Science.gov

Sample records for ground state atoms

  1. Individual Atoms in their Quantum Ground State

    NASA Astrophysics Data System (ADS)

    Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.

    2016-05-01

    An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.

  2. Measured Atomic Ground State Polarizabilities of 35 Metallic Elements

    NASA Astrophysics Data System (ADS)

    Indergaard, John; Ma, Lei; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walter

    2015-03-01

    Advanced pulsed cryogenic molecular beam electric deflection methods utilizing a position-sensitive mass spectrometer and 7.87 eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the periodic table for the first time. These measurements increase the total number of experimentally obtained atomic polarizabilities from 23 to 57. Concurrent Stern-Gerlach deflection measurements verified the ground state condition of the measured atoms. Generating higher temperature beams allowed for the comparison of relative populations of the ground and excited states in order to extract the true temperature of the atomic beam, which followed the nominal temperature closely over a wide temperature range. Comparison of newly measured polarizabilities with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the periodic table. Cluster Lab at Georgia Tech.

  3. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  4. Measured atomic ground-state polarizabilities of 35 metallic elements

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Indergaard, John; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walt A.

    2015-01-01

    Advanced pulsed cryogenic molecular-beam electric deflection methods involving position-sensitive mass spectrometry and 7.87-eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the Periodic Table. Concurrent Stern-Gerlach deflection measurements verified the ground-state condition of the measured atoms. Comparison with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the Periodic Table.

  5. A Remark on the Ground State Energy of Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Hogreve, H.

    2011-08-01

    Monotonicity properties of the ground state energy of bosonic atoms as established in a recent paper by M.K.H. Kiessling [J. Stat. Phys. 139:1063 (2009)] are studied. Symmetry and scaling arguments lead to a more direct proof of a slightly stronger result of this monotonicity and the behavior of the ground state energy as a function of the number of bosonic electrons. Furthermore, invoking appropriate lower and upper bounds on two-electron systems, the stability of the bosonics He- ion is rigorously demonstrated.

  6. Unparticle contribution to the hydrogen atom ground state energy

    NASA Astrophysics Data System (ADS)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  7. Ground-State Structures of Atomic Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    McMahon, Jeffrey M.; Ceperley, David M.

    2011-04-01

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (rs=1.23) that remains stable to 1 TPa (rs=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (rs=0.92).

  8. All-optical reconstruction of atomic ground-state population

    NASA Astrophysics Data System (ADS)

    London, P.; Firstenberg, O.; Shuker, M.; Ron, A.

    2010-04-01

    The population distribution within the ground state of an atomic ensemble is of great significance in a variety of quantum-optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical-pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme, which result from the symmetry properties of the dipole matrix elements, are discussed.

  9. Photoionization of potassium atoms from the ground and excited states

    SciTech Connect

    Zatsarinny, O.; Tayal, S. S.

    2010-04-15

    The Dirac-based B-spline R-matrix method is used to investigate the photoionization of atomic potassium from the 4s ground and 4p, 5s-7s, 3d-5d excited states. The effect of the core polarization by the outer electron is included through the polarized pseudostates. Besides the dipole core polarization, we also found a noticeable influence of the quadrupole core polarization. We obtained excellent agreement with experiment for cross sections of the 4s photoionization, including accurate description of the near-threshold Cooper-Seaton minimum. We also obtained close agreement with experiment for the 4p photoionization, but there are unexpectedly large discrepancies with available experimental data for photoionization of the 5d and 7s excited states.

  10. Ground State and Excited State H-Atom Temperatures in a Microwave Plasma Diamond Deposition Reactor

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Chenevier, M.; Breton, Y.; Petiau, M.; Booth, J. P.; Hassouni, K.

    1996-09-01

    Ground electronic state and excited state H-atom temperatures are measured in a microwave plasma diamond deposition reactor as a function of a low percentage of methane introduced in the feed gas and the averaged input microwave power density. Ground state H-atom temperatures (T_H) and temperature of the H-atom in the n=3 excited state (T_{Hα}) are obtained from the measurements respectively of the excitation profile by Two-photon Allowed transition Laser Induced Fluorescence (TALIF) and the Hα line broadening by Optical Emission Spectroscopy (OES). They are compared to gas temperatures calculated with a 1D diffusive non equilibrium H{2} plasma flow model and to ground electronic state rotational temperatures of molecular hydrogen measured previously by Coherent Anti-Stokes Raman Spectroscopy.

  11. Interactions Between Ground-State Nitrogen Atoms and Molecules

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Lippincott, Ellis R.

    1959-01-01

    Potential-energy curves for nitrogen atom (N-N) interactions corresponding to the X (1)Sigma(sup +, sub g), A (3)Sigma(sup +, sub u), (5)Sigma(sup +, sub g), (7)Sigma(sup +, sub u), B (3) Pi(sub g), C (3)(Pi(su u)and a (1)Pi(sub g) states of the nitrogen molecule N2 as well as curves for the atom-molecules (N-N2) and molecule-molecule (N2-N2) interactions have been calculated. All calculations have been based as nearly as possible on experimental data, including spectroscopically determined vibrational energy levels, scattering cross sections of atomic beams in gases, and measured vibrational relaxation times. In cases where experimental data were not available, approximate quantum-mechanical calculations have been made. Results obtained by these various methods are remarkably consistent with one another and are believed to have good accuracy.

  12. Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence

    NASA Astrophysics Data System (ADS)

    Parniak, Michał; Leszczyński, Adam; Wasilewski, Wojciech

    2016-05-01

    We demonstrate coupling of light resonant to transition between two excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a nonlinear process of four-wave mixing is used to achieve light emission proportional to independently prepared ground-state atomic coherence. Strong correlations between stimulated Raman-scattering light heralding the generation of ground-state coherence and the four-wave mixing signal are measured and shown to survive the storage period, which is promising in terms of quantum memory applications. The process is characterized as a function of laser detunings.

  13. Measurements of the Ground-State Polarizabilities of Cs, Rb, and K using Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Gregoire, Maxwell; Hromada, Ivan; Holmgren, William; Trubko, Raisa; Cronin, Alex

    2016-05-01

    We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms with 0.2% uncertainty using a three-nanograting Mach-Zehnder atom beam interferometer. Since thermal Cs atoms have short de Broglie wavelengths, we developed measurement methods that do not require resolved atom diffraction: we used phase choppers to measure atomic beam velocity distributions, and electric field gradients to induce polarizability-dependent phase shifts. Our measurements provide benchmark tests for atomic structure calculations and thus test the underlying theory used to interpret atomic parity non-conservation experiments.

  14. Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2015-12-01

    The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.

  15. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  16. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  17. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  18. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  19. Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.; Walsh, B. C.; Steiner, E.

    1974-01-01

    Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.

  20. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  1. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kluge, H.-Jürgen

    2010-02-01

    The international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” held during 2009 in Poznan gave an excellent overview on the latest experimental and theoretical results regarding the investigation of radionuclides by atomic physics techniques and the extraction of ground state properties of exotic nuclei. This publication intends to summarize the progress recently achieved by laser spectroscopy and mass spectrometry as well as by weak interaction studies using atomic physics techniques. Furthermore, it tries to point to some areas requiring urgent improvements and to indicate some routes of future research and challenging opportunities.

  2. Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Rudowicz, C.

    2016-05-01

    We investigated the ground state of Ho atoms adsorbed on the Pt(111) surface, for which conflicting results exist. The density functional theory (DFT) calculations yielded the Ho ground state as | Jz=±8 > . Interpretation of x-ray absorption spectroscopy and x-ray magnetic circular dichroism spectra and the magnetization curves indicated the ground state as | Jz=±6 > . Superposition model is employed to predict the crystal-field (CF) parameters based on the structural data for the system Ho/Pt(111) obtained from the DFT modeling. Simultaneous diagonalization of the free-ion (HFI) and the trigonal CF Hamiltonian (HCF) within the whole configuration 4 f10 of H o3 + ion was performed. The role of the trigonal CF terms, neglected in the pure uniaxial CF model used previously for interpretation of experimental spectra, is found significant, whereas the sixth-rank CF terms may be neglected in agreement with the DFT predictions. The results provide substantial support for the experimental designation of the | Jz=±6 > ground state, albeit with subtle difference due to admixture of other | Jz> states, but run against the DFT-based designation of the | Jz=±8 > ground state. A subtle splitting of the ground energy level with the state (predominantly), | Jz=±6 > is predicted. This paper provides better insight into the single-ion magnetic behavior of the Ho/Pt(111) system by helping to resolve the controversy concerning the Ho ground state. Experimental techniques with greater resolution powers are suggested for direct confirmation of this splitting and C3 v symmetry experienced by the Ho atom.

  3. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  4. Quantum ground state of self-organized atomic crystals in optical resonators

    SciTech Connect

    Fernandez-Vidal, Sonia; De Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-15

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  5. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  6. Learning Approach on the Ground State Energy Calculation of Helium Atom

    NASA Astrophysics Data System (ADS)

    Shah, Syed Naseem Hussain

    2010-07-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function. The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  7. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  8. Ground-state properties of artificial bosonic atoms, Bose interaction blockade, and the single-atom pipette

    SciTech Connect

    Kolomeisky, Eugene B.; Kalas, Ryan M.; Straley, Joseph P.

    2004-06-01

    We analyze the ground-state properties of an artificial atom made out of repulsive bosons attracted to a center for the case that all the interactions are short ranged. Such bosonic atoms could be created by optically trapping ultracold particles of alkali-metal vapors; we present the theory describing how their properties depend on experimentally adjustable strength of 'nuclear' attraction and interparticle repulsion. The binding ability of the short-range potential increases with space dimensionality, only a limited number of particles can be bound in one dimension, while in two and three dimensions the number of bound bosons can be chosen at will. Particularly in three dimensions we find an unusual effect of enhanced resonant binding: for not very strong interparticle repulsion the equilibrium number of bosons bound to a nuclear potential having a sufficiently shallow single-particle state increases without bound as the nuclear potential becomes less attractive. As a consequence of the competing nuclear attraction enhanced by the Bose statistics and interparticle repulsions, the dependence of the ground-state energy of the atom on the number of particles has a minimum whose position is experimentally tunable. This implies a staircase dependence of the equilibrium number of bound bosons on external parameters which may be used to create a single-atom pipette--an arrangement which allows the transport of atoms into and out of a reservoir, one at a time.

  9. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry

    NASA Astrophysics Data System (ADS)

    Gregoire, Maxwell D.; Hromada, Ivan; Holmgren, William F.; Trubko, Raisa; Cronin, Alexander D.

    2015-11-01

    We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms using a three-nanograting Mach-Zehnder atom beam interferometer. Our measurements provide benchmark tests for atomic structure calculations and thus test the underlying theory used to interpret atomic parity-nonconservation experiments. We measured αCs=4 π ɛ0×59.39 (9 ) Å3,αRb=4 π ɛ0×47.39 (8 ) Å3 , and αK=4 π ɛ0×42.93 (7 ) Å3 . In atomic units, these measurements are αCs=401.2 (7 ) ,αRb=320.1 (6 ) , and αK=290.0 (5 ) . We report ratios of polarizabilities αCs/αRb=1.2532 (10 ) ,αCs/αK=1.3834 (9 ) , and αRb/αK=1.1040 (9 ) with smaller fractional uncertainty because the systematic errors for individual measurements are largely correlated. Since Cs atom beams have short de Broglie wavelengths, we developed measurement methods that do not require resolved atom diffraction. Specifically, we used phase choppers to measure atomic beam velocity distributions, and we used electric field gradients to give the atom interference pattern a phase shift that depends on atomic polarizability.

  10. Merit of ground-state electronegativities; a reply to ``Comments on `Introduction to the chemistry of fractionally charged atoms: Electronegativity' ''

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.; Zweig, George

    1987-09-01

    The arguments presented in the Comment by Liebman and Huheey are shown to be incorrect. The operational equivalence of Mulliken ground-state electronegativities and Pauling electronegativities is demonstrated for neutral atoms. It is shown that ground-state electronegativities and valence-state electronegativities for both neutral atoms and ions are also operationally equivalent. A single electronegativity scale based on Mulliken ground-state electronegativities may therefore be used for neutral atoms, ions, and fractionally charged atoms, as originally implied in the paper by Lackner and Zweig.

  11. Merit of ground-state electronegativities; a reply to ''Comments on 'Introduction to the chemistry of fractionally charged atoms: Electronegativity' ''

    SciTech Connect

    Lackner, K.S.; Zweig, G.

    1987-09-01

    The arguments presented in the Comment by Liebman and Huheey are shown to be incorrect. The operational equivalence of Mulliken ground-state electronegativities and Pauling electronegativities is demonstrated for neutral atoms. It is shown that ground-state electronegativities and valence-state electronegativities for both neutral atoms and ions are also operationally equivalent. A single electronegativity scale based on Mulliken ground-state electronegativities may therefore be used for neutral atoms, ions, and fractionally charged atoms, as originally implied in the paper by Lackner and Zweig.

  12. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  13. Vibrational ground state cooling of a neutral atom in a tightly focused optical dipole trap

    NASA Astrophysics Data System (ADS)

    Aljunid, Syed; Maslennikov, Gleb; Paesold, Martin; Durak, Kadir; Leong, Victor; Kurtsiefer, Christian

    2012-06-01

    Recent experiments have shown that an efficient interaction between a single trapped atom and light can be established by concentrating light field at the location of the atom by focusing [1-3]. However, to fully exploit the benefits of strong focusing one has to localize the atom at the maximum of the field strength [4]. The position uncertainty due to residual kinetic energy of the atom in the dipole trap (depth ˜1mK) after molasses cooling is significant (few 100 nm). It limits the interaction between a focused light mode and an atom already for moderate focusing strength [2]. To address this problem we implement a Raman Sideband cooling technique, similar to the one commonly used in ion traps [5], to cool a single ^87Rb atom to the ground state of the trap. We have cooled the atom along the transverse trap axis (trap frequency ντ=55,), to a mean vibrational state nτ=0.55 and investigate the impact on atom-light interfaces.[4pt] [1] M. K. Tey, et al., Nature Physics 4 924 (2008)[0pt] [2] M. K. Tey et. al., New J. Phys. 11, 043011 (2009)[0pt] [3] S.A. Aljunid et al., PRL 103, 153601 (2009)[0pt] [4] C. Teo and V. Scarani Opt. Comm. 284 4485-4490 (2011)[0pt] [5] C. Monroe et al., PRL 75, 4011 (1995)

  14. Fast ground state manipulation of neutral atoms in microscopic optical traps.

    PubMed

    Yavuz, D D; Kulatunga, P B; Urban, E; Johnson, T A; Proite, N; Henage, T; Walker, T G; Saffman, M

    2006-02-17

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 microm at the level of 10(-3). Ramsey spectroscopy is used to measure a dephasing time of 870 micros, which is approximately 5000 longer than the time for a pi/2 pulse. PMID:16605988

  15. Reactions of ground-state and electronically excited sodium atoms with methyl bromide and molecular chlorine

    SciTech Connect

    Weiss, P.S.; Mestdagh, J.M.; Schmidt, H.; Covinsky, M.H.; Lee, Y.T. )

    1991-04-18

    The reactions of ground- and excited-state Na atoms with methyl bromide (CH{sub 3}Br) and chlorine (Cl{sub 2}) have been studied by using the crossed molecular beams method. For both reactions, the cross sections increase with increasing electronic energy. The product recoil energies change little with increasing Na electronic energy, implying that the product internal energies increase substantially. For Na + CH{sub 3}Br, the steric angle of acceptance opens with increasing electronic energy.

  16. Anomalous magnetic hyperfine structure of the 229Th ground-state doublet in muonic atoms

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.

    2016-07-01

    The magnetic hyperfine (MHF) splitting of the ground and low-energy 3 /2+(7.8 ±0.5 eV) levels in the 229Th nucleus in the muonic atom (μ1S1 /2 -229Th) * is calculated considering the distribution of the nuclear magnetization in the framework of the collective nuclear model with wave functions of the Nilsson model for the unpaired neutron. It is shown that (a) deviation of the MHF structure of the isomeric state exceeds 100% from its value for a pointlike nuclear magnetic dipole (the order of sublevels is reversed); (b) partial inversion of levels of the 229Th ground-state doublet and spontaneous decay of the ground state to the isomeric state occur; (c) the E 0 transition, which is sensitive to differences in the mean-square charge radii of the doublet states, is possible between mixed sublevels with F =2 ; and (d) MHF splitting of the 3 /2+ isomeric state may be in the optical range for certain values of the intrinsic gK factor and a reduced probability of a nuclear transition between the isomeric and the ground states.

  17. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    SciTech Connect

    Bussery-Honvault, Beatrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X {sup 1}{sigma}{sub g}{sup +} and excited {sup 1}{pi}{sub g}(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the {sup 1}{pi}{sub g}(leftarrow){sup 1}{sigma}{sub g}{sup +} transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the {sup 1}{pi}{sub g}(4s3d) to the X {sup 1}{sigma}{sub g}{sup +} state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by

  18. On the hyperfine structures of the ground state(s) in the 6Li and 7Li atoms

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.

    2016-06-01

    Hyperfine structure of the ground 22 S-states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus we determine the hyperfine structure of the ground (doublet) 22 S-state(s) in the 6Li and 7Li atoms. Our predicted values (228.2058MHz and 803.5581MHz, respectivly) agree well with the experimental values 228.20528(8) MHz (6Li) and 803.50404(48) MHz (7Li (R.G. Schlecht and D.W. McColm, Phys. Rev. 142, 11 (1966))). The hyperfine structures of a number of lithium isotopes with short life-times, including 8Li, 9Li and 11Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron 7Be+ and 9Be+ ions in their ground 22 S-states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n 3 S-states of the four-electron atoms and ions.

  19. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  20. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  1. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  2. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  3. Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms

    SciTech Connect

    Kluepfel, Simon; Kluepfel, Peter; Jonsson, Hannes

    2011-11-15

    The ground state of atoms from H to Ar was calculated using a self-interaction correction to local- and gradient-dependent density functionals. The correction can significantly improve the total energy and makes the orbital energies consistent with ionization energies. However, when the calculation is restricted to real orbitals, application of the self-interaction correction can give significantly higher total energy and worse results, as illustrated by the case of the Perdew-Burke-Ernzerhof gradient-dependent functional. This illustrates the importance of using complex orbitals for systems described by orbital-density-dependent energy functionals.

  4. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.

    PubMed

    Yi, Zhen; Li, Gao-xiang; Wu, Shao-ping; Yang, Ya-ping

    2014-08-25

    We investigate a hybrid quantum system combining cavity quantum electrodynamics and optomechanics, where a photon mode is coupled to a four-level tripod atom and to a mechanical mode via radiation pressure. We find that within the single-photon optomechanics and Lamb-Dicke limit, the presence of the tripod atom alters the optical properties of the cavity radiation field drastically, and gives rise to completely quantum destructive interference effects in the optical scattering. The heating rate can be dramatically suppressed via utilizing the completely destructive interference involving atom, photon and phonon, and the obtained result is analogous to that of the resolved sideband regime. The heating process is only connected to the scattering of cavity damping path, which is also far-off resonance. Meanwhile, the cooling rate assisted by the atomic transitions can be significantly enhanced, where the cooling process occurs through the cavity and atomic dissipation paths. Finally, the ground-state cooling of the movable mirror is achievable and even more robust to heating process and thermal noise. PMID:25321216

  5. The Role of the Zero-Point Field in the Shift of the Ground State Energy of Atoms

    NASA Astrophysics Data System (ADS)

    Huang, X. Y.; Peng, J. S.

    1988-01-01

    Suppose there is a zero-point field corresponding to the zero-point energy in vacuum. We can use time-dependent perturbation theory to calculate the influence of the field on the energy of atoms. When the field is applied to atoms which are in the ground state initially, the energy change of the atoms shows a linear dependence on time with a constant energy shift. This constant shift is the usual energy shift of atoms.

  6. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  7. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    SciTech Connect

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E.; Tretyakova, T. Yu.

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  8. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    NASA Astrophysics Data System (ADS)

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E.; Tretyakova, T. Yu.

    2015-12-01

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even-even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even-even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  9. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  10. Activation of C-Cl by ground-state aluminum atoms: an EPR and DFT investigation.

    PubMed

    Joly, Helen A; Newton, Trevor; Myre, Maxine

    2012-01-01

    The reaction of ground-state Al atoms with dichloromethane (CH(2)Cl(2)) in an adamantane matrix at 77 K yielded two mononuclear Al species. The magnetic parameters, extracted from the axial EPR spectrum of Species A/A' (g(1) = 2.0037, g(2) = g(3) = 2.0030, a(Al,1) = 1307 MHz, a(Al,2) = a(Al,3) = 1273 MHz, a(35Cl) = 34 MHz and a(37Cl) = 28 MHz) were assigned to the Al-atom insertion product, ClCH(2)AlCl. Density functional theory (DFT) calculations of the values of the Al and Cl hyperfine interaction (hfi) of the Cl(1)-Cl(2)gauche conformer were in close agreement with the experimental values of ClCH(2)AlCl. The second species, B/B', had identical magnetic parameters to those of ClCH(2)AlCl with the exception that the Al hfi was 15% smaller. Coordination of a ligand, possessing a lone pair of electrons, to the Al atom of the insertion product, [ClCH(2)AlCl]:X, could cause the a(Al) to decrease by 15%. Alternatively, it is possible that the Cl(1)-Cl(2) anti conformer of ClCH(2)AlCl is also isolated in the matrix. Support for the spectral assignments is given by calculation of the nuclear hfi of [ClCH(2)AlCl]:H(2)O and the Cl(1)-Cl(2) anti conformer of ClCH(2)AlCl using a DFT method. The potential energy hypersurface for an Al atom approaching CH(2)Cl(2), calculated at the B3LYP level, suggests that Al atom abstraction of Cl forming AlCl and CH(2)Cl is favoured in the gas phase. When produced in a matrix, the close proximity of AlCl and CH(2)Cl could account for the formation of ClCH(2)AlCl. EPR evidence was also found for the formation of the CHCl(2) radical. PMID:22086441

  11. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    SciTech Connect

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and

  12. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    PubMed Central

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-01-01

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydropyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)-imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reaction of [CoII(H2bim)3]2+ with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer, −41 ± 2 cal mol−1 K−1. This is even more negative than the ΔSoHAT = −30 ± 2 cal mol−1 K−1 for the two iron complexes and the ΔSoHAT for RuII(acac)2(py-imH) + TEMPO, 4.9 ± 1.1 cal mol−1 K−1, as reported earlier. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSoHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHoHAT = −11.2 ± 0.5 kcal mol−1 which matches the enthalpy predicted from the difference in literature solution BDEs. A brief evaluation of the literature thermochemistry of TEMPOH and tBu3PhOH supports the common assumption that ΔSoHAT ≈ 0 for HAT reactions of organic and small gas-phase molecules. However, this assumption does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSoHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSoET, in aprotic solvents. This is because both ΔSoET and ΔSoHAT have substantial contributions from vibrational entropy, which varies significantly with the metal center involved. The close connection between ΔSoHAT and ΔSoET provides an important

  13. Meta-Atom Behavior in Clusters Revealing Large Spin Ground States.

    PubMed

    Hernández Sánchez, Raúl; Betley, Theodore A

    2015-11-01

    The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (χ(M)T ≈ 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mössbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min). PMID:26440452

  14. Rb atoms in a blue-detuned dipole trap: Coherence and ground-state differential ac Stark shift

    NASA Astrophysics Data System (ADS)

    Sheng, D.; Zhang, J.; Orozco, L. A.

    2013-06-01

    Blue-detuned dipole traps and their ability to preserve atomic coherences are interesting for precision measurement applications. In this paper, we present experimental studies on the differential ac Stark shift of the ground-state hyperfine splitting in 87Rb atoms confined in a dynamic blue-detuned dipole trap. We systematically study the power and detuning effects on the Rabi resonance frequency (differential ac Stark shift) and its linewidth (coherence) and find that their performance is compatible with future parity violation experiments in Fr.

  15. The theoretical study of the ground-state polar chromium-alkali-metal-atom molecules

    NASA Astrophysics Data System (ADS)

    Deng, Lijuan; Gou, Dezhi; Chai, Junshuai

    2016-04-01

    Potential energy curves and permanent dipole moments of the 6Σ+ and 8Σ+ ground state of CrX (X = Li, Na, K, Rb and Cs) are calculated by employing the complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods. The spectroscopic constants for the 6Σ+ and 8Σ+ ground state of these molecules are calculated. Moreover, CrK, CrRb and CrCs molecules with large values of permanent dipole moment (CrK: 5.553 D, CrRb: 6.341 D and CrCs: 6.731 D) at the equilibrium bond distance are potentially interesting candidates for ultracold anisotropic long-range dipole-dipole interactions and many-body physics studies.

  16. A simple, radially correlated ground state wavefunction for two electron atoms.

    NASA Technical Reports Server (NTRS)

    Altick, P. L.

    1972-01-01

    A one parameter function is presented as an approximation to the ground state wavefunction of the two electron radial hamiltonian. The parameter may be fixed by a nonvariational criterion. The resulting expectation value of the radial hamiltonian differs from its exact eigenvalue by about 2 parts in 3000 for helium while the 'local energy' never differs by more than 10% from the exact value over the entire r1-r2 plane. The cases Z = 1 and Z = 3 are also investigated.

  17. A model for charge transfer in ultracold Rydberg ground-state atomic collisions

    NASA Astrophysics Data System (ADS)

    Markson, Samuel; Sadeghpour, H. R.

    2016-06-01

    In excited molecules, the interaction between the covalent Rydberg and ion-pair channels forms a unique class of excited states, in which the infinite manifold of vibrational levels are the equivalent of atomic Rydberg states with a heavy electron mass. Production of the ion-pair states usually requires excitation through one or several interacting Rydberg states; these interacting channels lead to loss of flux, diminishing the rate of ion-pair production. Here, we develop an analytical, asymptotic charge-transfer model for the interaction between ultracold Rydberg molecular states, and employ this method to demonstrate the utility of off-resonant field control over the ion-pair formation, with near unity efficiency.

  18. Loading Bose-Einstein-condensed atoms into the ground state of an optical lattice

    SciTech Connect

    Julienne, P. S.; Williams, C. J.; Band, Y. B.; Trippenbach, Marek

    2005-11-15

    We optimize the turning on of a one-dimensional optical potential, V{sub L}(x,t)=S(t)V{sub 0} cos{sup 2}(kx) to obtain the optimal turn-on function S(t) so as to load a Bose-Einstein condensate into the ground state of the optical lattice of depth V{sub 0}. Specifically, we minimize interband excitations at the end of the turn-on of the optical potential at the final ramp time t{sub r}, where S(t{sub r})=1, given that S(0)=0. Detailed numerical calculations confirm that a simple unit cell model is an excellent approximation when the turn-on time t{sub r} is long compared with the inverse of the band excitation frequency and short in comparison with nonlinear time ({Dirac_h}/2{pi})/{mu} where {mu} is the chemical potential of the condensate. We demonstrate using the Gross-Pitaevskii equation with an optimal turn-on function S(t) that the ground state of the optical lattice can be loaded with no significant excitation even for times t{sub r} on the order of the inverse band excitation frequency.

  19. Reconciling simulated melting and ground-state properties of metals with a modified embedded-atom method potential

    NASA Astrophysics Data System (ADS)

    Sushko, G. B.; Verkhovtsev, A. V.; Kexel, Ch; Korol, A. V.; Schramm, S.; Solov'yov, A. V.

    2016-04-01

    We propose a modification of the embedded-atom method-type potential aiming at reconciling simulated melting and ground-state properties of metals by means of classical molecular dynamics. Considering titanium, magnesium, gold, and platinum as case studies, we demonstrate that simulations performed with the modified force field yield quantitatively correctly both the melting temperature of the metals and their ground-state properties. It is shown that the accounting for the long-range interatomic interactions noticeably affects the melting point assessment. The introduced modification weakens the interaction at interatomic distances exceeding the equilibrium one by a characteristic vibration amplitude defined by the Lindemann criterion, thus allowing for the correct simulation of melting, while keeping its behavior in the vicinity of the ground state minimum. The modification of the many-body potential has a general nature and can be applicable to metals with different characteristics of the electron structure as well as for many different molecular and solid state systems experiencing phase transitions.

  20. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  1. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  2. Formation rate for Rb 2 + molecular ions created in collisions of Rb Rydberg and ground-state atoms

    NASA Astrophysics Data System (ADS)

    Stanojevic, Jovica; Côté, Robin

    2016-05-01

    We calculate the formation rate of the molecular Rb2+ion in its various bound states produced in the associative ionization of a Rydberg and a ground-state atom. Before the formation takes place, the colliding atoms are accelerated by an attractive force between the collision partners. In this way the ground-state atom is first captured by the Rydberg electron and then guided towards the positive ion-core where a molecular ion is subsequently formed. As recently demonstrated, this process results in giant collisional cross sections for the molecular ion formation, with the cross sections essentially determined by the size of the Rydberg atom. For sufficient high principal quantum numbers and atomic densities, many ground-state atoms are already located inside the Rydberg atom and ready to participate in the associative ionization. The same process can occur between a Rydberg and a ground-state atom that form a long-range Rydberg molecule, possibly contributing to the shortening of the lifetimes of Rydberg atoms and molecules. Partial support from the US Army Research Office (ARO-MURI W911NF-14-1-0378), and from NSF (Grant No. PHY-1415560).

  3. Interactions between Ground State Oxygen Atoms and Molecules: O - O and O (sub2) - O (sub2)

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Maisch, William G.

    1960-01-01

    Potential energy curves for O - O interactions corresponding to the X (sup 3) Sigma - g, 1 delta g, 1 Sigma plus g, 3 delta u, A3 Sigma plus u, 1 Sigma - u, and B3 Sigma states of O (sub 2) have been calculated from spectroscopic data by the Rydberg-Klein-Rees method. Curves for the remaining twelve states of O (sub 2) dissociating to ground state atoms have been obtained from relations derived from approximate quantum-mechanical calculations, and checked against the meager experimental information available. Two semi-independent calculations have been made, and are in good agreement with each other. The quantum-mechanical relations also lead to an approximate O (sub 2) - O (sub 2) interaction, which is consistent with interactions derived from vibrational relaxation times and from high-temperature gas viscosity data.

  4. Calculation of the ground-state energy and average distance between particles for the nonsymmetric muonic {sup 3}He atom

    SciTech Connect

    Eskandari, M.R.; Rezaie, B.

    2005-07-15

    A calculation of the ground-state energy and average distance between particles in the nonsymmetric muonic {sup 3}He atom is given. We have used a wave function with one free parameter, which satisfies boundary conditions such as the behavior of the wave function when two particles are close to each other or far away. In the proposed wave function, the electron-muon correlation function is also considered. It has a correct behavior for r{sub 12} tending to zero and infinity. The calculated values for the energy and expectation values of r{sup 2n} are compared with the multibox variational approach and the correlation function hyperspherical harmonic method. In addition, to show the importance and accuracy of approach used, the method is applied to evaluate the ground-state energy and average distance between the particles of nonsymmetric muonic {sup 4}He atom. Our obtained results are very close to the values calculated by the mentioned methods and giving strong indications that the proposed wave functions, in addition to being very simple, provide relatively accurate values for the energy and expectation values of r{sup 2n}, emphasizing the importance of the local properties of the wave function.

  5. Ground state properties of cold bosonic atoms at large scattering lengths.

    PubMed

    Song, Jun Liang; Zhou, Fei

    2009-07-10

    In this Letter, we study bosonic atoms at large scattering lengths using a variational method where the condensate amplitude is a variational parameter. We further examine momentum distribution functions, chemical potentials, the speed of sound, and spatial density profiles of cold bosonic atoms in a trap in this limit. The latter two properties turn out to bear similarities to those of Fermi gases. The estimates obtained here are applicable near Feshbach resonances, particularly when the fraction of atoms forming three-body structures is small and can be tested in future cold atom experiments. PMID:19659218

  6. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  7. Production of NaCa+ molecular ions in the ground state from cold atom-ion mixtures by photoassociation via an intermediate state

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Montgomery, John A.; Michels, H. Harvey; Côté, Robin

    2016-07-01

    We present a theoretical analysis of optical pathways for formation of cold ground-state (NaCa) + molecular ions via an intermediate state. The formation schemes are based on ab initio potential energy curves and transition dipole moments calculated using effective-core-potential methods of quantum chemistry. In the proposed approach, starting from a mixture of cold trapped Ca+ ions immersed into an ultracold gas of Na atoms, (NaCa) + molecular ions are photoassociated in the excited E +1Σ electronic state and allowed to spontaneously decay either to the ground electronic state or an intermediate state from which the population is transferred to the ground state via an additional optical excitation. By analyzing all possible pathways, we find that the efficiency of a two-photon scheme, via either the B +1Σ or C +1Σ potential, is sufficient to produce significant quantities of ground-state (NaCa) + molecular ions. A single-step process results in lower formation rates that would require either a high-density sample or a very intense photoassociation laser to be viable.

  8. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  9. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  10. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  11. Correlated parameters in the quasi-classical treatment of atomic ground states using effective momentum dependent potentials for molecular dynamics simulation of strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Verboncoeur, John; Dharuman, Gautham; Christlieb, Andrew; Murillo, Michael

    2015-11-01

    Ground state energies and configurations of N, F, Ne, Al, S, Ar and Ca are obtained using a quasi-classical treatment with Kirschbaum-Wilets potentials. The effect of phase space parameters on the ground state energy is studied in detail and compared with Hartree-Fock values. The phase space parameters that resulted in ground state energies comparable to Hartree-Fock values are found to be correlated and follow a pattern with atomic number which led to identifying a predictive capability in the model. The change in ground state configurations for different phase space parameters is studied and correlated with the corresponding change in ground state energies. Work supported by Air Force Office of Scientific Research (AFOSR).

  12. Flow-tube kinetics study of the reaction between ground-state hydrogen atoms and nitromethane

    SciTech Connect

    Ko, Taeho; Flaherty, W.F.; Fontijn, A. )

    1991-09-05

    The kinetics of the H + CH{sub 3}NO{sub 2} reaction have been studied by using a discharge-flow resonance-fluorescence technique. H atoms are produced from microwave discharges through NH{sub 3}Ar mixtures. The data in the 360-570 K range are well fitted by the empirical expression k(T) = 7.8 {times} 10{sup {minus}12} exp(-1878K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Precision of the data varies from {plus minus} 6 to {plus minus} 11%, and the resulting accuracy is estimated to be better than {+-} 20%, where both figures represent 2{sigma} statistical confidence intervals. Results of some experiments where h{sub 2} was discharged indicate that the channel leading to OH and CH{sub 3}NO is significant for the reaction. A comparison of the kinetics of several reactions where a methyl-group hydrogen is abstracted by H atoms indicates that such a channel is not important in the present work but could become significant at elevated temperatures. To confirm the accuracy achieved with the present apparatus, measurements on the H + C{sub 6}H{sub 6} reaction have been made in the 410-530 K range and are compared to results from other studies.

  13. Static electric and magnetic multipole susceptibilities for Dirac one-electron atoms in the ground state

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-09-01

    We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.

  14. Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain.

    PubMed

    Szarek, Paweł; Wegner, Wojciech; Grochala, Wojciech

    2016-03-01

    Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S = 6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe(2+) sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands. PMID:26910724

  15. Trilobites and other molecular animals: How Rydberg-electrons catch ground state atoms

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman

    2012-06-01

    We report on laser spectroscopy results obtained in a dense and frozen Rydberg gas. Novel molecular bonds resulting in ultralong-range Rydberg dimers were predicted [1] and dimers as well as trimers in different vibrational states were found [2]. Some of these states are predicted to be bound by quantum reflection. Lifetime measurements confirm this prediction. Coherent superposition between free and bound states have been investigated [3]. Recently we have also confirmed that in an electric field these homonuclear molecules develop a permanent dipole moment [4]. [4pt] [1] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000). [0pt] [2] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. L"ow, T. Pfau, Nature 458, 1005 (2009), V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. L"ow, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and J. M. Rost, Phys. Rev. Lett. 105, 163201 (2010). [0pt] [3] B. Butscher, J. Nipper, J. B. Balewski, L. Kukota, V. Bendkowsky, R. L"ow, and T. Pfau Nature Physics 6, 970--974 (2010). [0pt] [4] W. Li, T. Pohl, J. M. Rost, Seth T. Rittenhouse, H. R. Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski, V. Bendkowsky, R. L"ow, T. Pfau, Science 334, 1110 (2011).

  16. Comment on 'Towards a differential equation for the nonrelativistic ground-state electron density of the He-like sequence of atomic ions'

    SciTech Connect

    Serra, Pablo

    2006-07-15

    In a recent paper [Phys. Rev. A 71, 042501 (2005)], Howard and March presented the exact ground state wave function of the spherical He-like atom, and many physical aspects of this solution were analyzed. We show that this function is not the exact solution of the model.

  17. High accuracy ab initio studies of electron-densities for the ground state of Be-like atomic systems.

    PubMed

    Komasa, J; Słupski, R; Jankowski, K; Wasilewski, J; Teale, A M

    2013-04-28

    Benchmark results for electron densities in the ground states of Li(-), Be, C(2+), Ne(6+), and Ar(14+) have been generated from very accurate variational wave functions represented in terms of extensive basis sets of exponentially correlated Gaussian functions. For Ne(6+), and Ar(14+), the upper bounds to the energies improve over previous results known from the literature. For the remaining systems our bounds are from 0.1 to 1.1 μhartree higher than the most accurate ones. We present in graphical and, partially, numerical form results both for the radial electron densities and for the difference radial density distributions (DRD) (defined with respect to the Hartree-Fock radial density) that highlight the impact of correlation effects on electron densities. Next, we have employed these DRD distributions in studies of the performance of several broadly used orbital-based quantum-chemical methods in accounting for correlation effects on the density. Our computed benchmark densities for Be have been also applied for testing the possibility of using the mathematically strict result concerning exact atomic electron densities, obtained by Ahlrichs et al. [Phys. Rev. A 23, 2106 (1981)], for the determination of the reliability range of computed densities in the long-range asymptotic region. The results obtained for Be are encouraging. PMID:23635137

  18. High accuracy ab initio studies of electron-densities for the ground state of Be-like atomic systems

    NASA Astrophysics Data System (ADS)

    Komasa, J.; Słupski, R.; Jankowski, K.; Wasilewski, J.; Teale, A. M.

    2013-04-01

    Benchmark results for electron densities in the ground states of Li-, Be, C2+, Ne6+, and Ar14+ have been generated from very accurate variational wave functions represented in terms of extensive basis sets of exponentially correlated Gaussian functions. For Ne6+, and Ar14+, the upper bounds to the energies improve over previous results known from the literature. For the remaining systems our bounds are from 0.1 to 1.1 μhartree higher than the most accurate ones. We present in graphical and, partially, numerical form results both for the radial electron densities and for the difference radial density distributions (DRD) (defined with respect to the Hartree-Fock radial density) that highlight the impact of correlation effects on electron densities. Next, we have employed these DRD distributions in studies of the performance of several broadly used orbital-based quantum-chemical methods in accounting for correlation effects on the density. Our computed benchmark densities for Be have been also applied for testing the possibility of using the mathematically strict result concerning exact atomic electron densities, obtained by Ahlrichs et al. [Phys. Rev. A 23, 2106 (1981), 10.1103/PhysRevA.23.2106], for the determination of the reliability range of computed densities in the long-range asymptotic region. The results obtained for Be are encouraging.

  19. Investigation of plasma excitation. volume i. electron impact studies of selected ground state and excited state rare gas atoms. Final report 7 Jun 77-20 Sep 80

    SciTech Connect

    Lake, M.L.

    1981-08-01

    Experiments were undertaken to determine electron impact cross sections of atoms in metastable states. One or two electron guns were used to first produce atoms in metastable states, then further excite these atoms to other levels. Limits on certain cross sections of helium atoms were obtained, but the detection limits of the apparatus prevented exhaustive study. Excitation functions and cross sections of xenon were obtained in the wavelength range from 3000 A to 9000 A.

  20. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  1. Heavy atom nitroxyl radicals. I: An ab initio study of the ground and lower electronic excited states of the H2As=O free radical

    NASA Astrophysics Data System (ADS)

    Tarroni, Riccardo; Clouthier, Dennis J.

    2009-09-01

    A series of ab initio calculations have been undertaken to predict the spectroscopic properties of the ground and first two excited states of the recently discovered arsenyl (H2AsO) free radical. This 13 valence electron species can be viewed as similar to the formaldehyde radical anion with a ground state electron configuration of ⋯(π)2(n)2(π∗)1. The arsenyl radical is nonplanar (pyramidal) in the ground state with a 59° out-of-plane angle and a 1.67 Å AsO bond length. It has a low-lying n-π ∗(Ã A2″) excited state (Te˜5000 cm-1) which has a much larger out-of-plane angle (86°) and longer AsO bond length (1.81 Å). The π-π ∗(B˜ A2') excited state at ˜20 500 cm-1 is less pyramidal (out-of-plane angle=70°) and has a somewhat shorter AsO bond (1.77 Å). Similar trends are found for the H2PO and H2NO free radicals, although the latter has a planar ground state, due to sp2 hybridization of the N atom, and a very long B˜ state AsO bond length. The geometric variations of the ground and excited states of the H2EO (E=N, P, As) radicals, as well as the ground states of the corresponding anions and cations, can be readily rationalized from the Walsh diagram of the anion. The variations in the E-O bond length are a result of changes in both the orbital occupancy and pyramidalization of the molecule. The results of the present work have been employed in the analysis of the B˜ A2'-X˜ A2' electronic band system of the H2AsO free radical as reported in the companion paper.

  2. Towards coherent manipulation of the ground states of single cesium atom confined in a microscopic far-off-resonance optical dipole trap

    NASA Astrophysics Data System (ADS)

    Diao, Wenting; He, Jun; Liu, Bei; Wang, Junmin

    2012-11-01

    This work deals with the cooling and trapping of single cesium (Cs) atoms in a large-magnetic-gradient magneto-optical trap (MOT) and the confinement of single Cs atoms in a far-off-resonance optical dipole trap (FORT). The experiment setup is based on two large-numerical-aperture lens assemblies which allow us to strongly focus a 1064-nm TEM00-mode Gaussian laser beam to a 1/e2 radius of ~ 2.3 μm to form a microscopic FORT for isolating single atom with environment and to efficiently collect the laser-induced-fluorescence photons emitted by single atoms for detecting and recognizing single atom's internal state. We have tried both of "bottom-up" and "top-down" loading schemes to confine single atoms in the microscopic FORT. In the "bottom-up" scheme, we have successfully prepared single Cs atoms in the MOT and transferred it into FORT with a probability of almost 100%. In the "top-down" scheme, we have achieved ~ 74% of single atom loading probability in the FORT using light-assisted collisions induced by blue detuning laser and with prepared many Cs atoms in the MOT. The relaxation time in hyperfine level of ground state of trapped single Cs atom is measured to be ~5.4 s. To coherently manipulate atomic quantum bits (qubit) encoded in the clock states (mF = 0 states in Fg = 3 and 4 hyperfine levels) of single Cs atom via the two-photon simulated Raman adiabatic passage (STIRAP), we have prepared two phase-locked laser beams with a frequency difference of ~ 9.192 GHz by optically injecting an 852-nm master laser to lock the +1-order sideband of a 9-GHz current-modulated slave diode laser. The two phase-locked laser beams are used to drive STIRAP process in the Λ-type three-level system consists of Cs |6S1/2 Fg = 4, mF = 0> and |6S1/2 Fg = 3, mF = 0< long-lived clock states and Cs |6S1/2 Fe = 4, mF = +1 > excited state with the single-photon detuning of ~ -20 GHz. Rabi flopping experiments are in progress.

  3. Suppression of Angular Momentum Transfer in Cold Collisions of Transition Metal Atoms in Ground States with Nonzero Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Hancox, Cindy I.; Doret, S. Charles; Hummon, Matthew T.; Krems, Roman V.; Doyle, John M.

    2005-01-01

    The Zeeman relaxation rate in cold collisions of Ti(3d24s2 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s2 shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms.

  4. Suppression of angular momentum transfer in cold collisions of transition metal atoms in ground States with nonzero orbital angular momentum.

    PubMed

    Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M

    2005-01-14

    The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms. PMID:15698077

  5. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  6. Nature of the Insulating Ground State of the Two-Dimensional Sn Atom Lattice on SiC(0001).

    PubMed

    Yi, Seho; Lee, Hunpyo; Choi, Jin-Ho; Cho, Jun-Hyung

    2016-01-01

    Semiconductor surfaces with narrow surface bands provide unique playgrounds to search for Mott-insulating state. Recently, a combined experimental and theoretical study of the two-dimensional (2D) Sn atom lattice on a wide-gap SiC(0001) substrate proposed a Mott-type insulator driven by strong on-site Coulomb repulsion U within a single-band Hubbard model. However, our systematic density-functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals shows that the Sn dangling-bond state largely hybridizes with the substrate Si 3p and C 2p states to split into three surface bands due to the crystal field. Such a hybridization gives rise to the stabilization of the antiferromagnetic order via superexchange interactions. The band gap and the density of states predicted by the hybrid DFT calculation agree well with photoemission data. Our findings not only suggest that the Sn/SiC(0001) system can be represented as a Slater-type insulator driven by long-range magnetism, but also have an implication that taking into account long-range interactions beyond the on-site interaction would be of importance for properly describing the insulating nature of Sn/SiC(0001). PMID:27465057

  7. FAST TRACK COMMUNICATION: Generalized geometrical model for photoionization of polarized atoms: II. Magnetic dichroism in the 3p photoemission from the K 3p64s 2S1/2 ground state

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.

    2010-10-01

    The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.

  8. Autoionizing states of atomic boron

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  9. Trapped antihydrogen in its ground state.

    PubMed

    Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2012-03-16

    Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out. PMID:22540471

  10. Measurement scheme for a ground-state parity non-conserving (PNC) measurement in a cesium atomic beam via two-pathway coherent control

    NASA Astrophysics Data System (ADS)

    Choi, Jungu; Elliott, Dan; Elliott's Lab Team

    2016-05-01

    We present a detailed analysis of an experimental setup for parity non-conserving (PNC) measurements in a cesium atomic beam. We employ a parallel-plate transmission line (PPTL) structure and highly reflective cylindrical mirrors to form a microwave cavity resonator to excite the PNC transitions in the cesium hyperfine ground states. In addition, a variable external dc field is applied to observe the Stark-induced transition, which would interfere with the PNC transition as the dc field amplitude changes. Finally, strong Raman lasers are used to excite the ground hyperfine transition. The Raman fields interfere with the weak transitions, and by varying the phase difference between the Raman fields and the microwave fields, we would infer the weak transition amplitudes from the signal modulation. The experimental setup requires maintaining coherent phase relations between all fields, well-characterized dc and rf field patterns, the two co-propagating Raman lasers, and suppression of the magnetic dipole contribution. Our analysis of the field modes supported by the PPTL structure indicates that with a moderate rf power and a few tens of seconds of data collection time, the PNC measurement of less than 3% uncertainty would be feasible.

  11. Formation of gallaoxetanes: C-O activation of 1,2-epoxybutane by ground-state Ga atoms.

    PubMed

    Joly, Helen A; Beaudet, Luc; Levesque, Michelle; Myre, Maxine

    2011-10-27

    (69/71)Ga atoms were reacted with 1,2-epoxybutane and its isotopomers, 1,2-epoxybutane-1,1-d(2) (CH(3)CH(2)CHOCD(2)) and 1,2-epoxybutane-2-d(1) (CH(3)CH(2)CDOCH(2)), under matrix-isolation conditions. The novel gallaoxetanes CH(3)CH(2)CHCH(2)GaO and CH(3)CH(2)CHCH(2)OGa, resulting from the insertion of the metal atom in the C(1)-O and C(2)-O bonds, respectively, of the 1,2-epoxybutane, were detected by EPR spectroscopy. The Ga and H hyperfine interaction (hfi) values of the gallaoxetanes, calculated using a DFT method, were used to help assign the EPR spectra. A third Ga-centered species, detected at 190 K, underwent spectral changes similar to those of the C(2)-O insertion product upon isotopic substitution of the 1,2-epoxybutane. Although the Ga hfi for this species was 36% smaller than that of the C(2)-O insertion product, the values for the H hfi were similar, suggesting that the carrier of the spectrum was the C(2)-O insertion product where Ga was perturbed by the matrix constraints. The alkyl radical CH(3)CH(2)(•CH)CH(2)OGa, resulting from ring-opening at the C(2)-O bond of 1,2-epoxybutane, was observed at temperatures below 150 K. This radical has been implicated in the formation of the C(2)-O insertion product. The unusually small value found for two of the β-hydrogens of the alkyl radical is discussed. PMID:21899276

  12. Photoelectron spectroscopy of O{sup -} at 266 nm: Ratio of ground- and excited-state atomic oxygen production and channel-resolved photoelectron anisotropy parameters

    SciTech Connect

    Domesle, C.; Jordon-Thaden, B.; Wolf, A.; Lammich, L.; Pedersen, H. B.; Foerstel, M.; Hergenhahn, U.

    2010-09-15

    The photodetachment dynamics of the atomic oxygen anion O{sup -} has been investigated at 266 nm (4.67 eV) by photoelectron detection in a crossed-beam experiment using a magnetic-bottle electron spectrometer. Taking explicit advantage of the Doppler shift imposed by the moving ion beam on the photoelectron energies, we report both the final-state branching ratio and photoelectron angular distributions. After photoabsorption at 266 nm, the formed electron-oxygen scattering state disintegrates, forming either the excited {sup 1}D or the ground {sup 3}P state of oxygen with a partition of {sup 1}D:{sup 3}P=0.32 {+-} 0.06. The detachment leading to the production of O({sup 3}P) shows an angular distribution of photoelectrons characterized by {beta}{sub P}=0.00 {+-} 0.10 mimicking a pure s-wave detachment, while the detachment into excited O({sup 1}D) occurs with {beta}{sub D}=-0.90{+-}0.10, giving direct evidence of interference between the outgoing s and d waves.

  13. Experimental evidence of resonant energy collisional transfers between argon 1s and 2p states and ground state H atoms by laser collisional induced fluorescence

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; van Dijk, Jan; Kroesen, Gerrit

    2015-04-01

    In this paper, laser collisional induced fluorescence (LCIF) is used to probe resonant excitation transfers in an argon/hydrogen plasma resulting from heavy particle collisions. Different radiative transitions between the 1s and 2p states (in Paschen's notation) of argon are optically pumped by a nanosecond laser pulse. The spontaneous fluorescence and collisional responses of the argon and hydrogen systems are monitored by optical emission spectroscopy. A surfatron plasma source is used to generate an argon plasma with a few per cent hydrogen addition at pressures between 0.65 and 20 mbar. The electron density is measured independently by means of Thomson scattering. The overall response of the plasma due to optical pumping of argon is briefly discussed and an overview of the known heteronuclear excitation transfers in an argon/hydrogen plasma is given. The propagation of the shortcut in the Ar(1s) to H(n = 2) excitation transfer due to the optical pumping of the Ar(1s) states is seen in the atomic hydrogen LCIF responses. For the first time, we give direct experimental evidence of the existence of an efficient excitation transfer: Additionally, measurements are performed in order to estimate the resonant energy transfer between the resonant argon 1s states and hydrogen atoms: for which no previously measured cross sections could be found in the literature. These are extra quenching channels of argon 1s and 2p states that should be included in collisional-radiative modeling of argon-hydrogen discharges. The high repetition rate of the dye laser allows us to obtain a high sensitivity in the measurements. LCIF is shown to be a powerful tool for unraveling electron and also heavy particle excitation channels in situ in the plasma phase. The technique was previously developed for measuring electron or species densities locally in the plasma, but we show that it can be advantageously used to probe collisional transfers between very short-lived species which exist

  14. Quantum state control of trapped Holmium atoms

    NASA Astrophysics Data System (ADS)

    Hostetter, James; Yip, Christopher; Milner, William; Booth, Donald; Collett, Jeffrey; Saffman, Mark

    2016-05-01

    Neutral Holmium with its large number of hyperfine ground states provides a promising approach for collective encoding of a multi-qubit register. A prerequisite for collective encoding is the ability to prepare different states in the 128 state hyperfine ground manifold. We report progress towards optical pumping and control of the hyperfine Zeeman state of trapped Ho atoms. Atoms are transferred from a 410.5 nm MOT into a 455 nm optical dipole trap. The atoms can be optically pumped using light driving the ground 6s2 , F = 11 to 6 s 6 p ,F' = 11 transition together with a F = 10 to F' = 11 repumper. Microwave fields are then used to drive transitions to hyperfine levels with 4 <= F <= 11 . Work supported by NSF award PHY-1404357.

  15. Atom interferometery on ground and in space

    NASA Astrophysics Data System (ADS)

    Rasel, Ernst M.; Quantus Collaboration

    2014-05-01

    We give a brief survey on our latest activities in atom interferometry. This included the first quantum test of the principle of equivalence with two different species, namely potassium and rubidium. We have also shown that interferometers equipped with atom-chip based sources allow to realise compact quantum gravimeters for ground based measurements. These devices allow to achieve a high flux of ultra-cold atoms, extremely low expansion rates of these wave packets and make it possible to realise new interferometers. Last but not least, in 2014, we currently work on testing these devices in the catapult and on a sounding rocket mission to extend atom interferometry to unprecedented time scales. This project is supported by the German Space Agency Deutsches Zentrum für Luft- und Raumfahrt (DLR) with funds provided by the Federal Ministry of Economics and Technology (BMWI) under grant number DLR 50 WM 0346. We thank the German Research Foundation for funding the Cluster of Excellence QUEST Centre for Quantum Engineering and Space-Time Research.

  16. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  17. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  18. Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-06-01

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite 2L polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 2747 (1997), 10.1088/0953-4075/30/11/023] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities—the polarizabilities αL, the electric-to-magnetic cross susceptibilities αE L →M (L ∓1 ), and the electric-to-toroidal-magnetic cross susceptibilities αE L →T L —are found to be expressible in terms of one or two nonterminating generalized hypergeometric functions F2 with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities—the electric nuclear shielding constants σEL→E L, the near-nucleus electric-to-magnetic cross susceptibilities σE L →M (L ∓1 ), and the near-nucleus electric-to-toroidal-magnetic cross susceptibilities σE L →T L —involve one or two terminating F2(1 ) series and for each L may be rewritten in terms of elementary functions. Numerical values of the far-field dipole, quadrupole, octupole, and hexadecapole susceptibilities are provided for selected hydrogenic ions. The effect of a declared uncertainty in the CODATA 2014 recommended value of the fine-structure constant α on the accuracy of numerical results is investigated. Analytical quasirelativistic approximations, valid to the second order in α Z , where Z is the nuclear charge number, are also derived for all types of the far-field and near-nucleus susceptibilities considered in the paper.

  19. Ground states of holographic superconductors

    SciTech Connect

    Gubser, Steven S.; Nellore, Abhinav

    2009-11-15

    We investigate the ground states of the Abelian Higgs model in AdS{sub 4} with various choices of parameters, and with no deformations in the ultraviolet other than a chemical potential for the electric charge under the Abelian gauge field. For W-shaped potentials with symmetry-breaking minima, an analysis of infrared asymptotics suggests that the ground state has emergent conformal symmetry in the infrared when the charge of the complex scalar is large enough. But when this charge is too small, the likeliest ground state has Lifshitz-like scaling in the infrared. For positive mass quadratic potentials, Lifshitz-like scaling is the only possible infrared behavior for constant nonzero values of the scalar. The approach to Lifshitz-like scaling is shown in many cases to be oscillatory.

  20. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  1. Comparison of spin-orbit configuration interaction methods employing relativistic effective core potentials for the calculation of zero-field splittings of heavy atoms with a 2Po ground state

    NASA Astrophysics Data System (ADS)

    Buenker, Robert J.; Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Lingott, Rainer; Hirsch, Gerhard

    1998-03-01

    Computational strategies for the treatment of relativistic effects including spin-orbit coupling at a highly correlated level are compared for a number of heavy atoms: indium, iodine, thallium, and astatine. Initial tests with perturbation theory emphasize the importance of high-energy singly excited configurations which possess large spin-orbit matrix elements with the ground state. A contracted basis consisting of L-S CI eigenfunctions (LSC-SO-CI) is found to give an accurate representation of both spin-perturbed 2Po components as long as key np→pi* singly excited configurations are included. Comparison is made with a more extensive treatment in which all selected configurations of various L-S symmetries form the basis for the multireference-spin-orbit-configuration interaction (MR-SO-CI). Good agreement is obtained with experimental SO splittings for the In, I, and At atoms at a variety of levels of treatment, indicating that the L-S contracted SO-CI approach can be implemented quite effectively with relativistic effective core potentials (RECPs) for both very electronegative atoms and also for lighter electropositive elements up through the fifth row of the periodic table. The thallium atom SO splitting is more difficult to obtain accurately because of greater differences between its valence p1/2 and p3/2 spinors than in the other cases studied, but good results are also possible with the contracted SO-CI approach in this instance, provided proper care is given to the inclusion of key singly excited L-S states. The relationship between all-electron two-component SO-CI treatments and those employing RECPs is also analyzed, and it is concluded that triply excited configurations relative to the 2Po ground state are far less important than previously reported.

  2. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam

  3. Exact integral constraint requiring only the ground-state electron density as input on the exchange-correlation force - partial differential(V)(xc)(r)/partial differential(r) for spherical atoms.

    PubMed

    March, N H; Nagy, A

    2008-11-21

    Following some studies of integral(n)(r)inverted DeltaV(r)dr by earlier workers for the density functional theory (DFT) one-body potential V(r) generating the exact ground-state density, we consider here the special case of spherical atoms. The starting point is the differential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg [Phys. Rev. A 18, 2399 (1978)] identity to show that the scalar quantity paralleling the above vector integral, namely, integral(n)(r) partial differential(V)(r)/partial differential(r)dr, is determined solely by the electron density n(0) at the nucleus for the s-like atoms He and Be. The force - partial differential(V)/ partial differential(r) is then related to the derivative of the exchange-correlation potential V(xc)(r) by terms involving only the external potential in addition to n(r). The resulting integral constraint should allow some test of the quality of currently used forms of V(xc)(r). The article concludes with results from the differential virial theorem and the Hiller-Sucher-Feinberg identity for the exact many-electron theory of spherical atoms, as well as for the DFT for atoms such as Ne with a closed p shell. PMID:19026052

  4. Estimation of beryllium ground state energy by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-01

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  5. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  6. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  7. A two-state Raman coupler for coherent atom optics.

    PubMed

    Debs, J E; Döring, D; Robins, N P; Figl, C; Altin, P A; Close, J D

    2009-02-16

    We present results on a Raman laser-system that resonantly drives a closed two-photon transition between two levels in different hyperfine ground states of (87)Rb. The coupler is based on a novel optical design for producing two phase-coherent optical beams to drive a Raman transition. Operated as an outcoupler, it produces an atom laser in a single internal atomic state, with the lower divergence and increased brightness typical of a Raman outcoupler. Due to the optical nature of the outcoupling, the two-state outcoupler is an ideal candidate for transferring photon correlations onto atom-laser beams. As our laser system couples just two hyperfine ground states, it has also been used as an internal state beamsplitter, taking the next major step towards free space Ramsey interferometry with an atom laser. PMID:19219134

  8. Atomic spin chains as testing ground for quantum magnetism

    NASA Astrophysics Data System (ADS)

    Otte, Sander

    2015-03-01

    The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.

  9. High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N/sub 2/O

    SciTech Connect

    Marshall, P.; Fontijn, A.; Melius, C.F.

    1987-05-15

    The H+N/sub 2/O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 /sup 2/S) atoms were generated by flash photolysis of NH/sub 3/ and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N/sub 2/+OH, from 390 to 1310 K is found to be given by k/sub 1/(T) = 5.5 x 10/sup -14/ exp(-2380 K/T)+7.3 x 10/sup -10/ exp(-9690 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/; the accuracy is assessed as approximately 25% at the 2sigma confidence level. Above 750 K, k/sub 1/ closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k/sub 1/ is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of <1 x 10/sup -9/ exp(-15800 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/ is set for temperatures up to 2000 K.

  10. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  11. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

    PubMed

    Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F

    2012-09-14

    We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward. PMID:22979846

  12. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  13. Variational calculation of ground-state energy of iron atoms and condensed matter in strong magnetic fields. [at neutron star surfaces

    NASA Technical Reports Server (NTRS)

    Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.

    1977-01-01

    Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.

  14. All-Optical Scheme to Produce Quantum Degenerate Dipolar Molecules in the Vibronic Ground State

    NASA Astrophysics Data System (ADS)

    Mackie, Matt; Debrosse, Catherine

    2010-03-01

    We consider two-color heteronuclear photoassociation of Bose-condensed atoms into dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically-excited state. The addition of the excited state creates a second pathway for creating ground state molecules, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersive-like shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semi-classical size of both molecular states. Despite strong enhancement, coherent conversion to the LiNa vibronic ground state is possible only in a limited regime near the free-bound resonance.

  15. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  16. Continuous Optical Production of Ultracold Vibronic Ground State Polar Molecules

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Colin David

    We present recent results on the formation of ultracold polar molecules via photoassociation. Beginning with pre-cooled samples of Rb and Cs atoms, we produce electronically-excited molecules that inherit the ultracold temperature of their atomic precursors. In order to create large samples of ultracold molecules in their vibrational and rotational X 1Sigma+(upsilon=J=0) ground state, we study two different photoassociative regimes. In the first, molecules are created in a particular highly vibrationally-excited molecular state and decay strongly to a weakly-bound vibrational level in the ground a3Sigma + state. To study a possible population transfer scheme from this state to the X1Sigma+(upsilon=J=0) ground state, we present high-resolution depletion spectroscopy of the a 3Sigma+ c3Sigma+ transition for use in the first stage of a proposed Stimulated Raman Adiabatic Passage (STIRAP) transfer. In the second photoassociative regime, molecules are created in deeply-bound, electronically-excited vibrational levels that decay directly to the X1Sigma+(upsilon=0) state, obviating the need for population transfer. Through theoretical analysis and subsequent experimental verification, we demonstrate continuous formation of X 1Sigma+(upsilon=0) RbCs molecules at rates in excess of 103/s. We then conclude with detailed calculations of a method to purify the molecular sample of unwanted excited molecular states, based on inelastic scattering with ultracold Cs atoms.

  17. Two-photon transitions to excited states in atomic hydrogen

    SciTech Connect

    Quattropani, A.; Bassani, F.; Carillo, S.

    1982-06-01

    Resonant two-photon transition rates from the ground state of atomic hydrogen to ns excited states have been computed as a function of photon frequencies in the length and velocity gauges in order to test the accuracy of the calculation and to discuss the rate of convergence over the intermediate states. The dramatic structure of the transition rates produced by intermediate-state resonances is exhibited. A two-photon transparency is found in correspondence to each resonance.

  18. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  19. Coherent excitation of a single atom to a Rydberg state

    SciTech Connect

    Miroshnychenko, Y.; Gaeetan, A.; Evellin, C.; Grangier, P.; Wilk, T.; Browaeys, A.; Comparat, D.; Pillet, P.

    2010-07-15

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d{sub 3/2} using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given.

  20. Triplet (S = 1) Ground State Aminyl Diradical

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada

    2008-04-02

    Aminyl diradical, which is stable in solution at low temperatures, is prepared. EPR spectra and SQUID magnetometry indicate that the diradical is planar and it possesses triplet ground state, with strong ferromagnetic coupling.

  1. Teleportation of atomic states via position measurements

    SciTech Connect

    Tumminello, Michele; Ciccarello, Francesco

    2008-02-15

    We present a scheme for conditionally teleporting an unknown atomic state in cavity QED, which requires two atoms and one cavity mode. The translational degrees of freedom of the atoms are taken into account using the optical Stern-Gerlach model. We show that successful teleportation with probability 1/2 can be achieved through local measurements of the cavity photon number and atomic positions. Neither direct projection onto highly entangled states nor holonomous interaction-time constraints are required.

  2. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  3. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  4. Applications of atom interferometry - from ground to space

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  5. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    SciTech Connect

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridged oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.

  6. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  7. Pfaffian states in coupled atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Hayward, Andrew L. C.; Martin, Andrew M.

    2016-05-01

    Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.

  8. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  9. Photonic multiqubit states from a single atom

    SciTech Connect

    Li Ying; Aolita, Leandro; Kwek, L. C.

    2011-03-15

    We propose a protocol for the creation of photonic Greenberger-Horne-Zeilinger and linear cluster states emitted from a single atom--or ion--coupled to an optical cavity field. The method is based on laser pulses with different polarizations and exploits the atomic transition amplitudes to state-selectively achieve the desired transitions. The scheme lies within reach of current technology.

  10. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  11. Ground state number fluctuations of trapped particles

    NASA Astrophysics Data System (ADS)

    Tran, Muoi N.

    This thesis encompasses a number of problems related to the number fluctuations from the ground state of ideal particles in different statistical ensembles. In the microcanonical ensemble most of these problems may be solved using number theory. Given an energy E, the well-known problem of finding the number of ways of distributing N bosons over the excited levels of a one-dimensional harmonic spectrum, for instance, is equivalent to the number of restricted partitions of E. As a result, the number fluctuation from the ground state in the microcanonical ensemble for this system may be found analytically. When the particles are fermions instead of bosons, however, it is difficult to calculate the exact ground state number fluctuation because the fermionic ground state consists of many levels. By breaking up the energy spectrum into particle and hole sectors, and mapping the problem onto the classic number partitioning theory, we formulate a method of calculating the particle number fluctuation from the ground state in the microcanonical ensemble for fermions. The same quantity is calculated for particles interacting via an inverse-square pairwise interaction in one dimension. In the canonical ensemble, an analytical formula for the ground state number fluctuation is obtained by using the mapping of this system onto a system of noninteracting particles obeying the Haldane-Wu exclusion statistics. In the microcanonical ensemble, however, the result can be obtained only for a limited set of values of the interacting strength parameter. Usually, for a discrete set of a mean-field single-particle quantum spectrum and in the microcanonical ensemble, there are many combinations of exciting particles from the ground state. The spectrum given by the logarithms of the prime number sequence, however, is a counterexample to this rule. Here, as a consequence of the fundamental theorem of arithmetic, there is a one-to-one correspondence between the microstate and the macrostate

  12. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGESBeta

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  13. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  14. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  15. On the ground state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.

    1998-05-01

    In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved

  16. Ground state of the hydrogen negative ion

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan

    2009-03-01

    Based on recently developed variational many-body Schr"odinger equation for electrons with Coulomb interactions [1], we provide first numerical results for the ground state electron structure of the hydrogen negative ion. It is shown that Fermi-Teller promotion effect together with non-adiabatic screening effects due to the Pauli's exclusion principle are responsible for the weak binding of the anion. The calculated ionization potential J=-1/2 - 2 λ+ <1/r12> of the hydrogen negative ion is compared with the experiment, where λ is the mean binding energy per one electron in the ground state.[0pt] [1] B. D. Obreshkov , Phys. Rev. A 78, 032503 (2008).

  17. Ground-state energy of nuclear matter

    NASA Astrophysics Data System (ADS)

    Baker, George A., Jr.; Benofy, L. P.; Fortes, Mauricio

    1988-07-01

    The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k6F for the ladder approximation and through order k6FlnkF for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Padé extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.

  18. Ground state degeneracy of interacting spinless fermions

    NASA Astrophysics Data System (ADS)

    Wei, Zhong-Chao; Han, Xing-Jie; Xie, Zhi-Yuan; Xiang, Tao

    2015-10-01

    We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation. Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all dimensions with arbitrary lattice structures.

  19. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  20. Ground-state phases of polarized deuterium species

    SciTech Connect

    Panoff, R.M.; Clark, J.W.

    1987-10-01

    Microscopic prediction of the ground-state phase of electron-spin-aligned bulk atomic deuterium (Darrow-down) is attempted, based on the variational Monte Carlo method. The accurate pair potential of Kolos and Wolniewicz is assumed, and three versions of Darrow-down are considered, which, respectively, involve one, two, and three equally occupied nuclear spin states. The most definitive results on the zero-temperature equations of state of these systems are obtained with optimized ground-state trial wave functions incorporating Jastrow pair correlations, triplet correlations, and momentum-dependent backflow effects. The species Darrow-down/sub 3/ is bound already at the pure Jastrow level, while the energy expectation value of Darrow-down/sub 2/ dips below zero upon supplementing the Jastrow description by triplets and momentum-dependent backflow. The variational energy of Darrow-down/sub 1/ remains positive under all current refinements of the ground-state trial function. We conclude that the systems Darrow-down/sub 3/ and Darrow-down/sub 2/, if they could be manufactured and stabilized at relevant densities, would be Fermi liquids at sufficiently low temperature; on the other hand, it is likely that Darrow-down/sub 1/ would remain gaseous down to absolute zero.

  1. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  2. Programmable solid state atom sources for nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  3. Ground states of spin-2 condensates in an external magnetic field

    SciTech Connect

    Zheng, G.-P.; Tong, Y.-G.; Wang, F.-L.

    2010-06-15

    The possible ground states of spin-2 Bose-Einstein condensates in an external magnetic field are obtained analytically and classified systematically according to the population of the condensed atoms at the hyperfine sublevels. It is shown that the atoms can populate simultaneously at four hyperfine sublevels in a weak magnetic field with only the linear Zeeman energy, in contrast to that in a stronger magnetic field with the quadratic Zeeman energy, where condensed atoms can at most populate at three hyperfine sublevels in the ground states. Any spin configuration we obtained will give a closed subspace in the order parameter space of the condensates.

  4. Creating and probing coherent atomic states

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J. |; Frey, M.T.; Dunning, F.B.

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  5. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  6. Ground state fidelity from tensor network representations.

    PubMed

    Zhou, Huan-Qiang; Orús, Roman; Vidal, Guifre

    2008-02-29

    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields. PMID:18352611

  7. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  8. Accurate variational calculations of the ground 2Po(1s22s22p) and excited 2S(1s22s2p2) and 2Po(1s22s23p) states of singly ionized carbon atom.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2011-12-01

    In this article we report accurate nonrelativistic variational calculations of the ground and two excited states of C(+) ion. We employ extended and well optimized basis sets of all-electron explicitly correlated Gaussians to represent the wave functions of the states. The optimization of the basis functions is performed with a procedure employing the analytic gradient of the energy with respect to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to the finite nuclear mass. The calculated transition energies between the three states are compared to the experimentally derived values. Finally, we present expectation values of some small positive and negative powers of the interparticle distances and contact densities. PMID:22149776

  9. Atomic Schroedinger cat-like states

    SciTech Connect

    Enriquez-Flores, Marco; Rosas-Ortiz, Oscar

    2010-10-11

    After a short overview of the basic mathematical structure of quantum mechanics we analyze the Schroedinger's antinomic example of a living and dead cat mixed in equal parts. Superpositions of Glauber kets are shown to approximate such macroscopic states. Then, two-level atomic states are used to construct mesoscopic kittens as appropriate linear combinations of angular momentum eigenkets for j = 1/2. Some general comments close the present contribution.

  10. Bichromatic state-insensitive trapping of caesium atoms

    NASA Astrophysics Data System (ADS)

    Metbulut, M. M.; Renzoni, F.

    2015-12-01

    State-insensitive dipole trapping of multilevel atoms can be achieved by an appropriate choice of the wavelength of the trapping laser, so that the interaction with the different transitions results in equal AC Stark shifts for the ground and excited states of interest. However, this approach is severely limited by the availability of coherent sources at the required wavelength and of appropriate power. This work investigates state-insensitive trapping of caesium atoms for which the required wavelength of 935.6 nm is inconvenient in terms of experimental realization. Bichromatic state-insensitive trapping is proposed to overcome the lack of suitable laser sources. We first consider pairs of laser wavelengths in the ratio 1:2 and 1:3, as obtained via second- and third-harmonic generation. We found that the wavelength combinations 931.8-1863.6 nm and 927.5-2782.5 nm are suitable for state-insensitive trapping of caesium atoms. In addition, we examine bichromatic state-insensitive trapping produced by pairs of laser wavelengths corresponding to currently available high-power lasers. These wavelength pairs were found to be in the range of 585-588 nm and 623-629 for one laser and 1064-1080 nm for the other.

  11. Bichromatic state-insensitive trapping of caesium atoms

    NASA Astrophysics Data System (ADS)

    Metbulut, M. M.; Renzoni, F.

    2015-12-01

    State-insensitive dipole trapping of multilevel atoms can be achieved by an appropriate choice of the wavelength of the trapping laser, so that the interaction with the different transitions results in equal AC Stark shifts for the ground and excited states of interest. However this approach is severely limited by the availability of coherent sources at the required wavelength and of appropriate power. This work investigates state-insensitive trapping of caesium atoms for which the required wavelength of 935.6 nm is inconvenient in terms of experimental realization. Bichromatic state-insensitive trapping is proposed to overcome the lack of suitable laser sources. We first consider pairs of laser wavelengths in the ratio 1:2 and 1:3, as obtained via second- and third- harmonic generation. We found that the wavelength combinations 931.8-1863.6 nm and 927.5-2782.5 nm are suitable for state-insensitive trapping of caesium atoms. In addition, we examine bichromatic state-insensitive trapping produced by pairs of laser wavelengths corresponding to currently available high power lasers. These wavelength pairs were found to be in the range of 585-588 nm and 623-629 for one laser and 1064-1080 nm for the other.

  12. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  13. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  14. Probing the ground state in gauge theories

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-03-01

    We consider two very different models of the flux tube linking two heavy quarks: a string linking the matter fields and a Coulombic description of two separately gauge invariant charges. We compare how close they are to the unknown true ground state in compact U(1) and the SU(2) Higgs model. Simulations in compact U(1) show that the string description is better in the confined phase but the Coulombic description is best in the deconfined phase; the last result is shown to agree with analytical calculations. Surprisingly in the nonabelian theory the Coulombic description is better in both the Higgs and confined phases. This indicates a significant difference in the width of the flux tubes in the two theories.

  15. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  16. Ground states of finite spherical Yukawa crystals

    NASA Astrophysics Data System (ADS)

    Baumgartner, H.; Asmus, D.; Golubnychiy, V.; Ludwig, P.; Kählert, H.; Bonitz, M.

    2008-09-01

    Small three-dimensional strongly coupled clusters of charged particles in a spherical confinement potential arrange themselves in nested concentric shells. If the particles are immersed into a background plasma the interaction is screened. The cluster shell configuration is known to be sensitive to the screening strength. With increased screening, an increased population of the inner shell(s) is observed. Here, we present a detailed analysis of the ground state shell configurations and configuration changes in a wide range of screening parameters for clusters with particle numbers N in the range of 11 to 60. We report three types of anomalous behaviors which are observed upon increase of screening, at fixed N or for an increase of N at fixed screening. The results are obtained by means of extensive first principle molecular dynamics simulations.

  17. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which

  18. Liquid ground state, gap, and excited states of a strongly correlated spin chain.

    PubMed

    Lesanovsky, Igor

    2012-03-01

    We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the exact excitation gap, as well as the exact wave functions for a couple of excited states are analytically derived and discussed. We outline how this system can be experimentally realized in a lattice gas of Rydberg atoms. PMID:22463419

  19. Ground-state energetics of helium and deuterium fermion fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.; Smith, R. A.; Clark, J. W.; Panoff, R. M.

    1981-12-01

    The method of correlated basis functions (CBF) is applied to the evaluation of the ground-state energy of atomic fermion fluids as a function of density. As a first step, liquid 3He in both unpolarized and fully polarized spin configurations is considered variationally, using Slater-Jastrow trial wave functions. Results are reported for a conventional analytic choice of the state-independent two-body correlation function f(r) and for the optimal f(r) determined by the solution of a suitable Euler equation. The Jastrow treatment is found to be inadequate in that (i) the energy expectation value lies above the experimental equilibrium energy by some 1.5 K, and (ii) the polarized phase is predicted to be more stable than the unpolarized one. For a given polarization, a correlated basis is formed by application of the assumed Jastrow correlation factor to the elements of a complete set of noninteracting-Fermi-gas Slater determinants. The exact ground-state energy may be developed in a perturbation expansion in the correlated basis, the leading term being the Jastrow energy expectation value. Considerable improvement on the Jastrow description of the unpolarized phase is achieved upon inclusion of the correlated two-particle-two-hole component of the second-order CBF perturbation correction. At the experimental equilibrium density, this contribution, which incorporates important momentum- and spin-dependent correlations, can amount to some 0.6-1.1 K [depending on the choice of f(r)]. The required correlated-basis matrix elements are calculated by Fermi hypernetted-chain (FHNC) techniques, crucial Pauli effects of the elementary diagrams being introduced through the FHNC/C algorithm. The Euler equation is approximated within the same framework. The momentum-space integrations in the second-order perturbation correction are evaluated by a Monte Carlo procedure. One may reasonably expect that further refinements of the CBF method will lead to an accurate microscopic

  20. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16O to 106265Sg and 108264Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N ≥ 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N ≥ 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from 70Se to 252Cf with a root-mean-square deviation of 1.052 MeV.

  1. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  2. Double autoionization of hollow-atom states

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Robicheaux, F.; Colgan, J.

    2005-08-01

    A time-dependent close-coupling method for three-electron atomic systems is formulated to calculate the double autoionization of hollow-atom states. Initial excited states are obtained by relaxation of the Schrödinger equation in imaginary time, while autoionization rates are obtained by propagation in real time. A 12-coupled-channels nonperturbative calculation on a three-dimensional radial lattice yields a double-autoionization rate for the Li(2s22p)→Li2+(1s)+2e- transition that that is somewhat smaller than earlier many-body perturbation theory calculations and in reasonable agreement with rates extracted from resonance profiles found in more recent γ+Li experiments.

  3. Use of the differential virial theorem to estimate the spatial variation of the exchange-correlation force -∂VXC(r)/∂r in the ground states of the spherical atoms He and Be

    NASA Astrophysics Data System (ADS)

    Bogár, Ferenc; Bartha, Ferenc; March, Norman H.

    2009-01-01

    We use the differential virial theorem (DVT) directly to display the approximate spatial dependence of the exchange-correlation (XC) force in He and Be, applying an exact integral constraint on the XC force, recently established by March and Nagy. In He, an analytic ground-state density n(r) , combined with the DVT plus the von Weizsäcker single-particle kinetic energy, suffices to determine an approximate XC force. For Be, the XC force is calculated for the semiempirical fine-tuned Hartree-Fock density, as proposed by Cordero [Phys. Rev. A 75, 052502 (2007)]. However, for the single-particle kinetic energy, following Dawson and March, a phase θ(r) must be obtained by solving numerically a nonlinear pendulumlike equation.

  4. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  5. Ground state for CH2 and symmetry for methane decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Luo, Wen-Lang; Ruan, Wen; Jiang, Gang; Zhu, Zheng-He

    2008-06-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is tilde X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, i.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to tilde X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) i.e. CH4 → CH2+H2, is forbidden and the decomposition type (2) i.e. CH4 → CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  6. Magnetic ground state of FeSe

    PubMed Central

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  7. Magnetic ground state of FeSe.

    PubMed

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K; Iida, K; Christianson, A D; Walker, H C; Adroja, D T; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  8. Magnetic ground state of FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-07-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities.

  9. Neutrino ground state in a dense star

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Tytgat, Michel H. G.

    1998-05-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars.

  10. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  11. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  12. Probing the spin states of a single acceptor atom.

    PubMed

    van der Heijden, Joost; Salfi, Joe; Mol, Jan A; Verduijn, Jan; Tettamanzi, Giuseppe C; Hamilton, Alex R; Collaert, Nadine; Rogge, Sven

    2014-03-12

    We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |g(hh)| = 0.81 ± 0.06 and |g(lh)| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value. PMID:24571637

  13. Lossless anomalous dispersion and an inversionless gain doublet via dressed interacting ground states

    SciTech Connect

    Weatherall, James Owen; Search, Christopher P.

    2010-02-15

    Transparent media exhibiting anomalous dispersion have been of considerable interest since Wang, Kuzmich, and Dogariu [Nature 406, 277 (2000)] first observed light propagate with superluminal and negative group velocities without absorption. Here, we propose an atomic model exhibiting these properties, based on a generalization of amplification without inversion in a five-level dressed interacting ground-state system. The system consists of a {Lambda} atom prepared as in standard electromagnetically induced transparency (EIT), with two additional metastable ground states coupled to the {Lambda} atom ground states by two rf-microwave fields. We consider two configurations by which population is incoherently pumped into the ground states of the atom. Under appropriate circumstances, we predict a pair of new gain lines with tunable width, separation, and height. Between these lines, absorption vanishes but dispersion is large and anomalous. The system described here is a significant improvement over other proposals in the anomalous dispersion literature in that it permits additional coherent control over the spectral properties of the anomalous region, including a possible 10{sup 4}-fold increase over the group delay observed by Wang, Kuzmich, and Dogariu.

  14. B2N2O4: Prediction of a Magnetic Ground State for a Light Main-Group Molecule

    SciTech Connect

    Varga, Zoltan; Truhlar, Donald G.

    2015-09-08

    Cyclobutanetetrone, (CO)4, has a triplet ground state. Here we predict, based on electronic structure calculations, that the B2N2O4 molecule also has a triplet ground state and is therefore paramagnetic; the structure is an analogue of (CO)4 in which the carbon ring is replaced by a (BN)2 ring. Similar to (CO)4, the triplet ground-state structure of B2N2O4 is also thermodynamically unstable. Besides analysis of the molecular orbitals, we found that the partial atomic charges are good indicators for predicting magnetic ground states.

  15. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the

  16. Triaxiality of the ground states in the 174W

    NASA Astrophysics Data System (ADS)

    Ya, Tu; Chen, Y. S.; Liu, L.; Gao, Z. C.

    2016-05-01

    We have performed calculations for the ground states in 174W by using the projected total energy surface (PTES) calculations. Both the ground state (g.s.) band and its γ band reproduce the experimental data. Further discussion about the triaxiality in 174W has been made by transition quardrupole moment (Qt) and comparing between the PTES and TRS methods.

  17. On the atomic state densities of plasmas produced by the ``torche à injection axiale''

    NASA Astrophysics Data System (ADS)

    Jonkers, J.; Vos, H. P. C.; van der Mullen, J. A. M.; Timmermans, E. A. H.

    1996-04-01

    The atomic state densities of helium and argon plasmas produced by the microwave driven plasma torch called the "torche à injection axiale" are presented. They are obtained by absolute line intensity measurements of the excited states and by applying the ideal gas law to the ground state. It will be shown that the atomic state distribution function (ASDF) does not obey the Saha-Boltzmann law: the ASDF cannot be described by one temperature. From the shape of the ASDF it can be concluded that the plasma is ionising. By extrapolating the measured state densities towards the ionisation limit, a minimum value of the electron density can be determined.

  18. Suppression of ultracold ground-state hyperfine-changing collisions with laser light

    SciTech Connect

    Sanchez-Villicana, V.; Gensemer, S.D.; Tan, K.Y.N.; Kumarakrishnan, A.; Dinneen, T.P.; Sueptitz, W.; Gould, P.L.

    1995-06-05

    Using laser light tuned to a repulsive molecular potential, we have been able to suppress inelastic ground-state hyperfine-changing collisions between ultracold {sup 87}Rb atoms. Adiabatic excitation to the repulsive curve alters the atomic trajectories and prevents the atoms from approaching close enough for the hyperfine change to occur. Experimental results show suppressions up to {similar_to}50% and are in reasonable agreement with a simple Landau-Zener model. Our ability to control collisional trap loss processes may have important implications for the achievement of high densities in laser cooled samples.

  19. A quantum gas of ground state molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Danzl, Johann; Mark, Manfred; Haller, Elmar; Gustavsson, Mattias; Hart, Russell; Nägerl, Hanns-Christoph

    2009-05-01

    Ultracold samples of molecules are ideally suited for fundamental studies in physics and chemistry. For many of the proposed experiments full molecular state control and high phase space densities are needed. We create a dense quantum gas of ground state Cs2 molecules trapped at the wells of a 3D optical lattice, i.e. a molecular Mott-insulator-like state with ground state molecules with vibrational quantum number v = 0. We first efficiently produce weakly bound molecules with v 155 on a Feshbach resonance out of an atomic Mott-insulator state that is obtained from a Bose-Einstein condensate (BEC) of Cs atoms. These molecules are then (coherently) transferred to the ground state by two sequential two-photon STIRAP processes via the intermediate vibrational level v 73 ^1. The molecule production efficiency and the single-step STIRAP transfer efficiency reach 50% and 80%, respectively. We discuss the stability of the system and our progress towards the creation of a BEC of ground state molecules, which is expected to form when the molecular Mott-like state is ``melted'' upon lowering the lattice depth and releasing the molecules from the wells into a large volume trap. ^1J. G. Danzl, E. Haller, M. Gustavsson, M. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.-C. Nägerl, Science 321, 1062 (2008).

  20. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  1. Light pulse analysis with a multi-state atom interferometer

    SciTech Connect

    Herrera, I.; Lombardi, P.; Schäfer, F.; Petrovic, J.; Cataliotti, F. S.

    2014-12-04

    We present a controllable multi-state cold-atom interferometer that is easy-to-use and fully merged on an atom chip. We demonstrate its applications as a sensor of the fields whose interactions with atoms are state-dependent.

  2. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    Disordered hyperuniform many-particle systems have been receiving recent attention because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. It has been shown numerically that systems of particles interacting with ``stealthy'' bounded, long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are, counterintuitively, disordered, hyperuniform and highly degenerate. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space is highly nontrivial because the dimensionality of the configuration space depends on the number density and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. A new type of statistical-mechanical theory had to be invented to characterize these exotic states of matter. I report on some initial progress that we have made in this direction. We show that stealthy disordered ground states behave like ''pseudo''-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for the structure and thermodynamic properties of the stealthy disordered ground states and associated excited states are in excellent agreement with computer simulations across dimensions.

  3. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero

  4. Ground state and constrained domain walls in Gd /Fe multilayers

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Prieto, José L.; Mathur, Neil D.

    2005-03-01

    The magnetic ground state of antiferromagnetically coupled Gd /Fe multilayers and the evolution of in-plane domain walls is modeled with micromagnetics. The twisted state is characterized by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios MFe:MGd, the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio MFe:MGd but also by the thicknesses of the layers; that is by the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe-aligned and the Gd-aligned state in favor of the twisted state. On the other hand, ultrathin layers exclude the twisted state, since wider domain walls cannot form in these ultrathin layers.

  5. Direct measurement of concurrence for atomic two-qubit pure states

    SciTech Connect

    Romero, G.; Lopez, C. E.; Lastra, F.; Retamal, J. C.; Solano, E.

    2007-03-15

    We propose a general scheme to measure the concurrence of an arbitrary two-qubit pure state in atomic systems. The protocol is based on one- and two-qubit operations acting on two available copies of the bipartite system, and followed by a global qubit readout. We show that it is possible to encode the concurrence in the probability of finding all atomic qubits in the ground state. Two possible scenarios are considered: atoms crossing three-dimensional microwave cavities and trapped ion systems.

  6. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  7. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    1982-11-01

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  8. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  9. Comments on variational ground states for lattice hamiltonians

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Bovier, Anton

    1984-02-01

    We find that the nearest neighbour Jastrow type ground state cannot yield a Lorentz invariant vacuum in the continuum. This is explicitly demonstrated for the chiral model in 1+1 dimensions. The Jastrow ground state is found to be an exact ground state of a new hamiltonian which differs from the original by seemingly ``irrelevant terms'' at the continuum. However these terms prevent the restoration of Lorentz invariance. Finally we speculate that the new hamiltonian can be a non-relativistic approximation with galilean invariance.

  10. Production of a Quantum Gas of Rovibronic Ground-State Molecules in AN Optical Lattice

    NASA Astrophysics Data System (ADS)

    Danzl, Johann G.; Mark, Manfred J.; Haller, Elmar; Gustavsson, Mattias; Hart, Russell; Nägerl, Hanns-Christoph

    2010-02-01

    Recent years have seen tremendous progress in the field of cold and ultracold molecules. A central goal in the field is currently the realization of stable rovibronic ground-state molecular samples in the regime of quantum degeneracy, e.g. in the form of molecular Bose-Einstein condensates, molecular degenerate Fermi gases, or, when an optical lattice is present, molecular Mott-insulator phases. However, molecular samples are not readily cooled to the extremely low temperatures at which quantum degeneracy occurs. In particular, laser cooling, the 'workhorse' for the field of atomic quantum gases, is generally not applicable to molecular samples. Here we take an important step beyond previous work1 and provide details on the realization of an ultracold quantum gas of ground-state dimer molecules trapped in an optical lattice as recently reported in Ref. 2. We demonstrate full control over all internal and external quantum degrees of freedom for the ground-state molecules by deterministically preparing the molecules in a single quantum state, i.e. in a specific hyperfine sublevel of the rovibronic ground state, while the molecules are trapped in the motional ground state of the individual lattice wells. We circumvent the problem of cooling by associating weakly-bound molecules out of a zero-temperature atomic Mott-insulator state and by transferring these to the absolute ground state in a four-photon STIRAP process. Our preparation procedure directly leads to a long-lived, lattice-trapped molecular many-body state, which we expect to form the platform for many of the envisioned future experiments with molecular quantum gases, e.g. on precision molecular spectroscopy, quantum information science, and dipolar quantum systems.

  11. Rydberg States of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Stebbings, R. F.; Dunning, F. B.

    2011-03-01

    List of contributors; Preface; 1. Rydberg atoms in astrophysics A. Dalgarno; 2. Theoretical studies of hydrogen Rydberg atoms in electric fields R. J. Damburg and V. V. Kolosov; 3. Rydberg atoms in strong fields D. Kleppner, Michael G. Littman and Myron L. Zimmerman; 4. Spectroscopy of one- and two-electron Rydberg atoms C. Fabre and S. Haroche; 5. Interaction of Rydberg atoms with blackbody radiation T. F. Gallagher; 6. Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and ions A. P. Hickman, R. E. Olson and J. Pascale; 7. Experimental studies of the interaction of Rydberg atoms with atomic species at thermal energies F. Gounand and J. Berlande; 8. Theoretical studies of collisions of Rydberg atoms with molecules Michio Matsuzawa; 9. Experimental studies of thermal-energy collisions of Rydberg atoms with molecules F. B. Dunning and R. F. Stebbings; 10. High-Rydberg molecules Robert S. Freund; 11. Theory of Rydberg collisions with electrons, ions and neutrals M. R. Flannery; 12. Experimental studies of the interactions of Rydberg atoms with charged particles J. -F. Delpech; 13. Rydberg studies using fast beams Peter M. Koch; Index.

  12. Steady atomic entanglement in cavity QED without state initialization

    SciTech Connect

    Zhang Shengli; Zou Xubo; Yang Song; Li Chuanfeng; Guo Guangcan; Jin Chenhui

    2009-12-15

    We present a scheme for realizing a steady entanglement state between two trapped atoms, without requiring the initialization of atom-cavity system nor fine time-controlling of evolution dynamics. We show that high-fidelity entanglement of atomic state can be obtained in a period of time equal to a few times the inverse of atomic's spontaneous decay rate. The robustness against cavity decay kappa and cavity thermal field n{sub T} has also been examined.

  13. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  14. Antifreeze acceptability for ground-coupled heat pump ground loops in the United States

    SciTech Connect

    Den Braven, K.R.

    1998-10-01

    When designing and installing closed-loop ground-coupled heat pumps systems, it is necessary to be aware of applicable environmental regulations. Within the United States, nearly half of the states have regulations specifying or restricting the use of particular antifreezes or other fluids within the ground loop of a ground-coupled heat pump system. A number of other states have regulations pending. While all of these regulations are based on the need to preserve groundwater and/or aquifer quality, the list of acceptable antifreezes varies among those states with specified fluids. Typical antifreezes in use include ethylene glycol, propylene glycol, brines, alcohols, and potassium acetate. Each of these has its benefits and drawbacks. The status of the regulations has been determined for all of the states. An overview of the regulations is presented in this paper, along with a summary of the states` concerns.

  15. Approximating the ground state of gapped quantum spin systems

    SciTech Connect

    Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  16. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  17. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481

  18. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  19. Ground states of baryoleptonic Q-balls in supersymmetric models

    SciTech Connect

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  20. Quantum Teleportation of High-dimensional Atomic Momenta State

    NASA Astrophysics Data System (ADS)

    Qurban, Misbah; Abbas, Tasawar; Rameez-ul-Islam; Ikram, Manzoor

    2016-06-01

    Atomic momenta states of the neutral atoms are known to be decoherence resistant and therefore present a viable solution for most of the quantum information tasks including the quantum teleportation. We present a systematic protocol for the teleportation of high-dimensional quantized momenta atomic states to the field state inside the cavities by applying standard cavity QED techniques. The proposal can be executed under prevailing experimental scenario.

  1. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  2. Toward Triplet Ground State LiNa Molecules

    NASA Astrophysics Data System (ADS)

    Jamison, Alan; Rvachov, Timur; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    We present progress toward creation of ultracold ground-state triplet LiNa molecules. This molecule is expected to have a long lifetime in the triplet ground state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. Our progress includes the first observation of triplet excited states in this molecule, achieved through photoassociation of ultracold mixtures of 6-Li and Na. We compare experimental results to a variety of near-dissociation expansions as well as ab initio potentials.

  3. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  4. Entanglement for excited states of ultracold bosonic atoms in one-dimensional harmonic traps with contact interaction

    NASA Astrophysics Data System (ADS)

    Peng, Hsuan Tung; Ho, Yew Kam

    2015-10-01

    We have investigated quantum entanglement for two interacting ultracold bosonic atoms in one-dimensional harmonic traps. The effective potential is modeled by delta interaction. For this two-atom system, we have investigated quantum entanglement properties, such as von Neumann entropy and linear entropy for its ground state and excited states. Using a computational scheme that is different from previously employed, a total of the lowest 16 states are studied. Here we show the dependencies of entanglement properties under various interacting strengths. Comparisons for the ground state entanglement are made with earlier results in the literature. New results for the other 15 excited states are reported here.

  5. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  6. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  7. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  8. Magnetization ground state and reversal modes of magnetic nanotori

    NASA Astrophysics Data System (ADS)

    Vojkovic, Smiljan; Nunez, Alvaro S.; Altbir, Dora; Carvalho-Santos, Vagson L.

    2016-07-01

    In this work, and by means of micromagnetic simulations, we study the magnetic properties of toroidal nanomagnets. The magnetization ground state for different values of the aspect ratio between the toroidal and polar radii of the nanotorus has been obtained. Besides, we have shown that the vortex and the in-plane single domain states can appear as ground states for different ranges of the aspect ratio, while a single domain state with an out-of-plane magnetization is not observed. The hysteresis curves are also obtained, evidencing the existence of two reversal modes depending on the geometry: a vortex mode and a coherent rotation. A comparison between toroidal and cylindrical nanoparticles has been performed evidencing that nanotori can accommodate a vortex as the ground state for smaller volume than cylindrical nanorings.

  9. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  10. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  11. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  12. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  13. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Stafford, L.

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over the whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.

  14. Ground-state structures and the random-state energy of the Madelung lattice

    SciTech Connect

    Magri, R.; Wei, S.; Zunger, A. )

    1990-12-15

    We consider the classic Madelung problem of a lattice with {ital N} sites labeled {ital i}, each occupied by either an {ital A} or a {ital B} atom, and bearing a point charge {ital Q}{sub {ital i}} that depends on the environment of {ital i}. We find that, out of the 2{sup {ital N}} possible lattice configurations of this binary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}} fcc alloy, the lowest-energy ground-state structures'' are the {ital A}{sub 3}{ital B}-, {ital A}{sub 2}{ital B}{sub 2}- and {ital AB}{sub 3}-ordered superlattices with ordering vector (1,0,1/2). On the other hand, for the pseudobinary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}}{sub C} zinc-blende alloy, the ground state corresponds to phase separation into {ital AC}+{ital BC}. Contrary to the accepted view, the Madelung energy of the random binary alloy is found to be nonvanishing.

  15. Long-range quantum gate via Rydberg states of atoms in a thermal microwave cavity

    NASA Astrophysics Data System (ADS)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2015-09-01

    We propose an implementation of a universal quantum gate between pairs of spatially separated atoms in a microwave cavity at finite temperature. The gate results from reversible laser excitation of Rydberg states of atoms interacting with each other via exchange of virtual photons through a common cavity mode. Quantum interference of different transition paths between the two-atom ground and double-excited Rydberg states makes both the transition amplitude and resonance largely insensitive to the excitations in the microwave cavity quantum bus which can therefore be in any superposition or mixture of photon number states. Our scheme for attaining ultra-long-range interactions and entanglement also applies to mesoscopic atomic ensembles in the Rydberg blockade regime and is scalable to many ensembles trapped within a centimeter-sized microwave resonator.

  16. Slow-light probe of Fermi pairing through an atom-molecule dark state

    SciTech Connect

    Jing, H.; Deng, Y.; Meystre, P.

    2011-06-15

    We consider the two-color photoassociation of a quantum degenerate atomic gas into ground-state diatomic molecules via a molecular dark state. This process can be described in terms of a {Lambda} level scheme that is formally analogous to the situation in electromagnetically induced transparency in atomic systems and therefore can result in slow-light propagation. We show that the group velocity of the light field depends explicitly on whether the atoms are bosons or fermions, as well as on the existence or absence of a pairing gap in the case of fermions, so that the measurement of the group velocity realizes a nondestructive diagnosis of the atomic state and the pairing gap.

  17. Unambiguous atomic Bell measurement assisted by multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Bernád, József Zsolt; Alber, Gernot

    2016-05-01

    We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type interaction sequence. The qubit states are postselected by measuring the photonic states inside the resonators. We show that if one is able to project the photonic field onto two coherent states on opposite sites of phase space, an unambiguous Bell measurement can be implemented. Thus, our proposal may provide a core element for future components of quantum information technology such as a quantum repeater based on coherent multiphoton states, atomic qubits and matter-field interaction.

  18. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  19. Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities

    NASA Astrophysics Data System (ADS)

    Klöpfer, Denis; De Martino, Alessandro; Matrasulov, Davron U.; Egger, Reinhold

    2014-08-01

    We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corresponding low-energy scattering problem.

  20. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  1. Ground-state van der Waals forces in planar multilayer magnetodielectrics

    SciTech Connect

    Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Kampf, Thomas

    2005-09-15

    Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special emphasis is placed on the competing attractive and repulsive force components associated with the electric and magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are given. Both numerical and analytical results are presented.

  2. The ground-state potential energy curve of the radium dimer from relativistic coupled cluster calculations

    NASA Astrophysics Data System (ADS)

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Dammalapati, Umakanth; Knoop, Steven; Visscher, Lucas

    2015-08-01

    The potential energy curve for the ground-state of radium dimer (Ra2) is provided by means of atomic and molecular relativistic coupled cluster calculations. The short-range part of this curve is defined by an equilibrium bond length of 5.324 Å, a dissociation energy of 897 cm-1, and a harmonic vibrational frequency of 20.5 cm-1. The asymptotic behavior at large interatomic distances is characterized by the van der Waals coefficients C6 = 5.090 × 103, C8 = 6.978 × 105, and C10 = 8.786 × 107 atomic units. The two regions are matched in an analytical potential to provide a convenient representation for use in further calculations, for instance, to model cold collisions between radium atoms. This might become relevant in future experiments on ultracold, optically trapped, radioactive radium atoms that are used to search for a permanent electric dipole moment.

  3. Solving quantum ground-state problems with nuclear magnetic resonance.

    PubMed

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10⁻⁵ decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers. PMID:22355607

  4. Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

    PubMed Central

    Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

    2013-01-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition

  5. All-optical scheme for strongly enhanced production of a Bose-Einstein condensate of dipolar molecules in the vibronic ground state

    SciTech Connect

    Mackie, Matt; Debrosse, Catherine

    2010-04-15

    We consider two-color heteronuclear photoassociation of a dual-species Bose-Einstein condensate into a Bose-Einstein condensate of dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically excited state. This problem raises an interest because heteronuclear photoassociation from atoms to near-ground-state molecules is limited by the small size of the target state. Nevertheless, the addition of the electronically excited state creates a second pathway for creating molecules in the vibronic ground state, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersivelike shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semiclassical size of both molecular states. Whereas strong enhancement enables saturation of the free-ground transition, coherent conversion from a two-species condensate of atoms to a condensate of dipolar molecules in the vibronic ground state is only possible for a limited range of free-bound detunings near resonance.

  6. All-optical scheme for strongly enhanced production of a Bose-Einstein condensate of dipolar molecules in the vibronic ground state

    NASA Astrophysics Data System (ADS)

    Mackie, Matt; Debrosse, Catherine

    2010-04-01

    We consider two-color heteronuclear photoassociation of a dual-species Bose-Einstein condensate into a Bose-Einstein condensate of dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically excited state. This problem raises an interest because heteronuclear photoassociation from atoms to near-ground-state molecules is limited by the small size of the target state. Nevertheless, the addition of the electronically excited state creates a second pathway for creating molecules in the vibronic ground state, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersivelike shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semiclassical size of both molecular states. Whereas strong enhancement enables saturation of the free-ground transition, coherent conversion from a two-species condensate of atoms to a condensate of dipolar molecules in the vibronic ground state is only possible for a limited range of free-bound detunings near resonance.

  7. Fock-state view of weak-value measurements and implementation with photons and atomic ensembles

    SciTech Connect

    Simon, Christoph; Polzik, Eugene S.

    2011-04-15

    Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.

  8. Two-atom interaction energies with one atom in an excited state: van der Waals potentials versus level shifts

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-05-01

    I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by Berman [Phys. Rev. A 91, 042127 (2015), 10.1103/PhysRevA.91.042127], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015), 10.1103/PhysRevLett.115.033201], and Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015), 10.1103/PhysRevA.92.062711], for which precedent approaches have given conflicting results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

  9. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures. PMID:20867055

  10. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters.

    PubMed

    Souza, T X R; Macedo, C A

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh's conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  11. Phase diagram of the ground states of DNA condensates.

    PubMed

    Hoang, Trinh X; Trinh, Hoa Lan; Giacometti, Achille; Podgornik, Rudolf; Banavar, Jayanth R; Maritan, Amos

    2015-12-01

    The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective self-attraction promoting compaction. x=1 corresponds to the wormlike chain model. Surprisingly, the phase diagram as well as the transition lines between the ground states are found to be a function of x. The model provides a simple explanation for the results of prior experimental and computational studies and makes predictions for the specific geometries of the ground states. The results underscore the impact of the form of the microscopic bending energy at macroscopic observable scales. PMID:26764619

  12. Improved fair sampling of ground states in Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Katzgraber, Helmut G.; Zhu, Zheng; Ochoa, Andrew J.

    2015-03-01

    Verifying that an optimization approach can sample all solutions that minimize a Hamiltonian is a stringent test for any newly-developed algorithm. While most solvers easily compute the minimum of a cost function for small to moderate input sizes, equiprobable sampling of all ground-state configurations (within Poissonian fluctuations) is much harder to obtain. Most notably, methods such as transverse-field quantum annealing fail in passing this test for certain highly-degenerate problems. Here we present an attempt to sample ground states for Ising spin glasses based on a combination of low-temperature parallel tempering Monte Carlo combined with the cluster algorithm by Houdayer. Because the latter is rejection free and obeys details balance, the ground-state manifold is efficiently sampled. We illustrate the approach for Ising spin glasses on the D-Wave Two quantum annealer topology, known as the Chimera graph, as well as two-dimensional Ising spin glasses.

  13. Ground state alignment as a tracer of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, H.

    2012-12-01

    We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

  14. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  15. Extensive ground state entropy in supersymmetric lattice models

    SciTech Connect

    Eerten, Hendrik van

    2005-12-15

    We present the result of calculations of the Witten index for a supersymmetric lattice model on lattices of various type and size. Because the model remains supersymmetric at finite lattice size, the Witten index can be calculated using row-to-row transfer matrices and the calculations are similar to calculations of the partition function at negative activity -1. The Witten index provides a lower bound on the number of ground states. We find strong numerical evidence that the Witten index grows exponentially with the number of sites of the lattice, implying that the model has extensive entropy in the ground state.

  16. Constrained Path Quantum Monte Carlo Method for Fermion Ground States

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei; Carlson, J.; Gubernatis, J. E.

    1995-05-01

    We propose a new quantum Monte Carlo algorithm to compute fermion ground-state properties. The ground state is projected from an initial wave function by a branching random walk in an over-complete basis space of Slater determinants. By constraining the determinants according to a trial wave function \\|ΨT>, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if \\|ΨT> is exact. We report results on the two-dimensional Hubbard model up to size 16×16, for various electron fillings and interaction strengths.

  17. Perturbed wavefunctions of the excited states of hydrogen atom in Stark effect

    SciTech Connect

    Sapra, G.K.; Bhasin, V.S.; Kothari, L.S. . Dept. of Physics Astrophysics)

    1994-03-15

    The authors extend the procedure originally suggested by Dalgarno and Lewis in studying the second-order Stark effect for the ground-state hydrogen atom to the excited states. They solve the perturbation equations for the excited states of hydrogen atom placed in an external electric field to obtain expressions for the perturbed wavefunctions. Here the emphasis is on studying in detail the nature of the perturbed wavefunction rather than energy shifts as investigated in most of the attempts made so far. The effect of the electric field on these wavefunctions is analyzed and the values of the electric polarizability of the hydrogen atom in the excited states obtained in this way are compared with the earlier work.

  18. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, T.; Derevianko, A.

    2016-07-01

    We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  19. Characterizing Ground and Thermal States of Few-Body Hamiltonians.

    PubMed

    Huber, Felix; Gühne, Otfried

    2016-07-01

    The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can be used to characterize the complexity of the state and is important for possible experimental implementations. We provide methods to characterize the states generated by two- and, more generally, k-body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of which states are uniquely determined by their marginals and to a generalization of the concept of entanglement. Finally, certification methods for quantum simulation can be derived. PMID:27419547

  20. Characterizing Ground and Thermal States of Few-Body Hamiltonians

    NASA Astrophysics Data System (ADS)

    Huber, Felix; Gühne, Otfried

    2016-07-01

    The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can be used to characterize the complexity of the state and is important for possible experimental implementations. We provide methods to characterize the states generated by two- and, more generally, k -body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of which states are uniquely determined by their marginals and to a generalization of the concept of entanglement. Finally, certification methods for quantum simulation can be derived.

  1. Coherent Control of Ground State NaK Molecules

    NASA Astrophysics Data System (ADS)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  2. Continuous Measurement Quantum State Tomography of Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Riofrio Almeida, Carlos A.

    Quantum state tomography is a fundamental tool in quantum information processing tasks. It allows us to estimate the state of a quantum system by measuring different observables on many identically prepared copies of the system. Usually, one makes projective measurements of an "informationally complete" set of observables and repeats them enough times so that good estimates of their expectation values are obtained. This is, in general, a very time-consuming task that requires a large number of measurements. There are, however, systems in which the data acquisition can be done more efficiently. In fact, an ensemble of quantum systems can be prepared and manipulated by external fields while being continuously probed collectively, producing enough information to estimate its state. This provides a basis for continuous measurement quantum tomography, and is the main topic of this dissertation. This method, based on weak continuous measurement, has the advantage of being fast, accurate, and almost nonperturbative. In this work, we present a extensive discussion and a generalization of the protocol proposed in [1], which was experimentally achieved in [2] using cold cesium atoms. In this protocol, an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner so as to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time. To achieve this, we use two different estimation methods: the widely used maximum likelihood and the novel compressed sensing algorithms. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sub-levels of a large-spin alkali atom, 133Cs. We extend the applicability of the protocol in [1] to the more ambitious case of reconstruction of states in the full 16-dimensional electronic-ground subspace ( F = 3, F = 4), controlled by microwaves and radio

  3. Calculating helium atomic excited states in coordinate space

    NASA Astrophysics Data System (ADS)

    Hall, Shane; Siegel, P. B.

    2015-12-01

    Two coupled Schrödinger equations are used to calculate excited states of atomic helium. Using product state functions for the two-electron state, the shooting method is used to numerically determine the energies of the allowed singlet and triplet levels. The calculations agree well with the data, and the coordinate-space basis yields Schrödinger equations for helium that are familiar to students who have used similar methods for the hydrogen atom.

  4. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  5. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    NASA Astrophysics Data System (ADS)

    Swann, A. R.; Cassidy, D. B.; Deller, A.; Gribakin, G. F.

    2016-05-01

    Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  6. Scheme for atomic-state teleportation between two bad cavities

    SciTech Connect

    Zheng Shibiao; Guo Guangcan

    2006-03-15

    A scheme is presented for the long-distance teleportation of an unknown atomic state between two separated cavities. Our scheme works in the regime where the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by the detection inefficiency and atomic decay. These advantages are important in view of experiments.

  7. Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang; Zhang, Yunbo; Liang, J. Q.; Chen, Shu

    2006-06-01

    We investigate the ground state of the system of N bosons enclosed in a hard-wall trap interacting via a repulsive or attractive δ -function potential. Based on the Bethe ansatz method, the explicit ground state wave function is derived and the corresponding Bethe ansatz equations are solved numerically for the full physical regime from the Tonks limit to the strongly attractive limit. It is shown that the solution takes a different form in different regime. We also evaluate the one body density matrix and second-order correlation function of the ground state for finite systems. In the Tonks limit the density profiles display the Fermi-like behavior, while in the strongly attractive limit the Bosons form a bound state of N atoms corresponding to the N -string solution. The density profiles show the continuous crossover behavior in the entire regime. Further, the correlation function indicates that the Bose atoms bunch closer as the interaction constant decreases.

  8. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  9. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  10. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-01-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.