1 waves observed at both locations (9 events), structured Pc1 waves observed only on the ground (22 events) or in space (0 events), and unstructured Pc1 waves at both locations (11 events). We describe the spatial and temporal distributions of Pc1 pearl structures and their dependence on geomagnetic conditions. We also compare the frequency, the power ratio between space and ground, and the polarization among the four categories of events. In addition, we verified the similarity of Pc1 pearl structures between ground and space observations in order to investigate propagation and polarization characteristics of Pc1 pearl structures from the magnetosphere to the ionosphere.

  1. Simultaneous Observations of ULF Waves in the Magnetosphere, Ionosphere and on the Ground

    NASA Astrophysics Data System (ADS)

    Fraser, B. J.; Singer, H. J.; Ponomarenko, P. V.

    2004-12-01

    External solar wind sources transfer energy, either directly or indirectly, into the Earth's dayside magnetosphere to drive ultra-low frequency (ULF) waves in the Pc3-5 (1-100mHz) band. The wavelength of these waves is of the same order as the scale size of the magnetospheric cavity and consequently ULF wave energy is generally observed as standing wave resonances, either Alfven mode field line resonances or fast mode cavity/waveguide resonances. The ULF wave spectra seen by ground magnetometers contains information relating to the properties of the wave source and the magnetosphere and ionosphere regions and associated boundaries through which wave energy must travel to reach the ground. This study tracks individual daytime Pc3-5 wave trains, seen in the outer magnetosphere at geostationary orbit in September 2003 by magnetometers onboard the GOES 8 and 9 satellites (195 and 205 degrees west longitude), down through the ionosphere where they are observed by the Tasmanian TIGER SuperDARN HF radar, and to the ground where they are observed by the ground magnetometer at Macquarie Island. Of particular interest is a comparison of wave amplitudes seen in the magnetosphere, ionosphere and on the ground. Ionospheric ULF wave azimuthal wave numbers are known to differ from those measured on the ground due to spatial integration. Wave numbers in the magnetosphere, ionosphere and on the ground will be compared, and other wave properties observed simultaneous between the three regions, including travel time, phase and polarization characteristics will be discussed. This provides new knowledge on the transfer of ULF wave energy from the magnetosphere to the ground.

  2. An ionospheric travelling convection vortex event observed by ground-based magnetometers and by VIKING

    SciTech Connect

    Vogelsang, H.; Voelker, H. ); Luehr, H. ); Woch, J. ); Boesinger, T. ); Potemra, T.A. ); Lindqvist, P.A. )

    1993-11-05

    This paper reports the ground based observation of an ionospheric travelling convection vortex event, which was observed in coincidence with observation of the VIKING spacecraft passing through closed field lines which map to this region. The spacecraft saw electric and magnetic signatures which were consistent with it having passed through field aligned current tubes, oppositely directed. This is the first such simultaneous observation and supports the theoretical models which relate such ionospheric travelling convection vortex events to field aligned currents.

  3. An Efficient Optical Observation Ground Network is the Fundamental basis for any Space Based Debris Observation Segment

    NASA Astrophysics Data System (ADS)

    Cibin, L.; Chiarini, M.; Annoni, G.; Milani, A.; Bernardi, F.; Dimare, L.; Valsecchi, G.; Rossi, A.; Ragazzoni, R.; Salinari, P.

    2013-08-01

    A matter which is strongly debated in the SSA Community, concerns the observation of Space Debris from Space [1]. This topic has been preliminary studied by our Team for LEO, MEO and GEO orbital belts, allowing to remark a fundamental concept, residing in the fact that to be suitable to provide a functionality unavailable from ground in a cost to performance perspective, any Space Based System must operate in tight collaboration with an efficient Optical Ground Observation Network. In this work an analysis of the different functionalities which can be implemented with this approach for every orbital belt is illustrated, remarking the different achievable targets in terms of population size as a function of the observed orbits. Further, a preliminary definition of the most interesting missions scenarios, together with considerations and assessments on the observation strategy and P/L characteristics are presented.

  4. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  5. Spatiotemporal inhomogeneity in NO2 over Fukuoka observed by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Takashima, Hisahiro; Kanaya, Yugo; Irie, Hitoshi

    2015-01-01

    Continuous NO2 profile observations have been made using ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Fukuoka (33.55°N, 130.36°E), an urban area in Japan. Throughout the year, NO2 variations measured by MAX-DOAS (0-100 m) are in good agreement with in situ surface NO2 measurements on several-day, week-to-week, and seasonal timescales. We investigated the spatiotemporal inhomogeneity in NO2 over Fukuoka by observing at two azimuth angles: the Tenjin (towards the city center) and Itoshima (away from the city center) directions. In terms of diurnal variations, NO2 in both directions show clear morning maxima, on account of local emissions in the morning and the development of a boundary layer. The concentrations in the early morning are nearly the same in both directions, but they are higher in the Tenjin direction during most of the daytime on average. Variability in both directions, as well as spatial inhomogeneity, is large during most of the daytime except for in the morning. The diurnal maximum for 0-1 km between 10 and 13 LT is sometimes observed in the Tenjin direction; in some cases, 1 h after this maximum, a maximum is also observed in the Itoshima direction. The NO2 maxima for the upper level (1-2 km) in both directions are also delayed from the maximum in the Tenjin direction for 0-1 km. Analysis of the surface wind field indicates that the NO2 inhomogeneity is strongly related to vertical/horizontal transport of high concentrations of NO2 from the city center, and to horizontal transport of low concentrations from the ocean via a land-sea breeze. Three-dimensional continuous observations by MAX-DOAS are potentially a powerful tool for increasing our understanding of pollutant transport and mixing in urban areas.

  6. Entry Dispersion Analysis for the HAYABUSA Spacecraft using Ground-Based Optical Observation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomohiro; Yoshikawa, Makoto; Yagi, Masafumi; Tholen, David J.

    2011-10-01

    The HAYABUSA asteroid explorer successfully released its sample capsule to Australia on 2010 June 13. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper considers the reentry dispersion using ground-based optical observation as a backup observation for radiometric observation. Several scenarios were calculated and compared for the reentry phase of HAYABUSA to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, and thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluated the landing dispersion of HAYABUSA only with optical observation.

  7. Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Trianaputri, Mila Olivia

    2015-04-01

    Indonesia contains 27 active volcanoes passing the West through the East part. Therefore, Indonesia is the most hazard front due to the volcanic activities. To obtain the new precursory signals leading to the eruptions, we applied remote sensing technique to observe ground surface change series at the summit of Sinabung and Kelud volcanoes. Sinabung volcano is located at Karo Region, North Sumatra Province. This volcano is a strato volcano type which is re-activated in August 2010. The eruption continues to the later years by ejecting volcanic products such as lava, pyroclastic flow, and ash fall deposits. This study is targeted to observe ground surface change series at the summit of Sinabung volcano since 2007 to 2011. In addition, we also compared the summit ground surface changes after the eruptions of Kelud volcano in 2007. Kelud volcano is also strato volcano type which is located at East Java, Indonesia. The Synthetic Aperture Radar (SAR) remotely sensed technology makes possible to observe rapidly a wide ground surface changes related to ground surface roughness. Detection series were performed by extracting the backscattering intensity of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS). The intensity values were then calculated using a Normalized Radar Cross-Section (NRCS). Based on surface roughness criterion at the summit of Sinabung volcano, we could observe the ground surface changes prior to the early eruption in August 2010. The continuous increment of NRCS values showed clearly at window size 3×3 pixel of the summit of Sinabung volcano. The same phenomenon was also detected at the summit of Kelud volcano after the 2007 eruptions. The detected ground surface changes were validated using optical Landsat-8, backscattering intensity ratio for volcanic products detection, and radial component of a tilt-meter data.

  8. The potential of THEMIS satellite and ground-based measurements for data mining

    NASA Astrophysics Data System (ADS)

    Frey, S.; Angelopoulos, V.; Sibeck, D. G.; Phan, T.; Eastwood, J. P.; Runov, A.; Frey, H. U.

    2009-12-01

    Launched on February 17, 2007 on a DELTA II rocket, NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is a Medium-class Explorer project and the first space mission to study the sequence of magnetospheric events that trigger gigantic auroral displays in the polar regions using a macro-scale constellation of spacecraft. THEMIS is composed of a space segment of 5 identical probes equipped with particle and field instruments and a ground segment of about 20 Ground-Based Observatories with all-sky cameras and magnetometers. During its nominal mission THEMIS has observed over 20 substorm events, measured radial profiles of high energy particles through the radiation belts year-round, and provided numerous multi-point measurements across the magnetopause and bow shock with upstream monitoring. THEMIS data as well as the methods developed to simultaneously detect magnetospheric processes or structures are ideal for the development of software tools to efficiently extract data. We will present the potential of the THEMIS data to catalog magnetospheric events, define search patterns for event detection as well standardized interfaces with models.

  9. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  10. Ground-based observations of uranus and neptune using CCD instruments

    SciTech Connect

    Smith, B.A.

    1985-07-01

    The author verifies that with the help of charge-coupled devices (CCD) great progress is being made in ground-based astronomical observations, including the study of the remote giant planets Uranus and Neptune. In reading the CCD the top row of pixels (potential wells) is moved into the sequential (shift) reading register; after this each row (line) of pixels moves its electrons upward (in each column) until the bottom row is cleared. This process is repeated for each row until the device is interrogated sequentially. The use of CCD detectors for purposes of image acquisition and spectroscopy has already found wide popularity at astronomical observatories, and soon it will spread to space research. The first known attempts to use CCD to obtain astronomical images was made by the author and his colleagues in April 1976. The result was the first observations of structure on the dark disk of Uranus. In general, the more refined the mathematical provision, the more information can be extracted from the images or spectra.

  11. Observations of ion cyclotron waves near synchronous orbit and on the ground

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.

    1985-01-01

    Ion cyclotron waves (ICWs) generated in the magnetosphere by the ion cyclotron instability of 10-100 keV protons are now known to be the origin of short-period (0.1-5 Hz) electromagnetic field oscillations observed by synchronous spacecraft and on the earth's surface. Observations of the various wave characteristics, including spectral and polarization properties, that lead to the identification of generation and propagation mechaniisms, and regions in the magnetosphere are described with reference to ATS-6, GEOS, and ground-based wave data and interpreted using cold plasma propagation theory. The presence of heavy ions (O/+/, He/+/) dramatically modifies ICW magnetospheric propagation characteristics giving rise to spectral slots and polarization reversals. These properties may be used in plasma diagnostics. Finally satellite-ground correlations and techniques for determining the magnetospheric source position of ICWs not seen at synchronous orbit but observed on the ground as structured Pc1 pulsations are considered.

  12. Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered ground states at high densities and crystalline ground states at low densities in d -dimensional Euclidean space Rd. In the previous paper in this series, we numerically studied the entropically favored ground states in the canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper, we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically. Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions. Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess long-range orientational order but have zero shear modulus. We outline some possible future avenues of research to elucidate our understanding of this unusual phase of matter.

  13. Ground measurements and satellite observations of soil moisture over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Van der Velde, R.; Su, Z.; Wen, J.; Yang, K.; Ma, Y.

    2012-04-01

    The importance of the Tibetan Plateau for the atmospheric circulation and the development of large-scale weather systems over the Asian continent has been widely acknowledged. Due to its wide extent and high elevation, the Plateau plays a critical role in directing moist air from the eastern Indian Ocean and Bay of Bengal towards central China. Heat and moisture sources from the Plateau affect the flow of moist air from the ocean and seas creating a so-called "air pump" that influences the onset and maintenance of the Asian monsoon. In a changing climate, global warming will also change the partitioning of radiation into sensible and latent heat over the Plateau and, thus, the Tibetan air pump. A key land surface state controlling interactions between the land surface and atmosphere is soil moisture. Being highly variable in both space and time, it is not feasible to base large-scale soil moisture monitoring programmes on in-situ measurements alone. Hence, estimates derived from satellite observations can complement ground measuring networks by providing insight into spatial soil moisture distributions across large scales. In this study, we report on the development of large-scale ground measuring soil moisture/temperature networks across the Tibetan Plateau and their application in validating soil moisture retrieved from both active and passive microwave observations. An Advanced Synthetic Aperture Radar (ASAR) data set consisting of 150 scenes collected in the period from April 2005 to September 2007 is used as a demonstration of high resolution (100 m) soil moisture mapping over the central part of the Tibetan Plateau. Special Sensor Microwave/Imager (SSM/I) passive microwave observations from 1987 to 2008 are utilized to derive long-term soil moisture trends across the entire Tibetan Plateau. The soil moisture estimates from both ASAR and SSM/I are in agreement with our in-situ measurements. This study highlights the complementary information that can be

  14. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  15. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  16. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  17. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  18. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  19. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  20. 14 CFR 135.67 - Reporting potentially hazardous meteorological conditions and irregularities of ground facilities...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous meteorological conditions and irregularities of ground facilities or navigation aids. 135.67 Section 135.67... navigation aids. Whenever a pilot encounters a potentially hazardous meteorological condition or...

  1. A simple volcano potential with an analytic, zero-energy, ground state

    NASA Astrophysics Data System (ADS)

    Nieto, M. M.

    2000-08-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  2. Scope of Jovian lightning observation by ground-based and spacecraft instruments

    NASA Astrophysics Data System (ADS)

    Fukuhara, T.; Takahashi, Y.; Sato, M.; Nakajima, K.

    2009-12-01

    It is suggested by recent observational and theoretical studies that the thunderstorms, i.e., strong moist convective clouds in Jupiter’s atmosphere are very important not only as an essential ingredient of meteorology of Jupiter but also as a potentially very useful “probe” of the water abundance of the deep atmosphere, which is crucial to constrain the behavior of volatiles in early solar system. We would propose the lightning observation with properly designed optical device onboard Jovian system orbiter and with the ground-based telescope. Based on detailed analysis of cloud motions by Galileo orbiter, Gierasch et al. proposed that the thunderstorms can produce the small scale eddies and ultimately drive the belt/zone structure. Moreover, the belt zone structure helps the development of thunderstorms in the belt region in accordance with observation; the belt/zone structure and thunderstorms may be in a symbiotic relation. This framework is a refined version of shallow origin theory, but, although it is a very fantastic idea, quantitative verification remains to be done. Most recent numerical modeling by our group calculated all three types of cloud, i.e., H2O, NH3, and, NH4SH. One of the most important findings is the existence of distinct, quasi-periodic temporal variation of the convective cloud activity; explosion of cloud activity extending all over the computational domain occurs separated by quiet period of order of 10 days. Another surprising finding is that the period of the active/break cycle is roughly proportional to the amount of condensable component in the sub-cloud layer. This strong correspondence between the deep volatile abundance and temporal variability of cloud convection implies a new method to probe the deep atmosphere. We believe JGO with other optical equipments especially for atmospheric spectral imaging is the ideal platform for the lightning detector. Comparing quantitative lightning activity with ambient cloud motion and

  3. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  4. Modeling Basin-scale Runoffs with Precipitation Data from Ground-based Observations and Mesoscale Simulations

    NASA Astrophysics Data System (ADS)

    Li, M.; Yang, M.; Soong, R.; Hwang, S.

    2002-12-01

    The purpose of this study is to investigate the applicability of distributed basin-scale runoff modeling, driven by rainfall data from either ground-based observations or mesoscale simulations, in response to typhoons invading Taiwan. Typhoons Herb (1996) and Zeb (1998) were selected for calibrating the runoff parameters reflecting the landuse conditions in the basin and evaluating the applicability of observed and simulated rainfall data toward runoff estimations, respectively. Upstream basins of Reservoir Shihmen with a drainage area of 764 km2 and Reservoir Feitsui with a drainage area of 303 km2 were the domains of interest in this preliminary study. Ground-based observations of both stream flows and station rainfalls were collected in an hourly resolution. The mesoscale model,MM5, simulation for Herb was conducted in 4-nested grids with the finest resolution of 2.2 km and 2-nested grids with the finest resolution of 15 km for Zeb, and the time resolution for both cases was 5 minutes. Accumulated total rain was accommodated with terrain elevation in MM5 simulations and station data to provide areal rainfall distributions. While the ground-based observations were sparse and incapable of correctly representing areal rainfall characteristics, the MM5 simulated data may introduce great uncertainties in basin-scale hydrological applications. The experience learned from this study is expected to provide an applicable approach with both ground-based observations and mesoscale simulations in basin-scale runoff computations.

  5. Do aerosols impact ground observation of total cloud cover over the North China Plain?

    NASA Astrophysics Data System (ADS)

    Sun, Li; Xia, Xiangao; Wang, Pucai; Fei, Ye

    2015-04-01

    Ground observation of the total cloud cover (TCC) showed a significant downward trend during the past half century over the North China Plain (NCP). The objective of this paper is to examine whether aerosols have impacted the surface observations of TCC by human observers. TCC observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua (TCCgrd) were firstly compared with ground observations (TCCsat) at 201 synoptic stations over the NCP. Results showed that both data sets were in good agreement. The correlation coefficient between TCCgrd and TCCsatranged from 0.80 in winter to 0.90 in summer. The relationship between TCCsat - TCCgrdand visibility was then analyzed, which showed no significant correlation. Finally, long-term trends of TCCgrd and visibility were not correlated. These results indicated that aerosols likely did not impact the long-term trend of TCCgrdover the NCP.

  6. Do aerosols impact ground observation of total cloud cover over the North China Plain?

    NASA Astrophysics Data System (ADS)

    Sun, L.; Xia, X.; Wang, P.; Fei, Y.

    2014-06-01

    Ground observation of the total cloud cover (TCC) showed a significant downward trend during the past half century over the North China Plain (NCP). The objective of this paper is to examine whether aerosols have impacted the surface observations of TCC by human observers. TCC observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua (TCCsat) were firstly compared with ground observations (TCCgrd) at 201 synoptic stations over the NCP. Results showed that both data sets were in good agreement. The correlation coefficient between TCCgrd and TCCsat ranged from 0.80 in winter to 0.90 in summer. The relationship between TCCsat-TCCgrd and visibility was then analyzed, which showed no significant correlation. Finally, long-term trends of TCCgrd and visibility were not correlated. These results indicated that aerosols likely did not impact the long-term trend of TCCgrd over the NCP.

  7. Linkage between Grounding Line Dynamics and Geological Observations in the Weddell Sea Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Huybers, K. M.; Roe, G.; Conway, H.; Balco, G.; Todd, C. E.

    2012-12-01

    Surface-exposure dating is a potentially a powerful technique to constrain Antarctic ice-sheet thinning from the Last Glacial Maximum to its present state. Erratics recently collected near the grounding line of the Foundation Ice Stream in Antarctica's Weddell Sea sector detail thickness maxima and exposure rates along local nunatak elevation transects. These points in space and time constrain the local thickness and rate of thinning—however, what can they tell us about the history of the elevation profile of the interior ice stream? The elevation profile of the interior ice is strongly controlled by the position of the grounding line, which in turn depends on sea level, accumulation, and the ice stream/shelf's physical characteristics. We use to an idealized flowline model to assess the relative importance of factors used to model ice stream thickness profiles. We divide these factors into two general categories: model physics, and environmental factors. Model physics includes choices about the ice rheology, the sliding law, and the calculated flux at the grounding line, where the ice transitions from grounded stream to floating shelf. Environmental factors include climate, basal topography, sliding parameterization, sea level, ice softness, and lateral shelf stresses. In our simplified model, we ignore the potentially important effects of isostatic rebound and the gravitational pull of the ice on ocean water. Preliminary findings indicate that the position of the grounding line controls the elevation at the exposure sites; and that sub-glacial and sub-marine basal topography, together with the assumed form of the grounding-line flux, dominates the grounding-line sensitivity to change. This suggests that the surface elevation predominantly reflects regional-scale ice sheet behavior rather than the climate local to the ice-stream catchment.

  8. Estimating the Radiative Forcing of Carbonaceous Aerosols over California based on Satellite and Ground Observations

    SciTech Connect

    Xu, Yangyang; Bahadur, R.; Zhao, Chun; Leung, Lai-Yung R.

    2013-10-04

    Carbonaceous aerosols have the potential to impact climate both through directly absorbing incoming solar radiation, and by indirectly affecting the cloud layer. To quantify this impact recent modeling studies have made great efforts to simulate both the spatial and temporal distribution of carbonaceous aerosols and their associated radiative forcing. This study makes the first observationally constrained assessment of the direct radiative forcing of carbonaceous aerosols at a regional scale over California. By exploiting multiple observations (including ground sites and satellites), we constructed the distribution of aerosol optical depths and aerosol absorption optical depths over California for a ten-year period (2000-2010). The total solar absorption was then partitioned into contributions from elemental carbon (EC), organic carbon (OC) and dust aerosols using a newly developed scheme. Aerosol absorption optical depth due to carbonaceous aerosols (EC and OC) at 440 nm is 50%-200% larger than natural dust, with EC contributing the bulk (70%-90%). Observationally constrained EC absorption agrees reasonably well with estimates from regional transport models, but the model underestimates the OC AAOD by at least 50%. We estimate that the TOA warming from carbonaceous aerosols is 0.7 W/m2 and the TOA forcing due to OC is close to zero. The atmospheric heating of carbonaceous aerosols is 2.2-2.9 W/m2, of which EC contributed about 80-90%. The atmospheric heating due to OC is estimated to be 0.1 to 0.4 W/m2, larger than model simulations. The surface brightening due to EC reduction over the last two decades is estimated to be 1.5-3.5 W/m2.

  9. Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions

    USGS Publications Warehouse

    Spudich, Paul; Fletcher, Jon B.

    2009-01-01

    In two previous articles we presented a formulation for inferring the strains and rotations of the ground beneath a seismic array having a finite footprint. In this article we derive expressions for the error covariance matrices of the inferred strains and rotations, and we present software for the calculation of ground strains, rotations, and their variances from short baseline array ground-motion data.

  10. The interaction potential of NO-H2 in ground and A Rydberg state

    NASA Astrophysics Data System (ADS)

    Pajón-Suárez, Pedro; Valentín-Rodríguez, Mónica; Hernández-Lamoneda, Ramón

    2016-08-01

    The interaction potential for the ground and A Rydberg state of NO-H2 has been calculated using high level ab initio methods. The complex is very floppy in nature and large amplitude motions are expected to characterize its dynamics. The ground state is characterized by two very close-lying states which exhibit crossings. By analogy with other complexes the Rydberg state is characterized by much smaller well depth and larger intermolecular distance. We compare with model potentials used in previous molecular dynamics simulations of photoexcitation and relaxation and conclude on the importance of performing new studies.

  11. Potential effects of climate change on ground water in Lansing, Michigan

    USGS Publications Warehouse

    Croley, T.E., II; Luukkonen, C.L.

    2003-01-01

    Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.

  12. PSC and volcanic aerosol observations during EASOE by UV-visible ground-based spectrometry

    SciTech Connect

    Sarkissian, A.; Pommereau, J.P.; Goutail, F. ); Kyro, E. )

    1994-06-22

    This paper presents results from ground-based spectrometry of twilight sky color in the UV and visible region, taken at four stations on the arctic circle. These stations observed the appearance of aerosol layers from the volcanic eruption of Mt. Pinatubo in mid 1991. The aerosol density increased steadily at lower stratospheric levels, and spread inside the polar vortex. These stations only observed one high altitude PSC during this winter campaign.

  13. The structure of a microburst - As observed by ground-based and airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Mueller, C. K.; Hildebrand, P. H.

    1983-01-01

    Attention is given to the microburst observed near Denver, CO, on June 29, 1982, in the course of the Joint Airport Weather Study (JAWS). The JAWS ground radar network was specifically established to furnish high spatial and temporal resolution multiple Doppler data for microburst observations. The data, which were collected from directly above the microburst, permitted direct measurements of vertical velocities to be made. P-3 surveillance aircraft Doppler data was also available for this microburst, whose considerable complexity is noted.

  14. Longitudinal Characteristics of the Tropical Tropopause observed with ground based and space-borne observations

    NASA Astrophysics Data System (ADS)

    Mehta, Sanjay Kumar; Ratnam Madineni, Venkat; Krishna Murthy, B. V.

    In the present paper an attempt has been made to study the longitudinal characteristics of the tropical tropopause resolution observations obtained from Radiosonde COSMIC GPS radio occultation (RO) data collected for two year from August 2006-August 2008. The radiosonde stations (Gadanki, Truk, Rochambeau, Singapore, Seychelles, and Darwin) distributed across the globe within 13o from equator where data are available with good vertical resolution. In this study the behavior of the tropopause in west Pacific (convective region), non-Pacific and Indian monsoon region is emphasized. All stations including Gadanki shows strong annual cycle observed in temperature near tropical tropopause over Gadanki (13.45oE, 79.18oN) similar as observed in the equatorial belt (10oS-10oN). The tropopause over Gadanki is higher than the mean tropopause in the equatorial belt. The annual cycle in the upper tropospheric tempera-ture is in same phase as the lower stratospheric temperature, in contrast to Truk. Correlation between temperatures at 18 km with upper tropospheric temperature reveals that the strato-spheric feature is extending down to 125 hPa. The temperature lapse in upper troposphere is less pronounced at Gadanki than Truk. The tropopause height show dip at equator especially in the longitude of 0-120oE during summer season. The details of the study will be presented in the conference.

  15. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  16. Snow Never Falls on Satellite Radiometers: A Compelling Alternative to Ground Observations

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Lapo, K. E.; Cristea, N. C.; Lundquist, J. D.

    2014-12-01

    Snowmelt is an important source of surface water for ecosystems, river flow, drinking water, and production of hydroelectric power. Thus accurate modeling of snow accumulation and melt is needed to improve our understanding of the impact of climate change on mountain snowpack and for use in water resource forecasting and management decisions. One of the largest potential sources of uncertainty in modeling mountain snow is the net radiative flux. This is because while net irradiance makes up the majority of the surface energy balance, it is one of the most difficult forcings to measure at remote mountain locations. Here we investigate the use of irradiances derived from satellite measurements in the place of surface observations. NASA's Clouds and the Earth's Radiant Energy System (CERES) SYN satellite product provides longwave and shortwave irradiances at the ground on three-hourly temporal and one degree spatial resolution.Although the low resolution of these data is a drawback, their availability over the entire globe for the full period of March 2000 through December 2010 (and beyond, as processing continues) makes them an attractive option for use in modeling. We first assessed the accuracy of the SYN downwelling solar and longwave fluxes by comparison to measurements at NOAA's Surface Radiation Network (SURFRAD) reference stations and at remote mountain stations. The performance of several snow models of varying complexity when using SYN irradiances as forcing data was then evaluated. Simulated snow water equivalent and runoff from cases using SYN data fell in the range of those from simulations forced with irradiances from higher quality surface observations or more highly-regarded empirical methods. We therefore judge the SYN irradiances to be suitable for use in snowmelt modeling and preferable to in situ measurements of questionable quality.

  17. A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Yoon, Peter H.; Freund, H. P.

    1989-01-01

    A generation mechanism for radio waves in the frequency range 150 - 700 kHz observed by ground facilities is suggested in terms of an electromagnetic electron cyclotron instability driven by auroral electrons. The excited waves can propagate downward along the ambient magnetic field lines and are thus observable with ground facilities. The trapped auroral electrons are supposed to play an important role in the generation process, because they give rise to a thermal anisotropy which consequently leads to the instability. The present work is a natural extension of the theory proposed earlier by Wu et al. (1983) which was discussed in a different context but may be used to explain the observed waves originated at low altitudes. This paper presents a possible wave generation mechanism valid in the entire auroral field-line region of interest.

  18. Linear Ground-Motions in the Wabash Valley, Central United States: Two Decades of Unconventional Observations

    NASA Astrophysics Data System (ADS)

    Woolery, E. W.

    2012-12-01

    Since the mid-1980's small and moderate-sized earthquakes in the Ohio and Wabash River valleys of the central United States have been digitally recorded by seismographs, called blast monitors, deployed to monitor vibrations from chemical explosions associated with regional mining and quarrying. Because there were relatively few conventional networked strong-motion and broad-band instruments for this area between 1980 and the early 2000's, the more than 200 observations have provided a relatively widespread source of digital earthquake ground motions. Additional deployment of networked instrumentation during the last decade and their numerous recordings of the April 2008, Mt. Carmel, Illinois earthquake sequence have provided the first effective means for comparing free-field blast monitor and conventional network ground-motion observations. The peak ground-motion characteristics for both data sets relative to a common predictive relationship are similar, suggesting that blast monitor observations in the central U.S. compliment conventional network data for moderate-sized (< M5.5) events. Much of the ground motion prediction effort in the central United States has been focused on deep (>> 30 m) alluvial sites, such as those found in the Mississippi embayment. The free-field digital velocity records at blast-monitor sites in the Wabash Valley are more typical of the areas outside the embayment. The ground-motion database is composed of small to moderate size regional earthquakes with a magnitude range between M3 and M5.2; however, the bulk of the observations are associated with the 1987 M4.96 and 2008 M5.2 southeastern Illinois earthquakes, and the 2002 M4.5 southwestern Indiana earthquake. The velocity recordings and ancillary site investigations for the 2008 southeastern Illinois earthquake sequence put the findings into context with the previous observations, and quantify the reduction in ground-motion variability that can be achieved with conventional site

  19. Global ab initio ground-state potential energy surface of N4

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Yang, Ke R.; Varga, Zoltan; Truhlar, Donald G.

    2013-07-01

    We present a global ground-state potential energy surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in N2-N2 collisions. To obtain the surface, complete active space second-order perturbation theory calculations were performed for the ground singlet state with an active space of 12 electrons in 12 orbitals and the maug-cc-pVTZ triple zeta basis set. About 17 000 ab initio data points have been calculated for the N4 system, distributed along nine series of N2 + N2 geometries and three series of N3 + N geometries. The six-dimensional ground-state potential energy surface is fitted using least-squares fits to the many-body component of the electronic energies based on permutationally invariant polynomials in bond order variables.

  20. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    NASA Astrophysics Data System (ADS)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  1. Observations of high ground flash densities of positive lightning in summertime thunderstorms

    SciTech Connect

    Stolzenburg, M.

    1994-08-01

    Observations of summertime thunderstorms indicate that positive polarity cloud-to-ground lightning activity can occur with rates as high as 67 flashes in 5 min and spatial densities up to 0.60 flashes per square kilometer per hour. All ground flashes in a storm may be positive for substantial periods. Using data from a nationwide network of magnetic direction finders, 24 storms with high ground flash densities of positive lightning were found on 11 days in June and July 1989 in the Great Plains of the United States. The periods of high-density positive lightning persisted an average of 4 h, longer than the lifetime of a typical single thunderstorm cell. In most cases, they occurred at or near the beginning of the storms` cloud-to-ground lightning activity. Supporting data suggest that the production of high rate and high percentage of positive ground flashes may be associated with exceptionally tall storms that exhibit a stage of early, rapid increase in radar echo-top height and produce large hail.

  2. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  3. The Challenges of New Observing/Operating Modes at Ground Based Optical Observatories

    NASA Astrophysics Data System (ADS)

    Veillet, C.

    2012-09-01

    Over the past years, many ground-based optical observatories have moved away from the traditional “observing visitor mode” where the astronomer comes to the telescopes to carry the observations for which a given number of nights have been allocated. Remote observing, queued observations, service observing, remote or automated operations, these new observational modes are mainly implemented to minimize the operating costs, increase the efficiency of the observations, or better serve the users, leading ultimately to better data and hopefully better science. We will review these modes and the challenges of their implementation for the facilities as well as the users, stressing the need for the required appropriate software tools to keep the users satisfied while optimizing the use of the telescopes and their instrumentation.

  4. Prevalence and Characterization of Salmonella in Bovine Lymph Nodes Potentially Destined for Use in Ground Beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential source of pathogenic bacteria in ground beef is the lymphatic system, specifically the lymph nodes. There are several reports of bacteria isolated from the lymph nodes of cattle at slaughter; however, most of the studies have dealt with mesenteric lymph nodes that are not normally incor...

  5. Ground motion observations of the South Napa earthquake (M6.0 August 24, 2014)

    NASA Astrophysics Data System (ADS)

    Baltay, A.

    2014-12-01

    The South Napa earthquake generated peak ground motions in excess of 50%g and 50 cm/s in Napa Valley and also along strike to the south, and was recorded at 17 stations within 20 km rupture distance (Rrup) of the finite fault plane, 115 stations within 50 km, and 246 within 100 km. We compare the densely recorded ground motions to existing ground motion prediction equations (GMPEs) to understand both the spatial distribution of ground-motion amplitudes and also the relative excitation and attenuation terms from the earthquake. Using the ground-motion data as reported by ShakeMap, we examine the peak ground acceleration (PGA) and velocity, as well as the pseudo-spectral acceleration (PSA) at 0.3, 1.0 and 3.0 seconds, adjusted empirically to a single site condition of 760 m/s. Overall, the ground motions on the north-south components are larger than those on the east-west, consistent with both the generally north-south strike of the fault and the rupture directivity. At the higher frequencies (PGA and PSA of 0.3 s), the close data are very consistent with the GMPEs, implying a median stress drop near 5 MPa. For the longer period data, the GMPEs underpredict the data at close stations. At all frequencies, the distance attenuation seems to be stronger than the GMPEs would predict, which could either be a station coverage bias, given that most of the stations are to the south of the epicenter, or may indicate that the attenuation structure in the Napa and delta region is stronger than the average attenuation in California, on which the GMPEs were built. The spatial plot of the ground motion residuals is positive to the north, in both Napa and Sonoma Valley, consistent with both the directivity and basin effect. More interestingly, perhaps, is that there is strong ground motion to the south, as well, in the along-strike direction, particularly for PSA at 1.0s. These strongly positive residuals align along an older, Quaternary fault structure associated with the Franklin

  6. Submarine melting at the grounding line of Greenland's tidewater glaciers: Observations and Implications. (Invited)

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Xu, Y.; Koppes, M. N.; Menemenlis, D.; Schodlok, M.; Spreen, G.

    2010-12-01

    . We observe a strong seasonality and large inter-annual variations in glacial fjords of interest. This enables a quantification of thermal forcing of the ocean on the calving faces of Greenland, its potential impact on submarine melting, which in turn effects glacier un-grounding, glacier velocity, glacier mass balance, and ultimately ice sheet mass balance as a whole.

  7. Estimation of Source and Attenuation Parameters from Ground Motion Observations for Induced Seismicity in Alberta

    NASA Astrophysics Data System (ADS)

    Novakovic, M.; Atkinson, G. M.

    2015-12-01

    We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.

  8. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).

  9. Classification of ground-water recharge potential in three parts of Santa Cruz County, California

    USGS Publications Warehouse

    Muir, K.S.; Johnson, Michael J.

    1979-01-01

    Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

  10. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  11. Report on the ground-based observation campaign of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Jehin, Emmanuel

    2015-11-01

    Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at about 1000 km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This will not only help to complete our understanding of the activity of 67P, but also to allow us to compare it with other comets that are only observed from the ground.The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it is considerably brighter, approaching its perihelion in August, and at Northern declinations. I will present results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from 2015 observations.

  12. Ground-level observation of a terrestrial gamma ray flash initiated by a triggered lightning

    NASA Astrophysics Data System (ADS)

    Hare, B. M.; Uman, M. A.; Dwyer, J. R.; Jordan, D. M.; Biggerstaff, M. I.; Caicedo, J. A.; Carvalho, F. L.; Wilkes, R. A.; Kotovsky, D. A.; Gamerota, W. R.; Pilkey, J. T.; Ngin, T. K.; Moore, R. C.; Rassoul, H. K.; Cummer, S. A.; Grove, J. E.; Nag, A.; Betten, D. P.; Bozarth, A.

    2016-06-01

    We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude-triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground-level network of gamma ray, close electric field, distant magnetic field, Lightning Mapping Array (LMA), optical, and radar measurements. Simultaneous gamma ray and LMA data indicate that the upward positive leader of the triggered lightning flash induced relativistic runaway electron avalanches when the leader tip was at about 3.5 km altitude, resulting in the observed TGF. Channel luminosity and electric field data show that there was an initial continuous current (ICC) pulse in the lightning channel to ground during the time of the TGF. Modeling of the observed ICC pulse electric fields measured at close range (100-200 m) indicates that the ICC pulse current had both a slow and fast component (full widths at half maximum of 235 μs and 59 μs) and that the fast component was more or less coincident with the TGF, suggesting a physical association between the relativistic runaway electron avalanches and the ICC pulse observed at ground. Our ICC pulse model reproduces moderately well the measured close electric fields at the ICLRT as well as three independent magnetic field measurements made about 250 km away. Radar and LMA data suggest that there was negative charge near the region in which the TGF was initiated.

  13. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observation with Satellite-Based LIS Observations in Oklahoma

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations were obtained in central Oklahoma during June 1998, using New Mexico Tech's Lightning Mapping Array (LMA). The results have been compared with observations of the discharges from space obtained by NASA's Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Excellent spatial and temporal correlations were obtained between the two sets of observations. All discharges seen by LIS were mapped by the LMA. Most of the detected optical events were associated with lightning channels that extended into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended to be detected by LIS at the time of late-stage return strokes. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud discharges and appeared to be produced by energetic K-changes that typically occur at these times.

  14. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    NASA Astrophysics Data System (ADS)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    mapping is reliant on the identification of location where such networks could be of use. Systematic monitoring from satellite images are utilized for increasing the potential areas of application, for assessing the geographical representativeness on the measurements of the sensors and proposing the methodology on assessing the environmental conditions that are associated with outbreaks of leptospirosis. Unfortunately, several combined deployments of earth observations with ground sensors are required before for the understanding of the connections between hydrology and the human health. Ultimately this will lead to the establishment of early warning system that might investigate the effectiveness of key control measures, including vaccine (when they will become available) and affront the water decontamination, and animal control issues.

  15. Nature of Pi1B pulsations as inferred from ground and satellite observations

    NASA Astrophysics Data System (ADS)

    Lessard, M. R.; Lund, E. J.; Jones, S. L.; Arnoldy, R. L.; Posch, J. L.; Engebretson, M. J.; Hayashi, K.

    2006-07-01

    The occurrence of Pi1B pulsations is well-documented, including the fact that these pulsations can be observed both on the ground and at geosynchronous orbit at substorm onset, although information about their propagation characteristics has been lacking. In this paper, data are presented from FAST, GOES 9 and various ground stations that show the simultaneous observations of Pi1B pulsations in association with an onset. While the data at GOES 9 show that the pulsations are compressional in nature, data from FAST show the presence of shear mode waves, implying that Pi1B mode conversion of some type must take place in the region between geosynchronous orbit and FAST altitudes. An additional point is that Pi1B pulsations apparently propagate through auroral phenomena routinely, begging the question of what role they may play.

  16. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  17. OBSERVATIONAL EVIDENCE FOR DARK MATTER INTERACTING THROUGH A YUKAWA POTENTIAL

    SciTech Connect

    Chan, M. H.

    2013-05-20

    Recent observations in galaxies and clusters indicate that dark matter density profiles exhibit core-like structures which contradict the numerical simulation results of collisionless cold dark matter (CDM). On the other hand, it has been shown that CDM particles interacting through a Yukawa potential could naturally explain the cores in dwarf galaxies. In this Letter, I use the Yukawa potential interacting dark matter model to derive two simple scaling relations on the galactic and cluster scales, respectively, which give excellent agreements with observations. Also, in our model, the masses of the force carrier and dark matter particle can be constrained by the observational data.

  18. Comparison of tropospheric NO2 observations by GOME and ground stations over Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Itoh, H.; Shibasaki, T.; Hayashida, S.; Uno, I.; Ohara, T.; Richter, A.; Burrows, J. P.

    2009-04-01

    Nitrogen oxides (NOx = NO + NO2) are anthropogenically emitted as a form of NO in the high-temperature burning processes of fossil fuels mainly in energy generations and vehicles. Because NOx is a precursor of ozone, which is composed of a so-called photochemical smog, and is a health-hazard matter, the monitoring of NO2 is important to control air quality. The satellite observation is one of the most suitable methods for the monitoring of air pollution because satellite observations can obtain a global distribution of the pollutants. However, the observation of tropospheric gases by satellites still includes technically challenging problems, and the field is developing. To test whether satellite observations could successfully detect the behavior of tropospheric NO2, we compared satellite and ground-based observations of tropospheric NO2 over the Tokyo region. The satellite data were tropospheric NO2 vertical column density (VCD) derived from Global Ozone Monitoring Experiment (GOME) spectrometer measurements (hereafter GOME-NO2) [Richter et al., 2005], and the ground-based data were surface NO2 volume mixing ratio (VMR) observed by the network of air-quality monitoring stations in Tokyo. The analysis was performed for the data from January 1996 to June 2003. We found a strong correlation between GOME-NO2 and the surface VMR. They showed a similar seasonal variation with a maximum in winter and a minimum in summer. The result suggested that GOME was observing the behavior of NO2 near the surface in the Tokyo region. A more rigorous comparison was conducted by scaling the surface NO2 VMR to the tropospheric VCD with vertical NO2 VMR profiles. The NO2 profiles were calculated by using the chemical transport model CMAQ/REAS [Uno et al., 2007; Ohara et al., 2007]. This second comparison indicated that the GOME observations represent the behavior of NO2 more closely at the relatively unpolluted ground stations than at the highly polluted ground stations of the air

  19. Ground Truth Observations of the Interior of a Rockglacier as Validation for Geophysical Monitoring Data Sets

    NASA Astrophysics Data System (ADS)

    Hilbich, C.; Roer, I.; Hauck, C.

    2007-12-01

    Monitoring the permafrost evolution in mountain regions is currently one of the important tasks in cryospheric studies as little data on past and present changes of the ground thermal regime and its material properties are available. In addition to recently established borehole temperature monitoring networks, techniques to determine and monitor the ground ice content have to be developed. A reliable quantification of ground ice is especially important for modelling the thermal evolution of frozen ground and for assessing the hazard potential due to thawing permafrost induced slope instability. Near surface geophysical methods are increasingly applied to detect and monitor ground ice occurrences in permafrost areas. Commonly, characteristic values of electrical resistivity and seismic velocity are used as indicators for the presence of frozen material. However, validation of the correct interpretation of the geophysical parameters can only be obtained through boreholes, and only regarding vertical temperature profiles. Ground truth of the internal structure and the ice content is usually not available. In this contribution we will present a unique data set from a recently excavated rockglacier near Zermatt/Valais in the Swiss Alps, where an approximately 5 m deep trench was cut across the rockglacier body for the construction of a ski track. Longitudinal electrical resistivity tomography (ERT) and refraction seismic tomography profiles were conducted prior to the excavation, yielding data sets for cross validation of commonly applied geophysical interpretation approaches in the context of ground ice detection. A recently developed 4-phase model was applied to calculate ice-, air- and unfrozen water contents from the geophysical data sets, which were compared to the ground truth data from the excavated trench. The obtained data sets will be discussed in the context of currently established geophysical monitoring networks in permafrost areas. In addition to the

  20. Observing Large Ionospheric Spatial Decorrelation for Ground-Based Augmentation System in the Brazilian Region

    NASA Astrophysics Data System (ADS)

    Kim, D.; Yoon, M.; Choi, P.; Lee, J.

    2014-12-01

    Ground-Based Augmentation Systems (GBAS) support aircraft precision approach and landing by broadcasting differential Global Positioning System (GPS) corrections and integrity information to aviation users. Under anomalous ionospheric condition, unacceptably large residual errors can occur due to anomalously large ionospheric spatial decorrelation, and this can pose integrity threats to GBAS users. Thus, the development of an ionospheric anomaly threat model is required to simulate worst-case ionospheric errors and develop mitigation strategies. Ionosphere in low latitudes is known to be much more intense than that in mid latitudes due to active geomagnetic effect, and investigation of low latitude ionospheric anomalies must take precedence before operation of GBAS. In this paper, ionospheric spatial decorrelation is investigated for GBAS operation in the Brazilian region. Dual-frequency observation data are collected from Brazilian GPS reference stations. This analysis is performed using data sets collected on scintillating days, less-scintillating days, and storm days from 2012 to 2014. Precise ionospheric spatial gradient on the L1 signal is automatically estimated from dual-frequency observation data using simple truth method and station pair method. In the Brazilian region, however, intense ionospheric scintillations cause a large numbers of cycle slips in carrier-phase data. The simple truth process removes a considerably large number of those data through short-arc and outlier removals, and thus potential ionospheric gradients may not be detected. This motivates a data recovery process which skips short-arc and outlier removals if there appears a large ionospheric spatial gradient in the removed data. We also use a series of methods to validate anomalous ionospheric spatial gradients using manual validation with L1 single frequency measurement, station-wide check, satellite-wide check, and time-step check. In particular, the time-step check validates

  1. Cross Calibration of TOMS, SBUV/2 and Sciamachy Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hillsenrath, Ernest; Ahmad, Ziauddin; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify recovery. We have shown that validation of radiances is the most effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. Validation of radiances will also improve all higher level data products derived from the satellite observations. Backscatter algorithms suffer from several errors such as unrepresentative a-priori data and air mass factor corrections. Radiance comparisons employ forward models but are inherently more accurate and than inverse (retrieval) algorithms. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called "Skyrad", employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and

  2. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the

  3. Morningside Pi2 Pulsation Observed in Space and on the Ground

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam

    2015-12-01

    In this study, we examined a morningside Pi2 pulsation, with a non-substorm signature, that occurred in very quiet geomagnetic conditions (Kp = 0) at 05:38 UT on December 8, 2012, using data obtained by Van Allen Probes A and B (VAP-A and VAP-B, respectively) and at a ground station. Using 1 sec resolution vector magnetic field data, we measured the X-component of the pulsation from the Abu Simbel ground station (L = 1.07, LT = UT +2 hr, where LT represents local time) in Egypt. At the time of the Pi2 event, Abu Simbel and VAP-A (L = 3.3) were in the morning sector (07:38 LT and 07:59 MLT, respectively, where MLT represents magnetic local time), and VAP-B was in the postmidnight sector (04:18 MLT and L = 5.7). VAP-A and VAP-B observed oscillations in the compressional magnetic field component (Bz), which were in close agreement with the X-component measurements of the Pi2 pulsation that were made at Abu Simbel. The oscillations observed by the satellites and on the ground were in phase. Thus, we concluded that the observed morningside Pi2 pulsation was caused by the cavity resonance mode rather than by ionospheric current systems.

  4. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms

    PubMed Central

    Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    [1] Terrestrial gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02–4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site. PMID:26167428

  5. Proving Ground Potential Mission and Flight Test Objectives and Near Term Architectures

    NASA Technical Reports Server (NTRS)

    Smith, R. Marshall; Craig, Douglas A.; Lopez, Pedro Jr.

    2016-01-01

    NASA is developing a Pioneering Space Strategy to expand human and robotic presence further into the solar system, not just to explore and visit, but to stay. NASA's strategy is designed to meet technical and non-technical challenges, leverage current and near-term activities, and lead to a future where humans can work, learn, operate, and thrive safely in space for an extended, and eventually indefinite, period of time. An important aspect of this strategy is the implementation of proving ground activities needed to ensure confidence in both Mars systems and deep space operations prior to embarking on the journey to the Mars. As part of the proving ground development, NASA is assessing potential mission concepts that could validate the required capabilities needed to expand human presence into the solar system. The first step identified in the proving ground is to establish human presence in the cis-lunar vicinity to enable development and testing of systems and operations required to land humans on Mars and to reach other deep space destinations. These capabilities may also be leveraged to support potential commercial and international objectives for Lunar Surface missions. This paper will discuss a series of potential proving ground mission and flight test objectives that support NASA's journey to Mars and can be leveraged for commercial and international goals. The paper will discuss how early missions will begin to satisfy these objectives, including extensibility and applicability to Mars. The initial capability provided by the launch vehicle will be described as well as planned upgrades required to support longer and more complex missions. Potential architectures and mission concepts will be examined as options to satisfy proving ground objectives. In addition, these architectures will be assessed on commercial and international participation opportunities and on how well they develop capabilities and operations applicable to Mars vicinity missions.

  6. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  7. Precipitation observations from high frequency spaceborne polarimetric synthetic aperture radar and ground-based radar: Theory and model validation

    NASA Astrophysics Data System (ADS)

    Fritz, Jason P.

    Global weather monitoring is a very useful tool to better understand the Earth's hydrological cycle and provide critical information for emergency and warning systems in severe cases. Developed countries have installed numerous ground-based radars for this purpose, but they obviously are not global in extent. To address this issue, the Tropical Rainfall Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is launched. However, a single precipitation radar satellite is still limited, so it would be beneficial if additional existing satellite platforms can be used for meteorological purposes. Within the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been launched and more are planned. While the primary SAR application is surface monitoring, and they are heralded as "all weather'' systems, strong precipitation induces propagation and backscatter effects in the data. Thus, there exists a potential for weather monitoring using this technology. The process of extracting meteorological parameters from radar measurements is essentially an inversion problem that has been extensively studied for radars designed to estimate these parameters. Before attempting to solve the inverse problem for SAR data, however, the forward problem must be addressed to gain knowledge on exactly how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR data starting from real measurements of a storm by ground-based polarimetric radar. In addition, real storm observations by current SAR platforms are also quantitatively analyzed by comparison to theoretical results using simultaneous acquisitions by ground radars even in single polarization. For storm simulation, a novel approach is presented here using neural networks to accommodate the oscillations present when the particle scattering requires the Mie solution, i

  8. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    SciTech Connect

    De Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.; Hrudkova, M.; Jayawardhana, Ray

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  9. Ground-based Transit Observations of the Super-Earth 55 Cnc e

    NASA Astrophysics Data System (ADS)

    de Mooij, E. J. W.; López-Morales, M.; Karjalainen, R.; Hrudkova, M.; Jayawardhana, Ray

    2014-12-01

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190-0.0027+0.0023 from the 2013 observations and 0.0200-0.0018+0.0017 from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198-0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  10. Validation of SCIAMACHY Radiances and Ozone Products Using Ground and Space Observations

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bhartia, P. K.; Bojkov, B. R.; Kowalewski, M.; Labow, G.; Ahmad, Z.

    2004-01-01

    Validation of SCIAMACHY data products are is key element for the detecting a stratospheric ozone recovery, which is a high priority for environmental research and environmental policy. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be an effective means for correcting long term drifts of backscatter type satellite measurements such as SCIAMACHY and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. In addition to comparing radiances, validation of SCIAMACHY ozone products will conducted by comparing total and profile ozone with TOMS and SBUV/2.

  11. Ground and satellite EMIC wave observations in conjunction with BARREL electron precipitation

    NASA Astrophysics Data System (ADS)

    Weaver, C.; Lessard, M.; Engebretson, M. J.; Millan, R. M.; Halford, A.; Horne, R. B.; Singer, H. J.; Green, J. C.

    2013-12-01

    Ground-based and satellite observations of electromagnetic ion-cyclotron (EMIC) waves are presented in conjunction with electron precipitation detected by high altitude balloons from the Balloon Array for RBSP Relativistic Electron Losses (BARREL) campaign. On 17 Jan 2013, a high density solar wind compressed the magnetosphere and four satellites (GOES 13 & 15, Van Allen Probes A & B) as well as several ground stations (Dawson City, Canada and Halley, Antarctica) detected simultaneous EMIC waves across the night sector for about 2.5 hours during the compression (0130 - 0400 UT). The satellites and ground stations cover approximately 10 hours of magnetic local time and four L-shells, suggesting the generation region(s) covers the same extended area. At the strongest point of the compression (around 0300 UT with proton density 50 n/cc, flow pressure 20 nPa, SYM/H 50 nT) BARREL balloon 1G, which magnetically mapped close to GOES 13, detected relativistic electron precipitation concurrently with enhanced EMIC wave activity on GOES 13, which may show a direct observation of EMIC waves scattering relativistic electrons.

  12. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data

  13. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to

  14. The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets

    PubMed Central

    Richters, Karl E.; Melin, Travis E.; Liu, Zhi-jian; Hordyk, Peter J.; Benrud, Ryan R.; Geiser, Lauren R.; Cash, Steve E.; Simon Shelley, C.; Howard, David R.; Ereth, Mark H.; Sola-Visner, Martha C.

    2012-01-01

    Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4–8°C and 3–5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4–8°C were released back into the blood within 2 h of arousal in the spring with a body temperature of 37°C but were not rapidly cleared from circulation. These released platelets were capable of forming stable clots and remained in circulation for at least 2 days before newly synthesized platelets were detected. Transfusion of autologous platelets stored at 4°C or 37°C showed the same clearance rates in ground squirrels, whereas rat platelets stored in the cold had a 140-fold increase in clearance rate. Our results demonstrate that ground squirrel platelets appear to be resistant to the platelet cold storage lesions observed in other mammals, allowing prolonged storage in cold stasis and preventing rapid clearance upon spring arousal. Elucidating these adaptations could lead to the development of methods to store human platelets in the cold, extending their shelf life. PMID:22492817

  15. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; DeMaziere, M.; Dorokhov, V.; Eriksen, P.; Gleason, J. F.; Tornkvist, K. Karlsen; Hoiskar, B. A. Kastad; Kyroe, E.; Leveau, J.; Merienne, M.-F.; Milinevsky, G.

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  16. GROUND-BASED MULTISITE OBSERVATIONS OF TWO TRANSITS OF HD 80606b

    SciTech Connect

    Shporer, A.; Winn, J. N.; Dreizler, S.; Colon, K. D.; Wood-Vasey, W. M.; Cerutti, S.; Coban, L.; Costello, K.; Choi, P. I.; Morley, C.; Adams, E.; Moutou, C.; Welsh, W. F.; Pollaco, D.; Barros, S. C. C.; Starkey, D.; Bouchy, F.; DIaz, R. F.; Cabrera-Lavers, A.; Deeg, H.

    2010-10-10

    We present ground-based optical observations of the 2009 September and 2010 January transits of HD 80606b. Based on three partial light curves of the 2009 September event, we derive a midtransit time of T{sub c} [HJD] = 2455099.196 {+-} 0.026, which is about 1{sigma} away from the previously predicted time. We observed the 2010 January event from nine different locations, with most phases of the transit being observed by at least three different teams. We determine a midtransit time of T{sub c} [HJD] = 2455210.6502 {+-} 0.0064, which is within 1.3{sigma} of the time derived from a Spitzer observation of the same event.

  17. Observations and Modeling of Grounding Line Basal Crevasses: Connections between Surface Speed, Topography and Crevasse Morphology

    NASA Astrophysics Data System (ADS)

    Logan, L.; Catania, G.; Lavier, L. L.

    2011-12-01

    We analyze several lines of ground-penetrating radar acquired across the grounding line in the Siple Coast region of Antarctica (Catania et al., 2006) which reveal characteristic diffraction hyperbolae commonly believed to be bottom-crevasses. We show that bottom-crevasses forming in different ice thicknesses and with different material in-fill produce almost identical diffraction hyperbolae. That is, diffraction hyperbolae seen in our profiles likely result from a geometrically non-unique set of bottom-crevasses at the groundling lines of Kamb (KIS) and Whillans Ice Streams (WIS), and Siple Dome (SDM). Further, we observe a Poisson-type distribution in crevasse spacing with mean crevasse spacing for SDM, KIS, and WIS of 363 m, 488 m, and 1387 m, respectively. These measurements correlate positively with ice speed. There is no obvious relationship between crevasse height and ice velocity. There is a weak negative correlation between crevasse penetration height and distance from the grounding line. Finally, we note the presence of undulating topographic features aligned with the bottom crevasses of KIS, and suggest their connection to the formation of corresponding bottom crevasses. We use these observations to model the formation of a single bottom crevasse at the grounding line in a finite-difference Lagrangian mesh with viscoplastic rheology (FLAC). We show that the modeled bottom crevasse provides sufficient material weakening in our viscoplastic ice to account for the accompanying topographic depression. Thus we attribute the topographic features seen on KIS to plastic necking as modeled in FLAC, and suggest that their entire expression results from an unknown non-linear interaction between fracture and associated plastic yielding in ice.

  18. Multidisciplinary Approach for Earthquake Atmospheric Precursors Validation by Joint Satellite and Ground Based Observations

    NASA Astrophysics Data System (ADS)

    Ouzounov, D. P.; Pulinets, S. A.; Hattori, K.; Liu, J. G.; Parrot, M.; Kafatos, M.; Yang, T. F.; Jhuang, H.; Taylor, P.; Ohyama, K.; Kon, S.

    2010-12-01

    Previous studies have shown that there were electromagnetic (EM) effects in the atmosphere/ionosphere caused by some strong earthquakes. Several major earthquakes are accompanied by an intensification of the vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific regions of the atmosphere and the modifications, by DC electric fields, in the ionosphere-atmosphere electric circuit. Our methodology of integrated satellite terrestrial framework (ISTF) is based on the use of multi-sensor data and a cross-correlation between ground and satellite observations to record any atmospheric thermal anomalies and ionospheric perturbations associated with these activities. We record thermal infrared data from the Aqua, GOES, POES satellites and DEMETER provides space plasma variations related to the growth of the DC electric field. Simultaneously we continuously monitor ground-based multi-parameter GPS/TEC, ion concentration, radon, and magnetic field array data. We integrate these joint observations into the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. The significance of this combined satellite and ground-based analysis is that it permits us to generate hindcasts of historical seismicity in Japan, Taiwan (2003-2009) and recent catastrophic events in Italy (M6.3, 2009), Haiti (M7.0, 2010) and Chile (M8.8, 2010). This joint analysis of ground and satellite data during the time of major earthquakes has shown the presence of persistent anomalies in the atmosphere over regions of maximum stress (along plate boundaries), and are not of meteorological origin, since they are stationary over the same region. Our approach provides the framework for a multidisciplinary validation of earthquake precursors and we are looking forward to validating this approach over high seismicity regions.

  19. The potential for supershear earthquakes in damaged fault zones - theory and observations

    NASA Astrophysics Data System (ADS)

    Huang, Yihe; Ampuero, Jean-Paul; Helmberger, Don V.

    2016-01-01

    The potential for strong ground shaking in large earthquakes partly depends on how fast the earthquake rupture propagates. It is observed that strike-slip earthquakes usually propagate at speeds slower than the Rayleigh wave speed (vR) but occasionally jump to speeds faster than the S wave speed (vs), or supershear speeds. Supershear earthquakes can be more catastrophic and cause unusually large ground motions at long distances. Here we use both fully dynamic rupture simulations and high-resolution seismic observations to show that supershear earthquakes can be induced by damaged fault zones, the low-velocity layers of damaged rocks that typically exist around major faults and serve as waveguides for high-frequency energy. In contrast to supershear ruptures in homogeneous media, supershear ruptures in damaged fault zones can occur under relatively low fault stress and propagate stably at speeds within the range usually considered as unstable.

  20. Near-Earth asteroids orbits using Gaia and ground-based observations

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Hestroffer, D.; Thuillot, W.

    2013-04-01

    Since the last decade, the number of Near-Earth Asteroids (hereafter NEA) discovery has exponentially increased. They are due to program surveys like LINEAR, Catalina and more recently to Pan-STARRS. The next generation surveys like LSST will contribute to these discoveries and to a lesser extent Gaia. Presently, almost 9500 NEAs are known and only 10% of them have a diameter greater than one kilometer. Among the others, some of them are under surveillance because they might come close or even possibly impact the Earth. Those asteroids, qualified as Potentially Hazardous Asteroids (hereafter PHA), are objets with absolute magnitude H <22.0 and with their Minimum Orbit Intersection Distance (MOID) with the Earth less that 0.05 AU. They are carefully monitored by two automatic systems at NASA/JPL and University of Pisa/NEODyS (monitoring program duplicated in University of Valladolid). With the constant observations (optical and radar) from professional or amateur observers, the particular orbit of PHAs are regularly refined to better assess and quantify the impact threat. Most of the PHAs do not have significant impact probability with the Earth. Some of them can temporarily reach level 1 of Torino Scale. Only one asteroid briefly reached an unprecedented level of risk on this scale: (99942) Apophis (previously designated 2004 MN4). Apophis was discovered in December 2004 and since the first observations, a collision event was predicted in 2029 with an unusual impact probability. Further observations increased this probability up to 2.3 % - the event was then classified level 4 on Torino Scale - but fortunately, thanks to precovery discovery by Spacewatch, the 2029-threat is no longer and is just a deep close encounter (~ 38000 km) with the Earth. Even if some impacts are possible in 2036 and later - but with lower chance - because of the chaotic 2029 post-encounter orbit, this asteroid will remain a study case because of its particular dynamical motion. We propose

  1. Space-borne and ground-based observations of transient processes occurring around substorm onset

    NASA Astrophysics Data System (ADS)

    Kepko, E. L.; Spanswick, E. L.; Angelopoulos, V.; Donovan, E. F.

    2010-12-01

    The combined THEMIS five spacecraft in-situ and ground magnetic and visible camera arrays have advanced considerably our understanding of the causal relationship between midtail plasma flows, transient ionospheric features, and ground magnetic signatures. In particular, recent work has shown a connection between equatorward moving visible ionospheric transients and substorm onset, in both white-light (Nishimura et al., [2010]) and 630 nm (Kepko et al., [2010]) emissions. These observations, together with THEMIS in-situ measurements of bulk flows, provides strict constraints on the sequence of events leading to substorm auroral onset. We first provide a brief summary of these observations, highlighting in particular areas where the two observations differ, and suggest reasons for the differences. Next, by combining the observed correlation of flow and Pi2 waveform with a unified model of global Pi2 generation and substorm current wedge initiation, we present a self-consistent description of the dynamical processes and communicative pathways that occur just prior to and during substorm expansion onset.

  2. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  3. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  4. Ground-Based Observational Support for Spacecraft Exploration of the Outer Planets

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.

    2009-09-01

    This report presents both a retrospective of ground-based support for spacecraft missions to the outer solar system and a perspective of support for future missions. Past support is reviewed in a series of case studies involving the author. The most basic support is essential, providing the mission with information without which the planned science would not have been accomplished. Another is critical, without which science would have been returned, but missing a key element in its understanding. Some observations are enabling by accomplishing one aspect of an experiment which would otherwise not have been possible. Other observations provide a perspective of the planet as a whole which is not available to instruments with narrow fields of view and limited spatial coverage, sometimes motivating a re-prioritizing of experiment objectives. Ground-based support is also capable of providing spectral coverage not present in the complement of spacecraft instruments. Earth-based observations also have the capability of filling in gaps of spacecraft coverage of atmospheric phenomena, as well as providing surveillance of longer-term behavior than the coverage available to the mission. Future missions benefiting from ground-based support would include the Juno mission to Jupiter in the next decade, a flagship-class mission to the Jupiter or to the Saturn systems currently under consideration, and possible intermediate-class missions which might be proposed in NASA’s New Frontiers category. One of the principal benefits of future 30 m-class giant telescopes would be to improve the spatial resolution of maps of temperature and composition which are derived from observations of thermal emission at mid-infrared and longer wavelengths. In many situations, this spatial resolution is competitive with those of the relevant instruments on the spacecraft themselves.

  5. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  6. The response of a ground-based antenna to variations of ionospheric potential

    NASA Astrophysics Data System (ADS)

    Tammet, Kh. F.

    Analytical and numerical models are used to study the response of a ground-based atmospheric electric antenna to ionospheric potential variations. The three-term Schweidler-Gish formula is used to describe the vertical profile of conductivity. It is shown that the different inertia of the volume discharge redistribution in the vertical column can lead to a phase shift between the two antenna signals.

  7. Determination of the ground-state potential energy curve of 6LiH up to dissociation

    NASA Astrophysics Data System (ADS)

    Verma, K. K.; Stwalley, W. C.

    1982-09-01

    An ultraviolet argon ion laser (3336 Å) has been used to excite the A 1Σ+-X1Σ+ system of the 6LiH molecule. A long progression of R-P doublets is observed in the range 0⩽v''⩽21. This is the first time ground-state levels above v''=12 have been observed for the lithium hydride molecule. Based upon these results, we have constructed a Rydberg-Klein-Rees (RKR) potential energy curve which corresponds to over 99% of the ground state potential well. This experimental curve is compared with theoretical ab initio calculations for the X 1Σ+ state of LiH. We find that Docken and Hinze's X state potential energy curve [J. Chem. Phys. 57, 4928 (1972)] is probably the most accurate among the published ab initio calculations in the region of curve crossing of the zero order curves representing the ionic and covalent configurations of LiH, although some more recent calculations are of comparable accuracy.

  8. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  9. Synergy of satellite and ground based observations in estimation of particulate matter in eastern China.

    PubMed

    Wu, Yerong; Guo, Jianping; Zhang, Xiaoye; Tian, Xin; Zhang, Jiahua; Wang, Yaqiang; Duan, Jing; Li, Xiaowen

    2012-09-01

    Estimating particulate matter (PM) from space is not straightforward and is mainly achieved using the aerosol optical depth (AOD) retrieved from satellite sensors. However, AOD is a columnar measure, whereas PM is a ground observation. Linking AOD and PM remains a challenge for air pollution monitoring. In this study, a back-propagation artificial neural network (BP ANN) algorithm trained with bayesian regularization that benefited from the synergy of satellite- and ground-based observations was developed to estimate PM in eastern China. Correlations between observed and estimated PM (denoted by R) during the period 2007-2008 over seven individual sites were investigated comprehensively in terms of site scale, seasonal scale, particle size, and spatio-temporal scale. With respect to site differences, the Nanning site had the best results with 80.3% of cases having a moderate or strong correlation value. Lushan and Zhengzhou followed with results of 75% and 73.8%, respectively. Furthermore, R exhibited a significant seasonal variation characterized by a maximum (80.2%) during the autumn period, whereas no obvious differences in R for various spatial scales (spatial averaging schemes of MODIS AOD) were observed. Likewise, the ratio value for daily averaging (64.7%) was found to be better than those for the two hourly temporal averaging schemes (i.e., 61.1% for HA1 and 58.3% for HA2). In addition, PM(1) estimated from the ANN algorithm developed in this study had slightly higher R values than did PM(10) and PM(2.5). The planetary boundary layer (PBL) effect on PM estimation was decreasing R with increasing height of the PBL, which is consistent with previous studies. Comparisons of observed versus estimated PM(10) mass time series implied that the ANN algorithm basically reproduced the observed PM concentration. However, PM mass at certain sites may be underestimated under the condition of high observed PM concentrations. PMID:22766424

  10. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  11. Central role of the observable electric potential in transport equations.

    PubMed

    Garrido, J; Compañ, V; López, M L

    2001-07-01

    Nonequilibrium systems are usually studied in the framework of transport equations that involve the true electric potential (TEP), a nonobservable variable. Nevertheless another electric potential, the observable electric potential (OEP), may be defined to construct a useful set of transport equations. In this paper several basic characteristics of the OEP are deduced and emphasized: (i) the OEP distribution depends on thermodynamic state of the solution, (ii) the observable equations have a reference value for all other transport equations, (iii) the bridge that connects the OEP with a certain TEP is usually defined by the ion activity coefficient, (iv) the electric charge density is a nonobservable variable, and (v) the OEP formulation constitutes a natural model for studying the fluxes in membrane systems. PMID:11461346

  12. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  13. Hydrogen production rates from ground-based Fabry-Perot observations of comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Scherb, F.

    1981-01-01

    The only ground-based observations of a cometary hydrogen corona that have been obtained up to the present were carried out during the appearance of comet Kohoutek (1973 XII). Hydrogen Balmer alpha (H-alpha) emission from the gas cloud surrounding the comet was detected using a Fabry-Perot spectrometer at Kitt Peak National Observatory. These observations have been reexamined using (1) recently obtained solar full-disk Lyman beta emission line profiles, (2) a new calibration of the absolute sensitivity of the Fabry-Perot spectrometer based on comparison of NGC 7000 with standard stars and the planetary nebula NGC 7662, and (3) corrections for atmospheric extinction instead of the geocoronal H-alpha comparison method used previously to obtain comet H-alpha intensities. The new values for hydrogen production rates are in good agreement with results obtained from Lyman alpha observations of comet Kohoutek.

  14. The European Observation Network: Ground-Based Support for Gamma-Ray Satellites

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Spurný, P.; Florián, J.; Boček, J.; Tichy, M.; Tichá, J.; Vyskocil, L.; Wenzel, W.; Barthelmy, S.; Cline, T.; Gehrels, N.; Fishman, G.; Meegan, C.; Kouveliotou, C.; Mutafov, A.; Hovorka, F.

    While there is extended monitoring of the sky at gamma rays from satellites, mainly provided by the COMPTON Gamma Ray Observatory, there is still a lack of high-quality optical simultaneous and quasi-simultaneous data. On the other hand, the still puzzling nature of Gamma Ray Bursts requires a complex and multispectral approach. The situation changed significantly after the introduction of the BACODINE system which is able to notify ground-based observers immediately after the detection of bursts on the GRO satellite. We present and discuss preliminary results obtained with the European Observation Network providing such follow - up optical observations. This network consists of nine observatories in the Czech Republic, Germany and Bulgaria and has been involved into the BACODINE activities since April 1, 1994.

  15. First Ground-based Observation of Transient Luminous Events over Southern Africa

    NASA Astrophysics Data System (ADS)

    Nnadih, Ogechukwu; Kosch, Michael; Martinez, Peter

    2016-07-01

    We present the first ground-based observations in southern Africa of Transient Luminous Events (TLEs) in the summer of 2015/16 over convective thunderstorms. For the months of December to February, South Africa has one of the highest lightning stroke rates in the world. This was part of the AfriSprite campaign initiated by the South African National Space Agency. These observations show a variety of fine structures such as tree-like shaped, carrot, angel and jellyfish-shaped sprites. The South African Weather Service array of VLF receivers is used to locate and quantify the magnitude and polarity of the lightning strikes associated with TLEs. We plan to make bi-static as well as multi-wavelength observations in future.

  16. Total ozone variations 1970-74 using Backscattered Ultraviolet /BUV/ and ground-based observations

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Nagatani, R. M.; Rogers, T. G.; Fleig, A. J.; Heath, D. F.

    1982-01-01

    The most long-lived satellite set of ozone observations, to date, is that derived from the Backscatter Ultraviolet (BUV) ozone sensor on Nimbus 4 and extends from April 1970 through 1976. Unfortunately, this experiment suffered spacecraft power limitations which limited the spatial and temporal coverage and also appears to have suffered from long-term drifts which may be associated with changes in the instrument characteristics or the incident solar flux. Techniques have been developed to account for these problems, and this paper presents results of the BUV total ozone variations and compares them with those from ground-based observations, specifically the computations of Angell and Korshover (1978). After adjustments for the spatial gaps and comparison with concurrent Dobson ground-based observations, no significant trend was found in the BUV data over the years 1970-74. This finding is in contrast to a general decrease of about 2% during the same period appearing in the data of Angell and Korshover. The difference in these results is discussed in terms of the geographic sampling and the methods of hemispheric integration.

  17. Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew; Beichman, Charles; Calchi Novati, Sebastiano; Carey, Sean; Gaudi, B. Scott; Henderson, Calen B.; Penny, Matthew; Shvartzvald, Yossi; Yee, Jennifer C.; Udalski, A.; Poleski, R.; Skowron, J.; Kozłowski, S.; Mróz, P.; Pietrukowicz, P.; Pietrzyński, G.; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Abe, F.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Bond, I. A.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Ling, H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Rattenbury, N.; Wakiyama, Y.; Yonehara, A.; MOA Collaboration; Maoz, D.; Kaspi, S.; Friedmann, M.; The Wise Group

    2015-12-01

    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity, and therefore probability, for detecting planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.

  18. Observations from Ground Zero at the World Trade Center in New York City, Part I.

    PubMed

    Levenson, R L; Acosta, J K

    2001-01-01

    The authors are mental health clinicians with the Police Organization Providing Peer Assistance (POPPA), an affiliate organization of the Patrolman's Benevolent Association of the New York Police Department (NYPD). Beginning on September 11, 2001 we were at Ground Zero of the World Trade Center (WTC) to assist in the all phases of crisis intervention and Critical Incident Stress Management (CISM), as indicated. Our observations and anecdoctal reports, as we worked on teams with NYPD Peer Support Officers (PSOs), are the subject of this paper. PMID:12025483

  19. Ground-water levels in observation wells in Oklahoma, 1971-74

    USGS Publications Warehouse

    Goemaat, Robert L.

    1976-01-01

    The objectives of the observation-well program are (1) to provide long-term records of water-level fluctuations in representative wells, (2) to facilitate the prediction of water-level trends and indicate the future availability of ground-water supplies, and (3) to provide information for use in basic research. These selected records serve as a framework to which other types of hydrologic data may be related. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

  20. Comparing satellite- to ground-based automated and manual cloud coverage observations - a case study

    NASA Astrophysics Data System (ADS)

    Werkmeister, A.; Lockhoff, M.; Schrempf, M.; Tohsing, K.; Liley, B.; Seckmeyer, G.

    2015-05-01

    In this case study we compare cloud fractional cover measured by radiometers on polar satellites (AVHRR) and on one geostationary satellite (SEVIRI) to ground-based manual (SYNOP) and automated observations by a cloud camera (Hemispherical Sky Imager, HSI). These observations took place in Hannover, Germany, and in Lauder, New Zealand, over time frames of 3 and 2 months, respectively. Daily mean comparisons between satellite derivations and the ground-based HSI found the deviation to be 6 ± 14% for AVHRR and 8 ± 16% for SEVIRI, which can be considered satisfactory. AVHRR's instantaneous differences are smaller (2 ± 22%) than instantaneous SEVIRI cloud fraction estimates (8 ± 29%) when compared to HSI due to resolution and scenery effect issues. All spaceborne observations show a very good skill in detecting completely overcast skies (cloud cover ≥ 6 oktas) with probabilities between 92 and 94% and false alarm rates between 21 and 29% for AVHRR and SEVIRI in Hannover, Germany. In the case of a clear sky (cloud cover lower than 3 oktas) we find good skill with detection probabilities between 72 and 76%. We find poor skill, however, whenever broken clouds occur (probability of detection is 32% for AVHRR and 12% for SEVIRI in Hannover, Germany). In order to better understand these discrepancies we analyze the influence of algorithm features on the satellite-based data. We find that the differences between SEVIRI and HSI cloud fractional cover (CFC) decrease (from a bias of 8 to almost 0%) with decreasing number of spatially averaged pixels and decreasing index which determines the cloud coverage in each "cloud-contaminated" pixel of the binary map. We conclude that window size and index need to be adjusted in order to improve instantaneous SEVIRI and AVHRR estimates. Due to its automated operation and its spatial, temporal and spectral resolution, we recommend as well that more automated ground-based instruments in the form of cloud cameras should be installed

  1. Geographical and Temporal Differences in NOAA Observed Ground-Level Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    McClure-Begley, Audra; Petropavlovskikh, Irina; Andrews, Betsy; Hageman, Derek; Oltmans, Samuel; Uttal, Taneil

    2016-04-01

    The Arctic region is rapidly gaining interest and support for scientific studies to help understand and characterize the processes, sources, and chemical composition of the Arctic environment. In order to understand the Arctic climate system and the changes that are occurring, it is imperative to know the behavior and impact of atmospheric constituents. Surface level ozone in the Arctic is variable in both time and space and plays an essential role on the oxidation capacity of the atmosphere. NOAA Global Monitoring Division (NOAA/GMD) maintains continuous measurements and long-term records of ground-level ozone from Barrow, Alaska (since 1973) and Summit, Greenland (since 2000). Measurements taken by Thermo-Scientific ozone monitors are collected and examined with the NOAA/GMD Aerosol LiveCPD acquisition and software. These quality controlled data are used to develop seasonal climatologies, understand diurnal variation, and analyze differences in stations specifics by addressing spatial variability in the Arctic. Once typical ozone behavior is characterized, anomalies in the record are defined and investigated. Increased ozone events associated with transported pollution and photochemical production of ozone, and ozone depletion episodes related to sea-ice halogen release and chemical destruction of ozone are the primary processes which lead to deviations from typical ground-level ozone conditions. The measurements taken from Barrow and Summit are a critical portion of the IASOA network of observations of ground-level ozone and are investigated to ensure proper data management and quality control, as well as provide the fundamental understanding of ground-level ozone behavior in the Arctic.

  2. Common ground on surgical abortion?--engaging Peter Singer on the moral status of potential persons.

    PubMed

    Camosy, Charles C

    2008-12-01

    The debate over surgical abortion is certainly one of the most divisive in ethical discourse and for many it seems interminable. However, this paper argues that a primary reason for this is confusion with regard to what issues are actually under dispute. When looking at an entrenched and articulate figure on one side of the debate, Peter Singer, and comparing his views with those of his opponents, one finds that the disputed issue is actually quite a narrow one: the moral status of potential persons. Finding this common ground clears the conceptual space for a fruitful argument: the thesis of which is that most, including Singer, who argue that potential persons do not have full personal moral status fail to make the necessary distinction between natural potential (which confers moral status) and practical potential (which admittedly does not). PMID:19098134

  3. Modeling analysis of ground water recharge potential on alluvial fans using limited data.

    PubMed

    Munévar, A; Mariño, M A

    1999-01-01

    A modeling approach is developed to evaluate the potential for artificial recharge on alluvial fans in the Salinas Valley, California, using limited data of soil texture, soil hydraulic properties, and interwell stratigraphy. Promising areas for surface recharge are identified and mapped on a broad-scale using soil surveys, geologic investigations, permeability tests, and seasonal ground water response to rainfall and runoff. Two-dimensional representations of the vadose zone at selected sites are then constructed from drillers'logs and soil material types are estimated. Next, hydraulic properties are assigned to each soil material type by comparing them to laboratory-tested cores of similar soils taken from one site. Finally, water flow through the vadose zone is modeled in two dimensions at seven sites using a transient, finite-difference, variably saturated flow model. Average infiltration rates range from 0.84 to 1.54 cm/hr and recharge efficiency, the percentage of infiltrated water that reaches the water table, varies from 51% to 79%. Infiltration rates and recharge efficiency are found to be relatively insensitive to recharge basin ponding depth due to the thickness of the vadose zones modeled (31 to 84 m). The impact of artificial recharge on the Salinas Valley ground water basin is investigated by simulating the regional ground water response to surface spreading and streamflow augmentation with a recently calibrated, finite-element, ground water-surface water model for the basin. It was determined that a combined approach of surface recharge and streamflow augmentation significantly reduces the state of ground water overdraft and, to a lesser extent, reduces the rate of sea water intrusion. PMID:19125917

  4. High-lattitude ground observations of PC 1/2 micropulsations

    SciTech Connect

    Popecki, M.; Arnoldy, R.; Engebretson, M.J.

    1993-12-01

    A ground-based survey of Pc 1/2 (0.1-0.4 Hz) and Pc 1 micropulsations throughout 1986 has provided evidence for the location of the Pc 1/2 source region. Data were taken from three high-latitude stations, located at South Pole ({minus}75{degrees} geomagnetic latitude; 1530 UT local noon), Sondre Stromfjord (+74{degrees}, 1330 UT LN) and Siple ({minus}61{degrees}, 1700 UT LN). The study revealed a diurnal occurrence patterns of the waves above and below 0.4 Hz, it is concluded that the waves observed on the ground above 0.4 Hz come primarily from plasmapause latitudes, while the source of the Pc 1/2 lies between the plasmapause and the magnetopause. The estimate of source locations for waves above and below this frequency, combined with the typically sharp upper frequency limit of waves in the 0.1-0.4 Hz band (Pc 1/2) are interpreted as evidence that He{sup +} ions in the outer magnetosphere influence propagation and possibly wave growth. These results are compared with those of Anderson, who showed with a spacecraft study that Pc 1 are more commonly observed beyond L=7 than in regions closer to the Earth. It is concluded that many of the waves above the He{sup +} gyrofrequency from the outer magnetosphere do not always reach the ground. An extensive search for correlations between Pc 1/2 occurrence and solar wind pressure and magnetic field orientation showed no direct connection between solar wind parameters and Pc 1/2 generation. They may instead be amplified by plasma sheet ions that drift sunward on the dusk side of the magnetosphere and undergo ion-cyclotron resonance in the afternoon sector. This mechanism is consistent with the diurnal pattern and apparent source location of the Pc 1/2. 39 refs., 12 figs., 1 tab.

  5. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed. PMID:26605574

  6. Ground-coupled airwaves at Pavlof Volcano, Alaska, and their potential for eruption monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Cassandra M.; McNutt, Stephen R.; Thompson, Glenn

    2016-07-01

    An abnormally high number of explosion quakes were noted during the monitoring effort for the 2007 eruption of Pavlof Volcano on the Alaska Peninsula. In this study, we manually cataloged the explosion quakes from their characteristic ground-coupled airwaves. This study investigates how the ground-coupled airwaves might be used in a monitoring or analysis effort by estimating energy release and gas mass release. Over 3 × 104 quakes were recorded. The energy release from the explosions is approximated to be 3 × 1011 J, and the total gas mass (assuming 100 % water) released was 450 t. The tracking of explosion quakes has the potential to estimate relative eruption intensity as a function of time and is thus a useful component of a seismic monitoring program.

  7. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations

    NASA Astrophysics Data System (ADS)

    Meesuk, Vorawit; Vojinovic, Zoran; Mynett, Arthur E.; Abdullah, Ahmad F.

    2015-01-01

    small urban feature. Overall, the new multi-view approach of combining top-view LiDAR data with ground-view SfM observations shows a good potential for creating an accurate digital terrain map which can be then used as an input for a numerical urban flood model.

  8. Ground-satellite conjugate observations of low-latitude travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ceren Moral, Aysegul; Shiokawa, Kazuo; Otsuka, Yuichi; Suzuki, Shin; Liu, Huixin; Yatini, Clara

    2016-07-01

    Equatorial travelling ionospheric disturbances (TIDs) are studied by using three CHAMP satellite overpasses on ground-based 630-nm airglow images. The airglow images are obtained from Kototabang (KTB), Indonesia (geographic coordinates: 0.2S, 100.3E, geomagnetic latitude: 10.6S). From 7-year data from October 2002 to October 2009, April 30, 2006 (event 1), September 28, 2006 (event 2) and April 12, 2004 (event 3) are the only TID events found in both ground and satellite measurements. They show southward-moving structures in 630-nm airglow images. The events 1 and 2 are single pulse with horizontal scales of ~500-1000 km and event 3 show three wave fronts with horizontal scale sizes of 500-700 km. For events 1 and 3, the neutral density in CHAMP shows out-of-phase variations with the airglow intensity, while event 2 is in-phase. For event 1, the relation between electron density and airglow intensity is out of phase, while relationships of event 2 and 3 are unclear. These unclear relationships suggest that ionospheric plasma variation is not the cause of the TIDs. In the case if gravity waves in the thermosphere is the source of the observed TIDs, in-phase and out-of-phase relationships of neutral density and airglow intensity can be explained by different vertical wavelengths of the gravity wave. We estimate possible vertical wavelengths for those events using observed wave parameters and modeled neutral winds.

  9. An Intense Terrestrial Gamma-ray Flash Observed at Ground Level

    NASA Astrophysics Data System (ADS)

    Grove, J. E.; Phlips, B. F.; Wulf, E. A.; Hutcheson, A. L.; Mitchell, L. J.; Woolf, R. S.; Johnson, W. N.; Schaal, M.; Uman, M. A.; Jordan, D.; Hare, B.; Rassoul, H.; Bozarth, A.

    2015-12-01

    We report on an intense gamma-ray flash observed at ground level in August 2014 at the International Center for Lightning Research and Testing, Camp Blanding, Florida, that occurred 13 ms after the initiation of the first stroke of an altitude-triggered lightning discharge. The measurements were made with an array of 78 plastic, liquid, and fast inorganic scintillators for robust spectroscopy of high-rate transients. The gamma-ray spectrum, time-intensity profile, and luminosity at the putative source altitude are consistent with those of a Terrestrial Gamma-ray Flash (TGF). The fluence of >100 keV gamma rays at ground level in the ~200 μs flash was in excess of 10 photons / cm2, an order of magnitude brighter than typical TGFs observed from low-Earth orbit. The proximity of the TGF to our large scintillator array allows these to be the most detailed gamma-ray measurements ever made of a TGF. Work at NRL was sponsored by the Chief of Naval Research.

  10. Measured surface temperatures of the Hayabusa capsule during re-entry determined from ground observation

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Mezger, Andreas; Fulge, Hannes

    2013-03-01

    The Hayabusa sample return capsule, which contained asteroid samples, re-entered the Earth's atmosphere on June 13, 2010. An ablative carbon-phenolic thermal protection system (TPS) was used to enable a safe return for the small capsule and the containing samples. Besides a research aircraft operated by NASA with a wide range of imaging and spectrographic cameras for remote sensing of the radiation of the Hayabusa capsule during its entry flight, observation from ground based stations has been realized. We participated in the ground based observation campaign with two instruments for spectroscopic and photometric measurements aiming to detect the surface temperature and the plasma radiation in front of the re-entering capsule. The system consists in an infrared camera and a wide range miniature fibre spectrometer. The paper presents the setup, the laboratory calibration procedure, and correction for transmission. The surface temperature of the capsule reached a peak of 3250 K when the capsule was at an altitude of 55.95 km. The thermographic camera measures independently slightly higher temperature at peak heating (3308 K).

  11. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Otsuka, Yuichi; Abe, Takumi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Akinori; Pfaff, Robert; Ishisaka, Keigo

    2012-07-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA, while ground-based instruments measure waves in the ionosphere. The main purpose of the study is to reveal seeding mechanism of Medium-Scale Traveling Ionospheric Disturbances (MSTID). The MSTID is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple reflection of atmospheric waves to the ionosphere, but includes complicated processes including the electromagnetic coupling of the F- and E-regions, and inter-hemisphere coupling of the ionosphere. We will measure ionospheric parameters such as electron density and electric fields together with neutral winds in the E- and F-regions. TMA and Lithium release experiment will be conducted with S-310-42 and S-520-27 rockets, respectively. The observation campaign is planned in summer 2012 or 2013. In the presentation we will overview characteristics of MSTID, and show plan and current status of the project. We also touch results from the sounding rocket S-520-26 that was launched on January 12, 2012. We will show results of the rocket-ground dual-band beacon experiment.

  12. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencement

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinyan; Liu, Wenlong; Xiao, Zuo; Hao, Yongqiang

    2016-04-01

    Using data from ground-based magnetometers and HF Doppler sounder, we study ultralow frequency (ULF) waves excited during the storm sudden commencement (SSC) on 8 March 2012 and find possible evidence on the link between ULF waves and ionospheric Doppler shifts. Pc1-Pc2 ULF waves are observed from 11:04 to 11:27 UT after the SSC by ground stations of L shell ranging from 1.06 to 2.31, mapping to the topside ionosphere. There are weak responses in this frequency range in the power spectra of ionospheric Doppler shift. From 11:19 to 11:23 UT, oscillations of magnetic field in a lower frequency range of Pc3-Pc4 are observed and are well correlated with the trace of Doppler shift. It is thus suggested that ionospheric Doppler shift can response to ULF oscillations in magnetic field in various frequency ranges, especially in the frequency range of Pc3-Pc4 and below. This paper demonstrates a new mechanism of magnetosphere-ionosphere coupling.

  13. Evaluation of neurotoxicity potential in rats: the functional observational battery.

    PubMed

    Boucard, Aurélie; Bétat, Anne-Marie; Forster, Roy; Simonnard, Alain; Froget, Guillaume

    2010-12-01

    This unit describes the functional observational battery (FOB), a behavioral screening procedure commonly used in safety pharmacology and toxicology studies to assess potentially adverse effects of test agents on the central nervous system. The battery includes general observations and the determination of reactivity to various stimuli. Also presented is the severity score index for analyzing individual measurements and evaluations over a range of endpoints. The severity score index can be used to identify, quantify, and describe the effects of compounds on neurological, autonomic, and behavioral functions. PMID:21935896

  14. Ground-nesting marine birds and potential for human disturbance in Glacier Bay National Park

    USGS Publications Warehouse

    Arimitsu, M.L.; Romano, Marc D.; Piatt, J.F.

    2004-01-01

    Glacier Bay National Park and Preserve contains a diverse assemblage of marine birds that use the area for nesting, foraging and molting. The abundance and diversity of marine bird species in Glacier Bay is unmatched in the region, due in part to the geomorphic and successional characteristics that result in a wide array of habitat types (Robards and others, 2003). The opportunity for proactive management of these species is unique in Glacier Bay National Park because much of the suitable marine bird nesting habitat occurs in areas designated as wilderness. Ground-nesting marine birds are vulnerable to human disturbance wherever visitors can access nest sites during the breeding season. Human disturbance of nest sites can be significant because intense parental care is required for egg and hatchling survival, and repeated disturbance can result in reduced productivity (Leseberg and others, 2000). Temporary nest desertion by breeding birds in disturbed areas can lead to increased predation on eggs and hatchlings by conspecifics or other predators (Bolduc and Guillemette, 2003). Human disturbance of ground-nesting birds may also affect incubation time and adult foraging success, which in turn can alter breeding success (Verhulst and others, 2001). Furthermore, human activity can potentially cause colony failure when disturbance prevents the initiation of nesting (Hatch, 2002). There is management concern about the susceptibility of breeding birds to disturbance from human activities, but little historical data has been collected on the distribution of ground-nesting marine birds in Glacier Bay. This report summarizes results obtained during two years of a three-year study to determine the distribution of ground-nesting marine birds in Glacier Bay, and the potential for human disturbance of those nesting birds.

  15. Simultaneous ground-satellite observations of Pi 2 magnetic pulsations and their high frequency enhancement

    NASA Technical Reports Server (NTRS)

    Arthur, C. W.; Mcpherron, R. L.

    1980-01-01

    Pi 2 magnetic pulsations are a frequent occurrence at the earth's surface and have been shown to be clearly correlated with substorm expansion onset. These pulsations are also observed in space at synchronous orbit at the same time as they are seen on the ground at the satellite conjugate point. This brief report describes three days in 1969 on which Pi 2 magnetic pulsations were simultaneously observed at the synchronous satellite ATS 1 and at Tungsten, N.W.T., Canada, near the foot of the ATS 1 magnetic field line. These Pi 2 bursts all exhibit the characteristic waveform and frequency, as well as an 0.3 Hz enhancement, at both locations. This high frequency enhancement appears to be an integral part of Pi 2 bursts both on the surface and at synchronous orbit and should be considered in the development of models of generation mechanisms.

  16. Coordinated observations of chemical releases from the ground and from aircraft at high latitudes

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1973-01-01

    The ground observations of the Na-Li trail released from a Nike-Apache rocket obtained by the Geophysical Institute are discussed. By using the nominal trajectory for a 60 pound payload and the particular rocket, a best fit trajectory was determined based on the Ester Dome photographic data, launch time and earth-sun geometrical shadow height. From these calculations, the height of obvious features along the trail were determined and their velocity estimated. A clockwise rotation of the velocity vector with increasing height was observed. Velocities deduced at various altitudes were then compared to meter radar data also obtained during this period. The comparisons of these two neutral wind measurements techniques are satisfactory.

  17. Diurnal variation of stratospheric and mesospheric ozone observed by ground-based microwave radiometry

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens; Studer, Simone; Kämpfer, Niklaus; Schanz, Ansgar

    2013-04-01

    Knowledge on diurnal ozone variations in the middle atmosphere is of general interest for the estimation of atmospheric tides propagating throughout the whole atmosphere. Another aspect is the important area of ozone trend analysis. Does the ozone layer recover in the next decades? Expected trends are of the order of 1 percent per decade. If the diurnal ozone variation is not considered, avoided, or removed in the observational data sets then an ozone trend detection will be not possible since the amplitude of the diurnal variation of stratospheric ozone is of the same order as the decadal ozone trend. Ground-based microwave radiometry measures the diurnal ozone variation at a certain geographic location at altitudes from 25 to 65 km. Here we discuss the challenges for the measurement technique and the retrieval method. Finally we present characteristics of the diurnal ozone variation above Switzerland, continuously observed since 1994.

  18. Observation of Ground Level Muon at Bangi In 2008-2009

    NASA Astrophysics Data System (ADS)

    Zain, N. M.; Gopir, G.; Yatim, B.; Sanusi, H.; Husain, N. H.

    2010-07-01

    This study is carried out to observe muons coming from the zenith direction at ground level using a muon telescope based on Geiger-Muller (GM) tubes. Measurements were made for 16 sampling days from November 2008 to January 2009; simultaneously outside and inside the Physics Building of Universiti Kebangsaan Malaysia in Bangi (3.05edeg N, 101.68° E and 50 m asl), Malaysia. Daily sampling sessions of 30 minutes are sub-divided into six consecutive sub-sampling periods of five minutes and descriptive statistics is used to summarise the observed muon counts. Then, applying the inferential statistical methods of ANOVA and t-test indicate that the time variation of the muon count is not significant and the building roof does not significantly affect the muon count rate.

  19. Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection.

    PubMed

    Walsh, B M; Foster, J C; Erickson, P J; Sibeck, D G

    2014-03-01

    Magnetic reconnection is the primary process through which energy couples from the solar wind into Earth's magnetosphere and ionosphere. Conditions both in the incident solar wind and in the magnetosphere are important in determining the efficiency of this energy transfer. In particular, the cold, dense plasmaspheric plume can substantially impact the coupling in the dayside reconnection region. Using ground-based total electron content (TEC) maps and measurements from the THEMIS spacecraft, we investigated simultaneous ionosphere and magnetosphere observations of the plasmaspheric plume and its involvement in an unsteady magnetic reconnection process. The observations show the full circulation pattern of the plasmaspheric plume and validate the connection between signatures of variability in the dense plume and reconnection at the magnetopause as measured in situ and through TEC measurements in the ionosphere. PMID:24604196

  20. Noctilucent clouds: modern ground-based photographic observations by a digital camera network.

    PubMed

    Dubietis, Audrius; Dalin, Peter; Balčiūnas, Ričardas; Černis, Kazimieras; Pertsev, Nikolay; Sukhodoev, Vladimir; Perminov, Vladimir; Zalcik, Mark; Zadorozhny, Alexander; Connors, Martin; Schofield, Ian; McEwan, Tom; McEachran, Iain; Frandsen, Soeren; Hansen, Ole; Andersen, Holger; Grønne, Jesper; Melnikov, Dmitry; Manevich, Alexander; Romejko, Vitaly

    2011-10-01

    Noctilucent, or "night-shining," clouds (NLCs) are a spectacular optical nighttime phenomenon that is very often neglected in the context of atmospheric optics. This paper gives a brief overview of current understanding of NLCs by providing a simple physical picture of their formation, relevant observational characteristics, and scientific challenges of NLC research. Modern ground-based photographic NLC observations, carried out in the framework of automated digital camera networks around the globe, are outlined. In particular, the obtained results refer to studies of single quasi-stationary waves in the NLC field. These waves exhibit specific propagation properties--high localization, robustness, and long lifetime--that are the essential requisites of solitary waves. PMID:22016249

  1. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    SciTech Connect

    Jordanova, Vania K; Miyoski, Y; Sakaguchi, K; Shiokawa, K; Evans, D S; Albert, Jay; Connors, M

    2008-01-01

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  2. Simultaneous Ground- and Space-Based Observations of the Plasmaspheric Plume and Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Foster, J. C.; Erickson, P. J.; Sibeck, D. G.

    2014-01-01

    Magnetic reconnection is the primary process through which energy couples from the solar wind into Earth's magnetosphere and ionosphere. Conditions both in the incident solar wind and in the magnetosphere are important in determining the efficiency of this energy transfer. In particular, the cold, dense plasmaspheric plume can substantially impact the coupling in the dayside reconnection region. Using ground-based total electron content (TEC) maps and measurements from the THEMIS spacecraft, we investigated simultaneous ionosphere and magnetosphere observations of the plasmaspheric plume and its involvement in an unsteady magnetic reconnection process. The observations show the full circulation pattern of the plasmaspheric plume and validate the connection between signatures of variability in the dense plume and reconnection at the magnetopause as measured in situ and through TEC measurements in the ionosphere.

  3. Ground-water levels in observation wells in Oklahoma, 1963-64

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1963-64), is the third of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). The second report, published in 1964, contains water-level records for the 2-year period (1961-62.) (available as photostat copy only)

  4. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1960-62), is the second of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). (available as photostat copy only)

  5. Observing the inflation potential. [in models of cosmological inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.

    1993-01-01

    We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.

  6. Simulation of ground-water flow and potential land subsidence, upper Santa Cruz Basin, Arizona

    USGS Publications Warehouse

    Hanson, R.T.; Benedict, J.F.

    1994-01-01

    A numerical ground-water flow model of the upper Santa Cruz basin in Pinal, Pima, and Santa Cruz Counties was developed to evaluate predevelopment conditions in 1940, ground-water withdrawals for 1940-86, and potential water-level declines and land subsidence for 1987-2024. Simulations of steady-state ground-water conditions indicate 12,900 acre-feet of ground-water inflow, 15,260 acre-feet of outflow, 53,000 acre-feet of pre- development pumpage, 29,840 acre-feet of mountain- front recharge, and 34,020 acre-feet of streamflow infiltration in 1940. Simulations of transient ground-water conditions indicate a total of 6.6 million acre-feet of net pumpage and 3.4 million acre-feet of water removed from aquifer storage for 1941-86. A difference of 1.2 million acre-feet between estimated and net pumpage is attributed to increased recharge from irrigation return flow, mine return flow, and infiltration of sewage effluent. Estimated natural recharge represents 40 percent of pumpage for 1966-86 and averaged 63,860 acre-feet per year for 1940-57 and 76,250 acre-feet per year for 1958-86. The increase in recharge after 1958 was coincident with above- average winter streamflow in the Santa Cruz River for 1959-86. Increased recharge after 1958 and decreased pumpage after 1975 contributed to decreased water-level declines or to recoveries after 1977 in wells near the Santa Cruz River and its tributaries. The results of projection simu- lations indicate that a maximum potential subsi- dence for 1987-2024 ranges from 1.2 feet for an inelastic specific storage of .0001 ft to 12 feet for an inelastic specific storage of .0015 ft. The simulations were made on the basis of pumpage and recharge rates from 1986 and by using a preconso- lidation-stress threshold of 100 feet. A permanent reduction in acquitard storage can range from 1 to 12 percent of the potential loss of 3.9 million acre-feet in aquifer-system storage for 1987-2024.

  7. Asteroid masses with Gaia from ground and space-based observations

    NASA Astrophysics Data System (ADS)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Thuillot, William; Bancelin, David

    2013-04-01

    Determination of masses of large asteroids is one of the expected scientific outputs from the future Gaia astrometric space mission. With the exception of binary asteroids or fly-by with a space probe, the error in mass determination depends on the size of perturbation effect produced on the motion of small asteroids. Considering the 5 years nominal duration of the Gaia mission, there will be mutual close encounters between asteroids occurring either close to the beginning or to the end of the mission. So that the maximum of deflection angle pertained to the perturbation maxima will not be observed directly by Gaia. Since astrometric data of the perturbed body before and after the encounter are mandatory to derive a perturber mass, the precision of mass determinations based solely on the Gaia observations will deteriorate in such cases. The possible way out consists in acquiring ground-based observations of high astrometric precision in time either before or after the Gaia operations, as it was suggested in [1]. By adding such data, it is expected to increase the number of derived asteroids masses [2]. This paper updates earlier predictions of encounters of large asteroids with smaller ones, e.g. [3], in terms of newly discovered asteroids and available ground-based observations. The method used consists in the computation of the offsets in right ascension and declination between the unperturbed and perturbed solutions fitted to the available observations for each small (perturbed) asteroid. For the purpose of decreasing CPU time, a special filter was applied based on the solution of the two-body problem and systematical search for close encounters, e.g. less than 0.1 A.U., of all known asteroids with the large (perturber) ones. The obtained list of asteroids-candidates was used as the input file for the mentioned above accurate calculations. Such a procedure was used for a few asteroids in [2]. The maximum visible offset corresponds to the dates when the

  8. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how

  9. Calculation of Steady-state Evaporation for an Arbitrary Matrix Potential at Ground Surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhan, H.

    2014-12-01

    The water loss from soil by evaporation and the amount of ground water available to plants due to the upward movement of water from a water table is an important topic in many disciplines such as soil science, hydrology, and plant physiology. Although water evaporation in actual field setting is a highly complex process, a nearly steady upward flow from a water table to a bare soil surface may be established if the daily evaporative demand is reasonably uniform for a long period of time. While the maximum potential rate of evaporation from the ground surface depends on atmospheric conditions, the actual flux across the soil surface is limited by the ability of the porous medium for transmitting water from the unsaturated zone.The purpose of this study is to calculate the steady-state evaporation for an arbitrary matrix potential at bare soil surface above a shallow water table, while the unsaturated hydraulic conductivity is a nonlinear function of water content or matrix potential. The Haverkamp function and the Brooks-Corey function for the unsaturated hydraulic conductivity are used, and the study results are contrast among the solution developed from the two retention equation and HYDRUS simulation.

  10. Evaluating Potential Causes of the Two Observational Classes of Exoplanets

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Fortney, J. J.; Bowman, M. O.; UCF Exoplanets Team

    2012-10-01

    We compare Spitzer and ground-based broadband flux measurements for over 30 exoplanets by plotting brightness vs. equilibrium temperatures (Tb vs. Teq). Teq is a proxy for bolometric stellar flux; Tb is measured flux expressed as a temperature. This model-free comparison shows two classes of planet (Harrington et al. 2007, Nature; 2011 DPS). Below 1900 K, planets appear about as bright as their Teq, calculated with 0 Bond albedo and uniform redistribution of received radiation over the entire planetary surface. However, above 1900 K planets appear several hundred K brighter than the Tb = Teq line. There appears to be overlap between the two classes in the 1800 - 2000 K range, but the distinction is strong above 2000 K. Potential causes include clouds at cooler temperatures, permitting a deeper and therefore hotter view into the hotter planets; a reduced advection time scale for the hotter planets, causing more heat to be re-emitted on the dayside; ohmic heating for closer-in planets; the lack of a TiO cold trap for hotter planets, allowing this absorber to exist in gaseous form; and a mechanical (Kzz) greenhouse that is more effective for hotter planets. We evaluate these mechanisms against the data. This work was supported by the NASA Science Mission Directorate's Planetary Atmospheres Program under grant NNX12AI69G. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which also provided support for this work.

  11. How ground-based observations can support satellite greenhouse gas retrievals

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  12. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J.

    2015-03-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's Aura spacecraft provides estimates of erythemal (sunburning) ultraviolet (UV) dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years) and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0-11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  13. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Arola, A.; Dahlback, A.; Fioletov, V.; Heikkilä, A.; Johnsen, B.; Koskela, T.; Lakkala, K.; Svendby, T.; Tamminen, J.

    2015-07-01

    The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board NASA's Aura spacecraft provides estimates of erythemal (sunburning) ultraviolet (UV) dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (8 versus 2 years) and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0-11 %. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55 %. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59 %. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  14. Ground-based observations of overshooting convection during the Tropical Warm Pool-International Cloud Experiment

    NASA Astrophysics Data System (ADS)

    Hassim, M. E. E.; Lane, T. P.; May, P. T.

    2014-01-01

    This study uses gridded radar data to investigate the properties of deep convective storms that penetrate the tropical tropopause layer (TTL) and overshoot the cold-point tropopause during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE). Overshooting convection during the observed break period is relatively more intense and exhibits lesser diurnal variability than severe monsoonal storms in terms of mean overshooting area in the TTL (as covered by >20 dBZ echoes). However, ground-based radar has geometrical constraints and sampling gaps at high altitude that lead to biases in the final radar product. Using synthetic observations derived from model-based data, ground-based radar is shown to underestimate the mean overshooting area in the TTL across both TWP-ICE regimes. Differences range from ˜180 km2 (˜100 km2) to ˜14 km2 (˜8 km2) between 14 and 18 km for the active (break) period. This implies that the radar is underestimating the transport of water and ice mass into the TTL by convective overshoots during TWP-ICE. The synthetic data is also used to correct profiles of the mean observed overshooting area. These are shown to differ only marginally between the two sampled regimes once the influence of a large mesoscale convective system, considered as a departure from normal monsoon behavior, was removed from the statistics. The results of our study provide a useful cross-validation comparison for satellite-based detections of overshooting top areas over Darwin, Australia.

  15. Observation of coastal fogs using a suite of ground based remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Song, J. I.; Yum, S. S.; Kim, K. H.; Kim, Y. H.; Cho, C. H.; Oh, S. B.

    2014-12-01

    Fog is the cloud of which the base is at the earth surface. Because of severely reduced visibility when fog is present, on-road traffics, maritime transport and aircraft operations are often hampered by fog occurrence. Therefore, accurate prediction of fog has been of high priority in traffic safety. The first step towards the accurate prediction of fog would be to detect the fog formation and monitor the evolution of fog in a continuous manner so that we can better characterize the fog formation mechanism. However, observing the evolution of fog has been difficult due to its nature of local meteorological scale and the lack of proper measurement of such scale. In situ measurements can provide us the most accurate data, but these measurements are limited to a very small spatial coverage. Satellite remote sensing can cover a wider spatial scale but detailed structure cannot be detected, In contrast, ground based remote sensing has advantages in spatial and temporal coverages. Here we present the data measured using a suite of ground based remote sensing instruments at the National Center for Intensive Observation of severe weather (NCIO), located at a southern coastal rural town of Boseong, Korea (34.76 ̊ N, 127.16 ̊ E), which include a scanning Ka-band cloud radar, wind profiler, microwave radiometer, ceilometer and lidar. Analysis of these data will be complemented by the basic meteorological (temperature, relative humidity, wind speed and direction) data measured at 11 different altitudes on a 300m meteorological observation tower installed at NCIO. With the sea to the south, the hilly topographical setting to the north, and the ragged coastal line in between, fog formation mechanisms in this region are expected to be very complex. Our eventual goal is to obtain an insight on the formation mechanisms of the coastal fogs in this region through the analysis of these comprehensive dataset. Some preliminary results from this effort will be presented at the

  16. Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.

    2012-10-01

    The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.

  17. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  18. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    SciTech Connect

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S.; Dunham, E. W.; Collins, P.; Bida, T.; Bright, L.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Tholen, D. J.; Taylor, B.; Wolf, J.; Pfueller, E.; Meyer, A.; and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should

  19. Diurnal and seasonal behavior of the Hokkaido East SuperDARN ground backscatter: simulation and observation

    NASA Astrophysics Data System (ADS)

    Oinats, Alexey V.; Nishitani, Nozomu; Ponomarenko, Pavlo; Ratovsky, Konstantin G.

    2016-02-01

    We studied regular diurnal and seasonal behaviors of ground backscatter propagation characteristics corresponding to the Hokkaido East Super Dual Auroral Radar Network (SuperDARN) (43.53° N, 143.61° E). Firstly, we simulated key propagation characteristics using a high frequency (HF) calculation technique based on the waveguide approach and International Reference Ionosphere (IRI)-2012 model as background ionosphere. The minimum slant range, skip distance, corresponding elevation angle, and true reflection height were considered in this study. The behaviors of these characteristics were well explained by diurnal and seasonal variations in the critical frequency and maximum height of corresponding ionosphere layer in HF reflection point. We estimated the accuracy of the standard SuperDARN mapping technique and proposed a means for its improvement. Secondly, we constructed an algorithm for mass data processing and extracted diurnal dependencies of the minimum slant range, corresponding elevation angle, and effective reflection height from the Hokkaido East SuperDARN dataset for a period from 2007 to 2014. The algorithm uses the simulated characteristics for distinguishing regular ground backscatter echoes propagating in the E and F2 HF channels. Observed monthly mean and simulated values of the characteristics were compared, and the result showed that the accuracy of IRI-2012 significantly depends on solar activity level and orientation of HF propagation path. In general, the difference between observed and simulated values decreased with increases in solar activity and azimuth. We also analyzed the occurrence of echoes originating behind the radar and found that they most frequently appear in winter and equinoxes before sunrise in beam #0 and after sunset in beam #15. The probability of their observation for a specific local time could reach up to 35 %.

  20. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model

    NASA Astrophysics Data System (ADS)

    Caumont, Olivier; Vincendon, Béatrice; Cimini, Domenico; Löhnert, Ulrich; Alados-Arboledas, Lucas; Bleisch, René; Buffa, Franco; Enrico Ferrario, Massimo; Haefele, Alexander; Huet, Thierry; Madonna, Fabio; Pace, Giandomenico

    2016-04-01

    Temperature and humidity retrievals from an international network of ground-based microwave radiometers (MWR) have been collected to assess the potential of their assimilation into a convective-scale Numerical Weather Prediction (NWP) system. Thirteen stations over a domain encompassing the western Mediterranean basin were considered for a time period of forty-one days in autumn, when heavy-precipitation events most often plague this area. Prior to their assimilation, MWR data were compared to very-short-term forecasts. Observation-minus-background statistics revealed some biases, but standard deviations were comparable to that obtained with radiosondes. The MWR data were then assimilated in a three-dimensional variational (3DVar) data assimilation system through the use of a rapid update cycle. A set of sensitivity experiments allowed assessing extensively the impact of the assimilation of temperature and humidity profiles, both separately and jointly. The respective benefit of MWR data and radiosonde data on analyses and forecasts was also investigated.

  1. Potentials and Limits of Sar Permanent Scatterers In Ground Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Rocca, F.; Colesanti, C.; Ferretti, A.; Prati, C.

    The Permanent Scatterers (PS) technique allows the identification of individual radar targets particularly suitable for SAR interferometric measurements. In fact, despite its remarkable potential, spaceborne SAR Differential Interferometry (DInSAR) has not been fully exploited as a reference tool for ground deformation mapping, due to the presence of atmospheric artefacts as well as geometrical and temporal phase decorrelation. Both drawbacks are overcome in a multi-image framework of interfer- ometric data (>25-30 images) jointly used in order to properly identify and exploit the subset of image pixels corresponding to privileged reflectors, the so-called Per- manent Scatterers. Provided that at least 3-4 PS/sqkm are available, accurate phase measurements carried out on the sparse PS grid allow one to compensate data for the atmospheric phase contributions. Average ground deformation rate as well as full dis- placement time series (both along the satellite Line of Sight, LOS) are estimated with millimetric accuracy on individual PS locations. The PS subset of image pixels can be thought of as a high density (100-400 PS/sqkm, in urban areas) "natural" geode- tic network. This study aims at discussing in detail potentials and limits of the PS approach in monitoring ground deformation phenomena characterised by a complex time non-uniform evolution (Non-Linear Motion, NLM). PS results highlighting sea- sonal displacement effects beneath San Jose (Santa Clara Valley, California) are going to be discussed. The deformation occurring there is related to the seasonal variation of the ground water level in the area delimited by the Silver Creek and the San Jose fault. The San Jose PS analysis is exploited as a significant case study to assess the main requirements for a successful detection of NLM phenomena (by means of PS), and to analyse their impact on the quality of results. Particular attention will be de- voted to the effect of irregularly sampled data and missing

  2. Charactering the Surface Radiation Budget over the Tibetan Plateau Using Ground Observations, Reanalysis, and Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Liang, S.

    2013-12-01

    The importance of the surface radiation budget (SRB) over the Tibetan Plateau (TP) to impact not only the local climate but also the remote area (i.e., the drought and flood in China) attracts increasing attentions in the scientific communities. Observed evidences support a continuous dimming trend with predominant warming, wind stilling, and moistening trends since 1980s. Cautions, however, need to be exercised when using ground observations or satellite retrievals alone, which are limited with large errors and sparse distributions, respectively. This study aims to characterize the monthly SRB at 0.5° over the TP extending two decades by incorporating multiple datasets, including ground-measured datasets, reanalysis datasets, and satellite datasets. The fused SRB was first generated using a multiple linear regression method to synthesize reanalysis and satellite datasets with ground observations from 1984 to 2007, and was then applied not only to analyze the characteristics (spatial distribution, temporal variation, and trend) of the SRB but also to compare with selected atmospheric (cloud cover, precipitation, and water vapor) and surface (temperature, snow cover, and the Normalized Difference Vegetation Index (NDVI)) anomalies over the TP. The cross validation results suggested that the fused data lowered the root mean square errors (RMSEs) at the monthly scale (<19 W/m2) by constraining uncertainties from multiple sources (i.e., inputs, preprocessing, and data fusion). The major finding is that the interaction of solar dimming with changes of surface albedo has dominated the marked decrease of all-wave net radiation since the mid-1980s regardless of the increase of downward longwave radiation (that counteracts the increase of upward longwave radiation). Furthermore, the weakening and strengthening of the relationships between the components of SRB and the correlated variables of atmospheric or surface conditions exhibit a seasonal dependency over the TP, where

  3. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  4. Ground-based observations of ion/neutral coupling at Thule and Qanaq, Greenland

    NASA Technical Reports Server (NTRS)

    Thayer, J. P.; Crowley, G.; Niciejewski, R. J.; Killeen, T. L.; Buchau, J.; Reinisch, B. W.

    1995-01-01

    During December 1988, 24 hours of darkness and clear sky conditions permitted continuous observations of the O I(6300 A) airglow by a Fabry-Perot interferometer located at Thule Air Base, Greenland. Thus a continuous record of the F region neutral winds was obtained for that month. During this same time period, a digital ionosonde located at Qanaq, Greenland (110 km north of Thule Air Base), was in operation measuring electron density profiles and F region ion drifts. This combination of ground-based observations allowed the investigation of ion/neutral coupling at a temporal resolution of about 15 min. Interplanetary magnetic field (IMF) data from the IMP 8 satellite were also available from December 16 to 24 and indicated intervals of B(sub z) northward IMF conditions during this period. Here we investigate the observed response of the neutral wind to convection changes in the ion drift inside the polar cap for southward and northward IMF B(sub z) conditions. In particular, we establish a control day illustrating the typical antisunward neutral wind and ion drift patterns observed for southward B(sub z) over Thule and Qanaq, and we compare it with observations made when the IMF B(sub z) is directed northward. The observations during periods of northward B(sub z) display sunward directed ion drifts over the polar cap accompanied by decreasing antisunward directed neutral winds. We investigate these times of northward B(sub z) further and demonstrate that the ion drag term alone cannot describe the observed response in the neutral wind during northward IMF.

  5. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  6. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  7. Observations of northern latitude ground-surface and surface-air temperatures

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.; Bhuiyan, A. K. M. H.; Hanesiak, John; Akinremi, O. O.

    2009-04-01

    Note that the magnitude of temperature increases reconstructed from borehole records seems to contrast with some proxy based reconstructions of surface air temperature (SAT) that indicate lower amounts of warming over the same period. We present data suggesting that ground and snow cover may bias climate reconstructions based on BT in portions of the Canadian northwest. Eight sites west of the Canadian cordillera, were examined for long-term SAT and GST changes. At seven of these sites precise borehole temperature profiles are used for the first time since the 1960s, thereby exploring the linkage between GST and SAT. New readings were made at four of these locations. All sites showed significant increasing SAT trends, in terms of annual mean minimum and maximum temperatures. Over a 54 year period, the minimum temperatures increased between 1.1°C and 1.5°C while the maximum increased between 0.8°C and 1.5°C, among those eight stations. Observations of GST at those sites, however, showed no obvious climate induced perturbations. Therefore, we believe that a trend in our area towards an increase in SAT temperatures only over the winter and spring is being masked by freeze thaw and latent energy effects. These results are important, particularly in northern locations where ground and snow cover may play an important role in creating a seasonal bias in GST reconstructions from borehole surveys.

  8. Ground-based observation of emission lines from the corona of a red-dwarf star.

    PubMed

    Schmitt, J H; Wichmann, R

    2001-08-01

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened. PMID:11484044

  9. Education and Public Outreach for MSFC's Ground-based Observations in Support of the HESSI Mission

    NASA Astrophysics Data System (ADS)

    Adams, M.; Hagyard, M. J.; Newton, E.

    1999-05-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years' experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  10. Revised global model of thermosphere winds using satellite and ground-based observations

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Spencer, N. W.; Biondi, M. A.; Burnside, R. G.; Hernandez, G.; Johnson, R. M.

    1991-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been combined with wind data for the lower and upper thermosphere from ground-based incoherent scatter radar and Fabry-Perot optical interferometers to generate a revision (HWM90) of the HWM87 empirical model and extend its applicability to 100 km. Comparison of the various data sets with the aid of the model shows in general remarkable agreement, particularly at mid and low latitudes. The ground-based data allow modeling of seasonal/diurnal variations, which are most distinct at midlatitudes. While solar activity variations are now included, they are found to be small and not always very clearly delineated by the current data. They are most obvious at the higher latitudes. The model describes the transition from predominately diurnal variations in the upper thermosphere to semidiurnal variations in the lower thermosphere and a transition from summer to winter flow above 140 km to winter to summer flow below. Significant altitude gradients in the wind are found to extend to 300 km at some local times and pose complications for interpretation of Fabry-Perot observations.