Science.gov

Sample records for ground state atoms

  1. The Ground State Energy of Heavy Atoms: The Leading Correction

    NASA Astrophysics Data System (ADS)

    Handrek, Michael; Siedentop, Heinz

    2015-10-01

    For heavy atoms (large atomic number Z) described by no-pair operators in the Furry picture, we find the ground state's leading energy correction. We compare the result with (semi-)empirical values and Schwinger's prediction showing more than qualitative agreement.

  2. Measured Atomic Ground State Polarizabilities of 35 Metallic Elements

    NASA Astrophysics Data System (ADS)

    Indergaard, John; Ma, Lei; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walter

    2015-03-01

    Advanced pulsed cryogenic molecular beam electric deflection methods utilizing a position-sensitive mass spectrometer and 7.87 eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the periodic table for the first time. These measurements increase the total number of experimentally obtained atomic polarizabilities from 23 to 57. Concurrent Stern-Gerlach deflection measurements verified the ground state condition of the measured atoms. Generating higher temperature beams allowed for the comparison of relative populations of the ground and excited states in order to extract the true temperature of the atomic beam, which followed the nominal temperature closely over a wide temperature range. Comparison of newly measured polarizabilities with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the periodic table. Cluster Lab at Georgia Tech.

  3. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  4. Measured atomic ground-state polarizabilities of 35 metallic elements

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Indergaard, John; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walt A.

    2015-01-01

    Advanced pulsed cryogenic molecular-beam electric deflection methods involving position-sensitive mass spectrometry and 7.87-eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the Periodic Table. Concurrent Stern-Gerlach deflection measurements verified the ground-state condition of the measured atoms. Comparison with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the Periodic Table.

  5. All-optical reconstruction of atomic ground-state population

    SciTech Connect

    London, P.; Firstenberg, O.; Shuker, M.; Ron, A.

    2010-04-15

    The population distribution within the ground state of an atomic ensemble is of great significance in a variety of quantum-optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical-pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme, which result from the symmetry properties of the dipole matrix elements, are discussed.

  6. Variation of the ground-state correlation energy of atoms with atomic number

    NASA Astrophysics Data System (ADS)

    Alonso, J. A.; Cordero, N. A.

    1996-05-01

    The empirical correlation energy of atoms and singly charged positive and negative ions in their ground state shows a roughly linear dependence with respect to the number of electrons. However, the deviations from this linear behaviour follow a well defined trend. A formulation based on density functional theory allows us to understand these features. This formulation focuses on the number of pairings between antiparallel-spin electrons in the same main shell.

  7. Orientation effects in thermal collisions between ''circular''--Rydberg-state atoms and ground-state helium

    SciTech Connect

    de Prunele, E.

    1985-06-01

    A general formulation for thermal collisions between a Rydberg-state atom and a ground-state rare-gas atom is developed within the framework of the impulse approximation. This formulation allows calculation of cross sections for state-to-state transitions for an arbitrary initial orientation between the Rydberg-state atom and the relative velocity of the two partners of the collision. It also allows a direct computation of these cross sections averaged over all orientations, a situation corresponding to a cell experiment. In this formulation, the differential cross sections with respect to the modulus of the momentum transfer are obtained analytically in terms of rotation matrix elements. Numerical applications are made for the case of a sodium atom in a ''circular'' Rydberg state (Vertical Barn,l,m>, with l = m = n-1) colliding with helium. The collisional processes are found to be highly anisotropic. In particular, a selection rule may appear, or disappear, depending upon the initial orientation. The extension to the case where an external electric field is present is also discussed, with special emphasis on symmetry properties.

  8. Dynamical Casimir-Polder energy between an excited- and a ground-state atom

    SciTech Connect

    Rizzuto, L.; Persico, F.; Passante, R.

    2004-07-01

    We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach, which uses a nonnormalizable dressed state for the excited atom.

  9. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  10. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  11. Ground-state cooling of a single atom at the center of an optical cavity.

    PubMed

    Reiserer, Andreas; Nölleke, Christian; Ritter, Stephan; Rempe, Gerhard

    2013-05-31

    A single neutral atom is trapped in a three-dimensional optical lattice at the center of a high-finesse optical resonator. Using fluorescence imaging and a shiftable standing-wave trap, the atom is deterministically loaded into the maximum of the intracavity field where the atom-cavity coupling is strong. After 5 ms of Raman sideband cooling, the three-dimensional motional ground state is populated with a probability of (89±2)%. Our system is the first to simultaneously achieve quantum control over all degrees of freedom of a single atom: its position and momentum, its internal state, and its coupling to light. PMID:23767719

  12. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  13. Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.; Walsh, B. C.; Steiner, E.

    1974-01-01

    Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.

  14. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.

    PubMed

    Zhang, Shuo; Zhang, Jian-Qi; Zhang, Jie; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing

    2014-11-17

    We propose a ground state cooling scheme for an optomechanical resonator based on the system of one Λ-type three-level atom trapped in an optomechanical cavity. This cooling scheme works in a single-photon coupling, and strong atom-cavity coupling regimes. By investigating the cooling dynamics, we find that there is an EIT-like quantum coherent effect in this system which can suppress the undesired transitions for heating. Moreover, our study shows that the final average phonon number of the optomechanical resonator can be smaller than the one based on the sideband cooling. Furthermore, the ground state cooling of the resonator can still be achieved after thermal fluctuations included. In addition, in comparison with previous cooling methods, there are fewer limitations on the decay rates of both the cavity and the atom in this scheme. As a result, this scheme is very suitable to realize the ground cooling of an optomechanical resonator in the experiment. PMID:25402052

  15. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  16. Atomic Charges and the Electrostatic Potential Are Ill-Defined in Degenerate Ground States.

    PubMed

    Bultinck, Patrick; Cardenas, Carlos; Fuentealba, Patricio; Johnson, Paul A; Ayers, Paul W

    2013-11-12

    A system in a spatially degenerate ground state responds in a qualitatively different way to positive and negative point charges. This means that the molecular electrostatic potential is ill-defined for degenerate ground states due to the ill-defined nature of the electron density. It also means that it is impossible, in practice, to define fixed atomic charges for molecular mechanics simulations of molecules with (quasi-)degenerate ground states. Atomic-polarizability-based models and electronegativity-equalization-type models for molecular polarization also fail to capture this effect. We demonstrate the ambiguity in the electrostatic potential using several molecules of different degree of degeneracy, quasi-degeneracy, and symmetry. PMID:26583396

  17. Measurement of rubidium ground-state hyperfine transition frequency using atomic fountains

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Yuri B.; Szymaniec, Krzysztof; Edris, Soliman

    2015-08-01

    The results of precision measurements of the 87Rb ground-state hyperfine transition frequency, which were conducted at NPL from 2009 to 2013, are reported. The resulting frequency, measured using NPL’s Cs and Rb atomic frequency standards, demonstrates reasonable agreement with the most recent measurements reported by LNE-SYRTE.

  18. Influence of an external electric field on thermal collisions between ''circular'' Rydberg-state atoms and ground-state helium

    SciTech Connect

    de Prunele, E.

    1986-05-01

    The influence of an external electric field on thermal collisions between a sodium atom excited in a ''circular'' Rydberg state (n = l+1 = m+1 = 20) and a ground-state helium atom is studied numerically within the framework of the impulse approximation. The effect of the field is determined by using parabolic wave functions for the initial and final hydrogenic atomic states. The removal of degeneracy induced by the field appears to have no significant effect for fields in the range of 0-400 V/cm. However, the state-to-state transition cross sections are strongly dependent on the initial orientation as found in previous calculations without electric field.

  19. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kluge, H.-Jürgen

    2010-02-01

    The international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” held during 2009 in Poznan gave an excellent overview on the latest experimental and theoretical results regarding the investigation of radionuclides by atomic physics techniques and the extraction of ground state properties of exotic nuclei. This publication intends to summarize the progress recently achieved by laser spectroscopy and mass spectrometry as well as by weak interaction studies using atomic physics techniques. Furthermore, it tries to point to some areas requiring urgent improvements and to indicate some routes of future research and challenging opportunities.

  20. Quantum ground state of self-organized atomic crystals in optical resonators

    SciTech Connect

    Fernandez-Vidal, Sonia; De Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-15

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  1. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  2. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  3. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry

    NASA Astrophysics Data System (ADS)

    Gregoire, Maxwell D.; Hromada, Ivan; Holmgren, William F.; Trubko, Raisa; Cronin, Alexander D.

    2015-11-01

    We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms using a three-nanograting Mach-Zehnder atom beam interferometer. Our measurements provide benchmark tests for atomic structure calculations and thus test the underlying theory used to interpret atomic parity-nonconservation experiments. We measured αCs=4 π ɛ0×59.39 (9 ) Å3,αRb=4 π ɛ0×47.39 (8 ) Å3 , and αK=4 π ɛ0×42.93 (7 ) Å3 . In atomic units, these measurements are αCs=401.2 (7 ) ,αRb=320.1 (6 ) , and αK=290.0 (5 ) . We report ratios of polarizabilities αCs/αRb=1.2532 (10 ) ,αCs/αK=1.3834 (9 ) , and αRb/αK=1.1040 (9 ) with smaller fractional uncertainty because the systematic errors for individual measurements are largely correlated. Since Cs atom beams have short de Broglie wavelengths, we developed measurement methods that do not require resolved atom diffraction. Specifically, we used phase choppers to measure atomic beam velocity distributions, and we used electric field gradients to give the atom interference pattern a phase shift that depends on atomic polarizability.

  4. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  5. Vibrational ground state cooling of a neutral atom in a tightly focused optical dipole trap

    NASA Astrophysics Data System (ADS)

    Aljunid, Syed; Maslennikov, Gleb; Paesold, Martin; Durak, Kadir; Leong, Victor; Kurtsiefer, Christian

    2012-06-01

    Recent experiments have shown that an efficient interaction between a single trapped atom and light can be established by concentrating light field at the location of the atom by focusing [1-3]. However, to fully exploit the benefits of strong focusing one has to localize the atom at the maximum of the field strength [4]. The position uncertainty due to residual kinetic energy of the atom in the dipole trap (depth 1mK) after molasses cooling is significant (few 100 nm). It limits the interaction between a focused light mode and an atom already for moderate focusing strength [2]. To address this problem we implement a Raman Sideband cooling technique, similar to the one commonly used in ion traps [5], to cool a single ^87Rb atom to the ground state of the trap. We have cooled the atom along the transverse trap axis (trap frequency ??=55,), to a mean vibrational state n?=0.55 and investigate the impact on atom-light interfaces.[4pt] [1] M. K. Tey, et al., Nature Physics 4 924 (2008)[0pt] [2] M. K. Tey et. al., New J. Phys. 11, 043011 (2009)[0pt] [3] S.A. Aljunid et al., PRL 103, 153601 (2009)[0pt] [4] C. Teo and V. Scarani Opt. Comm. 284 4485-4490 (2011)[0pt] [5] C. Monroe et al., PRL 75, 4011 (1995)

  6. The "non-reaction" of ground-state triplet carbon atoms with water revisited.

    PubMed

    Schreiner, Peter R; Reisenauer, H Peter

    2006-04-10

    We introduce a novel experimental setup for the generation of carbon atoms by means of pulsed laser ablation with a pulse rate optimized to avoid warming of the matrix. The combination of this technique with annealing of the matrix, recooling, and spectral recording (e.g. IR) allowed us to differentiate between the reactivity of triplet and singlet carbon atoms towards water under matrix-isolation conditions. Our experimental procedure assures the relaxation of all unreacted carbon atoms to their triplet ground state in the 10 K matrix before spectral recording. In agreement with CCSD(T)/cc-pVTZ+ZPVE computational data and earlier lower level results, we find that triplet carbon atoms indeed do not react with water, despite their high initial energy. Intersystem crossing of the triplet to singlet states of hydroxy carbene are less important, as the barriers for rearrangement of the initial complex of triplet carbon atoms and water to covalently bound species are too high, and dissociation is more likely. We found no evidence for a direct O--H bond-insertion path for triplet carbon atoms. Self-condensation reactions of triplet carbon atoms are clearly favored and yield carbon clusters that show reactivity of their own. The proposed formation of aldoses in extraterrestrial environments can therefore only derive from "hot" carbon atoms or through photoreactions. PMID:16596611

  7. Gas flow dependence of ground state atomic oxygen in plasma needle discharge at atmospheric pressure

    SciTech Connect

    Sakiyama, Yukinori; Graves, David B.; Knake, Nikolas; Schroeder, Daniel; Winter, Joerg; Schulz-von der Gathen, Volker

    2010-10-11

    We present clear evidence that ground state atomic oxygen shows two patterns near a surface in the helium plasma needle discharge. Two-photon absorption laser-induced fluorescence spectroscopy, combined with gas flow simulation, was employed to obtain spatially-resolved ground state atomic oxygen densities. When the feed gas flow rate is low, the radial density peaks along the axis of the needle. At high flow rate, a ring-shaped density distribution appears. The peak density is on the order of 10{sup 21} m{sup -3} in both cases. The results are consistent with a previous report of the flow-dependent bacterial killing pattern observed under similar conditions.

  8. Pfaffian-like ground states for bosonic atoms and molecules in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Äńurić, Tanja; Chancellor, Nicholas; Crowley, Philip J. D.; Di Cintio, Pierfrancesco; Green, Andrew G.

    2016-02-01

    We study ground states and elementary excitations of a system of bosonic atoms and diatomic Feshbach molecules trapped in a one-dimensional optical lattice using exact diagonalization and variational Monte Carlo methods. We primarily study the case of an average filling of one boson per site. In agreement with bosonization theory, we show that the ground state of the system in the thermodynamic limit corresponds to the Pfaffian-like state when the system is tuned towards the superfluid-to-Mott insulator quantum phase transition. Our study clarifies the possibility of the creation of exotic Pfaffian-like states in realistic one-dimensional systems. We also present preliminary evidence that such states support non-Abelian anyonic excitations that have potential application for fault-tolerant topological quantum computation.

  9. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    SciTech Connect

    Bussery-Honvault, Beatrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X {sup 1}{sigma}{sub g}{sup +} and excited {sup 1}{pi}{sub g}(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the {sup 1}{pi}{sub g}(leftarrow){sup 1}{sigma}{sub g}{sup +} transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the {sup 1}{pi}{sub g}(4s3d) to the X {sup 1}{sigma}{sub g}{sup +} state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by photoassociation of cold atoms to the first {sup 1}{pi}{sub g} state followed by a spontaneous emission to the ground state.

  10. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  11. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  12. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  13. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  14. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron

  15. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  16. Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms

    SciTech Connect

    Kluepfel, Simon; Kluepfel, Peter; Jonsson, Hannes

    2011-11-15

    The ground state of atoms from H to Ar was calculated using a self-interaction correction to local- and gradient-dependent density functionals. The correction can significantly improve the total energy and makes the orbital energies consistent with ionization energies. However, when the calculation is restricted to real orbitals, application of the self-interaction correction can give significantly higher total energy and worse results, as illustrated by the case of the Perdew-Burke-Ernzerhof gradient-dependent functional. This illustrates the importance of using complex orbitals for systems described by orbital-density-dependent energy functionals.

  17. Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure.

    PubMed

    Puchalski, Mariusz; Pachucki, Krzysztof

    2013-12-13

    Relativistic and QED corrections are calculated for a hyperfine splitting of the 2S1/2 ground state in 6,7Li atoms with a numerically exact account for electronic correlations. The resulting theoretical predictions achieve such a precision level that, by comparison with experimental values, they enable determination of the nuclear properties. In particular, the obtained results show that the 7Li nucleus, having a charge radius smaller than 6Li, has about a 40% larger Zemach radius. Together with known differences in the electric quadrupole and magnetic dipole moments, this calls for a deeper understanding of the Li nuclear structure. PMID:24483650

  18. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.

    PubMed

    Yi, Zhen; Li, Gao-xiang; Wu, Shao-ping; Yang, Ya-ping

    2014-08-25

    We investigate a hybrid quantum system combining cavity quantum electrodynamics and optomechanics, where a photon mode is coupled to a four-level tripod atom and to a mechanical mode via radiation pressure. We find that within the single-photon optomechanics and Lamb-Dicke limit, the presence of the tripod atom alters the optical properties of the cavity radiation field drastically, and gives rise to completely quantum destructive interference effects in the optical scattering. The heating rate can be dramatically suppressed via utilizing the completely destructive interference involving atom, photon and phonon, and the obtained result is analogous to that of the resolved sideband regime. The heating process is only connected to the scattering of cavity damping path, which is also far-off resonance. Meanwhile, the cooling rate assisted by the atomic transitions can be significantly enhanced, where the cooling process occurs through the cavity and atomic dissipation paths. Finally, the ground-state cooling of the movable mirror is achievable and even more robust to heating process and thermal noise. PMID:25321216

  19. The oxidation of polycrystalline silver films by thermal, ground-state atomic oxygen

    NASA Astrophysics Data System (ADS)

    Edwards, D. L.; Williams, J. R.; Fromhold, A. T.; Barnes, P. A.; Wey, J. P.; Neely, W. C.; Whitaker, A. F.

    1993-06-01

    Experimental results indicate a linear relationship between oxide layer thickness and exposure time for thin Ag films exposed to thermal, ground-state atomic oxygen fluxes of the order of 10 17 atoms/(cm 2s). Exposure times ranged between 10 and 120 s, and all exposures were made at ambient temperature. The techniques of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used to characterize stress-induced damage in the thickest oxide layers. This damage was also observed using RBS (Rutherford backscattering spectroscopy) techniques which were applied to determine oxide layer thicknesses as a function of exposure time. Results are compared with data recently obtained from similar measurements using thin, polycrystalline Cu films.

  20. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  1. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    NASA Astrophysics Data System (ADS)

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E.; Tretyakova, T. Yu.

    2015-12-01

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even-even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even-even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  2. Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach

    SciTech Connect

    Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E.; Tretyakova, T. Yu.

    2015-12-15

    Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.

  3. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  4. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    SciTech Connect

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and ΔSºHAT are both affected by ΔSºvib and vary significantly with the metal center involved. The close connection between ΔSºHAT and ΔSºET provides an important link between these two fields and provides a starting point from which to predict which HAT systems will have important ground-state entropy effects. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. Achieving ground-state polar molecular condensates by chainwise atom-molecule adiabatic passage

    SciTech Connect

    Qian Jing; Zhang Weiping; Ling, Hong Y.

    2010-01-15

    We generalize the idea of chainwise stimulated Raman adiabatic passage (STIRAP) [Kuznetsova et al., Phys. Rev. A 78, 021402(R) (2008)] to a photoassociation-based chainwise atom-molecule system, with the goal of directly converting two-species atomic Bose-Einstein condensates (BEC) into a ground polar molecular BEC. We pay particular attention to the intermediate Raman laser fields, a control knob inaccessible to the usual three-level model. We find that an appropriate exploration of both the intermediate laser fields and the stability property of the atom-molecule STIRAP can greatly reduce the power demand on the photoassociation laser, a key concern for STIRAPs starting from free atoms due to the small Franck-Condon factor in the free-bound transition.

  6. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    PubMed Central

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-01-01

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2-bi-1,4,5,6-tetrahydropyrimidine, H2bim = 2,2-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2-pyridyl)-imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reaction of [CoII(H2bim)3]2+ with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer, ?41 2 cal mol?1 K?1. This is even more negative than the ?SoHAT = ?30 2 cal mol?1 K?1 for the two iron complexes and the ?SoHAT for RuII(acac)2(py-imH) + TEMPO, 4.9 1.1 cal mol?1 K?1, as reported earlier. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ?SoHAT. Calorimetry on TEMPOH + tBu3PhO gives ?HoHAT = ?11.2 0.5 kcal mol?1 which matches the enthalpy predicted from the difference in literature solution BDEs. A brief evaluation of the literature thermochemistry of TEMPOH and tBu3PhOH supports the common assumption that ?SoHAT ? 0 for HAT reactions of organic and small gas-phase molecules. However, this assumption does not hold for transition metal based HAT reactions. The trend in magnitude of |?SoHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ?SoET, in aprotic solvents. This is because both ?SoET and ?SoHAT have substantial contributions from vibrational entropy, which varies significantly with the metal center involved. The close connection between ?SoHAT and ?SoET provides an important link between these two fields and provides a starting point from which to predict which HAT systems will have important ground-state entropy effects. PMID:19275235

  7. Estimation of the Ground State Energy of an Atomic Solid by Employing Quantum Trajectory Dynamics with Friction.

    PubMed

    Gu, Bing; Hinde, Robert J; Rassolov, Vitaly A; Garashchuk, Sophya

    2015-07-14

    Evolution with energy dissipation can be used to obtain the ground state of a quantum-mechanical system. This dissipation is introduced in the quantum trajectory framework by adding an empirical friction force to the equations of motion for the trajectories, which, as an ensemble, represent a wave function. The quantum effects in dynamics are incorporated via the quantum force derived from the properties of this ensemble. For scalability to large systems, the quantum force is computed approximately yet with sufficient accuracy to describe the strongly anharmonic ground state of solid (4)He represented by a simulation cell of 180 atoms. PMID:26575727

  8. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also be presented. This work is supported by the Johns Hopkins University, Applied Physics Laboratory, under grant 939991 (under NASA grant NAG5-13002). [1] Feofilov, A., Kutepov, A. A., Garcí­a-Comas, M., López-Puertas, M., Marshall, B. T., Gordley, L. L., Manuilova, R. O., Yankovsky, V. A., Pesnell, W. D., Goldberg, R. A., Petelina, S. V., and Russell III., J. M. 'SABER/TIMED Observations of Water Vapor in the Mesosphere: Retrieval Methodology and First Results'. Submitted to J. of Atmos. and Terrest. Phys., (2008). [2] Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., J. of Chem. Phys., 123, 194303, (2005). [3] Pejakovic, D. A., Campbell, Z., Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., Eos. Trans. AGU 85(47), Fall Meet. Suppl., Abstract SA41A-1032, (2004).

  9. Meta-Atom Behavior in Clusters Revealing Large Spin Ground States.

    PubMed

    Hernández Sánchez, Raúl; Betley, Theodore A

    2015-11-01

    The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (χ(M)T ≈ 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mössbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min). PMID:26440452

  10. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity.

    PubMed

    Boozer, A D; Boca, A; Miller, R; Northup, T E; Kimble, H J

    2006-08-25

    Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy variant Planck's over 2 h omega a/2kB = 13 microK is occupied with probability P0 approximately 0.95. PMID:17026303

  11. Cooling to the Ground State of Axial Motion for One Atom Strongly Coupled to an Optical Cavity

    SciTech Connect

    Boozer, A. D.; Boca, A.; Miller, R.; Northup, T. E.; Kimble, H. J.

    2006-08-25

    Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy ({Dirac_h}/2{pi}){omega}{sub a}/2k{sub B}=13 {mu}K is occupied with probability P{sub 0}{approx_equal}0.95.

  12. The theoretical study of the ground-state polar chromium-alkali-metal-atom molecules

    NASA Astrophysics Data System (ADS)

    Deng, Lijuan; Gou, Dezhi; Chai, Junshuai

    2016-04-01

    Potential energy curves and permanent dipole moments of the 6Σ+ and 8Σ+ ground state of CrX (X = Li, Na, K, Rb and Cs) are calculated by employing the complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods. The spectroscopic constants for the 6Σ+ and 8Σ+ ground state of these molecules are calculated. Moreover, CrK, CrRb and CrCs molecules with large values of permanent dipole moment (CrK: 5.553 D, CrRb: 6.341 D and CrCs: 6.731 D) at the equilibrium bond distance are potentially interesting candidates for ultracold anisotropic long-range dipole-dipole interactions and many-body physics studies.

  13. A simple, radially correlated ground state wavefunction for two electron atoms.

    NASA Technical Reports Server (NTRS)

    Altick, P. L.

    1972-01-01

    A one parameter function is presented as an approximation to the ground state wavefunction of the two electron radial hamiltonian. The parameter may be fixed by a nonvariational criterion. The resulting expectation value of the radial hamiltonian differs from its exact eigenvalue by about 2 parts in 3000 for helium while the 'local energy' never differs by more than 10% from the exact value over the entire r1-r2 plane. The cases Z = 1 and Z = 3 are also investigated.

  14. Polarization effects in metastable neon atom (Ne* ( 3P 2)) on ground state neon atom collision at thermal energy

    NASA Astrophysics Data System (ADS)

    Baudon, J.; Perales, F.; Miniatura, Ch.; Robert, J.; Vassilev, G.; Reinhardt, J.; Haberland, H.

    1990-08-01

    The difference Δ between the differential cross section for Ne*( 3P 2 atoms polarized either in state | j=2, m=+2 > or | j=2, m=-2 >, colliding at thermal energy with a groundstate target (Ne,O 2), is measured. In the symmetric case Ne*-Ne, direct and exchange contribution are observed. General properties of Δ, derived from symmetry considerations, are established; in particular: (i) the interference character of Δ, (ii) the role played by the azimuthal dependence of the scattering amplitudes, (iii) the property Δ(0) = Δ(180°)=0. The relationship between the Fourier harmonics introduced in this discussion and the scattering amplitudes used in standard collision treatments are given.

  15. Reconciling simulated melting and ground-state properties of metals with a modified embedded-atom method potential

    NASA Astrophysics Data System (ADS)

    Sushko, G. B.; Verkhovtsev, A. V.; Kexel, Ch; Korol, A. V.; Schramm, S.; Solov'yov, A. V.

    2016-04-01

    We propose a modification of the embedded-atom method-type potential aiming at reconciling simulated melting and ground-state properties of metals by means of classical molecular dynamics. Considering titanium, magnesium, gold, and platinum as case studies, we demonstrate that simulations performed with the modified force field yield quantitatively correctly both the melting temperature of the metals and their ground-state properties. It is shown that the accounting for the long-range interatomic interactions noticeably affects the melting point assessment. The introduced modification weakens the interaction at interatomic distances exceeding the equilibrium one by a characteristic vibration amplitude defined by the Lindemann criterion, thus allowing for the correct simulation of melting, while keeping its behavior in the vicinity of the ground state minimum. The modification of the many-body potential has a general nature and can be applicable to metals with different characteristics of the electron structure as well as for many different molecular and solid state systems experiencing phase transitions.

  16. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  17. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  18. Interactions between Ground State Oxygen Atoms and Molecules: O - O and O (sub2) - O (sub2)

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Maisch, William G.

    1960-01-01

    Potential energy curves for O - O interactions corresponding to the X (sup 3) Sigma - g, 1 delta g, 1 Sigma plus g, 3 delta u, A3 Sigma plus u, 1 Sigma - u, and B3 Sigma states of O (sub 2) have been calculated from spectroscopic data by the Rydberg-Klein-Rees method. Curves for the remaining twelve states of O (sub 2) dissociating to ground state atoms have been obtained from relations derived from approximate quantum-mechanical calculations, and checked against the meager experimental information available. Two semi-independent calculations have been made, and are in good agreement with each other. The quantum-mechanical relations also lead to an approximate O (sub 2) - O (sub 2) interaction, which is consistent with interactions derived from vibrational relaxation times and from high-temperature gas viscosity data.

  19. Calculation of the ground-state energy and average distance between particles for the nonsymmetric muonic {sup 3}He atom

    SciTech Connect

    Eskandari, M.R.; Rezaie, B.

    2005-07-15

    A calculation of the ground-state energy and average distance between particles in the nonsymmetric muonic {sup 3}He atom is given. We have used a wave function with one free parameter, which satisfies boundary conditions such as the behavior of the wave function when two particles are close to each other or far away. In the proposed wave function, the electron-muon correlation function is also considered. It has a correct behavior for r{sub 12} tending to zero and infinity. The calculated values for the energy and expectation values of r{sup 2n} are compared with the multibox variational approach and the correlation function hyperspherical harmonic method. In addition, to show the importance and accuracy of approach used, the method is applied to evaluate the ground-state energy and average distance between the particles of nonsymmetric muonic {sup 4}He atom. Our obtained results are very close to the values calculated by the mentioned methods and giving strong indications that the proposed wave functions, in addition to being very simple, provide relatively accurate values for the energy and expectation values of r{sup 2n}, emphasizing the importance of the local properties of the wave function.

  20. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  1. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  2. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  3. Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain.

    PubMed

    Szarek, Paweł; Wegner, Wojciech; Grochala, Wojciech

    2016-03-01

    Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S = 6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe(2+) sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands. Graphical abstract Effect of d(z(2)) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain. PMID:26910724

  4. Correlated parameters in the quasi-classical treatment of atomic ground states using effective momentum dependent potentials for molecular dynamics simulation of strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Verboncoeur, John; Dharuman, Gautham; Christlieb, Andrew; Murillo, Michael

    2015-11-01

    Ground state energies and configurations of N, F, Ne, Al, S, Ar and Ca are obtained using a quasi-classical treatment with Kirschbaum-Wilets potentials. The effect of phase space parameters on the ground state energy is studied in detail and compared with Hartree-Fock values. The phase space parameters that resulted in ground state energies comparable to Hartree-Fock values are found to be correlated and follow a pattern with atomic number which led to identifying a predictive capability in the model. The change in ground state configurations for different phase space parameters is studied and correlated with the corresponding change in ground state energies. Work supported by Air Force Office of Scientific Research (AFOSR).

  5. Field shifts and lowest order QED corrections for the ground 1 {sup 1}S and 2 {sup 3}S states of the helium atoms

    SciTech Connect

    Frolov, Alexei M.

    2007-03-14

    The bound state properties of the ground 1 {sup 1}S(L=0) state and the lowest triplet 2 {sup 3}S(L=0) state of the {sup 3}He, {sup 4}He, and {sup {infinity}}He helium atoms are determined to very high accuracy from the results of direct numerical computations. To compute the bound state properties of these atoms the author applied his exponential variational expansion in relative/perimetric three-body coordinates. For the ground 1 {sup 1}S(L=0) state and the lowest triplet 2 {sup 3}S(L=0) state of the {sup 3}He, {sup 4}He, and {sup {infinity}}He atoms the author also determined the lowest order QED corrections and the field component of isotopic shift (=field shift). For the 2 {sup 3}S(L=0) state of the {sup 3}He atom the hyperfine structure splitting is evaluated. The considered properties of the ground 1 {sup 1}S state and the lowest 2 {sup 3}S state in the {sup 3}He and {sup 4}He atoms are of great interest in a number of applications.

  6. Fine-structure mixing in 7/sup 2/D and 8/sup 2/D Rb atoms, induced in collisions with ground-state atoms and molecules

    SciTech Connect

    Supronowicz, J.; Atkinson, J.B.; Krause, L.

    1984-07-01

    Cross sections for 7/sup 2/D and 8/sup 2/D fine-structure mixing in Rb, induced by collisions with various ground-state atoms and N/sub 2/ molecules, have been determined using methods of atomic fluorescence. Rb vapor, pure or mixed with a buffer gas, was irradiated in a glass fluorescence cell with pulses of radiation from a N/sub 2/ laser-pumped dye laser, populating a /sup 2/D fine-structure state by two-photon absorption. The resulting fluorescence included a direct component arising from the optically excited state and a sensitized component due to the collisionally populated fine-structure state. Measurements of relative intensities of the two components in relation to buffer-gas pressure yielded the following cross sections (in units of 10/sup -14/ cm/sup 2/): Q(7/sup 2/D/sub 3/2/..-->..7/sup 2/D/sub 5/2/) = 1 4.1, 15.5, and 10.0; Q(7/sup 2/D/sub 3/2/reverse arrow7/sup 2/D/sub 5/2/) = 9 .0, 10.5, and 6.9, for Kr, Xe, and N/sub 2/, respectively; Q(8/sup 2/D/sub 3/2/..-->..8/sup 2/D/sub 5/2/) = 8 .9, 4.9, 12.4, 24.9, 25.8, 12.1, and 43.1; Q(8/sup 2/D/sub 3/2/reverse arrow8/sup 2/D/sub 5/2/) = 5 .8, 3.2, 9.4, 15.1, 17.6, 8.3, and 28.5, for He, Ne, Ar, Kr, Xe, N/sub 2/, and Rb, respectively. Cross sections for the effective depopulation of the /sup 2/D states were also determined.

  7. Trilobites and other molecular animals: How Rydberg-electrons catch ground state atoms

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman

    2012-06-01

    We report on laser spectroscopy results obtained in a dense and frozen Rydberg gas. Novel molecular bonds resulting in ultralong-range Rydberg dimers were predicted [1] and dimers as well as trimers in different vibrational states were found [2]. Some of these states are predicted to be bound by quantum reflection. Lifetime measurements confirm this prediction. Coherent superposition between free and bound states have been investigated [3]. Recently we have also confirmed that in an electric field these homonuclear molecules develop a permanent dipole moment [4]. [4pt] [1] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000). [0pt] [2] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. L"ow, T. Pfau, Nature 458, 1005 (2009), V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. L"ow, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and J. M. Rost, Phys. Rev. Lett. 105, 163201 (2010). [0pt] [3] B. Butscher, J. Nipper, J. B. Balewski, L. Kukota, V. Bendkowsky, R. L"ow, and T. Pfau Nature Physics 6, 970--974 (2010). [0pt] [4] W. Li, T. Pohl, J. M. Rost, Seth T. Rittenhouse, H. R. Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski, V. Bendkowsky, R. L"ow, T. Pfau, Science 334, 1110 (2011).

  8. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    NASA Astrophysics Data System (ADS)

    Sushkov, V.; Do, H. T.; Cada, M.; Hubicka, Z.; Hippler, R.

    2013-02-01

    Time-resolved investigations of excited argon atom density and temperature and ground-state titanium atom density during high-power impulse magnetron sputtering (HiPIMS, repetition frequency 100 Hz) and direct current pulsed magnetron (repetition frequency 2.5 kHz) discharges (PMDs) in argon employing a titanium target were performed. Atom density and temperature were measured with the help of tunable diode laser absorption spectroscopy. Excited argon atoms form during the discharge pulse and again by three-body electron ion recombination in the afterglow. Similarly, the temperature of excited (metastable) argon atoms rises during the plasma on phase and again during the afterglow. The observed temporal evolution of the temperature is faster than expected from thermal conductivity considerations, which is taken as an indication that metastable and ground-state argon atoms are not in thermal equilibrium. The time dependence of titanium atoms can be explained by recombination and diffusion. The results provide new insights into the physics of PMDs.

  9. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  10. Excitation, ionization, and electron capture cross sections for collisions of Li{sup 3+} with ground state and excited hydrogen atoms

    SciTech Connect

    Murakami, I. Yan, J.; Sato, H.; Kimura, M.; Janev, R.K.; Kato, T.

    2008-03-15

    Using the available experimental and theoretical data, as well as the established cross section scaling relationships, a comprehensive cross section database for excitation, ionization and electron capture in collisions of Li{sup 3+} ions with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have the correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form.

  11. Stabilization and manipulation of electronically phase-separated ground states in defective indium atom wires on silicon.

    PubMed

    Zhang, Hui; Ming, Fangfei; Kim, Hyun-Jung; Zhu, Hongbin; Zhang, Qiang; Weitering, Hanno H; Xiao, Xudong; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu

    2014-11-01

    Exploration and manipulation of electronic states in low-dimensional systems are of great importance in the fundamental and practical aspects of nanomaterial and nanotechnology. Here, we demonstrate that the incorporation of vacancy defects into monatomic indium wires on n-type Si(111) can stabilize electronically phase-separated ground states where the insulating 82 and metallic 41 phases coexist. Furthermore, the areal ratio of the two phases in the phase-separated states can be tuned reversibly by electric field or charge doping, and such tunabilities can be quantitatively captured by first principles-based modeling and simulations. The present results extend the realm of electronic phase separation from strongly correlated d-electron materials typically in bulk form to weakly interacting sp-electron systems in reduced dimensionality. PMID:25415916

  12. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  13. High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain

    NASA Astrophysics Data System (ADS)

    Bize, S.; Sortais, Y.; Santos, M. S.; Mandache, C.; Clairon, A.; Salomon, C.

    1999-03-01

    We describe the operation of a laser-cooled rubidium 87Rb frequency standard. We present a new measurement of the 87Rb hyperfine frequency with a 1.3 × 10-14 relative accuracy, by comparison with a Cs fountain primary standard. The measured 87Rb ground-state hyperfine splitting is ν87 = 6 834 682 610.90429(9) Hz. This value differs from previously published values (see Essen L., Hope E. G. and Sutcliffe D., Nature 189 1961 298; Penselin S., Moran T., Cohen W. and Wscinkler G., Phys. Rev. 127 1962 524; Arditi M. and Cerez P. IEEE Trans. Instrum. Meas. IM-21 1972 391) by about 2 - 3 Hz and is 104 times more accurate. Because of the low collisional shift in 87Rb, future improvements may lead to a stability of 1 × 10-14τ-1/2 and a relative accuracy in the 10-17 range.

  14. Relativistic coupled cluster method based on DiracCoulombBreit wavefunctions. Ground state energies of atoms with two to five electrons

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Yasuyuki

    1994-05-01

    A relativistic Fock-space coupled cluster theory based on the DiracCoulombBreit wavefunctions has been developed and implemented, employing analytic basis sets of Gaussian-type functions. Relativistic all-order calculations including single and double excitations were performed for the ground states of the He and Be atoms and for the Ne ( Z = 10), Ar ( Z = 18) and Sn ( Z = 50) ions with 2-5 electrons. Comparison is made with the DiracCoulomb and non-relativistic formulation and with available experimental results. The non-additivity of relativistic and correlation effects is discussed.

  15. Dirac-Hartree Predictions of the Ground State Electron Configurations of Atomic Negative Ions: Strontium Anion, Barium Anion, Ytterbium Anion, Radium Anion, Lanthanum Anion and Lutetium Anion

    NASA Astrophysics Data System (ADS)

    Chevary, John Alexander

    In this thesis, Dirac-Hartree-Fock-based (DHF) methods are used to investigate the following anions: Ca ^-, Sr^-, Ba^-, Yb^- and Ra^- (the "alkaline earths"), and Se^-, Y^-, La^- and Lu^- (the "group IIIB" systems). The dogma that the configuration of an anion with N electrons is the same as that of the N electron neutral atom implies that all of these systems 'should' bind (n - 1)d electrons to their neutral atoms to form the respective anions with the exception of La which 'should' bind a 4f electron. (Here n = 4 (Ca, Sc), 5 (Sr, Y), 6 (Ba, La, Yb, Lu) and 7 (Ra).) However, the electron configurations of all of the above anions have been either observed (Ca ^-, Sc^- and Y^-) or are predicted (Sr ^-, Ba^-, La ^-, Yb^-, Lu ^- and Ra^-) to be formed by adding an np electron to the neutral atom ground state. La^- is also predicted to be stable in the (Xe) 5d^26s ^2 configuration. (All of these anions have been observed to be stable but the quantum numbers of all but Ca^-, Sc^- and Y^- have yet to be inferred.). It is shown that in the N electron systems corresponding to the "alkaline earth" anions, La^- and Lu^-, the well-known DHF energy dominates the transitions from the neutral atom ground state configuration to the anion ground state configuration as Z is lowered from N to N - 1. Further, when the DHF energy is approximated by the Hartree-Fock (HF) energy plus the J-independent relativistic effects, the HF energy is seen to be responsible for almost all of the Z-dependence of these transitions while the relativistic energy reinforces these tendencies. Estimates of the electron affinities (EA's) and binding energies of La^- and Lu ^- are made which indicate that the (Xe) 5 d^2 6s^2 ^3F _sp{2}{rm e} state is likely to be the ground state of La^ -, namely it is a few mHartree more bound than the (Xe) 5d^16s^26 p^1 (^1D _sp{2}{rm e}oplus ^3F_sp{2}{ rm e}) state. The EA's of Sr^-, Ba ^-, Yb^- and Ra ^- have been extracted by combining the recent experimental value for Ca^- with density-functional-theory DHF calculations. Also, the spin-orbit splittings of the "alkaline earth" anions are estimated. Of particular interest, the (Xe) 4f ^{14}6s^26 p^{1 2}P _sp{3/2}{rm o} state of Yb^- is unlikely to be bound even though its (Xe) 4f^{14} 6s^26p^{1 2}P_sp{1/2} {rm o} state is weakly bound.

  16. Ground State Electroluminescence

    NASA Astrophysics Data System (ADS)

    Cirio, Mauro; De Liberato, Simone; Lambert, Neill; Nori, Franco

    2016-03-01

    Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong coupling with the photonic field of a cavity. Here we show that, together with the usual electroluminescence, systems in the ultrastrong light-matter coupling regime emit a uniquely quantum radiation when a flow of current is driven through them. While standard electroluminescence relies on the population of excited states followed by spontaneous emission, the process we describe herein extracts bound photons from the dressed ground state and it has peculiar features that unequivocally distinguish it from usual electroluminescence.

  17. Ground State Electroluminescence.

    PubMed

    Cirio, Mauro; De Liberato, Simone; Lambert, Neill; Nori, Franco

    2016-03-18

    Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong coupling with the photonic field of a cavity. Here we show that, together with the usual electroluminescence, systems in the ultrastrong light-matter coupling regime emit a uniquely quantum radiation when a flow of current is driven through them. While standard electroluminescence relies on the population of excited states followed by spontaneous emission, the process we describe herein extracts bound photons from the dressed ground state and it has peculiar features that unequivocally distinguish it from usual electroluminescence. PMID:27035302

  18. Inactivation of Penicillium digitatum Spores by a High-Density Ground-State Atomic Oxygen-Radical Source Employing an Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Hashizume, Hiroshi; Jia, Fengdong; Takeda, Keigo; Ishikawa, Kenji; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2011-11-01

    Penicillium digitatum spores were inactivated using an oxygen-radical source that supplies only neutral oxygen radicals. Vacuum ultraviolet absorption spectroscopy was used to measure the ground-state atomic oxygen [O (3Pj)] densities and they were estimated to be in the range of 1014-1015 cm-3. The inactivation rate of P. digitatum spores was correlated with the O (3Pj) density. The result indicates that O (3Pj) is the dominant species in the inactivation. The inactivation rate constant of P. digitatum spores by O (3Pj) was estimated to be on the order of 10-17 cm3 s-1 from the measured O (3Pj) densities and inactivation rates.

  19. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    NASA Astrophysics Data System (ADS)

    Amovilli, C.; March, N. H.

    2012-06-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution tRM(r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that tRM = tRM[f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form.

  20. Trapped antihydrogen in its ground state.

    PubMed

    Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2012-03-16

    Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out. PMID:22540471

  1. Autoionizing states of atomic boron

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  2. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  3. Experimental evidence of resonant energy collisional transfers between argon 1s and 2p states and ground state H atoms by laser collisional induced fluorescence

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; van Dijk, Jan; Kroesen, Gerrit

    2015-04-01

    In this paper, laser collisional induced fluorescence (LCIF) is used to probe resonant excitation transfers in an argon/hydrogen plasma resulting from heavy particle collisions. Different radiative transitions between the 1s and 2p states (in Paschen's notation) of argon are optically pumped by a nanosecond laser pulse. The spontaneous fluorescence and collisional responses of the argon and hydrogen systems are monitored by optical emission spectroscopy. A surfatron plasma source is used to generate an argon plasma with a few per cent hydrogen addition at pressures between 0.65 and 20 mbar. The electron density is measured independently by means of Thomson scattering. The overall response of the plasma due to optical pumping of argon is briefly discussed and an overview of the known heteronuclear excitation transfers in an argon/hydrogen plasma is given. The propagation of the shortcut in the Ar(1s) to H(n = 2) excitation transfer due to the optical pumping of the Ar(1s) states is seen in the atomic hydrogen LCIF responses. For the first time, we give direct experimental evidence of the existence of an efficient excitation transfer: Additionally, measurements are performed in order to estimate the resonant energy transfer between the resonant argon 1s states and hydrogen atoms: for which no previously measured cross sections could be found in the literature. These are extra quenching channels of argon 1s and 2p states that should be included in collisional-radiative modeling of argon-hydrogen discharges. The high repetition rate of the dye laser allows us to obtain a high sensitivity in the measurements. LCIF is shown to be a powerful tool for unraveling electron and also heavy particle excitation channels in situ in the plasma phase. The technique was previously developed for measuring electron or species densities locally in the plasma, but we show that it can be advantageously used to probe collisional transfers between very short-lived species which exist simultaneously only in the plasma phase.

  4. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  5. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  6. Correlated Atomic Pair Functions by the e-ϱ-Method. I. Ground State 11S and Lowest Excited States n1S (n > 1) and n3S of Helium

    NASA Astrophysics Data System (ADS)

    Seelig, F. F.; Becker, G. A.

    1999-12-01

    Some low n1S and n3S states of the helium atom are computed with the aid of the e-e method which formulates the electronic wave function of the 2 electrons ψ = e-e F, where ϱ=Z(r1+r2)-½r12 and here Z = 2. Both the differential and the integral equation for F contain a pseudopotential Ṽ instead of the true potential V that contrary to V is finite. For the ground state, F = 1 yields nearly the Hartree-Fock SCF accuracy, whereas a multinomial expansion in r1, r2 , r2 yields a relative error of about 10-7 . All integrals can be computed analytically and are derived from one single "parent" integral.

  7. Absolute rate data for reactions of ground-state atomic calcium, Ca(4s sup 2 sup 1 S sub 0 ), at elevated temperatures determined by time-resolved atomic resonance absorption spectroscopy

    SciTech Connect

    Clay, R.S.; Husain, D. )

    1991-09-01

    This paper reports on reactions of ground-state atomic calcium, Ca(4s{sup 2}{sup 1}S{sub 0}), with a large number of collision partners investigated by direct spectroscopic measurement using atomic resonance absorption spectroscopy in the time-domain. Ca(4{sup 1}S{sub 0}) was generated by the pulsed irradiation of CaI{sub 2} vapor at elevated temperatures and monitored photoelectrically in the single-shot mode using the resonance transition at {lambda} = 422.7 nm Ca(4{sup 1}P{sub 1}) {l arrow} Ca(4{sup 1}S{sub 0}). Decay profiles in the presence of the gases CH{sub 3}Cl, C{sub 2}H{sub 5}Cl, CF{sub 3}Cl, CF{sub 3}Br, CF{sub 2}Cl{sub 2}, CH{sub 3}F, CF{sub 3}H, CR{sub 4}, SF{sub 6}, HCl, HBr, N{sub 2}O with excess helium buffer gas were captured in a transient recorder and transferred either directly to a microcomputer or mainly to an XY-recorder for subsequent kinetic analysis. The development of the present method was principally feasible because of the construction here of an extremely intense, high-current hollow cathode atomic resonance source for the calcium transition employed in the investigation. Although the kinetic measurements for the removal of Ca(4{sup 1}S{sub 0}) with H{sub 2}O showed consistent plots, these yielded a value of k{sub R}(T = 911 K) = (3.4 {plus minus} 0.2) {times} 10{sup {minus}12} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, which is viewed with caution as it implies a bond dissociation energy of D(Ca-OH) of a magnitude at the extreme limits of the largest value reported from various analyses on calcium in premixed H{sub 2}-O{sub 2}-N{sub 2} flames.

  8. Lifetime of excited atomic states

    SciTech Connect

    Cresser, J.D.; Tang, A.Z.; Salamo, G.J.; Chan, F.T.

    1986-03-01

    In this paper we derive an expression for the lifetime of excited atomic states taking account of contributions due to nonresonant two-photon transitions. Explicit integration of the two-photon emission spectrum is not required. The results are applied to the case of the hydrogen atom.

  9. 7/sup 2/D/sub 3/2/-7/sup 2/D/sub 5/2/ excitation transfer in rubidium induced in collisions with ground-state Rb and noble-gas atoms

    SciTech Connect

    Wolnikowski, J.; Atkinson, J.B.; Supronowicz, J.; Krause, L.

    1982-05-01

    Cross sections for 7/sup 2/D/sub 3/2/bold-arrow-left-right7/sup 2/D/sub 5/2/ transfer in Rb, induced in collisions with He, Ne, Ar, and with ground-state Rb atoms, have been determined using methods of atomic fluorescence. Rb vapor, pure or mixed with a noble gas, was irradiated in a glass fluorescence cell with pulses of 660-nm radiation from a N/sub 2/-laser-pumped dye laser, populating one of the /sup 2/D states by two-photon absorption. The resulting fluorescence included a direct component emitted in the decay of the optically excited state and a sensitized component arising from the collisionally populated state. Relative intensities of the components yielded the cross sections for 7/sup 2/D mixing: Q(/sup 2/D/sub 3/2/..-->../sup 2/D/sub 5/2/) = 8.8, 6.5, 10.4, and 30; Q(/sup 2/D/sub 3/2/reverse arrow/sup 2/D/sub 5/2/) = 5.8, 4.0, 6.9, and 18, in units of 10/sup -14/ cm/sup 2/ for He, Ne, Ar, and Rb, respectively. Cross sections for the effective quenching of the /sup 2/D states were also determined.

  10. Exact integral constraint requiring only the ground-state electron density as input on the exchange-correlation force - partial differential(V)(xc)(r)/partial differential(r) for spherical atoms.

    PubMed

    March, N H; Nagy, A

    2008-11-21

    Following some studies of integral(n)(r)inverted DeltaV(r)dr by earlier workers for the density functional theory (DFT) one-body potential V(r) generating the exact ground-state density, we consider here the special case of spherical atoms. The starting point is the differential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg [Phys. Rev. A 18, 2399 (1978)] identity to show that the scalar quantity paralleling the above vector integral, namely, integral(n)(r) partial differential(V)(r)/partial differential(r)dr, is determined solely by the electron density n(0) at the nucleus for the s-like atoms He and Be. The force - partial differential(V)/ partial differential(r) is then related to the derivative of the exchange-correlation potential V(xc)(r) by terms involving only the external potential in addition to n(r). The resulting integral constraint should allow some test of the quality of currently used forms of V(xc)(r). The article concludes with results from the differential virial theorem and the Hiller-Sucher-Feinberg identity for the exact many-electron theory of spherical atoms, as well as for the DFT for atoms such as Ne with a closed p shell. PMID:19026052

  11. Ground-state energies of simple metals

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1974-01-01

    A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.

  12. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  13. Atomic spin chains as testing ground for quantum magnetism

    NASA Astrophysics Data System (ADS)

    Otte, Sander

    2015-03-01

    The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.

  14. Unfrustrated qudit chains and their ground states

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis; Farhi, Edward; Goldstone, Jeffrey; Nagaj, Daniel; Osborne, Tobias J.; Shor, Peter W.

    2010-07-01

    We investigate chains of d-dimensional quantum spins (qudits) on a line with generic nearest-neighbor interactions without translational invariance. We find the conditions under which these systems are not frustrated, that is, when the ground states are also the common ground states of all the local terms in the Hamiltonians. The states of a quantum spin chain are naturally represented in the matrix product states (MPS) framework. Using imaginary time evolution in the MPS ansatz, we numerically investigate the range of parameters in which we expect the ground states to be highly entangled and find them hard to approximate using our MPS method.

  15. Unfrustrated qudit chains and their ground states

    SciTech Connect

    Movassagh, Ramis; Shor, Peter W.; Farhi, Edward; Goldstone, Jeffrey; Nagaj, Daniel; Osborne, Tobias J.

    2010-07-15

    We investigate chains of d-dimensional quantum spins (qudits) on a line with generic nearest-neighbor interactions without translational invariance. We find the conditions under which these systems are not frustrated, that is, when the ground states are also the common ground states of all the local terms in the Hamiltonians. The states of a quantum spin chain are naturally represented in the matrix product states (MPS) framework. Using imaginary time evolution in the MPS ansatz, we numerically investigate the range of parameters in which we expect the ground states to be highly entangled and find them hard to approximate using our MPS method.

  16. High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O

    NASA Astrophysics Data System (ADS)

    Marshall, Paul; Fontijn, Arthur; Melius, Carl F.

    1987-05-01

    The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N2+OH, from 390 to 1310 K is found to be given by k1(T)=5.5×10-14 exp(-2380 K/T)+7.3×10-10 exp(-9690 K/T) cm3 molecule-1 s-1; the accuracy is assessed as approximately 25% at the 2σ confidence level. Above 750 K, k1 closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k1 is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of <1×10-9 exp(-15800 K/T) cm3 molecule-1 s-1 is set for temperatures up to 2000 K.

  17. High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N/sub 2/O

    SciTech Connect

    Marshall, P.; Fontijn, A.; Melius, C.F.

    1987-05-15

    The H+N/sub 2/O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 /sup 2/S) atoms were generated by flash photolysis of NH/sub 3/ and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N/sub 2/+OH, from 390 to 1310 K is found to be given by k/sub 1/(T) = 5.5 x 10/sup -14/ exp(-2380 K/T)+7.3 x 10/sup -10/ exp(-9690 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/; the accuracy is assessed as approximately 25% at the 2sigma confidence level. Above 750 K, k/sub 1/ closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k/sub 1/ is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of <1 x 10/sup -9/ exp(-15800 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/ is set for temperatures up to 2000 K.

  18. Influence of excited-state hyperfine structure on ground-state coherence

    NASA Astrophysics Data System (ADS)

    Nagel, A.; Affolderbach, C.; Knappe, S.; Wynands, R.

    2000-01-01

    In a three-level ? system, a bichromatic light field can induce a ground-state coherence that leads to vanishing absorption of the bichromatic field. Although this coherence is between ground states only, in a real atom it can nevertheless be influenced by the hyperfine structure of the excited state. We present experimental results which show that for suitable detunings of the bichromatic field from optical resonance, the specific contribution of each individual hyperfine level of the excited state can be distinguished through increased amplitude or width of the ground-state coherence.

  19. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  20. Efficient excitation of atomic Rydberg states

    NASA Astrophysics Data System (ADS)

    Corless, John Douglas

    1997-10-01

    We have investigated the optical excitation of atomic Rydberg states with emphasis on efficiency and selectivity. We consider both direct excitation from the ground to the Rydberg state as well as excitation via an intermediate resonance. In the direct excitation case, we find that a major limitation to the selectivity of the process is the optical mixing of the nearly degenerate Rydberg states with the same principal quantum number, but differing angular momentum quantum numbers. The interaction between these states is characterized by Rabi frequencies that exceed the optical frequency even for very modest optical field strengths. This interaction gives rise to angular distributions peaked orthogonal to the laser polarization direction, emission of high harmonics of the laser field, as well as laser induced stabilization. We derive analytic results for this interaction as well as develop a model based on Landau-Zener level-crossing theory. Experimentally, we observe this strong interaction between Rydberg states by examining three-photon ionization in atomic potassium when a picosecond dye laser is tuned through two-photon resonance with the Rydberg series. The ionization signal becomes suppressed when the optical mixing of the Rydberg states becomes large. The details of this suppression depend on the peak intensity of the laser field. We then consider doubly-resonant excitation of Rydberg states and investigate the dependence of the transfer efficiency on the time delay between the two resonant laser pulses. We find that even in the presence of Doppler broadening, transverse spatial variation of the laser beam, and laser amplitude fluctuations that the transfer efficiency from the ground state to the Rydberg state is maximized when the laser pulses are applied in the counterintuitive order. We investigate these predictions experimentally in a three-level cascade system in atomic sodium vapor and verify that the population transfer efficiency is maximized in the counterintuitive regime. We further find that in the presence of laser amplitude fluctuations, the population transfer signal fluctuates less when the pulses are applied in the counterintuitive order.

  1. Two-photon transitions to excited states in atomic hydrogen

    SciTech Connect

    Quattropani, A.; Bassani, F.; Carillo, S.

    1982-06-01

    Resonant two-photon transition rates from the ground state of atomic hydrogen to ns excited states have been computed as a function of photon frequencies in the length and velocity gauges in order to test the accuracy of the calculation and to discuss the rate of convergence over the intermediate states. The dramatic structure of the transition rates produced by intermediate-state resonances is exhibited. A two-photon transparency is found in correspondence to each resonance.

  2. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  3. Coherent excitation of a single atom to a Rydberg state

    SciTech Connect

    Miroshnychenko, Y.; Gaeetan, A.; Evellin, C.; Grangier, P.; Wilk, T.; Browaeys, A.; Comparat, D.; Pillet, P.

    2010-07-15

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d{sub 3/2} using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given.

  4. Teleportation of atomic states via position measurements

    SciTech Connect

    Tumminello, Michele; Ciccarello, Francesco

    2008-02-15

    We present a scheme for conditionally teleporting an unknown atomic state in cavity QED, which requires two atoms and one cavity mode. The translational degrees of freedom of the atoms are taken into account using the optical Stern-Gerlach model. We show that successful teleportation with probability 1/2 can be achieved through local measurements of the cavity photon number and atomic positions. Neither direct projection onto highly entangled states nor holonomous interaction-time constraints are required.

  5. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  6. Synthesis of interstellar 1,3,5-heptatriynylidyne, C7H(X 2Π), via the neutral-neutral reaction of ground state carbon atom, C(3P), with triacetylene, HC6H (X 1Σg+)

    NASA Astrophysics Data System (ADS)

    Sun, B. J.; Huang, C. H.; Tsai, M. F.; Sun, H. L.; Gao, L. G.; Wang, Y. S.; Yeh, Y. Y.; Shih, Y. H.; Sia, Z. F.; Chen, P. H.; Kaiser, R. I.; Chang, A. H. H.

    2009-09-01

    The reaction of ground-state carbon atom with a polyyne, triacetylene (HC6H) is investigated theoretically by combining ab initio calculations for predicting reaction paths, RRKM theory to yield rate constant for each path, and a modified Langevin model for estimating capturing cross sections. The isomerization and dissociation channels for each of the five collision complexes are characterized by utilizing the unrestricted B3LYP/6-311G(d,p) level of theory and the CCSD(T)/cc-pVTZ calculations. Navigating with the aid of RRKM rate constants through web of ab initio paths composed of 5 collision complexes, 108 intermediates, and 20 H-dissociated products, the most probable paths, reduced to around ten species at collision energies of 0 and 10 kcal/mol, respectively, are identified and adopted as the reaction mechanisms. The rate equations for the reaction mechanisms are solved numerically such that the evolutions of concentrations with time for all species involved are obtained and their lifetimes deduced. This study predicts that the five collision complexes, c1-c5, would produce a single final product, C7H (p1)+H, via the most stable intermediate, carbon chain HC7H (i1); namely, C+HC6H→HC7H→C7H+H. Our investigation indicates that the title reaction is efficient to form astronomically observed C7H in cold molecular clouds, where a typical translational temperature is 10 K.

  7. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  8. Atomic Fock state preparation using Rydberg blockade.

    PubMed

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G

    2014-01-31

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected √N Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with an essentially perfect blockade. We then use collective Rabi π pulses to produce N=1, 2 atom number Fock states with fidelities of 62% and 48%, respectively. The N=2 Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations. PMID:24580449

  9. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  10. Baryonium, a common ground for atomic and high energy physics

    NASA Astrophysics Data System (ADS)

    Wycech, S.; Dedonder, J.-P.; Loiseau, B.

    2015-08-01

    Indications of the existence of quasi-bound states in the system are presented. In their measurements, the BES collaboration has discoverd a broad enhancement close to the threshold in the S wave, isospin 0 state formed in radiative decays of J/ ?. Another enhancement located about 50 MeV below the threshold was found in mesonic decays of J/ ?. In terms of the Paris potential model it was shown that these are likely to represent the same state. Antiprotonic atomic data provide some support for this interpretation and indicate the existence of another fairly narrow quasi-bound state in a P wave.

  11. Ground state of a dipolar crystal

    PubMed

    Gross; Wei

    2000-02-01

    We provide some of the strongest evidence to date that the ground state structure of an infinite collection of point dipoles with hardcore sphere interactions is body-centered tetragonal. The structure with the next highest binding energy is not face-centered cubic; a particular honeycomb structure has lower energy. PMID:11046504

  12. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGESBeta

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  13. Ground state electron configuration of Rutherfordium: Role of dynamic correlation

    SciTech Connect

    Eliav, E.; Kaldor, U. ); Ishikawa, Y. )

    1995-02-13

    The low-lying electronic states of Rf[sup +] and Rf are investigated by the relativistic coupled cluster method based on the Dirac-Coulomb-Breit Hamiltonian. A large basis set (34[ital s]24[ital p]19[ital d]13[ital f]8[ital g]5[ital h]4[ital i]) of Gaussian-type orbitals is used. The external 36 electrons are correlated. In contrast with recent multiconfiguration Dirac-Fock (MCDF) results, the 7[ital s][sup 2]6[ital d][sup 2] [sup 3][ital F][sub 2] state is found to be the ground state of the atom, lying about 0.30 eV below the 7[ital s][sup 2]7[ital p]6[ital d][sup 3][ital D][sub 2] state (the MCDF ground state). The dynamic correlation of the system, requiring virtual orbitals with [ital l] up to 6, is responsible for the reversal. The first ionization potential of the atom is predicted at 6.01 eV.

  14. Circular states of atomic hydrogen

    SciTech Connect

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  15. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  16. Teleportation of an atomic momentum state

    SciTech Connect

    Qamar, Shahid; Zhu Shiyao; Zubairy, M. Suhail

    2003-04-01

    In this paper, we propose a scheme for teleportating a superposition of atomic center-of-mass momentum states to a superposition of the cavity field using quantum controlled-NOT gate via atomic scattering in the Bragg regime and cavity quantum electrodynamics.

  17. On the ground state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.

    1998-05-01

    In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved

  18. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  19. Ground state degeneracy of interacting spinless fermions

    NASA Astrophysics Data System (ADS)

    Wei, Zhong-Chao; Han, Xing-Jie; Xie, Zhi-Yuan; Xiang, Tao

    2015-10-01

    We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation. Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all dimensions with arbitrary lattice structures.

  20. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  1. Ga66 ground state β spectrum

    NASA Astrophysics Data System (ADS)

    Severin, G. W.; Knutson, L. D.; Voytas, P. A.; George, E. A.

    2014-05-01

    The ground state branch of the β decay of Ga66 is an allowed Fermi (0+→0+) transition with a relatively high ft value. The large ft and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions to the decay. Two previous measurements of the shape have revealed deviations from an allowed spectrum but disagree about whether the shape factor has a positive or negative slope. As a test of a new iron-free superconducting β spectrometer, we have measured the shape of the ground state branch of the Ga66 β spectrum above a positron energy of 1.9 MeV. The spectrum is consistent with an allowed shape, with the slope of the shape factor being zero to within ±3×10-3 per MeV. We have also determined the endpoint energy for the ground state branch to be 4.1535±0.0003 (stat.) ±0.0007 (syst.) MeV, in good agreement with and a factor of 3 more precise than the presently accepted value.

  2. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  3. Pyramidal atoms: Berylliumlike hollow states

    SciTech Connect

    Poulsen, Marianne Dahlerup; Madsen, Lars Bojer

    2005-06-15

    Based on the idea that four excited electrons arrange themselves around the nucleus in the corners of a pyramid in order to minimize their mutual repulsion, we present an analytical model of quadruply excited states. The model shows excellent comparison with ab initio results and provides a clear physical picture of the intrinsic motion of the four electrons. The model is used to predict configuration-mixing fractions and spectra of these highly correlated states.

  4. Ground state and resonant states of helium in exponential cosine screened Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ghoshal, Arijit; Ho, Y. K.

    2009-05-01

    We have investigated the ground state and a resonance state of normal helium atom in exponential cosine screened Coulomb potential (ECSCP) with screening parameterλ: V(r),,,1r,^-λr(λr) (in a.u.), where r denotes the inter-particle distance. Within the framework of Ritz's variational principle and making use of a highly correlated wave function, we have determined the ground state energies and wave functions of the helium atom for different values of the screening parameterλ. Furthermore, we have shown that the ground state energy of helium for a particular value of λ does converge with increasing number of terms in the wave function. In addition, using the stabilization method, we have investigated the doubly excited 2s^2 ^1S^e resonance state in helium with ECSCP. Resonance energy and width for various λ values are calculated. Our present work will play a useful role in the investigations of atomic structures in quantum plasmas [1]. [1]. P.K. Shukla and B. Eliasson, Phys. Lett. A 372, 2899 (2008).

  5. Programmable solid state atom sources for nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization, summary of the evaporation experiments, technical details and data analysis of the measurement is supplied as ESI. In addition, three video files are included. One illustrates the operation of the source array and the other two are SEM videos of the dynamic process of silver evaporating on the source plate. See DOI: 10.1039/c5nr01331c

  6. Ground states of spin-2 condensates in an external magnetic field

    SciTech Connect

    Zheng, G.-P.; Tong, Y.-G.; Wang, F.-L.

    2010-06-15

    The possible ground states of spin-2 Bose-Einstein condensates in an external magnetic field are obtained analytically and classified systematically according to the population of the condensed atoms at the hyperfine sublevels. It is shown that the atoms can populate simultaneously at four hyperfine sublevels in a weak magnetic field with only the linear Zeeman energy, in contrast to that in a stronger magnetic field with the quadratic Zeeman energy, where condensed atoms can at most populate at three hyperfine sublevels in the ground states. Any spin configuration we obtained will give a closed subspace in the order parameter space of the condensates.

  7. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  8. Magnetoelectrostatic Trapping of Ground State OH Molecules

    SciTech Connect

    Sawyer, Brian C.; Lev, Benjamin L.; Hudson, Eric R.; Stuhl, Benjamin K.; Lara, Manuel; Bohn, John L.; Ye Jun

    2007-06-22

    We report magnetic confinement of neutral, ground state OH at a density of {approx}3x10{sup 3} cm{sup -3} and temperature of {approx}30 mK. An adjustable electric field sufficiently large to polarize the OH is superimposed on the trap in various geometries, making an overall potential arising from both Zeeman and Stark effects. An effective molecular Hamiltonian is constructed, with Monte Carlo simulations accurately modeling the observed single-molecule dynamics in various trap configurations. Magnetic trapping of cold polar molecules under adjustable electric fields may enable study of low energy dipolar interactions.

  9. Axial and reflection asymmetry of the nuclear ground state

    NASA Astrophysics Data System (ADS)

    Möller, P.; Bengtsson, R.; Carlsson, B. G.; Olivius, P.; Ichikawa, T.; Sagawa, H.; Iwamoto, A.

    2008-09-01

    More than a decade ago we published a calculation of nuclear ground-state masses and deformations in Atomic Data and Nuclear Data Tables [P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185]. In this study, triaxial nuclear shapes were not considered. We have now enhanced our model and studied the influence of triaxial shape degrees of freedom on the nuclear ground-state potential-energy (mass) and ground-state shape. It turns out that a few hundred nuclei are affected to a varying degree with the largest effect, about 0.7 MeV, occurring near 108Ru. We provide here a table of the calculated effects of triaxial shape degrees of freedom. Although axial-asymmetry effects were not considered in the 1995 mass calculation, it did study the effects of reflection-asymmetric shape degrees of freedom ( ɛ3) on nuclear masses. However, the magnitude of the effect was not tabulated. Here, we provide such a table. In addition we calculate the effect in a much improved fashion: we search a four-dimensional deformation space ( ɛ2, ɛ3, ɛ4, and ɛ6). This is now possible because the computational resources available to us today are more than 100,000 times better than at the time we calculated the mass table published in 1995.

  10. Creating and probing coherent atomic states

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J. |; Frey, M.T.; Dunning, F.B.

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  11. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  12. Ground-state structures of Hafnium clusters

    NASA Astrophysics Data System (ADS)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  13. Spontaneous skyrmion ground states in magnetic metals

    NASA Astrophysics Data System (ADS)

    Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.

    2006-08-01

    Since the 1950s, Heisenberg and others have addressed the problem of how to explain the appearance of countable particles in continuous fields. Stable localized field configurations were searched for an ingredient for a general field theory of elementary particles, but the majority of nonlinear field models were unable to predict them. As an exception, Skyrme succeeded in describing nuclear particles as localized states, so-called `skyrmions'. Skyrmions are a characteristic of nonlinear continuum models ranging from microscopic to cosmological scales. Skyrmionic states have been found under non-equilibrium conditions, or when stabilized by external fields or the proliferation of topological defects. Examples are Turing patterns in classical liquids, spin textures in quantum Hall magnets, or the blue phases in liquid crystals. However, it has generally been assumed that skyrmions cannot form spontaneous ground states, such as ferromagnetic or antiferromagnetic order, in magnetic materials. Here, we show theoretically that this assumption is wrong and that skyrmion textures may form spontaneously in condensed-matter systems with chiral interactions without the assistance of external fields or the proliferation of defects. We show this within a phenomenological continuum model based on a few material-specific parameters that can be determined experimentally. Our model has a condition not considered before: we allow for softened amplitude variations of the magnetization, characteristic of, for instance, metallic magnets. Our model implies that spontaneous skyrmion lattice ground states may exist generally in a large number of materials, notably at surfaces and in thin films, as well as in bulk compounds, where a lack of space inversion symmetry leads to chiral interactions.

  14. Accurate variational calculations of the ground 2Po(1s22s22p) and excited 2S(1s22s2p2) and 2Po(1s22s23p) states of singly ionized carbon atom.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2011-12-01

    In this article we report accurate nonrelativistic variational calculations of the ground and two excited states of C(+) ion. We employ extended and well optimized basis sets of all-electron explicitly correlated Gaussians to represent the wave functions of the states. The optimization of the basis functions is performed with a procedure employing the analytic gradient of the energy with respect to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to the finite nuclear mass. The calculated transition energies between the three states are compared to the experimentally derived values. Finally, we present expectation values of some small positive and negative powers of the interparticle distances and contact densities. PMID:22149776

  15. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  16. Projection and ground state correlations made simple

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Reinhard, P.-G.; Bertsch, G. F.

    2002-06-01

    We develop and test efficient approximations to estimate ground state correlations associated with low- and zero-energy modes. The scheme is an extension of the generator coordinate method (GCM) within Gaussian overlap approximation (GOA). We show that the GOA fails in non-Cartesian topologies and presents a topologically correct generalization of the GOA (topGOA). A random-phase-approximation like (RPA-like) correction is derived as the small amplitude limit of topGOA, called topRPA. Using exactly solvable models, the topGOA and topRPA schemes are compared with conventional approaches (GCM-GOA, RPA, Lipkin-Nogami projection) for rotational-vibrational motion and for particle-number projection. The results shows that the new schemes perform very well in all regimes of coupling.

  17. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  18. Ground state of high-density matter

    SciTech Connect

    Copeland, E.; Kolb, E.W.; Lee, K.

    1988-10-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  19. Atomic Schroedinger cat-like states

    SciTech Connect

    Enriquez-Flores, Marco; Rosas-Ortiz, Oscar

    2010-10-11

    After a short overview of the basic mathematical structure of quantum mechanics we analyze the Schroedinger's antinomic example of a living and dead cat mixed in equal parts. Superpositions of Glauber kets are shown to approximate such macroscopic states. Then, two-level atomic states are used to construct mesoscopic kittens as appropriate linear combinations of angular momentum eigenkets for j = 1/2. Some general comments close the present contribution.

  20. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  1. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which the metal-insulator transition occurs, but through digital control the Ni site symmetry can be artificially broken leading to a previously unseen monoclinic metallic phase. Further, by creating a structure which does or does not match the bulk-like rock salt charge order pattern it was found this transition can be either strongly enhanced or removed entirely.

  2. Ground-based laboratory atomic oxygen calibration experiments

    NASA Astrophysics Data System (ADS)

    Matcham, Jeremy Stephen

    1998-12-01

    Existing devices and analysis techniques for the monitoring of space and laboratory simulated Atomic Oxygen (AO) environments have been investigated and improved to enable more accurate and reliable measurement and calibration of AO flux and fluences than previously possible. This research was based on experimental work carried out in a ground based AO facility designed to simulate the low Earth orbit (LEO) AO space environment, an environment which contributes significantly to the degradation of spacecraft materials. Three types of AO measuring device, referred to as 'silver film', 'bulk polymer mass loss' and 'polymer overlay' devices, were used in the experiments and were based on the following principles for detection of AO, respectively: (1) The electrical resistivity characteristics of oxidising, thin silver films. (2) The mass loss of bulk polymeric materials. (3) The combination of both the above phenomena. In calibrating the responses of these devices upon exposure to AO, it was necessary to improve an existing technique to establish reference measurements of AO fluences based on the mass loss of the polymeric material 'Kapton-H'. Experiments showed that the most significant disturbance factor affecting accurate measurements of mass loss was atmospheric humidity, which was found to be responsible for a disturbance of 0.012(±0.002)mg per percent change in atmospheric humidity level for the particular samples used in this research. Experiments also revealed a novel technique which indicated the relative stability of conditions within a simulated AO environment by the ratio of mass losses of a set of polymeric test samples, including polyethylene, polytetrafluoroethylene and Kapton-H, described as a 'signature analysis technique'. Interactions occurring between AO and a variety of polyethylene related polymeric materials were shown to be influenced by the methods used to manufacture and process the polymers. This influence has been related to changes in polymeric material density and crystallinity. In addition, the limitations in protecting a polymeric material from AO erosion by insertion of fluorine into the side-chain group chemistry has been indicated. Of most significance to the development of polymer overlay devices was the discovery that the overlay material AO erosion yield was dependent upon the rate at which the polymer overlay material was sputter deposited. These devices were also shown to detect AO fluences that were linearly dependent upon the initial thickness of the overlay material up to certain thicknesses, beyond which the effects of overlay porosity or fracturing weakened the linear relationship. A novel method for analysing silver film device electrical resistances under AO exposure has been developed from a combination of existing fundamental theories concerning the electrical resistivity phenomena in thin metallic films. Validation of this analysis method revealed that experimental silver film data were consistently in disagreement with the existing theories due to a factor influencing the conduction electron mean free path length in the silver films. Final validation of this analysis technique was performed by comparing results derived from the same set of experimental silver film device data using the new technique and an example of a previous technique. It was confirmed that the novel analysis technique produced far more consistent values for the oxidation yield of silver, 3/pm0.5×10-24cm3.atom-1, than the previously used technique, 6/pm3×10- 24cm3.atom-1. The novel analysis technique has been demonstrated to be theoretically more accurate for the analysis of silver film resistance data than any previously applied theories.

  3. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16O to 106265Sg and 108264Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N ≥ 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N ≥ 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from 70Se to 252Cf with a root-mean-square deviation of 1.052 MeV.

  4. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  5. Optimal Squeezing in Resonance Fluorescence via Atomic-State Purification

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2012-07-01

    Squeezing of atomic resonance fluorescence is shown to be optimized by a properly designed environment, which can be realized by a quasiresonant cavity. Optimal squeezing is achieved if the atomic coherence is maximized, corresponding to a pure atomic quantum state. The atomic-state purification is achieved by the backaction of the cavity field on the atom, which increases the atomic coherence and decreases the atomic excitation. For realistic cavities, the coupling of the atom to the cavity field yields a purity of the atomic state of more than 99%. The fragility of squeezing against dephasing is substantially reduced in this scenario, which may be important for various applications.

  6. Use of the differential virial theorem to estimate the spatial variation of the exchange-correlation force -∂VXC(r)/∂r in the ground states of the spherical atoms He and Be

    NASA Astrophysics Data System (ADS)

    Bogár, Ferenc; Bartha, Ferenc; March, Norman H.

    2009-01-01

    We use the differential virial theorem (DVT) directly to display the approximate spatial dependence of the exchange-correlation (XC) force in He and Be, applying an exact integral constraint on the XC force, recently established by March and Nagy. In He, an analytic ground-state density n(r) , combined with the DVT plus the von Weizsäcker single-particle kinetic energy, suffices to determine an approximate XC force. For Be, the XC force is calculated for the semiempirical fine-tuned Hartree-Fock density, as proposed by Cordero [Phys. Rev. A 75, 052502 (2007)]. However, for the single-particle kinetic energy, following Dawson and March, a phase θ(r) must be obtained by solving numerically a nonlinear pendulumlike equation.

  7. Quantum-state transfer between fields and atoms in electromagnetically induced transparency

    SciTech Connect

    Dantan, A.; Pinard, M.

    2004-04-01

    We show that a quasiperfect quantum-state transfer between an atomic ensemble and fields in an optical cavity can be achieved in electromagnetically induced transparency (EIT). A squeezed vacuum field state can be mapped onto the long-lived atomic spin associated to the ground-state sublevels of the {lambda}-type atoms considered. The EIT on-resonance situation show interesting similarities with the Raman off-resonant configuration. We then show how to transfer the atomic squeezing back to the field exiting the cavity, thus realizing a quantum memory-type operation.

  8. Neutrino ground state in a dense star

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Tytgat, Michel H. G.

    1998-05-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars.

  9. Nonequilibrium Kinetics of Rydberg Atomic States

    SciTech Connect

    Bureyeva, L. A.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.

    2008-10-22

    Two-dimensional quasi-classical model of the radiative-collisional cascade for hydrogen-like systems is developed. The model establishes the correspondence between the quantum and classical approaches. Our calculations of the two-dimensional populations of highly excited atomic hydrogen states for three-body and photorecombination sources of population allow the data of one-dimensional kinetic models to be refined. The calculated intensities of recombination lines demonstrate the degree of nonequilibrium of the Rydberg state populations under typical astrophysical plasma conditions.

  10. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  11. A simplified scheme for realizing multi-atom NOON state

    NASA Astrophysics Data System (ADS)

    Zhong, Zhi-Rong

    2010-01-01

    We present a scheme for realizing a multi-atom NOON state via cavity QED system. The scheme bases on the Jaynes-Cumming mode with collective atomic bosonic mode. In the process, a series of control atoms are sent through two single mode cavities which are initially in vacuum states and have the same collective atoms. After the suitable interaction time, the collective atoms in two cavities are in the desired state.

  12. Narrow chaotic compound autoionizing states in atomic spectra

    SciTech Connect

    Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.

    1996-09-01

    Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparable with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}

  13. Recent progress in simulation of the ground state of many Boson systems

    NASA Astrophysics Data System (ADS)

    Galli, D. E.; Reatto, L.

    2003-01-01

    We present two recent advances in the simulation of 4He in the condensed phase at zero temperature. Within the variational theory of strongly interacting bosons we have studied a cluster of 4He atoms with one alkali ion K+. For the wave function we have used a new shadow wave function (SWF) in which the coupling between one 4He atom and its shadow variable depends on its distance from the ion. This substantially improves the energy. The first shell around the ion contains 14 atoms which are spatially ordered. However the atoms of the first shell are not completely localized and frequent exchanges with atoms which are further from the ion take place. This also suggests that at least for the ion K+ the atoms of the first shell participate in the superfluidity. We have also introduced a new extension of the path integral ground state (PIGS) method which is able to compute exact ground state expectation values without extrapolations and with a SWF as the trial variational wave function to project on the ground state. This is an important extension which opens up the possibility of studying disorder phenomena in the solid phase by an exact method at zero temperature. We have applied this technique to compute the energy of formation of a vacancy at different densities in the solid phase of 4He. This computation confirms the variational result that a vacancy is a delocalized defect in the low density helium solid.

  14. Coherent structures in the ground state of the quantum Frenkel-Kontorova model

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Technical University, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk ); Campbell, D.K. )

    1994-03-15

    We study the quantum ground state of the Frenkel-Kontorova model in the strongly nonlinear'' regime in which in the corresponding classical limit the coordinates of the atoms are distributed on Cantori.'' We identify (many) quasidegenerate configurations that contribute to the quantum ground state. When the characteristic quantum and classical energy scales are roughly equal (the intermediate'' quantum regime), we find, consistent with earlier numerical studies, that the standard map'' determining the coordinates in the classical ground state is renormalized to an effective sawtooth'' map, which determines the expectation values of the coordinates in the quantum ground state. We also discuss the dynamics of the model and estimate the characteristic time for various quantum tunneling effects.

  15. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the roughness exponent. The fractal dimension of contour loops on experimentally observed rough interfaces can be used to characterize their morphology.

  16. B2N2O4: Prediction of a Magnetic Ground State for a Light Main-Group Molecule

    SciTech Connect

    Varga, Zoltan; Truhlar, Donald G.

    2015-09-08

    Cyclobutanetetrone, (CO)4, has a triplet ground state. Here we predict, based on electronic structure calculations, that the B2N2O4 molecule also has a triplet ground state and is therefore paramagnetic; the structure is an analogue of (CO)4 in which the carbon ring is replaced by a (BN)2 ring. Similar to (CO)4, the triplet ground-state structure of B2N2O4 is also thermodynamically unstable. Besides analysis of the molecular orbitals, we found that the partial atomic charges are good indicators for predicting magnetic ground states.

  17. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  18. Spin symmetry of the bilayer graphene ground state

    NASA Astrophysics Data System (ADS)

    Freitag, Frank; Weiss, Markus; Maurand, Romain; Trbovic, Jelena; Schönenberger, Christian

    2013-04-01

    We show nonlinear transport experiments on clean, suspended bilayer graphene that reveal a gap in the density of states. Looking at the evolution of the gap in magnetic fields of different orientation, we find that the ground state is a spin-ordered phase. Of the three possible gapped ground states that are predicted by theory for equal charge distribution between the layers, we can therefore exclude the quantum anomalous Hall phase, leaving the layer antiferromagnet and the quantum spin Hall phase as the only possible gapped ground states for bilayer graphene.

  19. Ground-state properties of ultracold trapped bosons with an immersed ionic impurity

    NASA Astrophysics Data System (ADS)

    Schurer, J. M.; Schmelcher, P.; Negretti, A.

    2014-09-01

    We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi-one-dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree method for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyze the influence of the atom number and the atom-atom interaction on the ground-state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behavior to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigating the many-body physics of such hybrid system.

  20. Concentration for unknown atomic entangled states via cavity decay

    SciTech Connect

    Cao Zhuoliang; Yang Ming; Zhang Lihua

    2006-01-15

    We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as a stationary qubit and the photonic state as a flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.

  1. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  2. On the atomic state densities of plasmas produced by the ``torche à injection axiale''

    NASA Astrophysics Data System (ADS)

    Jonkers, J.; Vos, H. P. C.; van der Mullen, J. A. M.; Timmermans, E. A. H.

    1996-04-01

    The atomic state densities of helium and argon plasmas produced by the microwave driven plasma torch called the "torche à injection axiale" are presented. They are obtained by absolute line intensity measurements of the excited states and by applying the ideal gas law to the ground state. It will be shown that the atomic state distribution function (ASDF) does not obey the Saha-Boltzmann law: the ASDF cannot be described by one temperature. From the shape of the ASDF it can be concluded that the plasma is ionising. By extrapolating the measured state densities towards the ionisation limit, a minimum value of the electron density can be determined.

  3. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    Disordered hyperuniform many-particle systems have been receiving recent attention because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. It has been shown numerically that systems of particles interacting with ``stealthy'' bounded, long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are, counterintuitively, disordered, hyperuniform and highly degenerate. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space is highly nontrivial because the dimensionality of the configuration space depends on the number density and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. A new type of statistical-mechanical theory had to be invented to characterize these exotic states of matter. I report on some initial progress that we have made in this direction. We show that stealthy disordered ground states behave like ''pseudo''-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for the structure and thermodynamic properties of the stealthy disordered ground states and associated excited states are in excellent agreement with computer simulations across dimensions.

  4. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero-temperature limit. Our techniques may be applied to sample the zero-temperature limit of the canonical ensemble of other potentials with highly degenerate ground states.

  5. Phase diagram of the ground states of DNA condensates

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trinh, Hoa Lan; Giacometti, Achille; Podgornik, Rudolf; Banavar, Jayanth R.; Maritan, Amos

    2015-12-01

    The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective self-attraction promoting compaction. x =1 corresponds to the wormlike chain model. Surprisingly, the phase diagram as well as the transition lines between the ground states are found to be a function of x . The model provides a simple explanation for the results of prior experimental and computational studies and makes predictions for the specific geometries of the ground states. The results underscore the impact of the form of the microscopic bending energy at macroscopic observable scales.

  6. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  7. Light pulse analysis with a multi-state atom interferometer

    SciTech Connect

    Herrera, I.; Lombardi, P.; Schäfer, F.; Petrovic, J.; Cataliotti, F. S.

    2014-12-04

    We present a controllable multi-state cold-atom interferometer that is easy-to-use and fully merged on an atom chip. We demonstrate its applications as a sensor of the fields whose interactions with atoms are state-dependent.

  8. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  9. Antifreeze acceptability for ground-coupled heat pump ground loops in the United States

    SciTech Connect

    Den Braven, K.R.

    1998-10-01

    When designing and installing closed-loop ground-coupled heat pumps systems, it is necessary to be aware of applicable environmental regulations. Within the United States, nearly half of the states have regulations specifying or restricting the use of particular antifreezes or other fluids within the ground loop of a ground-coupled heat pump system. A number of other states have regulations pending. While all of these regulations are based on the need to preserve groundwater and/or aquifer quality, the list of acceptable antifreezes varies among those states with specified fluids. Typical antifreezes in use include ethylene glycol, propylene glycol, brines, alcohols, and potassium acetate. Each of these has its benefits and drawbacks. The status of the regulations has been determined for all of the states. An overview of the regulations is presented in this paper, along with a summary of the states` concerns.

  10. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  11. Direct measurement of concurrence for atomic two-qubit pure states

    SciTech Connect

    Romero, G.; Lopez, C. E.; Lastra, F.; Retamal, J. C.; Solano, E.

    2007-03-15

    We propose a general scheme to measure the concurrence of an arbitrary two-qubit pure state in atomic systems. The protocol is based on one- and two-qubit operations acting on two available copies of the bipartite system, and followed by a global qubit readout. We show that it is possible to encode the concurrence in the probability of finding all atomic qubits in the ground state. Two possible scenarios are considered: atoms crossing three-dimensional microwave cavities and trapped ion systems.

  12. Exploring the Single Atom Spin State by Electron Spectroscopy.

    PubMed

    Lin, Yung-Chang; Teng, Po-Yuan; Chiu, Po-Wen; Suenaga, Kazu

    2015-11-13

    To control the spin state of an individual atom is an ultimate goal for spintronics. A single atom magnet, which may lead to a supercapacity memory device if realized, requires the high-spin state of an isolated individual atom. Here, we demonstrate the realization of well isolated transition metal (TM) atoms fixed at atomic defects sparsely dispersed in graphene. Core-level electron spectroscopy clearly reveals the high-spin state of the individual TM atoms at the divacancy or edge of the graphene layer. We also show for the first time that the spin state of single TM atoms systematically varies with the coordination of neighboring nitrogen or oxygen atoms. These structures can be thus regarded as the smallest components of spintronic devices with controlled magnetic behavior. PMID:26613462

  13. Approximating the ground state of gapped quantum spin systems

    SciTech Connect

    Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  14. Rydberg States of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Stebbings, R. F.; Dunning, F. B.

    2011-03-01

    List of contributors; Preface; 1. Rydberg atoms in astrophysics A. Dalgarno; 2. Theoretical studies of hydrogen Rydberg atoms in electric fields R. J. Damburg and V. V. Kolosov; 3. Rydberg atoms in strong fields D. Kleppner, Michael G. Littman and Myron L. Zimmerman; 4. Spectroscopy of one- and two-electron Rydberg atoms C. Fabre and S. Haroche; 5. Interaction of Rydberg atoms with blackbody radiation T. F. Gallagher; 6. Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and ions A. P. Hickman, R. E. Olson and J. Pascale; 7. Experimental studies of the interaction of Rydberg atoms with atomic species at thermal energies F. Gounand and J. Berlande; 8. Theoretical studies of collisions of Rydberg atoms with molecules Michio Matsuzawa; 9. Experimental studies of thermal-energy collisions of Rydberg atoms with molecules F. B. Dunning and R. F. Stebbings; 10. High-Rydberg molecules Robert S. Freund; 11. Theory of Rydberg collisions with electrons, ions and neutrals M. R. Flannery; 12. Experimental studies of the interactions of Rydberg atoms with charged particles J. -F. Delpech; 13. Rydberg studies using fast beams Peter M. Koch; Index.

  15. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  16. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  17. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481

  18. Detection of motional ground state population of a trapped ion using delayed pulses

    NASA Astrophysics Data System (ADS)

    Gebert, F.; Wan, Y.; Wolf, F.; Heip, Jan C.; Schmidt, Piet O.

    2016-01-01

    Efficient preparation and detection of the motional state of trapped ions is important in many experiments ranging from quantum computation to precision spectroscopy. We investigate the stimulated Raman adiabatic passage (STIRAP) technique for the manipulation of motional states in a trapped ion system. The presented technique uses a Raman coupling between two hyperfine ground states in 25Mg+, implemented with delayed pulses, which removes a single phonon independent of the initial motional state. We show that for a thermal probability distribution of motional states the STIRAP population transfer is more efficient than a stimulated Raman Rabi pulse on a motional sideband. In contrast to previous implementations, a large detuning of more than 200 times the natural linewidth of the transition is used. This approach renders STIRAP suitable for atoms in which resonant laser fields would populate nearby fluorescing excited states and thus impede the STIRAP process. We use the technique to measure the wavefunction overlap of excited motional states with the motional ground state. This is an important application for force sensing applications using trapped ions, such as photon recoil spectroscopy, in which the signal is proportional to the depletion of motional ground state population. Furthermore, a determination of the ground state population enables a simple measurement of the ion's temperature.

  19. Homogeneous binary trees as ground states of quantum critical Hamiltonians

    SciTech Connect

    Silvi, P.; Giovannetti, V.; Montangero, S.; Rizzi, M.; Cirac, J. I.; Fazio, R.

    2010-06-15

    Many-body states whose wave functions admit a representation in terms of a uniform binary-tree tensor decomposition are shown to obey power-law two-body correlation functions. Any such state can be associated with the ground state of a translationally invariant Hamiltonian which, depending on the dimension of the systems sites, involves at most couplings between third-neighboring sites. Under general conditions it is shown that they describe unfrustrated systems which admit an exponentially large degeneracy of the ground state.

  20. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  1. Ground-state geometric quantum computing in superconducting systems

    SciTech Connect

    Solinas, P.; Moettoenen, M.

    2010-11-15

    We present a theoretical proposal for the implementation of geometric quantum computing based on a Hamiltonian which has a doubly degenerate ground state. Thus the system which is steered adiabatically, remains in the ground-state. The proposed physical implementation relies on a superconducting circuit composed of three SQUIDs and two superconducting islands with the charge states encoding the logical states. We obtain a universal set of single-qubit gates and implement a nontrivial two-qubit gate exploiting the mutual inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state quantum computing. The introduced paradigm for the implementation of geometric quantum computing is expected to be robust against environmental effects.

  2. Quantum Teleportation of High-dimensional Atomic Momenta State

    NASA Astrophysics Data System (ADS)

    Qurban, Misbah; Abbas, Tasawar; Rameez-ul-Islam; Ikram, Manzoor

    2016-06-01

    Atomic momenta states of the neutral atoms are known to be decoherence resistant and therefore present a viable solution for most of the quantum information tasks including the quantum teleportation. We present a systematic protocol for the teleportation of high-dimensional quantized momenta atomic states to the field state inside the cavities by applying standard cavity QED techniques. The proposal can be executed under prevailing experimental scenario.

  3. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  4. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  5. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  6. Decoherence of collective atomic spin states due to inhomogeneous coupling

    SciTech Connect

    Sun, C.P.; You, L.; Yi, S.

    2003-06-01

    We investigate the decoherence of a superposition of symmetric collective internal states of an atomic ensemble due to inhomogeneous coupling to external control fields. For asymptotically large system, we find {radical}(N) as the characteristic decoherence rate scale with N being the total number of atoms. Our results shed new light on attempts for realizing quantum information processing and storage with atomic ensembles.

  7. Meron ground states of quantum Hall droplets

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Dobardžić, E.; Radović, Z.

    2009-09-01

    We argue that topological meron excitations, which are in a strong coupling phase (bound in pairs) in infinite quantum Hall ferromagnets, become deconfined in finite-size quantum Hall systems. Although effectively for larger systems meron energy grows with the size of the system, when gyromagnetic ratio is small meron becomes the lowest-lying state of a quantum Hall droplet. This comes as a consequence of the many-body correlations built in the meron construction that minimize the interaction energy. We demonstrate this by using mean-field ansatzes for meron wave function. The ansatzes will enable us to consider much larger system sizes than in the previous work [A. Petković and M. V. Milovanović, Phys. Rev. Lett. 98, 066808 (2007)], where fractionalization into merons was introduced.

  8. Analytical ground state for the Jaynes-Cummings model with ultrastrong coupling

    SciTech Connect

    Zhang Yuanwei; Chen Gang; Yu Lixian; Liang Qifeng; Liang, J.-Q.; Jia Suotang

    2011-06-15

    We present a generalized variational method to analytically obtain the ground-state properties of the Jaynes-Cummings model with the ultrastrong coupling. An explicit expression for the ground-state energy, which agrees well with the numerical simulation in a wide range of the experimental parameters, is given. In particular, the introduced method can successfully solve this Jaynes-Cummings model with the positive detuning (the atomic resonant level is larger than the photon frequency), which cannot be treated in the adiabatical approximation and the generalized rotating-wave approximation. Finally, we also demonstrate analytically how to control the mean photon number by means of the current experimental parameters including the photon frequency, the coupling strength, and especially the atomic resonant level.

  9. Ground-state structures and the random-state energy of the Madelung lattice

    SciTech Connect

    Magri, R.; Wei, S.; Zunger, A. )

    1990-12-15

    We consider the classic Madelung problem of a lattice with {ital N} sites labeled {ital i}, each occupied by either an {ital A} or a {ital B} atom, and bearing a point charge {ital Q}{sub {ital i}} that depends on the environment of {ital i}. We find that, out of the 2{sup {ital N}} possible lattice configurations of this binary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}} fcc alloy, the lowest-energy ground-state structures'' are the {ital A}{sub 3}{ital B}-, {ital A}{sub 2}{ital B}{sub 2}- and {ital AB}{sub 3}-ordered superlattices with ordering vector (1,0,1/2). On the other hand, for the pseudobinary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}}{sub C} zinc-blende alloy, the ground state corresponds to phase separation into {ital AC}+{ital BC}. Contrary to the accepted view, the Madelung energy of the random binary alloy is found to be nonvanishing.

  10. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical formulas for the structure factor and thermal expansion coefficient for the excited states at sufficiently small temperatures for any d . The development of this theory provides new insights regarding our fundamental understanding of the nature and formation of low-temperature states of amorphous matter. Our work also offers challenges to experimentalists to synthesize stealthy ground states at the molecular level.

  11. High-speed ground transportation development outside United States

    SciTech Connect

    Eastham, T.R.

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  12. Photoionization of ground and excited states of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2015-07-01

    Detailed photoionization of ground and many excited states with autoionizing resonances of neutral Ti are presented. Ti I with 22 electrons forms a large number of bound states, the present work finds a total of 908 bound states with n ⩽ 10 and l ⩽ 8 . Photoionization cross sections (σPI) for all these bound states have been obtained. Calculations were carried out in the close-coupling R-matrix method using a wave function expansion that included 36 states of core ion Ti II. It is found that the resonances enhance the low energy region of photoionization of the ground and low lying excited states. The resonant features will increase the opacity, as expected of astrophysical observation, and hence play important role in determination of abundances in the elements in the astronomical objects. The excited states also show prominent structures of Seaton or photo-excitation-of-core resonances.

  13. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Stafford, L.

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over the whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.

  14. Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps

    SciTech Connect

    Koch, Christiane P.; Masnou-Seeuws, Francoise; Kosloff, Ronnie

    2005-05-20

    We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for {sup 87}Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected.

  15. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  16. Long-range quantum gate via Rydberg states of atoms in a thermal microwave cavity

    NASA Astrophysics Data System (ADS)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2015-09-01

    We propose an implementation of a universal quantum gate between pairs of spatially separated atoms in a microwave cavity at finite temperature. The gate results from reversible laser excitation of Rydberg states of atoms interacting with each other via exchange of virtual photons through a common cavity mode. Quantum interference of different transition paths between the two-atom ground and double-excited Rydberg states makes both the transition amplitude and resonance largely insensitive to the excitations in the microwave cavity quantum bus which can therefore be in any superposition or mixture of photon number states. Our scheme for attaining ultra-long-range interactions and entanglement also applies to mesoscopic atomic ensembles in the Rydberg blockade regime and is scalable to many ensembles trapped within a centimeter-sized microwave resonator.

  17. Unambiguous atomic Bell measurement assisted by multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Bernád, József Zsolt; Alber, Gernot

    2016-05-01

    We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type interaction sequence. The qubit states are postselected by measuring the photonic states inside the resonators. We show that if one is able to project the photonic field onto two coherent states on opposite sites of phase space, an unambiguous Bell measurement can be implemented. Thus, our proposal may provide a core element for future components of quantum information technology such as a quantum repeater based on coherent multiphoton states, atomic qubits and matter-field interaction.

  18. Semiclassical atom theory applied to solid-state physics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Terentjevs, Aleksandrs; Della Sala, Fabio; Cortona, Pietro; Fabiano, Eduardo

    2016-01-01

    Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state problems. Moreover, we show that it can be employed to construct a simple and nonempirical generalized gradient approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also reasonably accurate for large atoms and ordinary chemistry.

  19. All-optical scheme for strongly enhanced production of a Bose-Einstein condensate of dipolar molecules in the vibronic ground state

    NASA Astrophysics Data System (ADS)

    Mackie, Matt; Debrosse, Catherine

    2010-04-01

    We consider two-color heteronuclear photoassociation of a dual-species Bose-Einstein condensate into a Bose-Einstein condensate of dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically excited state. This problem raises an interest because heteronuclear photoassociation from atoms to near-ground-state molecules is limited by the small size of the target state. Nevertheless, the addition of the electronically excited state creates a second pathway for creating molecules in the vibronic ground state, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersivelike shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semiclassical size of both molecular states. Whereas strong enhancement enables saturation of the free-ground transition, coherent conversion from a two-species condensate of atoms to a condensate of dipolar molecules in the vibronic ground state is only possible for a limited range of free-bound detunings near resonance.

  20. Improved fair sampling of ground states in Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Katzgraber, Helmut G.; Zhu, Zheng; Ochoa, Andrew J.

    2015-03-01

    Verifying that an optimization approach can sample all solutions that minimize a Hamiltonian is a stringent test for any newly-developed algorithm. While most solvers easily compute the minimum of a cost function for small to moderate input sizes, equiprobable sampling of all ground-state configurations (within Poissonian fluctuations) is much harder to obtain. Most notably, methods such as transverse-field quantum annealing fail in passing this test for certain highly-degenerate problems. Here we present an attempt to sample ground states for Ising spin glasses based on a combination of low-temperature parallel tempering Monte Carlo combined with the cluster algorithm by Houdayer. Because the latter is rejection free and obeys details balance, the ground-state manifold is efficiently sampled. We illustrate the approach for Ising spin glasses on the D-Wave Two quantum annealer topology, known as the Chimera graph, as well as two-dimensional Ising spin glasses.

  1. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures. PMID:20867055

  2. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  3. Ground state alignment as a tracer of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, H.

    2012-12-01

    We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

  4. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  5. Fock-state view of weak-value measurements and implementation with photons and atomic ensembles

    SciTech Connect

    Simon, Christoph; Polzik, Eugene S.

    2011-04-15

    Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.

  6. Atom-by-atom quantum state control in adatom chains on a semiconductor.

    PubMed

    Flsch, Stefan; Yang, Jianshu; Nacci, Christophe; Kanisawa, Kiyoshi

    2009-08-28

    The vertical manipulation of native adatoms on a III-V semiconductor surface was achieved in a scanning tunneling microscope at 5 K. Reversible repositioning of individual In atoms on InAs(111)A allows us to construct one-atom-wide In chains. Tunneling spectroscopy reveals that these chains host quantum states deriving from an adatom-induced electronic state and substantial substrate-mediated coupling. Our results show that the combined approach of atom manipulation and local spectroscopy is capable to explore atomic-scale quantum structures on semiconductor platform. PMID:19792811

  7. Striped Spin Liquid Crystal Ground State Instability of Kagome Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Clark, Bryan K.; Kinder, Jesse M.; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J.

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z2. Third, it has the spatial symmetry of a previously proposed “monopole” suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  8. Ab initio calculation of ground and excited states in rhodopsin

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, T. F.

    1998-03-01

    We perform an all-electron ab initio calculation of the ground and excited states in rhodopsin. It is found that with respect to the ground state, the first-excited state has a minimum area in the regime with the dihedral angle around the bond C_11 - C_12, θ_11,12=3D60^0-120^0. This area is much larger that found by Birge. A detailed comparison indicates that the first singlet in Birge's work is actually the third-excited state in our calculation. From the biological point view this is very desirable as one has a wider area to change the conformation during the excitation process. However concerning the response time of the surrounding proteins (such as Asp 85, Lysine 126) to the bathrhodopsin, one requires an excited state with a sufficiently long lifetime. From our calculations, we find that there are only limited number of configurations that allow an easy transition from the excited state back to the ground state, namely the dipole moment for many configurations is very weak. This helps one to understand a complete scenario how rhodopsin is excited and de-excited during isomerization.

  9. Ab initio calculation of ground and excited states in rhodopsin

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; George, T. F.

    1998-03-01

    We perform an all-electron ab initio calculation of the ground and excited states in rhodopsin. It is found that with respect to the ground state, the first-excited state has a minimum area in the regime with the dihedral angle around the bond C_11 - C_12, θ_11,12=60^o-120^o. This area is much larger that found by Birge. A detailed comparison indicates that the first singlet in Birge's work is actually the third-excited state in our calculation. From the biological point view this is very desirable as one has a wider area to change the conformation during the excitation process. However concerning the response time of the surrounding proteins (such as Asp 212, Asp 85 and Lysine 126) to the bathrhodopsin, one requires an excited state with a sufficiently long lifetime. From our calculations, we find that there are only limited number of configurations that allow an easy transition from the excited state back to the ground state, namely the dipole moment for many configurations is very weak. This helps one to understand a complete scenario how rhodopsin is excited and de-excited during isomerization.

  10. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  11. Ground states of the massless Derezinski-Gerard model

    SciTech Connect

    Ohkubo, Atsushi

    2009-11-15

    We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.

  12. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  13. Entanglement of large atomic samples: A Gaussian-state analysis

    SciTech Connect

    Sherson, Jacob; Moelmer, Klaus

    2005-03-01

    We present a Gaussian-state analysis of the entanglement generation between two macroscopic atomic ensembles due the continuous probing of collective spin variables by optical Faraday rotation. The evolution of the mean values and the variances of the atomic variables is determined, and the entanglement is characterized by the Gaussian entanglement of formation and the logarithmic negativity. The effects of induced opposite Larmor rotation of the samples and of light absorption and atomic decay are analyzed in detail.

  14. Scheme for atomic-state teleportation between two bad cavities

    SciTech Connect

    Zheng Shibiao; Guo Guangcan

    2006-03-15

    A scheme is presented for the long-distance teleportation of an unknown atomic state between two separated cavities. Our scheme works in the regime where the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by the detection inefficiency and atomic decay. These advantages are important in view of experiments.

  15. Single-Atom Indexing of Quantum State Superpositions

    NASA Astrophysics Data System (ADS)

    Moon, Christopher R.; Lutz, C. P.; Eigler, D. M.; Manoharan, H. C.

    2006-03-01

    The ultimate miniaturization of electronic devices will likely require the local control of single-electron wavefunctions. One system where this may be accomplished consists of two-dimensional metallic electron states confined within atomically engineered nanostructures. Here we describe experiments showing that an individual atom inside a 44-atom quantum corral can index arbitrary coherent superpositions of spatial quantum states. We demonstrate how the quantum mirage effect can be harnessed to image the resulting quantum superposition. We also present a straightforward method for determining the appropriate atom location for any desired superposition. The atom provides a real-space handle for an abstract Hilbert space, providing a simple, novel technique for coherently manipulating quantum states.

  16. Atomic magnetometry with maximally polarized states.

    PubMed

    Fischer, Ran; Firstenberg, Ofer; Shuker, Moshe; Ron, Amiram

    2009-09-14

    A new magnetometry method based on electromagnetic induced transparency (EIT) with maximally polarized states is demonstrated. An EIT hyperfine resonance, comprising the m(F)=F state (end-state), is observed at a non-zero angle between the laser beam and the magnetic field. The method takes advantage of the process of end-state pumping, a well-known rival of simpler EIT magnetometry schemes, and therefore benefits at a high laser power. An experimental demonstration and a numerical analysis of the magnetometry method are presented. The analysis points on a clear sensitivity advantage of the end-state EIT magnetometer. PMID:19770894

  17. Towards ultracold ground-state NaRb molecule

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Li, Xiaoke; Lu, Bo; Wang, Fudong; Ye, Xin; Wang, Dajun

    2015-05-01

    The ground-state 23Na87Rb molecule is chemically stable and has a permanent electric dipole moment as large as 3.3 Debye. These properties make it a promising candidate for investigating dipolar quantum gases. Recently, we have realized weakly bound 23Na87Rb Feshbach molecules via magneto-association. Here, we will present our results on excited-state molecular spectroscopy investigation starting with these Feshbach molecules. The prospects of transferring 23Na87Rb to the absolute ground state will also be discussed. This work is supported by Hong Kong Research Grants Council (General Research Fund Projects 403111, 404712 and the ANR/RGC Joint Research Scheme ACUHK403/13).

  18. Calculation of Photoionization with Excitation of Ground State Neon

    NASA Astrophysics Data System (ADS)

    Zhou, Hsiao-Ling; Manson, Steven T.; Voky, Lan; Faucher, Paul; Hibbert, Alan

    1997-04-01

    Total and partial photoionization cross sections for the ground state of Ne as well as asymmetry parameter are obtained by ab initio calculations in LS coupling over a photon energy range from 44 to 54 eV. The R-matrix method ( L. Voky, H. E. Saraph, W. Eissner, Z. W. Liu and H. P. Kelly, Phys. Rev. A, 46), 3945 (1992). is used with a close coupling expansion of 7 target ion terms which are needed to build up the final continua and the resonances of ^1P^o symmetry in this energy range. Results for the ground state of Ne^+, as well as various excited states are presented, along with the singly and doubly excited resonances leading up to these thresholds. Comparison with previous work ( K. Schulz, M. Domke, R. Pttner, A. Gutirrez, G. Kaindl, G. Miecznik and C. Greene, Phys. Rev. A, 54), 3095 (1996). shows good agreement.

  19. Ground-state degeneracy of topological phases on open surfaces.

    PubMed

    Hung, Ling-Yan; Wan, Yidun

    2015-02-20

    We relate the ground state degeneracy of a non-Abelian topological phase on a surface with boundaries to the anyon condensates that break the topological phase into a trivial phase. Specifically, we propose that gapped boundary conditions of the surface are in one-to-one correspondence with the sets of condensates, each being able to completely break the phase, and we substantiate this by examples. The ground state degeneracy resulting from a particular boundary condition coincides with the number of confined topological sectors due to the corresponding condensation. These lead to a generalization of the Laughlin-Tao-Wu charge-pumping argument for Abelian fractional quantum Hall states to encompass non-Abelian topological phases, in the sense that an anyon loop of a confined anyon winding a nontrivial cycle can pump a condensed anyon from one boundary to another. Such generalized pumping may find applications in quantum control of anyons, eventually realizing topological quantum computation. PMID:25763964

  20. Ground state in the finite Dicke model for interacting qubits

    NASA Astrophysics Data System (ADS)

    Robles Robles, R. A.; Chilingaryan, S. A.; Rodríguez-Lara, B. M.; Lee, Ray-Kuang

    2015-03-01

    We study the ground state of a finite-size ensemble of interacting qubits driven by a quantum field. We find a maximally entangled W state in the ensemble part of the system for a certain region of the coupling parameters. The area of this region decreases as the ensemble size increases and, in the classical limit, becomes the line in parameter space that defines the phase transition of the system. In the classical limit, we also study the dynamics of the system and its transition from order to disorder for initial energies close to the ground-state energy. We find that a critical energy providing this transition is related to the minimum of the projection of the total angular momentum of the quantum system in the z direction.

  1. Ground state occupation probabilities of neutrinoless double beta decay candidates

    NASA Astrophysics Data System (ADS)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  2. The ground state torsion rotation spectrum of CH2DOH

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Yu, Shanshan; Drouin, Brian J.

    2012-10-01

    The ground state torsion rotation spectrum of CH2DOH has been completely characterized through J = 30 and Ka = 10, 9, 9 in the three torsional sub-states of the ground state; e0, e1, and o1, respectively. Additional a-type assignments are presented to Ka = 11 in each of the torsional sub-states. The data has been analyzed with an empirical power series model as well as an empirical internal axis model. Over 8000 transitions have been assigned and fit with near experimental accuracy over the range of 4-1628 GHz. The characterization of the spectrum allows for a complete set of ground state term values enabling a better understanding of the infrared spectrum. Comparison of the torsional contributions of the Hamiltonian with normal methanol provides great insight into the nature of the asymmetric-top asymmetric-frame internal rotation problem. The comparison with normal methanol also provides a relatively straightforward transformation from the well understood C3V internal rotation problem to the completely asymmetric internal rotation problem. The data and analysis provide some practical wisdom on the impacts of breaking the symmetry and the choice of models for addressing the nearly three fold completely asymmetric internal rotation problem.

  3. Atomic final-state interactions in tritium decay

    SciTech Connect

    Williams, R.D.; Koonin, S.E.

    1983-04-01

    We calculate the effect of the Coulomb interaction of the ejected ..beta.. ray with the bound atomic electron in the ..beta.. decay of a tritium atom. The excited state probabilities of the residual helium ion are changed by at most 0.17% from the usual sudden approximation.

  4. Kosterlitz-Thouless phase transition and ground state fidelity: a novel perspective from matrix product states

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Lei; Zhao, Jian-Hui; Li, Bo; Zhou, Huan-Qiang

    2011-10-01

    The Kosterlitz-Thouless transition is studied from the representation of the systems's ground state wavefunctions in terms of matrix product states for a quantum system on an infinite-size lattice in one spatial dimension. It is found that, in the critical regime for a one-dimensional quantum lattice system with continuous symmetry, the newly developed infinite matrix product state algorithm automatically leads to infinite degenerate ground states, due to the finiteness of the truncation dimension. This results in pseudo continuous symmetry spontaneous breakdown, which allows the introduction of a pseudo-order parameter that must be scaled down to zero, in order to be consistent with the Mermin-Wegner theorem. We also show that the ground state fidelity per lattice site exhibits a catastrophe point, thus resolving a controversy regarding whether or not the ground state fidelity is able to detect the Kosterlitz-Thouless transition.

  5. Atoms versus photons as carriers of quantum states

    NASA Astrophysics Data System (ADS)

    Bougouffa, Smail; Ficek, Zbigniew

    2013-08-01

    The problem of the complete transfer of quantum states and entanglement in a four-qubit system composed of two single-mode cavities and two two-level atoms is investigated. The transfer of single and double excitation states is discussed for two different coupling configurations between the qubits. In the first, the coupling is mediated by the atoms that simultaneously couple to the cavity modes. In the second configuration, each atom resides inside one of the cavities and the coupling between the cavities is mediated by the overlapping field modes. A proper choice of basis states makes it possible to identify states that could be completely transferred between themselves. Simple expressions are derived for the conditions for the complete transfer of quantum states and entanglement. These conditions impose severe constraints on the evolution of the system in the form of constants of motion. The constrains on the evolution of the system imply that not all states can evolve in time, and we find that the evolution of the entire system can be confined into that occurring among two states only. Detailed analysis show that in the case where the interaction is mediated by the atoms, only symmetric superposition states can be completely and reversibly transferred between the atoms and the cavity modes. In the case where the interaction is mediated by the overlapping field modes, both symmetric and antisymmetric superposition states can be completely transferred. We also show that the system is capable of generating purely photonic NOON states, but only if the coupling is mediated by the atoms, and demonstrate that the ability to generate the NOON states relies on perfect transfer of an entanglement from the atoms to the cavity modes.

  6. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-01-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  7. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  8. Semiclassical study of the quenching of excited-state fluorine atom by hydrogen molecule - Comparison between reactive and nonreactive processes

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Skuse, B. M.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.; George, T. F.

    1980-01-01

    Semiclassical calculations are carried out for the quenching of excited-state fluorine atom by collinear collisions with hydrogen molecule. The overall quenching probability is the sum of two contributions: the reactive quenching probability associated with the formation of hydrogen fluoride and the nonreactive quenching probability leading to ground-state fluorine atom and hydrogen molecule. The reactive probability is greater in the threshold region of the collision energy, whereas the nonreactive probability dominates for energies above the threshold region.

  9. Measurements of copper ground-state and metastable level population densities in a copper-chloride laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1977-01-01

    The population densities of both the ground and the 2D(5/2) metastable states of copper atoms in a double-pulsed copper-chloride laser are correlated with laser energy as a function of time after the dissociation current pulse. Time-resolved density variations of the ground and excited copper atoms were derived from measurements of optical absorption at 324.7 and 510.6 nm, respectively, over a wide range of operating conditions in laser tubes with diameters of 4 to 40 mm. The minimum delay between the two current pulses at which lasing was observed is shown to be a function of the initial density and subsequent decay of the metastable state. Similarly, the maximum delay is shown to be a function of the initial density and decay of the ground state.

  10. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    SciTech Connect

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-05-15

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility {alpha} of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and {alpha} to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  11. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  12. Determination of ground state in potassium intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh; Heguri, Satoshi; Tanabe, Yoichi; Shimotani, Hidekazu; Tanigaki, Katsumi; Nakano, Takehito; Nozue, Yasuo

    2013-03-01

    Intercalated compounds of polycyclic aromatic hydrocarbons have been drawing much attention from the view point of new type of organic superconductors. The mechanism of superconductivity in these materials is still unclear, and therefore the true ground states with various carrier concentrations must be understood. The antiferromagnetic ground states were reported particularly on K-doped pentacene, a typical polyacene. In the present study, we focus on the synthesis and the magnetic properties of K-intercalated polyacenes, such as anthracene, tetracene, and pentacene. The improved synthetic method based on the conventional solid state reaction was employed to obtain high quality bulk samples. The X-ray powder diffraction profiles of doped samples showed new stable phases. Interestingly, a pronounced hump at 150 K was observed in the temperature dependence of magnetic susceptibility of K1anthracene. In ESR measurements the linewidth of the signals decreased significantly with a decrease in temperature below 150 K and no Pauli magnetic contribution was detected. These results clearly indicate that charge transfer occurs but the most stable ground state is still insulating via antiferromagnetic interactions. Further discussion will be made among these K-intercalated polyacenes.

  13. Guidelines for ground motion definition for the eastern United States

    SciTech Connect

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.

  14. Search for Positron Bound States in the Doubly Excited Region of the Helium Atom

    NASA Astrophysics Data System (ADS)

    Boadle, Roisin; Machacek, Joshua; Anderson, Emma; Sullivan, James; Buckman, Stephen

    2012-10-01

    Positron-atom binding has been the subject of many theoretical calculations in recent years. In these systems, a positron becomes temporarily bound to the atom, either through polarisation of the electronic charge cloud or formation of positronium (an e^-e^+ pair) which is weakly bound to the atom. There is now theoretical evidence of numerous positron-atom bound states, including for the helium atom. Ground state helium is incapable of binding a positron; however, recent calculations [1] have indicated that excited metastable states and doubly excited states may do so. These bound states might be expected to manifest themselves as structure in the energy dependence of the cross sections for processes such as total scattering, positronium formation, or ionization. We have carried out an experimental search for these positronic helium states in the doubly-excited region near 58 eV, using our high-resolution, trap-based positron beam. Results from this study will be presented and their ramifications discussed. [4pt] [1] M.J. Bromley and J. Mitroy Private Communication (2012)

  15. Ground-state properties of quantum triangular ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-03-01

    Motivated by recent quantum Monte Carlo (QMC) simulations of the quantum Kagome ice model by Juan Carrasquilla et al., [Nat. Commun., 6, 7421 (2015), 10.1038/ncomms8421], we study the ground-state properties of this model on the triangular lattice. In the presence of a magnetic field h , the Hamiltonian possesses competing interactions between a Z2-invariant easy-axis ferromagnetic interaction J±± and a frustrated Ising term Jz. As in the U(1)-invariant model, we obtain four classical distinctive phases, however, the classical phases in the Z2-invariant model are different. They are as follows: a fully polarized (FP) ferromagnet for large h , an easy-axis canted ferromagnet (CFM) with broken Z2 symmetry for small h and dominant J±±, a ferrosolid phase with broken translational and Z2 symmetries for small h and dominant Jz, and two lobes with m ==±1 /6 for small h and dominant Jz. We show that quantum fluctuations are suppressed in this model, hence the large-S expansion gives an accurate picture of the ground-state properties. When quantum fluctuations are introduced, we show that the ferrosolid state is the ground state in the dominant Ising limit at zero magnetic field. It remains robust for Jz→∞ . With nonzero magnetic field the classical lobes acquire a finite magnetic susceptibility with no Sz order. We present the trends of the ground-state energy and the magnetizations. We also present a detail analysis of the CFM.

  16. Electronic end-states in platinum atom chains

    NASA Astrophysics Data System (ADS)

    Heimbuch, René; Ateşçi, Hasan; Slootheer, Iris; Zandvliet, Harold J. W.

    2016-02-01

    We investigated electronic surface states in platinum atom chains grown on Ge(001). Scanning tunneling microscopy/spectroscopy was used to record the electronic landscape on atomic platinum chains. High-resolution spatial maps of individual Pt-dimers near the termini of the chains revealed a difference in the electronic structure between the end dimer region and the chains bulk region. Experiments and tight-binding calculations show a one-dimensional character of the electronic states, decaying rapidly into the chains.

  17. Entangled States of Atoms upon Interaction with Narrowband Light

    SciTech Connect

    Gorbachev, V.N.; Zhiliba, A.I.; Rodichkina, A.A.; Trubilko, A.I.

    2005-08-15

    The process of resonant interaction of light with two-level atoms in the absence of relaxation is considered. For a special form of initial conditions, simple and exact solutions are found that describe coherent processes leading to the appearance of many-particle entangled W-class states. These processes can be used for preparation and transformation of entangled states, in particular, for problems of quantum memory and generation of entangled atomic chains.

  18. Creation of Ultracold Dipolar Ground State Molecules of 23Na40K

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee Woo; Schloss, Jennifer; Yan, Zoe; Loh, Huanqian; Zwierlein, Martin

    2015-05-01

    Over the past decade ultracold atomic quantum gases have successfully been employed as quantum simulators to gain a better understanding of strongly correlated many-body systems. However, the dominant interactions between atoms are typically short-range in character, limiting the spectrum of quantum phenomena to be explored. Quantum particles with long-range dipolar interactions will open new routes for quantum simulation and promise the creation of novel states of matter, such as quantum crystals, topological superfluids and supersolids. Ultracold heteronuclear molecules offer a unique path to realize a strongly dipolar quantum gas. Among several choices, NaK stands out as an exceptional molecule due to its chemical stability and a large electric dipole moment in its absolute ground state. We report on recent progress that led us to the creation of the first ultracold, strongly dipolar molecules of NaK. Using a two-photon STIRAP process we have efficiently transferred NaK from the Feshbach state to the rovibrational ground state. By applying an external electric field, we have aligned the molecular dipoles, inducing long-range dipolar interactions. These advances bring the creation of novel states of matter in a strongly dipolar quantum gas of NaK into experimental reach.

  19. Aurora Borealis: stochastic cellular automata simulations of the excited-state dynamics of oxygen atoms.

    NASA Astrophysics Data System (ADS)

    Seybold, P. G.; Kier, L. B.; Cheng, C.-K.

    1999-12-01

    Emissions from the 1S and 1D excited states of atomic oxygen play a prominent role in creating the dramatic light displays (aurora borealis) seen in the skies over polar regions of the Northern Hemisphere. A probabilistic asynchronous cellular automaton model described previously has been applied to the excited-state dynamics of atomic oxygen. The model simulates the time-dependent variations in ground (3P) and excited-state populations that occur under user-defined probabilistic transition rules for both pulse and steady-state conditions. Although each trial simulation is itself an independent "experiment", deterministic values for the excited-state emission lifetimes and quantum yields emerge as limiting cases for large numbers of cells or large numbers of trials. Stochastic variations in the lifetimes and emission yields can be estimated from repeated trials.

  20. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  1. Boron aggregation in the ground states of boron-carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Mohr, Stephan; Pochet, Pascal; Amsler, Maximilian; Schaefer, Bastian; Sadeghi, Ali; Genovese, Luigi; Goedecker, Stefan

    2014-01-01

    We present unexpected structural motifs for boron-carbon nanocages of the stoichiometries B12C48 and B12C50, based on first-principles calculations. These configurations are distinct from those proposed so far because the boron atoms are not isolated and distributed over the entire surface of the cages, but rather aggregate at one location to form a patch. Our putative ground state of B12C48 is 1.8 eV lower in energy than the previously proposed ground state and violates all the suggested empirical rules for constructing low-energy fullerenes. The B12C50 configuration is energetically even more favorable than B12C48, showing that structures derived from the C60 buckminsterfullerene are not necessarily magic sizes for heterofullerenes.

  2. Electromagnetically-induced-transparency ground-state cooling of long ion strings

    NASA Astrophysics Data System (ADS)

    Lechner, Regina; Maier, Christine; Hempel, Cornelius; Jurcevic, Petar; Lanyon, Ben P.; Monz, Thomas; Brownnutt, Michael; Blatt, Rainer; Roos, Christian F.

    2016-05-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground-state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  3. Proteolytic Equilibria of Vanillic Acid in the Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil‧eva, N. Yu.

    2016-03-01

    Proteolytic equilibria of vanillic acid in aqueous solutions were studied using electronic spectroscopy. The pH ranges for anionic, dianionic, cationic, and neutral forms of vanillic acid in the ground and excited states were determined. The electron density distribution on atoms in the proteolytic forms was determined using quantum-chemistry methods. The anion formed as a result of dissociation of the carboxylic acid. The dianion formed in the presence of two and more equivalents of alkali as a result of proton loss from the phenol and carboxylic acid. The vanillic acid cation formed via protonation of the carbonyl oxygen. Differences in spectral features of the proteolytic forms in the ground and excited states were observed.

  4. Approximating ground and excited state energies on a quantum computer

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2015-04-01

    Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with degrees of freedom. Our algorithm computes estimates of a constant number of different low-order eigenvalues with error and success probability at least , with cost polynomial in and . This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

  5. Ground state hyperfine structure in muonic lithium ions

    NASA Astrophysics Data System (ADS)

    Martynenko, A. P.; Ulybin, A. A.

    2015-10-01

    On the basis of perturbation theory in the fine structure constant α and the mass ratio of the electron and muon, we calculate the one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections of the hyperfine splitting of the ground state in muonic lithium ions {(μ {{e}}{ }36{Li})}+ and {(μ {{e}}{ }37{Li})}+. We obtain complete results for small hyperfine splittings of the ground state in {(μ {{e}}{ }36{Li})}+ of {{Δ }}{ν }1=21572.16 MHz and {{Δ }}{ν }2=14152.56 MHz and in {(μ {{e}}{ }37{Li})}+ {{Δ }}{ν }1=21733.06 MHz and {{Δ }}{ν }2=13994.35 MHz, which can be regarded as a reliable estimates for comparison with future experimental data.

  6. Quantum-classical equivalence and ground-state factorization

    NASA Astrophysics Data System (ADS)

    Abouie, Jahanfar; Sepehrinia, Reza

    2016-02-01

    We have performed an analytical study of quantum-classical equivalence for quantum XY-spin chains with arbitrary interactions to explore the classical counterpart of the factorizing magnetic fields that drive the system into a separable ground state. We demonstrate that the factorizing line in the parameter space of a quantum model is equivalent to the so-called natural boundary that emerges in mapping the quantum XY-model onto the two-dimensional classical Ising model. As a result, we show that the quantum systems with the non-factorizable ground state could not be mapped onto the classical Ising model. Based on the presented correspondence we suggest a promising method for obtaining the factorizing field of quantum systems through the commutation of the quantum Hamiltonian and the transfer matrix of the classical model.

  7. The valence-fluctuating ground state of plutonium

    SciTech Connect

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian -Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  8. The valence-fluctuating ground state of plutonium.

    PubMed

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L; Lumsden, Mark D; Lawrence, John M; Thompson, Joe D; Lander, Gerard H; Mitchell, Jeremy N; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D

    2015-07-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium's magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  9. The valence-fluctuating ground state of plutonium

    PubMed Central

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-01-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  10. Topological entanglement entropy, ground state degeneracy and holography

    NASA Astrophysics Data System (ADS)

    Parnachev, Andrei; Poovuttikul, Napat

    2015-10-01

    Topological entanglement entropy, a measure of the long-ranged entanglement, is related to the degeneracy of the ground state on a higher genus surface. The exact relation depends on the details of the topological theory. We consider a class of holographic models where such relation might be similar to the one exhibited by Chern-Simons theory in a certain large N limit. Both the non-vanishing topological entanglement entropy and the ground state degeneracy in these holographic models are consequences of the topological Gauss-Bonnet term in the dual gravitational description. A soft wall holographic model of confinement is used to generate finite correlation length but keep the disk topology of the entangling surface in the bulk, necessary for nonvanishing topological entanglement entropy.

  11. Ground-state rotational constants of 12CH 3D

    NASA Astrophysics Data System (ADS)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  12. Kac-Moody symmetries of critical ground states

    NASA Astrophysics Data System (ADS)

    Kondev, Jané; Henley, Christopher L.

    1996-02-01

    The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2) k=1 , su(3) k=1 , and the su(4) k=1 Kac-Moody algebra, respectively. Our approach is based on the Frenkel-Kac-Segal vertex operator construction of level-one Kac-Moody algebras.

  13. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy. PMID:26931702

  14. Tuning the Ground State Symmetry of Acetylenyl Radicals.

    PubMed

    Zeng, Tao; Danovich, David; Shaik, Sason; Ananth, Nandini; Hoffmann, Roald

    2015-08-26

    The lowest excited state of the acetylenyl radical, HCC, is a (2)Π state, only 0.46 eV above the ground state, (2)Σ(+). The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of (2)Π and (2)Σ(+) states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with (2)Π ground states (NaOCC, H2NCC ((2)A″), HCSi, FCSi, etc.) and vary the (2)Σ(+)-(2)Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  15. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  16. Ground-state energy and relativistic corrections for positronium hydride

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-07-15

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10{sup -10}, which is a significant improvement over previous nonrelativistic results.

  17. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  18. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  19. Low frequency gravitational wave detection with ground-based atom interferometer arrays

    NASA Astrophysics Data System (ADS)

    Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN), which limits all ground based GW detectors below a few hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below 1 ×10-19/√{Hz } in the 0.3 -3 Hz frequency band can be within reach, with a peak sensitivity of 3 ×10-23/√{Hz } at 2 Hz . Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap between ground-based and space-based instruments.

  20. Preparation of state purified beams of He, Ne, C, N, and O atoms

    SciTech Connect

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-14

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He({sup 3}S{sub 1}) and Ne({sup 3}P{sub 2}), and of ground state N({sup 4}S{sub 3/2}) and O({sup 3}P{sub 2}) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C({sup 3}P{sub 2}; {sup 1}D{sub 2}) and N({sup 2}D{sub 5/2}; {sup 2}P{sub 3/2}) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  1. Quantum Monte Carlo method for the ground state of many-boson systems

    SciTech Connect

    Purwanto, Wirawan; Zhang Shiwei

    2004-11-01

    We formulate a quantum Monte Carlo (QMC) method for calculating the ground state of many-boson systems. The method is based on a field-theoretical approach, and is closely related to existing fermion auxiliary-field QMC methods which are applied in several fields of physics. The ground-state projection is implemented as a branching random walk in the space of permanents consisting of identical single-particle orbitals. Any single-particle basis can be used, and the method is in principle exact. We illustrate this method with a trapped atomic boson gas, where the atoms interact via an attractive or repulsive contact two-body potential. We choose as the single-particle basis a real-space grid. We compare with exact results in small systems and arbitrarily sized systems of untrapped bosons with attractive interactions in one dimension, where analytical solutions exist. We also compare with the corresponding Gross-Pitaevskii (GP) mean-field calculations for trapped atoms, and discuss the close formal relation between our method and the GP approach. Our method provides a way to systematically improve upon GP while using the same framework, capturing interaction and correlation effects with a stochastic, coherent ensemble of noninteracting solutions. We discuss various algorithmic issues, including importance sampling and the back-propagation technique for computing observables, and illustrate them with numerical studies. We show results for systems with up to N{approx}400 bosons.

  2. Single-Atom Gating of Quantum State Superpositions

    SciTech Connect

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  3. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  4. Ultracold chemistry with ground-state KRb molecules

    NASA Astrophysics Data System (ADS)

    Neyenhuis, B.; Ospelkaus, S.; Ni, K.-K.; Wang, D.; de Miranda, M. H. G.; Quemener, G.; Bohn, J. L.; Jin, D. S.; Ye, J.

    2010-03-01

    We prepare a near-quantum-degenerate gas of fermionic KRb molecules, with all the molecules in the absolute lowest energy state. We observe atom-exchange chemical reactions in a regime where the reaction rates are determined by the quantum statistics of the molecules, single partial wave scattering, and quantum threshold laws [1].[4pt] [1] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Qu'em'ener, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, Quantum-State Controlled Chemical Reactions of Ultracold KRb Molecules, Science (in press).

  5. Comment on ``Lifetime of excited atomic states''

    NASA Astrophysics Data System (ADS)

    Florescu, Viorica; Schneider, I.; Mihailescu, I. N.

    1988-08-01

    We show that the two-photon nonresonant contribution to the lifetime of excited 3s and 3d states of hydrogen, as given by a formula recently derived by Cresser et al. [Phys. Rev. A 33, 1677 (1986)], can be evaluated in an economic way using the analytic expressions of the amplitudes of 3s-1s and 3d-1s two-photon transitions. Our numerical evaluation confirms the numbers given by Cresser et al.

  6. Comment on ''Lifetime of excited atomic states''

    SciTech Connect

    Florescu, V.; Schneider, I.; Mihailescu, I.N.

    1988-08-15

    We show that the two-photon nonresonant contribution to the lifetime of excited 3s and 3d states of hydrogen, as given by a formula recently derived by Cresser et al. (Phys. Rev. A 33, 1677 (1986)), can be evaluated in an economic way using the analytic expressions of the amplitudes of 3s-1s and 3d-1s two-photon transitions. Our numerical evaluation confirms the numbers given by Cresser et al.

  7. Tuning of the ground state in electron doped anthracene.

    PubMed

    Phan, Quynh T N; Heguri, Satoshi; Tanabe, Yoichi; Shimotani, Hidekazu; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2014-07-14

    High quality bulk samples of anthracene (AN) doped with potassium (K) in 1 : 1 and 2 : 1 stoichiometries were successfully prepared by a method involving a room temperature solid-state mechanical diffusion process prior to intercalation reactions during heat treatment, and their physical properties were studied using both magnetic and optical measurements. The transfer of almost one electron from K to AN in K1(AN) was confirmed by SQUID and ESR measurements. A pronounced magnetic hump centered at 150 K associated with antiferromagnetic interactions was observed, which can most likely be interpreted in terms of on-site Coulomb repulsions of the Mott insulating states. Optical spectra of K1(AN) clearly showed the insulating states, as well as the electron occupation of the LUMO-derived band of AN. Our results demonstrated tuning of the ground state of a typical bulk hydrocarbon by alkali metal intercalation. PMID:24867585

  8. Experimental Proposal to Detect Topological Ground State Degeneracy

    NASA Astrophysics Data System (ADS)

    Barkeshli, Maissam; Oreg, Yuval; Qi, Xiao-Liang

    2014-03-01

    One of the most profound features of topologically ordered states of matter, such as the fractional quantum Hall (FQH) states, is that they possess topology-dependent ground state degeneracies that are robust to all local perturbations. Here we present the first proposal to directly detect these topological degeneracies in an experimentally accessible setup. The detection scheme uses nonlinear electrical conductance measurements in a double layer FQH system, with appropriately patterned top and bottom gates. We propose two experimental platforms; in the first, the detection of topo- logically degenerate states coincides with the detection of ZN parafermion zero modes. We map the relevant physics to a single-channel ZN quantum impurity model, providing a novel generalization of the Kondo model. Our proposal can also be adapted to detect the ZN parafermion zero modes recently discovered in FQH line junctions proximitized with superconductivity.

  9. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications.

    PubMed

    Saeedi, K; Szech, M; Dluhy, P; Salvail, J Z; Morse, K J; Riemann, H; Abrosimov, N V; Ntzel, N; Litvinenko, K L; Murdin, B N; Thewalt, M L W

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched (28)Si. PMID:25990870

  10. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  11. Numerical Simulations of Oscillatons: Excited States in Spherical Symmetry and Ground State Evolutions in 3D

    NASA Astrophysics Data System (ADS)

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai

    2008-04-01

    Oscillatons are nonsingular solutions of the Einstein-Klein-Gordon equations represented by periodic metric and real field. Using a 1D code we find that spherically symmetric S-branch excited state oscillatons are inherently unstable under radial perturbations: they either migrate to the ground state or collapse to black holes. Similar to boson stars higher excited state oscillatons cascade through intermediate excited states during their migration to the ground state. Ground state oscillatons are then studied with a 3D numerical relativity code based on the Cactus Computational Toolkit. Finding the appropriate gauge condition for the dynamic oscillatons is challenging. Slicing conditions are explored and a customized gauge condition is implemented. The behavior of these stars under small nonradial perturbations is studied and gravitational waveforms are extracted. The gravitational waves damp on a short timescale, enabling us to obtain the complete waveform. This work is a starting point for the study of real scalar field systems in 3D.

  12. Transmission-line decelerators for atoms in high Rydberg states

    NASA Astrophysics Data System (ADS)

    Lancuba, P.; Hogan, S. D.

    2014-11-01

    Beams of helium atoms in Rydberg states with principal quantum number n =52 , and traveling with an initial speed of 1950 m/s, have been accelerated, decelerated, and guided while confined in moving electric traps generated above a curved, surface-based electrical transmission line with a segmented center conductor. Experiments have been performed with atoms guided at constant speed, and with accelerations exceeding 107 m /s 2. In each case, the manipulated atoms were detected by spatially resolved, pulsed electric field ionization. The effects of tangential and centripetal accelerations on the effective trapping potentials experienced by the atoms in the decelerator have been studied, with the resulting observations highlighting contributions from the density of excited Rydberg atoms to the acceleration, deceleration, and guiding efficiencies in the experiments.

  13. Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiazhong; Chen, Wenlan; Vendeiro, Zachary; Zhang, Hao; Vuletić, Vladan

    2015-12-01

    We consider the optical generation and characterization of entanglement in atomic ensembles under nonuniform interaction between the ensemble and an optical mode. We show that for a wide range of parameters a system of nonuniformly coupled atomic spins can be described as an ensemble of uniformly coupled spins with a reduced effective atom-light coupling and a reduced effective atom number, with a reduction factor of order unity given by the ensemble-mode geometry. This description is valid even for complex entangled states with arbitrary phase-space distribution functions as long as the average total spin remains large, and the detection does not resolve single spins. Furthermore, we derive an analytic formula for determining the observable entanglement in the case, of relevance in practice, where the ensemble-mode coupling differs between state generation and measurement.

  14. New approach to hyperfine structure - Application to the Li ground state

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    1980-01-01

    Global identities for delta functions, given by Hiller, Sucher and Feinberg (HSF) are applied to the calculation of the hyperfine structure (HFS) of the ground state of Li. It is shown that use of the HSF identity together with configuration interaction type wavefunctions can yield values of the HFS constant f which are comparable in accuracy to that obtained by Larsson with a 100-term Hylleraas-type wavefunction. The implications of this result for HFS calculations for atoms with many electrons are discussed.

  15. Revisiting "Quantum State Sharing of an Arbitrary Two-Atom State by Using a Six-Atom Cluster State in Cavity QED"

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-yun; Xiong, Kuang-wei; Zuo, Xue-qin; Zhang, Wen

    2013-08-01

    In Nie et al. (Int. J. Theor. Phys. 50: 2526, 2011), authors put forward a cavity QED scheme for deterministic quantum state sharing (QSTS) of an arbitrary two-atom state. They claimed that, the quantum channel of the QSTS scheme is a six-atom cluster state. After simple calculation, one can see that the quantum channel they used is a direct product of two three-atom GHZ states. In this paper, we propose a cavity QED scheme for QSTS of an arbitrary two-atom state via a six-atom cluster state channel. In our scheme, two two-atom Bell state measurements are transformed into the discrimination of single-atom product states. Moreover, the two-atom unitary operation is changed to single-qubit unitary operations. Our scheme is insensitive to the cavity decay. The necessary time for the scheme is much shorter than the Rydberg-atom lifespan, therefore atom decays do not need to be considered.

  16. Continuous Vibrational Cooling of Ground State Rb2

    NASA Astrophysics Data System (ADS)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν < 35. The molecules may then be further cooled using a broadband superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  17. Dynamics Resonances in Atomic States of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Arefieff, K. N.; Miculis, K.; Bezuglov, N. N.; Dimitrijević, M. S.; Klyucharev, A. N.; Mihajlov, A. A.; Srećković, V. A.

    2015-12-01

    Ionized geocosmic media parameters in a thermal and a subthermal range of energy have a number of unique features. The photoresonance plasma that is formed by optical excitation of the lowest excited (resonance) atomic states is one example of conversion of radiation energy into electrical one. Since spontaneous fluorescence of excited atoms is probabilistic, the description of the radiating quantized system evolution along with photon energy transfer in a cold atom medium, should include elements of stochastic dynamics. Finally, the chaotic dynamics of a weakly bound Rydberg electron over a grid of the energy level diagram of a quasi-molecular Rydberg complex provides an excitation migration of the electron forward to the ionization continuum. This work aims at discussing the specific features of the dynamic resonances formalism in the description of processes involving Rydberg states of an excited atom, including features in the fluorescence spectrum partially caused by the quantum defect control due to the presence of statistic electromagnetic fields.

  18. Earthquake Ground Motion Simulations in the Central United States

    NASA Astrophysics Data System (ADS)

    Ramirez Guzman, L.; Boyd, O. S.; Hartzell, S.; Williams, R. A.

    2010-12-01

    The Central United States (CUS) includes two of the major seismic zones east of the Rockies: the New Madrid and Wabash Valley Seismic Zones. The winter 1811-1812 New Madrid Seismic Zone (NMSZ) events were the largest intraplate sequence ever recorded in the United States. Together with their aftershocks, these earthquakes produced large areas of liquefaction, new lakes, and landslides in the region. Seismicity in the early 1800’s was dominated by the NMSZ activity, although three low magnitude 5 earthquakes occurred in the last 40 years in the Wabash Valley Seismic Zone (WVSZ). The population and infrastructure of the CUS have drastically changed from that of the early nineteenth century, and a large earthquake would now cause significant casualties and economic losses within the country’s heartland. In this study we present three sets of numerical simulations depicting earthquakes in the region. These hypothetical ruptures are located on the Reelfoot fault and the southern axial arm of the NMSZ and in the WVSZ. Our broad-band synthetic ground motions are calculated following the Liu et al. (2006) hybrid method. Using a finite element solver we calculate low frequency ground motion (< 1 Hz) which accounts for the heterogeneity and low velocity soils of the region by using a recently developed seismic velocity model (CUSVM1) and a minimum shear wave velocity of 300 m/s. The broad-band ground motions are then generated by combining high frequency synthetics computed in a 1D velocity model with the low frequency motions at a crossover frequency of 1 Hz. We primarily discuss the basin effects produced by the Mississippi embayment and investigate the effects of hypocentral location and slip distribution on ground motions in densely populated areas within the CUS.

  19. Transitions between highly excited states of alkali atoms

    SciTech Connect

    Molander, W.A.

    1983-01-01

    The general problem of induced transitions between Rydberg states of alkali atoms due to electric fields is studied. When the fields which induce the transitions are generated by similarly excited atoms superfluorescence results. A general equation of motion for the atomic transition operators in multilevel superfluorescence is derived using the Markov approximation. When a small sample approximation is made, expectation values of this equation reduce to a simple intuitively appealing set of non-linear rate equations for the populations of the levels. Numerical solutions of these equations are presented for several interesting special cases. Several new phenomena are predicted including alteration of branching ratios, coherent trapping of population in an excited state, and relaxation oscillations in the decay. It is found that the non-linear decay tends to direct the population down a single decay route. Transitions between Rydberg states due to externally applied fields are also studied. Specifically the use of external fields to excite Rydberg atoms from states of low angular momentum to circular-orbit states is examined. The methods of Stark switching and microwave multiphoton resonance are found to be unable to excite circular-orbit states when the principle quantum number is greater than 15. A new method is proposed which overcomes this limitation. The method, which is simple to implement, is similar to Stark switching. The difference is that a microwave field rather than a d.c. field is used to split and mix the angular-momentum states.

  20. Boron: do we know the ground state structure?

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi

    2006-03-01

    Boron is only the fifth element in the periodic table, having a simple electronic configuration, yet, it is known to form one of the most complicated crystal structures, β-rhombohedral structure. Up to date, the best estimate on the number of atoms in its hexagonal unit cell is 320.1, not even an integer number. The key concept to understand its complexity is covalency and electron deficiency: It does not have enough valence electrons to form a simple covalent crystal, like carbon or silicon. Instead it forms a complicated packing of icosahedrons. The structural model of β-boron was developed in the 1960s based on X-ray experiment. Although this model structure captures the most of the structural characteristics of β-boron, it has a crucial pitfall; the number of atoms per cell estimated by X-ray experiment does not agree with the number of atoms estimated by the pycnometric density. In 1988, Slack et al. discovered four more POS, by which the discrepancy in the number of atoms is reconciled [J. of Solid State Chem. 76, 52 (1988)]. There still remains an unanswered question; how are these POS atoms configured? Is it completely random? Or there is some kind of order as it has been suggested in Slack’s paper? A major challenge here is the astronomical number of possible configurations, roughly 150 million even for the irreducible cell. We tackle this problem using ab-initio simulated annealing coupled with a Lattice Model Monte Carlo simulated annealing. Our results reveal that the stable structure, indeed, has a certain type of correlation in its POS configuration. More detail on the structural property and its impact on electronic property of β-boron will be discussed at the presentation. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  1. Estimating the ground-state probability of a quantum simulation with product-state measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce; Freericks, James

    2015-10-01

    .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know a priori what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  2. Microwave-dressed state-selective potentials for atom interferometry

    NASA Astrophysics Data System (ADS)

    Guarrera, V.; Szmuk, R.; Reichel, J.; Rosenbusch, P.

    2015-08-01

    We propose a novel and robust technique to realize a beam splitter for trapped Bose-Einstein condensates (BECs). The scheme relies on the possibility of producing different potentials simultaneously for two internal atomic states. The atoms are coherently transferred, via a Rabi coupling between the two long-lived internal states, from a single well potential to a double-well. We present numerical simulations supporting our proposal and confirming excellent efficiency and fidelity of the transfer process with realistic numbers for a BEC of 87Rb. We discuss the experimental implementation by suggesting state-selective microwave (MW) potentials as an ideal tool to be exploited for magnetically trapped atoms. The working principles of this technique are tested on our atom chip device which features an integrated coplanar MW guide. In particular, the first realization of a double-well potential by using a MW dressing field is reported. Experimental results are presented together with numerical simulations, showing good agreement. Simultaneous and independent control on the external potentials is also demonstrated in the two Rubidium clock states. The transfer between the two states, featuring respectively a single and a double-well, is characterized and it is used to measure the energy spectrum of the atoms in the double-well. Our results show that the spatial overlap between the two states is crucial to ensure the functioning of the beamsplitter. Even though this condition could not be achieved in our current setup, the proposed technique can be realized with current state-of-the-art devices being particularly well suited for atom chip experiments. We anticipate applications in quantum enhanced interferometry.

  3. Basicity of coumarin derivatives in the ground and excited states

    SciTech Connect

    Ponomarev, O.A.; Mitina, V.G.; Vasina, E.R.; Yarmolenko, S.N.

    1985-07-01

    The acid-base properties of coumarin luminophores are widely used for widening the optical spectrum generated by lasers. The aim of this work was a quantitative study of the proton-acceptor capacity of a series of substituted coumarins at the H-complex formation stage and during protonation, and also to evaluate the basicity of these compounds in the first excited singlet state. The compounds chosen were the 4- and 7-substituted coumarins, most widely used in laser technology. In the ground state the sensitivity of the carbonyl group to the effect of a substituent was twice as great in position 4 as in position 7; for the excited state the effect was reversed.

  4. Ground state of the universe in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Gorobey, Natalia; Lukyanenko, Alexander

    2016-01-01

    We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

  5. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  6. Combined quantum-state preparation and laser cooling of a continuous beam of cold atoms

    SciTech Connect

    Di Domenico, Gianni; Devenoges, Laurent; Dumas, Claire; Thomann, Pierre

    2010-11-15

    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second {pi}-polarized laser excites the F=3{yields}F{sup '}=3 transition of the D{sub 2} line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a two-dimensional optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4{yields}F{sup '}=4 and F=4{yields}F{sup '}=5 transitions of the D{sub 2} line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second {pi}-polarized laser reveals the action of a mechanism improving both laser cooling and state-preparation efficiency. A physical interpretation of this mechanism is discussed.

  7. Controlling the Hyperfine State of Rovibronic Ground-State Polar Molecules

    SciTech Connect

    Ospelkaus, S.; Ni, K.-K.; Quemener, G.; Neyenhuis, B.; Wang, D.; Miranda, M. H. G. de; Bohn, J. L.; Ye, J.; Jin, D. S.

    2010-01-22

    We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.

  8. Correlated eikonal initial state in ion-atom collisions

    SciTech Connect

    Ciappina, M.F.; Otranto, S.; Garibotti, C.R.

    2002-11-01

    An approximation is developed to deal with the ionization of atoms by bare charged ions. In this method the transition amplitude describing the three-body final state is evaluated using a continuum correlated wave and that for the initial state by an analytical continuation of the {phi}{sub 2} model to complex momenta. This procedure introduces in the atomic bound state a kinematical correlation with the projectile motion. Doubly differential cross sections (DDCS's) are computed for collisions of H{sup +} and F{sup 9+} ions with He atoms. Results for the DDCS's in the forward direction are compared with experimental data and other theoretical models. We find an enhancement of the distribution for low energy electrons and that the asymmetry of the electron capture to the continuum (ECC) peak is correctly described.

  9. Some topological states in one-dimensional cold atomic systems

    SciTech Connect

    Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang

    2015-07-15

    Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.

  10. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  11. Thermal Properties and Ground State Energy Shift of Charged Anyons

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Myung, Y. S.; Yi, S. H.

    We derive the second and third virial coefficients and the ground state energy shift for charged anyons within the Hartree-Fock approximation. A second quantization scheme at finite temperature is introduced for this calculation up to the second order and the vertex is composed of anyonic, point, constant as well as Coulomb interactions. The thermodynamic potential for the second order correlation diagram of Coulomb interaction leads to the logarithmic divergence (V ln V). Hence, we find the heat capacity and the correlation energy of anyons without Coulomb-Coulomb interaction. Finally, we discuss the magnetic-field-induced localization at low filling ν, including the Wigner crystal phase.

  12. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    SciTech Connect

    Cross, J.B. ); Lan, E.H.; Smith, C.A. ); Whatley, W.J. ); Koontz, S.L. . Lyndon B. Johnson Space Center)

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si{sub 3}N{sub 4}) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin ({approx}250{Angstrom}) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si{sub 3}N{sub 4} materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si{sub 3}N{sub 4} was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results. 9 refs., 3 figs.

  13. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  14. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  15. Neutral atoms are entangled in hyperfine states via Rydberg blockade

    SciTech Connect

    Miller, Johanna

    2010-02-15

    Ions and neutral atoms held in electromagnetic traps are two of many candidates that may one day become the qubits in a quantum computer: Their hyperfine states could serve as the computer's ones and zeroes. Ions interact via long-range Coulomb forces, which can facilitate creation of the entangled states that are the prerequisite for quantum computation. But that same Coulomb interaction gives rise to collective motions that can disrupt a qubit array. Atoms aren't susceptible to such disruptions. But they're also more difficult to entangle.

  16. Measurement scheme and analysis for weak ground-state-hyperfine-transition moments through two-pathway coherent control

    NASA Astrophysics Data System (ADS)

    Choi, J.; Elliott, D. S.

    2016-02-01

    We report our detailed analysis of a tabletop system for the measurement of the weak-force-induced electric dipole moment of a ground-state hyperfine transition carried out in an atomic beam geometry. We describe an experimental configuration of conductors for application of orthogonal rf and static electric fields, with cavity enhancement of the rf field amplitude, that allows confinement of the rf field to a region in which the static fields are uniform and well characterized. We carry out detailed numerical simulations of the field modes and analyze the expected magnitude of statistical and systematic limits to the measurement of this transition amplitude in atomic cesium. The combination of an atomic beam with this configuration leads to strong suppression of magnetic dipole contributions to the atomic signal. The application of this technique to the measurement of extremely weak transition amplitudes in other atomic systems, especially alkali metals, seems very feasible.

  17. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  18. Characterization of a state-insensitive dipole trap for cesium atoms

    SciTech Connect

    Phoonthong, P.; Douglas, P.; Wickenbrock, A.; Renzoni, F.

    2010-07-15

    In this work we characterize a state-insensitive dipole trap for cold cesium atoms, as realized by tightly focusing a single running laser beam at the magic wavelength. The use of trapping light at the magic wavelength of 935.6 nm resulted in the same ac Stark shift for the {sup 6}S{sub 1/2} ground state and the {sup 6}P{sub 3/2} excited state. A complete characterization of the trap is given, which includes the dependence of the lifetime on the trap depth, an analysis of the important role played by a depumper beam, and a comparison with dipole trapping at different (nonmagic) wavelengths. In particular, we measured the differential light shift of the relevant optical transition as a function of the trapping light wavelength, and showed that it becomes zero at the magic wavelength. Our results are compared to previous realizations of state-insensitive dipole traps for cesium atoms. We also discuss the possible role of the state-insensitive trap, its limitations, and possible developments for the study of ground-state quantum coherence phenomena and related applications.

  19. Cloning and variation of ground state intestinal stem cells.

    PubMed

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H; Zhang, Ting; Howitt, Brooke E; Farrow, Melissa A; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A; Hyams, Jeffrey S; Devers, Thomas; Bronson, Roderick; Lacy, D Borden; Ho, Khek Yu; Crum, Christopher P; McKeon, Frank; Xian, Wa

    2015-06-11

    Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen Clostridium difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine. PMID:26040716

  20. Electronic structure of azobenzene: ground and first excited singlet states

    NASA Astrophysics Data System (ADS)

    Dubecky, Matus; Derian, Rene; Mitas, Lubos; Stich, Ivan

    2010-03-01

    QMC techniques are used to obtain energies at selected points on the potential energy surfaces of a photoswitchable molecule, azobenzene (AB), along the torsion pathway (CNNC dihedral angle), in the ground and first excited singlet states. We study the excitation energies of well separable cis- and trans-conformers, and th Inst. Phys., Slovak Acad. Scie energy of the transition state located at 90 . By a careful QMC optimization of the Slater-Jastrow wavefunctions with up to 500 determinants, chemical accuracy is obtained. Our results not only outperform all the available quantum chemistry results such as CAS-SCF, CAS-PT2, as well as DFT results with proper spin symmetry taken into account (ROKS), but open also a credible window to possible correction/reinterpretation of the available experimental data.

  1. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  2. The ground state rotational spectrum of SO 2F 2

    NASA Astrophysics Data System (ADS)

    Rotger, M.; Boudon, V.; Loëte, M.; Margulès, L.; Demaison, J.; Mäder, H.; Winnewisser, G.; Müller, H. S. P.

    2003-12-01

    The analysis of the ground state rotational spectrum of SO 2F 2 [K. Sarka, J. Demaison, L. Margulès, I. Merke, N. Heineking, H. Bürger, H. Ruland, J. Mol. Spectrosc. 200 (2000) 55] has been performed with the Watson's Hamiltonian up to sextic terms but shows some limits due to the A and S reductions. Since SO 2F 2 is a quasi-spherical top, it can also be regarded as derived from an hypothetical XY 4 molecule. Thus we have developed a new tensorial formalism in the O(3)⊃ Td⊃ C2 v group chain (M. Rotger, V. Boudon, M. Loëte, J. Mol. Spectrosc. 216 (2002) 297]. We test it on the ground state of this molecule using the same experimental data (10 GHz-1 THz region, J up to 99). Both fits are comparable even if the formalisms are slightly different. This paper intends to establish a link between the classical approach and the tensorial formalism. In particular, our tensorial parameters at a given order of the development are related to the usual ones. Programs for spectrum simulation and fit using these methods are named C2 vTDS. They are freely available at the URL: http://www.u-bourgogne.fr/LPUB/c2vTDS.html.

  3. The ground state far infrared spectrum of NH3

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Margolis, J. S.

    1983-01-01

    The NH3 far infrared spectrum is particularly useful for the study of planetary composition and atmospheric dynamics. Studies of this spectrum were conducted by Dowling (1969), Helminger et al. (1971), and Urban et al. (1981). Sattler et al. (1981) have reported measurements of a few nu2 lines with tunable diode lasers. By using simple sum rules, these lines and accurate ground state inversion lines considered by Poynter and Kakar (1975) have been employed in the present investigation to deduce a few of the far infrared ground state transitions. An extensive set of high signal/noise, high resolution (0.0048 per cm) scans of the nu2 bands of NH3 from about 600 per cm through about 1300 per cm ait a series of low pressures have been made in order to accurately determine both the line positions and strengths. The obtained data provide line positions with an absolute accuracy of about 0.0001 per cm in the more favorable cases.

  4. The valence-fluctuating ground state of plutonium

    DOE PAGESBeta

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; et al

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  5. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-01

    Layered transition-metal trichalcogenides with the chemical formula A B X3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides. We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic Néel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that A B X3 can be a promising platform to explore two-dimensional magnetic phenomena.

  6. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    DOE PAGESBeta

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  7. The Transcriptional and Epigenomic Foundations of Ground State Pluripotency

    PubMed Central

    Marks, Hendrik; Kalkan, Tzer; Menafra, Roberta; Denissov, Sergey; Jones, Kenneth; Hofemeister, Helmut; Nichols, Jennifer; Kranz, Andrea; FrancisStewart, A.; Smith, Austin; Stunnenberg, HendrikG.

    2012-01-01

    Summary Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as 2i postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming. PMID:22541430

  8. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  9. The ground and first excited torsional states of methyl carbamate

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.; Alekseev, E.; Demaison, J.; Kleiner, I.

    2006-11-01

    A global fit within experimental accuracy of microwave and millimeter-wave transitions in the ground and first excited torsional states of methyl carbamate (H 2NC(O)OCH 3) is presented. The data set consisting of 995 vt = 0 and 731 vt = 1 transition frequencies combines 1544 new measurements from Kharkov with previously published vt = 0 microwave lines. In this study the so-called "rho axis method" that treats simultaneously both A and E species of the ground and first excited torsional states is applied to the methyl carbamate data set for the first time. The final fit requires only 32 parameters to achieve a unitless weighted standard deviation for the whole fit of 0.89 for a total of 1726 transitions with rotational quantum numbers up to J ⩽ 20 and Ka ⩽ 10. The barrier to internal rotation of the methyl group obtained in this study, V3 = 359.141(24) cm -1, is in good agreement with previously published values but more accurate.

  10. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  11. Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.

    Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

  12. Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED

    NASA Astrophysics Data System (ADS)

    Werlang, T.; Guzmán, R.; Prado, F. O.; Villas-Bôas, C. J.

    2008-09-01

    We present a way to engineer an effective anti-Jaynes-Cumming and a Jaynes-Cumming interaction between an atomic system and a single cavity mode and show how to employ it in reservoir engineering processes. To construct the effective Hamiltonian, we analyze the interaction of an atomic system in a Λ configuration, driven by classical fields, with a single cavity mode. With this interaction, we first show how to generate a decoherence-free displaced squeezed state for the cavity field. In our scheme, an atomic beam works as a reservoir for the radiation field trapped inside the cavity, as employed recently by S. Pielawa [Phys. Rev. Lett. 98, 240401 (2007)] to generate an Einstein-Podolsky-Rosen entangled radiation state in high- Q resonators. In our scheme, all the atoms have to be prepared in the ground state and, as in the cited article, neither atomic detection nor precise interaction times between the atoms and the cavity mode are required. From this same interaction, we can also generate an ideal squeezed reservoir for atomic systems. For this purpose we have to assume, in addition to the engineered atom-field interaction, a strong decay of the cavity field (i.e., the cavity decay must be much stronger than the effective atom-field coupling). With this scheme, some interesting effects in the dynamics of an atom in a squeezed reservoir could be tested.

  13. States of antimony and tin atoms in lead chalcogenides

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Zaiceva, A. V.; Kozhokar, M. Yu.; Seregin, P. P.

    2011-04-15

    It is shown by Moessbauer spectroscopy of the {sup 119}Sb({sup 119m}Sn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of {sup 119}Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U{sup -} centers. Electron exchange between the neutral and doubly ionized tin U{sup -} centers via the allowed band states is observed. The tin atoms formed after radioactive decay of {sup 119}Sb are electrically inactive in the anion and cation sublattices of PbTe.

  14. The ground-state potential energy curve of the radium dimer from relativistic coupled cluster calculations.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Dammalapati, Umakanth; Knoop, Steven; Visscher, Lucas

    2015-08-28

    The potential energy curve for the ground-state of radium dimer (Ra2) is provided by means of atomic and molecular relativistic coupled cluster calculations. The short-range part of this curve is defined by an equilibrium bond length of 5.324 Å, a dissociation energy of 897 cm(-1), and a harmonic vibrational frequency of 20.5 cm(-1). The asymptotic behavior at large interatomic distances is characterized by the van der Waals coefficients C6 = 5.090 × 10(3), C8 = 6.978 × 10(5), and C10 = 8.786 × 10(7) atomic units. The two regions are matched in an analytical potential to provide a convenient representation for use in further calculations, for instance, to model cold collisions between radium atoms. This might become relevant in future experiments on ultracold, optically trapped, radioactive radium atoms that are used to search for a permanent electric dipole moment. PMID:26328843

  15. Combined Film Catalog, 1972, United States Atomic Energy Commission.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    A comprehensive listing of all current United States Atomic Energy Commission (USAEC) films, this catalog describes 232 films in two major film collections. Part One: Education-Information contains 17 subject categories and two series and describes 134 films with indicated understanding levels on each film for use by schools. The categories…

  16. Towards the creation of Fock states of atoms

    NASA Astrophysics Data System (ADS)

    Kelkar, Hrishikesh Vidyadhar

    Ultracold atoms have been successfully used to study numerous systems, previously unaccessible, but a precise control over the atom number of the sample still remains a challenge. This dissertation describes our progress towards achieving Fock states of atoms. The first three chapters cover the basic physics necessary to understand the techniques we use in our lab to manipulate atoms. We then summarize our experimental results from an earlier setup where we did two experiments. In the first experiment we compare the transport of cold atoms and a Bose Einstein Condensate (BEC) in a periodic potential. We find a critical potential height beyond which the condensate behavior deviates significantly from that of thermal atoms. In the second experiment we study the effect of periodic temporal kicks by a spatially periodic potential on a BEC in a quasi one dimensional trap. We observe a limit on the energy that the system can absorb from the kicks, which we conclude is due to the finite height of the trap rather than quantum effects. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM01 mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM01 mode using an appropriate phase object (phase plate) in the path of a TEM00 mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection.

  17. Supercurrent in Atomic Point Contacts and Andreev States

    NASA Astrophysics Data System (ADS)

    Goffman, M. F.; Cron, R.; Levy Yeyati, A.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C.

    2000-07-01

    We have measured the supercurrent in aluminum atomic point contacts containing a small number of well characterized conduction channels. For most contacts, the measured supercurrent is adequately described by the opposite contributions of two thermally populated Andreev bound states per conduction channel. However, for contacts containing an almost perfectly transmitted channel 0.9<=τ<=1 the measured supercurrent is higher than expected, a fact that we attribute to nonadiabatic transitions between bound states.

  18. Supercurrent in atomic point contacts and andreev states

    PubMed

    Goffman; Cron; Levy Yeyati A; Joyez; Devoret; Esteve; Urbina

    2000-07-01

    We have measured the supercurrent in aluminum atomic point contacts containing a small number of well characterized conduction channels. For most contacts, the measured supercurrent is adequately described by the opposite contributions of two thermally populated Andreev bound states per conduction channel. However, for contacts containing an almost perfectly transmitted channel 0.9states. PMID:10991186

  19. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.

  20. Remote State Preparation of a Two-Atom Entangled State in Cavity QED

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Qi; Xiao, Junfang; Ren, Yuan; Li, Yuan; Ji, Chunlei; Huang, Xin-Gang

    2016-01-01

    A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender's side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver's side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.

  1. Remote State Preparation of a Two-Atom Entangled State in Cavity QED

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Qi; Xiao, Junfang; Ren, Yuan; Li, Yuan; Ji, Chunlei; Huang, Xin-Gang

    2016-06-01

    A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender's side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver's side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.

  2. Ground-state proton transfer kinetics in green fluorescent protein.

    PubMed

    Oltrogge, Luke M; Wang, Quan; Boxer, Steven G

    2014-09-23

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional (13)C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a (13)C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  3. Ground-State Proton Transfer Kinetics in Green Fluorescent Protein

    PubMed Central

    2015-01-01

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a 13C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  4. Ground-state phase diagram of the quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Liu, Maoxin; Luo, Hong-Gang; Lin, Hai-Qing; You, J. Q.

    2015-11-01

    The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.

  5. The acetochlor registration partnership state ground water monitoring program.

    PubMed

    de Guzman, Noel P; Hendley, Paul; Gustafson, David I; van Wesenbeeck, Ian; Klein, Andrew J; Fuhrman, John D; Travis, Kim; Simmons, Nick D; Teskey, Wendy E; Durham, Roger B

    2005-01-01

    The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen. PMID:15843642

  6. Ground-Laboratory to In-Space Effective Atomic-Oxygen Fluence Determined for DC 93-500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2005-01-01

    Surfaces on the leading edge of spacecraft in low Earth orbit (e.g., surface facing the velocity direction), such as on the International Space Station, are subject to atomic oxygen attack, and certain materials are susceptible to erosion. Therefore, ground-based laboratory testing of the atomic oxygen durability of spacecraft materials is necessary for durability assessment when flight data are not available. For accurate space simulation, the facility is commonly calibrated on the basis of the mass loss of Kapton (DuPont, Wilmington, DE) as a control sample for effective fluence determination. This is because Kapton has a well-characterized atomic oxygen erosion yield (E(sub y), in cubic centimeters per atom) in the low Earth orbit (LEO) environment. Silicones, a family of commonly used spacecraft materials, do not chemically erode away with atomic oxygen attack like other organic materials that have volatile oxidation products. Instead, silicones react with atomic oxygen and form an oxidized hardened silicate surface layer. Often the loss of methyl groups causes shrinkage of the surface skin and "mud-tile" crazing degradation. But silicones often do not lose mass, and some silicones actually gain mass during atomic oxygen exposure. Therefore, the effective atomic oxygen fluence for silicones in a ground-test facility should not be determined on the basis of traditional mass-loss measurements, as it is with polymers that erode. Another method for determining effective fluence needs to be employed for silicones. A new technique has been developed at the NASA Glenn Research Center for determining the effective atomic oxygen fluence for silicones in ground-test facilities. This technique determines the equivalent amount of atomic oxygen oxidation on the basis of changes in the surface-oxide hardness. The specific approach developed was to compare changes in the surface hardness of ground-laboratory-exposed DC93-500 silicone with DC93-500 exposed to LEO atomic oxygen as part of a shuttle flight experiment. The on-the-ground to in-space effective atomic oxygen fluence was determined on the basis of the Kapton effective fluence in the ground-laboratory facility that produced the same hardness for the fluence in space.

  7. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  8. Driven-dissipative many-body pairing states for cold fermionic atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Yi, W.; Diehl, S.; Daley, A. J.; Zoller, P.

    2012-05-01

    We discuss the preparation of many-body states of cold fermionic atoms in an optical lattice via controlled dissipative processes induced by coupling the system to a reservoir. Based on a mechanism combining Pauli blocking and phase locking between adjacent sites, we construct complete sets of jump operators describing coupling to a reservoir that leads to dissipative preparation of pairing states for fermions with various symmetries in the absence of direct inter-particle interactions. We discuss the uniqueness of these states, and demonstrate it with small-scale numerical simulations. In the late-time dissipative dynamics, we identify a ‘dissipative gap’ that persists in the thermodynamic limit. This gap implies exponential convergence of all many-body observables to their steady-state values. We then investigate how these pairing states can be used as a starting point for the preparation of the ground state of the Fermi-Hubbard Hamiltonian via an adiabatic state preparation process also involving the parent Hamiltonian of the pairing state. We also provide a proof-of-principle example for implementing these dissipative processes and the parent Hamiltonians of the pairing states, based on 171Yb atoms in optical lattice potentials.

  9. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  10. Quantum teleportation of an arbitrary superposition of atomic states

    NASA Astrophysics Data System (ADS)

    Chen, Qiong; Fang, Xi-Ming

    2008-05-01

    This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED. This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement. It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation. Considering the practical case of the cavity decay, this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.

  11. Electron impact ionization of ground and metastable states of Ag, Au and Cu

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Stone, P. M.

    2009-05-01

    Direct ionization cross sections of metal atoms by electron impact are needed data for plasma physics, gas discharges and atmospheric physics. We present ionization cross sections of the ground states of silver, gold and copper calculated within the Binary-Encounter-Bethe (BEB) model of Kim and Rudd [1]. These are compared with available experimental data for silver and copper [2], very scant and old data for gold and discordant data for copper [3] and the theoretical Plane-Wave-Born [4] and non-relativistic one electron calculational results. We also investigate the importance of ionization from the metastable state of copper for the total direct ionization. [1] Y-K. Kim and M. E. Rudd, Phys. Rev. A 50 3954 (1994).

  12. Cloning and Variation of Ground State Intestinal Stem Cells

    PubMed Central

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H.; Zhang, Ting; Howitt, Brooke; Farrow, Melissa A.; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A.; Hyams, Jeffrey S.; Devers, Thomas; Bronson, Roderick; Lacy, D. Borden; Ho, Khek Yu; Crum, Christopher P.; McKeon, Frank; Xian, Wa

    2016-01-01

    Summary Stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, “ground state” stem cells of the human intestine and colon. We show that derived stem cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells likely enforces the functional specificity of the adult intestinal tract. Using clonally-derived colonic epithelia, we show that toxins A or B of the enteric pathogen C. difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modeling and regenerative medicine. PMID:26040716

  13. Masses of Ground- and Excited-State Hadrons

    NASA Astrophysics Data System (ADS)

    Roberts, Hannes L. L.; Chang, Lei; Cloët, Ian C.; Roberts, Craig D.

    2011-07-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Δ masses and those of the dressed-quark and diquark correlations they contain.

  14. OH hyperfine ground state: From precision measurement to molecular qubits

    SciTech Connect

    Lev, Benjamin L.; Meyer, Edmund R.; Hudson, Eric R.; Sawyer, Brian C.; Bohn, John L.; Ye, Jun

    2006-12-15

    We perform precision microwave spectroscopy--aided by Stark deceleration--to reveal the low-magnetic-field behavior of OH in its {sup 2}{pi}{sub 3/2} rovibronic ground state, identifying two field-insensitive hyperfine transitions suitable as qubits and determining a differential Lande g factor of 1.267(5)x10{sup -3} between opposite-parity components of the {lambda} doublet. The data are successfully modeled with an effective hyperfine Zeeman Hamiltonian, which we use to make a tenfold improvement of the magnetically sensitive, astrophysically important {delta}F={+-}1 satellite-line frequencies, yielding 1 720 529 887(10) Hz and 1 612 230 825(15) Hz.

  15. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  16. Ground-state description for polarons in parabolic quantum wells

    NASA Astrophysics Data System (ADS)

    Yuhang, Ren; Qinghu, Chen; Yabin, Yu; Zhengkuan, Jiao; Shaolong, Wang

    1998-07-01

    Within the framework of Feynman-Haken variational path integral theory, for the first time, we calculate the ground-state energy of the electron and longitudinal-optical phonon system in parabolic quantum wells with respect to a general potential. We propose a simple expression for the Feynman energy, and compare it with those obtained by the second-order Rayleigh-Schrödinger perturbation theory and Landau-Pekar strong-coupling theory. It is shown both analytically and numerically that the results obtained from Feynman-Haken variational path integral theory can be better than those from the other two theories. We also find in numerical calculations that the binding energy of polarons becomes monotonically stronger as the effective well depth decreases in the whole coupling regime. More interestingly, the localization, which is caused by the effective potential, also can be perceived in the strong-coupling regime.

  17. Ground-state electric quadrupole moment of {sup 31}Al

    SciTech Connect

    Nagae, D.; Takemura, M.; Asahi, K.; Takase, K.; Shimada, K.; Uchida, M.; Arai, T.; Inoue, T.; Kagami, S.; Hatakeyama, N.; Ueno, H.; Kameda, D.; Yoshimi, A.; Sugimoto, T.; Nagatomo, T.; Kawamura, H.; Narita, K.; Murata, J.

    2009-02-15

    The ground-state electric quadrupole moment of {sup 31}Al(I{sup {pi}}=5/2{sup +},T{sub 1/2}=644(25) ms) has been measured by means of {beta}-ray-detected nuclear magnetic resonance spectroscopy using a spin-polarized {sup 31}Al beam produced in the projectile fragmentation reaction. The obtained Q moment, |Q{sub exp}({sup 31}Al)|=112(32) e mb, is in agreement with conventional shell model calculations within the sd valence space. Previous results on the magnetic moment also support the validity of the sd model in this isotope, and thus it is concluded that {sup 31}Al is located outside of the island of inversion.

  18. Some properties of Stark states of hydrogenic atoms and ions

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2007-10-01

    The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.

  19. Face-dependent Auger neutralization and ground-state energy shift for He in front of Al surfaces

    SciTech Connect

    Wethekam, S.; Winter, H.; Valdes, Diego; Monreal, R. C.

    2008-08-15

    He atoms and ions with keV energies are scattered under grazing angles of incidence from Al(111), Al(100), and Al(110) surfaces. Fractions of surviving ions and normal energy gains of He{sup +} ions prior to neutralization, derived from shifts of angular distributions for incident atoms and ions, are compared to results from three-dimensional Monte Carlo simulations based on theoretically calculated Auger neutralization rates and He ground-state energy shifts. From the good agreement of experimental data with simulations, we conclude a detailed microscopic understanding for a model system of ion-surface interactions. Our work provides further evidence for the recently reported surface Miller index dependence for the neutralization of He{sup +} ions at metal surfaces. The study is extended to the face dependence of the He ground-state energy shift.

  20. Realization of Ground State Artificial Skyrmion Lattices at Room Temperature

    NASA Astrophysics Data System (ADS)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew J.; Kirby, Brian J.; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Fischer, Peter; Liu, Kai

    Artificial skyrmion lattices stable at ambient conditions offer a convenient and powerful platform to explore skyrmion physics and topological phenomena and motivates their inclusion in next-generation data and logic devices. In this work we present direct experimental evidence of artificial skyrmion lattices with a stable ground state at room temperature. Our approach is to pattern vortex-state Co nanodots (560 nm diameter) in hexagonal arrays on top of a Co/Pd multilayer with perpendicular magnetic anisotropy; the skyrmion state is prepared using a specific magnetic field sequence. Ion irradiation has been employed to suppress PMA in the underlayer and allow imprinting of the vortex structure from the nanodots to form skyrmion lattices, as revealed by polarized neutron reflectometry. Circularity control is realized through Co dot shape asymmetry, and confirmed by microscopy and FORC magnetometry. The vortex polarity is set during the field sequence and confirmed by magnetometry. Spin-transport studies further demonstrate a sensitivity to the skyrmion spin texture.Work supported by NSF (DMR-1008791, ECCS-1232275 and DMR-1543582)

  1. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1. To access the meat layer, small samples have been cut from the fuel plates. The AlFeNi cladding has been removed using abrasive paper and diamond polishing paste. Cross sections were prepared from each sample and examined using SEM/EDX and XRD. Laboratory scale XRD Laboratory sealed-tube XRD on a STOE-STADIP diffractometer equipped with an incident beam focusing monochromator and used in reflection geometry with respect to the sample. MoK-α radiation has been used. Details on the systems used can be found in [39]. mu;-XRD using micro-focused synchrotron radiation at the Swiss Light Source μ-XAS beamline (PSI, Switzerland). At SLS, the beam size was 3 × 3 μm2, the energy was 19.7 keV. Further details on the experimental procedure can be found in [40]. Only very small sample volumes are probed with this technique, therefore the results may not be representative for the whole miniplate. The standard deviation of the lattice parameters obtained with this method is ±0.01 Å in case not different given. High-energy XRD (HE-XRD) in transmission mode using synchrotron radiation at the "High Energy Diffraction and Scattering Beamline ID15B" of ESRF. An X-ray energy of 87 keV has been used, the beam size was 0.3 × 0.3 mm2. Details on the experimental procedure are presented in [41,42]. It was possible to determine the average mass fractions of the phases present inside the sample using this technique. The standard deviation of the lattice parameters obtained with this method is ±0.001 Å in case not different given. laser granulometry to determine the size distribution of the particles, XRD for phase identification. Granulometry measurements showed that a significant amount of very fine particles of a few μm to 10 μm size are present in the first class of powder.In both cases, laboratory XRD analyses evidenced only two phases: γ-UMo and UO2. In contrast to observations on the final fuel plates, there are no signs of α-U. Comparing XRD data of atomized UMo powder (taken form the IRIS4 experiment) and ground UMo powder with almost the same Mo content, the peaks are broader in XRD patterns of ground UMo and there is a higher background [44]. This points that the lattice structure of the UMo inside the ground powder is strongly disordered during the grinding process.Complementary investigations were performed in these ground UMo powder samples using HE-XRD. The obtained data can therefore directly be compared to those measured on pre-oxidized atomized UMo powders [45] and IRIS-TUM fuel plates [41]. For both powder samples the γ-UMo lattice constant has been estimated to 3.433 ± 0.002 Å which corresponds to about 7.2 wt% for Mo in the alloy according to Dwight's law [46]. The existence of two UMo phases inside these ground particles (as in atomized case) could not be investigated because of the huge peak broadening (presence of micro distortions). Whatever the sample granulometry, the analysis of the HE-XRD data showed a non-negligible nitride contamination in ground powders (see Fig. 2). Two uranium nitride phases are indeed found in these samples: UN and U2N3+x[47]. Note that the presence of UN has also been found in the as-fabricated plates. These results confirm the high reactivity of UMo with both Oxygen and Nitrogen in the grinding conditions. As a comparison for temperatures in the 200-250 °C range, it seems that UNx phases are more difficult to grow: they were not present in outer layers obtained by heat treatment under air on atomized particles [45]. Finally it can be seen in Table 3 that the weight fractions of UO2 and U2N3+x phases are lower in the sample with larger UMo particles. This suggests the existence of an oxide, nitride outer shell around UMo ground particle with thickness that does not strongly evolve with particle size. This constant outer shell thickness has also been found in pre-oxidized atomized powders [45].The UMoX powder used for the samples MAFIA-I-18 - MAFIA-I-21 has not been investigated prior to plate fabrication. However, since the grinding process is essentially the same as for the pure UMo powder, similar characteristics are assumed. Thin oxide layers with a thickness ⩽1 μm on some of the particles that were not intentionally oxidized. Although the UMo powder was stored and handled under an inert atmosphere over the whole production process, some residual oxygen has reacted with the UMo. Already this thin oxide layers exhibits cracks (Fig. 5). Thicker oxide layers with a thickness up to 5 μm on the UMo particles that were oxidized purposely. This kind of oxide layer is very brittle and shows large cracks (Fig. 6). The oxidized UMo particles tend to detach with the matrix as gaps between the UMo particles and the oxide layer could be observed (Fig. 6). This is most obvious at spots where a UMo particle has been pulled out during polishing. A part of the oxide layer remained inside the resulting hole (Fig. 7). Atomized UMo powder 2 wt%Si in Al matrix, alloyed AlSi 2 wt%Si in Al matrix, mixed AlSi 5 wt%Si in Al matrix, mixed AlSi 7 wt%Si in Al matrix, mixed AlSi Ground UMo powder 2 wt%Si in Al matrix, alloyed AlSi The influence of an oxide layer around the UMo particles on the formation of the SiRL during fuel plate production is further discussed. The growth of a Si rich layer surrounding the UMo particles in the 2 wt%Si alloyed powder (oxidized UMo), as well as the 5 wt% and 7 wt%Si mixed powder (non-oxidized UMo) during production of the miniplates. The presence of Si precipitates in the Al-matrix (large precipitates in case of mixture, small si particles in alloy). No oxide layer: If no oxide layer is present around the UMo particles a homogeneous SiRL grows at the interface UMo-Al (Fig. 15a). Brittle oxide layer: An oxide layer is present around the UMo particles, the SiRL grows always between the UMo particle and the oxide layer (Fig. 15b). In this case the the SiRL is thin and not homogeneous. As presumed by Ripert et al. [7] it is essential that the oxide layer reveals cracks perpendicular the UMo particle surface to make path for the Si diffusion. Dense oxide layer: In case of a thin (≈1 μm) but compact oxide layer no SiRL is formed even at high Si concentrations inside the matrix (Fig. 15c). The observed effects are pronounced when the thickness of the oxide layer is increased, as shown in Fig. 16: UMo particles covered with a thicker oxide layer (>1 μm) inside an Aluminum matrix with 5 wt%Si (mixed Al-Si powder). The oxide layer is dense at the left side of the particle, no Si can be found there (Fig. 16a). In contrast, the brittle and cracked oxide layer on the right side made path for a Si diffusion but the SiRL is thinner than in the sites where the UMo particle is not covered with an oxide layer. EDX maps at different positions of the sample showed that in general no SiRL forms around UMo particles covered by oxide layers with a thickness greater than 1 μm (Fig. 16b). This behavior is identical for the samples with 5 wt%Si and 7 wt%Si added to the Aluminum matrix (mixed Al-Si powder). Obviously the presence of a (dense) oxide layer hampers the formation of a SiRL. different UXSiY phases with strongly overlapping peaks can be found in the SiRL, these phases are characterized by small sizes of the crystallites (a few tens of nanometers) and/or cell parameter gradients. Two different crystallographic phases have been usually identified: U(Al,Si)3 displaying a small lattice parameter of a0 = 4.16 Å. This indicates that about 40% of the Al lattice sites are occupied by Si atoms. The second phase is isostructural to U3Si54 with a different lattice parameter [59-61]. Although the U-Si-Al phase diagram contains a variety of phases, none of the phases reported in literature [62] could be used to fully refine the measured diagram. Therefore, three different hypotheses are suggested to explain the occurence of this unknown phase: The observed compound consists of two phases: Conventional U3Si5 and USi2, as has been suggested by the authors before [58]. However, only one literature source (Brown et al.) describing the occurrence of USi2 below 450 °C could be found [63,64]. Furthermore, it has not been possible to reproduce the experiments described by Brown et al. Therefore, this hypothesis remains doubtful [59]. The observed phase may be a new unknown phase. For example, a cubic phase with lattice constant a0 = 3.96 Å can be used to refine the observed peaks. This hypothesis can neither be confirmed nor refused based on the existing data. The observed phase can be a U3Si5 variant containing Mo and/or Al atoms. This hypothesis is supported by the authors. Hence in the following sections this structure will be denoted as U3Si5. No traces of SiRL phases are found inside the sample with 2 wt%Si mixed-powder matrix (MAFIA-I-3), all the Si remained inside the matrix. A SiRL is present inside the samples with 2.1 wt%Si alloyed powder matrix (MAFIA-I-4) and 5 wt%Si (MAFIA-I-5) and 7 wt%Si (MAFIA-I-7) mixed powder matrix. However, between 76% and 96% of the Si remained inside the matrix in form of precipitates or Si particles. The SiRL is formed readily when the Si is present inside the matrix in form of precipitates (i.e. Al-Si alloy matrix, MAFIA-I-4 and IRIS-TUM 8502) compared to particles (i.e. Al-Si mixed powder matrix, MAFIA-I-3, MAFIA-I-5 and MAFIA-I-7). This behavior can best be observed on the sample prepared with ground powder and with 2.1 wt%Si alloyed powder matrix (IRIS-TUM-8502): The matrix contains no Si, only SiRL phases are found. Since the sample with 5 wt%Si mixed powder matrix (MAFIA-I-5) has the lowest SiRL fraction but by far the highest UO2 content, it is concluded that the presence of UO2 around the UMo kernels tends to hamper the formation of a SiRL. UMo/Al samples prepared with ground powder contain irregularly shaped UMo kernels. They are in general oxidized and also contain oxide stringers. These samples have a high porosity content of around 8 vol%. In contrast, UMo/Al samples prepared with atomized powder contain spherical UMo kernels. Only the surface of the UMo kernels is oxidized in some cases. Thick oxide layers must be grown intentionally while thinner layers are the result of oxidation during the whole process. The oxide layer is in general brittle and exhibits cracks. The Uranium-oxide content of all examined samples (atomized and ground) varies between 2 and 13 wt%. gamma;-UMo present in the fresh UMo powder destabilizes to transform to an α-U-like phase, U2Mo, and two γ-UMo phases with different Mo content during the fuel plate production. For ground powder, α-U content varies in 28-38 wt%, for atomized powder in 11-14 wt%. The degree of γ-phase destabilization is therefore higher for ground powder. Ternary addition of Nb, Ti or Pt to the UMo did not impact the extent of decomposition. The γ-phase decomposition in the atomized and ground powder does not follow the expected in the U8wt%Mo TTT diagram between 400 and 450 °C [41]. According to Repas et al. [65], the route is γ-UMoa → γ-UMob + α-U → γ-UMoc+α-U + U2Mo . γ-UMoa,b,c differ in the Mo content where γ-UMoa has the lowest and γ-UMoc has the highest Mo content. We observe a new route of decomposition of ground powder into two different γ-UMo phases. One of them has approximately the original Mo content and the other has a higher Mo content. Further U2Mo and a phase with deformed lattice parameters compared to pure α-U have been observed. The latter is known as α' in literature.For atomized powder, also two different γ-UMo phases and traces of U2Mo have been found. However, a different α-U like phase has been identified: α″ [41,53-55].Repas et al. used as cast samples that have been examined with conventional XRD and different metallographic methods [65]. The difference to our data can be explained by the superior resolution of the here used HE-XRD diffraction. Most probably, conventional lab X-ray sourcces could not resolve fine differences in the lattice parameters of α-U and may not enable to separate two γ-UMo phase. To overcome this uncertainty it is highly desirable to examine the TTT diagram of UMo with high resolution. When Si is added into the matrix - by using alloyed Al-Si powder as a matrix or blending Al and Si powder - in general a SiRL is formed at the interface between the UMo and the Al matrix. An exception can be found in MAFIA-I-3 in which the overall Si content was to low to form a SiRL. The SiRL consists of U(Al,Si)3 and U3Si5. The SiRL forms less readily in case of mixed Al-Si than in case of alloyed Al-Si powder. In the latter case (MAFIA-I-4), a Si depleted zone has been observed around the UMo particles. For ground powder in combination with an Al-Si alloyed matrix, the entire Si from the matrix has reacted with the UMo forming SiRL phases. The presence of a dense oxide layer around the UMo kernels can prevent the formation of a SiRL. However, as soon as the oxide layer is cracked a SiRL forms between the UMo and the oxide layer. A dense oxide layer isolates the UMo from the Si inside the matrix and occurring cracks make path for the diffusion of Si towards the UMo. U3Si 5 is also called USi2-x or USi1.66 in literature.

  2. Theoretical studies of the first-row transition metals: Ground state and thermal properties

    NASA Astrophysics Data System (ADS)

    Prevost, Jean-Paul L.

    Theoretical studies of the ground state properties of the first-row transition metals (Sc to Zn) are conducted using the Stuttgart TB-LMTO ESC program. The standard deviation of the calculation precision errors (CPE's) and the magnitude of the systematic calculation errors (SCE's) in the output of the TB-LMTO ESC program are estimated. The ground state lattice parameters, local atomic magnetic moment magnitudes and bulk moduli of the first-row transition metals are calculated. Lattice parameters are found to be within 5% to 10% of experimental values, and magnetic moment magnitudes are found to be within 10% to 20% of experimental values. Bulk moduli are found to be within 60% of experimental values. Lattice parameter and magnetic moment magnitude calculations are most accurate when the non-local exchange-correlation functional of Hu and Langreth is used. Bulk modulus calculations are most accurate when conducted using the exchange-correlation functional of Perdew and Yue. The TB-LMTO ESC program is also used to study the volume-controlled low-moment to high-moment (LM-HM) transition of the first-row transition metals (Sc to Ni) when they are constrained to take the FCC crystal structure. A LM-HM transition is predicted to occur in all FCC first-row transition metals if their lattice parameter is sufficiently increased. FCC Fe is found to occupy a unique position in the first-row transition metal series, as its LM-HM transition occurs when its lattice parameter is less than 2.5% larger than its ground state value. The LM-HM transition of the other FCC first-row transition metals occur when their lattice parameters are much larger or much smaller than their ground state values. It is argued that when the lattice parameters of the FCC first-row transition metals are too small, the energy bands of their valence electrons are too wide to allow magnetic moments to form within these metals. A method is proposed for calculating the Helmholtz' free energy of non-magnetic, bulk, crystalline solids consisting of a single chemical species. The method assumes only that an inter-atomic interaction potential can be derived from the minimum total energy versus lattice parameter curve of a solid using results published by Chen, Chen and Wei, and that this potential can accurately reproduce the energy increase that occurs when the atomic nuclei of the solid move away from their equilibrium positions as they undergo small amplitude thermal oscillations. The method is entirely theoretical as the minimum total energy versus lattice parameter curve of a solid can be calculated entirely from first principles using an ESC program. Within the method, the atomic nuclei of a solid are treated in a quasi-harmonic approximation, either as independent harmonic oscillators, or as coupled harmonic oscillators. The thermal expansion of metallic Cu is studied using the proposed method for calculating the Helmholtz' free energy of solids in conjunction with the TB-LMTO ESC program. The lattice parameter versus temperature curve of metallic Cu can be accurately calculated using the method, but its accuracy is sensitive to the functional form of the calculated minimum total energy versus lattice parameter curve of FCC Cu and to the range of the inter-atomic interaction potential. The results of these calculations suggest that the range of the inter-atomic interaction potential extends only to first nearest neighbour atomic nuclei in the metallic Cu solid. These results also suggest that the curvature of the minimum total energy versus lattice parameter curve of FCC Cu is most accurate when the curve is calculated using the exchange-correlation functional of Perdew and Yue even though the ground state lattice parameter of metallic Cu is most accurately predicted using the exchange-correlation functional of Hu and Langreth. However, it may be that imposing a short range to the inter-atomic interaction potential and that using the minimum total energy versus lattice parameter curve obtained with the exchange-correlation functional of Perdew and Yue simply better cancels the errors introduced in the calculation as a result of the quasi-harmonic approximation, as a result of not knowing the correct range of the inter-atomic interaction potential, and as a result of inaccuracies in the calculated minimum total energy versus lattice parameter curve of FCC Cu. Future research efforts should be focussed on the evaluation of the effect of these three factors on the accuracy of the method. We also recommend a direct evaluation of the accuracy of the energy increase that occurs when the atomic nuclei of the solid are displaced slightly from their equilibrium positions, as reproduced using the inter-atomic interaction potential constructed using the results of Chen, Chen and Wei.

  3. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  4. Atomic homodyne detection of continuous-variable entangled twin-atom states.

    PubMed

    Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K

    2011-12-01

    Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles. PMID:22139418

  5. Thermodynamic ground state of MgB{sub 6} predicted from first principles structure search methods

    SciTech Connect

    Wang, Hui; Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 ; LeBlanc, K. A.; Gao, Bo; Yao, Yansun; Canadian Light Source, Saskatoon, Saskatchewan S7N 0X4

    2014-01-28

    Crystalline structures of magnesium hexaboride, MgB{sub 6}, were investigated using unbiased structure searching methods combined with first principles density functional calculations. An orthorhombic Cmcm structure was predicted as the thermodynamic ground state of MgB{sub 6}. The energy of the Cmcm structure is significantly lower than the theoretical MgB{sub 6} models previously considered based on a primitive cubic arrangement of boron octahedra. The Cmcm structure is stable against the decomposition to elemental magnesium and boron solids at atmospheric pressure and high pressures up to 18.3 GPa. A unique feature of the predicted Cmcm structure is that the boron atoms are clustered into two forms: localized B{sub 6} octahedra and extended B{sub ∞} ribbons. Within the boron ribbons, the electrons are delocalized and this leads to a metallic ground state with vanished electric dipoles. The present prediction is in contrast to the previous proposal that the crystalline MgB{sub 6} maintains a semiconducting state with permanent dipole moments. MgB{sub 6} is estimated to have much weaker electron-phonon coupling compared with that of MgB{sub 2}, and therefore it is not expected to be able to sustain superconductivity at high temperatures.

  6. From ground-state densities to entangled wave functions: an exploration for the Hubbard model

    NASA Astrophysics Data System (ADS)

    Capelle, Klaus

    2015-03-01

    The fundamental Hohenberg-Kohn theorem of density-functional theory (DFT) guarantees that, in principle, all information about a many-body system is contained in it ground-state density. Most effort in DFT is thus directed at finding ways to reliably calculate this density and to extract useful information from it. Quantum-information theory (QIT), on the other hand, is little concerned with ground-state densities, focusing instead on wave functions and density matrices, with a view on exploiting entangled states in information processing. In spite of these different philosophies, many connections exist between both approaches. In this talk, I review of how some of these connections have been discovered and quantified in the context of the Hubbard model: (i) DFT calculations for a model Hamiltonian serve to relate the entanglement entropy to phase transitions; (ii) a local-density-type approximation can be used to calculate the entanglement entropy of spatially inhomogeneous systems, such as cold atoms in optical traps and large superlattices, where traditional numerical methods encounter difficulties; (iii) a combination of DFT with Bethe-Ansatz techniques allows one to calculate the values of system-specific parameters in expressions for the block-block entanglement that remain undetermined in scaling approaches; (iv) the construction of suitable metrics shines light on how the Hohenberg-Kohn theorem relates densities and wave functions for different systems.

  7. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  8. Antiferromagnetic ground state in NpCoGe

    NASA Astrophysics Data System (ADS)

    Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.

    2014-03-01

    NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.

  9. State flip at exceptional points in atomic spectra

    NASA Astrophysics Data System (ADS)

    Menke, Henri; Klett, Marcel; Cartarius, Holger; Main, Jörg; Wunner, Günter

    2016-01-01

    We study the behavior of nonadiabatic population transfer between resonances at an exceptional point in the spectrum of the hydrogen atom. It is known that, when the exceptional point is encircled, the system always ends up in the same state, independent of the initial occupation within the two-dimensional subspace spanned by the states coalescing at the exceptional point. We verify this behavior for a realistic quantum system, viz., the hydrogen atom in crossed electric and magnetic fields. It is also shown that the nonadiabatic hypothesis can be violated when resonances in the vicinity are taken into account. In addition, we study nonadiabatic population transfer in the case of a third-order exceptional point, in which three resonances are involved.

  10. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  11. Sideband Cooling while Preserving Coherences in the Nuclear Spin State in Group-II-like Atoms

    SciTech Connect

    Reichenbach, Iris; Deutsch, Ivan H.

    2007-09-21

    We propose a method for laser cooling group-II-like atoms without changing the quantum state of their nuclear spins, thus preserving coherences that are usually destroyed by optical pumping in the cooling process. As group-II-like atoms have a {sup 1}S{sub 0} closed-shell ground state, nuclear spin and electronic angular momentum are decoupled, allowing for their independent manipulation. The hyperfine interaction that couples these degrees of freedom in excited states can be suppressed through the application of external magnetic fields. Our protocol employs resolved-sideband cooling on the forbidden clock transition, {sup 1}S{sub 0}{yields}{sup 3}P{sub 0}, with quenching via coupling to the rapidly decaying {sup 1}P{sub 1} state, deep in the Paschen-Back regime. This makes it possible to laser cool neutral atomic qubits without destroying the quantum information stored in their nuclear spins, as shown in two examples, {sup 171}Yb and {sup 87}Sr.

  12. Plasma screening within Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.; Oks, E.

    2008-04-01

    A Rydberg atom embedded in a plasma can experience penetration by slowly moving electrons within its volume. The original pure Coulomb potential must now be replaced by a screened Coulomb potential which contains either a screening length Rs or a screening factor A = Rs -1 . For any given discrete energy level, there is a Critical Screening Factor (CSF) Ac beyond which the energy level disappears (by merging into the continuum). Analytical results are obtained for the classical dependence of the energy on the screening factor, for the CSF, and for the critical radius of the electron orbit for Circular Rydberg States (CRS) in this screened Rydberg atom. The results are derived for any general form of the screened Coulomb potential and are applied to the particular case of the Debye potential. We also show that CRS can temporarily exist above the ionization threshold and are therefore the classical counterparts of quantal discrete states embedded into continuum. The results are significant not only to Rydberg plasmas, but also to fusion plasmas, where Rydberg states of multi-charged hydrogen-like ions result from charge exchange with hydrogen or deuterium atoms, as well as to dusty/complex plasmas.

  13. Coherent States Composed of Stark Eigenfunctions of the Hydrogen Atom.

    NASA Astrophysics Data System (ADS)

    Baugh, J. F.; Burkhardt, C. E.; Edmonds, D. A.; Nellesen, P. T.; Leventhal, J. J.

    1997-04-01

    It is well known that for the non-relativistic hydrogen atom it is possible to separate and solve the Schrödinger equation in parabolic as well as spherical coordinates. The eigenfunctions obtained in these coordinate systems are each a suitable basis set in the absence of an electric field, but only the parabolic states, the Stark eigenfunctions, retain their character in the presence of a weak field. The properties of coherent superpositions of these Stark states are investigated and the motion of the wave packet described. It is shown that a properly constituted superposition will mimic classical motion. It is also shown that the constant energy separation between adjacent Stark states of a given principal quantum number, produce wave packets that execute periodic motion. In general, they split into distinct "clumps" of probability, but revive to form a single packet after each period. It is, however, possible to construct a packet that maintains its shape for all time. A discussion of the classical equations of motion for this system may be viewed at the www site for the atomic>UMSL Atomic Physics Lab.

  14. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    NASA Technical Reports Server (NTRS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  15. Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements

    NASA Astrophysics Data System (ADS)

    Perry, Rebecca W.; Holmes-Cerfon, Miranda C.; Brenner, Michael P.; Manoharan, Vinothan N.

    2015-06-01

    We study experimentally what is arguably the simplest yet nontrivial colloidal system: two-dimensional clusters of six spherical particles bound by depletion interactions. These clusters have multiple, degenerate ground states whose equilibrium distribution is determined by entropic factors, principally the symmetry. We observe the equilibrium rearrangements between ground states as well as all of the low-lying excited states. In contrast to the ground states, the excited states have soft modes and low symmetry, and their occupation probabilities depend on the size of the configuration space reached through internal degrees of freedom, as well as a single "sticky parameter" encapsulating the depth and curvature of the potential. Using a geometrical model that accounts for the entropy of the soft modes and the diffusion rates along them, we accurately reproduce the measured rearrangement rates. The success of this model, which requires no fitting parameters or measurements of the potential, shows that the free-energy landscape of colloidal systems and the dynamics it governs can be understood geometrically.

  16. Observation of Floquet States in a Strongly Driven Artificial Atom

    NASA Astrophysics Data System (ADS)

    Deng, Chunqing; Orgiazzi, Jean-Luc; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian

    2015-09-01

    We present experiments on the driven dynamics of a two-level superconducting artificial atom. The driving strength reaches 4.78 GHz, significantly exceeding the transition frequency of 2.288 GHz. The observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by nonadiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations. These results pave the way to quantum control using strong driving with applications in quantum technologies.

  17. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  18. Resonance-enhanced multiphoton-ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NASA Astrophysics Data System (ADS)

    Woutersen, S.; Milan, J. B.; Buma, W. J.; de Lange, C. A.

    1997-05-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2+1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the 1D excited state, prepared by in situ photodissociation of H2S. The observed states derive from the (2Do)5p and (2Po)4p configurations. For the (2Do)5p 3F and (2Po)4p 3D triplets, extensive photoelectron spectroscopic studies enable a detailed comparison of the autoionization and photoionization rates of these states.

  19. Direct Spectroscopic Detection and EPR Investigation of a Ground State Triplet Phenyl Oxenium Ion.

    PubMed

    Li, Ming-De; Albright, Toshia R; Hanway, Patrick J; Liu, Mingyue; Lan, Xin; Li, Songbo; Peterson, Julie; Winter, Arthur H; Phillips, David Lee

    2015-08-19

    Oxenium ions are important reactive intermediates in synthetic chemistry and enzymology, but little is known of the reactivity, lifetimes, spectroscopic signatures, and electronic configurations of these unstable species. Recent advances have allowed these short-lived ions to be directly detected in solution from laser flash photolysis of suitable photochemical precursors, but all of the studies to date have focused on aryloxenium ions having closed-shell singlet ground state configurations. To study alternative spin configurations, we synthesized a photoprecursor to the m-dimethylamino phenyloxenium ion, which is predicted by both density functional theory and MRMP2 computations to have a triplet ground state electronic configuration. A combination of femtosecond and nanosecond transient absorption spectroscopy, nanosecond time-resolved Resonance Raman spectroscopy (ns-TR(3)), cryogenic matrix EPR spectroscopy, computational analysis, and photoproduct studies allowed us to trace essentially the complete arc of the photophysics and photochemistry of this photoprecursor and permitted a first look at a triplet oxenium ion. Ultraviolet photoexcitation of this precursor populates higher singlet excited states, which after internal conversion to S1 over 800 fs are followed by bond heterolysis in ∼1 ps, generating a hot closed-shell singlet oxenium ion that undergoes vibrational cooling in ∼50 ps followed by intersystem crossing in ∼300 ps to generate the triplet ground state oxenium ion. In contrast to the rapid trapping of singlet phenyloxenium ions by nucleophiles seen in prior studies, the triplet oxenium ion reacts via sequential H atom abstractions on the microsecond time domain to ultimately yield the reduced m-dimethylaminophenol as the only detectable stable photoproduct. Band assignments were made by comparisons to computed spectra of candidate intermediates and comparisons to related known species. The triplet oxenium ion was also detected in the ns-TR(3) experiments, permitting a more clear assignment and identifying the triplet state as the π,π* triplet configuration. The triplet ground state of this ion was further supported by photolysis of the photoprecursor in an ethanol glass at ∼4 K and observing a triplet species by cryogenic EPR spectroscopy. PMID:26198984

  20. Giant edge state splitting at atomically precise graphene zigzag edges.

    PubMed

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states. PMID:27181701

  1. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    We systematically study an extended Bose-Hubbard model with atom hopping and atom-pair hopping in the presence of a three-body constraint on the triangular lattice. By means of large-scale quantum Monte Carlo simulations, the ground-state phase diagram is studied. We find a first-order transition between the atomic superfluid phase and the pair superfluid phase when the ratio of the atomic hopping and the atom-pair hopping is adapted. The first-order transition remains unchanged under various conditions. We then focus on the interplay among the atom-pair hopping, the on-site repulsion, and the nearest-neighbor repulsion. With on-site repulsion present, we observe first-order transitions between the Mott insulators and pair superfluid driven by the pair hopping. With the nearest-neighbor repulsion turning on, three typical solid phases with 2/3, 1, and 4/3 filling emerge at small atom-pair hopping region. A stable pair supersolid phase is found at small on-site repulsion. This is due to the three-body constraint and the pair hopping, which essentially make the model a quasihardcore boson system. Thus the pair supersolid state emerges basing on the order-by-disorder mechanism, by which hardcore bosons avoid classical frustration on the triangular lattice. Without on-site repulsion, the transitions between the pair supersolid and the atom superfluid or pair superfluid are first order, except for the particle-hole symmetric point. With weak on-site repulsion and atom hopping turning on, the transition between the pair supersolid and pair superfluid phase becomes continuous. The transition between solid and pair supersolid is three-dimensional XY university, with dynamical exponent z=1 and correlation exponent ν=0.67155. The thermal melting of pair supersolid belongs to the two-dimensional Ising university. We check both energetic and mechanical balance of pair supersolid phase. Lowering the three-body constraint, no pair supersolid is found due to the absence of degeneracy of pair solids in classical limits. We describe the experimental realization of pair tunneling on state dependent lattice.

  2. Correlated n1,3S states for two-electron atoms in screened potentials

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Rodriguez, Karina V.; Gasaneo, Gustavo

    2013-09-01

    We investigate two-electron atoms placed in a plasma environment, and consider both exponential cosine screened Coulomb potentials (ESCP) and Debye-Hückel or screened Coulomb potentials (SCP), for which the screening parameter λ is related to the plasma frequency. Using highly correlated Hylleraas-type expansions, Ghoshal and Ho have published the first calculations of the ground states of H- and He in ECSCP and SCP for a wide range of λ values. We have confirmed these results with relatively simpler wave functions within a Configuration Interaction approach with explicitly correlated basis functions satisfying exactly all two-body Kato cusp conditions. The main aim of the present contribution is to extend the findings of Ghoshal and Ho in various directions: (i) we evaluate the energy for the ground and the first 1,3S excited states, and provide analytical fits of the energy E(λ) (ii) we further extend the investigation to the iso-electronic series considering higher values of the nuclear charge Z and provide a double fit E(λ,Z) - thus a practical estimation tool for plasma applications; (iii) we make a systematic investigation of the λ0 value for which the ground state ceases to exist.

  3. Degenerate ground states and nonunique potentials: Breakdown and restoration of density functionals

    SciTech Connect

    Capelle, K.; Ullrich, C. A.; Vignale, G.

    2007-07-15

    The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions, and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total, and exchange-correlation energy functionals to the extent needed in applications of DFT to atoms, molecules, and solids. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems.

  4. Correction method for obtaining the variationally best ground-state pair density

    SciTech Connect

    Higuchi, Masahiko; Higuchi, Katsuhiko

    2011-10-15

    We present a correction method for the pair density (PD) to get close to the ground-state one. The PD is corrected to be a variationally best PD within the search region that is extended by adding the uniformly scaled PDs to its elements. The corrected PD is kept N-representable and satisfies the virial relation rigorously. The validity of the present method is confirmed by numerical calculations of neon atom. It is shown that the root-mean-square error of the electron-electron interaction and external potential energies, which is a good benchmark for the error of the PD, is reduced by 69.7% without additional heavy calculations.

  5. Structural expansions for the ground state energy of a simple metal

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1973-01-01

    A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.

  6. Ground-state densities of repulsive two-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Grochowski, Piotr; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2016-02-01

    We investigate separations of trapped balanced two-component atomic Fermi gases with repulsive contact interaction. Candidates for ground-state densities are obtained from the imaginary-time evolution of a nonlinear pseudo-Schrödinger equation in three dimensions, rather than from the cumbersome variational equations of the underlying energy density functional. With the employed hydrodynamical approach, gradient corrections to the Thomas-Fermi approximation are conveniently included and are shown to be vital for reliable density profiles. We provide critical repulsion strengths that mark the onset of phase transitions in a harmonic trap. We present transitions from identical density profiles of the two fermion species towards isotropic and anisotropic separations for various confinements, including harmonic and double-well-type traps. Our proposed method is suited for arbitrary trap geometries and can be straightforwardly extended to study dynamics in the light of ongoing experiments on degenerate Fermi gases.

  7. Ground state and glass transition of the RNA secondary structure

    NASA Astrophysics Data System (ADS)

    Hui, S.; Tang, L.-H.

    2006-09-01

    RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.

  8. Regularities in molecular properties of ground state stable diatomics

    NASA Astrophysics Data System (ADS)

    Zavitsas, Andreas A.

    2004-06-01

    A simple relationship is reported between vibrational frequencies, bond lengths, and reduced masses for many families of stable, ground state diatomics: the frequency is proportional to the reciprocal of the product of the bond length and the square root of the reduced mass. This is demonstrated with each of the following related families: the alkali metal diatomics, the group 15 diatomics, the group 16 diatomics, the halogen diatomics, the alkali metal hydrides, the alkaline earth oxides, the group 14 oxides and their sulfides, the diatomics of carbon, of silicon and of germanium with group 16 elements, the hydrogen halides, the halides of lithium, of sodium, of potassium, of rubidium and of cesium, the chlorides of the alkali metals and of silver, and the polyatomic hydrides of groups 14 and 15. Although correlation coefficients of 0.99 or greater in each of the 21 families examined demonstrate the validity of the correlation, the deviations found are significantly larger than can be attributed to experimental uncertainties.

  9. Arsenic in Ground-Water Resources of the United States

    USGS Publications Warehouse

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  10. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  11. Classifying and measuring geometry of a quantum ground state manifold

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Michael; Gritsev, Vladimir; Polkovnikov, Anatoli

    2013-08-01

    From the Aharonov-Bohm effect to general relativity, geometry plays a central role in modern physics. In quantum mechanics, many physical processes depend on the Berry curvature. However, recent advances in quantum information theory have highlighted the role of its symmetric counterpart, the quantum metric tensor. In this paper, we perform a detailed analysis of the ground state Riemannian geometry induced by the metric tensor, using the quantum XY chain in a transverse field as our primary example. We focus on a particular geometric invariant, the Gaussian curvature, and show how both integrals of the curvature within a given phase and singularities of the curvature near phase transitions are protected by critical scaling theory. For cases where the curvature is integrable, we show that the integrated curvature provides a new geometric invariant, which like the Chern number characterizes individual phases of matter. For cases where the curvature is singular, we classify three types (integrable, conical, and curvature singularities) and detail situations where each type of singularity should arise. Finally, to connect this abstract geometry to experiment, we discuss three different methods for measuring the metric tensor: via integrating a properly weighted noise spectral function or by using leading-order responses of the work distribution to ramps and quenches in quantum many-body systems.

  12. Table of experimental nuclear ground state charge radii: An update

    SciTech Connect

    Angeli, I.; Marinova, K.P.

    2013-01-15

    The present table contains experimental root-mean-square (rms) nuclear charge radii R obtained by combined analysis of two types of experimental data: (i) radii changes determined from optical and, to a lesser extent, K{sub α} X-ray isotope shifts and (ii) absolute radii measured by muonic spectra and electronic scattering experiments. The table combines the results of two working groups, using respectively two different methods of evaluation, published in ADNDT earlier. It presents an updated set of rms charge radii for 909 isotopes of 92 elements from {sub 1}H to {sub 96}Cm together, when available, with the radii changes from optical isotope shifts. Compared with the last published tables of R-values from 2004 (799 ground states), many new data are added due to progress recently achieved by laser spectroscopy up to early 2011. The radii changes in isotopic chains for He, Li, Be, Ne, Sc, Mn, Y, Nb, Bi have been first obtained in the last years and several isotopic sequences have been recently extended to regions far off stability, (e.g., Ar, Mo, Sn, Te, Pb, Po)

  13. Engineering Atomic Rydberg States with Pulsed Electric Fields

    SciTech Connect

    Dunning, F. B.; Mestayer, J. J.; Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.

    2009-01-01

    Atoms in high-lying Rydberg states with large values of the principal quantum number n, n {ge} 300, form a valuable laboratory in which to explore the control and manipulation of quantum states of mesoscopic size using carefully tailored sequences of short electric field pulses whose characteristic times (duration and/or rise/fall times) are less than the classical electron orbital period. Atoms react to such pulse sequences very differently than to short laser or microwave pulses providing the foundation for a number of new approaches to engineering atomic wavefunctions. The remarkable level of control that can be achieved is illustrated with reference to the generation of localized wavepackets in Bohr-like near-circular orbits, and the production of non-dispersive wavepackets under periodic driving and their transport to targeted regions of phase space. The testing of these control schemes, together with their reversibility, through the creation of electric dipole echoes in Stark wavepackets, is also described. New protocols continue to be developed that will allow even tighter control with the promise of new insights into quantum-classical correspondence, information storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime and nonlinear dynamics in driven systems.

  14. TOPICAL REVIEW: Engineering atomic Rydberg states with pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Mestayer, J. J.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.

    2009-01-01

    Atoms in high-lying Rydberg states with large values of the principal quantum number n, n >= 300, form a valuable laboratory in which to explore the control and manipulation of quantum states of mesoscopic size using carefully tailored sequences of short electric field pulses whose characteristic times (duration and/or rise/fall times) are less than the classical electron orbital period. Atoms react to such pulse sequences very differently than to short laser or microwave pulses providing the foundation for a number of new approaches to engineering atomic wavefunctions. The remarkable level of control that can be achieved is illustrated with reference to the generation of localized wavepackets in Bohr-like near-circular orbits, and the production of non-dispersive wavepackets under periodic driving and their transport to targeted regions of phase space. The testing of these control schemes, together with their reversibility, through the creation of electric dipole echoes in Stark wavepackets, is also described. New protocols continue to be developed that will allow even tighter control with the promise of new insights into quantum-classical correspondence, information storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime and nonlinear dynamics in driven systems.

  15. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  16. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  17. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  18. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  19. Ground State Depleted (GSD) Solid State Lasers: Principles, Characteristics, And Scaling

    NASA Astrophysics Data System (ADS)

    Krupke, William F.; Chase, Lloyd L.

    1989-07-01

    A novel class of rare earth doped solid state lasers is described. The Ground State Depleted (GSD) laser is pumped by an intense (>tens kW/cm2) narrowband (75%), (3) a gain element that is optically thick at the pump wavelength, (4) a gain element that has a substantially uniform gain distribution due to a bleaching of the pump transition at the pump intensity utilized. These features enable efficient room temperature operation of rare earth ion laser transitions terminating on the ground manifold. The relationships between laser parameters (cross sections, saturation fluences and fluxes, bleaching wave velocities, etc.) are given and laser performance scaling relationships are presented and discussed.

  20. Ground state and excited state properties of ethylene isomers studied by a combined Feynman path integral - ab initio approach

    NASA Astrophysics Data System (ADS)

    Ramírez, Rafael; Schulte, Joachim; Böhm, Michael C.

    Ground state and excited state properties of ethylene, C2H4, and several ethylene isomers have been studied by Feynman path integral Monte Carlo (PIMC) simulations. The PIMC treatment of the atomic nuclei has been combined with different electronic Hamiltonians in order to analyse the influence of the nuclear degrees of freedom on electronic quantities. Electronic expectation values at the minimum of the potential energy surface (PES) have been compared with PIMC based ensemble averaged values. Ensemble averaged quantities have been derived by Hamiltonians of the ab initio type and a tight-binding (TB) one-electron model. The combined influence of anharmonicities in the interatomic potential and the quantum fluctuations of the atomic nuclei lead to ensemble averaged bondlengths r g which are significantly larger than the parameters r e at the minimum of the PES. The implications of this bond length elongation for the electronic properties of ethylene are discussed. The occupied canonical molecular orbitals (CMOs) of ethylene are destabilized under the influence of the nuclear degrees of freedom while virtual CMOs are stabilized. These shifts of one-electron energies suggest a comparison of electronic excitation energies at the minimum of the PES with PIMC based ensemble averages. The quantum fluctuations of the nuclei cause a strong redistribution in the intensities of electronic transitions. Transitions, which are dipole allowed in the planar D2h geometry of ethylene, lose intensity under the influence of nuclear quantum effects, and vice versa for electronic excitations that are dipole forbidden under D 2h symmetry. This 'vibrational borrowing' is enhanced with decreasing atomic masses. The Feynman centroid density has been used to calculate the anharmonic vibrational wavenumbers of C 2 H 4 and C 2 D 4 . The results of the present PIMC simulations have been employed to emphasize general problems of electronic structure calculations based on a single nuclear configuration (i.e. the configuration at the minimum of the PES).

  1. Derivation of novel human ground state naive pluripotent stem cells.

    PubMed

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo. PMID:24172903

  2. Comment on 'Scheme for teleportation of an unknown atomic state without the Bell-state measurement'

    SciTech Connect

    Chhajlany, Ravindra W.; Wojcik, Antoni

    2006-01-15

    Recently, Ye and Guo [Phys. Rev. A 70, 054303 (2004)] have presented a scheme for implementing quantum teleportation of atomic states in cavity QED. In this Comment, we show that contrary to the authors' claim, the scheme is based on Bell-state measurement.

  3. Coherent states composed of Stark eigenfunctions of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Baugh, J. F.; Edmonds, D. A.; Nellesen, P. T.; Burkhardt, C. E.; Leventhal, J. J.

    1997-11-01

    It is well known that for the nonrelativistic hydrogen atom it is possible to separate the Schrödinger equation in parabolic as well as spherical coordinates. The eigenfunctions obtained in these coordinate systems are each a suitable basis set in the absence of an electric field, but only the parabolic states, the Stark eigenfunctions, retain their character in the presence of a weak field. The properties of coherent superpositions of these Stark states are investigated and the motion of the resulting wave packet described. It is shown that a properly constituted superposition will mimic classical motion. It is also shown that the constant energy separation between adjacent Stark states of a given principal quantum number leads to periodic motion. In general, they split into distinct "clumps" of probability, but revive to form a single packet after each period. It is, however, possible to construct a packet that maintains its shape for all time.

  4. Inelastic processes in atomic collisions involving ground state and laser-prepared atoms

    NASA Astrophysics Data System (ADS)

    Planje, Willem Gilles

    1999-11-01

    In dit proefschrift worden experimenten beschreven waarbij ionen of atomen met een bepaalde snelheid op een ensemble van doelwitatomen worden gericht. Wanneer twee deeltjes elkaar voldoende genaderd hebben, vindt er wissel- werking plaats waarbij allerlei processen kunnen optreden. Deze processen resulteren in specieke eindproducten. Kennis over de interactie tussen twee botsingspartners wordt verkregen door te bekijken welke eindproducten ontstaan, en in welke mate. Een belangrijke grootheid die van invloed is op mogelijke processen is de onderlinge snelheid van de twee kernen, oftewel de botsingssnelheid. Wanneer de botsingssnelheid voldoende klein is dan kunnen de verschillende reactiemechanismen zowel kwalitatief als kwanti- tatief vaak goed voorspeld worden door het systeem te beschouwen als een kort-stondig molecuul, opgebouwd uit de twee botsende deeltjes. De ver- schillende processen die kunnen optreden worden gekwaliceerd afhankelijk van de vorming van bepaalde eindproducten. Ruwweg de volgende indeling kan gemaakt worden: 1. de interne structuur van de eindproducten zijn identiek aan die van de beginproducten. We spreken dan van een elastische botsing. 2. e en van de deeltjes of beiden worden in een aangeslagen toestand ge- bracht (of ge¨oniseerd). Dit zijn processen waarbij de herschikte elek- tronen zich bij de oorspronkelijke kern bevinden. We spreken dan van excitatie of ionisatie. 3. e en of meerdere elektronen bevinden zich bij de andere kern na de botsing (eventueel in aangeslagen toestand). We spreken dan van elek- tronenoverdracht. In het eerste deel van deze dissertatie worden botsingsexperimenten tussen heliumionen en natriumatomen beschreven waarbij het proces van elek- tronenoverdracht wordt onderzocht. Bij dit mechanisme is het buitenste 117?Samenvatting natriumelektron betrokken. Deze kan relatief gemakkelijk `overspringen' naar het heliumion wanneer deze zich dicht in de buurt van het natrium- atoom bevindt. Het elektron kan hierbij een bepaalde (aangeslagen) toe- stand bezetten. Wij meten de bezetting van de heliumtoestanden die onder uitzending van XUV licht ( ? 58 nm) vervallen naar de heliumgrondtoe- stand. Door de lichtintensiteit te meten onderzoeken we de mate van elek- tronenoverdracht naar een selecte groep van singlet helium`eind'toestanden, namelijk He(1s2p), He(1s3s), He(1s3p) en He(1s3d). In een reactie- vergelijking ziet het mechanisme er als volgt uit: He + (1s) + ( Na(3s) Na(3p) e- -! He + Na + -! He(1s 2 ) +h(58 nm) + Na + Het experiment kent een extra dimensie door het feit dat het, in beginsel bol- symmetrische, natriumatoom een bepaalde ruimtelijk uitlijning kan worden meegegeven. Met behulp van laserlicht van een specieke frequentie en po- larisatie, wordt het buitenste natriumelektron in een aangeslagen p toestand gebracht. Het aanslaan naar deze toestand heeft als gevolg dat het valentie- elektron zich op grotere afstand van zijn kern bevindt dan voorheen. Daar- naast kan, afhankelijk van de gebruikte laserpolarisatie, het buitenste elek- tron zich nu rond de natriumkern bewegen volgens een bepaalde anisotrope verdeling, de bolsymmetrie is doorbroken. De eecten van de excitatie en ruimtelijk verdeling van dit natriumelektron op het proces van elektronen- overdracht zijn onderzocht voor botsingsenergie¨en vari¨erend van 0.5 keV tot 6.0 keV. De metingen laten zien dat het eect van laserexcitatie een bezettingstoe- name van de beschouwde singlet heliumtoestanden betekent, ongeacht de uitlijning van het natrium 3p elektron. Dit is simpelweg te begrijpen uit het feit dat het 3p natrium elektron minder sterk gebonden is en elektro- nenoverdracht makkelijker gaat. Daarnaast is de uitlijning van het aanges- lagen elektron van invloed op de elektronenoverdracht. De resultaten zijn vergeleken met berekeningen van S.E. Nielsen en T.H. Rod [13], die de elek- tronoverdracht beschrijven in een model waarbij het betrokken elektron zich beweegt in bepaalde eectieve potentiaalvelden. De goede overeenkomsten van onze metingen met de berekeningen rechtvaardigen de theoretische be- nadering van Nielsen en Rod. 118?Samenvatting In het tweede gedeelte van het proefschrift worden botsingen beschouwd tussen helium- en neonatomen. Hierbij wordt nu niet gekeken naar bots- ingsproducten die zich manifesteren door bepaald licht uit te zenden, maar een elektron emitteren met een bepaalde energie. Verschillende soorten `eind'producten kunnen elektronen uitzenden, waaronder de negatieve ion- toestanden. Het elektronenspectrum, gemeten voor dit botsingssysteem, vertoont twee pieken die het spectrum domineren bij 16.2 eV en 19.4 eV voor verschillende botsingsenergie¨en tussen de 0.35 keV en 6.0 keV. Deze piekstructuren wijzen op de vorming van de kort-levende, negatieve iontoe- standen Ne-(2p 5 3s 2 ) en He-(1s2s 2 ) ten gevolge van de overdracht van e en elektron: He 0 + Ne 0 -! He-(1s2s 2 ) +Ne + (2p 5 ) 3 10- 14 s -! He 0 (1s 2 ) +Ne + + e- (19.37 eV) He 0 + Ne 0 -! He + (1s) +Ne-(2p 5 3s 2 ) 2:5 10- 13 s -! He + (1s) +Ne 0 (2p 6 ) +e- (16.15 eV) De meetresultaten vertonen een fenomeen waarbij de bezettingen van de negatieve iontoestanden een oscillerend gedrag vertonen als functie van de botsingssnelheid. Dit duidt op interferentie tussen de twee bijna-ontaarde moleculaire toestanden [He- + Ne + ] en[He + + Ne-]. Het is echter zeer op- merkelijk dat deze oscillatie wordt waargenomen in een experiment als deze, waarin de uitgezonden elektronen worden gemeten ongeacht de afbuighoek van het heliumatoom. Dit impliceert een speciek aanslagmechanisme van de moleculaire negatieve iontoestanden. Nader beschouwing van het bots- ingssysteem laat zien dat het instantane molecuul twee overgangen moet ondergaan voordat de negatieve iontoestanden gevormd worden. Als gevolg hiervan is de snelheid waarmee het negatieve en positieve ion uit elkaar be- wegen nagenoeg onafhankelijk van de afbuighoek van het helium projectiel en is oscillatie mogelijk waarneembaar. De wisselwerking tussen de twee beschouwde moleculaire toestanden impliceert gecorreleerde overdracht van twee elektronen: He- + Ne + 2e- ! He + + Ne- Door het quasi-resonante systeem als resonant te beschouwen kan het fenomeen kwalitatief goed verklaard worden. 119?Samenvatting Inhet laatstedeelwordt de bevolkingvanauto¨oniserende natriumtoestanden bekeken in He +=0 + Na botsingen. In tegenstelling tot de voorgaande exper- imenten waarin elektronenoverdracht beschouwd werd, betreft het hier een excitatiemechanisme. De beschouwde `eind'producten, i.e. de auto¨oniserende natriumtoestanden, bestaan in het algemeen kort en gaan over naar een stabiele iontoestand onder uitzending van een elektron met een toestands- karakteristieke kinetische energie. Door de elektronenspectra te meten bij verschillende botsingsenergie¨en, wordt de bezetting van de auto¨oniserende toestanden onderzocht. Ook hier wordt het eect van laserexcitatie en laser- polarisatie van het natriumatoom op de vorming van deze toestanden, en de mate waarin, bekeken. De metingen laten zien dat zowel in He + -Na als in He 0 -Na botsingen de invloed van de ruimtelijk uitlijning van het buitenste natriumelektron op de elektronenspectra nihil is. Dit impliceert dat het betrokken 3p elektron hoofdzakelijk een passieve rol speelt in de vorming van auto¨oniserende toe- standen: het blijft hoofdzakelijk de 3p toestand bezetten als een `toeschouwer' zonder een overgang te maken naar een andere toestand. Dit wordt boven- dien bevestigd door het feit dat wanneer een fractie natriumatomen aange- slagen wordt naar de p toestand dit een even grote reductie betekent van onder meer de populatie van de auto¨oniserende toestand Na(2p 5 3s 2 ). De verwachte grote toename van Na(2p 5 3p 2 ) toestanden, in geval van Na(3p) doelwitten, is niet waargenomen. 120?121?122

  5. Ground state of the geometrically frustrated compound Tb2Sn2O7

    NASA Astrophysics Data System (ADS)

    Chapuis, Y.; Yaouanc, A.; Dalmas de Réotier, P.; Pouget, S.; Fouquet, P.; Cervellino, A.; Forget, A.

    2007-11-01

    Despite the observation of magnetic neutron reflections at low temperatures, muon-spin experiments have suggested the ground state of the geometrically frustrated magnetic material Tb2Sn2O7 to be dynamical. This unique situation requires additional characterizations of this magnetic ground state. Here we report a neutron spin-echo investigation which supports the existence of a dynamical component in the ground state. This result is backed by a thorough analysis of the diffraction profiles. A physical model is put forward in which the energy splitting between the ground and first excited states of the Tb3+ ion is comparable to other energies present in this frustrated system.

  6. Ground State Valency and Spin Configuration of the Ni Ions in Nickelates

    SciTech Connect

    Petit, Leon; Egami, Takeshi; Stocks, George Malcolm; Temmerman, Walter M; Szotek, Zdzislawa

    2006-01-01

    The ab initio self-interaction-corrected local-spin-density approximation is used to study the electronic structure of both stoichiometric and nonstoichiometric nickelates. From total energy considerations it emerges that, in their ground state, both LiNiO2 and NaNiO2 are insulators, with the Ni ion in the Ni3+ low-spin state (t2g6eg1) configuration. It is established that a substitution of a number of Li/Na atoms by divalent impurities drives an equivalent number of Ni ions in the NiO2 layers from the Jahn-Teller (JT)-active trivalent low-spin state to the JT-inactive divalent state. We describe how the observed considerable differences between LiNiO2 and NaNiO2 can be explained through the creation of Ni2+ impurities in LiNiO2. The indications are that the random distribution of the Ni2+ impurities might be responsible for the destruction of the long-range orbital ordering in LiNiO2.

  7. Theoretical study of the structure and analytic potential energy function for the ground state of the PO2 molecule

    NASA Astrophysics Data System (ADS)

    Zeng, Hui; Zhao, Jun

    2012-07-01

    In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2ν symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν1 = 386 cm-1, symmetric stretching frequency ν2 = 1095 cm-1, and asymmetric stretching frequency ν3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  8. Coqblin-Schrieffer model for an ultracold gas of ytterbium atoms with metastable state

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong

    2016-03-01

    Motivated by the impressive recent advance in manipulating cold ytterbium atoms, we explore and substantiate the feasibility of realizing the Coqblin-Schrieffer model in a gas of cold fermionic 173Yb atoms. Making use of different AC polarizabillity of the electronic ground state (electronic configuration S10) and the long lived metastable state (electronic configuration P30), it is substantiated that the latter can be localized and serve as a magnetic impurity while the former remains itinerant. The exchange mechanism between the itinerant S10 and the localized P30 atoms is analyzed and shown to be antiferromagnetic. The ensuing SU(6) symmetric Coqblin-Schrieffer Hamiltonian is constructed, and, using the calculated exchange constant J , perturbative renormalization group (RG) analysis yields the Kondo temperature TK that is experimentally accessible. A number of thermodynamic measurable observables are calculated in the weak-coupling regime T >TK (using perturbative RG analysis) and in the strong-coupling regime T

  9. Test of Variational Methods for Studying Molecular and Solid State Properties by Application to Sodium Atom

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Dubey, Archana; Scheicher, R. H.; Chow, Lee

    2011-03-01

    As part of our continuing test of accuracy of the variational methods, Variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) and Variational Density Functional Theory (VDFT) for study of energy and wave-function dependent properties in molecular and solid state systems we are studying the magnetic hyperfine interactions in the ground state of sodium atom for comparison by these methods with the available results from experiment 1 and the linked cluster many-body many body perturbation theory (LCMBPT) for atoms 2 , which has provided very accurate results for the one-electron and many-electron contributions and total hyperfine constants in atomic systems. Comparison will also be made with the corresponding results obtained already from the (VHFMBPT) and (VDFT) methods in lithium 3 to draw general conclusions about the nature of possible improvements needed for the variational methods. 1. M. Arditi and R. T. Carver, Phys. Rev. 109, 1012 (1958); 2. T. Lee, N.C. Dutta, and T.P. Das, Hyperfine Structure of Sodium, Phys. Rev. A 1, 995 (1970); 3. Third Joint HFI-NQI International Conference on Hyperfine Interactions, CERN, Geneva, September 2010.

  10. Ground-based optical atomic clocks as a tool to monitor vertical surface motion

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-09-01

    According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.

  11. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-01

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation. PMID:26588541

  12. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  13. Tunable rubidium excited state Voigt atomic optical filter.

    PubMed

    Yin, Longfei; Luo, Bin; Xiong, Junyu; Guo, Hong

    2016-03-21

    A tunable rubidium excited state Voigt atomic optical filter working at optical communication wavelength (1.5 μm) is realized. The filter achieves a peak transmittance of 57.6% with a double-peak structure, in which each one has a bandwidth of 600 MHz. Benefiting from the Voigt type structure, the magnetic field of the filter can be tuned from 0 to 1600 gauss, and a peak transmittance tunability of 1.6 GHz can thus be realized. Different from the excited state Faraday type filter, the pump efficiency in the Voigt filter is affected a lot by the pump polarization. Measured absorption results of the pump laser and transmittances of the signal laser both prove that the vertical linear polarization pumping is the most efficient in the Voigt filter. PMID:27136803

  14. Improving fidelity in atomic state teleportation via cavity decay

    SciTech Connect

    Chimczak, Grzegorz; Tanas, Ryszard

    2007-02-15

    We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. [Phys. Rev. Lett. 83, 5158 (1999)]. The modified protocol involves an additional stage in which quantum information distorted during the first stage is fully recovered by a compensation of the damping factor. The modification makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required in the original protocol, i.e., their decay rates can be over 25 times larger. The improvement in the fidelity is possible at the expense of lowering the probability of success. We show that the modified protocol is robust against dark counts.

  15. Tabulation of the bound-state energies of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Horbatsch, M.; Hessels, E. A.

    2016-02-01

    We present tables for the bound-state energies for atomic hydrogen. The tabulated energies include the hyperfine structure and thus this work extends the work of Mohr et al. [P. J. Mohr et al., Rev. Mod. Phys. 84, 1527 (2012)], 10.1103/RevModPhys.84.1527, which excludes the hyperfine structure. The tabulation includes corrections of the hyperfine structure due to the anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of the hyperfine Hamiltonian. These corrections are treated incorrectly in most other works. Simple formulas valid for all quantum numbers are presented for the hyperfine corrections. The tabulated energies have uncertainties of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement [R. Pohl et al., Nature (London) 466, 213 (2010)], 10.1038/nature09250 of the proton radius. The effect of this radius on the energy levels is also tabulated and the energies are compared to precision measurements of atomic hydrogen energy intervals.

  16. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  17. Effect of tunneling on ionization of Rydberg states in intense fields: Hydrogenic atoms

    SciTech Connect

    Cohen, James S.

    2003-09-01

    The ionization probabilities of hydrogenic Rydberg states in intense fields are calculated using a trajectory method, which was previously shown to be accurate for ionization of the ground-state hydrogen atom [J. S. Cohen, Phys. Rev. A 64, 043412 (2001)]. It is found that the ionization probability approaches the classical over-the-barrier probability for sufficiently large n quantum numbers, but that tunneling still significantly decreases the onset field strengths at surprisingly high n. Calculations are done for ns, np{sub 0}, and np{sub {+-}} targets, subjected to sudden and adiabatically ramped pulses in the long-wavelength limit. The dependence on the angular-momentum projection m along the field axis is also examined for circular orbi0008.

  18. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis

    NASA Astrophysics Data System (ADS)

    Schoof, Christian

    2007-09-01

    The ice sheet-ice shelf transition zone plays an important role in controlling marine ice sheet dynamics, as it determines the rate at which ice flows out of the grounded part of the ice sheet. Together with accumulation, this outflow is the main control on the mass balance of the grounded sheet. In this paper, we verify the results of a boundary layer theory for ice flux in the transition zone against numerical solutions that are able to resolve the transition zone. Very close agreement is obtained, and grid refinement in the transition zone is identified as a critical component in obtaining reliable numerical results. The boundary layer theory confirms that ice flux through the grounding line in a two-dimensional sheet-shelf system increases sharply with ice thickness at the grounding line. This result is then applied to the large-scale dynamics of a marine ice sheet. Our principal results are that (1) marine ice sheets do not exhibit neutral equilibrium but have well-defined, discrete equilibrium profiles; (2) steady grounding lines cannot be stable on reverse bed slopes; and (3) marine ice sheets with overdeepened beds can undergo hysteresis under variations in sea level, accumulation rate, basal slipperiness, and ice viscosity. This hysteretic behavior can in principle explain the retreat of the West Antarctic ice sheet following the Last Glacial Maximum and may play a role in the dynamics of Heinrich events.

  19. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  20. Existence and Symmetry of Ground States to the Boussinesq abcd Systems

    NASA Astrophysics Data System (ADS)

    Bao, Ellen ShiTing; Chen, Robin Ming; Liu, Qing

    2015-05-01

    We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283-318, 2002). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.

  1. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  2. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-07-01

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n[over ¯]=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system. PMID:26182094

  3. Ground-state phases of a rung-alternated spin-1/2 Heisenberg ladder

    NASA Astrophysics Data System (ADS)

    Amiri, F.; Sun, G.; Mikeska, H.-J.; Vekua, T.

    2015-11-01

    The ground-state phase diagram of a Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides the usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low-energy dispersions and ground-state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized.

  4. A new simple exotic atom, H-+: e+ bound to H- in an atomic state

    NASA Astrophysics Data System (ADS)

    Guevara, I.; Weel, M.; George, M. C.; Hessels, E. A.; Storry, C. H.

    2014-05-01

    A beam of H- ions is directed along the axis of a solenoidal magnet winding. Within this magnet, cylindrical electrodes with applied potentials slow the ions to an energy of ~ 50 eV in a magnetic field of ~ 0.13 Tesla. This apparatus also acts as a charged particle trap. e+ from a radioactive source are slowed in frozen neon, guided by magnetic fields and captured in this Surko-style accumulator with ~107 e+ trapped and cooled for experiments. H- ions are directed through these e+ producing long-lived H-+ atoms. H-+ is not bound in the charged particle trap and continues with the initial momentum of the H- ion into a metal plate. Upon impact the e+ quickly annihilates into back-to-back gammas. Detection of these coincident gammas indicates H-+ that traveled the 2 meter to the detector and indicates a survival time of ~ 5 ?s . Typically systems with antimatter bound to matter particles have short lifetimes (and hence wide transition widths) due annihilation. Rydberg states of H-+, however, have the long radiative lifetimes of normal matter atoms because there is little overlap of the e+ wavefunction with the core. The detected rates or H-+ are consistent with those expected for radiative recombination. NSERC, CFI, ORF.

  5. Evolution of dark state of an open atomic system in constant intensity laser field

    NASA Astrophysics Data System (ADS)

    Krmpot, A. J.; Radonjić, M.; Ćuk, S. M.; Nikolić, S. N.; Grujić, Z. D.; Jelenković, B. M.

    2011-10-01

    We studied experimentally and theoretically the evolution of open atomic systems in the constant intensity laser field. The study is performed by analyzing the line shapes of Hanle electromagnetically induced transparency (EIT) obtained in different segments of a laser beam cross section of constant intensity, i.e., a Π-shaped laser beam. Such Hanle EIT resonances were measured using a small movable aperture placed just in front of the photodetector, i.e., after the entire laser beam had passed through the vacuum Rb cell. The laser was locked to the open transition Fg=2→Fe=1 at the D1 line of 87Rb with laser intensities between 0.5 and 4 mW/cm2. This study shows that the profile of the laser beam determines the processes governing the development of atomic states during the interaction. The resonances obtained near the beam center are narrower than those obtained near the beam edge, but the significant changes of the linewidths occur only near the beam edge, i.e., right after the atom enters the beam. The Hanle EIT resonances obtained near the beam center exhibit two pronounced minima next to the central maximum. The theoretical model reveals that the occurrence of these transmission minima is a joint effect of the preparation of atoms into the dark state and the optical pumping into the uncoupled ground level Fg=1. The appearance of the transmission minima, although similar to that observed in the wings of a Gaussian beam [A. J. Krmpot , Opt. ExpressOPEXFF1094-408710.1364/OE.17.022491 17, 22491 (2009)], is of an entirely different nature for the Π-shaped laser beam.

  6. Foil dissociation of fast molecular ions into atomic excited states

    SciTech Connect

    Berry, H.G.; Gay, T.J.; Brooks, R.L.

    1980-01-01

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH/sup +/ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, /sup 1/ /sup 3/P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman ..cap alpha.. emission after dissociation of H/sub 2//sup +/ amd H/sub 3//sup +/ show rapid variations in light yield for small internuclear separations at the foil surface.

  7. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Zhang, Linjuan; Hu, Zhiwei; Kuo, Changyang; Liu, Hengjie; Lin, Xiao; Wang, Yu; Pi, Tun-Wen; Wang, Jianqiang; Zhang, Shuo

    2016-03-01

    To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole) components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  8. Electron-atom collision studies using optically state-selected beams. Final report, May 15, 1991--May 14, 1994

    SciTech Connect

    Kelley, M.H.; McClelland, J.J.

    1998-03-15

    As stated in the original proposal, the goal of the project has been to perform electron-scattering experiments on a few model systems with emphasis on resolving all the quantum-state variables possible. The purpose of these experimental studies has been to provide a set of measurements of unprecedented accuracy and completeness that can be used as benchmarks for comparison with theoretical calculations. During the period covered by this report, the work has concentrated on measuring low-energy electron scattering from sodium and chromium. Sodium provides an ideal one-electron test case, since it has a single loosely bound valence electron, making it approachable by even the most complex electron scattering calculations. In addition, the atom has a strong optical transition from the 3{sup 2}S{sub 1/2} ground state to the 3{sup 2}P{sub 3/2} excited state whose wavelength (589 nm) matches the peak output of the laser dye rhodamine 6G. Thus optical pumping techniques can be readily applied in the laboratory, leading to either a population of ground state atoms in which the spin of the valence electron is oriented either up or down in the laboratory, or a spin polarized pure angular momentum state of the excited 3{sup 2}P{sub 3/2} state. Such an excited state makes possible superelastic scattering, where the internal energy of the atom is transferred to the electron during the collision. This turns out to be a very efficient way to study the inelastic scattering process. Unlike sodium, chromium provides an extremely exacting test for theoretical methods because of its very complex electronic structure, not because it is simple. With a valence configuration consisting of five electrons in a half-filled 3d shell, plus another electron in a 4s shell, this atom provides a test case that can challenge even the simplest approximations.

  9. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices

    SciTech Connect

    Röhm, André; Lingnau, Benjamin; Lüdge, Kathy

    2015-05-11

    We predict a significant increase of the 3 dB-cutoff-frequency on the ground-state lasing wavelength for two-state-lasing quantum-dot lasers using a microscopically motivated multi-level rate-equation model. After the onset of the second lasing line, the excited state acts as a high-pass filter, improving the ground-state response to faster modulation frequencies. We present both numerically simulated small-signal and large-signal modulation results and compare the performance of single and two-state lasing devices. Furthermore, we give dynamical arguments for the advantages of two-state lasing on data-transmission capabilities.

  10. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transtion.

    SciTech Connect

    Jaramillo, R.; Feng, Y.; Lang, J. C.; Islam, Z.; Srajer, G.; Littlewood, P. B.; Mc Whan, D. B.; Rosenbaum, T. F.; Univ. of Chicago; Univ. of Cambridge; Massachusetts Innst. of Tech.

    2009-05-21

    Advances in solid-state and atomic physics are exposing the hidden relationships between conventional and exotic states of quantum matter. Prominent examples include the discovery of exotic superconductivity proximate to conventional spin and charge order, and the crossover from long-range phase order to preformed pairs achieved in gases of cold fermions and inferred for copper oxide superconductors. The unifying theme is that incompatible ground states can be connected by quantum phase transitions. Quantum fluctuations about the transition are manifestations of the competition between qualitatively distinct organizing principles, such as a long-wavelength density wave and a short-coherence-length condensate. They may even give rise to 'protected' phases, like fluctuation-mediated superconductivity that survives only in the vicinity of an antiferromagnetic quantum critical point. However, few model systems that demonstrate continuous quantum phase transitions have been identified, and the complex nature of many systems of interest hinders efforts to more fully understand correlations and fluctuations near a zero-temperature instability. Here we report the suppression of magnetism by hydrostatic pressure in elemental chromium, a simple cubic metal that demonstrates a subtle form of itinerant antiferromagnetism formally equivalent to the Bardeen-Cooper-Schrieffer (BCS) state in conventional superconductors. By directly measuring the associated charge order in a diamond anvil cell at low temperatures, we find a phase transition at pressures of 10 GPa driven by fluctuations that destroy the BCS-like state but preserve the strong magnetic interaction between itinerant electrons and holes. Chromium is unique among stoichiometric magnetic metals studied so far in that the quantum phase transition is continuous, allowing experimental access to the quantum singularity and a direct probe of the competition between conventional and exotic order in a theoretically tractable material.

  11. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    PubMed

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal. PMID:17979410

  12. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation. PMID:22891949

  13. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Guidry, Mike

    2016-03-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments.

  14. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    PubMed Central

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  15. Development of three-dimensional state-space wake theory and application in dynamic ground effect

    NASA Astrophysics Data System (ADS)

    Yu, Ke

    In topics of rotorcraft wake analysis, state-space wake theory has a recognized reputation for advantages in real-time simulation, preliminary design and eigenvalue analysis. Developments in the past decades greatly improved range of validity and accuracy of the state-space modeling approach. This work focuses on further improvement of the state-space wake theory and applications in representing dynamic ground effect. Extended state-space model is developed to represent non-zero mass flux on rotor disk. Its instant practical application, representing ground effect with a mass source ground rotor, is evaluated in both steady and dynamic aspects. Investigations of partial ground effect simulation by state-space model are carried out in different rotor configurations. Additional work is done in improving simulation efficiency of practical application of state-space modeling.

  16. Pair density related to one-electron information for the ground state of spin-compensated two-electron systems

    NASA Astrophysics Data System (ADS)

    Amovilli, C.; March, N. H.

    The recent study by Joubert on effects of Coulomb repulsions in a many-electron system has focused attention on an integral identity involving the pair density. This has motivated the derivation presented here of a vectorial differential form related to this integral result. Our differential identity is then illustrated explicitly by using (i) an exact ground-state wave function for the so-called Hookean atom having external potential energy (1/2)kr2, with k = 1/4, and (ii) Moshinsky's model in which both the interparticle interaction and the external potential are of harmonic type.

  17. The ground state and electronic structure of Gd@C82: a systematic theoretical investigation of first principle density functionals.

    PubMed

    Dai, Xing; Gao, Yang; Xin, Minsi; Wang, Zhigang; Zhou, Ruhong

    2014-12-28

    As a representative lanthanide endohedral metallofullerene, Gd@C82 has attracted a widespread attention among theorists and experimentalists ever since its first synthesis. Through comprehensive comparisons and discussions, as well as references to the latest high precision experiments, we evaluated the performance of different computational methods. Our results showed that the appropriate choice of the exchange-correlation functionals is the decisive factor to accurately predict both geometric and electronic structures for Gd@C82. The electronic structure of the ground state and energy gap between the septet ground state and the nonet low-lying state obtained from pure density functional methods, such as PBE and PW91, are in good agreement with current experiment. Unlike pure functionals, the popularly used hybrid functionals in previous studies, such as B3LYP, could infer the qualitative correct ground state only when small basis set for C atoms is employed. Furthermore, we also highlighted that other geometric structures of Gd@C82 with the Gd staying at different positions are either not stable or with higher energies. This work should provide some useful references for various theoretical methodologies in further density functional studies on Gd@C82 and its derivatives in the future. PMID:25554150

  18. Ground state and excitations of the supersymmetric extended Hubbard model with long-range interaction

    SciTech Connect

    Wang, D.F.; Liu, J.T.

    1996-07-01

    We examine the ground state and excitations of the one-dimensional supersymmetric extended Hubbard model with long-range interaction. The ground state wave-function and low lying excitations are given explicitly in the form of a Jastrow product of two-body terms. This result motivates an asymptotic Bethe ansatz solution for the model. We present evidence that this solution is in fact exact and spans the complete spectrum of states. {copyright} {ital 1996 The American Physical Society.}

  19. Comparison of ground- and excited-state raman transitions using resonant coherent stokes generation

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Hochstrasser, R. M.

    1981-11-01

    Coherent Stokes generation was explored as a means to investigate vibrational dephasing in both the ground state and first excited singlet state of pentacene in benzoic acid. The dephasing-induced coherent emission (DICE) was used to obtain the ground- and excited-state Ramon linewidths between 1.6 K and 200 K. The broadening for both modes displayed an Arrhenius energy of ≈100 cm -1.

  20. Benchmark calculations on the lowest-energy singlet, triplet, and quintet states of the four-electron harmonium atom

    SciTech Connect

    Cioslowski, Jerzy; Strasburger, Krzysztof; Matito, Eduard

    2014-07-28

    For a wide range of confinement strengths ω, explicitly-correlated calculations afford approximate energies E(ω) of the ground and low-lying excited states of the four-electron harmonium atom that are within few μhartree of the exact values, the errors in the respective energy components being only slightly higher. This level of accuracy constitutes an improvement of several orders of magnitude over the previously published data, establishing a set of benchmarks for stringent calibration and testing of approximate electronic structure methods. Its usefulness is further enhanced by the construction of differentiable approximants that allow for accurate computation of E(ω) and its components for arbitrary values of ω. The diversity of the electronic states in question, which involve both single- and multideterminantal first-order wavefunctions, and the availability of the relevant natural spinorbitals and their occupation numbers make the present results particularly useful in research on approximate density-matrix functionals. The four-electron harmonium atom is found to possess the {sup 3}P{sub +} triplet ground state at strong confinements and the {sup 5}S{sub −} quintet ground state at the weak ones, the energy crossing occurring at ω ≈ 0.0240919.

  1. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  2. Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy

    SciTech Connect

    Young, C.E.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.

    1983-01-01

    Velocity distributions and relative populations in the fine-structure levels of the a/sup 5/D/sub J/ ground state of Fe atoms, produced by sputtering with 3 keV argon ions, have been investigated by Doppler shifted laser induced fluorescence. The laser system employs a single-mode, scanning ring dye laser, amplified by a sequence of three excimer-pumped flowing-dye cells. Frequency doubling in a KD*P crystal was used to produce high energy (> .5 mJ) pulses of narrowband tunable UV output near 300 nm. Laser power influence on effective velocity bandwidth was investigated. Favorable light-collection geometry minimized distortion of the velocity spectra from apparatus-averaging effects. In impurity flux diagnostic applications in fusion devices, substantial spatial averaging may occur. In the latter case, the narrow velocity bandwidth (70 m/s, transform limit) of the present laser system is particularly useful.

  3. A MRSDCI characterization of the ground state of CaC

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Pelegrini, Marina; Roberto-Neto, Orlando; Machado, Francisco B. C.

    2002-09-01

    Accurate potential energy curves, dipole moment functions, dissociation energies and spectroscopic constants for six electronic states ( 3Σ-, 3Π, 5Σ-, 1Δ, 1Π, 1Σ+) of the CaC molecule are reported with the multireference singles and doubles configuration interaction methodology. The ground state has symmetry 3Σ -, with a dissociation energy ( D0) equal to 1.94 eV. The 5Σ - state is the first excited state lying 695 cm-1 above the 3Σ - ground state. The 1Δ and 3Π states are the second and third excited states separated, respectively, by 10 763 and 12 167 cm-1 from the 3Σ - ground state.

  4. Bulk-edge correspondence of entanglement spectrum in two-dimensional spin ground states

    NASA Astrophysics Data System (ADS)

    Santos, Raul A.

    2013-01-01

    General local spin S ground states, described by a valence bond solid (VBS) on a two-dimensional lattice are studied. The norm of these ground states is mapped to a classical O(3) model on the same lattice. Using this quantum-to-classical mapping, we obtain the partial density matrix ρA associated with a subsystem A of the original ground state. We show that the entanglement spectrum of ρA in a translation invariant lattice is related with the spectrum of a quantum XXX Heisenberg model and all its conserved charges on the boundary of the region A.

  5. Calculation of ground states of four-dimensional +/-J Ising spin glasses.

    PubMed

    Hartmann, A K

    1999-11-01

    Ground states of four-dimensional (d=4) Edwards-Anderson Ising spin glasses are calculated for sizes up to 7 x 7 x 7 x 7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state energy of the infinite system is extrapolated as e0(infinity)=-2.095(1). The ground-state stiffness (or domain wall) energy Delta is calculated. A delta approximately L(theta(S)) behavior with theta(S)=0.64(5) is found which confirms that the d=4 model has an equilibrium spin-glass-paramagnet transition for nonzero T(c). PMID:11970381

  6. Ground state properties of superheavy nuclei with Z=117 and Z=119

    SciTech Connect

    Ren Zhongzhou; Chen Dinghan; Xu Chang

    2006-11-02

    We review the current studies on the ground-state properties of superheavy nuclei. It is shown that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. This can lead to the existence of isomers in superheavy region and it plays an important role for the stability of superheavy nuclei. Some new results on Z=117 and Z=119 isotopes are presented. The agreement between theoretical results and experimental data clearly demonstrates the validity of theoretical models for the ground-state properties of superheavy nuclei.

  7. Singlet-Triplet Ground-State Instability in Square Quantum Dot

    NASA Astrophysics Data System (ADS)

    Negishi, Yuki; Ishizuki, Masamu; Tsubaki, Atsushi; Takeda, Kyozaburo; Asari, Yusuke; Ohno, Takahisa

    2011-12-01

    We theoretically study the spin multiplicity in the ground state of the square quantum dot (SQD) including four electrons, and discuss a possibility of the singlet-triplet (S/T) instability in the quantum system. As predicted by Hund's rule, the ground-state triplet appears when the DQD has a point group symmetry of D4h. This ground-state triplet is also found even in the deformed SQD (D2h) if the confinement length L is elongated. Consequently, the S/T instability is expected along these boundary lines. It is also worthwhile to notice that the present DFT as well as UHF calculation predicts the spin-singlet ground-state when the inter-electron interaction is strengthened (larger L) even though the SQD maintains its geometrical form of D4h. The strong electron-localization causes the destabilization in the orbital (kinetic) energies, and produces this characteristic "anti-Hund" state.

  8. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  9. Cooperative ground-water investigations in Massachusetts by the United States Geological Survey, 1938-50

    USGS Publications Warehouse

    Brashears, M.L., Jr.

    1950-01-01

    The United States Geological Survey in cooperation with the Massachusetts Department of Public Works in 1938 began an investigation of the ground-water conditions in Massachusetts. This work is part of a larger cooperative program that includes surface-water investigations, geologic studies, and topographic mapping. The purpose of the ground-water studies is to obtain detailed information concerning the occurrence and availability of ground water throughout the State. The information is used by the Highway Division of the Department of Public Works in connection with design, construction, and maintenance of highways. These studies also provided a basis for the more effective utilization of the ground-water resources of the State. They indicate where additional developments can be made safely or where present use may be excessive. Reports covering the ground-water studies are listed in the appendix.

  10. Slow ground state molecules from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.

    2014-12-01

    We describe the generation and properties of a cryogenic beam of 7Li2 dimers from sublimation of a neon matrix where lithium atoms have been implanted via laser ablation of solid precursors of metallic lithium or lithium hydride (LiH). Different sublimation regimes lead to pulsed molecular beams with different temperatures, densities and forward velocities. With laser absorption spectroscopy these parameters were measured using the molecular 7Li2 (R) transitions A1Σ u+(v\\prime =4,J\\prime =J\\prime\\prime +1) ≤ftarrow X 1Σ g+(v\\prime\\prime =0,J\\prime\\prime =0,1,3). In a typical regime, sublimating a matrix at 16 K, translational temperatures of 6-8 K with a drift velocity of 130 m s-1 in a free expanding pulsed beam with molecular density of 109 cm-3, averaged along the laser axis, were observed. Rotational temperatures around 5-7 K were obtained. In recent experiments we were able to monitor the atomic Li signal—in the D2 line—concomitantly with the molecular signal in order to compare them as a function of the number of ablation pulses. Based on the data and a simple model, we discuss the possibility that a fraction of these molecules are being formed in the matrix, by mating atoms from different ablation pulses, which would open up the way to formation of other more interesting and difficult molecules to be studied at low temperatures. Such a source of cryogenic molecules have possible applications encompassing fundamental physics tests, quantum information studies, cold collisions, chemistry, and trapping.

  11. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  12. Federal and state efforts to protect ground water

    SciTech Connect

    Not Available

    1984-02-21

    Federal and state efforts to protect the nation's groundwater supplies are discussed. The report provides information on the nature and scope of groundwater contamination, adequacy of federal and state authority and resources to deal with groundwater contamination, and the federal government's role in formulating, administering, and supporting a national groundwater protection policy.

  13. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    SciTech Connect

    Cross, J.B. ); Koontz, S.L. . Lyndon B. Johnson Space Center); Lan, E.H. )

    1991-01-01

    The effects of atomic oxygen on boron nitride, silicon nitride, solar cell interconnects used on the Intelsat 6 satellite, organic polymers, and MoS{sub 2} and WS{sub 2} dry lubricant have been studied in low Earth orbit (LEO) flight experiments and in our ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and ESCA analysis to measure chemical composition changes. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN overcoated on thin silver was observed. No permeation of atomic oxygen through Si{sub 3}N{sub 4} was observed. Test results on the Intelsat 6 satellite interconnects used on its photovoltaic array indicate that more than 60--80% of the original thickness of silver should remain after completion of the proposed Space Shuttle rescue/reboost mission. Gas phase reaction products produced by the interaction of high kinetic energy atomic oxygen (AO) with Kapton were found to be H{sub 2}, H{sub 2}O, CO, and CO{sub 2} with NO being a possible secondary product. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of Kapton. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/Kapton reaction mechanism can be overcome by translational energy. Oxidation of MoS{sub 2} and WS{sub 2} dry lubricants in both ground-based and orbital exposures indicated the formation of MoO{sub 3} and WO{sub 3} respectively. A protective oxide layer is formed {approx}30 monolayers thick which has a high initial friction coefficient until the layer is worn off.

  14. Explaining the Temperature Dependence of Spirilloxanthin’s S* Signal by an Inhomogeneous Ground State Model

    PubMed Central

    2013-01-01

    We investigate the nature of the S* excited state in carotenoids by performing a series of pump–probe experiments with sub-20 fs time resolution on spirilloxanthin in a polymethyl-methacrylate matrix varying the sample temperature. Following photoexcitation, we observe sub-200 fs internal conversion of the bright S2 state into the lower-lying S1 and S* states, which in turn relax to the ground state on a picosecond time scale. Upon cooling down the sample to 77 K, we observe a systematic decrease of the S*/S1 ratio. This result can be explained by assuming two thermally populated ground state isomers. The higher lying one generates the S* state, which can then be effectively frozen out by cooling. These findings are supported by quantum chemical modeling and provide strong evidence for the existence and importance of ground state isomers in the photophysics of carotenoids. PMID:23577754

  15. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    NASA Astrophysics Data System (ADS)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  16. Optical pumping of metastable NH radicals into the paramagnetic ground state

    SciTech Connect

    Meerakker, Sebastiaan Y.T. van de; Mosk, Allard P.; Jongma, Rienk T.; Sartakov, Boris G.; Meijer, Gerard

    2003-09-01

    We here report on the optical pumping of both {sup 14}NH and {sup 15}NH radicals from the metastable a {sup 1}{delta} state into the X {sup 3}{sigma}{sup -} ground state in a molecular beam experiment. By inducing the hitherto unobserved spin-forbidden A {sup 3}{pi} <- a {sup 1}{delta} transition, followed by spontaneous emission to the X {sup 3}{sigma}{sup -} state, a unidirectional pathway for population transfer from the metastable state into the electronic ground state is obtained. The optical pumping scheme demonstrated here opens up the possibility to accumulate NH radicals in a magnetic or optical trap.

  17. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  18. Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered ground states at high densities and crystalline ground states at low densities in d -dimensional Euclidean space Rd. In the previous paper in this series, we numerically studied the entropically favored ground states in the canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper, we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically. Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions. Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess long-range orientational order but have zero shear modulus. We outline some possible future avenues of research to elucidate our understanding of this unusual phase of matter.

  19. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  20. Bott Periodicity for Z_2 Symmetric Ground States of Gapped Free-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Kennedy, R.; Zirnbauer, M. R.

    2016-03-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a ( d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.

  1. Algebraic approach to the potential energy surface for the electronic ground state of ozone

    NASA Astrophysics Data System (ADS)

    Zheng, Yujun; Ding, Shiliang

    2000-05-01

    A potential energy surface for the electronic ground state of the O 3 molecule is obtained using U(4) group. This potential energy surface includes the information of bending motion. Additionally, some properties, for example, saddle points, are discussed.

  2. Features of simultaneous ground- and excited-state lasing in quantum dot lasers

    SciTech Connect

    Zhukov, A. E. Maximov, M. V.; Shernyakov, Yu. M.; Livshits, D. A.; Savelyev, A. V.; Zubov, F. I.; Klimenko, V. V.

    2012-02-15

    The lasing spectra and light-current (L-I) characteristics of an InAs/InGaAs quantum dot laser emitting in the simultaneous lasing mode at the ground- and excited-state optical transitions are studied. Lasing and spontaneous emission spectra are compared. It is shown that ground-state quenching of lasing is observed even in the absence of active region self-heating or an increase in homogeneous broadening with growth in the current density. It is found that the intensities of both lasing and spontaneous emission at the ground-state transition begin to decrease at a pump intensity that significantly exceeds the two-level lasing threshold. It is also found that different groups of quantum dots are involved in ground- and excited-state lasing.

  3. Ground-state dt. mu. fusion rate and sticking probability using perimetric coordinates

    SciTech Connect

    Carter, B.P. ); Hu, C. )

    1990-06-01

    The ground-state energy, fusion rate, and sticking probability are calculated using a Laguerre polynomial basis. The results are compared with previous calculations, and the advantages are pointed out.

  4. Teleportation with insurance of an entangled atomic state via cavity decay

    SciTech Connect

    Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam

    2005-03-01

    We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.

  5. Ground-state cooling of quantum systems via a one-shot measurement

    NASA Astrophysics Data System (ADS)

    Pyshkin, P. V.; Luo, Da-Wei; You, J. Q.; Wu, Lian-Ao

    2016-03-01

    We prove that there exists a family of quantum systems that can be cooled to their ground states by a one-shot projective measurement on the ancillas coupled to these systems. Consequently, this proof gives rise to the conditions for achieving the one-shot measurement ground-state cooling (OSMGSC). We also propose a general procedure for finding unitary propagators and corresponding Hamiltonians to realize such cooling by means of inverse engineering techniques.

  6. Electronic structure and magnetic ground state properties of SrCoO2.5

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrima; Fishman, Randy S.; Okamoto, Satoshi; Lee, Ho Nyung; Reboredo, Fernando A.

    2014-03-01

    ABO3-δ type perovskite oxides are potential candidates for solid oxide fuel cells. The ones that crystallize in the orthorhombic brownmillerite-phase (ABO2.5) , such as SrCoO2.5, are particularly interesting due to their crystal structure which contains ordered channels of oxygen vacancies. In this work we investigate theoretically the ground state electronic structure and magnetic properties of the brownmillerite phase of SrCoO2.5. Strong correlations of the Co d electrons are treated within the local spin density approximations of Density Functional theory (DFT) with Hubbard U corrections (LSDA +U). The results are compared with the Heyd Scuzeria Ernzerhof (HSE) functional. The parameters computed with a U value of 7.5 eV are found to match closely to those computed within the HSE functional. Consistent with experimental observation a G-type antiferromagnetic structure is found to be the most stable one. From a Heisenberg Hamiltonian we compute the magnetic exchange interaction parameters, J, between the Co atoms which are then used to compute the spin-wave frequencies and inelastic neutron scattering intensities. The system has four spin-wave branches. The lowest energy mode was found to have the largest scattering intensity at the magnetic zone center. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Ground-state and spectral properties of an asymmetric Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  8. Unified description of ground and excited states of finite systems: the self-consistent GW approach

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Rinke, Patrick; Ren, Xinguo; Rubio, Angel; Scheffler, Matthias

    2012-02-01

    Fully self-consistent GW calculations -- based on the iterative solution of the Dyson equation -- provide an approach for consistently describing ground and excited states on the same quantum mechanical level. Based on our implementation in the all-electron localized basis code FHI-aims [1], we show that for finite systems self-consistent GW reaches the same final Green function regardless of the starting point. The results show that self-consistency systematically improves ionization energies and total energies of closed shell systems compared to perturbative GW calculations (G0W0) based on Hartree-Fock or (semi)local density-functional theory. These improvements also translate to the electron density as demonstrated by a better description of the dipole moments of hetero-atomic dimers and the similarity with the coupled cluster singles doubles (CCSD) density. The starting-point independence of the self-consistent Green function facilitates a systematic and unbiased assessment of the performance of the GW approximation for finite systems. It therefore constitutes an unambiguous reference for the future development of vertex corrections and beyond GW schemes. [1] V. Blum et al., Comp. Phys. Comm. 180, 2175 (2009).

  9. Graphene-like carbon nitride layers: stability, porosity, band gaps, and magnetic ground states

    NASA Astrophysics Data System (ADS)

    Chacham, Helio; da Silva-Araujo, Joice; Brito, Walber

    In the present work, we investigate the relative stability and electronic properties of carbon nitride (CxNy) graphene-like structures using a combination of a new bond-counting method and density-functional-theory (DFT) first-principles calculations. We obtain analytical and numerical results for the energetics and the morphology of graphene-like CxNy For instance, at high N concentrations, the bond-counting method allows us to search among millions of possible structures, and we find several ones with ab initio formation energies per N atom comparable to, or even smaller than, that of the isolated graphitic N impurity. Those structures are characterized by a variety of nanoporous graphene morphologies. The low-energy C-N structures also present a variety of band gaps, from zero to 1.6 eV, which can be tuned by stoichiometry and porosity. Several structures also present ferro- and antiferromagnetic ground states. We thank support from CNPq, CAPES, and FAPEMIG.

  10. Populating excited states of incoherent atoms using coherent light.

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Carlsten, J. L.

    1972-01-01

    Study of the influence of various experimental parameters on the interaction between a multimode high-intensity laser light and the absorbing atoms of an atomic gas. Using a simplified treatment of line broadening which does not include correlations between momentum-changing collisions and pressure-broadening collisions, expressions are obtained that show the effect of pressure, laser-pulse length, and intensity on the excitation. It is found that, as long as the dephasing time of the atomic system is sufficiently short, the interaction reduces to a two-body collision between the atoms and photons, where coherence effects do not occur.

  11. Theoretical studies on ground and excited states of the BrO 4 radical

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2009-11-01

    MRCI and DFT calculations were performed on ground state and excited states of the BrO 4 radical. The ground state is confirmed to be X 2B 1 in C2v symmetry. MRCI vertical excitation energies ( Tvert) were obtained for 24 states. The lowest Tvert values are 0.76 eV for 1 2A 2, 1.40 eV for 1 2B 2 and 2.25 eV for 1 2A 1. Electronic transitions from the ground state to 1 2A 1 and 2 2A 1, vertically at 2.25 and 3.37 eV, are predicted. Optimized geometries, harmonic vibrational frequencies and adiabatic excitation energies ( Te) were obtained by DFT methods for seven excited states. Te for 1 2A 1 is 1.52 eV.

  12. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  13. Molecular reorganization of selected quinoline derivatives in the ground and excited statesInvestigations via static DFT.

    PubMed

    B?aziak, Kacper; Panek, Jaros?aw J; Jezierska, Aneta

    2015-07-21

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied. PMID:26203021

  14. A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1986-01-01

    The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.

  15. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide.

    PubMed

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for ? = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of ? = 1/2, which is highly mixed with (4)?(-) and (2)? states in ? - S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm(-1) above, respectively. The equilibrium bond length 1.712 and the harmonic vibrational frequency 903 cm(-1) of the 5/2 state are close to the experimental measurement of 1.724 and 909 cm(-1), which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for ? = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths. PMID:25747077

  16. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    SciTech Connect

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-07

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with {sup 4}Σ{sup −} and {sup 2}Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm{sup −1} above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm{sup −1} of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm{sup −1}, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.

  17. Ordered ground states of metallic hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  18. Spontaneously Gapped Ground State in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Freitag, F.; Trbovic, J.; Weiss, M.; Schönenberger, C.

    2012-02-01

    Bilayer graphene bears an eightfold degeneracy due to spin, valley, and layer symmetry, allowing for a wealth of broken symmetry states induced by magnetic or electric fields, by strain, or even spontaneously by interaction. We study the electrical transport in clean current annealed suspended bilayer graphene. We find two kinds of devices. In bilayers of type B1 the eightfold zero-energy Landau level is partially lifted above a threshold field revealing an insulating ν=0 quantum-Hall state at the charge neutrality point. In bilayers of type B2 the Landau level lifting is full and a gap appears in the differential conductance even at zero magnetic field, suggesting an insulating spontaneously broken symmetry state. Unlike B1, the minimum conductance in B2 is not exponentially suppressed, but remains finite with a value G≲e2/h even in a large magnetic field. We suggest that this phase of B2 is insulating in the bulk and bound by compressible edge states.

  19. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  20. Using soil stress state transducers in freezing ground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three instrumented test sections of sand, silt and clay, were constructed to monitor the impact of frost layers on vehicle-induced stresses and to assess the performance of the sensors used to measure such stresses. One of the instruments used to measure in-situ stress is the soil Stress State Tran...

  1. Equilibrium states and ground state of two-dimensional fluid foams.

    PubMed

    Graner, F; Jiang, Y; Janiaud, E; Flament, C

    2001-01-01

    We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs "repel" while charges of the opposite signs "attract;" (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams. PMID:11304255

  2. Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.

    PubMed

    Dubinets, N O; Safonov, A A; Bagaturyants, A A

    2016-05-01

    Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one. PMID:27080987

  3. Van der Waals interactions among alkali Rydberg atoms with excitonic states

    NASA Astrophysics Data System (ADS)

    Zoubi, Hashem

    2015-09-01

    We investigate the influence of the appearance of excitonic states on van der Waals interactions among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the | {ns}> and | {np}> states. The resonant dipole-dipole interactions yield symmetric and antisymmetric excitons, with energy splitting that give rise to new resonances as the atoms approach each other. Only away from these resonances can the van der Waals coefficients, C6sp, be defined. We calculate the C6 coefficients for alkali atoms and present the results for lithium by applying perturbation theory. At short interatomic distances of several μ {{m}}, we show that the widely used simple model of two-level systems for excitons in Rydberg atoms breaks down, and the correct representation implies multi-level atoms. Even though, at larger distances one can keep the two-level systems but in including van der Waals interactions among the atoms .

  4. Spin-split antibonding molecular ground state in manganese-doped quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Qu, Fanyao; Villegas-Lelovsky, L.; Morais, P. C.

    2015-09-01

    Tunnel coupling between two dots in manganese-doped InAs/GaAs quantum dot molecules (QDMs), valence band mixing, and p -d exchange interaction between holes and localized d electrons give rise to a tunability of charge, spin, and molecular orbitals. The interplay among them determines the nature of the molecular ground state. Remarkably, unlike usual diatomic molecules in which the bonding (BD) state is always the ground state, we found that the molecular ground state in Mn-doped QDMs is of antibonding (AB) character. Furthermore, it is a spin-split state and can be switched into the spin-split BD type. We also demonstrate that this unusual behavior can be tuned by the lateral confinement strength of the QDMs, the concentration, and the distribution of manganese as well as the electric field applied along the direction of the QDM axis.

  5. New Evidence for Localized Electronic States on Atomically Sharp Field Emitters

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Lang, Norton D.; Hussey, Brian W.; Chang, T. H. Philip; Mackie, William A.

    1996-08-01

    We have studied field emission from atomically sharp tungsten-carbide-coated W<111> tips, and from atomically sharp HfC<100> and ZrC<100> tips. We observed multiple-peaked total energy distributions from the apex atoms. These narrow and intense peaks have strong angular anisotropy, and their relative magnitudes depend on the extraction field. They suggest the presence of localized states on the atom at the apex of the tip.

  6. Generating Spin Squeezed State in Atomic Bose-Einstein Condensate via Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Liu, Desheng

    2016-03-01

    We present a theoretical scheme for generating spin squeezed state of atom-photon in atomic Bose-Einstein condensate(BEC) via electromagnetically induced transparency(EIT). Here we focus on the influence of the laser-atom dipole interaction and the two-photon detuning on the degree of spin squeezing. The stronger laser-atom dipole interaction and the smaller two-photon detuning more rapidly induces the stronger spin squeezing.

  7. Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States.

    PubMed

    Helmich-Paris, Benjamin; Hättig, Christof; van Wüllen, Christoph

    2016-04-12

    In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large. PMID:26881830

  8. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.

    PubMed

    Nishimoto, Yoshio

    2016-02-11

    Accounting for solvent effects in quantum chemical calculations is vital for the accurate description of potential energy surfaces in solution. In this study, we derive a formulation of the analytical first-order geometrical derivative of ground- and excited-state energies within the time-dependent density-functional tight-binding (TD-DFTB) method with the polarizable continuum model (PCM), TD-DFTB/PCM. The performance of this is then evaluated for a series of halogen-exchange SN2 reactions. DFTB/PCM reproduces DFT results well for isolated monohalogenated methanes, but its agreement for transition structures significantly depends on the halogen element. The performance of TD-DFTB/PCM is evaluated for the excited-state intramolecular proton transfer (ESIPT) reaction of 3-hydroxyflavone (3HF) in ethanol. TD-DFTB/PCM reproduces the barrier height of the ESIPT reaction in terms of geometry and energy relatively well, but it fails to reproduce the experimental absorption and fluorescence energies as a consequence of the absence of long-range corrections. Computational timings with and without PCM show that the additional cost of PCM for C500H502 is only 10% greater than the corresponding calculation in vacuum. Furthermore, the potential applications of TD-DFTB/PCM are highlighted by applying it to a double-stranded DNA complexed with dye (PDB ID 108D ). We conclude that TD-DFTB/PCM single-point calculations and geometry optimizations for systems consisting of more than 1000 and 500 atoms, respectively, is now manageable and that properties predicted with TD-DFTB must be interpreted with care. PMID:26761635

  9. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The

  10. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  11. Ground state energy of solid molecular hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1972-01-01

    The present status of the theoretical equation of state of solid molecular hydrogen is reviewed. Different quantum mechanical calculations by several groups lead to results which generally agree with each other but which disagree systematically with the measured pressure-volume curve at pressures larger than about 3000 atm. A new calculation of this curve is presented including the effect of the anisotropic interaction between H2 molecules within a completely quantum-mechanical formalism. The results show that inclusion of this interaction removes the discrepancy between theory and experiment at high pressures and that a quantum-mechanical treatment is necessary to realize its full effect.

  12. Non-Elastic Processes in Atom Rydberg-Atom Collisions: Review of State of Art and Problems

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Srećković, V. A.; Ignjatović, Lj. M.; Klyucharev, A. N.; Dimitrijević, M. S.; Sakan, N. M.

    2015-12-01

    In our previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n- n') mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence of the ( n- n')-mixing during a symmetric atom Rydberg-atom collision processes on the intensity of chemi-ionization process. It will be taken into account H(1s) + H ∗( n) collisional systems, where the principal quantum number is n>> 1. It will be demonstrated that the inclusion of ( n- n') mixing in the calculation, influences significantly on the values of chemi-ionization rate coefficients, particularly in the lower part of the block of the Rydberg states. Different possible channels of the ( n- n')-mixing influence on chemi-ionization rate coefficients will be demonstrated. The possibility of interpretation of the ( n- n')-mixing influence will be considered on the basis of two existing methods for describing the inelastic processes in symmetrical atom Rydberg-atom collisions.

  13. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    USGS Publications Warehouse

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  14. Resonance-enhanced multiphoton-ionization photoelectron spectroscopy of even-parity Rydberg states of atomic sulfur

    NASA Astrophysics Data System (ADS)

    Woutersen, S.; Milan, J. B.; Buma, W. J.; de Lange, C. A.

    1996-12-01

    A (2+1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy study of the sulfur atom was performed in the one-photon energy region between 260 and 240 nm. Some 20 previously unobserved even-parity Rydberg states of the sulfur atom are reported, which were accessed by two-photon transitions from the 3P ground state of the atom, prepared by in situ photodissociation of H2S. The (4So)np 3P series could be followed up to n=25. This series is perturbed around n=7 by an interloping Rydberg state converging to the first excited ionic limit 2Do. A two-channel quantum defect theory analysis was performed in order to estimate the composition of the wave functions of the perturbed series members, which is compared with the ionic state branching ratios obtained from photoelectron spectra. This analysis, moreover, enabled the determination of the ionization energy of the lowest ionic state 4So with an improved accuracy as compared to the previously reported value.

  15. Simple model of self-supported deformed states of isolated atoms

    SciTech Connect

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2010-01-15

    We propose a simple three-body model of an atom in which one electron on a circular Rydberg orbit is treated as an independent particle and the remaining core electrons are collectively described as a single object. Within this model we predict the existence of stable deformed states of atoms. The deformation is generated by a bootstrap mechanism. The atomic core is polarized by the excited electron and the induced dipole moment keeps this electron localized. The deformed stable states of the atom are similar to the Trojan states observed in recent experiments. However, in the present case the breaking of the rotational symmetry does not require the presence of external fields.

  16. Simple model of self-supported deformed states of isolated atoms

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2010-01-01

    We propose a simple three-body model of an atom in which one electron on a circular Rydberg orbit is treated as an independent particle and the remaining core electrons are collectively described as a single object. Within this model we predict the existence of stable deformed states of atoms. The deformation is generated by a bootstrap mechanism. The atomic core is polarized by the excited electron and the induced dipole moment keeps this electron localized. The deformed stable states of the atom are similar to the Trojan states observed in recent experiments. However, in the present case the breaking of the rotational symmetry does not require the presence of external fields.

  17. The ground electronic state of KCs studied by Fourier transform spectroscopy.

    PubMed

    Ferber, R; Klincare, I; Nikolayeva, O; Tamanis, M; Knöckel, H; Tiemann, E; Pashov, A

    2008-06-28

    We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X (1)Sigma(+) ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 degrees C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar(+) laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm(-1)), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm(-1) tuning ranges, respectively). The LIF to the ground state was recorded by a Bruker IFS-125HR Fourier transform spectrometer with a spectral resolution of 0.03 cm(-1). Particularly, by applying the 850 nm laser diode we were able to observe LIF progressions to very high vibrational levels of the ground state close to the dissociation limit. The present data field contains 7226 term values for the ground state X (1)Sigma(+) and covers a range from v(")=0 to 97 with J(") varying from 12 to 209. More than 10 000 fluorescence lines were used to fit the ground state potential energy curve via the inverted perturbation approach procedure. The present empirical potential extends up to approximately 12.6 A and covers more than 99% of the potential well depth, it describes most of the spectral lines with an accuracy of about 0.003 cm(-1) and yields a dissociation energy of 4069.3+/-1.5 cm(-1) for the ground state X (1)Sigma(+). First observations of the triplet ground state a (3)Sigma(+) of KCs are presented, and preliminary values of few main molecular constants could be derived. PMID:18601341

  18. Towards Chemically Stable Fermionic Ground State Molecules with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Zwierlein, Martin

    2013-05-01

    Quantum gases with dipolar interactions will open new avenues for the creation of novel quantum many-body systems with intriguing properties, ranging from crystalline over magnetic to topological phases. A promising route for the experimental realization of dipolar quantum gases is the formation of fermionic ground-state molecules with a large electric dipole moment, giving rise to long-range anisotropic interactions. With our experiment we work towards the realization of fermionic ground state molecules of 23Na40K. The NaK ground state molecule is chemically stable and possesses a large induced electric dipole moment of 2.72 Debye. In pioneering studies, we have created nearly degenerate samples of weakly bound 23Na40K Feshbach molecules. With a long lifetime and a significant admixture of the electronic spin singlet state, the Feshbach molecules are an ideal starting point to reach the singlet rovibrational ground state with a two-photon STIRAP transfer. Aiming for an efficient transfer path, we have performed spectroscopic studies on excited and ground state molecular potentials of 23Na40K and will report on our current progress. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  19. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields With Those in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Dill, Grace C.; Loftus, Ryan J.; deGroh, Kim K.; Miller, Sharon K.

    2013-01-01

    The atomic oxygen erosion yields of 26 materials (all polymers except for pyrolytic graphite) were measured in two directed hyperthermal radio frequency (RF) plasma ashers operating at 30 or 35 kHz with air. The hyperthermal asher results were compared with thermal energy asher results and low Earth orbital (LEO) results from the Materials International Space Station Experiment 2 and 7 (MISSE 2 and 7) flight experiments. The hyperthermal testing was conducted to a significant portion of the atomic oxygen fluence similar polymers were exposed to during the MISSE 2 and 7 missions. Comparison of the hyperthermal asher prediction of LEO erosion yields with thermal energy asher erosion yields indicates that except for the fluorocarbon polymers of PTFE and FEP, the hyperthermal energy ashers are a much more reliable predictor of LEO erosion yield than thermal energy asher testing, by a factor of four.

  20. Ground radiation tests and flight atomic oxygen tests of ITO protective coatings for Galileo Spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.

    1986-01-01

    Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.

  1. Recommended practices for in-space and ground laboratory. Atomic oxygen exposure and analysis

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Koontz, Steve; Mccargo, Matt; Pippin, Gary; Rutledge, Sharon

    1992-01-01

    A detailed guide to testing materials for atomic oxygen durability in earth orbit environments is presented. The steps covered include sample preparation, including masking of the sample, dehydration, weighing, and handling; effective fluence prediction, including the use of witness samples (notably Kapton); plasma facility and operational considerations, involving such matters as avoidance of silicone contamination, the use of continuous versus incremental ashing, and temperature of operation; and erosion yield measurement, with calculation methods and protective coating performance indices provided.

  2. Summary of informal workshop on state of ion beam facilities for atomic physics research

    SciTech Connect

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  3. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  4. Generation of the singlet state for three atoms in cavity QED

    SciTech Connect

    Lin Gongwei; Chen Libo; Du Qianhua; Lin Xiumin; Ye Mingyong

    2007-07-15

    We propose a scheme to generate a singlet state with three atoms in cavity QED via Raman transitions. The present scheme does not involve cavity-photon population during the operation and thus is insensitive to the cavity decay. The method can be extended to generate the maximally entangled state of three three-level atoms.

  5. State policies concerning the use of injectants for in situ ground water remediation

    SciTech Connect

    1996-03-01

    This report is based on information about State policies and regulatory programs affecting demonstrations or use of injectants for the remediation of contaminated ground water. This report focuses on identifying specific State regulatory and policy barriers to the use of techniques that enhance in situ ground water treatment technologies through the use of injecting surfactants, co-solvents, and nutrients. The goal of the study was to identify institutional barriers that may inhibit the use of injectants. The study briefly describes experience and policies of each state and provides a contact person who can provide additional information.

  6. Bonding-antibonding ground-state transition in coupled Ge/Si quantum dots

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Bloshkin, A. A.; Dvurechenskii, A. V.

    2009-09-01

    We investigate the two lowest single-particle hole states in the double quantum dots made of two vertically coupled Ge/Si nanoclusters (quantum-dot molecules), using a six-band \\mathbf{k\\,{\\bm\\cdot}\\, p} model. A bonding-antibonding ground-state transition is observed with an increasing interdot distance. This result is counterintuitive since the antibonding molecular ground state is never observed in natural diatomic molecules. We demonstrate that the reordering of bonding and antibonding orbitals with an increasing interdot distance is caused by elastic strain and spin-orbit interaction of holes.

  7. Ground-state phase diagram of the square lattice Hubbard model from density matrix embedding theory

    NASA Astrophysics Data System (ADS)

    Zheng, Bo-Xiao; Chan, Garnet Kin-Lic

    2016-01-01

    We compute the ground-state phase diagram of the Hubbard and frustrated Hubbard models on the square lattice with density matrix embedding theory using clusters of up to 16 sites. We provide an error model to estimate the reliability of the computations and complexity of the physics at different points in the diagram. We find superconductivity in the ground state as well as competition between inhomogeneous charge, spin, and pairing states at low doping. The estimated errors in the study are below Tc in the cuprates and on the scale of contributions in real materials that are neglected in the Hubbard model.

  8. Charge ordered normal ground state and its interplay with superconductivity in the underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Sebastian, Suchitra

    2015-03-01

    Over the last few years, evidence has gradually built for a charge ordered normal ground state in the underdoped region of the cuprate high temperature superconductors. I will address the electronic structure of the normal ground state of the underdoped cuprates as accessed by quantum oscillations, and relate it to complementary measurements by other experimental techniques. The interplay of the charge ordered ground state with the antinodal gapped pseudogap state, and overarching magnetic and superconducting correlations will be further explored. This work was performed in collaboration with N. Harrison, G. G. Lonzarich, B. J. Ramshaw, B. S. Tan, P. A. Goddard, F. F. Balakirev, C. H. Mielke, R. Liang, D. A. Bonn, and W. N. Hardy

  9. Improved quantum hard-sphere ground-state equations of state

    SciTech Connect

    Solis, M. A.; Llano, M. de; Clark, J. W.; Baker, George A. Jr.

    2007-09-15

    The London ground-state energy formula as a function of number density for a system of identical boson hard spheres, corrected for the reduced mass of a pair of particles in a 'sphere-of-influence' picture, and generalized to fermion hard-sphere systems with two and four intrinsic degrees of freedom, has a double-pole at the ultimate regular (or periodic, e.g., face-centered-cubic) close-packing density usually associated with a crystalline branch. Improved fluid branches are constructed based upon exact, field-theoretic perturbation-theory low-density expansions for many-boson and many-fermion systems, extrapolated to intermediate densities via Pade and other approximants, but whose ultimate density is irregular or random closest close-packing as suggested in studies of a classical system of hard spheres. Results show substantially improved agreement with the best available Green-function Monte Carlo and diffusion Monte Carlo simulations for bosons, as well as with ladder, variational Fermi hypernetted chain, and so-called L-expansion data for two-component fermions.

  10. Theoretical Studies of the Ground and Excited State Structures of Stilbene

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Rajat K.; Freed, Karl F.; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2013-10-01

    Optimized geometries are evaluated for the ground and low lying excited states of cis-stilbene, trans-stilbene, and 4a,4b-dihydrophenanthrene (DHP) from calculations performed with the improved virtual orbital, complete active space configuration interaction (IVO-CASCI) method. The calculations indicate that a nonplanar conformer of trans-stilbene is the most stable among the isomers. The calculated ground and low lying excited state geometries agree well with experiment and with prior theoretical estimates where available. Our IVO-CASCI based multireference Möller-Plesset (MRMP) computations place the 1Bu state of trans stilbene to be -4.0 eV above the ground X1Ag state, which is in accord with experiment and with earlier theoretical estimates. The 11Bu state of trans-stilbene can be represented by the highest occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital (LUMO) transition (ionic type) from the ground state, whereas its 21Bu state is dominated by the HOMO - LUMO+1 and HOMO-1 - LUMO transitions (covalent type). Likewise, the 11B and 21B states of cis-stilbene and DHP are also found to be of ionic and covalent types, respectively.

  11. Ground-state energy of the q-state Potts model: The minimum modularity.

    PubMed

    Lee, J S; Hwang, S; Yeo, J; Kim, D; Kahng, B

    2014-11-01

    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Reichardt and Bornholdt, Phys. Rev. E 76, 015102 (2007)PLEEE81539-375510.1103/PhysRevE.76.015102]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(≥2) communities. Here we calculate the modularity for q communities by evaluating the ground-state energy of the q-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to 〈sqrt[k]〉/〈k〉 regardless of q and that only the coefficient depends on q. In particular, when the degree distribution follows a power law, the modularity is proportional to 〈k〉^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks. PMID:25493772

  12. Ground-state energy of the q -state Potts model: The minimum modularity

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Hwang, S.; Yeo, J.; Kim, D.; Kahng, B.

    2014-11-01

    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Reichardt and Bornholdt, Phys. Rev. E 76, 015102 (2007), 10.1103/PhysRevE.76.015102]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q (≥2 ) communities. Here we calculate the modularity for q communities by evaluating the ground-state energy of the q -state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to <√{k }> / regardless of q and that only the coefficient depends on q . In particular, when the degree distribution follows a power law, the modularity is proportional to -1 /2. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.

  13. Historically grounded spatial population projections for the continental United States

    NASA Astrophysics Data System (ADS)

    Jones, Bryan; O'Neill, Brian C.

    2013-12-01

    Large-scale spatial population projections are of growing importance to the global change community. Spatial settlement patterns are a key determinant of vulnerability to climate-related hazards as well as to land-use and its consequences for habitat, energy use, and emissions of greenhouse gases and air pollutants. Few projections exist of spatial distribution at national or larger scales, and while recent efforts improve on earlier approaches that simply scaled or extrapolated existing spatial patterns, important methodological shortcomings remain and models have not been calibrated to nor validated against historical trends. Here we present spatially explicit 100-year projections for the continental United States consistent with two different scenarios of possible socio-economic development. The projections are based on a new model that is calibrated to observed changes in regional population distribution since 1950, corrects for distorting effects at borders, and employs a spatial mask for designating protected or uninhabitable land. Using new metrics for comparing spatial outcomes, we find that our projections anticipate more moderate trends in urban expansion and coastal settlement than widely used existing projections. We also find that differences in outcomes across models are much larger than differences across alternative socio-economic scenarios for a given model, emphasizing the importance of better understanding of methods of spatial population projection for improved integrated assessments of social and environmental change.

  14. Universal dynamic magnetism in Yb pyrochlores with disparate ground states

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Tachibana, M.; Freitas, R. S.; Luke, G. M.; Wiebe, C. R.; Gaulin, B. D.

    2016-03-01

    The ytterbium pyrochlore magnets, Yb2B2O7 (B =Sn ,Ti ,Ge ) are well described by Seff=1 /2 quantum spins decorating a network of corner-sharing tetrahedra and interacting via anisotropic exchange. Structurally, only the nonmagnetic B -site cation, and hence primarily the lattice parameter, changes across the series. Nonetheless, a range of magnetic behaviors is observed: the low-temperature magnetism in Yb2Ti2O7 and Yb2Sn2O7 has a ferromagnetic character, while Yb2Ge2O7 displays an antiferromagnetically ordered Néel state at low temperatures. While the static properties of the ytterbium pyrochlores are distinct, inelastic neutron scattering measurements reveal a common character to their exotic spin dynamics. All three ytterbium pyrochlores show a gapless continuum of spin excitations, resembling overdamped ferromagnetic spin waves at low Q . Furthermore, the specific heat of the series also follows a common form, with a broad, high-temperature anomaly followed by a sharp low-temperature anomaly at TC or TN. The novel spin dynamics we report correlate strongly with the broad specific heat anomaly only, remaining unchanged across the sharp anomaly. This result suggests that the primary order parameter in the ytterbium pyrochlores associated with the sharp anomaly is "hidden" and not simple magnetic dipole order.

  15. Carving Complex Many-Atom Entangled States by Single-Photon Detection

    NASA Astrophysics Data System (ADS)

    Chen, Wenlan; Hu, Jiazhong; Duan, Yiheng; Braverman, Boris; Zhang, Hao; Vuleti?, Vladan

    2015-12-01

    We propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure entangled state. This method can be implemented with existing technology, yields high success probability per trial, and can generate complex entangled states such as mesoscopic superposition states of coherent spin states with high fidelity.

  16. Ground Water Atlas of the United States: Introduction and National Summary

    USGS Publications Warehouse

    Miller, James A.

    1999-01-01

    The Ground Water Atlas of the United States provides a summary of the most important information available for each principal aquifer, or rock unit that will yield usable quantities of water to wells, throughout the 50 States, Puerto Rico, and the U.S. Virgin Islands. The Atlas is an outgrowth of the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey (USGS), a program that investigated 24 of the most important aquifers and aquifer systems of the Nation and one in the Caribbean Islands (fig. 1). The objectives of the RASA program were to define the geologic and hydrologic frameworks of each aquifer system, to assess the geochemistry of the water in the system, to characterize the ground-water flow system, and to describe the effects of development on the flow system. Although the RASA studies did not cover the entire Nation, they compiled much of the data needed to make the National assessments of ground-water resources presented in the Ground Water Atlas of the United States. The Atlas, however, describes the location, extent, and geologic and hydrologic characteristics of all the important aquifers in the United States, including those not studied by the RASA program. The Atlas is written so that it can be understood by readers who are not hydrologists. Simple language is used to explain technical terms. The principles that control the presence, movement, and chemical quality of ground water in different climatic, topographic, and geologic settings are clearly illustrated. The Atlas is, therefore, useful as a teaching tool for introductory courses in hydrology or hydrogeology at the college level and as an overview of ground-water conditions for consultants who need information about an individual aquifer. It also serves as an introduction to regional and National ground-water resources for lawmakers, personnel of local, State, or Federal agencies, or anyone who needs to understand ground-water occurrence, movement, and quality. The purpose of the Ground Water Atlas of the United States is to summarize, in one publication with a common format, the most important ground-water information that has been collected over many years by the USGS, other Federal agencies, and State and local water management agencies. The purpose of this introductory chapter is to describe the content of the Atlas; to discuss the characteristics, use, and limitations of the maps and other types of illustrations used in the different chapters of the book; to summarize the locations of the principal aquifers on a Nationwide map; and to give an example of an aquifer in each principal hydrogeologic setting.

  17. Hydrogeologic factors that influence ground water movement in the desert southwest United States

    USGS Publications Warehouse

    Chuang, Frank C.; McKee, Edwin H.; Howard, Keith A.

    2003-01-01

    A project to study ground-water and surface-water interactions in the desert southwestern United States was initiated in 2001 by the Tucson, Arizona office of the Water Resources Division, U.S. Geological Survey (USGS). One of the goals of the Southwest Ground-water Resources Project was to develop a regional synthesis that includes the use of available digital geologic data, which is growing rapidly due to the increasing use of Geographic Information Systems (GIS). Included in this report are the digital maps and databases of geologic information that should have a direct impact on the studies of ground-water flow and surface-water interaction. Ground-water flow is governed by many geologic factors or elements including rock and soil permeability, stratigraphy and structural features. These elements directly influence ground-water flow, which is key to understanding the possible inter-connectivity of aquifer systems in desert basins of the southwestern United States. We derive these elements from the evaluation of regional geology and localized studies of hydrogeologic basins. These elements can then be applied to other unstudied areas throughout the desert southwest. This report presents a regional perspective of the geologic elements controlling ground-water systems in the desert southwest that may eventually lead to greater focus on smaller sub-regions and ultimately, to individual ground-water basins.

  18. Dynamic polarizabilities and related properties of clock states of the ytterbium atom

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Derevianko, A.

    2010-04-01

    We carry out relativistic many-body calculations of the static and dynamic dipole polarizabilities of the ground 6s2 1S0 and the first excited 6s6p 3Po0 states of Yb. With these polarizabilities, we compute several properties of Yb relevant to optical lattice clocks operating on the 6s2 1S0-6s6p 3Po0 transition. We determine (i) the first four magic wavelengths of the laser field for which the frequency of the clock transition is insensitive to the laser intensity. While the first magic wavelength is known, we predict the second, the third and the fourth magic wavelengths to be 551 nm, 465 nm and 413 nm. (ii) We re-evaluate the effect of black-body radiation on the frequency of the clock transition, the resulting clock shift at T = 300 K being -1.41(17) Hz. (iii) We compute long-range interatomic van der Waals coefficients (in a.u.) C6(6s2 1S0 + 6s2 1S0) = 1909(160), C6(6s2 1S0 + 6s6p 3P0) = 2709(338) and C6(6s6p 3P0 + 6s6p 3P0) = 3886(360). Finally, we determine the atom-wall interaction coefficients (in a.u.), C3(6s2 1S0) = 3.34 and C3(6s6p 3P0) = 3.68. We also address and resolve a disagreement between previous calculations of the static polarizability of the ground state.

  19. State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer

    NASA Astrophysics Data System (ADS)

    Cui, Ganglong; Fang, Wei-hai

    2013-01-01

    Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T1 (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic energy via ultrafast internal conversion to the ground state. In this work, we employed high-level complete-active space self-consistent field and its second-order perturbation methods to explore the photophysical mechanism of a 2-thiothymine model. We have optimized the minimum energy structures in the low-lying seven electronic states, as well as ten intersection points. On the basis of the computed potential energy profiles and spin-orbit couplings, we proposed three competitive, efficient nonadiabatic pathways to the lowest triplet state T1 from the initially populated singlet state S2. The suggested mechanistic scenario explains well the recent experimental phenomena. The origin responsible for the distinct photophysical behaviors between thymine and 2-thiothymine is ascribed to the heavy-atom effect, which is significantly enhanced in the latter. Additionally, this heavy-atom effect is found to be state-specific, which could in principle be used to tune the photophysics of 2-thiothymine. The present high-level electronic structure calculations also contribute to understand the working mechanism of thiothymidine in PDT.

  20. Effect of Anisotropic Spin-Orbit Coupling on the Ground State of Bose-Einstein Condensate in an External Potential

    NASA Astrophysics Data System (ADS)

    He, Wan-Quan; Gao, Ri-Li; Zhang, Pei; Bi, Xiong-Wei; Pan, Qing-Shan; Xu, Shi-Juan

    2015-03-01

    Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantum-state manipulation and will contribute to the design and exploration of novel quantum devices. Here we consider a quasi-two-dimensional spin-orbit coupled Bose-Einstein condensate confined in an external harmonic potential, with emphasis on the effects of anisotropic spin-orbit coupling on the equilibrium ground-state structure of such a system. For the cases with spin-orbit coupling solely in x- or y-axis direction, the ground-state structure can develop to the well-known standing wave phase, in which the two components always form an alternative density arrangement. For a two-dimensional anisotropic spin-orbit coupling, the separated lumps first become bend, then form two rows of stripe structure along y direction with further increasing the strength of spin-orbit coupling in x-direction. Furthermore, the distance between these two rows of stripe structure is also investigated in detail. Supported by National Natural Science Foundation of China under Grant No. 61361002, the Applied Fundamental Research Projects of Yunnan Province under Grant No. 2013FZ121