Science.gov

Sample records for ground state atoms

  1. Transport properties of ground state oxygen atoms

    NASA Technical Reports Server (NTRS)

    Holland, Paul M.; Biolsi, Louis

    1988-01-01

    The transport properties of dilute monatomic gases depend on the two-body interactions between like atoms. When two ground-state oxygen atoms interact, they can follow any of 18 potential energy curves corresponding to O2, all of which contribute to the transport properties of the ground-state atoms. Transport collision integrals have been calculated for those interactions with an attractive minimum in the potential, and repulsive ab initio potential-energy curves have been accurately represented. Results are given for viscosity, thermal conductivity, and diffusion and they are compared with previous theoretical calculations.

  2. The Ground State Energy of Heavy Atoms: The Leading Correction

    NASA Astrophysics Data System (ADS)

    Handrek, Michael; Siedentop, Heinz

    2015-10-01

    For heavy atoms (large atomic number Z) described by no-pair operators in the Furry picture, we find the ground state's leading energy correction. We compare the result with (semi-)empirical values and Schwinger's prediction showing more than qualitative agreement.

  3. Measured Atomic Ground State Polarizabilities of 35 Metallic Elements

    NASA Astrophysics Data System (ADS)

    Indergaard, John; Ma, Lei; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walter

    2015-03-01

    Advanced pulsed cryogenic molecular beam electric deflection methods utilizing a position-sensitive mass spectrometer and 7.87 eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the periodic table for the first time. These measurements increase the total number of experimentally obtained atomic polarizabilities from 23 to 57. Concurrent Stern-Gerlach deflection measurements verified the ground state condition of the measured atoms. Generating higher temperature beams allowed for the comparison of relative populations of the ground and excited states in order to extract the true temperature of the atomic beam, which followed the nominal temperature closely over a wide temperature range. Comparison of newly measured polarizabilities with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the periodic table. Cluster Lab at Georgia Tech.

  4. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (inventor); Orient, Otto J. (inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  5. Measured atomic ground-state polarizabilities of 35 metallic elements

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Indergaard, John; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walt A.

    2015-01-01

    Advanced pulsed cryogenic molecular-beam electric deflection methods involving position-sensitive mass spectrometry and 7.87-eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the Periodic Table. Concurrent Stern-Gerlach deflection measurements verified the ground-state condition of the measured atoms. Comparison with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the Periodic Table.

  6. All-optical reconstruction of atomic ground-state population

    SciTech Connect

    London, P.; Firstenberg, O.; Shuker, M.; Ron, A.

    2010-04-15

    The population distribution within the ground state of an atomic ensemble is of great significance in a variety of quantum-optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical-pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme, which result from the symmetry properties of the dipole matrix elements, are discussed.

  7. Photoabsorption by ground-state alkali-metal atoms.

    NASA Technical Reports Server (NTRS)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  8. Monotonicity of Quantum Ground State Energies: Bosonic Atoms and Stars

    NASA Astrophysics Data System (ADS)

    Kiessling, Michael K.-H.

    2009-12-01

    The N-dependence of the non-relativistic bosonic ground state energy ? B ( N) is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and it is shown that {E}_{{C}}^{{B}}(N)/{P}_{{C}}(N) grows monotonically in N>1, where ? C ( N)= N 2( N-1). The Newton systems are "bosonic stars," and it is shown that when the Bosons are centrally attracted to a fixed gravitational "grain" of mass M>0, and N>2, then {E}_{{N}}^{{B}}(N;M)/{P}_{ {N}}(N) grows monotonically in N, where ? N ( N)= N( N-1)( N-2); in the translation-invariant problem ( M=0), it is shown that when N>1 then {E}_{{N}}^{{B}}(N;0)/{P}_{{C}}(N) grows monotonically in N, with ? C ( N) from the Coulomb problem. Some applications of the new monotonicity results are discussed.

  9. Spontaneous Raman scattering by ground-state oxygen atoms.

    PubMed

    Dasch, C J; Bechtel, J H

    1981-01-01

    We report the first known observation of Raman scattering by oxygen atoms. The (3)P(2)?(3)P(1) and (3)P(2)?(3)P(0) transitions in the electronic ground state that produced Raman shifts of 158 and 227 cm(-1) were detected. These transitions were observed in a fuel-lean atmospheric H(2) + O(2) flame. By comparing the O electronic and O(2) pure-rotational Raman-scattering intensities, we measured the polarized cross sections for the two lines to be 6 +/- 1 x 10(-31) and 4 +/- 1 x 10(-31) cm(2)/sr, respectively, with an excitation source at 532.1 nm. These cross sections are two to three times stronger than those predicted by a single-configuration single-excitation Coulomb approximation. PMID:19701318

  10. Theoretical investigation of state-changing thermal collisions between Rydberg atoms and ground state noble gas atoms

    SciTech Connect

    Davis, I.L.

    1983-01-01

    Two methods for calculating state-changing collisional matrix elements, and hence angular-momentum-mixing cross sections, are presented for a ground state noble gas atom colliding with a Rydberg atom at thermal energies. The first is a fully quantal method using Monte Carlo integration to perform the necessary nonseparable fifteen-dimensional collision integrals. The equations are developed for general treatment in the first and higher Born approximations, the distorted wave approximations,and several close-coupling schemes. The Monte Carlo method is carefully developed and tested for use in the types of integrals involved, and variance reduction techniques are discussed and applied. The second method uses a Gegenbauer polynomial expansion of the -1/r/sup 4/ polarization potential to find the necessary matrix elements. It also employs the elliptic functions and elliptic integrals to calculate the classical trajectory of the ground state atom as it passes the ionic Rydberg core. This semiclassical method is easily transformed into a fully quantal method, retaining only the polarization potential feature, by integrating the translational wave function of the incoming ground state atom and the matrix elements calculated via the Gegenbauer polynomials. The equations of scattering for the first quantal method are then specifically developed for ground state helium colliding with Rydberg helium, and calculation of the l-mixing cross section for He(10/sup 1/P) is performed using over a half million random fifteen-dimensional points. The result, accurate to within a factor of two, gives a result of 1600 A/sup 2/ compared to the experimental value of 2580 +/- 590 A/sup 2/. This experimental value is within the variance of the Monte Carlo calculation.

  11. Ground state properties of solid and liquid spin-aligned atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Danilowicz, R. L.; Dugan, J. V., Jr.; Etters, R. D.

    1976-01-01

    Calculations of the ground state energy in the solid phase were performed with the aid of a variational approach. The Morse potential form of the atomic triple potential computed by Kolos and Wolniewicz (1965) was employed for the calculations. The ground state energies of both the liquid and solid phases of spin-aligned atomic hydrogen around the volume of the transition are presented in a graph.

  12. Orientation effects in thermal collisions between ''circular''--Rydberg-state atoms and ground-state helium

    SciTech Connect

    de Prunele, E.

    1985-06-01

    A general formulation for thermal collisions between a Rydberg-state atom and a ground-state rare-gas atom is developed within the framework of the impulse approximation. This formulation allows calculation of cross sections for state-to-state transitions for an arbitrary initial orientation between the Rydberg-state atom and the relative velocity of the two partners of the collision. It also allows a direct computation of these cross sections averaged over all orientations, a situation corresponding to a cell experiment. In this formulation, the differential cross sections with respect to the modulus of the momentum transfer are obtained analytically in terms of rotation matrix elements. Numerical applications are made for the case of a sodium atom in a ''circular'' Rydberg state (Vertical Barn,l,m>, with l = m = n-1) colliding with helium. The collisional processes are found to be highly anisotropic. In particular, a selection rule may appear, or disappear, depending upon the initial orientation. The extension to the case where an external electric field is present is also discussed, with special emphasis on symmetry properties.

  13. Relativistic, numerically parameterized, optimized, effective potentials for the ground state of the atoms He through Ra

    SciTech Connect

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-03-15

    Parameterized potentials obtained within the relativistic, optimized, effective potential framework are reported for the ground state of the atoms He through Ra. The potentials are expressed in terms of Yukawian functions times a power of r. The total, kinetic, exchange, and single-particle energies and the expectation value of the spin-spin interaction are given for each atom.

  14. Dynamical Casimir-Polder energy between an excited- and a ground-state atom

    SciTech Connect

    Rizzuto, L.; Persico, F.; Passante, R.

    2004-07-01

    We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach, which uses a nonnormalizable dressed state for the excited atom.

  15. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  16. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  17. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  18. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  19. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    NASA Astrophysics Data System (ADS)

    Bussery-Honvault, Batrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X 1?+g and excited 1?g(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the 1?g?1?+g transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the 1?g(4s3d) to the X 1?+g state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by photoassociation of cold atoms to the first 1?g state followed by a spontaneous emission to the ground state.

  20. Influence of an external electric field on thermal collisions between ''circular'' Rydberg-state atoms and ground-state helium

    SciTech Connect

    de Prunele, E.

    1986-05-01

    The influence of an external electric field on thermal collisions between a sodium atom excited in a ''circular'' Rydberg state (n = l+1 = m+1 = 20) and a ground-state helium atom is studied numerically within the framework of the impulse approximation. The effect of the field is determined by using parabolic wave functions for the initial and final hydrogenic atomic states. The removal of degeneracy induced by the field appears to have no significant effect for fields in the range of 0-400 V/cm. However, the state-to-state transition cross sections are strongly dependent on the initial orientation as found in previous calculations without electric field.

  1. Quantum ground state of self-organized atomic crystals in optical resonators

    SciTech Connect

    Fernandez-Vidal, Sonia; De Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-15

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  2. Quantum ground state of self-organized atomic crystals in optical resonators

    NASA Astrophysics Data System (ADS)

    Fernndez-Vidal, Sonia; de Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-01

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  3. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  4. Learning Approach on the Ground State Energy Calculation of Helium Atom

    NASA Astrophysics Data System (ADS)

    Shah, Syed Naseem Hussain

    2010-07-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function. The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  5. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  6. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry

    NASA Astrophysics Data System (ADS)

    Gregoire, Maxwell D.; Hromada, Ivan; Holmgren, William F.; Trubko, Raisa; Cronin, Alexander D.

    2015-11-01

    We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms using a three-nanograting Mach-Zehnder atom beam interferometer. Our measurements provide benchmark tests for atomic structure calculations and thus test the underlying theory used to interpret atomic parity-nonconservation experiments. We measured ?Cs=4 ? ?059.39 (9 ) 3,?Rb=4 ? ?047.39 (8 ) 3 , and ?K=4 ? ?042.93 (7 ) 3 . In atomic units, these measurements are ?Cs=401.2 (7 ) ,?Rb=320.1 (6 ) , and ?K=290.0 (5 ) . We report ratios of polarizabilities ?Cs/?Rb=1.2532 (10 ) ,?Cs/?K=1.3834 (9 ) , and ?Rb/?K=1.1040 (9 ) with smaller fractional uncertainty because the systematic errors for individual measurements are largely correlated. Since Cs atom beams have short de Broglie wavelengths, we developed measurement methods that do not require resolved atom diffraction. Specifically, we used phase choppers to measure atomic beam velocity distributions, and we used electric field gradients to give the atom interference pattern a phase shift that depends on atomic polarizability.

  7. Merit of ground-state electronegativities; a reply to ``Comments on `Introduction to the chemistry of fractionally charged atoms: Electronegativity' ''

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.; Zweig, George

    1987-09-01

    The arguments presented in the Comment by Liebman and Huheey are shown to be incorrect. The operational equivalence of Mulliken ground-state electronegativities and Pauling electronegativities is demonstrated for neutral atoms. It is shown that ground-state electronegativities and valence-state electronegativities for both neutral atoms and ions are also operationally equivalent. A single electronegativity scale based on Mulliken ground-state electronegativities may therefore be used for neutral atoms, ions, and fractionally charged atoms, as originally implied in the paper by Lackner and Zweig.

  8. Transition between ground state and metastable states in classical two-dimensional atoms

    NASA Astrophysics Data System (ADS)

    Kong, Minghui; Partoens, B.; Peeters, F. M.

    2002-04-01

    Structural and static properties of a classical two-dimensional system consisting of a finite number of charged particles that are laterally confined by a parabolic potential are investigated by Monte Carlo simulations and the Newton optimization technique. This system is the classical analog of the well-known quantum dot problem. The energies and configurations of the ground and all metastable states are obtained. In order to investigate the barriers and the transitions between the ground and all metastable states we first locate the saddle points between them, then by walking downhill from the saddle point to the different minima, we find the path in configurational space from the ground state to the metastable states, from which the geometric properties of the energy landscape are obtained. The sensitivity of the ground-state configuration on the functional form of the interparticle interaction and on the confinement potential is also investigated.

  9. Vibrational ground state cooling of a neutral atom in a tightly focused optical dipole trap

    NASA Astrophysics Data System (ADS)

    Aljunid, Syed; Maslennikov, Gleb; Paesold, Martin; Durak, Kadir; Leong, Victor; Kurtsiefer, Christian

    2012-06-01

    Recent experiments have shown that an efficient interaction between a single trapped atom and light can be established by concentrating light field at the location of the atom by focusing [1-3]. However, to fully exploit the benefits of strong focusing one has to localize the atom at the maximum of the field strength [4]. The position uncertainty due to residual kinetic energy of the atom in the dipole trap (depth 1mK) after molasses cooling is significant (few 100 nm). It limits the interaction between a focused light mode and an atom already for moderate focusing strength [2]. To address this problem we implement a Raman Sideband cooling technique, similar to the one commonly used in ion traps [5], to cool a single ^87Rb atom to the ground state of the trap. We have cooled the atom along the transverse trap axis (trap frequency ??=55,), to a mean vibrational state n?=0.55 and investigate the impact on atom-light interfaces.[4pt] [1] M. K. Tey, et al., Nature Physics 4 924 (2008)[0pt] [2] M. K. Tey et. al., New J. Phys. 11, 043011 (2009)[0pt] [3] S.A. Aljunid et al., PRL 103, 153601 (2009)[0pt] [4] C. Teo and V. Scarani Opt. Comm. 284 4485-4490 (2011)[0pt] [5] C. Monroe et al., PRL 75, 4011 (1995)

  10. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  11. Pfaffian-like ground states for bosonic atoms and molecules in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Äńurić, Tanja; Chancellor, Nicholas; Crowley, Philip J. D.; Di Cintio, Pierfrancesco; Green, Andrew G.

    2016-02-01

    We study ground states and elementary excitations of a system of bosonic atoms and diatomic Feshbach molecules trapped in a one-dimensional optical lattice using exact diagonalization and variational Monte Carlo methods. We primarily study the case of an average filling of one boson per site. In agreement with bosonization theory, we show that the ground state of the system in the thermodynamic limit corresponds to the Pfaffian-like state when the system is tuned towards the superfluid-to-Mott insulator quantum phase transition. Our study clarifies the possibility of the creation of exotic Pfaffian-like states in realistic one-dimensional systems. We also present preliminary evidence that such states support non-Abelian anyonic excitations that have potential application for fault-tolerant topological quantum computation.

  12. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    SciTech Connect

    Bussery-Honvault, Beatrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X {sup 1}{sigma}{sub g}{sup +} and excited {sup 1}{pi}{sub g}(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the {sup 1}{pi}{sub g}(leftarrow){sup 1}{sigma}{sub g}{sup +} transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the {sup 1}{pi}{sub g}(4s3d) to the X {sup 1}{sigma}{sub g}{sup +} state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by photoassociation of cold atoms to the first {sup 1}{pi}{sub g} state followed by a spontaneous emission to the ground state.

  13. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  14. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  15. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  16. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  17. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron

  18. Ground state hyperfine splitting in 6,7Li atoms and the nuclear structure.

    PubMed

    Puchalski, Mariusz; Pachucki, Krzysztof

    2013-12-13

    Relativistic and QED corrections are calculated for a hyperfine splitting of the 2S1/2 ground state in 6,7Li atoms with a numerically exact account for electronic correlations. The resulting theoretical predictions achieve such a precision level that, by comparison with experimental values, they enable determination of the nuclear properties. In particular, the obtained results show that the 7Li nucleus, having a charge radius smaller than 6Li, has about a 40% larger Zemach radius. Together with known differences in the electric quadrupole and magnetic dipole moments, this calls for a deeper understanding of the Li nuclear structure. PMID:24483650

  19. Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms

    SciTech Connect

    Kluepfel, Simon; Kluepfel, Peter; Jonsson, Hannes

    2011-11-15

    The ground state of atoms from H to Ar was calculated using a self-interaction correction to local- and gradient-dependent density functionals. The correction can significantly improve the total energy and makes the orbital energies consistent with ionization energies. However, when the calculation is restricted to real orbitals, application of the self-interaction correction can give significantly higher total energy and worse results, as illustrated by the case of the Perdew-Burke-Ernzerhof gradient-dependent functional. This illustrates the importance of using complex orbitals for systems described by orbital-density-dependent energy functionals.

  20. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.

    PubMed

    Yi, Zhen; Li, Gao-xiang; Wu, Shao-ping; Yang, Ya-ping

    2014-08-25

    We investigate a hybrid quantum system combining cavity quantum electrodynamics and optomechanics, where a photon mode is coupled to a four-level tripod atom and to a mechanical mode via radiation pressure. We find that within the single-photon optomechanics and Lamb-Dicke limit, the presence of the tripod atom alters the optical properties of the cavity radiation field drastically, and gives rise to completely quantum destructive interference effects in the optical scattering. The heating rate can be dramatically suppressed via utilizing the completely destructive interference involving atom, photon and phonon, and the obtained result is analogous to that of the resolved sideband regime. The heating process is only connected to the scattering of cavity damping path, which is also far-off resonance. Meanwhile, the cooling rate assisted by the atomic transitions can be significantly enhanced, where the cooling process occurs through the cavity and atomic dissipation paths. Finally, the ground-state cooling of the movable mirror is achievable and even more robust to heating process and thermal noise. PMID:25321216

  1. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  2. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  3. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    SciTech Connect

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and ΔSºHAT are both affected by ΔSºvib and vary significantly with the metal center involved. The close connection between ΔSºHAT and ΔSºET provides an important link between these two fields and provides a starting point from which to predict which HAT systems will have important ground-state entropy effects. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    PubMed Central

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-01-01

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2-bi-1,4,5,6-tetrahydropyrimidine, H2bim = 2,2-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2-pyridyl)-imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reaction of [CoII(H2bim)3]2+ with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer, ?41 2 cal mol?1 K?1. This is even more negative than the ?SoHAT = ?30 2 cal mol?1 K?1 for the two iron complexes and the ?SoHAT for RuII(acac)2(py-imH) + TEMPO, 4.9 1.1 cal mol?1 K?1, as reported earlier. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ?SoHAT. Calorimetry on TEMPOH + tBu3PhO gives ?HoHAT = ?11.2 0.5 kcal mol?1 which matches the enthalpy predicted from the difference in literature solution BDEs. A brief evaluation of the literature thermochemistry of TEMPOH and tBu3PhOH supports the common assumption that ?SoHAT ? 0 for HAT reactions of organic and small gas-phase molecules. However, this assumption does not hold for transition metal based HAT reactions. The trend in magnitude of |?SoHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ?SoET, in aprotic solvents. This is because both ?SoET and ?SoHAT have substantial contributions from vibrational entropy, which varies significantly with the metal center involved. The close connection between ?SoHAT and ?SoET provides an important link between these two fields and provides a starting point from which to predict which HAT systems will have important ground-state entropy effects. PMID:19275235

  5. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.

  6. Estimation of the Ground State Energy of an Atomic Solid by Employing Quantum Trajectory Dynamics with Friction.

    PubMed

    Gu, Bing; Hinde, Robert J; Rassolov, Vitaly A; Garashchuk, Sophya

    2015-07-14

    Evolution with energy dissipation can be used to obtain the ground state of a quantum-mechanical system. This dissipation is introduced in the quantum trajectory framework by adding an empirical friction force to the equations of motion for the trajectories, which, as an ensemble, represent a wave function. The quantum effects in dynamics are incorporated via the quantum force derived from the properties of this ensemble. For scalability to large systems, the quantum force is computed approximately yet with sufficient accuracy to describe the strongly anharmonic ground state of solid (4)He represented by a simulation cell of 180 atoms. PMID:26575727

  7. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also be presented. This work is supported by the Johns Hopkins University, Applied Physics Laboratory, under grant 939991 (under NASA grant NAG5-13002). [1] Feofilov, A., Kutepov, A. A., Garcí­a-Comas, M., López-Puertas, M., Marshall, B. T., Gordley, L. L., Manuilova, R. O., Yankovsky, V. A., Pesnell, W. D., Goldberg, R. A., Petelina, S. V., and Russell III., J. M. 'SABER/TIMED Observations of Water Vapor in the Mesosphere: Retrieval Methodology and First Results'. Submitted to J. of Atmos. and Terrest. Phys., (2008). [2] Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., J. of Chem. Phys., 123, 194303, (2005). [3] Pejakovic, D. A., Campbell, Z., Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., Eos. Trans. AGU 85(47), Fall Meet. Suppl., Abstract SA41A-1032, (2004).

  8. Meta-Atom Behavior in Clusters Revealing Large Spin Ground States.

    PubMed

    Hernndez Snchez, Ral; Betley, Theodore A

    2015-11-01

    The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (?(M)T ? 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mssbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min). PMID:26440452

  9. A simple, radially correlated ground state wavefunction for two electron atoms.

    NASA Technical Reports Server (NTRS)

    Altick, P. L.

    1972-01-01

    A one parameter function is presented as an approximation to the ground state wavefunction of the two electron radial hamiltonian. The parameter may be fixed by a nonvariational criterion. The resulting expectation value of the radial hamiltonian differs from its exact eigenvalue by about 2 parts in 3000 for helium while the 'local energy' never differs by more than 10% from the exact value over the entire r1-r2 plane. The cases Z = 1 and Z = 3 are also investigated.

  10. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    NASA Astrophysics Data System (ADS)

    Tomza, Micha?

    2014-08-01

    The properties of the electronic ground state of the polar and paramagnetic europium-S-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, EuX(X=Li,Na,K,Rb,Cs), europium-alkaline-earth-metal-atom, EuY(Y=Be,Mg,Ca,Sr,Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances C6 are also reported. The EuK, EuRb, and EuCs molecules are examples of species possessing both large electric and magnetic dipole moments making them potentially interesting candidates for ultracold many-body quantum simulations when confined in an optical lattice in combined electric and magnetic fields.

  11. A case of analytical solution of the Griffin-Hill-Wheeler equation: The ground state of the hydrogen atom with a Gaussian Generator function

    NASA Astrophysics Data System (ADS)

    Mohallem, J. R.; Trsic, M.

    1985-12-01

    It is shown that the Griffin-Hill-Wheeler equation for the ground state of the hydrogen atom can be solved analytically for a Gaussian trial function. Both the exact eigenfunction and eigenvalue can be generated.

  12. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  13. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  14. Interactions between Ground State Oxygen Atoms and Molecules: O - O and O (sub2) - O (sub2)

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Maisch, William G.

    1960-01-01

    Potential energy curves for O - O interactions corresponding to the X (sup 3) Sigma - g, 1 delta g, 1 Sigma plus g, 3 delta u, A3 Sigma plus u, 1 Sigma - u, and B3 Sigma states of O (sub 2) have been calculated from spectroscopic data by the Rydberg-Klein-Rees method. Curves for the remaining twelve states of O (sub 2) dissociating to ground state atoms have been obtained from relations derived from approximate quantum-mechanical calculations, and checked against the meager experimental information available. Two semi-independent calculations have been made, and are in good agreement with each other. The quantum-mechanical relations also lead to an approximate O (sub 2) - O (sub 2) interaction, which is consistent with interactions derived from vibrational relaxation times and from high-temperature gas viscosity data.

  15. Calculation of the ground-state energy and average distance between particles for the nonsymmetric muonic {sup 3}He atom

    SciTech Connect

    Eskandari, M.R.; Rezaie, B.

    2005-07-15

    A calculation of the ground-state energy and average distance between particles in the nonsymmetric muonic {sup 3}He atom is given. We have used a wave function with one free parameter, which satisfies boundary conditions such as the behavior of the wave function when two particles are close to each other or far away. In the proposed wave function, the electron-muon correlation function is also considered. It has a correct behavior for r{sub 12} tending to zero and infinity. The calculated values for the energy and expectation values of r{sup 2n} are compared with the multibox variational approach and the correlation function hyperspherical harmonic method. In addition, to show the importance and accuracy of approach used, the method is applied to evaluate the ground-state energy and average distance between the particles of nonsymmetric muonic {sup 4}He atom. Our obtained results are very close to the values calculated by the mentioned methods and giving strong indications that the proposed wave functions, in addition to being very simple, provide relatively accurate values for the energy and expectation values of r{sup 2n}, emphasizing the importance of the local properties of the wave function.

  16. Ground State Properties of Cold Bosonic Atoms at Large Scattering Lengths

    SciTech Connect

    Song Junliang; Zhou Fei

    2009-07-10

    In this Letter, we study bosonic atoms at large scattering lengths using a variational method where the condensate amplitude is a variational parameter. We further examine momentum distribution functions, chemical potentials, the speed of sound, and spatial density profiles of cold bosonic atoms in a trap in this limit. The latter two properties turn out to bear similarities to those of Fermi gases. The estimates obtained here are applicable near Feshbach resonances, particularly when the fraction of atoms forming three-body structures is small and can be tested in future cold atom experiments.

  17. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  18. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  19. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  20. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  1. Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain.

    PubMed

    Szarek, Pawe?; Wegner, Wojciech; Grochala, Wojciech

    2016-03-01

    Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S?=?6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe(2+) sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands. Graphical abstract Effect of d(z(2)) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain. PMID:26910724

  2. Fine-structure mixing in 7/sup 2/D and 8/sup 2/D Rb atoms, induced in collisions with ground-state atoms and molecules

    SciTech Connect

    Supronowicz, J.; Atkinson, J.B.; Krause, L.

    1984-07-01

    Cross sections for 7/sup 2/D and 8/sup 2/D fine-structure mixing in Rb, induced by collisions with various ground-state atoms and N/sub 2/ molecules, have been determined using methods of atomic fluorescence. Rb vapor, pure or mixed with a buffer gas, was irradiated in a glass fluorescence cell with pulses of radiation from a N/sub 2/ laser-pumped dye laser, populating a /sup 2/D fine-structure state by two-photon absorption. The resulting fluorescence included a direct component arising from the optically excited state and a sensitized component due to the collisionally populated fine-structure state. Measurements of relative intensities of the two components in relation to buffer-gas pressure yielded the following cross sections (in units of 10/sup -14/ cm/sup 2/): Q(7/sup 2/D/sub 3/2/..-->..7/sup 2/D/sub 5/2/) = 1 4.1, 15.5, and 10.0; Q(7/sup 2/D/sub 3/2/reverse arrow7/sup 2/D/sub 5/2/) = 9 .0, 10.5, and 6.9, for Kr, Xe, and N/sub 2/, respectively; Q(8/sup 2/D/sub 3/2/..-->..8/sup 2/D/sub 5/2/) = 8 .9, 4.9, 12.4, 24.9, 25.8, 12.1, and 43.1; Q(8/sup 2/D/sub 3/2/reverse arrow8/sup 2/D/sub 5/2/) = 5 .8, 3.2, 9.4, 15.1, 17.6, 8.3, and 28.5, for He, Ne, Ar, Kr, Xe, N/sub 2/, and Rb, respectively. Cross sections for the effective depopulation of the /sup 2/D states were also determined.

  3. Trilobites and other molecular animals: How Rydberg-electrons catch ground state atoms

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman

    2012-06-01

    We report on laser spectroscopy results obtained in a dense and frozen Rydberg gas. Novel molecular bonds resulting in ultralong-range Rydberg dimers were predicted [1] and dimers as well as trimers in different vibrational states were found [2]. Some of these states are predicted to be bound by quantum reflection. Lifetime measurements confirm this prediction. Coherent superposition between free and bound states have been investigated [3]. Recently we have also confirmed that in an electric field these homonuclear molecules develop a permanent dipole moment [4]. [4pt] [1] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000). [0pt] [2] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. L"ow, T. Pfau, Nature 458, 1005 (2009), V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. L"ow, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and J. M. Rost, Phys. Rev. Lett. 105, 163201 (2010). [0pt] [3] B. Butscher, J. Nipper, J. B. Balewski, L. Kukota, V. Bendkowsky, R. L"ow, and T. Pfau Nature Physics 6, 970--974 (2010). [0pt] [4] W. Li, T. Pohl, J. M. Rost, Seth T. Rittenhouse, H. R. Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski, V. Bendkowsky, R. L"ow, T. Pfau, Science 334, 1110 (2011).

  4. Optical control of ground-state atomic orbital alignment: Cl({sup 2}P{sub 3/2}) atoms from HCl(v=2,J=1) photodissociation

    SciTech Connect

    Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R.; Ankeny Brown, Davida J.; Bartlett, Nathaniel C.-M.; Alexander, Andrew J.; Zare, Richard N.; Rakitzis, T. Peter

    2007-10-14

    H{sup 35}Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H{sup 35}Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 {mu}m. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the {sup 35}Cl({sup 2}P{sub 3/2}) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The {sup 35}Cl({sup 2}P{sub 3/2}) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H{sup 35}Cl(v=2,J=1,M=0) molecule to the {sup 35}Cl({sup 2}P{sub 3/2}) nuclear spin [which is conserved during the photodissociation and thus contributes to the total {sup 35}Cl({sup 2}P{sub 3/2}) photofragment atomic polarization] and (2) the alignment of the {sup 35}Cl({sup 2}P{sub 3/2}) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the {sup 35}Cl({sup 2}P{sub 3/2}) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state {sup 35}Cl({sup 2}P{sub 3/2}) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.

  5. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    NASA Astrophysics Data System (ADS)

    Sushkov, V.; Do, H. T.; Cada, M.; Hubicka, Z.; Hippler, R.

    2013-02-01

    Time-resolved investigations of excited argon atom density and temperature and ground-state titanium atom density during high-power impulse magnetron sputtering (HiPIMS, repetition frequency 100 Hz) and direct current pulsed magnetron (repetition frequency 2.5 kHz) discharges (PMDs) in argon employing a titanium target were performed. Atom density and temperature were measured with the help of tunable diode laser absorption spectroscopy. Excited argon atoms form during the discharge pulse and again by three-body electron ion recombination in the afterglow. Similarly, the temperature of excited (metastable) argon atoms rises during the plasma on phase and again during the afterglow. The observed temporal evolution of the temperature is faster than expected from thermal conductivity considerations, which is taken as an indication that metastable and ground-state argon atoms are not in thermal equilibrium. The time dependence of titanium atoms can be explained by recombination and diffusion. The results provide new insights into the physics of PMDs.

  6. The production of O(3P) and ground state OH in the reaction of hydrogen atoms with ozone

    NASA Astrophysics Data System (ADS)

    Finlayson-Pitts, B. J.; Kleindienst, T. E.; Ezell, M. J.; Toohey, D. W.

    1981-04-01

    The production of significant concentrations of O(3P) in the gas phase reaction of hydrogen atoms with ozone in a fast flow discharge system at 1.10.1 Torr total pressure in Ar and at room temperature has been reported earlier. These yields were observed to be independent of the concentration of known deactivators of OH (v = 9) such as O2 and CO2. We report here the results of detailed studies of the yields of O(3P) and ground state OH(X 2?i)v = 0 (OH) using resonance fluorescence under a wide variety of reaction conditions. It is shown that the highest yields of O(3P), 272% of the calculated loss of O3 are observed when H is present in excess and the flow tube is coated with a halocarbon wax. The yields are substantially lower when O3 is present in excess and increases as [O3]0 increases. In addition, in an excess of either reagent, the O(3P) yields are lower when the walls of the flow tube are coated with boric acid, which is known to deactivate the vibrationally excited OH produced in the initial reaction of H with O3. Addition of NO decreased the yield of O(3P), and increased the yield of OH. These results suggest that secondary reactions of OH, likely with H and O3, are responsible for the production of O(3P), and that a second primary reaction channel, H+O3?HO2+O(3P) [Eq. (lb)] accounts for ?2% of the net reaction.

  7. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  8. Excitation, ionization, and electron capture cross sections for collisions of Li{sup 3+} with ground state and excited hydrogen atoms

    SciTech Connect

    Murakami, I. Yan, J.; Sato, H.; Kimura, M.; Janev, R.K.; Kato, T.

    2008-03-15

    Using the available experimental and theoretical data, as well as the established cross section scaling relationships, a comprehensive cross section database for excitation, ionization and electron capture in collisions of Li{sup 3+} ions with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have the correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form.

  9. Quantum Many-Body Culling: Production of a Definite Number of Ground-State Atoms in a Bose-Einstein Condensate

    SciTech Connect

    Dudarev, A. M.; Raizen, M. G.; Niu Qian

    2007-02-09

    We propose a method to produce a definite number of ground-state atoms by adiabatic reduction of the depth of a potential well that confines a degenerate Bose gas with repulsive interactions. Using a variety of methods, we map out the maximum number of particles that can be supported by the well as a function of the well depth and interaction strength, covering the limiting case of a Tonks gas as well as the mean-field regime. We also estimate the time scales for adiabaticity and discuss the recent observation of atomic number squeezing [Chuu et al., Phys. Rev. Lett. 95, 260403 (2005)].

  10. Determination of the electronic structure of atoms and molecules in the ground state: Measurement of molecular hydrogen by high-resolution x-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Wei; Mei, Xiao-Xun; Kang, Xu; Yang, Ke; Xu, Wei-Qing; Peng, Yi-Geng; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhang, Peng-Fei; Zhu, Lin-Fan

    2014-01-01

    The high-resolution x-ray-scattering technique is used to study the elastic scattering of atoms and molecules in the gas phase. The elastic squared form factor, which is the square of the Fourier transformation of the electron density distribution in position space and reveals the pure electronic structure of atoms and molecules in the ground state, of molecular hydrogen is measured at an incident photon energy of about 9889 eV and an energy resolution of about 70 meV. Although it is generally thought that the x-ray-scattering technique is identical to high-energy electron scattering, at least for elastic scattering these two techniques have an apparent difference, i.e., the pure electronic structure of a molecule in the ground state can be determined by x-ray scattering while it cannot be obtained by the high-energy electron impact method due to the interference between the scattering of separate nuclei and of the electrons in the target. The present experimental results match the theoretical calculations very well, which demonstrates that high-resolution x-ray scattering is a powerful tool to study the electronic structure of atoms and molecules in the ground state.

  11. Stabilization and manipulation of electronically phase-separated ground states in defective indium atom wires on silicon.

    PubMed

    Zhang, Hui; Ming, Fangfei; Kim, Hyun-Jung; Zhu, Hongbin; Zhang, Qiang; Weitering, Hanno H; Xiao, Xudong; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu

    2014-11-01

    Exploration and manipulation of electronic states in low-dimensional systems are of great importance in the fundamental and practical aspects of nanomaterial and nanotechnology. Here, we demonstrate that the incorporation of vacancy defects into monatomic indium wires on n-type Si(111) can stabilize electronically phase-separated ground states where the insulating 82 and metallic 41 phases coexist. Furthermore, the areal ratio of the two phases in the phase-separated states can be tuned reversibly by electric field or charge doping, and such tunabilities can be quantitatively captured by first principles-based modeling and simulations. The present results extend the realm of electronic phase separation from strongly correlated d-electron materials typically in bulk form to weakly interacting sp-electron systems in reduced dimensionality. PMID:25415916

  12. Models including electron correlation in relation to Fock's proposed expansion of the ground-state wave function of He-like atomic ions

    SciTech Connect

    Glasser, M. L.; March, N. H.; Nieto, L. M.

    2011-12-15

    Here attention is first drawn to the importance of gaining insight into Fock's early proposal for expanding the ground-state wave function for He-like atomic ions in hyperspherical coordinates. We approach the problem via two solvable models, namely, (i) the s-term model put forth by Temkin [Phys. Rev. 126, 130 (1962)] and (ii) the Hookean atom model proposed by Kestner and Sinanoglu [Phys. Rev. 128, 2687 (1962)]. In both cases the local kinetic energy can be obtained explicitly in hyperspherical coordinates. Separation of variables occurs in both model wave functions, though in a different context in the two cases. Finally, a k-space formulation is proposed that should eventually result in distinctive identifying characteristics of Fock's nonanalyticities for He-like atomic ions when both electrons are close to the nucleus.

  13. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  14. Relativistic coupled cluster method based on DiracCoulombBreit wavefunctions. Ground state energies of atoms with two to five electrons

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Yasuyuki

    1994-05-01

    A relativistic Fock-space coupled cluster theory based on the DiracCoulombBreit wavefunctions has been developed and implemented, employing analytic basis sets of Gaussian-type functions. Relativistic all-order calculations including single and double excitations were performed for the ground states of the He and Be atoms and for the Ne ( Z = 10), Ar ( Z = 18) and Sn ( Z = 50) ions with 2-5 electrons. Comparison is made with the DiracCoulomb and non-relativistic formulation and with available experimental results. The non-additivity of relativistic and correlation effects is discussed.

  15. Stark-induced magnetic anapole moment in the ground state of the relativistic hydrogenlike atom: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    SciTech Connect

    Mielewczyk, Krzysztof; Szmytkowski, Radoslaw

    2006-02-15

    The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); R. Szmytkowski,30, 2747(E) (1997)] is used to derive an analytical formula for the static magnetic anapole (toroidal dipole) moment induced in the ground state of the relativistic hydrogenlike atom by a weak, spatially uniform, static electric field. An expression for the anapole polarizability for the system in question is found. This expression contains a single generalized hypergeometric series {sub 3}F{sub 2} with the unit argument. In the nonrelativistic limit our result agrees with that of Lewis and Blinder [Phys. Rev. A 52, 4439 (1995)].

  16. Crystalline beam ground state

    SciTech Connect

    Wei, Jie ); Li, Xiao-Ping; Sessler, A.M. )

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing.

  17. Crystalline beam ground state

    SciTech Connect

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-06-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing.

  18. 9/sup 2/D fine-structure mixing in rubidium by collisions with ground-state Rb and noble-gas atoms

    SciTech Connect

    Mallory, T.R.; Kedzierski, W.; Atkinson, J.B.; Krause, L.

    1988-12-01

    The following cross sections for 9/sup 2/D/sub 3/2/left-right-arrow9/sup 2/D/sub 5/2/ fine-structure mixing in Rb, induced in collisions with ground-state Rb and noble-gas atoms, have been measured using methods of atomic fluorescence spectroscopy: Q(9/sup 2/D/sub 3/2/..-->..9/sup 2/D/sub 5/2/) = 93, 9, 6, 26, and 42; Q(9/sup 2/D/sub 3/2/left-arrow9/sup 2/D/sub 5/2/) = 62, 6, 3, 17, and 23, for Rb, He, Ne, Ar, and Kr, respectively, in units of 10/sup -14/ cm/sup 2/. The measured cross sections are in good agreement with recent theoretical calculations of Sirko and Rosin-acute-accentski.

  19. Dirac-Hartree Predictions of the Ground State Electron Configurations of Atomic Negative Ions: Strontium Anion, Barium Anion, Ytterbium Anion, Radium Anion, Lanthanum Anion and Lutetium Anion

    NASA Astrophysics Data System (ADS)

    Chevary, John Alexander

    In this thesis, Dirac-Hartree-Fock-based (DHF) methods are used to investigate the following anions: Ca ^-, Sr^-, Ba^-, Yb^- and Ra^- (the "alkaline earths"), and Se^-, Y^-, La^- and Lu^- (the "group IIIB" systems). The dogma that the configuration of an anion with N electrons is the same as that of the N electron neutral atom implies that all of these systems 'should' bind (n - 1)d electrons to their neutral atoms to form the respective anions with the exception of La which 'should' bind a 4f electron. (Here n = 4 (Ca, Sc), 5 (Sr, Y), 6 (Ba, La, Yb, Lu) and 7 (Ra).) However, the electron configurations of all of the above anions have been either observed (Ca ^-, Sc^- and Y^-) or are predicted (Sr ^-, Ba^-, La ^-, Yb^-, Lu ^- and Ra^-) to be formed by adding an np electron to the neutral atom ground state. La^- is also predicted to be stable in the (Xe) 5d^26s ^2 configuration. (All of these anions have been observed to be stable but the quantum numbers of all but Ca^-, Sc^- and Y^- have yet to be inferred.). It is shown that in the N electron systems corresponding to the "alkaline earth" anions, La^- and Lu^-, the well-known DHF energy dominates the transitions from the neutral atom ground state configuration to the anion ground state configuration as Z is lowered from N to N - 1. Further, when the DHF energy is approximated by the Hartree-Fock (HF) energy plus the J-independent relativistic effects, the HF energy is seen to be responsible for almost all of the Z-dependence of these transitions while the relativistic energy reinforces these tendencies. Estimates of the electron affinities (EA's) and binding energies of La^- and Lu ^- are made which indicate that the (Xe) 5 d^2 6s^2 ^3F _sp{2}{rm e} state is likely to be the ground state of La^ -, namely it is a few mHartree more bound than the (Xe) 5d^16s^26 p^1 (^1D _sp{2}{rm e}oplus ^3F_sp{2}{ rm e}) state. The EA's of Sr^-, Ba ^-, Yb^- and Ra ^- have been extracted by combining the recent experimental value for Ca^- with density-functional-theory DHF calculations. Also, the spin-orbit splittings of the "alkaline earth" anions are estimated. Of particular interest, the (Xe) 4f ^{14}6s^26 p^{1 2}P _sp{3/2}{rm o} state of Yb^- is unlikely to be bound even though its (Xe) 4f^{14} 6s^26p^{1 2}P_sp{1/2} {rm o} state is weakly bound.

  20. Inactivation of Penicillium digitatum Spores by a High-Density Ground-State Atomic Oxygen-Radical Source Employing an Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Hashizume, Hiroshi; Jia, Fengdong; Takeda, Keigo; Ishikawa, Kenji; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2011-11-01

    Penicillium digitatum spores were inactivated using an oxygen-radical source that supplies only neutral oxygen radicals. Vacuum ultraviolet absorption spectroscopy was used to measure the ground-state atomic oxygen [O (3Pj)] densities and they were estimated to be in the range of 1014-1015 cm-3. The inactivation rate of P. digitatum spores was correlated with the O (3Pj) density. The result indicates that O (3Pj) is the dominant species in the inactivation. The inactivation rate constant of P. digitatum spores by O (3Pj) was estimated to be on the order of 10-17 cm3 s-1 from the measured O (3Pj) densities and inactivation rates.

  1. Selective-state charge transfer in a collision between a Li sup 3+ ion and a ground-state Li atom: A molecular-state approach (US)

    SciTech Connect

    Kumar, A.; Lane, N.F. ); Kimura, M. Department of Physics, Rice Quantum Institute, Rice University, Houston, Texas 77251 )

    1991-01-01

    The semiclassical, impact-parameter method, based on a 15-state molecular-orbital expansion, is employed to calculate the cross sections for charge transfer in Li{sup 3+}-Li collisions. Electron-translation effects have been taken into account. In addition to total capture, cross sections for capture into individual states have also been calculated. The present results show qualitative agreement with the other available theory; details, however, are different. It is found that this reaction, through state-selective capture into the {ital n}=4 manifold of Li{sup 2+}, may provide a useful mechanism to achieve population inversion necessary for short-wavelength lasers.

  2. High-energy tail of the linear momentum distribution in the ground state of hydrogen atoms or hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Oks, E.

    2001-06-01

    A long-standing dispute concerning the high-energy tail of the linear momentum distribution (HTMD) in the ground state of hydrogen atoms/hydrogen-like ions (GSHA) has been unresolved up to now. A possible resolution of the above dispute might be connected to the problem of the role of singular solutions of quantal equations, which is a fundamental problem in its own right. The paradigm is that, even allowing for finite nuclear sizes, singular solutions of the Dirac equation for the Coulomb problem should be rejected for nuclear charges Z < 1/??137. In this paper we break this paradigm. First, we derive a general condition for matching a regular interior solution with a singular exterior solution of the Dirac equation for arbitrary interior and exterior potentials. Then we find explicit forms of several classes of potentials that allow such a match. Finally, we show that, as an outcome, the HTMD for the GSHA acquires terms falling off much slower than the 1/p6-law prescribed by the previously adopted quantal result. Our results open up a unique way to test intimate details of the nuclear structure by performing atomic (rather than nuclear) experiments and calculations.

  3. Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF

    NASA Astrophysics Data System (ADS)

    Es-sebbar, Et; Benilan, Y.; Jolly, A.; Gazeau, M.-C.

    2009-07-01

    A flowing microwave post-discharge source sustained at 2.45 GHz in pure nitrogen has been investigated by optical emission spectroscopy (OES) and two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. Variations of the optical emission along the post-discharge (near, pink and late afterglow) have been studied and the gas temperature has been determined. TALIF spectroscopy has been used in the late afterglow to determine the absolute ground-state nitrogen atomic densities using krypton as a reference gas. Measurements show that the microwave flowing post-discharge is an efficient source of N (4S) atoms in late afterglow. In our experimental conditions, the maximum N (4S) density is about 2.2 1015 cm-3 for a pressure of 22 Torr, at 300 K. The decay of N (4S) density as a function of the time spent in the quartz tube has been modelled and a wall recombination probability ? of (2.1 0.3) 10-4 is obtained.

  4. Diffusion and reactivity of ground-state nitrogen atoms N(4S) between 3 and 15 K: application to the hydrogen abstraction reaction from methane under non-energetic conditions

    NASA Astrophysics Data System (ADS)

    Nourry, Sendres; Krim, Lahouari

    2015-07-01

    We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.

  5. Photoelectron spectroscopy of O{sup -} at 266 nm: Ratio of ground- and excited-state atomic oxygen production and channel-resolved photoelectron anisotropy parameters

    SciTech Connect

    Domesle, C.; Jordon-Thaden, B.; Wolf, A.; Lammich, L.; Pedersen, H. B.; Foerstel, M.; Hergenhahn, U.

    2010-09-15

    The photodetachment dynamics of the atomic oxygen anion O{sup -} has been investigated at 266 nm (4.67 eV) by photoelectron detection in a crossed-beam experiment using a magnetic-bottle electron spectrometer. Taking explicit advantage of the Doppler shift imposed by the moving ion beam on the photoelectron energies, we report both the final-state branching ratio and photoelectron angular distributions. After photoabsorption at 266 nm, the formed electron-oxygen scattering state disintegrates, forming either the excited {sup 1}D or the ground {sup 3}P state of oxygen with a partition of {sup 1}D:{sup 3}P=0.32 {+-} 0.06. The detachment leading to the production of O({sup 3}P) shows an angular distribution of photoelectrons characterized by {beta}{sub P}=0.00 {+-} 0.10 mimicking a pure s-wave detachment, while the detachment into excited O({sup 1}D) occurs with {beta}{sub D}=-0.90{+-}0.10, giving direct evidence of interference between the outgoing s and d waves.

  6. Ground State of Anderson Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kawakami, Norio; Okiji, Ayao

    1982-04-01

    Following the Wiegmann approach the exact expression of the ground state energy for the symmetric Anderson Hamiltonian was obtained. In this paper the calculation is done for the asymmetric Anderson Hamiltonian, of the ground state energy, of the average number of localized electrons and of the charge susceptibility.

  7. Experimental evidence of resonant energy collisional transfers between argon 1s and 2p states and ground state H atoms by laser collisional induced fluorescence

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; van Dijk, Jan; Kroesen, Gerrit

    2015-04-01

    In this paper, laser collisional induced fluorescence (LCIF) is used to probe resonant excitation transfers in an argon/hydrogen plasma resulting from heavy particle collisions. Different radiative transitions between the 1s and 2p states (in Paschen's notation) of argon are optically pumped by a nanosecond laser pulse. The spontaneous fluorescence and collisional responses of the argon and hydrogen systems are monitored by optical emission spectroscopy. A surfatron plasma source is used to generate an argon plasma with a few per cent hydrogen addition at pressures between 0.65 and 20 mbar. The electron density is measured independently by means of Thomson scattering. The overall response of the plasma due to optical pumping of argon is briefly discussed and an overview of the known heteronuclear excitation transfers in an argon/hydrogen plasma is given. The propagation of the shortcut in the Ar(1s) to H(n = 2) excitation transfer due to the optical pumping of the Ar(1s) states is seen in the atomic hydrogen LCIF responses. For the first time, we give direct experimental evidence of the existence of an efficient excitation transfer: Additionally, measurements are performed in order to estimate the resonant energy transfer between the resonant argon 1s states and hydrogen atoms: for which no previously measured cross sections could be found in the literature. These are extra quenching channels of argon 1s and 2p states that should be included in collisional-radiative modeling of argon-hydrogen discharges. The high repetition rate of the dye laser allows us to obtain a high sensitivity in the measurements. LCIF is shown to be a powerful tool for unraveling electron and also heavy particle excitation channels in situ in the plasma phase. The technique was previously developed for measuring electron or species densities locally in the plasma, but we show that it can be advantageously used to probe collisional transfers between very short-lived species which exist simultaneously only in the plasma phase.

  8. Atom interferometery on ground and in space

    NASA Astrophysics Data System (ADS)

    Rasel, Ernst M.; Quantus Collaboration

    2014-05-01

    We give a brief survey on our latest activities in atom interferometry. This included the first quantum test of the principle of equivalence with two different species, namely potassium and rubidium. We have also shown that interferometers equipped with atom-chip based sources allow to realise compact quantum gravimeters for ground based measurements. These devices allow to achieve a high flux of ultra-cold atoms, extremely low expansion rates of these wave packets and make it possible to realise new interferometers. Last but not least, in 2014, we currently work on testing these devices in the catapult and on a sounding rocket mission to extend atom interferometry to unprecedented time scales. This project is supported by the German Space Agency Deutsches Zentrum fr Luft- und Raumfahrt (DLR) with funds provided by the Federal Ministry of Economics and Technology (BMWI) under grant number DLR 50 WM 0346. We thank the German Research Foundation for funding the Cluster of Excellence QUEST Centre for Quantum Engineering and Space-Time Research.

  9. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  10. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  11. Ground state energy at unitarity

    SciTech Connect

    Lee, Dean

    2008-08-15

    We consider two-component fermions on the lattice in the unitarity limit. This is an idealized limit of attractive fermions where the range of the interaction is zero and the scattering length is infinite. Using Euclidean time projection, we compute the ground state energy using four computationally different but physically identical auxiliary-field methods. The best performance is obtained using a bounded continuous auxiliary field and a nonlocal updating algorithm called the hybrid Monte Carlo. With this method, we calculate results for 10 and 14 fermions at lattice volumes 4{sup 3},5{sup 3},6{sup 3},7{sup 3},8{sup 3} and extrapolate to the continuum limit. For 10 fermions in a periodic cube, the ground state energy is 0.292(12) times the ground state energy for noninteracting fermions. For 14 fermions, the ratio is 0.329(5)

  12. Lifetime of excited atomic states

    SciTech Connect

    Cresser, J.D.; Tang, A.Z.; Salamo, G.J.; Chan, F.T.

    1986-03-01

    In this paper we derive an expression for the lifetime of excited atomic states taking account of contributions due to nonresonant two-photon transitions. Explicit integration of the two-photon emission spectrum is not required. The results are applied to the case of the hydrogen atom.

  13. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam obtained from separate measurements. These computations use basic engineering models for the gas-gas and gas-surface scattering and focus on the influence of multi-collision effects. These simulations characterize many important quantities of interest including the actual flux of atoms that reach the surface, the energy distribution of this flux, as well as the direction of the velocity of the flux that strikes the surface. These quantities are important in characterizing the conditions which give rise to measured surface erosion. The calculations also yield time- snapshots of the pulse as it impacts and flows around the surface. These snapshots reveal the local environment of gas near the surface for the duration of the pulse. We are also able to compute the flux of molecules that travel downstream and reach the spectrometer, and we characterize their velocity distribution. The number of atoms that reach the spectrometer can in fact be influenced by the presence of the surface due to gas-gas collisions from atoms scattered h m the surface, and it will generally be less than that with the surface absent. This amounts to an overall normalization factor in computing erosion yields. We discuss these quantities and their relationship to the gas-surf$ce interaction parameters. We have also performed similar calculations corresponding to conditions (number densities, temperatures, and velocities) of low-earth orbit. The steady-state nature and lower overall flux of the actual space environment give rise to differences in the nature of the gas-impacts on the surface from those of the ground-based measurements using a pulsed source.

  14. 7/sup 2/D/sub 3/2/-7/sup 2/D/sub 5/2/ excitation transfer in rubidium induced in collisions with ground-state Rb and noble-gas atoms

    SciTech Connect

    Wolnikowski, J.; Atkinson, J.B.; Supronowicz, J.; Krause, L.

    1982-05-01

    Cross sections for 7/sup 2/D/sub 3/2/bold-arrow-left-right7/sup 2/D/sub 5/2/ transfer in Rb, induced in collisions with He, Ne, Ar, and with ground-state Rb atoms, have been determined using methods of atomic fluorescence. Rb vapor, pure or mixed with a noble gas, was irradiated in a glass fluorescence cell with pulses of 660-nm radiation from a N/sub 2/-laser-pumped dye laser, populating one of the /sup 2/D states by two-photon absorption. The resulting fluorescence included a direct component emitted in the decay of the optically excited state and a sensitized component arising from the collisionally populated state. Relative intensities of the components yielded the cross sections for 7/sup 2/D mixing: Q(/sup 2/D/sub 3/2/..-->../sup 2/D/sub 5/2/) = 8.8, 6.5, 10.4, and 30; Q(/sup 2/D/sub 3/2/reverse arrow/sup 2/D/sub 5/2/) = 5.8, 4.0, 6.9, and 18, in units of 10/sup -14/ cm/sup 2/ for He, Ne, Ar, and Rb, respectively. Cross sections for the effective quenching of the /sup 2/D states were also determined.

  15. Exact integral constraint requiring only the ground-state electron density as input on the exchange-correlation force - partial differential(V)(xc)(r)/partial differential(r) for spherical atoms.

    PubMed

    March, N H; Nagy, A

    2008-11-21

    Following some studies of integral(n)(r)inverted DeltaV(r)dr by earlier workers for the density functional theory (DFT) one-body potential V(r) generating the exact ground-state density, we consider here the special case of spherical atoms. The starting point is the differential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg [Phys. Rev. A 18, 2399 (1978)] identity to show that the scalar quantity paralleling the above vector integral, namely, integral(n)(r) partial differential(V)(r)/partial differential(r)dr, is determined solely by the electron density n(0) at the nucleus for the s-like atoms He and Be. The force - partial differential(V)/ partial differential(r) is then related to the derivative of the exchange-correlation potential V(xc)(r) by terms involving only the external potential in addition to n(r). The resulting integral constraint should allow some test of the quality of currently used forms of V(xc)(r). The article concludes with results from the differential virial theorem and the Hiller-Sucher-Feinberg identity for the exact many-electron theory of spherical atoms, as well as for the DFT for atoms such as Ne with a closed p shell. PMID:19026052

  16. Coherent Transfer of Photoassociated Molecules into the Rovibrational Ground State

    SciTech Connect

    Aikawa, K.; Hayashi, M.; Oasa, K.; Akamatsu, D.; Kobayashi, J.; Naidon, P.; Kishimoto, T.; Ueda, M.; Inouye, S.

    2010-11-12

    We report on the direct conversion of laser-cooled {sup 41}K and {sup 87}Rb atoms into ultracold {sup 41}K{sup 87}Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the coherent transfer revealed the hyperfine structure of weakly bound molecules in an unexplored region. Our results show that a rovibrationally pure sample of ultracold ground-state molecules is achieved via the all-optical association of laser-cooled atoms, opening possibilities to coherently manipulate a wide variety of molecules.

  17. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  18. A two-state Raman coupler for coherent atom optics.

    PubMed

    Debs, J E; Dring, D; Robins, N P; Figl, C; Altin, P A; Close, J D

    2009-02-16

    We present results on a Raman laser-system that resonantly drives a closed two-photon transition between two levels in different hyperfine ground states of (87)Rb. The coupler is based on a novel optical design for producing two phase-coherent optical beams to drive a Raman transition. Operated as an outcoupler, it produces an atom laser in a single internal atomic state, with the lower divergence and increased brightness typical of a Raman outcoupler. Due to the optical nature of the outcoupling, the two-state outcoupler is an ideal candidate for transferring photon correlations onto atom-laser beams. As our laser system couples just two hyperfine ground states, it has also been used as an internal state beamsplitter, taking the next major step towards free space Ramsey interferometry with an atom laser. PMID:19219134

  19. Dependence upon the molecular and atomic ground state of higher-order harmonic generation in the few-optical-cycle regime

    NASA Astrophysics Data System (ADS)

    Altucci, C.; Velotta, R.; Marangos, J. P.; Heesel, E.; Springate, E.; Pascolini, M.; Poletto, L.; Villoresi, P.; Vozzi, C.; Sansone, G.; Anscombe, M.; Caumes, J.-P.; Stagira, S.; Nisoli, M.

    2005-01-01

    High-order harmonic generation from molecules ( O2 , N2 , H2 , and CO2 ) and atoms (Xe, Ar, and Kr) has been studied in the few optical cycle domain. Two laser peak intensities; 21014 and 61014Wcm-2 , were compared. At the lower intensity spectra were approximately the same for molecules and atoms with the same ionization potential, at higher laser intensity the cutoff of O2 and CO2 extends far beyond the cutoff of Xe and Kr, respectively, in contrast with N2 and H2 which exhibit cutoffs very close to that of Ar. This behavior is well explained by adopting an atomlike approximation for the molecule response in the high-field regime and employing the Lewensteins model, properly modified in order to account for the nonlinear dipole moment of a randomly oriented molecule ensemble.

  20. High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N/sub 2/O

    SciTech Connect

    Marshall, P.; Fontijn, A.; Melius, C.F.

    1987-05-15

    The H+N/sub 2/O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 /sup 2/S) atoms were generated by flash photolysis of NH/sub 3/ and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N/sub 2/+OH, from 390 to 1310 K is found to be given by k/sub 1/(T) = 5.5 x 10/sup -14/ exp(-2380 K/T)+7.3 x 10/sup -10/ exp(-9690 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/; the accuracy is assessed as approximately 25% at the 2sigma confidence level. Above 750 K, k/sub 1/ closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k/sub 1/ is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of <1 x 10/sup -9/ exp(-15800 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/ is set for temperatures up to 2000 K.

  1. Influence of excited-state hyperfine structure on ground-state coherence

    NASA Astrophysics Data System (ADS)

    Nagel, A.; Affolderbach, C.; Knappe, S.; Wynands, R.

    2000-01-01

    In a three-level ? system, a bichromatic light field can induce a ground-state coherence that leads to vanishing absorption of the bichromatic field. Although this coherence is between ground states only, in a real atom it can nevertheless be influenced by the hyperfine structure of the excited state. We present experimental results which show that for suitable detunings of the bichromatic field from optical resonance, the specific contribution of each individual hyperfine level of the excited state can be distinguished through increased amplitude or width of the ground-state coherence.

  2. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm‑3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm‑3.

  3. Triplet (S = 1) Ground State Aminyl Diradical

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada

    2008-04-02

    Aminyl diradical, which is stable in solution at low temperatures, is prepared. EPR spectra and SQUID magnetometry indicate that the diradical is planar and it possesses triplet ground state, with strong ferromagnetic coupling.

  4. Ground states of two-dimensional quasicrystals

    SciTech Connect

    Burkov, S.E. Brookhaven National Laboratory, Upton, NY )

    1990-05-15

    Necessary conditions for a quasicrystal to be a ground state are found within the framework of a tiling model (thermal fluctuations are supposed to be irrelevant). It is proven that a generic quasicrystal cannot be a ground state. Only very special quasicrystals are shown to survive: They must possess high rotational symmetry or the frequencies defining quasiperiodic properties must satisfy numerous rational constraints. A quasicrystal may be a ground state only if hexagons flipping under the infinitesimal phason shift are not isolated from one another but form rows or nets. Necessary and sufficient conditions for a (2,3) quasicrystal to be a ground state are found. All (2,4) quasicrystals satisfying the necessary conditions are classified. Stability of a quasicrystalline phase is discussed.

  5. Two-photon transitions to excited states in atomic hydrogen

    SciTech Connect

    Quattropani, A.; Bassani, F.; Carillo, S.

    1982-06-01

    Resonant two-photon transition rates from the ground state of atomic hydrogen to ns excited states have been computed as a function of photon frequencies in the length and velocity gauges in order to test the accuracy of the calculation and to discuss the rate of convergence over the intermediate states. The dramatic structure of the transition rates produced by intermediate-state resonances is exhibited. A two-photon transparency is found in correspondence to each resonance.

  6. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  7. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  8. Coherent excitation of a single atom to a Rydberg state

    SciTech Connect

    Miroshnychenko, Y.; Gaeetan, A.; Evellin, C.; Grangier, P.; Wilk, T.; Browaeys, A.; Comparat, D.; Pillet, P.

    2010-07-15

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d{sub 3/2} using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between ground and Rydberg states of the atom. We analyze the observed oscillations in detail and compare them to numerical simulations which include imperfections of our experimental system. Strategies for future improvements on the coherent manipulation of a single atom in our settings are given.

  9. Teleportation of atomic states via position measurements

    SciTech Connect

    Tumminello, Michele; Ciccarello, Francesco

    2008-02-15

    We present a scheme for conditionally teleporting an unknown atomic state in cavity QED, which requires two atoms and one cavity mode. The translational degrees of freedom of the atoms are taken into account using the optical Stern-Gerlach model. We show that successful teleportation with probability 1/2 can be achieved through local measurements of the cavity photon number and atomic positions. Neither direct projection onto highly entangled states nor holonomous interaction-time constraints are required.

  10. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  11. Synthesis of interstellar 1,3,5-heptatriynylidyne, C7H(X 2Π), via the neutral-neutral reaction of ground state carbon atom, C(3P), with triacetylene, HC6H (X 1Σg+)

    NASA Astrophysics Data System (ADS)

    Sun, B. J.; Huang, C. H.; Tsai, M. F.; Sun, H. L.; Gao, L. G.; Wang, Y. S.; Yeh, Y. Y.; Shih, Y. H.; Sia, Z. F.; Chen, P. H.; Kaiser, R. I.; Chang, A. H. H.

    2009-09-01

    The reaction of ground-state carbon atom with a polyyne, triacetylene (HC6H) is investigated theoretically by combining ab initio calculations for predicting reaction paths, RRKM theory to yield rate constant for each path, and a modified Langevin model for estimating capturing cross sections. The isomerization and dissociation channels for each of the five collision complexes are characterized by utilizing the unrestricted B3LYP/6-311G(d,p) level of theory and the CCSD(T)/cc-pVTZ calculations. Navigating with the aid of RRKM rate constants through web of ab initio paths composed of 5 collision complexes, 108 intermediates, and 20 H-dissociated products, the most probable paths, reduced to around ten species at collision energies of 0 and 10 kcal/mol, respectively, are identified and adopted as the reaction mechanisms. The rate equations for the reaction mechanisms are solved numerically such that the evolutions of concentrations with time for all species involved are obtained and their lifetimes deduced. This study predicts that the five collision complexes, c1-c5, would produce a single final product, C7H (p1)+H, via the most stable intermediate, carbon chain HC7H (i1); namely, C+HC6H→HC7H→C7H+H. Our investigation indicates that the title reaction is efficient to form astronomically observed C7H in cold molecular clouds, where a typical translational temperature is 10 K.

  12. On the ground state of Pd13.

    PubMed

    Kster, Andreas M; Calaminici, Patrizia; Orgaz, Emilio; Roy, Debesh R; Reveles, Jos Ulises; Khanna, Shiv N

    2011-08-10

    First-principles electronic structure calculations within a gradient corrected density functional formalism have been carried out to investigate the electronic structure and magnetic properties of Pd(13) clusters. It is shown that a bilayer ground-state structure that can be regarded as a relaxed bulk fragment is most compatible with the experimental results from Stern-Gerlach measurements. An icosahedral structure, considered to be the ground state in numerous previous studies, is shown to be around 0.14 eV above the ground state. A detailed analysis of the molecular orbitals reveals the near degeneracy of the bilayer or icosahedral structures is rooted in the stabilization by p- or d-like cluster orbitals. The importance of low-lying spin states in controlling the electronic and magnetic properties of the cluster is highlighted. PMID:21711047

  13. Quantum State Tomography of Cold Atom Qudits

    NASA Astrophysics Data System (ADS)

    Sosa Martinez, Hector; Lysne, Nathan; Jessen, Poul; Baldwin, Charles; Kalev, Amir; Deutsch, Ivan

    2015-05-01

    Accurate and robust control over quantum systems plays a key role in quantum information science. The use of systems with large state spaces (qudits) may prove a useful resource for quantum information tasks if good laboratory tools for qudit manipulation and measurement can be developed. Over the past few years we have developed and experimentally implemented a protocol to perform high-fidelity unitary transformations in the 16 dimensional hyperfine ground manifold of Cesium-133 atoms, driving the system with phase modulated radio-frequency and microwave magnetic fields and using the tools of optimal control to find appropriate control waveforms. We have recently extended our protocol to investigate quantum state tomography based on a combination of unitary transformations and Stern-Gerlach analysis. Experimental results shown that optimal tomography based on mutually-unbiased-bases (MUBs) can be implemented, with reconstruction fidelities on the order of 99% for arbitrarily chosen test states in a 16-dimensional Hilbert space. We are also interested in the characterization of our measurement detector for which we plan to perform POVM tomography. Ultimately, successful implementation of this kind of state tomography may prove very valuable, greatly reducing the required data for more complex procedures such as quantum process tomography.

  14. Raman adiabatic transfer of optical states in multilevel atoms

    SciTech Connect

    Appel, Juergen; Marzlin, K.-P.; Lvovsky, A. I.

    2006-01-15

    We analyze electromagnetically induced transparency and light storage in an ensemble of atoms with multiple excited levels (multi-{lambda} configuration) which are coupled to one of the ground states by quantized signal fields and to the other one via classical control fields. We present a basis transformation of atomic and optical states which reduces the analysis of the system to that of electromagnetically induced transparency in a regular three-level configuration. We demonstrate the existence of dark state polaritons and propose a protocol to transfer quantum information from one optical mode to another by an adiabatic control of the control fields.

  15. Creation of a six-atom 'Schrdinger cat' state.

    PubMed

    Leibfried, D; Knill, E; Seidelin, S; Britton, J; Blakestad, R B; Chiaverini, J; Hume, D B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Reichle, R; Wineland, D J

    2005-12-01

    Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrdinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system. PMID:16319885

  16. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  17. Atomic Fock state preparation using Rydberg blockade.

    PubMed

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G

    2014-01-31

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected √N Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with an essentially perfect blockade. We then use collective Rabi π pulses to produce N=1, 2 atom number Fock states with fidelities of 62% and 48%, respectively. The N=2 Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations. PMID:24580449

  18. Ground water contamination in the United States

    SciTech Connect

    Pye, V.I.; Patrick, R.

    1983-08-19

    Ground water contamination is of increasing concern in the United States because about 50 percent of our drinking water comes from well water. The causes of contamination stem from both point sources and nonpoint sources. Since ground water moves slowly, the contaminant may affect only a small portion of an aquifer for a considerable period of time. Deleterious effects on human health have resulted from pathogenic organisms in ground water and from its toxic chemical composition. It is difficult to estimate the extent of contamination on a national basis as the frequency of instances of contamination is very variable. Remedial actions to clean up aquifers are difficult, expensive, and sometimes not feasible. Many of the laws and regulations that control ground water contamination are designed with other main objectives.

  19. Ground water contamination in the United States.

    PubMed

    Pye, V I; Patrick, R

    1983-08-19

    Ground water contamination is of increasing concern in the United States because about 50 percent of our drinking water comes from well water. The causes of contamination stem from both point sources and nonpoint sources. Since ground water moves slowly, the contaminant may affect only a small portion of an aquifer for a considerable period of time. Deleterious effects on human health have resulted from pathogenic organisms in ground water and from its toxic chemical composition. It is difficult to estimate the extent of contamination on a national basis as the frequency of instances of contamination is very variable. Remedial actions to clean up aquifers are difficult, expensive, and sometimes not feasible. Many of the laws and regulations that control ground water contamination are designed with other main objectives. PMID:6879171

  20. Baryonium, a common ground for atomic and high energy physics

    NASA Astrophysics Data System (ADS)

    Wycech, S.; Dedonder, J.-P.; Loiseau, B.

    2015-08-01

    Indications of the existence of quasi-bound states in the system are presented. In their measurements, the BES collaboration has discoverd a broad enhancement close to the threshold in the S wave, isospin 0 state formed in radiative decays of J/ ?. Another enhancement located about 50 MeV below the threshold was found in mesonic decays of J/ ?. In terms of the Paris potential model it was shown that these are likely to represent the same state. Antiprotonic atomic data provide some support for this interpretation and indicate the existence of another fairly narrow quasi-bound state in a P wave.

  1. Cold Atom Optics on Ground and in Space

    NASA Astrophysics Data System (ADS)

    Rasel, E. M.

    Microgravity is the ultimate laboratory environment for experiments in fundamental physics based on cold atoms. The talk will give a survey of recent activities on atomic quantum sensors and atom lasers. Inertial atomic quantum sensors are a promising and complementary technique for experiments in fundamental physics. Pioneering experiments at Yale [1,2] and Stanford [3] displayed recently the fascinating potential of matter-wave interferometers for precision measurements. The talk will present the status of a transportable matter-wave sensor under development at the Institut fr Quantenoptik in Hannover: CASI. CASI stands for Cold Atom Sagnac Interferometer. The use of cold atoms makes it possible to realise compact devices with sensitivities competitive with classical state-of-the-art sensors. CASI's projected sensitivity is about 10-9 rad/ssurd Hz at the projection noise limit. The heart of our set-up will be a 15cm-long Mach-Zehnder interferometer formed by coherently splitting the atoms with Raman-type interactions. CASI is designed as a movable device, that it can be compared with other matter-wave sensors such as the cold caesium atom gyroscope at the BNM-SYRTE in Paris [4]. CASI is intimately connected with HYPER, an European initiative to send four atom interferometers in space hosted on a drag-free satellite. Main emphasis of the mission is placed on the mapping of the Earth's Lense-Thirring effect. Tests of the Equivalence Principle is under consideration as an alternative goal of high scientific value. HYPER was selected three years ago by the European Space Agency (ESA) as candidate for a future small-satellite mission within the next 10 to 15 years and is supported with detailed feasibility studies [5]. The latest status of the mission will be given. [1] T.L. Gustavson, A. Landragin, M.A, Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385-2398 (2000) [2] J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M.A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608-1 (2002) [3] A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25-61 (2001) [4] F. Yver-Leduc, P. Cheinet, J. Fils, A. Clairon, N. Dimarcq, D. Holleville, P. Bouyer, and A. Landragin. A. J. Opt. B : Quant. Semiclass. Opt. 5, S136 (2003) [5] http://sci.esa.int/home/hyper/index.cfm

  2. Weak value amplification of atomic cat states

    NASA Astrophysics Data System (ADS)

    Huang, Sumei; Agarwal, Girish S.

    2015-09-01

    We show the utility of the weak value amplification to observe the quantum interference between two close lying atomic coherent states in a post-selected atomic cat state, produced in a system of N identical two-level atoms weakly interacting with a single photon field. Through the observation of the negative parts of the Wigner distribution of the post-selected atomic cat state, we find that the post-selected atomic cat state becomes more nonclassical when the post-selected polarization state of the single photon field tends toward becoming orthogonal to its pre-selected state. We show that the small phase shift in the post-selected atomic cat state can be amplified via measuring the peak shift of its phase distribution when the post-selected state of the single photon field is nearly orthogonal to its pre-selected state. We find that the amplification factor of 15 [5] can be obtained for a sample of 10 [100] atoms. This effectively provides us with a method to discriminate between two close lying states on the Bloch sphere. We discuss possible experimental implementation of the scheme, and conclude with a discussion of the Fisher information.

  3. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}? in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  4. Circular states of atomic hydrogen

    SciTech Connect

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  5. Ground-state energy of nuclear matter

    SciTech Connect

    Baker G.A. Jr.; Benofy, L.P.; Fortes, M.

    1988-07-01

    The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k/sub F//sup 6/ for the ladder approximation and through order k/sub F//sup 6/lnk/sub F/ for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Pade extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.

  6. Teleportation of an atomic momentum state

    SciTech Connect

    Qamar, Shahid; Zhu Shiyao; Zubairy, M. Suhail

    2003-04-01

    In this paper, we propose a scheme for teleportating a superposition of atomic center-of-mass momentum states to a superposition of the cavity field using quantum controlled-NOT gate via atomic scattering in the Bragg regime and cavity quantum electrodynamics.

  7. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the PekarTomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the neutral case). We prove that the ground state energy, for large N, goes exactly as ?N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  8. Ground-state phases of polarized deuterium species

    SciTech Connect

    Panoff, R.M.; Clark, J.W.

    1987-10-01

    Microscopic prediction of the ground-state phase of electron-spin-aligned bulk atomic deuterium (Darrow-down) is attempted, based on the variational Monte Carlo method. The accurate pair potential of Kolos and Wolniewicz is assumed, and three versions of Darrow-down are considered, which, respectively, involve one, two, and three equally occupied nuclear spin states. The most definitive results on the zero-temperature equations of state of these systems are obtained with optimized ground-state trial wave functions incorporating Jastrow pair correlations, triplet correlations, and momentum-dependent backflow effects. The species Darrow-down/sub 3/ is bound already at the pure Jastrow level, while the energy expectation value of Darrow-down/sub 2/ dips below zero upon supplementing the Jastrow description by triplets and momentum-dependent backflow. The variational energy of Darrow-down/sub 1/ remains positive under all current refinements of the ground-state trial function. We conclude that the systems Darrow-down/sub 3/ and Darrow-down/sub 2/, if they could be manufactured and stabilized at relevant densities, would be Fermi liquids at sufficiently low temperature; on the other hand, it is likely that Darrow-down/sub 1/ would remain gaseous down to absolute zero.

  9. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  10. Pyramidal atoms: Berylliumlike hollow states

    SciTech Connect

    Poulsen, Marianne Dahlerup; Madsen, Lars Bojer

    2005-06-15

    Based on the idea that four excited electrons arrange themselves around the nucleus in the corners of a pyramid in order to minimize their mutual repulsion, we present an analytical model of quadruply excited states. The model shows excellent comparison with ab initio results and provides a clear physical picture of the intrinsic motion of the four electrons. The model is used to predict configuration-mixing fractions and spectra of these highly correlated states.

  11. Programmable solid state atom sources for nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization, summary of the evaporation experiments, technical details and data analysis of the measurement is supplied as ESI. In addition, three video files are included. One illustrates the operation of the source array and the other two are SEM videos of the dynamic process of silver evaporating on the source plate. See DOI: 10.1039/c5nr01331c

  12. Ground states of spin-2 condensates in an external magnetic field

    SciTech Connect

    Zheng, G.-P.; Tong, Y.-G.; Wang, F.-L.

    2010-06-15

    The possible ground states of spin-2 Bose-Einstein condensates in an external magnetic field are obtained analytically and classified systematically according to the population of the condensed atoms at the hyperfine sublevels. It is shown that the atoms can populate simultaneously at four hyperfine sublevels in a weak magnetic field with only the linear Zeeman energy, in contrast to that in a stronger magnetic field with the quadratic Zeeman energy, where condensed atoms can at most populate at three hyperfine sublevels in the ground states. Any spin configuration we obtained will give a closed subspace in the order parameter space of the condensates.

  13. Potential curves of the ground state and low-lying states of the scandium dimer using state-averaged MCSCF orbitals

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Asai, Shigeko; Kobayashi, Katsushi; Noro, Takeshi; Sasaki, Fukashi; Tatewaki, Hiroshi

    1997-04-01

    Global potential curves have been obtained for the ground state and low-lying states of the Sc dimer with state averaged complete active space self-consistent field and multireference configuration interaction calculations. The obtained curves are smooth over a wide range of internuclear distances. The calculated spectroscopic constants of the ground state agree well with experiment. The configurations arising from the 4F + 4F atomic limit become predominant in the bonding region for the second and third states.

  14. Proteome Analysis of Ground State Pluripotency.

    PubMed

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a nave ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  15. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a nave ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  16. Magnetoelectrostatic Trapping of Ground State OH Molecules

    SciTech Connect

    Sawyer, Brian C.; Lev, Benjamin L.; Hudson, Eric R.; Stuhl, Benjamin K.; Lara, Manuel; Bohn, John L.; Ye Jun

    2007-06-22

    We report magnetic confinement of neutral, ground state OH at a density of {approx}3x10{sup 3} cm{sup -3} and temperature of {approx}30 mK. An adjustable electric field sufficiently large to polarize the OH is superimposed on the trap in various geometries, making an overall potential arising from both Zeeman and Stark effects. An effective molecular Hamiltonian is constructed, with Monte Carlo simulations accurately modeling the observed single-molecule dynamics in various trap configurations. Magnetic trapping of cold polar molecules under adjustable electric fields may enable study of low energy dipolar interactions.

  17. Condensed ground states of frustrated Bose-Hubbard models

    SciTech Connect

    Moeller, G.; Cooper, N. R.

    2010-12-15

    We study theoretically the ground states of two-dimensional Bose-Hubbard models which are frustrated by gauge fields. Motivated by recent proposals for the implementation of optically induced gauge potentials, we focus on the situation in which the imposed gauge fields give rise to a pattern of staggered fluxes of magnitude {alpha} and alternating in sign along one of the principal axes. For {alpha}=1/2 this model is equivalent to the case of uniform flux per plaquette n{sub {phi}=}1/2, which, in the hard-core limit, realizes the 'fully frustrated' spin-1/2 XY model. We show that the mean-field ground states of this frustrated Bose-Hubbard model typically break translational symmetry. Given the presence of both a non-zero superfluid fraction and translational symmetry breaking, these phases are supersolid. We introduce a general numerical technique to detect broken symmetry condensates in exact diagonalization studies. Using this technique we show that, for all cases studied, the ground state of the Bose-Hubbard model with staggered flux {alpha} is condensed, and we obtain quantitative determinations of the condensate fraction. We discuss the experimental consequences of our results. In particular, we explain the meaning of gauge invariance in ultracold-atom systems subject to optically induced gauge potentials and show how the ability to imprint phase patterns prior to expansion can allow very useful additional information to be extracted from expansion images.

  18. The rotational levels of the ground vibrational state of formaldehyde

    NASA Astrophysics Data System (ADS)

    Handy, Stuart Carter Nicholas C.; Demaison, Jean

    A variational procedure for rovibrational energy levels and wavefunctions of centrally connected tetra-atomic molecules is extended to include high rotational states, and in particular, J 10 levels for the vibrational ground state of formaldehyde. It is very important to do this because it has made possible the calculation of the usual rotational spectroscopic constants which correspond to the forcefield and geometry. A direct comparison with the 'observed' spectroscopic constants is therefore possible. The geometry and forcefield are refined against 65 J = 0 levels of H2CO, 6 J = 0 levels of D2CO, 42 J = 1, 70 J = 2 and 98 J = 3 levels of the ground and fundamentals of H2CO a-n 1d D2CO, using an iterative schem-e1. The mean absolute error of the J = 0 levels is 1.10 cm and that for J = / 0 is 0.005 cm , and the predicted geometry is CH = 1.10064 A, CO = 1.20296 A and HCO = 121.648o. Finally, the rotational constants A, B, and C for the ground state are 281 956, 38846 and 34003 MHz, compared with the observed values 281 971, 38 836, and 34 002 MHz. The centrifugal distortion constants J, JK, K and deltaJ, are 77, 1275, 18 113 and 11 kHz compared with 75, 1291, 19 422 and 10 kHz. These results underline the accuracy of the new quartic forcefield.

  19. Steady Fock states via atomic reservoir

    NASA Astrophysics Data System (ADS)

    Prado, F. O.; Rosado, W.; de Moraes Neto, G. D.; Moussa, M. H. Y.

    2014-07-01

    In this letter we present a strategy that combines the action of cavity damping mechanisms with that of an engineered atomic reservoir to drive an initial thermal distribution to a Fock equilibrium state. The same technique can be used to slice probability distributions in the Fock space, thus allowing the preparation of a variety of nonclassical equilibrium states.

  20. Creating and probing coherent atomic states

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J. |; Frey, M.T.; Dunning, F.B.

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  1. Ground-state structures of Hafnium clusters

    NASA Astrophysics Data System (ADS)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  2. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  3. Spontaneous skyrmion ground states in magnetic metals.

    PubMed

    Rssler, U K; Bogdanov, A N; Pfleiderer, C

    2006-08-17

    Since the 1950s, Heisenberg and others have addressed the problem of how to explain the appearance of countable particles in continuous fields. Stable localized field configurations were searched for an ingredient for a general field theory of elementary particles, but the majority of nonlinear field models were unable to predict them. As an exception, Skyrme succeeded in describing nuclear particles as localized states, so-called 'skyrmions'. Skyrmions are a characteristic of nonlinear continuum models ranging from microscopic to cosmological scales. Skyrmionic states have been found under non-equilibrium conditions, or when stabilized by external fields or the proliferation of topological defects. Examples are Turing patterns in classical liquids, spin textures in quantum Hall magnets, or the blue phases in liquid crystals. However, it has generally been assumed that skyrmions cannot form spontaneous ground states, such as ferromagnetic or antiferromagnetic order, in magnetic materials. Here, we show theoretically that this assumption is wrong and that skyrmion textures may form spontaneously in condensed-matter systems with chiral interactions without the assistance of external fields or the proliferation of defects. We show this within a phenomenological continuum model based on a few material-specific parameters that can be determined experimentally. Our model has a condition not considered before: we allow for softened amplitude variations of the magnetization, characteristic of, for instance, metallic magnets. Our model implies that spontaneous skyrmion lattice ground states may exist generally in a large number of materials, notably at surfaces and in thin films, as well as in bulk compounds, where a lack of space inversion symmetry leads to chiral interactions. PMID:16915285

  4. Accurate variational calculations of the ground 2Po(1s22s22p) and excited 2S(1s22s2p2) and 2Po(1s22s23p) states of singly ionized carbon atom

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2011-12-01

    In this article we report accurate nonrelativistic variational calculations of the ground and two excited states of C+ ion. We employ extended and well optimized basis sets of all-electron explicitly correlated Gaussians to represent the wave functions of the states. The optimization of the basis functions is performed with a procedure employing the analytic gradient of the energy with respect to the nonlinear parameters of the Gaussians. The calculations explicitly include the effects due to the finite nuclear mass. The calculated transition energies between the three states are compared to the experimentally derived values. Finally, we present expectation values of some small positive and negative powers of the interparticle distances and contact densities.

  5. Ground-based laboratory atomic oxygen calibration experiments

    NASA Astrophysics Data System (ADS)

    Matcham, Jeremy Stephen

    1998-12-01

    Existing devices and analysis techniques for the monitoring of space and laboratory simulated Atomic Oxygen (AO) environments have been investigated and improved to enable more accurate and reliable measurement and calibration of AO flux and fluences than previously possible. This research was based on experimental work carried out in a ground based AO facility designed to simulate the low Earth orbit (LEO) AO space environment, an environment which contributes significantly to the degradation of spacecraft materials. Three types of AO measuring device, referred to as 'silver film', 'bulk polymer mass loss' and 'polymer overlay' devices, were used in the experiments and were based on the following principles for detection of AO, respectively: (1) The electrical resistivity characteristics of oxidising, thin silver films. (2) The mass loss of bulk polymeric materials. (3) The combination of both the above phenomena. In calibrating the responses of these devices upon exposure to AO, it was necessary to improve an existing technique to establish reference measurements of AO fluences based on the mass loss of the polymeric material 'Kapton-H'. Experiments showed that the most significant disturbance factor affecting accurate measurements of mass loss was atmospheric humidity, which was found to be responsible for a disturbance of 0.012(0.002)mg per percent change in atmospheric humidity level for the particular samples used in this research. Experiments also revealed a novel technique which indicated the relative stability of conditions within a simulated AO environment by the ratio of mass losses of a set of polymeric test samples, including polyethylene, polytetrafluoroethylene and Kapton-H, described as a 'signature analysis technique'. Interactions occurring between AO and a variety of polyethylene related polymeric materials were shown to be influenced by the methods used to manufacture and process the polymers. This influence has been related to changes in polymeric material density and crystallinity. In addition, the limitations in protecting a polymeric material from AO erosion by insertion of fluorine into the side-chain group chemistry has been indicated. Of most significance to the development of polymer overlay devices was the discovery that the overlay material AO erosion yield was dependent upon the rate at which the polymer overlay material was sputter deposited. These devices were also shown to detect AO fluences that were linearly dependent upon the initial thickness of the overlay material up to certain thicknesses, beyond which the effects of overlay porosity or fracturing weakened the linear relationship. A novel method for analysing silver film device electrical resistances under AO exposure has been developed from a combination of existing fundamental theories concerning the electrical resistivity phenomena in thin metallic films. Validation of this analysis method revealed that experimental silver film data were consistently in disagreement with the existing theories due to a factor influencing the conduction electron mean free path length in the silver films. Final validation of this analysis technique was performed by comparing results derived from the same set of experimental silver film device data using the new technique and an example of a previous technique. It was confirmed that the novel analysis technique produced far more consistent values for the oxidation yield of silver, 3/pm0.510-24cm3.atom-1, than the previously used technique, 6/pm310- 24cm3.atom-1. The novel analysis technique has been demonstrated to be theoretically more accurate for the analysis of silver film resistance data than any previously applied theories.

  6. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  7. Ground state of high-density matter

    SciTech Connect

    Copeland, E.; Kolb, E.W.; Lee, K.

    1988-10-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  8. Ground-state energy of jellium

    SciTech Connect

    Aguilera-Navarro, V.C.; Baker G.A. Jr.; de Llano, M.

    1985-10-01

    High- and low-density perturbation expansions for the ground-state energy per particle are utilized to analyze the presumably ''exact'' Monte Carlo data for jellium. In view of some controversy in the literature with regard to the values of the last two coefficients in the high-density non-power-series expansion, we extract from the Monte Carlo data values for these coefficients for both paramagnetic and ferromagnetic fluids. Integral approximants are then employed to obtain a representation of the high-density series at all densities. Comparison with the low-density expansion about the Wigner electron crystal renders millirydberg-accuracy agreement with the Monte Carlo data and excellent agreement in the critical density for Wigner crystallization.

  9. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  10. Atomic Schroedinger cat-like states

    SciTech Connect

    Enriquez-Flores, Marco; Rosas-Ortiz, Oscar

    2010-10-11

    After a short overview of the basic mathematical structure of quantum mechanics we analyze the Schroedinger's antinomic example of a living and dead cat mixed in equal parts. Superpositions of Glauber kets are shown to approximate such macroscopic states. Then, two-level atomic states are used to construct mesoscopic kittens as appropriate linear combinations of angular momentum eigenkets for j = 1/2. Some general comments close the present contribution.

  11. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which the metal-insulator transition occurs, but through digital control the Ni site symmetry can be artificially broken leading to a previously unseen monoclinic metallic phase. Further, by creating a structure which does or does not match the bulk-like rock salt charge order pattern it was found this transition can be either strongly enhanced or removed entirely.

  12. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  13. Quantum gas of deeply bound ground state molecules.

    PubMed

    Danzl, Johann G; Haller, Elmar; Gustavsson, Mattias; Mark, Manfred J; Hart, Russell; Bouloufa, Nadia; Dulieu, Olivier; Ritsch, Helmut; Ngerl, Hanns-Christoph

    2008-08-22

    Molecular cooling techniques face the hurdle of dissipating translational as well as internal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80% efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular sample is not heated during the transfer. Our results show that the preparation of a quantum gas of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground state is within reach. PMID:18719277

  14. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ? 0.45 and D ? 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  15. Optimal Squeezing in Resonance Fluorescence via Atomic-State Purification

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2012-07-01

    Squeezing of atomic resonance fluorescence is shown to be optimized by a properly designed environment, which can be realized by a quasiresonant cavity. Optimal squeezing is achieved if the atomic coherence is maximized, corresponding to a pure atomic quantum state. The atomic-state purification is achieved by the backaction of the cavity field on the atom, which increases the atomic coherence and decreases the atomic excitation. For realistic cavities, the coupling of the atom to the cavity field yields a purity of the atomic state of more than 99%. The fragility of squeezing against dephasing is substantially reduced in this scenario, which may be important for various applications.

  16. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  17. The nature of binding in the ground state of the scandium dimer

    NASA Astrophysics Data System (ADS)

    Miranda, U.; Kaplan, I. G.

    2011-07-01

    For the study of the nature of binding in the Sc2 dimer, the ground state, X5? u -, was calculated by the valence multireference configuration interaction method with single and double excitations plus Davidson correction, MRCISD (+Q), at the complete basis set (CBS) limit. The employment of the C2 v symmetry group, allowed us to obtain the Sc atoms in different states at the dissociation limit. From the Mulliken population analysis and comparison with atomic energies follows that in the ground state Sc2 dissociates on one Sc in the ground state and the other in the second excited quartet state, 4F u . The spectroscopic parameters of the ground potential curve, obtained at the valence MRCISD (+Q)/CBS level, are: R e = 5.20 bohr, D e = 50.37 kcal/mol, and ? e = 234.5 cm-1. The obtained value for the harmonic frequency agrees very well with the experimental one, ? e = 239.9 cm-1. The dissociation energy with reference to the dissociation on two Sc in the ground states was estimated as D e = 9.98 kcal/mol. In contrast with many other studied transition-metal dimers, which are attributed to the van der Waals bonded molecules, the Sc2 dimer is stabilized by the covalent bonding on the hybrid atomic orbitals.

  18. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  19. Nonequilibrium Kinetics of Rydberg Atomic States

    SciTech Connect

    Bureyeva, L. A.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.

    2008-10-22

    Two-dimensional quasi-classical model of the radiative-collisional cascade for hydrogen-like systems is developed. The model establishes the correspondence between the quantum and classical approaches. Our calculations of the two-dimensional populations of highly excited atomic hydrogen states for three-body and photorecombination sources of population allow the data of one-dimensional kinetic models to be refined. The calculated intensities of recombination lines demonstrate the degree of nonequilibrium of the Rydberg state populations under typical astrophysical plasma conditions.

  20. Scheme for Launching and Observing Dynamics of Cold Atoms in Rydberg States

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Weidner, Erik; Fitzpatrick, Mattias

    2013-05-01

    We are assembling a source of laser-cooled Rb atoms that can be launched at slow, controlled velocities and excited into Rydberg states. We assess the feasibility of detecting the motion of cold Rydberg atoms around a macroscopic charged wire. The capture and ionization of cold ground-state atoms in a 1 / r -electric field has been observed previously, using a nanowire to ensure that captured atoms could move in free space at small radial distances before impacting the wire or field-ionizing near the surface. Using highly-excited atoms instead, we suggest that a macroscopic wire offers a robust system with magnified effects. The capture cross-section increases for incident atoms in high- n states. For a 20-micron-diameter wire charged to +300 V, the critical impact parameter for atoms traveling at 2 m/s with n = 50 is 30 ?m, 10 times larger than for ground-state atoms. We propose that aspects of this model can be realized experimentally. Using an estimated lifetime of 40 ns for the n = 50 state, we calculate that excitation must occur at r=100 ?m, significantly beyond the wire's surface. In this way, we are preparing to promote launched atoms into high- n states and study their dynamics.

  1. A simplified scheme for realizing multi-atom NOON state

    NASA Astrophysics Data System (ADS)

    Zhong, Zhi-Rong

    2010-01-01

    We present a scheme for realizing a multi-atom NOON state via cavity QED system. The scheme bases on the Jaynes-Cumming mode with collective atomic bosonic mode. In the process, a series of control atoms are sent through two single mode cavities which are initially in vacuum states and have the same collective atoms. After the suitable interaction time, the collective atoms in two cavities are in the desired state.

  2. Recent progress in simulation of the ground state of many Boson systems

    NASA Astrophysics Data System (ADS)

    Galli, D. E.; Reatto, L.

    2003-01-01

    We present two recent advances in the simulation of 4He in the condensed phase at zero temperature. Within the variational theory of strongly interacting bosons we have studied a cluster of 4He atoms with one alkali ion K+. For the wave function we have used a new shadow wave function (SWF) in which the coupling between one 4He atom and its shadow variable depends on its distance from the ion. This substantially improves the energy. The first shell around the ion contains 14 atoms which are spatially ordered. However the atoms of the first shell are not completely localized and frequent exchanges with atoms which are further from the ion take place. This also suggests that at least for the ion K+ the atoms of the first shell participate in the superfluidity. We have also introduced a new extension of the path integral ground state (PIGS) method which is able to compute exact ground state expectation values without extrapolations and with a SWF as the trial variational wave function to project on the ground state. This is an important extension which opens up the possibility of studying disorder phenomena in the solid phase by an exact method at zero temperature. We have applied this technique to compute the energy of formation of a vacancy at different densities in the solid phase of 4He. This computation confirms the variational result that a vacancy is a delocalized defect in the low density helium solid.

  3. Narrow chaotic compound autoionizing states in atomic spectra

    SciTech Connect

    Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.

    1996-09-01

    Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparable with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}

  4. Coherent structures in the ground state of the quantum Frenkel-Kontorova model

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Technical University, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk ); Campbell, D.K. )

    1994-03-15

    We study the quantum ground state of the Frenkel-Kontorova model in the strongly nonlinear'' regime in which in the corresponding classical limit the coordinates of the atoms are distributed on Cantori.'' We identify (many) quasidegenerate configurations that contribute to the quantum ground state. When the characteristic quantum and classical energy scales are roughly equal (the intermediate'' quantum regime), we find, consistent with earlier numerical studies, that the standard map'' determining the coordinates in the classical ground state is renormalized to an effective sawtooth'' map, which determines the expectation values of the coordinates in the quantum ground state. We also discuss the dynamics of the model and estimate the characteristic time for various quantum tunneling effects.

  5. On the ground state of Yang-Mills theory

    SciTech Connect

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-15

    Highlights: > The ground state overlap for sets of meson potential trial states is measured. > Non-uniform gluonic distributions are probed via Wilson loop operator. > The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  6. Lossless anomalous dispersion and an inversionless gain doublet via dressed interacting ground states

    SciTech Connect

    Weatherall, James Owen; Search, Christopher P.

    2010-02-15

    Transparent media exhibiting anomalous dispersion have been of considerable interest since Wang, Kuzmich, and Dogariu [Nature 406, 277 (2000)] first observed light propagate with superluminal and negative group velocities without absorption. Here, we propose an atomic model exhibiting these properties, based on a generalization of amplification without inversion in a five-level dressed interacting ground-state system. The system consists of a {Lambda} atom prepared as in standard electromagnetically induced transparency (EIT), with two additional metastable ground states coupled to the {Lambda} atom ground states by two rf-microwave fields. We consider two configurations by which population is incoherently pumped into the ground states of the atom. Under appropriate circumstances, we predict a pair of new gain lines with tunable width, separation, and height. Between these lines, absorption vanishes but dispersion is large and anomalous. The system described here is a significant improvement over other proposals in the anomalous dispersion literature in that it permits additional coherent control over the spectral properties of the anomalous region, including a possible 10{sup 4}-fold increase over the group delay observed by Wang, Kuzmich, and Dogariu.

  7. B2N2O4: Prediction of a Magnetic Ground State for a Light Main-Group Molecule

    SciTech Connect

    Varga, Zoltan; Truhlar, Donald G.

    2015-09-08

    Cyclobutanetetrone, (CO)4, has a triplet ground state. Here we predict, based on electronic structure calculations, that the B2N2O4 molecule also has a triplet ground state and is therefore paramagnetic; the structure is an analogue of (CO)4 in which the carbon ring is replaced by a (BN)2 ring. Similar to (CO)4, the triplet ground-state structure of B2N2O4 is also thermodynamically unstable. Besides analysis of the molecular orbitals, we found that the partial atomic charges are good indicators for predicting magnetic ground states.

  8. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the roughness exponent. The fractal dimension of contour loops on experimentally observed rough interfaces can be used to characterize their morphology.

  9. A resonant state and the ground state of positronium hydride

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.

    1978-01-01

    The lowest-lying resonance occurring in S-wave positronium-hydrogen scattering is reinvestigated, using the complex-rotation method. By employing a generalized Hylleraas-type wave function that includes all six interparticle coordinates, a very accurate value of the resonance position is obtained, along with a good value of the width. The present result for the resonance position (-1.205 plus or minus 0.001 Ry) is lower than the previous result of Drachman and Houston, who omitted the interelectronic coordinate in their trial function. In addition, the lowest ground-state energy of positronium hydride is obtained by using 210 terms in the trial wave function. The effect of the interelectronic coordinate and others on both the resonant energy and the binding energy of PsH is discussed.

  10. Determination of the ground-state hyperfine structure in neutral 229Th

    NASA Astrophysics Data System (ADS)

    Sonnenschein, V.; Raeder, S.; Hakimi, A.; Moore, I. D.; Wendt, K.

    2012-08-01

    The ground-state hyperfine structure of neutral 229Th has been measured for the first time using high-resolution resonance ionization spectroscopy. The measurements were performed as a preparatory work aimed at the identification of the predicted low-lying 7.6 eV isomer in 229Th through an investigation of its hyperfine structure. The hyperfine coupling constants have been extracted for the atomic ground state as well as for three excited states at 26 096, 26 113 and 38 278 cm-1. Due to rather small splittings not all hyperfine components were completely resolved and therefore an extensive ?2-error analysis was performed to achieve reliable results. The ground-state transition to the excited state at 38 278 cm-1 was identified to be the most sensitive of the three transitions with regard to the future identification of the isomeric state.

  11. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  12. Ground-state properties of ultracold trapped bosons with an immersed ionic impurity

    NASA Astrophysics Data System (ADS)

    Schurer, J. M.; Schmelcher, P.; Negretti, A.

    2014-09-01

    We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi-one-dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree method for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyze the influence of the atom number and the atom-atom interaction on the ground-state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behavior to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigating the many-body physics of such hybrid system.

  13. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J. Z.; Morse, K. J.; Riemann, H.; Abrosimov, N. V.; Ntzel, N.; Litvinenko, K. L.; Murdin, B. N.; Thewalt, M. L. W.

    2015-05-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si.

  14. Concentration for unknown atomic entangled states via cavity decay

    SciTech Connect

    Cao Zhuoliang; Yang Ming; Zhang Lihua

    2006-01-15

    We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as a stationary qubit and the photonic state as a flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.

  15. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  16. Precision molecular spectroscopy for ground state transfer of molecular quantum gases.

    PubMed

    Danzl, Johann G; Mark, Manfred J; Haller, Elmar; Gustavsson, Mattias; Bouloufa, Nadia; Dulieu, Olivier; Ritsch, Helmut; Hart, Russell; Ngerl, Hanns-Christoph

    2009-01-01

    One possibility for the creation of ultracold, high phase space density quantum gases of molecules in the rovibronic ground state relies on first associating weakly-bound molecules from quantum-degenerate atomic gases on a Feshbach resonance and then transferring the molecules via several steps of coherent two-photon stimulated Raman adiabatic passage (STIRAP) into the rovibronic ground state. Here, in ultracold samples of Cs2 Feshbach molecules produced out of ultracold samples of Cs atoms, we observe several optical transitions to deeply-bound rovibrational levels of the excited 0(u)+ molecular potentials with high resolution. At least one of these transitions, although rather weak, allows efficient STIRAP transfer into the deeply-bound vibrational level (see text for symbols)v = 73 > of the singlet X1 sigma(g)+ ground state potential, as recently demonstrated (J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Ngerl, Science, 2008, 321, 1062). From this level, the rovibrational ground state (see text for symbols)v = 0, J = 0 > can be reached with one more transfer step. In total, our results show that coherent ground state transfer for Cs2 is possible using a maximum of two successive two-photon STIRAP processes or one single four-photon STIRAP process. PMID:20151549

  17. On the atomic state densities of plasmas produced by the ``torche injection axiale''

    NASA Astrophysics Data System (ADS)

    Jonkers, J.; Vos, H. P. C.; van der Mullen, J. A. M.; Timmermans, E. A. H.

    1996-04-01

    The atomic state densities of helium and argon plasmas produced by the microwave driven plasma torch called the "torche injection axiale" are presented. They are obtained by absolute line intensity measurements of the excited states and by applying the ideal gas law to the ground state. It will be shown that the atomic state distribution function (ASDF) does not obey the Saha-Boltzmann law: the ASDF cannot be described by one temperature. From the shape of the ASDF it can be concluded that the plasma is ionising. By extrapolating the measured state densities towards the ionisation limit, a minimum value of the electron density can be determined.

  18. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero-temperature limit. Our techniques may be applied to sample the zero-temperature limit of the canonical ensemble of other potentials with highly degenerate ground states. PMID:26382356

  19. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero-temperature limit. Our techniques may be applied to sample the zero-temperature limit of the canonical ensemble of other potentials with highly degenerate ground states.

  20. Ground state and constrained domain walls in Gd /Fe multilayers

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Prieto, Jos L.; Mathur, Neil D.

    2005-03-01

    The magnetic ground state of antiferromagnetically coupled Gd /Fe multilayers and the evolution of in-plane domain walls is modeled with micromagnetics. The twisted state is characterized by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios MFe:MGd, the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio MFe:MGd but also by the thicknesses of the layers; that is by the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe-aligned and the Gd-aligned state in favor of the twisted state. On the other hand, ultrathin layers exclude the twisted state, since wider domain walls cannot form in these ultrathin layers.

  1. Phase diagram of the ground states of DNA condensates

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trinh, Hoa Lan; Giacometti, Achille; Podgornik, Rudolf; Banavar, Jayanth R.; Maritan, Amos

    2015-12-01

    The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective self-attraction promoting compaction. x =1 corresponds to the wormlike chain model. Surprisingly, the phase diagram as well as the transition lines between the ground states are found to be a function of x . The model provides a simple explanation for the results of prior experimental and computational studies and makes predictions for the specific geometries of the ground states. The results underscore the impact of the form of the microscopic bending energy at macroscopic observable scales.

  2. Ground state correlations and mean field in {sup 16}O

    SciTech Connect

    Heisenberg, J.H.; Mihaila, B.

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body {bold G} matrix inside the nucleus in which it is being used. This formalism is being applied to {sup 16}O in a configuration space of 50{h_bar}{omega}. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of {sup 16}O. {copyright} {ital 1999} {ital The American Physical Society}

  3. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  4. Population transfer and quantum entanglement implemented in cold atoms involving two Rydberg states via an adiabatic passage

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui

    2015-12-01

    We study the adiabatic passage for a pair of interacting cold atoms driven into the ladder configuration with one ground state and two Rydberg states. We find, with proper single-photon and two-photon detunings, that it is viable to (i) achieve efficient population transfer from the ground state to either Rydberg state by fully overcoming the dipole blockade effect and (ii) implement maximal entangled states by partially overcoming the dipole blockade effect. These entangled atomic states are very stable and have purities and fidelities approaching 100%, among which one is of particular interest since it involves the simultaneous excitation of two different Rydberg states.

  5. Antifreeze acceptability for ground-coupled heat pump ground loops in the United States

    SciTech Connect

    Den Braven, K.R.

    1998-10-01

    When designing and installing closed-loop ground-coupled heat pumps systems, it is necessary to be aware of applicable environmental regulations. Within the United States, nearly half of the states have regulations specifying or restricting the use of particular antifreezes or other fluids within the ground loop of a ground-coupled heat pump system. A number of other states have regulations pending. While all of these regulations are based on the need to preserve groundwater and/or aquifer quality, the list of acceptable antifreezes varies among those states with specified fluids. Typical antifreezes in use include ethylene glycol, propylene glycol, brines, alcohols, and potassium acetate. Each of these has its benefits and drawbacks. The status of the regulations has been determined for all of the states. An overview of the regulations is presented in this paper, along with a summary of the states` concerns.

  6. Many-body ground-state properties of an attractive Bose-Einstein condensate in a one-dimensional ring

    SciTech Connect

    Montina, A.; Arecchi, F.T.

    2005-06-15

    We study a Bose-Einstein condensate with attractive interactions in a one-dimensional ring and show that the ground state is well described by the superposition of bright solitons. A position measurement of some atoms gives rise to the state reduction of the soliton position, which increases the condensate fraction. The bunched many-body ground state is well approximated by a simple variational wave function.

  7. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  8. Light pulse analysis with a multi-state atom interferometer

    SciTech Connect

    Herrera, I.; Lombardi, P.; Schfer, F.; Petrovic, J.; Cataliotti, F. S.

    2014-12-04

    We present a controllable multi-state cold-atom interferometer that is easy-to-use and fully merged on an atom chip. We demonstrate its applications as a sensor of the fields whose interactions with atoms are state-dependent.

  9. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  10. Direct measurement of concurrence for atomic two-qubit pure states

    SciTech Connect

    Romero, G.; Lopez, C. E.; Lastra, F.; Retamal, J. C.; Solano, E.

    2007-03-15

    We propose a general scheme to measure the concurrence of an arbitrary two-qubit pure state in atomic systems. The protocol is based on one- and two-qubit operations acting on two available copies of the bipartite system, and followed by a global qubit readout. We show that it is possible to encode the concurrence in the probability of finding all atomic qubits in the ground state. Two possible scenarios are considered: atoms crossing three-dimensional microwave cavities and trapped ion systems.

  11. Exploring the Single Atom Spin State by Electron Spectroscopy.

    PubMed

    Lin, Yung-Chang; Teng, Po-Yuan; Chiu, Po-Wen; Suenaga, Kazu

    2015-11-13

    To control the spin state of an individual atom is an ultimate goal for spintronics. A single atom magnet, which may lead to a supercapacity memory device if realized, requires the high-spin state of an isolated individual atom. Here, we demonstrate the realization of well isolated transition metal (TM) atoms fixed at atomic defects sparsely dispersed in graphene. Core-level electron spectroscopy clearly reveals the high-spin state of the individual TM atoms at the divacancy or edge of the graphene layer. We also show for the first time that the spin state of single TM atoms systematically varies with the coordination of neighboring nitrogen or oxygen atoms. These structures can be thus regarded as the smallest components of spintronic devices with controlled magnetic behavior. PMID:26613462

  12. Exploring the Single Atom Spin State by Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chang; Teng, Po-Yuan; Chiu, Po-Wen; Suenaga, Kazu

    2015-11-01

    To control the spin state of an individual atom is an ultimate goal for spintronics. A single atom magnet, which may lead to a supercapacity memory device if realized, requires the high-spin state of an isolated individual atom. Here, we demonstrate the realization of well isolated transition metal (TM) atoms fixed at atomic defects sparsely dispersed in graphene. Core-level electron spectroscopy clearly reveals the high-spin state of the individual TM atoms at the divacancy or edge of the graphene layer. We also show for the first time that the spin state of single TM atoms systematically varies with the coordination of neighboring nitrogen or oxygen atoms. These structures can be thus regarded as the smallest components of spintronic devices with controlled magnetic behavior.

  13. Approximating the ground state of gapped quantum spin systems

    SciTech Connect

    Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  14. Rydberg States of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Stebbings, R. F.; Dunning, F. B.

    2011-03-01

    List of contributors; Preface; 1. Rydberg atoms in astrophysics A. Dalgarno; 2. Theoretical studies of hydrogen Rydberg atoms in electric fields R. J. Damburg and V. V. Kolosov; 3. Rydberg atoms in strong fields D. Kleppner, Michael G. Littman and Myron L. Zimmerman; 4. Spectroscopy of one- and two-electron Rydberg atoms C. Fabre and S. Haroche; 5. Interaction of Rydberg atoms with blackbody radiation T. F. Gallagher; 6. Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and ions A. P. Hickman, R. E. Olson and J. Pascale; 7. Experimental studies of the interaction of Rydberg atoms with atomic species at thermal energies F. Gounand and J. Berlande; 8. Theoretical studies of collisions of Rydberg atoms with molecules Michio Matsuzawa; 9. Experimental studies of thermal-energy collisions of Rydberg atoms with molecules F. B. Dunning and R. F. Stebbings; 10. High-Rydberg molecules Robert S. Freund; 11. Theory of Rydberg collisions with electrons, ions and neutrals M. R. Flannery; 12. Experimental studies of the interactions of Rydberg atoms with charged particles J. -F. Delpech; 13. Rydberg studies using fast beams Peter M. Koch; Index.

  15. Ground State of the H3+ Molecular Ion: Physics Behind

    NASA Astrophysics Data System (ADS)

    Turbiner, A. V.; Lopez Vieyra, J. C.

    2013-10-01

    Five physics mechanisms of interaction leading to the binding of the H3+ molecular ion are identified. They are realized in a form of variational trial functions, and their respective total energies are calculated. Each of them provides subsequently the most accurate approximation for the Born-Oppenheimer (BO) ground state energy among (two-three-seven)-parametric trial functions being, correspondingly, H2-molecule plus proton (two variational parameters), H2+-ion plus H-atom (three variational parameters), and generalized Guillemin-Zener (seven variational parameters). These trial functions are chosen following a criterion of physical adequacy. They include the electronic correlation in the exponential form, exp(-r12), where - is a variational parameter. Superpositions of two different mechanisms of binding are investigated, and a particular one, which is a generalized Guillemin-Zener plus H2-molecule plus proton (ten variational parameters), provides the total energy at the equilibrium of E = -1.3432 au. The superposition of three mechanisms, generalized Guillemin-Zener plus (H2-molecule plus proton) plus (H2+-ion plus H) (14 parameters) leads to the total energy, which deviates from the best known BO energy to -0.0004 au, it reproduces two-three significant digits in exact, non-BO total energy. In general, our variational energy agrees in two-three-four significant digits with the most accurate results available at present as well as major expectation values.

  16. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  17. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481

  18. Detection of motional ground state population of a trapped ion using delayed pulses

    NASA Astrophysics Data System (ADS)

    Gebert, F.; Wan, Y.; Wolf, F.; Heip, Jan C.; Schmidt, Piet O.

    2016-01-01

    Efficient preparation and detection of the motional state of trapped ions is important in many experiments ranging from quantum computation to precision spectroscopy. We investigate the stimulated Raman adiabatic passage (STIRAP) technique for the manipulation of motional states in a trapped ion system. The presented technique uses a Raman coupling between two hyperfine ground states in 25Mg+, implemented with delayed pulses, which removes a single phonon independent of the initial motional state. We show that for a thermal probability distribution of motional states the STIRAP population transfer is more efficient than a stimulated Raman Rabi pulse on a motional sideband. In contrast to previous implementations, a large detuning of more than 200 times the natural linewidth of the transition is used. This approach renders STIRAP suitable for atoms in which resonant laser fields would populate nearby fluorescing excited states and thus impede the STIRAP process. We use the technique to measure the wavefunction overlap of excited motional states with the motional ground state. This is an important application for force sensing applications using trapped ions, such as photon recoil spectroscopy, in which the signal is proportional to the depletion of motional ground state population. Furthermore, a determination of the ground state population enables a simple measurement of the ion's temperature.

  19. What is the quantum ground state of dipolar spin ice?

    NASA Astrophysics Data System (ADS)

    McClarty, Paul; Sikora, Olga; Moessner, Roderich; Penc, Karlo; Pollmann, Frank; Shannon, Nic

    2015-03-01

    Recent work on Dy2Ti2O7 spin ice has revealed a partial loss of residual entropy deep within the spin ice state. It has been known for some time that the spin ice materials should have either magnetically ordered or quantum spin liquid ground states and this latest work hints at the possibility of determining them experimentally. We study a natural model for the dipolar spin ice materials and map out the entire ground state phase diagram in the presence of quantum tunneling between the ice states. In the classical case, we show that the ground states in our 3D long-range interacting model can be determined from those of a short-range interacting 2D model and, remarkably, in the quantum case, only a very small tunneling coupling compared to the dipolar coupling is necessary to enter the quantum spin liquid state.

  20. Toward Triplet Ground State LiNa Molecules

    NASA Astrophysics Data System (ADS)

    Jamison, Alan; Rvachov, Timur; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    We present progress toward creation of ultracold ground-state triplet LiNa molecules. This molecule is expected to have a long lifetime in the triplet ground state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. Our progress includes the first observation of triplet excited states in this molecule, achieved through photoassociation of ultracold mixtures of 6-Li and Na. We compare experimental results to a variety of near-dissociation expansions as well as ab initio potentials.

  1. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  2. Ground-state and transition charge densities in /sup 192/Os

    SciTech Connect

    Reuter, W.; Shera, E.B.; Hoehn, M.V.; Hersman, F.W.; Milliman, T.; Finn, J.M.; Hyde-Wright, C.; Lourie, R.; Pugh, B.; Bertozzi, W.

    1984-11-01

    Elastic and inelastic electron-scattering cross sections of an Os-Pt transition region nucleus, /sup 192/Os, have been measured in a momentum transfer range from 0.6 to 2.9 fm/sup -1/. The data for the ground and the J/sup ..pi../ = 2/sup +/, 2/sup +/', 4/sup +/, and 3/sup -/ states were analyzed model independently with a Fourier-Bessel parametrization of the ground state and transition charge densities. The normalization of the (e,e') cross sections was obtained from a combined analysis with muonic-atom data for the ground and first 2/sup +/ states. The densities and their radial moments are compared with theoretical predictions of the Davydov model and with axially symmetric deformed density-matrix-expansion Hartree-Fock calculations (including the Legendre expansion and the small-amplitude vibration model extensions).

  3. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  4. Efficient algorithm for approximating one-dimensional ground states

    SciTech Connect

    Aharonov, Dorit; Arad, Itai; Irani, Sandy

    2010-07-15

    The density-matrix renormalization-group method is very effective at finding ground states of one-dimensional (1D) quantum systems in practice, but it is a heuristic method, and there is no known proof for when it works. In this article we describe an efficient classical algorithm which provably finds a good approximation of the ground state of 1D systems under well-defined conditions. More precisely, our algorithm finds a matrix product state of bond dimension D whose energy approximates the minimal energy such states can achieve. The running time is exponential in D, and so the algorithm can be considered tractable even for D, which is logarithmic in the size of the chain. The result also implies trivially that the ground state of any local commuting Hamiltonian in 1D can be approximated efficiently; we improve this to an exact algorithm.

  5. Ground-state geometric quantum computing in superconducting systems

    SciTech Connect

    Solinas, P.; Moettoenen, M.

    2010-11-15

    We present a theoretical proposal for the implementation of geometric quantum computing based on a Hamiltonian which has a doubly degenerate ground state. Thus the system which is steered adiabatically, remains in the ground-state. The proposed physical implementation relies on a superconducting circuit composed of three SQUIDs and two superconducting islands with the charge states encoding the logical states. We obtain a universal set of single-qubit gates and implement a nontrivial two-qubit gate exploiting the mutual inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state quantum computing. The introduced paradigm for the implementation of geometric quantum computing is expected to be robust against environmental effects.

  6. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  7. Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Vogell, B.; Kampschulte, T.; Rakher, M. T.; Faber, A.; Treutlein, P.; Hammerer, K.; Zoller, P.

    2015-04-01

    We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.

  8. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    SciTech Connect

    Maaloul, L.; Gangwar, R. K.; Stafford, L.

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over the whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.

  9. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical formulas for the structure factor and thermal expansion coefficient for the excited states at sufficiently small temperatures for any d . The development of this theory provides new insights regarding our fundamental understanding of the nature and formation of low-temperature states of amorphous matter. Our work also offers challenges to experimentalists to synthesize stealthy ground states at the molecular level.

  10. High-speed ground transportation development outside United States

    SciTech Connect

    Eastham, T.R.

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  11. Photoionization of ground and excited states of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2015-07-01

    Detailed photoionization of ground and many excited states with autoionizing resonances of neutral Ti are presented. Ti I with 22 electrons forms a large number of bound states, the present work finds a total of 908 bound states with n ⩽ 10 and l ⩽ 8 . Photoionization cross sections (σPI) for all these bound states have been obtained. Calculations were carried out in the close-coupling R-matrix method using a wave function expansion that included 36 states of core ion Ti II. It is found that the resonances enhance the low energy region of photoionization of the ground and low lying excited states. The resonant features will increase the opacity, as expected of astrophysical observation, and hence play important role in determination of abundances in the elements in the astronomical objects. The excited states also show prominent structures of Seaton or photo-excitation-of-core resonances.

  12. Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps

    SciTech Connect

    Koch, Christiane P.; Masnou-Seeuws, Francoise; Kosloff, Ronnie

    2005-05-20

    We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for {sup 87}Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected.

  13. Ultracold triplet molecules in the rovibrational ground state.

    PubMed

    Lang, F; Winkler, K; Strauss, C; Grimm, R; Denschlag, J Hecker

    2008-09-26

    We report here on the production of an ultracold gas of tightly bound Rb2 triplet molecules in the rovibrational ground state, close to quantum degeneracy. This is achieved by optically transferring weakly bound Rb2 molecules to the absolute lowest level of the ground triplet potential with a transfer efficiency of about 90%. The transfer takes place in a 3D optical lattice which traps a sizeable fraction of the tightly bound molecules with a lifetime exceeding 200 ms. PMID:18851446

  14. Ground-state van der Waals forces in planar multilayer magnetodielectrics

    SciTech Connect

    Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Kampf, Thomas

    2005-09-15

    Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special emphasis is placed on the competing attractive and repulsive force components associated with the electric and magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are given. Both numerical and analytical results are presented.

  15. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  16. The ground-state potential energy curve of the radium dimer from relativistic coupled cluster calculations.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Dammalapati, Umakanth; Knoop, Steven; Visscher, Lucas

    2015-08-28

    The potential energy curve for the ground-state of radium dimer (Ra2) is provided by means of atomic and molecular relativistic coupled cluster calculations. The short-range part of this curve is defined by an equilibrium bond length of 5.324 , a dissociation energy of 897 cm(-1), and a harmonic vibrational frequency of 20.5 cm(-1). The asymptotic behavior at large interatomic distances is characterized by the van der Waals coefficients C6 = 5.090 10(3), C8 = 6.978 10(5), and C10 = 8.786 10(7) atomic units. The two regions are matched in an analytical potential to provide a convenient representation for use in further calculations, for instance, to model cold collisions between radium atoms. This might become relevant in future experiments on ultracold, optically trapped, radioactive radium atoms that are used to search for a permanent electric dipole moment. PMID:26328843

  17. All-optical scheme for strongly enhanced production of a Bose-Einstein condensate of dipolar molecules in the vibronic ground state

    NASA Astrophysics Data System (ADS)

    Mackie, Matt; Debrosse, Catherine

    2010-04-01

    We consider two-color heteronuclear photoassociation of a dual-species Bose-Einstein condensate into a Bose-Einstein condensate of dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically excited state. This problem raises an interest because heteronuclear photoassociation from atoms to near-ground-state molecules is limited by the small size of the target state. Nevertheless, the addition of the electronically excited state creates a second pathway for creating molecules in the vibronic ground state, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersivelike shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semiclassical size of both molecular states. Whereas strong enhancement enables saturation of the free-ground transition, coherent conversion from a two-species condensate of atoms to a condensate of dipolar molecules in the vibronic ground state is only possible for a limited range of free-bound detunings near resonance.

  18. Long-range quantum gate via Rydberg states of atoms in a thermal microwave cavity

    NASA Astrophysics Data System (ADS)

    Srkny, L?rinc; Fortgh, Jzsef; Petrosyan, David

    2015-09-01

    We propose an implementation of a universal quantum gate between pairs of spatially separated atoms in a microwave cavity at finite temperature. The gate results from reversible laser excitation of Rydberg states of atoms interacting with each other via exchange of virtual photons through a common cavity mode. Quantum interference of different transition paths between the two-atom ground and double-excited Rydberg states makes both the transition amplitude and resonance largely insensitive to the excitations in the microwave cavity quantum bus which can therefore be in any superposition or mixture of photon number states. Our scheme for attaining ultra-long-range interactions and entanglement also applies to mesoscopic atomic ensembles in the Rydberg blockade regime and is scalable to many ensembles trapped within a centimeter-sized microwave resonator.

  19. Emergent structure of multidislocation ground States in curved crystals.

    PubMed

    Azadi, Amir; Grason, Gregory M

    2014-06-01

    We study the structural features and underlying principles of multidislocation ground states of a crystalline spherical cap. In the continuum limit where the ratio of crystal size to lattice spacing W/a diverges, dislocations proliferate and ground states approach a characteristic sequence of structures composed of radial grain boundaries ("neutral scars"), extending radially from the boundary and terminating in the bulk. Employing a combination of numerical simulations and asymptotic analysis of continuum elasticity theory, we prove that an energetic hierarchy gives rise to a structural hierarchy, whereby dislocation number and scar number diverge as a/W?0 while scar length and dislocation number per scar become independent of lattice spacing. We characterize a secondary transition occurring as scar length grows, where the n-fold scar symmetry is broken and ground states are characterized by polydisperse, forked-scar morphologies. PMID:24949777

  20. Probing Quantum Frustrated Systems via Factorization of the Ground State

    NASA Astrophysics Data System (ADS)

    Giampaolo, Salvatore M.; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-01

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  1. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures. PMID:20867055

  2. Semiclassical atom theory applied to solid-state physics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Terentjevs, Aleksandrs; Della Sala, Fabio; Cortona, Pietro; Fabiano, Eduardo

    2016-01-01

    Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state problems. Moreover, we show that it can be employed to construct a simple and nonempirical generalized gradient approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also reasonably accurate for large atoms and ordinary chemistry.

  3. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  4. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  5. Fock-state view of weak-value measurements and implementation with photons and atomic ensembles

    SciTech Connect

    Simon, Christoph; Polzik, Eugene S.

    2011-04-15

    Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.

  6. Atom-by-atom quantum state control in adatom chains on a semiconductor.

    PubMed

    Flsch, Stefan; Yang, Jianshu; Nacci, Christophe; Kanisawa, Kiyoshi

    2009-08-28

    The vertical manipulation of native adatoms on a III-V semiconductor surface was achieved in a scanning tunneling microscope at 5 K. Reversible repositioning of individual In atoms on InAs(111)A allows us to construct one-atom-wide In chains. Tunneling spectroscopy reveals that these chains host quantum states deriving from an adatom-induced electronic state and substantial substrate-mediated coupling. Our results show that the combined approach of atom manipulation and local spectroscopy is capable to explore atomic-scale quantum structures on semiconductor platform. PMID:19792811

  7. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  8. Quenching of low-lying Rydberg states of Na colliding with ground-state He: A semiclassical approach

    SciTech Connect

    Kumar, A.; Lane, N.F.; Kimura, M.

    1989-02-01

    The molecular expansion method within the framework of the semiclassical approximation is applied to quenching of low-lying excited states of Rydberg atoms colliding with ground-state He at thermal energies. Interactions between the colliding atoms are accounted for in terms of pseudopotentials, and their relative motion is described by a classical linear trajectory. A fairly large basis set of Slater-type orbitals is used to obtain molecular eigenstates, and subsequently a 14-state close-coupling calculation is performed to evaluate the total quenching cross sections and the contributions of individual transitions. The energy dependence of the calculated cross sections is investigated, and possible mechanisms responsible for individual transitions are explained. Finally, the collision rates are calculated and compared with experimental results.

  9. Calculations of the ground state of sup 16 O

    SciTech Connect

    Pieper, S.C.

    1989-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: specification of the Hamiltonian, and calculation of the ground states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependences. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At present, reliable solutions of the Faddeev equations for the A = 3 nuclei with such interactions are routine. Recently, Carlson has made an essentially exact GFMC calculation of the He ground state using just a two-nucleon interaction, and there are reliable variational calculations for more complete potential models. Nuclear matter calculations can also be made with reasonable reliability. However, there have been very few calculations of nuclei with A > 5 using realistic interactions, and none with a modern three-nucleon interaction. In the present paper I present a new technique for variational calculations for such nuclei and apply it to the ground state of {sup 16}O. 15 refs., 2 figs., 3 tabs.

  10. Calculating helium atomic excited states in coordinate space

    NASA Astrophysics Data System (ADS)

    Hall, Shane; Siegel, P. B.

    2015-12-01

    Two coupled Schrdinger equations are used to calculate excited states of atomic helium. Using product state functions for the two-electron state, the shooting method is used to numerically determine the energies of the allowed singlet and triplet levels. The calculations agree well with the data, and the coordinate-space basis yields Schrdinger equations for helium that are familiar to students who have used similar methods for the hydrogen atom.

  11. Speed of Markovian relaxation toward the ground state

    NASA Astrophysics Data System (ADS)

    Vogl, Malte; Schaller, Gernot; Brandes, Tobias

    2010-01-01

    For sufficiently low reservoir temperatures, it is known that open quantum systems subject to decoherent interactions with the reservoir relax toward their ground state in the weak coupling limit. Within the framework of quantum master equations, this is formalized by the Born-Markov-secular (BMS) approximation, where one obtains the system Gibbs state with the reservoir temperature as a stationary state. When the solution to some problem is encoded in the (isolated) ground state of a system Hamiltonian, decoherence can therefore be exploited for computation. The computational complexity is then given by the scaling of the relaxation time with the system size n. We study the relaxation behavior for local and nonlocal Hamiltonians that are coupled dissipatively with local and nonlocal operators to a bosonic bath in thermal equilibrium. We find that relaxation is generally more efficient when coherences of the density matrix in the system energy eigenbasis are taken into account. In addition, the relaxation speed strongly depends on the matrix elements of the coupling operators between initial state and ground state. We show that Dicke superradiance is a special case of our relaxation models and can thus be understood as a coherence-assisted relaxation speedup.

  12. Speed of Markovian relaxation toward the ground state

    SciTech Connect

    Vogl, Malte; Schaller, Gernot; Brandes, Tobias

    2010-01-15

    For sufficiently low reservoir temperatures, it is known that open quantum systems subject to decoherent interactions with the reservoir relax toward their ground state in the weak coupling limit. Within the framework of quantum master equations, this is formalized by the Born-Markov-secular (BMS) approximation, where one obtains the system Gibbs state with the reservoir temperature as a stationary state. When the solution to some problem is encoded in the (isolated) ground state of a system Hamiltonian, decoherence can therefore be exploited for computation. The computational complexity is then given by the scaling of the relaxation time with the system size n. We study the relaxation behavior for local and nonlocal Hamiltonians that are coupled dissipatively with local and nonlocal operators to a bosonic bath in thermal equilibrium. We find that relaxation is generally more efficient when coherences of the density matrix in the system energy eigenbasis are taken into account. In addition, the relaxation speed strongly depends on the matrix elements of the coupling operators between initial state and ground state. We show that Dicke superradiance is a special case of our relaxation models and can thus be understood as a coherence-assisted relaxation speedup.

  13. Atomic level spatial variations of energy states along graphene edges.

    PubMed

    Warner, Jamie H; Lin, Yung-Chang; He, Kuang; Koshino, Masanori; Suenaga, Kazu

    2014-11-12

    The local atomic bonding of carbon atoms around the edge of graphene is examined by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). High-resolution 2D maps of the EELS combined with atomic resolution annular dark field STEM images enables correlations between the carbon K-edge EELS and the atomic structure. We show that energy states of graphene edges vary across individual atoms along the edge according to their specific C-C bonding, as well as perpendicular to the edge. Unique spectroscopic peaks from the EELS are assigned to specific C atoms, which enables unambiguous spectroscopic fingerprint identification for the atomic structure of graphene edges with unprecedented detail. PMID:25340312

  14. Scheme for atomic-state teleportation between two bad cavities

    SciTech Connect

    Zheng Shibiao; Guo Guangcan

    2006-03-15

    A scheme is presented for the long-distance teleportation of an unknown atomic state between two separated cavities. Our scheme works in the regime where the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by the detection inefficiency and atomic decay. These advantages are important in view of experiments.

  15. Entanglement of large atomic samples: A Gaussian-state analysis

    SciTech Connect

    Sherson, Jacob; Moelmer, Klaus

    2005-03-01

    We present a Gaussian-state analysis of the entanglement generation between two macroscopic atomic ensembles due the continuous probing of collective spin variables by optical Faraday rotation. The evolution of the mean values and the variances of the atomic variables is determined, and the entanglement is characterized by the Gaussian entanglement of formation and the logarithmic negativity. The effects of induced opposite Larmor rotation of the samples and of light absorption and atomic decay are analyzed in detail.

  16. Single-Atom Indexing of Quantum State Superpositions

    NASA Astrophysics Data System (ADS)

    Moon, Christopher R.; Lutz, C. P.; Eigler, D. M.; Manoharan, H. C.

    2006-03-01

    The ultimate miniaturization of electronic devices will likely require the local control of single-electron wavefunctions. One system where this may be accomplished consists of two-dimensional metallic electron states confined within atomically engineered nanostructures. Here we describe experiments showing that an individual atom inside a 44-atom quantum corral can index arbitrary coherent superpositions of spatial quantum states. We demonstrate how the quantum mirage effect can be harnessed to image the resulting quantum superposition. We also present a straightforward method for determining the appropriate atom location for any desired superposition. The atom provides a real-space handle for an abstract Hilbert space, providing a simple, novel technique for coherently manipulating quantum states.

  17. Calculation of Photoionization with Excitation of Ground State Neon

    NASA Astrophysics Data System (ADS)

    Zhou, Hsiao-Ling; Manson, Steven T.; Voky, Lan; Faucher, Paul; Hibbert, Alan

    1997-04-01

    Total and partial photoionization cross sections for the ground state of Ne as well as asymmetry parameter are obtained by ab initio calculations in LS coupling over a photon energy range from 44 to 54 eV. The R-matrix method ( L. Voky, H. E. Saraph, W. Eissner, Z. W. Liu and H. P. Kelly, Phys. Rev. A, 46), 3945 (1992). is used with a close coupling expansion of 7 target ion terms which are needed to build up the final continua and the resonances of ^1P^o symmetry in this energy range. Results for the ground state of Ne^+, as well as various excited states are presented, along with the singly and doubly excited resonances leading up to these thresholds. Comparison with previous work ( K. Schulz, M. Domke, R. Pttner, A. Gutirrez, G. Kaindl, G. Miecznik and C. Greene, Phys. Rev. A, 54), 3095 (1996). shows good agreement.

  18. Ground state in the finite Dicke model for interacting qubits

    NASA Astrophysics Data System (ADS)

    Robles Robles, R. A.; Chilingaryan, S. A.; Rodríguez-Lara, B. M.; Lee, Ray-Kuang

    2015-03-01

    We study the ground state of a finite-size ensemble of interacting qubits driven by a quantum field. We find a maximally entangled W state in the ensemble part of the system for a certain region of the coupling parameters. The area of this region decreases as the ensemble size increases and, in the classical limit, becomes the line in parameter space that defines the phase transition of the system. In the classical limit, we also study the dynamics of the system and its transition from order to disorder for initial energies close to the ground-state energy. We find that a critical energy providing this transition is related to the minimum of the projection of the total angular momentum of the quantum system in the z direction.

  19. Ground-State Degeneracy of Topological Phases on Open Surfaces

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Yan; Wan, Yidun

    2015-02-01

    We relate the ground state degeneracy of a non-Abelian topological phase on a surface with boundaries to the anyon condensates that break the topological phase into a trivial phase. Specifically, we propose that gapped boundary conditions of the surface are in one-to-one correspondence with the sets of condensates, each being able to completely break the phase, and we substantiate this by examples. The ground state degeneracy resulting from a particular boundary condition coincides with the number of confined topological sectors due to the corresponding condensation. These lead to a generalization of the Laughlin-Tao-Wu charge-pumping argument for Abelian fractional quantum Hall states to encompass non-Abelian topological phases, in the sense that an anyon loop of a confined anyon winding a nontrivial cycle can pump a condensed anyon from one boundary to another. Such generalized pumping may find applications in quantum control of anyons, eventually realizing topological quantum computation.

  20. Ground-state degeneracy of topological phases on open surfaces.

    PubMed

    Hung, Ling-Yan; Wan, Yidun

    2015-02-20

    We relate the ground state degeneracy of a non-Abelian topological phase on a surface with boundaries to the anyon condensates that break the topological phase into a trivial phase. Specifically, we propose that gapped boundary conditions of the surface are in one-to-one correspondence with the sets of condensates, each being able to completely break the phase, and we substantiate this by examples. The ground state degeneracy resulting from a particular boundary condition coincides with the number of confined topological sectors due to the corresponding condensation. These lead to a generalization of the Laughlin-Tao-Wu charge-pumping argument for Abelian fractional quantum Hall states to encompass non-Abelian topological phases, in the sense that an anyon loop of a confined anyon winding a nontrivial cycle can pump a condensed anyon from one boundary to another. Such generalized pumping may find applications in quantum control of anyons, eventually realizing topological quantum computation. PMID:25763964

  1. Generation of Macroscopic Singlet States in a Cold Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Behbood, N.; Martin Ciurana, F.; Colangelo, G.; Napolitano, M.; Tth, Gza; Sewell, R. J.; Mitchell, M. W.

    2014-08-01

    We report the generation of a macroscopic singlet state in a cold atomic sample via quantum nondemolition measurement-induced spin squeezing. We observe 3 dB of spin squeezing and detect entanglement with 5? statistical significance using a generalized spin-squeezing inequality. The degree of squeezing implies at least 50% of the atoms have formed singlets.

  2. Coherent Population Trapping Based Collective State Atomic Clock Using Trapped Atoms

    NASA Astrophysics Data System (ADS)

    Kim, May E.; Fang, Renpeng; Sarkar, Resham; Shahriar, Selim M.

    2015-05-01

    In most atomic clocks, the signal collection efficiency is limited to only a few percent due to unavoidable geometric constraints, which limits its stability. We describe a coherent population trapping (CPT) based atomic clock that can achieve a much higher collection efficiency, and has reduction in linewidth by factor of ?{ N}, where N is number of atoms. The CPT process pumps atoms into dark state, | - > , which is a superposition of two atomic states. When all atoms are in | - > , the system is in collective state | ED > = | - , - , - , . . . - > . The signal corresponding to measurement of | ED > has resonance that is narrowed by ?{ N} compared to the width in conventional CPT clock. This narrowing results from interference among collective states, and can be interpreted as manifestation of effective increase in clock frequency by ?{ N}. The amplitude of | ED > can be observed via null measurement of bright state | + > . When no fluorescence from | + > is detected, the system is in | ED > . By coherent Raman scattering of anti-Stokes photons in an optically dense cloud of cold atoms, the collection efficiency approaches unity, which improves clock stability significantly, leading to advance in precision time keeping.

  3. Semiclassical study of the quenching of excited-state fluorine atom by hydrogen molecule - Comparison between reactive and nonreactive processes

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Skuse, B. M.; Jaffe, R. L.; Komornicki, A.; Morokuma, K.; George, T. F.

    1980-01-01

    Semiclassical calculations are carried out for the quenching of excited-state fluorine atom by collinear collisions with hydrogen molecule. The overall quenching probability is the sum of two contributions: the reactive quenching probability associated with the formation of hydrogen fluoride and the nonreactive quenching probability leading to ground-state fluorine atom and hydrogen molecule. The reactive probability is greater in the threshold region of the collision energy, whereas the nonreactive probability dominates for energies above the threshold region.

  4. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation.

    PubMed

    Majumder, A; Dikshit, B; Bhatia, M S; Mago, V K

    2008-09-01

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data. PMID:19044405

  5. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  6. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-01

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  7. Atoms versus photons as carriers of quantum states

    NASA Astrophysics Data System (ADS)

    Bougouffa, Smail; Ficek, Zbigniew

    2013-08-01

    The problem of the complete transfer of quantum states and entanglement in a four-qubit system composed of two single-mode cavities and two two-level atoms is investigated. The transfer of single and double excitation states is discussed for two different coupling configurations between the qubits. In the first, the coupling is mediated by the atoms that simultaneously couple to the cavity modes. In the second configuration, each atom resides inside one of the cavities and the coupling between the cavities is mediated by the overlapping field modes. A proper choice of basis states makes it possible to identify states that could be completely transferred between themselves. Simple expressions are derived for the conditions for the complete transfer of quantum states and entanglement. These conditions impose severe constraints on the evolution of the system in the form of constants of motion. The constrains on the evolution of the system imply that not all states can evolve in time, and we find that the evolution of the entire system can be confined into that occurring among two states only. Detailed analysis show that in the case where the interaction is mediated by the atoms, only symmetric superposition states can be completely and reversibly transferred between the atoms and the cavity modes. In the case where the interaction is mediated by the overlapping field modes, both symmetric and antisymmetric superposition states can be completely transferred. We also show that the system is capable of generating purely photonic NOON states, but only if the coupling is mediated by the atoms, and demonstrate that the ability to generate the NOON states relies on perfect transfer of an entanglement from the atoms to the cavity modes.

  8. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    NASA Astrophysics Data System (ADS)

    Yu, L.-z.; Zhong, F.

    2016-01-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  9. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    SciTech Connect

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-05-15

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility {alpha} of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and {alpha} to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  10. Guidelines for ground motion definition for the eastern United States

    SciTech Connect

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.

  11. Determination of ground state in potassium intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh; Heguri, Satoshi; Tanabe, Yoichi; Shimotani, Hidekazu; Tanigaki, Katsumi; Nakano, Takehito; Nozue, Yasuo

    2013-03-01

    Intercalated compounds of polycyclic aromatic hydrocarbons have been drawing much attention from the view point of new type of organic superconductors. The mechanism of superconductivity in these materials is still unclear, and therefore the true ground states with various carrier concentrations must be understood. The antiferromagnetic ground states were reported particularly on K-doped pentacene, a typical polyacene. In the present study, we focus on the synthesis and the magnetic properties of K-intercalated polyacenes, such as anthracene, tetracene, and pentacene. The improved synthetic method based on the conventional solid state reaction was employed to obtain high quality bulk samples. The X-ray powder diffraction profiles of doped samples showed new stable phases. Interestingly, a pronounced hump at 150 K was observed in the temperature dependence of magnetic susceptibility of K1anthracene. In ESR measurements the linewidth of the signals decreased significantly with a decrease in temperature below 150 K and no Pauli magnetic contribution was detected. These results clearly indicate that charge transfer occurs but the most stable ground state is still insulating via antiferromagnetic interactions. Further discussion will be made among these K-intercalated polyacenes.

  12. Mixed configuration ground state in iron(II) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fernndez-Rodrguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-01

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2 ,3 edges of ? -Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3Eg(a1g 2eg3b2g 1) and 3B2 g(a1g 1eg4b2g 1) with the two configurations coupled by the spin-orbit interaction. The 3Eg(b ) and 3B2 g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1 g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  13. Electronic end-states in platinum atom chains

    NASA Astrophysics Data System (ADS)

    Heimbuch, René; Ateşçi, Hasan; Slootheer, Iris; Zandvliet, Harold J. W.

    2016-02-01

    We investigated electronic surface states in platinum atom chains grown on Ge(001). Scanning tunneling microscopy/spectroscopy was used to record the electronic landscape on atomic platinum chains. High-resolution spatial maps of individual Pt-dimers near the termini of the chains revealed a difference in the electronic structure between the end dimer region and the chains bulk region. Experiments and tight-binding calculations show a one-dimensional character of the electronic states, decaying rapidly into the chains.

  14. Apparatus for generating highly squeezed collective atomic spin states

    NASA Astrophysics Data System (ADS)

    Engelsen, Nils Johan; Krishnakumar, Rajiv; Hosten, Onur; Kasevich, Mark

    2014-05-01

    Production of spin-squeezed atomic ensembles could greatly enhance the performance of existing atom-based sensors by overcoming the atomic shot-noise inherent in sensors with uncorrelated atoms. We pursue a measurement based method for spin squeezing inside of a high-finesse cavity, potentially enabling spin-squeezing at 20 dB in variance, compatible with releasing the generated states into free space. We use a dual-wavelength cavity, resonant at both 780 nm and 1560 nm, with a finesse of 105. Up to 105 Rubidium atoms can be trapped at the anti-nodes of the 1560 nm mode, and probed by the 780 nm mode. The commensurate wavelength relationship allows identical coupling of the probe light to all atoms, minimizing decoherence issues associated with inhomogeneous coupling Thus far we have engineered a homodyne detection system that has an empty cavity technical read-out noise level of 10 Hz in 200 ?s measurement intervals, corresponding to the resonance shift induced by an individual atom at a probe detuning of ~ 1GHz. This technical noise level is so low that it has no significant effect in the preparation of the anticipated squeezed states. At the time of writing, we have demonstrated back-to-back measurements with 20103 atoms, with 0.02 photons scattered per atom in a measurement interval of 200 ?s, that exhibit read-out noise levels compatible with 10-17dB of squeezing.

  15. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  16. Aurora Borealis: stochastic cellular automata simulations of the excited-state dynamics of oxygen atoms.

    NASA Astrophysics Data System (ADS)

    Seybold, P. G.; Kier, L. B.; Cheng, C.-K.

    1999-12-01

    Emissions from the 1S and 1D excited states of atomic oxygen play a prominent role in creating the dramatic light displays (aurora borealis) seen in the skies over polar regions of the Northern Hemisphere. A probabilistic asynchronous cellular automaton model described previously has been applied to the excited-state dynamics of atomic oxygen. The model simulates the time-dependent variations in ground (3P) and excited-state populations that occur under user-defined probabilistic transition rules for both pulse and steady-state conditions. Although each trial simulation is itself an independent "experiment", deterministic values for the excited-state emission lifetimes and quantum yields emerge as limiting cases for large numbers of cells or large numbers of trials. Stochastic variations in the lifetimes and emission yields can be estimated from repeated trials.

  17. Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hui; Li, Gang; Tian, Ya-Li; Zhang, Tian-Cai

    2014-10-01

    Based on single Cesium atoms trapped in a 1064 nm microscopic optical trap we have exhibited a single qubit encoded in the Cesium "clock states". The single qubit initialization, detection and the fast state rotation with high efficiencies are demonstrated and this state manipulation is crucial for quantum information processing. The ground states Rabi flopping rate of 229.0 0.6 kHz is realized by a two-photon Raman process. A clock states dephasing time of 3.00.7 ms is measured, while an irreversible homogeneous dephasing time of 12417 ms is achieved by using the spin-echo technique. This well-controlled single atom provides an idea quantum qubit and quantum node for quantum information processing.

  18. Atomic states in optical traps near a planar surface

    SciTech Connect

    Messina, Riccardo; Pelisson, Sophie; Angonin, Marie-Christine; Wolf, Peter

    2011-05-15

    In this paper, we discuss the atomic states in a vertical optical lattice in proximity of a surface. We study the modifications to the ordinary Wannier-Stark states in the presence of a surface, and we characterize the energy shifts produced by the Casimir-Polder interaction between atom and mirror. In this context, we introduce an effective model describing the finite size of the atom in order to regularize the energy corrections. In addition, the modifications to the energy levels due to a hypothetical non-Newtonian gravitational potential as well as their experimental observability are investigated.

  19. Adiabatic control of atomic dressed states for transport and sensing

    NASA Astrophysics Data System (ADS)

    Cooper, N. R.; Rey, A. M.

    2015-08-01

    We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.

  20. Approximating ground and excited state energies on a quantum computer

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2015-04-01

    Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with degrees of freedom. Our algorithm computes estimates of a constant number of different low-order eigenvalues with error and success probability at least , with cost polynomial in and . This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

  1. The valence-fluctuating ground state of plutonium

    PubMed Central

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-01-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  2. Kac-Moody symmetries of critical ground states

    NASA Astrophysics Data System (ADS)

    Kondev, Jan; Henley, Christopher L.

    1996-02-01

    The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2) k=1 , su(3) k=1 , and the su(4) k=1 Kac-Moody algebra, respectively. Our approach is based on the Frenkel-Kac-Segal vertex operator construction of level-one Kac-Moody algebras.

  3. The valence-fluctuating ground state of plutonium.

    PubMed

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L; Lumsden, Mark D; Lawrence, John M; Thompson, Joe D; Lander, Gerard H; Mitchell, Jeremy N; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D

    2015-07-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium's magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  4. Ground state hyperfine structure in muonic lithium ions

    NASA Astrophysics Data System (ADS)

    Martynenko, A. P.; Ulybin, A. A.

    2015-10-01

    On the basis of perturbation theory in the fine structure constant α and the mass ratio of the electron and muon, we calculate the one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections of the hyperfine splitting of the ground state in muonic lithium ions {(μ {{e}}{ }36{Li})}+ and {(μ {{e}}{ }37{Li})}+. We obtain complete results for small hyperfine splittings of the ground state in {(μ {{e}}{ }36{Li})}+ of {{Δ }}{ν }1=21572.16 MHz and {{Δ }}{ν }2=14152.56 MHz and in {(μ {{e}}{ }37{Li})}+ {{Δ }}{ν }1=21733.06 MHz and {{Δ }}{ν }2=13994.35 MHz, which can be regarded as a reliable estimates for comparison with future experimental data.

  5. Variational calculation of the ground state of sup 16 O

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B. ); Pandharipande, V.R. )

    1992-11-01

    We report variational calculations of the ground state of {sup 16}O with realistic two- and three-nucleon interactions. The trial wave function is constructed from pair- and triplet-correlation operators acting on a product of single-particle determinants. These operators include central, spin, isospin, tensor, spin-orbit, and three-nucleon potential components. Expectation values are evaluated with a cluster expansion for the noncentral correlations; terms in the expansion are evaluated exactly using Monte Carlo integration. The optimal trial function is obtained by minimizing the energy through the four-body cluster level. Results are reported for the ground-state binding energy, nucleon density and momentum distributions, charge form factor, and longitudinal structure function. They are also compared with the available results for few-body nuclei and nuclear matter with the same interactions.

  6. Topological entanglement entropy, ground state degeneracy and holography

    NASA Astrophysics Data System (ADS)

    Parnachev, Andrei; Poovuttikul, Napat

    2015-10-01

    Topological entanglement entropy, a measure of the long-ranged entanglement, is related to the degeneracy of the ground state on a higher genus surface. The exact relation depends on the details of the topological theory. We consider a class of holographic models where such relation might be similar to the one exhibited by Chern-Simons theory in a certain large N limit. Both the non-vanishing topological entanglement entropy and the ground state degeneracy in these holographic models are consequences of the topological Gauss-Bonnet term in the dual gravitational description. A soft wall holographic model of confinement is used to generate finite correlation length but keep the disk topology of the entangling surface in the bulk, necessary for nonvanishing topological entanglement entropy.

  7. The valence-fluctuating ground state of plutonium

    SciTech Connect

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian -Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  8. Quantum-classical equivalence and ground-state factorization

    NASA Astrophysics Data System (ADS)

    Abouie, Jahanfar; Sepehrinia, Reza

    2016-02-01

    We have performed an analytical study of quantum-classical equivalence for quantum XY-spin chains with arbitrary interactions to explore the classical counterpart of the factorizing magnetic fields that drive the system into a separable ground state. We demonstrate that the factorizing line in the parameter space of a quantum model is equivalent to the so-called natural boundary that emerges in mapping the quantum XY-model onto the two-dimensional classical Ising model. As a result, we show that the quantum systems with the non-factorizable ground state could not be mapped onto the classical Ising model. Based on the presented correspondence we suggest a promising method for obtaining the factorizing field of quantum systems through the commutation of the quantum Hamiltonian and the transfer matrix of the classical model.

  9. Low frequency gravitational wave detection with ground-based atom interferometer arrays

    NASA Astrophysics Data System (ADS)

    Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN), which limits all ground based GW detectors below a few hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below 1 ×10-19/√{Hz } in the 0.3 -3 Hz frequency band can be within reach, with a peak sensitivity of 3 ×10-23/√{Hz } at 2 Hz . Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap between ground-based and space-based instruments.

  10. Electron holography at atomic dimensions -- Present state

    SciTech Connect

    Lehmann, M.; Lichte, H.; Geiger, D.; Lang, G.; Schweda, E.

    1999-04-01

    An electron microscope is a wave optical instrument where the object information is carried by an electron wave. However, an important information, the phase of the electron wave, is lost, because only intensities can be recorded in a conventional electron micrograph. Off-axis electron holography solves this phase problem by encoding amplitude and phase information in an interference pattern, the so-called hologram. After reconstruction, a rather unrestricted wave optical analysis can be performed on a computer. The possibilities as well as the current limitations of off-axis electron holography at atomic dimensions are discussed, and they are illustrated at two applications of structure characterization of {epsilon}-NbN and YBCO-1237. Finally, an electron microscope equipped with a Cs-corrector, a monochromator, and a Moellenstedt biprism is outlined for subangstrom holography.

  11. Detecting topological order in a ground state wave function.

    PubMed

    Levin, Michael; Wen, Xiao-Gang

    2006-03-24

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, di, F(lmn)(ijk), delta(ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the "topological entropy" which directly measures the total quantum dimension D= Sum(id2i). PMID:16605803

  12. Detecting Topological Order in a Ground State Wave Function

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Wen, Xiao-Gang

    2006-03-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N,di,Flmnijk,?ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the topological entropy which directly measures the total quantum dimension D=?idi2.

  13. A limit law for the ground state of Hill's equation

    NASA Astrophysics Data System (ADS)

    McKean, H. P.

    1994-03-01

    It is proved that the ground state ?( L) of (-1)x the Schrdinger operator with white noise potential, on an interval of length L, subject to Neumann, periodic, or Dirichlet conditions, satisfies the law {lim }limits_{L \\uparrow infty } P[(L/? )? ^{1/2} exp ( - tfrac{8}{3}? ^{3/2} ) > x] = \\{ {begin{array}{*{20}c} {1forx< 0} \\ {e^{ - x} forx ?slant 0} \\ } .

  14. Ground-state energy and relativistic corrections for positronium hydride

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-07-15

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10{sup -10}, which is a significant improvement over previous nonrelativistic results.

  15. Boson metastable ground states with spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Chaves, M.

    1997-12-01

    We show that a system of bosons in a T=0 quantum field theory can present metastable ground states with spontaneous symmetry breaking, even in the absence of an imaginary mass term. This gives a natural explanation to the Davis-Shellard background field e-i?0t and adds a new degree of freedom in boson systems, with possible applications in cosmology, condensed matter and high energy physics.

  16. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Doli?, Na?a; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy. PMID:26931702

  17. Lower bounds for ground states of condensed matter systems

    NASA Astrophysics Data System (ADS)

    Baumgratz, Tillmann; Plenio, Martin B.

    2012-02-01

    Standard variational methods tend to obtain upper bounds on the ground state energy of quantum many-body systems. Here we study a complementary method that determines lower bounds on the ground state energy in a systematic fashion, scales polynomially in the system size and gives direct access to correlation functions. This is achieved by relaxing the positivity constraint on the density matrix and replacing it by positivity constraints on moment matrices, thus yielding a semi-definite programme. Further, the number of free parameters in the optimization problem can be reduced dramatically under the assumption of translational invariance. A novel numerical approach, principally a combination of a projected gradient algorithm with Dykstra's algorithm, for solving the optimization problem in a memory-efficient manner is presented and a proof of convergence for this iterative method is given. Numerical experiments that determine lower bounds on the ground state energies for the Ising and Heisenberg Hamiltonians confirm that the approach can be applied to large systems, especially under the assumption of translational invariance.

  18. Ground state magnetic response of two coupled dodecahedra.

    PubMed

    Konstantinidis, N P

    2016-01-13

    The antiferromagnetic Heisenberg model on the dodecahedron possesses a number of ground state magnetization discontinuities in a field at the classical and quantum level, even though it lacks magnetic anisotropy. Here the model is considered for two dodecahedra coupled antiferromagnetically along one of their faces, as a first step to determine the magnetic response of collections of fullerene molecules. The magnetic response is determined from the competition among the intra-, interdodecahedral exchange and magnetic field energies. At the classical level the discontinuities of the isolated dodecahedron are renormalized by the interdodecahedral coupling, while new ones show up, with the maximum number of ground state discontinuities being six for a specific range of the coupling. In the full quantum limit where the individual spin magnitude [Formula: see text], there are two ground state discontinuities originating in the single discontinuity of the isolated dodecahedron, and another one due to the intermolecular coupling, generating a total of three discontinuities which come one right after the other. These results show that the magnetic response of more than one dodecahedra interacting together is quite richer than the one of a single dodecahedron. PMID:26643035

  19. Alternative ground states enable pathway switching in biological electron transfer.

    PubMed

    Abriata, Luciano A; lvarez-Paggi, Damin; Ledesma, Gabriela N; Blackburn, Ninian J; Vila, Alejandro J; Murgida, Daniel H

    2012-10-23

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction. PMID:23054836

  20. Dimerized ground states in spin-S frustrated systems

    NASA Astrophysics Data System (ADS)

    Lamas, C. A.; Matera, J. M.

    2015-09-01

    We study a family of frustrated antiferromagnetic spin-S systems with a fully dimerized ground state. Starting from the simplest case of the frustrated zigzag spin ladder, we generalize the family to more complex geometries like tetrahedral ladders and spin tubes. After presenting some numerical results about the phase diagram of these systems, we show that the ground state is robust against the inclusion of weak disorder in the couplings as well as several kinds of perturbations, allowing to study some other interesting models as a perturbative expansion of the exact one. A discussion on how to determine the dimerization region in terms of quantum information estimators is also presented. Finally, we explore the relation of these results with the case of a four-leg spin tube, which recently was proposed as a model for the description of the compound Cu2Cl4D8C4SO2 , delimiting the region of the parameter space where this model presents dimerization in its ground state.

  1. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  2. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; lvarez-Paggi, Damin; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or invisible electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which proteinprotein interactions and membrane potential may optimize and regulate electronproton energy transduction. PMID:23054836

  3. Ground state magnetic response of two coupled dodecahedra

    NASA Astrophysics Data System (ADS)

    Konstantinidis, N. P.

    2016-01-01

    The antiferromagnetic Heisenberg model on the dodecahedron possesses a number of ground state magnetization discontinuities in a field at the classical and quantum level, even though it lacks magnetic anisotropy. Here the model is considered for two dodecahedra coupled antiferromagnetically along one of their faces, as a first step to determine the magnetic response of collections of fullerene molecules. The magnetic response is determined from the competition among the intra-, interdodecahedral exchange and magnetic field energies. At the classical level the discontinuities of the isolated dodecahedron are renormalized by the interdodecahedral coupling, while new ones show up, with the maximum number of ground state discontinuities being six for a specific range of the coupling. In the full quantum limit where the individual spin magnitude s=\\frac{1}{2} , there are two ground state discontinuities originating in the single discontinuity of the isolated dodecahedron, and another one due to the intermolecular coupling, generating a total of three discontinuities which come one right after the other. These results show that the magnetic response of more than one dodecahedra interacting together is quite richer than the one of a single dodecahedron.

  4. Exact Ground States of Correlated Electrons on Pentagon Chains

    NASA Astrophysics Data System (ADS)

    Gulcsi, Zsolt

    2013-06-01

    We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction Ui is site-dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in detail. This works as follows: starting from a completely dispersive bare band structure, the interactions quench the kinetic energy, hence the ordered phase is obtained solely by a drastic decrease of the interaction energy. Since Ui are site dependent, this determinative decrease is obtained by a redistribution of the double occupancy di such to attain small di where the on-site Coulomb repulsion Ui is high, and vice versa. The kinetic energy quench leads to the upper effective flat band, whose role is to enhance by its degeneracy the switching to the ordered phase dictated and stabilized by the interactions present. It is shown that for this phenomenon to occur, a given degree of complexity is needed for the chain, and the mechanism becomes inactive when the Ui interactions are homogeneous, or are missing from the ground state wave function.

  5. Quantum Monte Carlo method for the ground state of many-boson systems

    SciTech Connect

    Purwanto, Wirawan; Zhang Shiwei

    2004-11-01

    We formulate a quantum Monte Carlo (QMC) method for calculating the ground state of many-boson systems. The method is based on a field-theoretical approach, and is closely related to existing fermion auxiliary-field QMC methods which are applied in several fields of physics. The ground-state projection is implemented as a branching random walk in the space of permanents consisting of identical single-particle orbitals. Any single-particle basis can be used, and the method is in principle exact. We illustrate this method with a trapped atomic boson gas, where the atoms interact via an attractive or repulsive contact two-body potential. We choose as the single-particle basis a real-space grid. We compare with exact results in small systems and arbitrarily sized systems of untrapped bosons with attractive interactions in one dimension, where analytical solutions exist. We also compare with the corresponding Gross-Pitaevskii (GP) mean-field calculations for trapped atoms, and discuss the close formal relation between our method and the GP approach. Our method provides a way to systematically improve upon GP while using the same framework, capturing interaction and correlation effects with a stochastic, coherent ensemble of noninteracting solutions. We discuss various algorithmic issues, including importance sampling and the back-propagation technique for computing observables, and illustrate them with numerical studies. We show results for systems with up to N{approx}400 bosons.

  6. Preparation of state purified beams of He, Ne, C, N, and O atoms

    SciTech Connect

    Jankunas, Justin; Reisyan, Kevin S.; Osterwalder, Andreas

    2015-03-14

    The production and guiding of ground state and metastable C, N, and O atoms in a two-meter-long, bent magnetic guide are described. Pure beams of metastable He({sup 3}S{sub 1}) and Ne({sup 3}P{sub 2}), and of ground state N({sup 4}S{sub 3/2}) and O({sup 3}P{sub 2}) are obtained using an Even-Lavie valve paired with a dielectric barrier discharge or electron bombardment source. Under these conditions no electronically excited C, N, or O atoms are observed at the exit of the guide. A general valve with electron impact excitation creates, in addition to ground state atoms, electronically excited C({sup 3}P{sub 2}; {sup 1}D{sub 2}) and N({sup 2}D{sub 5/2}; {sup 2}P{sub 3/2}) species. The two experimental conditions are complimentary, demonstrating the usefulness of a magnetic guide in crossed or merged beam experiments such as those described in Henson et al. [Science 338, 234 (2012)] and Jankunas et al. [J. Chem. Phys. 140, 244302 (2014)].

  7. Single-Atom Gating of Quantum State Superpositions

    SciTech Connect

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  8. Floquet Edge States with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Reichl, Matthew; Mueller, Erich

    2015-05-01

    We describe an experimental setup for imaging topologically protected Floquet edge states using ultracold bosons in an optical lattice. Our setup involves a deep two-dimensional optical lattice with a time-dependent superlattice that modulates the hopping between neighboring sites. The finite waist of the superlattice beam yields regions with different topological numbers. One can observe chiral edge states by imaging the real-space density of a bosonic packet launched from the boundary between two topologically distinct regions. NSF GRFP Grant No. DGE-1144153; NSF Grant No. PHY-1068165.

  9. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  10. Ultracold chemistry with ground-state KRb molecules

    NASA Astrophysics Data System (ADS)

    Neyenhuis, B.; Ospelkaus, S.; Ni, K.-K.; Wang, D.; de Miranda, M. H. G.; Quemener, G.; Bohn, J. L.; Jin, D. S.; Ye, J.

    2010-03-01

    We prepare a near-quantum-degenerate gas of fermionic KRb molecules, with all the molecules in the absolute lowest energy state. We observe atom-exchange chemical reactions in a regime where the reaction rates are determined by the quantum statistics of the molecules, single partial wave scattering, and quantum threshold laws [1].[4pt] [1] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Qu'em'ener, P. S. Julienne, J. L. Bohn, D. S. Jin, J. Ye, Quantum-State Controlled Chemical Reactions of Ultracold KRb Molecules, Science (in press).

  11. Ground state of naphthyl cation: Singlet or triplet?

    SciTech Connect

    Dutta, Achintya Kumar; Vaval, Nayana Pal, Sourav; Manohar, Prashant U.

    2014-03-21

    We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (?,?) type, whereas in 2-naphthyl cation it is (?,?{sup ?}) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

  12. Experimental Proposal to Detect Topological Ground State Degeneracy

    NASA Astrophysics Data System (ADS)

    Barkeshli, Maissam; Oreg, Yuval; Qi, Xiao-Liang

    2014-03-01

    One of the most profound features of topologically ordered states of matter, such as the fractional quantum Hall (FQH) states, is that they possess topology-dependent ground state degeneracies that are robust to all local perturbations. Here we present the first proposal to directly detect these topological degeneracies in an experimentally accessible setup. The detection scheme uses nonlinear electrical conductance measurements in a double layer FQH system, with appropriately patterned top and bottom gates. We propose two experimental platforms; in the first, the detection of topo- logically degenerate states coincides with the detection of ZN parafermion zero modes. We map the relevant physics to a single-channel ZN quantum impurity model, providing a novel generalization of the Kondo model. Our proposal can also be adapted to detect the ZN parafermion zero modes recently discovered in FQH line junctions proximitized with superconductivity.

  13. Tuning of the ground state in electron doped anthracene.

    PubMed

    Phan, Quynh T N; Heguri, Satoshi; Tanabe, Yoichi; Shimotani, Hidekazu; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2014-07-14

    High quality bulk samples of anthracene (AN) doped with potassium (K) in 1 : 1 and 2 : 1 stoichiometries were successfully prepared by a method involving a room temperature solid-state mechanical diffusion process prior to intercalation reactions during heat treatment, and their physical properties were studied using both magnetic and optical measurements. The transfer of almost one electron from K to AN in K1(AN) was confirmed by SQUID and ESR measurements. A pronounced magnetic hump centered at 150 K associated with antiferromagnetic interactions was observed, which can most likely be interpreted in terms of on-site Coulomb repulsions of the Mott insulating states. Optical spectra of K1(AN) clearly showed the insulating states, as well as the electron occupation of the LUMO-derived band of AN. Our results demonstrated tuning of the ground state of a typical bulk hydrocarbon by alkali metal intercalation. PMID:24867585

  14. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications.

    PubMed

    Saeedi, K; Szech, M; Dluhy, P; Salvail, J Z; Morse, K J; Riemann, H; Abrosimov, N V; Ntzel, N; Litvinenko, K L; Murdin, B N; Thewalt, M L W

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched (28)Si. PMID:25990870

  15. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  16. Comment on ``Lifetime of excited atomic states''

    NASA Astrophysics Data System (ADS)

    Florescu, Viorica; Schneider, I.; Mihailescu, I. N.

    1988-08-01

    We show that the two-photon nonresonant contribution to the lifetime of excited 3s and 3d states of hydrogen, as given by a formula recently derived by Cresser et al. [Phys. Rev. A 33, 1677 (1986)], can be evaluated in an economic way using the analytic expressions of the amplitudes of 3s-1s and 3d-1s two-photon transitions. Our numerical evaluation confirms the numbers given by Cresser et al.

  17. Comment on ''Lifetime of excited atomic states''

    SciTech Connect

    Florescu, V.; Schneider, I.; Mihailescu, I.N.

    1988-08-15

    We show that the two-photon nonresonant contribution to the lifetime of excited 3s and 3d states of hydrogen, as given by a formula recently derived by Cresser et al. (Phys. Rev. A 33, 1677 (1986)), can be evaluated in an economic way using the analytic expressions of the amplitudes of 3s-1s and 3d-1s two-photon transitions. Our numerical evaluation confirms the numbers given by Cresser et al.

  18. Long-range diagonal adiabatic corrections for the ground molecular state of alkali-metal dimers

    SciTech Connect

    Marinescu, M.; Dalgarno, A.

    1998-03-01

    We study long-range diagonal adiabatic corrections to the interaction potentials of the ground state of homonuclear alkali-metal dimers. We show that in the long-range limit the diagonal adiabatic matrix elements may be expressed as a series of inverse powers of the internuclear distance. Each of the nonzero coefficients of this expansion is a mass-dependent correction term to the dispersion coefficients. They are computed by using a complex integral representation, that transforms the molecular problem into an atomic one. Numerical results are presented. {copyright} {ital 1998} {ital The American Physical Society}

  19. Model calculation for the ground state of /sup 4/He tetramer

    SciTech Connect

    Elminyawi, I.; Levinger, J.S.

    1985-01-15

    We use the following approximation to the potential between two /sup 4/He atoms: V(r) = 4420 exp(-r/sup 2//1.69)-1302 exp(-r/sup 2//2.44) (V in K, r in A). We use the hyperspherical harmonics expansion, with Fabre's optimal subset, to solve for the ground state of the /sup 4/He tetramer. The Schroedinger equation is transformed into an infinite set of second order coupled differential equations (CDE), which we truncate to M equations. We test our program for solving CDE in two appendices. We find that the energy for our model is less than -4.3 K.

  20. A new two-parameter family of potentials with a tunable ground state

    NASA Astrophysics Data System (ADS)

    Fellows, Jonathan M.; Smith, Robert A.

    2011-08-01

    In a previous paper (Fellows and Smith 2009 J. Phys. A: Math. Theor. 42 335303) we solved a countably infinite family of one-dimensional Schrdinger equations by showing that they were supersymmetric partner potentials of the standard quantum harmonic oscillator. In this work we extend these results to find the complete set of real partner potentials of the harmonic oscillator, showing that these depend upon two continuous parameters. Their spectra are identical to that of the harmonic oscillator, except that the ground state energy becomes a tunable parameter. We finally use these potentials to analyse the physical problem of Bose-Einstein condensation in an atomic gas trapped in a dimple potential.

  1. Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiazhong; Chen, Wenlan; Vendeiro, Zachary; Zhang, Hao; Vuleti?, Vladan

    2015-12-01

    We consider the optical generation and characterization of entanglement in atomic ensembles under nonuniform interaction between the ensemble and an optical mode. We show that for a wide range of parameters a system of nonuniformly coupled atomic spins can be described as an ensemble of uniformly coupled spins with a reduced effective atom-light coupling and a reduced effective atom number, with a reduction factor of order unity given by the ensemble-mode geometry. This description is valid even for complex entangled states with arbitrary phase-space distribution functions as long as the average total spin remains large, and the detection does not resolve single spins. Furthermore, we derive an analytic formula for determining the observable entanglement in the case, of relevance in practice, where the ensemble-mode coupling differs between state generation and measurement.

  2. Transmission-line decelerators for atoms in high Rydberg states

    NASA Astrophysics Data System (ADS)

    Lancuba, P.; Hogan, S. D.

    2014-11-01

    Beams of helium atoms in Rydberg states with principal quantum number n =52 , and traveling with an initial speed of 1950 m/s, have been accelerated, decelerated, and guided while confined in moving electric traps generated above a curved, surface-based electrical transmission line with a segmented center conductor. Experiments have been performed with atoms guided at constant speed, and with accelerations exceeding 107 m /s 2. In each case, the manipulated atoms were detected by spatially resolved, pulsed electric field ionization. The effects of tangential and centripetal accelerations on the effective trapping potentials experienced by the atoms in the decelerator have been studied, with the resulting observations highlighting contributions from the density of excited Rydberg atoms to the acceleration, deceleration, and guiding efficiencies in the experiments.

  3. Continuous Vibrational Cooling of Ground State Rb2

    NASA Astrophysics Data System (ADS)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1?g+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1?u+ state. This process transfers the molecules from vibrational levels around ? ~= 113 to a distribution of levels where ? < 35. The molecules may then be further cooled using a broadband superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  4. Revisiting "Quantum State Sharing of an Arbitrary Two-Atom State by Using a Six-Atom Cluster State in Cavity QED"

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-yun; Xiong, Kuang-wei; Zuo, Xue-qin; Zhang, Wen

    2013-08-01

    In Nie et al. (Int. J. Theor. Phys. 50: 2526, 2011), authors put forward a cavity QED scheme for deterministic quantum state sharing (QSTS) of an arbitrary two-atom state. They claimed that, the quantum channel of the QSTS scheme is a six-atom cluster state. After simple calculation, one can see that the quantum channel they used is a direct product of two three-atom GHZ states. In this paper, we propose a cavity QED scheme for QSTS of an arbitrary two-atom state via a six-atom cluster state channel. In our scheme, two two-atom Bell state measurements are transformed into the discrimination of single-atom product states. Moreover, the two-atom unitary operation is changed to single-qubit unitary operations. Our scheme is insensitive to the cavity decay. The necessary time for the scheme is much shorter than the Rydberg-atom lifespan, therefore atom decays do not need to be considered.

  5. Coulomb breakup of 37Mg and its ground state structure

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Neelam; Chatterjee, R.; Shyam, R.; Tsushima, K.

    2015-07-01

    We calculate Coulomb breakup of the neutron rich nucleus 37Mg on a Pb target at the beam energy of 244MeV /nucleon within the framework of a finite range distorted wave Born approximation theory that is extended to include the effects of projectile deformation. In this theory, the breakup amplitude involves the full wave function of the projectile ground state. Calculations have been carried out for the total one-neutron removal cross section (?-1n), the neutron-core relative energy spectrum, the parallel momentum distribution of the core fragment, the valence neutron angular, and energy-angular distributions. The calculated ?-1n has been compared with the recently measured data to put constraints on the spin parity, and the one-neutron separation energy (Sn) of the 37Mg ground state (37Mggs). The dependence of ?-1n on the deformation of this state has also been investigated. While a spin parity assignment of 7 /2- for the 37Mggs is ruled out by our study, neither of the 3 /2- and 1 /2+ assignments can be clearly excluded. Using the spectroscopic factor of one for both the 3 /2- and 1 /2+ configurations and ignoring the projectile deformation effects, the Sn values of 0.35 0.06 MeV and 0.50 0.07 MeV, respectively, are extracted for the two configurations. However, the extracted Sn is strongly dependent on the spectroscopic factor and the deformation effects of the respective configuration. The narrow parallel momentum distribution of the core fragment and the strong forward peaking of the valence neutron angular distribution suggest a one-neutron halo configuration in either of the 2p3/2 and 2s1/2 configurations of the 37Mg ground state.

  6. Dynamics Resonances in Atomic States of Astrophysical Relevance

    NASA Astrophysics Data System (ADS)

    Arefieff, K. N.; Miculis, K.; Bezuglov, N. N.; Dimitrijevi?, M. S.; Klyucharev, A. N.; Mihajlov, A. A.; Sre?kovi?, V. A.

    2015-12-01

    Ionized geocosmic media parameters in a thermal and a subthermal range of energy have a number of unique features. The photoresonance plasma that is formed by optical excitation of the lowest excited (resonance) atomic states is one example of conversion of radiation energy into electrical one. Since spontaneous fluorescence of excited atoms is probabilistic, the description of the radiating quantized system evolution along with photon energy transfer in a cold atom medium, should include elements of stochastic dynamics. Finally, the chaotic dynamics of a weakly bound Rydberg electron over a grid of the energy level diagram of a quasi-molecular Rydberg complex provides an excitation migration of the electron forward to the ionization continuum. This work aims at discussing the specific features of the dynamic resonances formalism in the description of processes involving Rydberg states of an excited atom, including features in the fluorescence spectrum partially caused by the quantum defect control due to the presence of statistic electromagnetic fields.

  7. Equatorial ground ice on Mars: Steady-state stability

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.; Jakosky, Bruce M.; Postawko, Susan E.

    1993-01-01

    Current Martian equatorial surface temperatures are too warm for water ice to exist at the surface for any appreciable length of time before subliming into the atmosphere. Subsurface temperatures are generally warmer still and, despite the presence of a diffusive barrier of porous regolith material, it has been shown by Smoluchowski, Clifford and Hillel, and Fanale et al. that buried ground ice will also sublime and be lost to the atmosphere in a relatively short time. We investigate the behavior of this subliming subsurface ice and show that it is possible for ice to maintain at a steady-state depth, where sublimation and diffusive loss to the atmosphere is balanced by resupply from beneath by diffusion and recondensation of either a deeper buried ice deposits or ground water. We examine the behavior of equatorial ground ice with a numercial time-marching molecular diffusion model. In our model we allow for diffusion of water vapor through a porous regolith, variations in diffusivity and porosity with ice content, and recondensation of sublimed water vapor. A regolith containing considerable amounts of ice can still be very porous, allowing water vapor to diffuse up from deeper within the ice layer where temperatures are warmer due to the geothermal gradient. This vapor can then recondense nearer to the surface where ice had previously sublimed and been lost to the atmosphere. As a result we find that ice deposits migrate to find a steady-state depth, which represents a balance between diffusive loss to the atmosphere through the overlying porous regolith and diffusive resupply through a porous icy regolith below. This depth depends primarily on the long-term mean surface temperature and the nature of the geothermal gradient, and is independent of the ice-free porosity and the regolith diffusivity. Only the rate of loss of ground ice depends on diffusive properties.

  8. Transitions between highly excited states of alkali atoms

    SciTech Connect

    Molander, W.A.

    1983-01-01

    The general problem of induced transitions between Rydberg states of alkali atoms due to electric fields is studied. When the fields which induce the transitions are generated by similarly excited atoms superfluorescence results. A general equation of motion for the atomic transition operators in multilevel superfluorescence is derived using the Markov approximation. When a small sample approximation is made, expectation values of this equation reduce to a simple intuitively appealing set of non-linear rate equations for the populations of the levels. Numerical solutions of these equations are presented for several interesting special cases. Several new phenomena are predicted including alteration of branching ratios, coherent trapping of population in an excited state, and relaxation oscillations in the decay. It is found that the non-linear decay tends to direct the population down a single decay route. Transitions between Rydberg states due to externally applied fields are also studied. Specifically the use of external fields to excite Rydberg atoms from states of low angular momentum to circular-orbit states is examined. The methods of Stark switching and microwave multiphoton resonance are found to be unable to excite circular-orbit states when the principle quantum number is greater than 15. A new method is proposed which overcomes this limitation. The method, which is simple to implement, is similar to Stark switching. The difference is that a microwave field rather than a d.c. field is used to split and mix the angular-momentum states.

  9. Steady state quantum discord for circularly accelerated atoms

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2015-12-01

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  10. Estimating the ground-state probability of a quantum simulation with product-state measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce; Freericks, James

    2015-10-01

    .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know a priori what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  11. Microwave-dressed state-selective potentials for atom interferometry

    NASA Astrophysics Data System (ADS)

    Guarrera, V.; Szmuk, R.; Reichel, J.; Rosenbusch, P.

    2015-08-01

    We propose a novel and robust technique to realize a beam splitter for trapped Bose-Einstein condensates (BECs). The scheme relies on the possibility of producing different potentials simultaneously for two internal atomic states. The atoms are coherently transferred, via a Rabi coupling between the two long-lived internal states, from a single well potential to a double-well. We present numerical simulations supporting our proposal and confirming excellent efficiency and fidelity of the transfer process with realistic numbers for a BEC of 87Rb. We discuss the experimental implementation by suggesting state-selective microwave (MW) potentials as an ideal tool to be exploited for magnetically trapped atoms. The working principles of this technique are tested on our atom chip device which features an integrated coplanar MW guide. In particular, the first realization of a double-well potential by using a MW dressing field is reported. Experimental results are presented together with numerical simulations, showing good agreement. Simultaneous and independent control on the external potentials is also demonstrated in the two Rubidium clock states. The transfer between the two states, featuring respectively a single and a double-well, is characterized and it is used to measure the energy spectrum of the atoms in the double-well. Our results show that the spatial overlap between the two states is crucial to ensure the functioning of the beamsplitter. Even though this condition could not be achieved in our current setup, the proposed technique can be realized with current state-of-the-art devices being particularly well suited for atom chip experiments. We anticipate applications in quantum enhanced interferometry.

  12. Ground state of the universe in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Gorobey, Natalia; Lukyanenko, Alexander

    2016-01-01

    We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrdinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

  13. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  14. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  15. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    SciTech Connect

    Cross, J.B. ); Lan, E.H.; Smith, C.A. ); Whatley, W.J. ); Koontz, S.L. . Lyndon B. Johnson Space Center)

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si{sub 3}N{sub 4}) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin ({approx}250{Angstrom}) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si{sub 3}N{sub 4} materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si{sub 3}N{sub 4} was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results. 9 refs., 3 figs.

  16. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine ?2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine ?2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  17. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  18. Combined quantum-state preparation and laser cooling of a continuous beam of cold atoms

    SciTech Connect

    Di Domenico, Gianni; Devenoges, Laurent; Dumas, Claire; Thomann, Pierre

    2010-11-15

    We use two-laser optical pumping on a continuous atomic fountain in order to prepare cold cesium atoms in the same quantum ground state. A first laser excites the F=4 ground state to pump the atoms toward F=3 while a second {pi}-polarized laser excites the F=3{yields}F{sup '}=3 transition of the D{sub 2} line to produce Zeeman pumping toward m=0. To avoid trap states, we implement the first laser in a two-dimensional optical lattice geometry, thereby creating polarization gradients. This configuration has the advantage of simultaneously producing Sisyphus cooling when the optical lattice laser is tuned between the F=4{yields}F{sup '}=4 and F=4{yields}F{sup '}=5 transitions of the D{sub 2} line, which is important to remove the heat produced by optical pumping. Detuning the frequency of the second {pi}-polarized laser reveals the action of a mechanism improving both laser cooling and state-preparation efficiency. A physical interpretation of this mechanism is discussed.

  19. Quantum dots with light-hole exciton ground state

    NASA Astrophysics Data System (ADS)

    Witek, Barbara; Akopian, Nika; Huo, Yongheng; Kumar, Santosh; Cardenas, Ricardo; Bester, Gabriel; Rastelli, Armando; Schmidt, Oliver; Zwiller, Val

    2013-03-01

    A light-hole exciton is a quasiparticle formed from a single electron and a single light-hole (LH). This is a fundamental excitation in a semiconductor quantum dot (QD), which could potentially lead to new and simpler schemes in quantum information science and technology, However, it has not been explored so far because the ground state of a hole in a QD has dominant heavy-hole character. Here we develop a novel type of a QD system that allows us to engineer GaAs/ AlGaAs QDs with a light-hole (LH) ground state by embedding them in tensile strained membranes. We fully characterize LH exciton states in polarization resolved ?-photoluminesce in the external magnetic field. LH exciton manifests itself in three orthogonally-polarized bright transitions and a large fine-structure. Further, we determine LH g-factor and observe different diamagnetic coefficients for LH px,y and pz orbitals. Finally, we provide a comprehensive theoretical description of all the observed LH exciton properties: fine structure, polarization, oscillator strength and g-factors. Our work paves the way to explore the fundamental properties and potential relevance of LH-excitons in QD for quantum information technologies.

  20. Controlling the Hyperfine State of Rovibronic Ground-State Polar Molecules

    SciTech Connect

    Ospelkaus, S.; Ni, K.-K.; Quemener, G.; Neyenhuis, B.; Wang, D.; Miranda, M. H. G. de; Bohn, J. L.; Ye, J.; Jin, D. S.

    2010-01-22

    We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.

  1. Thermal Properties and Ground State Energy Shift of Charged Anyons

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Myung, Y. S.; Yi, S. H.

    We derive the second and third virial coefficients and the ground state energy shift for charged anyons within the Hartree-Fock approximation. A second quantization scheme at finite temperature is introduced for this calculation up to the second order and the vertex is composed of anyonic, point, constant as well as Coulomb interactions. The thermodynamic potential for the second order correlation diagram of Coulomb interaction leads to the logarithmic divergence (V ln V). Hence, we find the heat capacity and the correlation energy of anyons without Coulomb-Coulomb interaction. Finally, we discuss the magnetic-field-induced localization at low filling ν, including the Wigner crystal phase.

  2. Correlated eikonal initial state in ion-atom collisions

    SciTech Connect

    Ciappina, M.F.; Otranto, S.; Garibotti, C.R.

    2002-11-01

    An approximation is developed to deal with the ionization of atoms by bare charged ions. In this method the transition amplitude describing the three-body final state is evaluated using a continuum correlated wave and that for the initial state by an analytical continuation of the {phi}{sub 2} model to complex momenta. This procedure introduces in the atomic bound state a kinematical correlation with the projectile motion. Doubly differential cross sections (DDCS's) are computed for collisions of H{sup +} and F{sup 9+} ions with He atoms. Results for the DDCS's in the forward direction are compared with experimental data and other theoretical models. We find an enhancement of the distribution for low energy electrons and that the asymmetry of the electron capture to the continuum (ECC) peak is correctly described.

  3. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    PubMed

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system. PMID:24762988

  4. Measurement scheme and analysis for weak ground-state-hyperfine-transition moments through two-pathway coherent control

    NASA Astrophysics Data System (ADS)

    Choi, J.; Elliott, D. S.

    2016-02-01

    We report our detailed analysis of a tabletop system for the measurement of the weak-force-induced electric dipole moment of a ground-state hyperfine transition carried out in an atomic beam geometry. We describe an experimental configuration of conductors for application of orthogonal rf and static electric fields, with cavity enhancement of the rf field amplitude, that allows confinement of the rf field to a region in which the static fields are uniform and well characterized. We carry out detailed numerical simulations of the field modes and analyze the expected magnitude of statistical and systematic limits to the measurement of this transition amplitude in atomic cesium. The combination of an atomic beam with this configuration leads to strong suppression of magnetic dipole contributions to the atomic signal. The application of this technique to the measurement of extremely weak transition amplitudes in other atomic systems, especially alkali metals, seems very feasible.

  5. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  6. Characterization of a state-insensitive dipole trap for cesium atoms

    SciTech Connect

    Phoonthong, P.; Douglas, P.; Wickenbrock, A.; Renzoni, F.

    2010-07-15

    In this work we characterize a state-insensitive dipole trap for cold cesium atoms, as realized by tightly focusing a single running laser beam at the magic wavelength. The use of trapping light at the magic wavelength of 935.6 nm resulted in the same ac Stark shift for the {sup 6}S{sub 1/2} ground state and the {sup 6}P{sub 3/2} excited state. A complete characterization of the trap is given, which includes the dependence of the lifetime on the trap depth, an analysis of the important role played by a depumper beam, and a comparison with dipole trapping at different (nonmagic) wavelengths. In particular, we measured the differential light shift of the relevant optical transition as a function of the trapping light wavelength, and showed that it becomes zero at the magic wavelength. Our results are compared to previous realizations of state-insensitive dipole traps for cesium atoms. We also discuss the possible role of the state-insensitive trap, its limitations, and possible developments for the study of ground-state quantum coherence phenomena and related applications.

  7. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  8. Electronic structure of azobenzene: ground and first excited singlet states

    NASA Astrophysics Data System (ADS)

    Dubecky, Matus; Derian, Rene; Mitas, Lubos; Stich, Ivan

    2010-03-01

    QMC techniques are used to obtain energies at selected points on the potential energy surfaces of a photoswitchable molecule, azobenzene (AB), along the torsion pathway (CNNC dihedral angle), in the ground and first excited singlet states. We study the excitation energies of well separable cis- and trans-conformers, and th Inst. Phys., Slovak Acad. Scie energy of the transition state located at 90 . By a careful QMC optimization of the Slater-Jastrow wavefunctions with up to 500 determinants, chemical accuracy is obtained. Our results not only outperform all the available quantum chemistry results such as CAS-SCF, CAS-PT2, as well as DFT results with proper spin symmetry taken into account (ROKS), but open also a credible window to possible correction/reinterpretation of the available experimental data.

  9. Cloning and variation of ground state intestinal stem cells.

    PubMed

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H; Zhang, Ting; Howitt, Brooke E; Farrow, Melissa A; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A; Hyams, Jeffrey S; Devers, Thomas; Bronson, Roderick; Lacy, D Borden; Ho, Khek Yu; Crum, Christopher P; McKeon, Frank; Xian, Wa

    2015-06-11

    Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen Clostridium difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine. PMID:26040716

  10. The ground state rotational spectrum of SO 2F 2

    NASA Astrophysics Data System (ADS)

    Rotger, M.; Boudon, V.; Loëte, M.; Margulès, L.; Demaison, J.; Mäder, H.; Winnewisser, G.; Müller, H. S. P.

    2003-12-01

    The analysis of the ground state rotational spectrum of SO 2F 2 [K. Sarka, J. Demaison, L. Margulès, I. Merke, N. Heineking, H. Bürger, H. Ruland, J. Mol. Spectrosc. 200 (2000) 55] has been performed with the Watson's Hamiltonian up to sextic terms but shows some limits due to the A and S reductions. Since SO 2F 2 is a quasi-spherical top, it can also be regarded as derived from an hypothetical XY 4 molecule. Thus we have developed a new tensorial formalism in the O(3)⊃ Td⊃ C2 v group chain (M. Rotger, V. Boudon, M. Loëte, J. Mol. Spectrosc. 216 (2002) 297]. We test it on the ground state of this molecule using the same experimental data (10 GHz-1 THz region, J up to 99). Both fits are comparable even if the formalisms are slightly different. This paper intends to establish a link between the classical approach and the tensorial formalism. In particular, our tensorial parameters at a given order of the development are related to the usual ones. Programs for spectrum simulation and fit using these methods are named C2 vTDS. They are freely available at the URL: http://www.u-bourgogne.fr/LPUB/c2vTDS.html.

  11. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  12. The valence-fluctuating ground state of plutonium

    DOE PAGESBeta

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; et al

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  13. The ground and first excited torsional states of methyl carbamate

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.; Alekseev, E.; Demaison, J.; Kleiner, I.

    2006-11-01

    A global fit within experimental accuracy of microwave and millimeter-wave transitions in the ground and first excited torsional states of methyl carbamate (H 2NC(O)OCH 3) is presented. The data set consisting of 995 vt = 0 and 731 vt = 1 transition frequencies combines 1544 new measurements from Kharkov with previously published vt = 0 microwave lines. In this study the so-called "rho axis method" that treats simultaneously both A and E species of the ground and first excited torsional states is applied to the methyl carbamate data set for the first time. The final fit requires only 32 parameters to achieve a unitless weighted standard deviation for the whole fit of 0.89 for a total of 1726 transitions with rotational quantum numbers up to J ? 20 and Ka ? 10. The barrier to internal rotation of the methyl group obtained in this study, V3 = 359.141(24) cm -1, is in good agreement with previously published values but more accurate.

  14. The Transcriptional and Epigenomic Foundations of Ground State Pluripotency

    PubMed Central

    Marks, Hendrik; Kalkan, Tzer; Menafra, Roberta; Denissov, Sergey; Jones, Kenneth; Hofemeister, Helmut; Nichols, Jennifer; Kranz, Andrea; FrancisStewart, A.; Smith, Austin; Stunnenberg, HendrikG.

    2012-01-01

    Summary Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as 2i postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming. PMID:22541430

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Investigation of the populations of excited states of barium atoms in a laser plasma

    NASA Astrophysics Data System (ADS)

    Burimov, V. N.; Zherikhin, A. N.; Popkov, V. L.

    1995-02-01

    Laser-induced fluorescence was used in an investigation of the populations of the ground and excited (6s5d 3D1 and 3D2) states of Ba atoms in a plasma formed by laser ablation of YBaCuO target. A nonequilibrium velocity distribution of the atoms was detected. At large distances from the target about 4% of the atoms were in an excited state.

  16. Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED

    NASA Astrophysics Data System (ADS)

    Werlang, T.; Guzmán, R.; Prado, F. O.; Villas-Bôas, C. J.

    2008-09-01

    We present a way to engineer an effective anti-Jaynes-Cumming and a Jaynes-Cumming interaction between an atomic system and a single cavity mode and show how to employ it in reservoir engineering processes. To construct the effective Hamiltonian, we analyze the interaction of an atomic system in a Λ configuration, driven by classical fields, with a single cavity mode. With this interaction, we first show how to generate a decoherence-free displaced squeezed state for the cavity field. In our scheme, an atomic beam works as a reservoir for the radiation field trapped inside the cavity, as employed recently by S. Pielawa [Phys. Rev. Lett. 98, 240401 (2007)] to generate an Einstein-Podolsky-Rosen entangled radiation state in high- Q resonators. In our scheme, all the atoms have to be prepared in the ground state and, as in the cited article, neither atomic detection nor precise interaction times between the atoms and the cavity mode are required. From this same interaction, we can also generate an ideal squeezed reservoir for atomic systems. For this purpose we have to assume, in addition to the engineered atom-field interaction, a strong decay of the cavity field (i.e., the cavity decay must be much stronger than the effective atom-field coupling). With this scheme, some interesting effects in the dynamics of an atom in a squeezed reservoir could be tested.

  17. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.

  18. Ground-Laboratory to In-Space Effective Atomic-Oxygen Fluence Determined for DC 93-500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2005-01-01

    Surfaces on the leading edge of spacecraft in low Earth orbit (e.g., surface facing the velocity direction), such as on the International Space Station, are subject to atomic oxygen attack, and certain materials are susceptible to erosion. Therefore, ground-based laboratory testing of the atomic oxygen durability of spacecraft materials is necessary for durability assessment when flight data are not available. For accurate space simulation, the facility is commonly calibrated on the basis of the mass loss of Kapton (DuPont, Wilmington, DE) as a control sample for effective fluence determination. This is because Kapton has a well-characterized atomic oxygen erosion yield (E(sub y), in cubic centimeters per atom) in the low Earth orbit (LEO) environment. Silicones, a family of commonly used spacecraft materials, do not chemically erode away with atomic oxygen attack like other organic materials that have volatile oxidation products. Instead, silicones react with atomic oxygen and form an oxidized hardened silicate surface layer. Often the loss of methyl groups causes shrinkage of the surface skin and "mud-tile" crazing degradation. But silicones often do not lose mass, and some silicones actually gain mass during atomic oxygen exposure. Therefore, the effective atomic oxygen fluence for silicones in a ground-test facility should not be determined on the basis of traditional mass-loss measurements, as it is with polymers that erode. Another method for determining effective fluence needs to be employed for silicones. A new technique has been developed at the NASA Glenn Research Center for determining the effective atomic oxygen fluence for silicones in ground-test facilities. This technique determines the equivalent amount of atomic oxygen oxidation on the basis of changes in the surface-oxide hardness. The specific approach developed was to compare changes in the surface hardness of ground-laboratory-exposed DC93-500 silicone with DC93-500 exposed to LEO atomic oxygen as part of a shuttle flight experiment. The on-the-ground to in-space effective atomic oxygen fluence was determined on the basis of the Kapton effective fluence in the ground-laboratory facility that produced the same hardness for the fluence in space.

  19. Mott-Insulator States of Ultracold Atoms in Optical Resonators

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Damski, Bogdan; Morigi, Giovanna; Lewenstein, Maciej

    2008-02-01

    We study the low temperature physics of an ultracold atomic gas in the potential formed inside a pumped optical resonator. Here, the height of the cavity potential, and hence the quantum state of the gas, depends not only on the pump parameters, but also on the atomic density through a dynamical ac-Stark shift of the cavity resonance. We derive the Bose-Hubbard model in one dimension and use the strong coupling expansion to determine the parameter regime in which the system is in the Mott-insulator state. We predict the existence of overlapping, competing Mott-insulator states, and bistable behavior in the vicinity of the shifted cavity resonance, controlled by the pump parameters. Outside these parameter regions, the state of the system is in most cases superfluid.

  20. Combined Film Catalog, 1972, United States Atomic Energy Commission.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    A comprehensive listing of all current United States Atomic Energy Commission (USAEC) films, this catalog describes 232 films in two major film collections. Part One: Education-Information contains 17 subject categories and two series and describes 134 films with indicated understanding levels on each film for use by schools. The categories

  1. Ground-state phase diagram of the quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Liu, Maoxin; Luo, Hong-Gang; Lin, Hai-Qing; You, J. Q.

    2015-11-01

    The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.

  2. Ground-State Proton Transfer Kinetics in Green Fluorescent Protein

    PubMed Central

    2015-01-01

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a 13C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  3. Ground-state proton transfer kinetics in green fluorescent protein.

    PubMed

    Oltrogge, Luke M; Wang, Quan; Boxer, Steven G

    2014-09-23

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional (13)C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a (13)C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  4. Effect of One Axis Twist and Two Axes Twist Spin Squeezing on Collective State Atomic Interferometer and Clock

    NASA Astrophysics Data System (ADS)

    Sarkar, Resham; Fang, Renpeng; Kim, May; Shahriar, Selim

    2015-05-01

    An ensemble of N independent, noninteracting 2-level atoms with states | 1 > and | 2 > , interacting with a laser, can be represented as a Coherent State of spin, depicting a superposition of N+1 symmetric collective states. This model is also valid for 3-level atoms where the ground states | 1 > and | 2 > are mutually coupled via off-resonant Raman interaction through an intermediate excited state | 3 > , upon adiabatic elimination thereof. We recently proposed a Collective State Atomic Interferometer (COSAIN) that splits, redirects and recombines such an ensemble to yield a signal that is a measurement of the ensemble state where all the atoms are simultaneously in state | 1 > . The width of the COSAIN signal fringe scales as 1 /?{ N} . This narrowing occurs due to the simultaneous interference of the N+1 arms of the COSAIN. A similar narrowing is also predicted for a Collective State Atomic Clock (COSAC) proposed by us. We will describe the effect of one-axis twist and two-axes twist spin squeezing on the behavior of the COSAIN and the COSAC in order to approach Heisenberg limited sensitivity. We will also discuss the prospect of implementing spin squeezed versions of these devices via the use of Rydberg assisted interaction among the atoms.

  5. The acetochlor registration partnership state ground water monitoring program.

    PubMed

    de Guzman, Noel P; Hendley, Paul; Gustafson, David I; van Wesenbeeck, Ian; Klein, Andrew J; Fuhrman, John D; Travis, Kim; Simmons, Nick D; Teskey, Wendy E; Durham, Roger B

    2005-01-01

    The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen. PMID:15843642

  6. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  7. Remote State Preparation of a Two-Atom Entangled State in Cavity QED

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao-Qi; Xiao, Junfang; Ren, Yuan; Li, Yuan; Ji, Chunlei; Huang, Xin-Gang

    2016-01-01

    A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender's side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver's side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.

  8. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  9. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1. To access the meat layer, small samples have been cut from the fuel plates. The AlFeNi cladding has been removed using abrasive paper and diamond polishing paste. Cross sections were prepared from each sample and examined using SEM/EDX and XRD. Laboratory scale XRD Laboratory sealed-tube XRD on a STOE-STADIP diffractometer equipped with an incident beam focusing monochromator and used in reflection geometry with respect to the sample. MoK-α radiation has been used. Details on the systems used can be found in [39]. mu;-XRD using micro-focused synchrotron radiation at the Swiss Light Source μ-XAS beamline (PSI, Switzerland). At SLS, the beam size was 3 × 3 μm2, the energy was 19.7 keV. Further details on the experimental procedure can be found in [40]. Only very small sample volumes are probed with this technique, therefore the results may not be representative for the whole miniplate. The standard deviation of the lattice parameters obtained with this method is ±0.01 Å in case not different given. High-energy XRD (HE-XRD) in transmission mode using synchrotron radiation at the "High Energy Diffraction and Scattering Beamline ID15B" of ESRF. An X-ray energy of 87 keV has been used, the beam size was 0.3 × 0.3 mm2. Details on the experimental procedure are presented in [41,42]. It was possible to determine the average mass fractions of the phases present inside the sample using this technique. The standard deviation of the lattice parameters obtained with this method is ±0.001 Å in case not different given. laser granulometry to determine the size distribution of the particles, XRD for phase identification. Granulometry measurements showed that a significant amount of very fine particles of a few μm to 10 μm size are present in the first class of powder.In both cases, laboratory XRD analyses evidenced only two phases: γ-UMo and UO2. In contrast to observations on the final fuel plates, there are no signs of α-U. Comparing XRD data of atomized UMo powder (taken form the IRIS4 experiment) and ground UMo powder with almost the same Mo content, the peaks are broader in XRD patterns of ground UMo and there is a higher background [44]. This points that the lattice structure of the UMo inside the ground powder is strongly disordered during the grinding process.Complementary investigations were performed in these ground UMo powder samples using HE-XRD. The obtained data can therefore directly be compared to those measured on pre-oxidized atomized UMo powders [45] and IRIS-TUM fuel plates [41]. For both powder samples the γ-UMo lattice constant has been estimated to 3.433 ± 0.002 Å which corresponds to about 7.2 wt% for Mo in the alloy according to Dwight's law [46]. The existence of two UMo phases inside these ground particles (as in atomized case) could not be investigated because of the huge peak broadening (presence of micro distortions). Whatever the sample granulometry, the analysis of the HE-XRD data showed a non-negligible nitride contamination in ground powders (see Fig. 2). Two uranium nitride phases are indeed found in these samples: UN and U2N3+x[47]. Note that the presence of UN has also been found in the as-fabricated plates. These results confirm the high reactivity of UMo with both Oxygen and Nitrogen in the grinding conditions. As a comparison for temperatures in the 200-250 °C range, it seems that UNx phases are more difficult to grow: they were not present in outer layers obtained by heat treatment under air on atomized particles [45]. Finally it can be seen in Table 3 that the weight fractions of UO2 and U2N3+x phases are lower in the sample with larger UMo particles. This suggests the existence of an oxide, nitride outer shell around UMo ground particle with thickness that does not strongly evolve with particle size. This constant outer shell thickness has also been found in pre-oxidized atomized powders [45].The UMoX powder used for the samples MAFIA-I-18 - MAFIA-I-21 has not been investigated prior to plate fabrication. However, since the grinding process is essentially the same as for the pure UMo powder, similar characteristics are assumed. Thin oxide layers with a thickness ⩽1 μm on some of the particles that were not intentionally oxidized. Although the UMo powder was stored and handled under an inert atmosphere over the whole production process, some residual oxygen has reacted with the UMo. Already this thin oxide layers exhibits cracks (Fig. 5). Thicker oxide layers with a thickness up to 5 μm on the UMo particles that were oxidized purposely. This kind of oxide layer is very brittle and shows large cracks (Fig. 6). The oxidized UMo particles tend to detach with the matrix as gaps between the UMo particles and the oxide layer could be observed (Fig. 6). This is most obvious at spots where a UMo particle has been pulled out during polishing. A part of the oxide layer remained inside the resulting hole (Fig. 7). Atomized UMo powder 2 wt%Si in Al matrix, alloyed AlSi 2 wt%Si in Al matrix, mixed AlSi 5 wt%Si in Al matrix, mixed AlSi 7 wt%Si in Al matrix, mixed AlSi Ground UMo powder 2 wt%Si in Al matrix, alloyed AlSi The influence of an oxide layer around the UMo particles on the formation of the SiRL during fuel plate production is further discussed. The growth of a Si rich layer surrounding the UMo particles in the 2 wt%Si alloyed powder (oxidized UMo), as well as the 5 wt% and 7 wt%Si mixed powder (non-oxidized UMo) during production of the miniplates. The presence of Si precipitates in the Al-matrix (large precipitates in case of mixture, small si particles in alloy). No oxide layer: If no oxide layer is present around the UMo particles a homogeneous SiRL grows at the interface UMo-Al (Fig. 15a). Brittle oxide layer: An oxide layer is present around the UMo particles, the SiRL grows always between the UMo particle and the oxide layer (Fig. 15b). In this case the the SiRL is thin and not homogeneous. As presumed by Ripert et al. [7] it is essential that the oxide layer reveals cracks perpendicular the UMo particle surface to make path for the Si diffusion. Dense oxide layer: In case of a thin (≈1 μm) but compact oxide layer no SiRL is formed even at high Si concentrations inside the matrix (Fig. 15c). The observed effects are pronounced when the thickness of the oxide layer is increased, as shown in Fig. 16: UMo particles covered with a thicker oxide layer (>1 μm) inside an Aluminum matrix with 5 wt%Si (mixed Al-Si powder). The oxide layer is dense at the left side of the particle, no Si can be found there (Fig. 16a). In contrast, the brittle and cracked oxide layer on the right side made path for a Si diffusion but the SiRL is thinner than in the sites where the UMo particle is not covered with an oxide layer. EDX maps at different positions of the sample showed that in general no SiRL forms around UMo particles covered by oxide layers with a thickness greater than 1 μm (Fig. 16b). This behavior is identical for the samples with 5 wt%Si and 7 wt%Si added to the Aluminum matrix (mixed Al-Si powder). Obviously the presence of a (dense) oxide layer hampers the formation of a SiRL. different UXSiY phases with strongly overlapping peaks can be found in the SiRL, these phases are characterized by small sizes of the crystallites (a few tens of nanometers) and/or cell parameter gradients. Two different crystallographic phases have been usually identified: U(Al,Si)3 displaying a small lattice parameter of a0 = 4.16 Å. This indicates that about 40% of the Al lattice sites are occupied by Si atoms. The second phase is isostructural to U3Si54 with a different lattice parameter [59-61]. Although the U-Si-Al phase diagram contains a variety of phases, none of the phases reported in literature [62] could be used to fully refine the measured diagram. Therefore, three different hypotheses are suggested to explain the occurence of this unknown phase: The observed compound consists of two phases: Conventional U3Si5 and USi2, as has been suggested by the authors before [58]. However, only one literature source (Brown et al.) describing the occurrence of USi2 below 450 °C could be found [63,64]. Furthermore, it has not been possible to reproduce the experiments described by Brown et al. Therefore, this hypothesis remains doubtful [59]. The observed phase may be a new unknown phase. For example, a cubic phase with lattice constant a0 = 3.96 Å can be used to refine the observed peaks. This hypothesis can neither be confirmed nor refused based on the existing data. The observed phase can be a U3Si5 variant containing Mo and/or Al atoms. This hypothesis is supported by the authors. Hence in the following sections this structure will be denoted as U3Si5. No traces of SiRL phases are found inside the sample with 2 wt%Si mixed-powder matrix (MAFIA-I-3), all the Si remained inside the matrix. A SiRL is present inside the samples with 2.1 wt%Si alloyed powder matrix (MAFIA-I-4) and 5 wt%Si (MAFIA-I-5) and 7 wt%Si (MAFIA-I-7) mixed powder matrix. However, between 76% and 96% of the Si remained inside the matrix in form of precipitates or Si particles. The SiRL is formed readily when the Si is present inside the matrix in form of precipitates (i.e. Al-Si alloy matrix, MAFIA-I-4 and IRIS-TUM 8502) compared to particles (i.e. Al-Si mixed powder matrix, MAFIA-I-3, MAFIA-I-5 and MAFIA-I-7). This behavior can best be observed on the sample prepared with ground powder and with 2.1 wt%Si alloyed powder matrix (IRIS-TUM-8502): The matrix contains no Si, only SiRL phases are found. Since the sample with 5 wt%Si mixed powder matrix (MAFIA-I-5) has the lowest SiRL fraction but by far the highest UO2 content, it is concluded that the presence of UO2 around the UMo kernels tends to hamper the formation of a SiRL. UMo/Al samples prepared with ground powder contain irregularly shaped UMo kernels. They are in general oxidized and also contain oxide stringers. These samples have a high porosity content of around 8 vol%. In contrast, UMo/Al samples prepared with atomized powder contain spherical UMo kernels. Only the surface of the UMo kernels is oxidized in some cases. Thick oxide layers must be grown intentionally while thinner layers are the result of oxidation during the whole process. The oxide layer is in general brittle and exhibits cracks. The Uranium-oxide content of all examined samples (atomized and ground) varies between 2 and 13 wt%. gamma;-UMo present in the fresh UMo powder destabilizes to transform to an α-U-like phase, U2Mo, and two γ-UMo phases with different Mo content during the fuel plate production. For ground powder, α-U content varies in 28-38 wt%, for atomized powder in 11-14 wt%. The degree of γ-phase destabilization is therefore higher for ground powder. Ternary addition of Nb, Ti or Pt to the UMo did not impact the extent of decomposition. The γ-phase decomposition in the atomized and ground powder does not follow the expected in the U8wt%Mo TTT diagram between 400 and 450 °C [41]. According to Repas et al. [65], the route is γ-UMoa → γ-UMob + α-U → γ-UMoc+α-U + U2Mo . γ-UMoa,b,c differ in the Mo content where γ-UMoa has the lowest and γ-UMoc has the highest Mo content. We observe a new route of decomposition of ground powder into two different γ-UMo phases. One of them has approximately the original Mo content and the other has a higher Mo content. Further U2Mo and a phase with deformed lattice parameters compared to pure α-U have been observed. The latter is known as α' in literature.For atomized powder, also two different γ-UMo phases and traces of U2Mo have been found. However, a different α-U like phase has been identified: α″ [41,53-55].Repas et al. used as cast samples that have been examined with conventional XRD and different metallographic methods [65]. The difference to our data can be explained by the superior resolution of the here used HE-XRD diffraction. Most probably, conventional lab X-ray sourcces could not resolve fine differences in the lattice parameters of α-U and may not enable to separate two γ-UMo phase. To overcome this uncertainty it is highly desirable to examine the TTT diagram of UMo with high resolution. When Si is added into the matrix - by using alloyed Al-Si powder as a matrix or blending Al and Si powder - in general a SiRL is formed at the interface between the UMo and the Al matrix. An exception can be found in MAFIA-I-3 in which the overall Si content was to low to form a SiRL. The SiRL consists of U(Al,Si)3 and U3Si5. The SiRL forms less readily in case of mixed Al-Si than in case of alloyed Al-Si powder. In the latter case (MAFIA-I-4), a Si depleted zone has been observed around the UMo particles. For ground powder in combination with an Al-Si alloyed matrix, the entire Si from the matrix has reacted with the UMo forming SiRL phases. The presence of a dense oxide layer around the UMo kernels can prevent the formation of a SiRL. However, as soon as the oxide layer is cracked a SiRL forms between the UMo and the oxide layer. A dense oxide layer isolates the UMo from the Si inside the matrix and occurring cracks make path for the diffusion of Si towards the UMo. U3Si 5 is also called USi2-x or USi1.66 in literature.

  10. Bound state spectra and properties of the doublet states in three-electron atomic systems

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.; Ruiz, Mara Beln; Wardlaw, David M.

    2014-07-01

    The bound state spectra of the doublet states in three-electron atomic systems are investigated. By using different variational expansions we determine various bound state properties in these systems. Such properties include the electron-nucleus and electron-electron delta-functions and cusp values. The general structure of the bound state spectra in several three-electron atomic systems (Li, Be+, C3+ and F6+) is investigated with the use of the Hylleraas-Configuration Interaction and the Configuration Interaction wave functions. The advantage of our Configuration Interaction based procedure is that it provides high numerical accuracy for all rotationally excited states, including the bound states with L?7.

  11. Face-dependent Auger neutralization and ground-state energy shift for He in front of Al surfaces

    SciTech Connect

    Wethekam, S.; Winter, H.; Valdes, Diego; Monreal, R. C.

    2008-08-15

    He atoms and ions with keV energies are scattered under grazing angles of incidence from Al(111), Al(100), and Al(110) surfaces. Fractions of surviving ions and normal energy gains of He{sup +} ions prior to neutralization, derived from shifts of angular distributions for incident atoms and ions, are compared to results from three-dimensional Monte Carlo simulations based on theoretically calculated Auger neutralization rates and He ground-state energy shifts. From the good agreement of experimental data with simulations, we conclude a detailed microscopic understanding for a model system of ion-surface interactions. Our work provides further evidence for the recently reported surface Miller index dependence for the neutralization of He{sup +} ions at metal surfaces. The study is extended to the face dependence of the He ground-state energy shift.

  12. Experimental ground-state combination differences of CH5+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Yamada, Koichi M. T.; Brnken, Sandra; Potapov, Alexey; Schlemmer, Stephan

    2015-03-01

    Protonation of methane (CH4), a rather rigid molecule well described by quantum mechanics, produces CH5+, a prototypical floppy molecule that has eluded definitive spectroscopic description. Experimental measurement of high-resolution spectra of pure CH5+ samples poses a formidable challenge. By applying two types of action spectroscopy predicated on photoinduced reaction with CO2 and photoinhibition of helium cluster growth, we obtained low-temperature, high-resolution spectra of mass-selected CH5+. On the basis of the very high accuracy of the line positions, we determined a spectrum of combination differences. Analysis of this spectrum enabled derivation of equally accurate ground state-level schemes of the corresponding nuclear spin isomers of CH5+, as well as tentative quantum number assignment of this enfant terrible of molecular spectroscopy.

  13. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  14. Ground-state description for polarons in parabolic quantum wells

    NASA Astrophysics Data System (ADS)

    Yuhang, Ren; Qinghu, Chen; Yabin, Yu; Zhengkuan, Jiao; Shaolong, Wang

    1998-07-01

    Within the framework of Feynman-Haken variational path integral theory, for the first time, we calculate the ground-state energy of the electron and longitudinal-optical phonon system in parabolic quantum wells with respect to a general potential. We propose a simple expression for the Feynman energy, and compare it with those obtained by the second-order Rayleigh-Schrödinger perturbation theory and Landau-Pekar strong-coupling theory. It is shown both analytically and numerically that the results obtained from Feynman-Haken variational path integral theory can be better than those from the other two theories. We also find in numerical calculations that the binding energy of polarons becomes monotonically stronger as the effective well depth decreases in the whole coupling regime. More interestingly, the localization, which is caused by the effective potential, also can be perceived in the strong-coupling regime.

  15. Absence of Quantum Time Crystals in Ground States

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Oshikawa, Masaki

    2015-03-01

    In analogy with crystalline solids around us, Wilczek recently proposed the idea of ``time crystals'' as phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal stimulated further studies and vigorous debates whether it can be realized in a physical system. However, a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of time crystals based on the time-dependent correlation functions of the order parameter. We then prove a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state of a general Hamiltonian which consists of only short-range interactions.

  16. OH hyperfine ground state: From precision measurement to molecular qubits

    SciTech Connect

    Lev, Benjamin L.; Meyer, Edmund R.; Hudson, Eric R.; Sawyer, Brian C.; Bohn, John L.; Ye, Jun

    2006-12-15

    We perform precision microwave spectroscopy--aided by Stark deceleration--to reveal the low-magnetic-field behavior of OH in its {sup 2}{pi}{sub 3/2} rovibronic ground state, identifying two field-insensitive hyperfine transitions suitable as qubits and determining a differential Lande g factor of 1.267(5)x10{sup -3} between opposite-parity components of the {lambda} doublet. The data are successfully modeled with an effective hyperfine Zeeman Hamiltonian, which we use to make a tenfold improvement of the magnetically sensitive, astrophysically important {delta}F={+-}1 satellite-line frequencies, yielding 1 720 529 887(10) Hz and 1 612 230 825(15) Hz.

  17. Some properties of Stark states of hydrogenic atoms and ions

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2007-10-01

    The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.

  18. Application of magnetic atom induced bound states in superconducting gap for chemical identification of single magnetic atoms

    NASA Astrophysics Data System (ADS)

    Ji, Shuai-Hua; Zhang, Tong; Fu, Ying-Shuang; Chen, Xi; Jia, Jin-Feng; Xue, Qi-Kun; Ma, Xu-Cun

    2010-02-01

    Elemental identification at single atom level has been achieved with a low temperature scanning tunneling microscope. Magnetic atoms (Mn or Cr) adsorbed on a superconducting Pb substrate induce a set of well-defined resonance states inside the superconductor gap in scanning tunneling spectroscopy. We show that these localized characteristic bound states could serve as fingerprint for chemical identification of the corresponding atoms, similar to atomic/molecular spectra widely used in optical spectrometry. The experiment demonstrates a technique for element-resolved spectroscopy with simultaneous atomic-level spatial resolution. The influence of magnetic impurity concentration on the bound states has also been investigated.

  19. Macroscopic two-state systems in trapped atomic condensates

    SciTech Connect

    Solenov, Dmitry; Mozyrsky, Dmitry

    2010-12-15

    We consider a macroscopic two-state system based on persistent current states of a Bose-Einstein condensate (BEC) of interacting neutral atoms confined in a ring with a weak Josephson link. We demonstrate that macroscopic superpositions of different BEC flows are energetically favorable in this system. Moreover, a macroscopic two-state dynamics emerges in the low-energy limit. We also investigate fundamental limitations due to the noise inherent in the interacting BEC of Josephson-ring geometry. We show that the coherent macroscopic dynamics is readily measurable for an experimentally accessible range of parameters.

  20. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  1. Atomic homodyne detection of continuous-variable entangled twin-atom states.

    PubMed

    Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K

    2011-12-01

    Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles. PMID:22139418

  2. Broadband optical cooling of molecular rotors from room temperature to the ground state.

    PubMed

    Lien, Chien-Yu; Seck, Christopher M; Lin, Yen-Wei; Nguyen, Jason H V; Tabor, David A; Odom, Brian C

    2014-01-01

    Laser cycling of resonances can remove entropy from a system via spontaneously emitted photons, with electronic resonances providing the fastest cooling timescales because of their rapid spontaneous relaxation. Although atoms are routinely laser-cooled, even simple molecules pose two interrelated challenges for cooling: every populated rotational-vibrational state requires a different laser frequency, and electronic relaxation generally excites vibrations. Here we cool trapped AlH(+) molecules to their ground rotational-vibrational quantum state using an electronically exciting broadband laser to simultaneously drive cooling resonances from many different rotational levels. Undesired vibrational excitation is avoided because of vibrational-electronic decoupling in AlH(+). We demonstrate rotational cooling on the 140(20) ms timescale from room temperature to 3.8(-0.3)(+0.9) K, with the ground-state population increasing from ~3 to 95.4(-2.1)(+1.3)%. This cooling technique could be applied to several other neutral and charged molecular species useful for quantum information processing, ultracold chemistry applications and precision tests of fundamental symmetries. PMID:25179449

  3. Thermodynamic ground state of MgB{sub 6} predicted from first principles structure search methods

    SciTech Connect

    Wang, Hui; Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 ; LeBlanc, K. A.; Gao, Bo; Yao, Yansun; Canadian Light Source, Saskatoon, Saskatchewan S7N 0X4

    2014-01-28

    Crystalline structures of magnesium hexaboride, MgB{sub 6}, were investigated using unbiased structure searching methods combined with first principles density functional calculations. An orthorhombic Cmcm structure was predicted as the thermodynamic ground state of MgB{sub 6}. The energy of the Cmcm structure is significantly lower than the theoretical MgB{sub 6} models previously considered based on a primitive cubic arrangement of boron octahedra. The Cmcm structure is stable against the decomposition to elemental magnesium and boron solids at atmospheric pressure and high pressures up to 18.3 GPa. A unique feature of the predicted Cmcm structure is that the boron atoms are clustered into two forms: localized B{sub 6} octahedra and extended B{sub ∞} ribbons. Within the boron ribbons, the electrons are delocalized and this leads to a metallic ground state with vanished electric dipoles. The present prediction is in contrast to the previous proposal that the crystalline MgB{sub 6} maintains a semiconducting state with permanent dipole moments. MgB{sub 6} is estimated to have much weaker electron-phonon coupling compared with that of MgB{sub 2}, and therefore it is not expected to be able to sustain superconductivity at high temperatures.

  4. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc 38 K at 300 GPa.

  5. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    NASA Technical Reports Server (NTRS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  6. Antiferromagnetic ground state in NpCoGe

    NASA Astrophysics Data System (ADS)

    Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.

    2014-03-01

    NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.

  7. Robustness of fractional quantum Hall states with dipolar atoms in artificial gauge fields

    SciTech Connect

    Grass, T.; Baranov, M. A.; Lewenstein, M.

    2011-10-15

    The robustness of fractional quantum Hall states is measured as the energy gap separating the Laughlin ground state from excitations. Using thermodynamic approximations for the correlation functions of the Laughlin state and the quasihole state, we evaluate the gap in a two-dimensional system of dipolar atoms exposed to an artificial gauge field. For Abelian fields, our results agree well with the results of exact diagonalization for small systems but indicate that the large value of the gap predicted [Phys. Rev. Lett. 94, 070404 (2005)] was overestimated. However, we are able to show that the small gap found in the Abelian scenario dramatically increases if we turn to non-Abelian fields squeezing the Landau levels.

  8. State flip at exceptional points in atomic spectra

    NASA Astrophysics Data System (ADS)

    Menke, Henri; Klett, Marcel; Cartarius, Holger; Main, Jrg; Wunner, Gnter

    2016-01-01

    We study the behavior of nonadiabatic population transfer between resonances at an exceptional point in the spectrum of the hydrogen atom. It is known that, when the exceptional point is encircled, the system always ends up in the same state, independent of the initial occupation within the two-dimensional subspace spanned by the states coalescing at the exceptional point. We verify this behavior for a realistic quantum system, viz., the hydrogen atom in crossed electric and magnetic fields. It is also shown that the nonadiabatic hypothesis can be violated when resonances in the vicinity are taken into account. In addition, we study nonadiabatic population transfer in the case of a third-order exceptional point, in which three resonances are involved.

  9. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    SciTech Connect

    Kuang Leman; Zhou Lan

    2003-10-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level {lambda}-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.

  10. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  11. Plasma screening within Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Flannery, M. R.; Oks, E.

    2008-04-01

    A Rydberg atom embedded in a plasma can experience penetration by slowly moving electrons within its volume. The original pure Coulomb potential must now be replaced by a screened Coulomb potential which contains either a screening length Rs or a screening factor A = Rs -1 . For any given discrete energy level, there is a Critical Screening Factor (CSF) Ac beyond which the energy level disappears (by merging into the continuum). Analytical results are obtained for the classical dependence of the energy on the screening factor, for the CSF, and for the critical radius of the electron orbit for Circular Rydberg States (CRS) in this screened Rydberg atom. The results are derived for any general form of the screened Coulomb potential and are applied to the particular case of the Debye potential. We also show that CRS can temporarily exist above the ionization threshold and are therefore the classical counterparts of quantal discrete states embedded into continuum. The results are significant not only to Rydberg plasmas, but also to fusion plasmas, where Rydberg states of multi-charged hydrogen-like ions result from charge exchange with hydrogen or deuterium atoms, as well as to dusty/complex plasmas.

  12. Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements.

    PubMed

    Perry, Rebecca W; Holmes-Cerfon, Miranda C; Brenner, Michael P; Manoharan, Vinothan N

    2015-06-01

    We study experimentally what is arguably the simplest yet nontrivial colloidal system: two-dimensional clusters of six spherical particles bound by depletion interactions. These clusters have multiple, degenerate ground states whose equilibrium distribution is determined by entropic factors, principally the symmetry. We observe the equilibrium rearrangements between ground states as well as all of the low-lying excited states. In contrast to the ground states, the excited states have soft modes and low symmetry, and their occupation probabilities depend on the size of the configuration space reached through internal degrees of freedom, as well as a single "sticky parameter" encapsulating the depth and curvature of the potential. Using a geometrical model that accounts for the entropy of the soft modes and the diffusion rates along them, we accurately reproduce the measured rearrangement rates. The success of this model, which requires no fitting parameters or measurements of the potential, shows that the free-energy landscape of colloidal systems and the dynamics it governs can be understood geometrically. PMID:26196649

  13. Direct Spectroscopic Detection and EPR Investigation of a Ground State Triplet Phenyl Oxenium Ion.

    PubMed

    Li, Ming-De; Albright, Toshia R; Hanway, Patrick J; Liu, Mingyue; Lan, Xin; Li, Songbo; Peterson, Julie; Winter, Arthur H; Phillips, David Lee

    2015-08-19

    Oxenium ions are important reactive intermediates in synthetic chemistry and enzymology, but little is known of the reactivity, lifetimes, spectroscopic signatures, and electronic configurations of these unstable species. Recent advances have allowed these short-lived ions to be directly detected in solution from laser flash photolysis of suitable photochemical precursors, but all of the studies to date have focused on aryloxenium ions having closed-shell singlet ground state configurations. To study alternative spin configurations, we synthesized a photoprecursor to the m-dimethylamino phenyloxenium ion, which is predicted by both density functional theory and MRMP2 computations to have a triplet ground state electronic configuration. A combination of femtosecond and nanosecond transient absorption spectroscopy, nanosecond time-resolved Resonance Raman spectroscopy (ns-TR(3)), cryogenic matrix EPR spectroscopy, computational analysis, and photoproduct studies allowed us to trace essentially the complete arc of the photophysics and photochemistry of this photoprecursor and permitted a first look at a triplet oxenium ion. Ultraviolet photoexcitation of this precursor populates higher singlet excited states, which after internal conversion to S1 over 800 fs are followed by bond heterolysis in ∼1 ps, generating a hot closed-shell singlet oxenium ion that undergoes vibrational cooling in ∼50 ps followed by intersystem crossing in ∼300 ps to generate the triplet ground state oxenium ion. In contrast to the rapid trapping of singlet phenyloxenium ions by nucleophiles seen in prior studies, the triplet oxenium ion reacts via sequential H atom abstractions on the microsecond time domain to ultimately yield the reduced m-dimethylaminophenol as the only detectable stable photoproduct. Band assignments were made by comparisons to computed spectra of candidate intermediates and comparisons to related known species. The triplet oxenium ion was also detected in the ns-TR(3) experiments, permitting a more clear assignment and identifying the triplet state as the π,π* triplet configuration. The triplet ground state of this ion was further supported by photolysis of the photoprecursor in an ethanol glass at ∼4 K and observing a triplet species by cryogenic EPR spectroscopy. PMID:26198984

  14. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  15. Observation of Floquet States in a Strongly Driven Artificial Atom.

    PubMed

    Deng, Chunqing; Orgiazzi, Jean-Luc; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian

    2015-09-25

    We present experiments on the driven dynamics of a two-level superconducting artificial atom. The driving strength reaches 4.78GHz, significantly exceeding the transition frequency of 2.288GHz. The observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by nonadiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations. These results pave the way to quantum control using strong driving with applications in quantum technologies. PMID:26451555

  16. Observation of Floquet States in a Strongly Driven Artificial Atom

    NASA Astrophysics Data System (ADS)

    Deng, Chunqing; Orgiazzi, Jean-Luc; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian

    2015-09-01

    We present experiments on the driven dynamics of a two-level superconducting artificial atom. The driving strength reaches 4.78 GHz, significantly exceeding the transition frequency of 2.288 GHz. The observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by nonadiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations. These results pave the way to quantum control using strong driving with applications in quantum technologies.

  17. Nonlinear ground-state pump-probe spectroscopy in an ultracold rubidium system

    NASA Astrophysics Data System (ADS)

    Mills, Arthur K.; Elliott, D. S.

    2012-12-01

    We present results of our experimental investigations of nonlinear ground-state pump-probe spectroscopy in ultracold 85Rb collected in a magneto-optical trap. These measurements represent an extension of a similar pump-probe spectroscopy in a two-level atomic system when strongly driven by a near-resonant pump beam. In the present three-level system, coherence-induced gain at the probe laser frequency can be observed at specific frequencies within the spectrum. The absorption or gain spectra that we observe resemble those of the two-level gain spectra, but different interference processes lead to features that are not present in the two-level case. We describe our measurements of this interaction in this work.

  18. Ground-state densities of repulsive two-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Grochowski, Piotr; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2016-02-01

    We investigate separations of trapped balanced two-component atomic Fermi gases with repulsive contact interaction. Candidates for ground-state densities are obtained from the imaginary-time evolution of a nonlinear pseudo-Schrödinger equation in three dimensions, rather than from the cumbersome variational equations of the underlying energy density functional. With the employed hydrodynamical approach, gradient corrections to the Thomas-Fermi approximation are conveniently included and are shown to be vital for reliable density profiles. We provide critical repulsion strengths that mark the onset of phase transitions in a harmonic trap. We present transitions from identical density profiles of the two fermion species towards isotropic and anisotropic separations for various confinements, including harmonic and double-well-type traps. Our proposed method is suited for arbitrary trap geometries and can be straightforwardly extended to study dynamics in the light of ongoing experiments on degenerate Fermi gases.

  19. Structural expansions for the ground state energy of a simple metal

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1973-01-01

    A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.

  20. Ground-based optical atomic clocks as a tool to monitor vertical surface motion

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schrer, Andreas; Lundgren, Andrew; Hetnyi, Gyrgy; Houli, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-09-01

    According to general relativity, a clock experiencing a shift in the gravitational potential ?U will measure a frequency change given by ?f/f ? ?U/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of ?f/f 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.

  1. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  2. Table of experimental nuclear ground state charge radii: An update

    SciTech Connect

    Angeli, I.; Marinova, K.P.

    2013-01-15

    The present table contains experimental root-mean-square (rms) nuclear charge radii R obtained by combined analysis of two types of experimental data: (i) radii changes determined from optical and, to a lesser extent, K{sub α} X-ray isotope shifts and (ii) absolute radii measured by muonic spectra and electronic scattering experiments. The table combines the results of two working groups, using respectively two different methods of evaluation, published in ADNDT earlier. It presents an updated set of rms charge radii for 909 isotopes of 92 elements from {sub 1}H to {sub 96}Cm together, when available, with the radii changes from optical isotope shifts. Compared with the last published tables of R-values from 2004 (799 ground states), many new data are added due to progress recently achieved by laser spectroscopy up to early 2011. The radii changes in isotopic chains for He, Li, Be, Ne, Sc, Mn, Y, Nb, Bi have been first obtained in the last years and several isotopic sequences have been recently extended to regions far off stability, (e.g., Ar, Mo, Sn, Te, Pb, Po)

  3. Ground state and glass transition of the RNA secondary structure

    NASA Astrophysics Data System (ADS)

    Hui, S.; Tang, L.-H.

    2006-09-01

    RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.

  4. Thermal Ground State in Yang-Mills Thermodynamics

    SciTech Connect

    Hofmann, Ralf

    2011-09-22

    We derive an a useful priori estimate for the thermal ground state of deconfining phase of SU(2) Yang-Mills thermodynamics in four-dimensional, flat spacetime and discuss its implications. Upon a selfconsistent spatial coarse-graining over noninteracting, trivial-holonomy (BPS saturated)(anti)calorons of unit topological charge modulus an inert, adjoint scalar field |{phi}| and an effective pure-gauge configuration a{sub {mu}}{sup gs} emerge. The modulus |{phi}|>0 defines the maximal resolution in the coarse-grained theory and induces dynamical gauge-symmetry breaking. Thanks to perturbative renormalizability and the fact that |{phi}| can not absorb or emit energy-momentum the effective action is local and simple. The temperature dependence of the effective coupling is a consequence of thermodynamical consistency and describes the Coulomb screening of a static test charge due to short-lived monopole-antimonopole pairs. The latter occur unresolvably as small-holonomy excitations of (anti)calorons by the absorption of propagating fundamental gauge fields.

  5. Arsenic in Ground-Water Resources of the United States

    USGS Publications Warehouse

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  6. Engineering Atomic Rydberg States with Pulsed Electric Fields

    SciTech Connect

    Dunning, F. B.; Mestayer, J. J.; Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.

    2009-01-01

    Atoms in high-lying Rydberg states with large values of the principal quantum number n, n {ge} 300, form a valuable laboratory in which to explore the control and manipulation of quantum states of mesoscopic size using carefully tailored sequences of short electric field pulses whose characteristic times (duration and/or rise/fall times) are less than the classical electron orbital period. Atoms react to such pulse sequences very differently than to short laser or microwave pulses providing the foundation for a number of new approaches to engineering atomic wavefunctions. The remarkable level of control that can be achieved is illustrated with reference to the generation of localized wavepackets in Bohr-like near-circular orbits, and the production of non-dispersive wavepackets under periodic driving and their transport to targeted regions of phase space. The testing of these control schemes, together with their reversibility, through the creation of electric dipole echoes in Stark wavepackets, is also described. New protocols continue to be developed that will allow even tighter control with the promise of new insights into quantum-classical correspondence, information storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime and nonlinear dynamics in driven systems.

  7. TOPICAL REVIEW: Engineering atomic Rydberg states with pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Mestayer, J. J.; Reinhold, C. O.; Yoshida, S.; Burgdörfer, J.

    2009-01-01

    Atoms in high-lying Rydberg states with large values of the principal quantum number n, n >= 300, form a valuable laboratory in which to explore the control and manipulation of quantum states of mesoscopic size using carefully tailored sequences of short electric field pulses whose characteristic times (duration and/or rise/fall times) are less than the classical electron orbital period. Atoms react to such pulse sequences very differently than to short laser or microwave pulses providing the foundation for a number of new approaches to engineering atomic wavefunctions. The remarkable level of control that can be achieved is illustrated with reference to the generation of localized wavepackets in Bohr-like near-circular orbits, and the production of non-dispersive wavepackets under periodic driving and their transport to targeted regions of phase space. The testing of these control schemes, together with their reversibility, through the creation of electric dipole echoes in Stark wavepackets, is also described. New protocols continue to be developed that will allow even tighter control with the promise of new insights into quantum-classical correspondence, information storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime and nonlinear dynamics in driven systems.

  8. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  9. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  10. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the

  11. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  12. Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules.

    PubMed

    Debatin, Markus; Takekoshi, Tetsu; Rameshan, Raffael; Reichsllner, Lukas; Ferlaino, Francesca; Grimm, Rudolf; Vexiau, Romain; Bouloufa, Nadia; Dulieu, Olivier; Ngerl, Hanns-Christoph

    2011-11-14

    We perform one- and two-photon high resolution spectroscopy on ultracold samples of RbCs Feshbach molecules with the aim to identify a suitable route for efficient ground-state transfer in the quantum-gas regime to produce quantum gases of dipolar RbCs ground-state molecules. One-photon loss spectroscopy allows us to probe deeply bound rovibrational levels of the mixed excited (A(1)?(+)-b(3)?)0(+) molecular states. Two-photon dark state spectroscopy connects the initial Feshbach state to the rovibronic ground state. We determine the binding energy of the lowest rovibrational level |v'' = 0, J'' = 0> of the X(1)?(+) ground state to be D = 3811.5755(16) cm(-1), a 300-fold improvement in accuracy with respect to previous data. We are now in the position to perform stimulated two-photon Raman transfer to the rovibronic ground state. PMID:21853182

  13. Ground state entropy of the Potts antiferromagnet on homeomorphic expansions of kagom lattice strips

    NASA Astrophysics Data System (ADS)

    Shrock, Robert; Xu, Yan

    2011-04-01

    We present exact calculations of the chromatic polynomial and resultant ground state entropy of the q-state Potts antiferromagnet on lattice strips that are homeomorphic expansions of a strip of the kagom lattice. The dependence of the ground state entropy on the form of homeomorphic expansion is elucidated.

  14. Exact ground-state properties of SU(3) Hamiltonian lattice gauge theory

    SciTech Connect

    Chin, S.A.; Long, C.; Robson, D.

    1988-05-15

    We solve for the exact ground state of SU(3) Hamiltonian lattice gauge theory via the guided-random-walk algorithm. We show that the algorithm is effective in calculating the ground-state energy with excellent precision. By comparing exact and variational ground-state results in the case of SU(2) and SU(3), we further demonstrate that variational calculations based on the independent-plaquette trial function improve with increasing N from N = 2 to N = 3.

  15. Manipulating Frequency-Bin Entangled States in Cold Atoms

    PubMed Central

    Zavatta, A.; Artoni, M.; Viscor, D.; La Rocca, G.

    2014-01-01

    Optical manipulation of entanglement harnessing the frequency degree of freedom is important for encoding of quantum information. We here devise a phase-resonant excitation mechanism of an atomic interface where full control of a narrowband single-photon two-mode frequency entangled state can be efficiently achieved. We illustrate the working physical mechanism for an interface made of cold 87Rb atoms where entanglement is well preserved from degradation over a typical 100??m length scale of the interface and with fractional delays of the order of unity. The scheme provides a basis for efficient multi-frequency and multi-photon entanglement, which is not easily accessible to polarization and spatial encoding. PMID:24487523

  16. Comment on 'Scheme for teleportation of an unknown atomic state without the Bell-state measurement'

    SciTech Connect

    Chhajlany, Ravindra W.; Wojcik, Antoni

    2006-01-15

    Recently, Ye and Guo [Phys. Rev. A 70, 054303 (2004)] have presented a scheme for implementing quantum teleportation of atomic states in cavity QED. In this Comment, we show that contrary to the authors' claim, the scheme is based on Bell-state measurement.

  17. GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Rainer, Stefan

    2013-03-01

    GSGPEs is a Matlab/GNU Octave suite of programs for the computation of the ground state of systems of Gross-Pitaevskii equations. It can compute the ground state in the defocusing case, for any number of equations with harmonic or quasi-harmonic trapping potentials, in spatial dimension one, two or three. The computation is based on a spectral decomposition of the solution into Hermite functions and direct minimization of the energy functional through a Newton-like method with an approximate line-search strategy. Catalogue identifier: AENT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1417 No. of bytes in distributed program, including test data, etc.: 13673 Distribution format: tar.gz Programming language: Matlab/GNU Octave. Computer: Any supporting Matlab/GNU Octave. Operating system: Any supporting Matlab/GNU Octave. RAM: About 100 MB for a single three-dimensional equation (test run output). Classification: 2.7, 4.9. Nature of problem: A system of Gross-Pitaevskii Equations (GPEs) is used to mathematically model a Bose-Einstein Condensate (BEC) for a mixture of different interacting atomic species. The equations can be used both to compute the ground state solution (i.e., the stationary order parameter that minimizes the energy functional) and to simulate the dynamics. For particular shapes of the traps, three-dimensional BECs can be also simulated by lower dimensional GPEs. Solution method: The ground state of a system of Gross-Pitaevskii equations is computed through a spectral decomposition into Hermite functions and the direct minimization of the energy functional. Running time: About 30 seconds for a single three-dimensional equation with d.o.f. 40 for each spatial direction (test run output).

  18. Relativistic calculations of ground and excited states of LiYb molecule for ultracold photoassociation spectroscopy studies.

    PubMed

    Gopakumar, Geetha; Abe, Minori; Das, Bhanu Pratap; Hada, Masahiko; Hirao, Kimihiko

    2010-09-28

    We report a series of quantum-chemical calculations for the ground and some of the low-lying excited states of an isolated LiYb molecule by the spin-orbit multistate complete active space second-order perturbation theory (SO-MS-CASPT2). Potential energy curves, spectroscopic constants, and transition dipole moments (TDMs) at both spin-free and spin-orbit levels are obtained. Large spin-orbit effects especially in the TDMs of the molecular states dissociating to Yb((3)P(0,1,2)) excited states are found. To ensure the reliability of our calculations, we test five types of incremental basis sets and study their effect on the equilibrium distance and dissociation energy of the ground state. We also compare CASPT2 and CCSD(T) results for the ground state spectroscopic constants at the spin-free relativistic level. The discrepancies between the CASPT2 and CCSD(T) results are only 0.01 in equilibrium bond distance (R(e)) and 200 cm(-1) in dissociation energy (D(e)). Our CASPT2 calculation in the supermolecular state (R=100 a.u.) with the largest basis set reproduces experimental atomic excitation energies within 3% error. Transition dipole moments of the super molecular state (R=100 a.u.) dissociating to Li((2)P) excited states are quite close to experimental atomic TDMs as compared to the Yb((3)P) and Yb((1)P) excited states. The information obtained from this work would be useful for ultracold photoassociation experiments on LiYb. PMID:20886942

  19. Ground State Valency and Spin Configuration of the Ni Ions in Nickelates

    SciTech Connect

    Petit, Leon; Egami, Takeshi; Stocks, George Malcolm; Temmerman, Walter M; Szotek, Zdzislawa

    2006-01-01

    The ab initio self-interaction-corrected local-spin-density approximation is used to study the electronic structure of both stoichiometric and nonstoichiometric nickelates. From total energy considerations it emerges that, in their ground state, both LiNiO2 and NaNiO2 are insulators, with the Ni ion in the Ni3+ low-spin state (t2g6eg1) configuration. It is established that a substitution of a number of Li/Na atoms by divalent impurities drives an equivalent number of Ni ions in the NiO2 layers from the Jahn-Teller (JT)-active trivalent low-spin state to the JT-inactive divalent state. We describe how the observed considerable differences between LiNiO2 and NaNiO2 can be explained through the creation of Ni2+ impurities in LiNiO2. The indications are that the random distribution of the Ni2+ impurities might be responsible for the destruction of the long-range orbital ordering in LiNiO2.

  20. Theoretical study of the structure and analytic potential energy function for the ground state of the PO2 molecule

    NASA Astrophysics Data System (ADS)

    Zeng, Hui; Zhao, Jun

    2012-07-01

    In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2? symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O = 0.1465 nm, ?OPO = 134.96, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ?1 = 386 cm-1, symmetric stretching frequency ?2 = 1095 cm-1, and asymmetric stretching frequency ?3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  1. XUV frequency-comb metrology on the ground state of helium

    SciTech Connect

    Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.; Ubachs, Wim; Eikema, Kjeld S. E.

    2011-12-15

    The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p {sup 1} P{sub 1} states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited-state population, resulting in a cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium atom as a precision phase ruler, yields an estimated timing jitter between the two upconverted-comb laser pulses of 50 attoseconds, which is equivalent to a phase jitter of 0.38 (6) cycles in the xuv at 51 nm. This sets a quantitative figure of merit for the operation of the xuv comb and indicates that extension to even shorter wavelengths should be feasible. The helium metrology investigation results in transition frequencies of 5 740 806 993 (10) and 5 814 248 672 (6) MHz for excitation of the 1s4p and 1s5p {sup 1} P{sub 1} states, respectively. This constitutes an important frequency measurement in the xuv, attaining high accuracy in this windowless part of the electromagnetic spectrum. From the measured transition frequencies an eight-fold-improved {sup 4}He ionization energy of 5 945 204 212 (6) MHz is derived. Also, a new value for the {sup 4}He ground-state Lamb shift is found of 41 247 (6) MHz. This experimental value is in agreement with recent theoretical calculations up to order m{alpha}{sup 6} and m{sup 2}/M{alpha}{sup 5}, but with a six-times-higher precision, therewith providing a stringent test of quantum electrodynamics in bound two-electron systems.

  2. Exchange-correlation potentials in ground- and excited-state Kohn-Sham theory

    NASA Astrophysics Data System (ADS)

    Harbola, Manoj K.

    2004-04-01

    Using constrained-search approach, we obtain orbitals and the corresponding local potentials of noninteracting systems that lead to a given exact ground-state or excited-state density with a configuration of our choice. Thus on the basis of constrained-search formulation we demonstrate that all densities, irrespective of whether they belong to the ground state or an excited state, can be treated on equal footing. This has direct relevance to the time-independent excited-state density-functional theory, which makes excited-state calculations as easy as they are for the ground states. We make a comparison of the exact potentials generated by us with the approximate ones obtained using the local-density approximation and show the latter to be as good an approximation for the excited states as it is for the ground state.

  3. Test of Variational Methods for Studying Molecular and Solid State Properties by Application to Sodium Atom

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Dubey, Archana; Scheicher, R. H.; Chow, Lee

    2011-03-01

    As part of our continuing test of accuracy of the variational methods, Variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) and Variational Density Functional Theory (VDFT) for study of energy and wave-function dependent properties in molecular and solid state systems we are studying the magnetic hyperfine interactions in the ground state of sodium atom for comparison by these methods with the available results from experiment 1 and the linked cluster many-body many body perturbation theory (LCMBPT) for atoms 2 , which has provided very accurate results for the one-electron and many-electron contributions and total hyperfine constants in atomic systems. Comparison will also be made with the corresponding results obtained already from the (VHFMBPT) and (VDFT) methods in lithium 3 to draw general conclusions about the nature of possible improvements needed for the variational methods. 1. M. Arditi and R. T. Carver, Phys. Rev. 109, 1012 (1958); 2. T. Lee, N.C. Dutta, and T.P. Das, Hyperfine Structure of Sodium, Phys. Rev. A 1, 995 (1970); 3. Third Joint HFI-NQI International Conference on Hyperfine Interactions, CERN, Geneva, September 2010.

  4. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  5. Improving fidelity in atomic state teleportation via cavity decay

    SciTech Connect

    Chimczak, Grzegorz; Tanas, Ryszard

    2007-02-15

    We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. [Phys. Rev. Lett. 83, 5158 (1999)]. The modified protocol involves an additional stage in which quantum information distorted during the first stage is fully recovered by a compensation of the damping factor. The modification makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required in the original protocol, i.e., their decay rates can be over 25 times larger. The improvement in the fidelity is possible at the expense of lowering the probability of success. We show that the modified protocol is robust against dark counts.

  6. Effect of tunneling on ionization of Rydberg states in intense fields: Hydrogenic atoms

    SciTech Connect

    Cohen, James S.

    2003-09-01

    The ionization probabilities of hydrogenic Rydberg states in intense fields are calculated using a trajectory method, which was previously shown to be accurate for ionization of the ground-state hydrogen atom [J. S. Cohen, Phys. Rev. A 64, 043412 (2001)]. It is found that the ionization probability approaches the classical over-the-barrier probability for sufficiently large n quantum numbers, but that tunneling still significantly decreases the onset field strengths at surprisingly high n. Calculations are done for ns, np{sub 0}, and np{sub {+-}} targets, subjected to sudden and adiabatically ramped pulses in the long-wavelength limit. The dependence on the angular-momentum projection m along the field axis is also examined for circular orbi0008.

  7. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mkel, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  8. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  9. Measurement of the anapole moment of 133 Cesium from Parity Non-conserving (PNC) interaction in hyperfine ground states

    NASA Astrophysics Data System (ADS)

    Choi, Jungu; Toh, George; Elliott, Daniel; Elliott's Lab Team

    2015-05-01

    We discuss initial work towards a measurement of the anapole moment of 133 Cesium from a parity nonconserving (PNC) interaction between the hyperfine ground states. The result of the previous measurement of this anapole moment by the Boulder group, carried out on the 6S/2 --> 7S/2 transition, was much larger than expected, and is at odds with various measurements of scattering cross sections. In an effort to address this deviation, we propose to observe the PNC effect on the hyperfine ground state 6S/2 F = 3 --> 6S/ 2 F = 4 transition by exciting the microwave and two-photon Raman transitions, and observing the interference between these interactions. The benefits of this proposed measurement include the well-known microwave transition frequency (atomic clock frequency), far less sensitivity to the stray field effects, and a high excitation rate by the Raman transition.

  10. Exact expression of the ground-state energy for the symmetric anderson model

    NASA Astrophysics Data System (ADS)

    Kawakami, Norio; Okiji, Ayao

    1981-12-01

    The exact expression of the ground-state energy for the symmetric Anderson model is obtained with the use of the Wiegmann approach. It is found that some of the quasi-momenta appearing in Wiegmann's paper are necessarily complex to obtain the expression of the ground-state energy.

  11. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S0, or equivalently, the ground-state degeneracy per site, W =eS0/kB , of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  12. Existence and Symmetry of Ground States to the Boussinesq abcd Systems

    NASA Astrophysics Data System (ADS)

    Bao, Ellen ShiTing; Chen, Robin Ming; Liu, Qing

    2015-05-01

    We consider a four-parameter family of Boussinesq systems derived by Bona et al. (J Nonlinear Sci 12:283-318, 2002). We establish the existence of the ground states which are solitary waves minimizing the action functional of the systems. We further show that in the presence of large surface tension the ground states are even up to translation.

  13. Use of an atom trap for measuring electron-impact excitation cross sections out of the excited states of rubidium

    NASA Astrophysics Data System (ADS)

    Larsen, M.; Zimmerman, Todd A.; Boffard, John B.; Anderson, L. W.; Lin, Chun C.

    2002-05-01

    A large fraction (fe 0.4) of the atoms in a MOT are in the excited Rb(5^2P) level. We previously used this source of excited atoms to measure ionization cross sections out of the 5^2P level of Rb.(M.L. Keeler, et al.), Phys. Rev. Lett. 85, 3353 (2000). In this work, we use trapped atoms as a target for measurement of electron-impact phexcitation cross sections. An electron beam is incident upon the cloud of trapped atoms and the fluorescence given off by the decay of the excited atoms is detected by a PMT. If the trapping lasers are turned off during the electron beam pulse, the trap contains only 5^2S atoms. By leaving the lasers on during the electron beam pulse, the trap contains both 5^2S and 5^2P atoms. From the ratio of signals for the two cases and the measured excited state fraction we find the ratio of the excitation cross sections from the 5^2S and 5^2P levels. Using previously measured ground state cross sections,(See for example, Z. Wei, et al.), Phys. Rev. A 47, 1918 (1978). we obtain cross sections out of the 5^2P_3/2 level. Results for excitation into the 5^2P_1/2, 5^2D, and 7^2S levels will be presented.

  14. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  15. Ground-state phases of a rung-alternated spin-1/2 Heisenberg ladder

    NASA Astrophysics Data System (ADS)

    Amiri, F.; Sun, G.; Mikeska, H.-J.; Vekua, T.

    2015-11-01

    The ground-state phase diagram of a Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides the usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low-energy dispersions and ground-state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized.

  16. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation

    NASA Astrophysics Data System (ADS)

    Weidt, S.; Randall, J.; Webster, S. C.; Standing, E. D.; Rodriguez, A.; Webb, A. E.; Lekitsch, B.; Hensinger, W. K.

    2015-07-01

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n =0.13 (4 ) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n =0 ? and |n =1 ? Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  17. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-07-01

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n[over ]=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0? and |n=1? Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system. PMID:26182094

  18. A new simple exotic atom, H-+: e+ bound to H- in an atomic state

    NASA Astrophysics Data System (ADS)

    Guevara, I.; Weel, M.; George, M. C.; Hessels, E. A.; Storry, C. H.

    2014-05-01

    A beam of H- ions is directed along the axis of a solenoidal magnet winding. Within this magnet, cylindrical electrodes with applied potentials slow the ions to an energy of ~ 50 eV in a magnetic field of ~ 0.13 Tesla. This apparatus also acts as a charged particle trap. e+ from a radioactive source are slowed in frozen neon, guided by magnetic fields and captured in this Surko-style accumulator with ~107 e+ trapped and cooled for experiments. H- ions are directed through these e+ producing long-lived H-+ atoms. H-+ is not bound in the charged particle trap and continues with the initial momentum of the H- ion into a metal plate. Upon impact the e+ quickly annihilates into back-to-back gammas. Detection of these coincident gammas indicates H-+ that traveled the 2 meter to the detector and indicates a survival time of ~ 5 ?s . Typically systems with antimatter bound to matter particles have short lifetimes (and hence wide transition widths) due annihilation. Rydberg states of H-+, however, have the long radiative lifetimes of normal matter atoms because there is little overlap of the e+ wavefunction with the core. The detected rates or H-+ are consistent with those expected for radiative recombination. NSERC, CFI, ORF.

  19. State-to-state studies of ground state NH(X 3?-,v=0,J,N)+Ne

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jan Leo; Gericke, Karl-Heinz

    2000-10-01

    State-to-state rotational energy transfer of ground state NH(X 3?,v=0,J,N) in collisions with Ne is examined. NH is exclusively generated in the metastable NH(a 1?) state via photodissociation of hydrazoic acid at a wavelength of 266 nm. The strongly forbidden NH(a 1??X 3?-) intercombination transition around 794 nm is used to generate single state NH(X 3?-,v=0,J,N) applying the stimulated emission pumping technique. The ground state radicals are detected after a certain delay time with laser induced fluorescence (LIF) using the intense NH(A 3??X3?-) transition around 336 nm with respect to all quantum states. The collision induced energy flux between the different rotation and spin levels is studied in detail and a comprehensive set of state-to-state rate constants for inelastic collisions of NH(X 3?-,v=0,J,N) with Ne up to N=7 which include the effect of multiple collisions is given. The state-to-state rate constants are obtained by the use of an iterative integrated profiles method. We find a propensity for (?N=0, ?i=1) and (?N=1, ?i=0) transitions where N represents the quantum state for nuclear rotation and i represents the index of the spin component Fi. In most cases the energy transfer which changes the spin component and conserves the nuclear rotation quantum number N (?N=0, ?i=1), is the most effective energy transfer in collisions with Ne. The energy dependence of the transition efficiency concerning only the nuclear rotation quantum number N obeys an energy-gap law (EGL).

  20. Stimulated adiabatic passage in a dissipative ensemble of atoms with strong Rydberg-state interactions

    NASA Astrophysics Data System (ADS)

    Petrosyan, David; Mlmer, Klaus

    2013-03-01

    We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg excitation of precisely one atom within the atomic ensemble. The quantum Zeno effect offers a lucid interpretation of this result: the Rydberg blocked atoms repetitively scattering photons effectively monitor a randomly excited atom, which therefore remains in the Rydberg state. This system can be used for deterministic creation and, possibly, extraction of Rydberg atoms or ions one at a time. The sympathetic monitoring via decay of ancilla particles may find wider applications for state preparation and probing of interactions in dissipative many-body systems.

  1. A new ab initio ground-state dipole moment surface for the water molecule.

    PubMed

    Lodi, Lorenzo; Tolchenov, Roman N; Tennyson, Jonathan; Lynas-Gray, A E; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Csszr, Attila G; van Stralen, Joost N P; Visscher, Lucas

    2008-01-28

    A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also been computed and added to the V surface. The resulting DMS surface is hence called CVR. Interestingly, the C and R corrections cancel out each other almost completely over the whole grid of points investigated. The ground-state CVR dipole of H(2) (16)O is 1.8676 D. This value compares well with the best ab initio one determined in this study, 1.8539+/-0.0013 D, which in turn agrees well with the measured ground-state dipole moment of water, 1.8546(6) D. Line intensities computed with the help of the CVR DMS shows that the present DMS is highly similar to though slightly more accurate than the best previous DMS of water determined by Schwenke and Partridge [J. Chem. Phys. 113, 16 (2000)]. The influence of the precision of the rovibrational wave functions computed using different potential energy surfaces (PESs) has been investigated and proved to be small, due mostly to the small discrepancies between the best ab initio and empirical PESs of water. Several different measures to test the DMS of water are advanced. The seemingly most sensitive measure is the comparison between the ab initio line intensities and those measured by ultralong pathlength methods which are sensitive to very weak transitions. PMID:18247946

  2. Evolution of dark state of an open atomic system in constant intensity laser field

    SciTech Connect

    Krmpot, A. J.; Radonjic, M.; Cuk, S. M.; Nikolic, S. N.; Grujic, Z. D.; Jelenkovic, B. M.

    2011-10-15

    We studied experimentally and theoretically the evolution of open atomic systems in the constant intensity laser field. The study is performed by analyzing the line shapes of Hanle electromagnetically induced transparency (EIT) obtained in different segments of a laser beam cross section of constant intensity, i.e., a {Pi}-shaped laser beam. Such Hanle EIT resonances were measured using a small movable aperture placed just in front of the photodetector, i.e., after the entire laser beam had passed through the vacuum Rb cell. The laser was locked to the open transition F{sub g}=2{yields}F{sub e}=1 at the D{sub 1} line of {sup 87}Rb with laser intensities between 0.5 and 4 mW/cm{sup 2}. This study shows that the profile of the laser beam determines the processes governing the development of atomic states during the interaction. The resonances obtained near the beam center are narrower than those obtained near the beam edge, but the significant changes of the linewidths occur only near the beam edge, i.e., right after the atom enters the beam. The Hanle EIT resonances obtained near the beam center exhibit two pronounced minima next to the central maximum. The theoretical model reveals that the occurrence of these transmission minima is a joint effect of the preparation of atoms into the dark state and the optical pumping into the uncoupled ground level F{sub g}=1. The appearance of the transmission minima, although similar to that observed in the wings of a Gaussian beam [A. J. Krmpot et al., Opt. Express 17, 22491 (2009)], is of an entirely different nature for the {Pi}-shaped laser beam.

  3. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition.

    PubMed

    Jaramillo, R; Feng, Yejun; Lang, J C; Islam, Z; Srajer, G; Littlewood, P B; McWhan, D B; Rosenbaum, T F

    2009-05-21

    Advances in solid-state and atomic physics are exposing the hidden relationships between conventional and exotic states of quantum matter. Prominent examples include the discovery of exotic superconductivity proximate to conventional spin and charge order, and the crossover from long-range phase order to preformed pairs achieved in gases of cold fermions and inferred for copper oxide superconductors. The unifying theme is that incompatible ground states can be connected by quantum phase transitions. Quantum fluctuations about the transition are manifestations of the competition between qualitatively distinct organizing principles, such as a long-wavelength density wave and a short-coherence-length condensate. They may even give rise to 'protected' phases, like fluctuation-mediated superconductivity that survives only in the vicinity of an antiferromagnetic quantum critical point. However, few model systems that demonstrate continuous quantum phase transitions have been identified, and the complex nature of many systems of interest hinders efforts to more fully understand correlations and fluctuations near a zero-temperature instability. Here we report the suppression of magnetism by hydrostatic pressure in elemental chromium, a simple cubic metal that demonstrates a subtle form of itinerant antiferromagnetism formally equivalent to the Bardeen-Cooper-Schrieffer (BCS) state in conventional superconductors. By directly measuring the associated charge order in a diamond anvil cell at low temperatures, we find a phase transition at pressures of approximately 10 GPa driven by fluctuations that destroy the BCS-like state but preserve the strong magnetic interaction between itinerant electrons and holes. Chromium is unique among stoichiometric magnetic metals studied so far in that the quantum phase transition is continuous, allowing experimental access to the quantum singularity and a direct probe of the competition between conventional and exotic order in a theoretically tractable material. PMID:19458718

  4. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transtion.

    SciTech Connect

    Jaramillo, R.; Feng, Y.; Lang, J. C.; Islam, Z.; Srajer, G.; Littlewood, P. B.; Mc Whan, D. B.; Rosenbaum, T. F.; Univ. of Chicago; Univ. of Cambridge; Massachusetts Innst. of Tech.

    2009-05-21

    Advances in solid-state and atomic physics are exposing the hidden relationships between conventional and exotic states of quantum matter. Prominent examples include the discovery of exotic superconductivity proximate to conventional spin and charge order, and the crossover from long-range phase order to preformed pairs achieved in gases of cold fermions and inferred for copper oxide superconductors. The unifying theme is that incompatible ground states can be connected by quantum phase transitions. Quantum fluctuations about the transition are manifestations of the competition between qualitatively distinct organizing principles, such as a long-wavelength density wave and a short-coherence-length condensate. They may even give rise to 'protected' phases, like fluctuation-mediated superconductivity that survives only in the vicinity of an antiferromagnetic quantum critical point. However, few model systems that demonstrate continuous quantum phase transitions have been identified, and the complex nature of many systems of interest hinders efforts to more fully understand correlations and fluctuations near a zero-temperature instability. Here we report the suppression of magnetism by hydrostatic pressure in elemental chromium, a simple cubic metal that demonstrates a subtle form of itinerant antiferromagnetism formally equivalent to the Bardeen-Cooper-Schrieffer (BCS) state in conventional superconductors. By directly measuring the associated charge order in a diamond anvil cell at low temperatures, we find a phase transition at pressures of 10 GPa driven by fluctuations that destroy the BCS-like state but preserve the strong magnetic interaction between itinerant electrons and holes. Chromium is unique among stoichiometric magnetic metals studied so far in that the quantum phase transition is continuous, allowing experimental access to the quantum singularity and a direct probe of the competition between conventional and exotic order in a theoretically tractable material.

  5. Foil dissociation of fast molecular ions into atomic excited states

    SciTech Connect

    Berry, H.G.; Gay, T.J.; Brooks, R.L.

    1980-01-01

    The intensity and polarizations of light emitted from atomic excited states of dissociated molecular ions were measured. The dissociations are induced when fast molecular ions (50 to 500 keV/amu) are transmitted through thin carbon foils. A calculation of multiple scattering and the Coulomb explosion gives the average internuclear separation of the projectile at the foil surface. Experimentally, the foil thickness is varied to give varying internuclear separations at the foil surface and observe the consequent variation in light yield and optical polarization. Using HeH/sup +/ projectiles, factors of 1 to 5 enhancements of the light yields from n = 3, /sup 1/ /sup 3/P,D states of He I and some He II and H I emissions were observed. The results can be explained in terms of molecular level crossings which provide mixings of the various final states during dissociation of the molecular ions at the exit surface. They suggest a short range surface interaction of the electron pick-up followed by a slow molecular dissociation. Alignment measurements confirm the essential features of the model. Observations of Lyman ..cap alpha.. emission after dissociation of H/sub 2//sup +/ amd H/sub 3//sup +/ show rapid variations in light yield for small internuclear separations at the foil surface.

  6. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices

    SciTech Connect

    Rhm, Andr; Lingnau, Benjamin; Ldge, Kathy

    2015-05-11

    We predict a significant increase of the 3?dB-cutoff-frequency on the ground-state lasing wavelength for two-state-lasing quantum-dot lasers using a microscopically motivated multi-level rate-equation model. After the onset of the second lasing line, the excited state acts as a high-pass filter, improving the ground-state response to faster modulation frequencies. We present both numerically simulated small-signal and large-signal modulation results and compare the performance of single and two-state lasing devices. Furthermore, we give dynamical arguments for the advantages of two-state lasing on data-transmission capabilities.

  7. The Ground State of Monolayer Graphene in a Strong Magnetic Field.

    PubMed

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  8. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    PubMed Central

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  9. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Guidry, Mike

    2016-03-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments.

  10. Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect

    NASA Astrophysics Data System (ADS)

    Castagna, N.; Weis, A.

    2011-11-01

    We present a theoretical and experimental study of the resonant circularly-polarized-light-induced Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself as a narrow resonance (centered at B=0) in the dependence of the optical transmission coefficient of the vapor on the magnitude of an external magnetic field B?. We develop a theoretical model that yields an algebraic expression for the shape of these resonances for arbitrary field orientations and arbitrary angular momenta of the states coupled by the exciting light, provided that the light power is kept sufficiently small. An experimental procedure for assessing the range of validity of the model is given. Experiments were carried out on the laser-driven Cs D1 transition both in longitudinal and transverse field geometries, and the observed line shapes of the corresponding bright and dark resonances give an excellent confirmation of the model predictions. The method is applied for determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in the vapor and their dependence on light power.

  11. Quantum Monte Carlo study of the ground state and low-lying excited states of the scandium dimer

    NASA Astrophysics Data System (ADS)

    Matxain, Jon M.; Rezabal, Elixabete; Lopez, Xabier; Ugalde, Jesus M.; Gagliardi, Laura

    2008-05-01

    A large set of electronic states of scandium dimer has been calculated using high-level theoretical methods such as quantum diffusion Monte Carlo (DMC), complete active space perturbation theory as implemented in GAMESS-US, coupled-cluster singles, doubles, and triples, and density functional theory (DFT). The ?u3 and ?u5 states are calculated to be close in energy in all cases, but whereas DFT predicts the ?u5 state to be the ground state by 0.08eV, DMC and CASPT2 calculations predict the ?u3 to be more stable by 0.17 and 0.16eV, respectively. The experimental data available are in agreement with the calculated frequencies and dissociation energies of both states, and therefore we conclude that the correct ground state of scandium dimer is the ?u3 state, which breaks with the assumption of a ?u5 ground state for scandium dimer, believed throughout the past decades.

  12. Ground state and excitations of the supersymmetric extended Hubbard model with long-range interaction

    SciTech Connect

    Wang, D.F.; Liu, J.T.

    1996-07-01

    We examine the ground state and excitations of the one-dimensional supersymmetric extended Hubbard model with long-range interaction. The ground state wave-function and low lying excitations are given explicitly in the form of a Jastrow product of two-body terms. This result motivates an asymptotic Bethe ansatz solution for the model. We present evidence that this solution is in fact exact and spans the complete spectrum of states. {copyright} {ital 1996 The American Physical Society.}

  13. Exact ground states of large two-dimensional planar Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Pardella, G.; Liers, F.

    2008-11-01

    Studying spin-glass physics through analyzing their ground-state properties has a long history. Although there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices (up to 30002 spins) within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus. Moreover, they show that the method can also be used for computing ground states of planar graphs. Furthermore, we point out that the correctness of heuristically computed ground states can easily be verified. Finally, we evaluate the solution quality of heuristic variants of the L. Bieche approach.

  14. Bench Marking Accuracies of Variational Methods for Studying Molecular and Solid State Properties by Application to Nuclear Quadrupole Interactions in Boron and Aluminum Atoms

    NASA Astrophysics Data System (ADS)

    Pink, R. H.; Dubey, Archan; Badu, S. R.; Scheicher, R. H.; Chow, Lee; Das, T. P.

    2011-03-01

    As part of a test of the accuracy of the variational methods (VHFMBPT) and (VDFT) for energy and wave-function dependent properties in molecular and solid state systems, the nuclear quadrupole interactions in the ground state of boron and aluminum atoms are being studied by these methods. Results for the electric field gradients will be presented for these atoms and compared with experiment , and with results , of the highly accurate LCMBPT procedure for the atoms. Conclusions about the factors governing the accuracies of the variational methods will be presented. J.S.M. Harvey, L. Evans, and H. Lew, Can. J. Phys. 50, 1719 (1972)

  15. Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions.

    PubMed

    Szczepanik, Beata; Styrcz, Stanis?aw

    2011-08-01

    The effect of cyano substituents on acidity in ground and excited states of mono- and dicyanophenols was investigated. The equilibrium dissociation constants of 3,4-dicyanophenol in ground and lowest excited states in water solution and the change of these constants in the excited state during the transfer to the ground state for o-, m-, p-cyanophenol and 3,4-dicyanophenol in alcohol and water solutions were determined. It was shown that the cyano substitution increases the acidity of ortho-, meta- and dicyano-derivative in ground state in comparison to the phenol, which makes the anions of these derivatives appear in solutions from methanol to 1-butanol. In the excited state the acidity of investigated compounds changes significantly in comparison to the ground state. 3,4-Dicyanophenol is the strongest acid in the lowest excited singlet state, while p-cyanophenol is the weakest one in both alcohol and water solutions. The distribution of the electronic charge and dipole moments of all investigated cyanophenols in ground and excited states were determined on the basis of ab initio calculations using the GAMESS program. PMID:21511519

  16. Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Styrcz, Stanis?aw

    2011-08-01

    The effect of cyano substituents on acidity in ground and excited states of mono- and dicyanophenols was investigated. The equilibrium dissociation constants of 3,4-dicyanophenol in ground and lowest excited states in water solution and the change of these constants in the excited state during the transfer to the ground state for o-, m-, p-cyanophenol and 3,4-dicyanophenol in alcohol and water solutions were determined. It was shown that the cyano substitution increases the acidity of ortho-, meta- and dicyano-derivative in ground state in comparison to the phenol, which makes the anions of these derivatives appear in solutions from methanol to 1-butanol. In the excited state the acidity of investigated compounds changes significantly in comparison to the ground state. 3,4-Dicyanophenol is the strongest acid in the lowest excited singlet state, while p-cyanophenol is the weakest one in both alcohol and water solutions. The distribution of the electronic charge and dipole moments of all investigated cyanophenols in ground and excited states were determined on the basis of ab initio calculations using the GAMESS program.

  17. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  18. Generations of N-atom GHZ state and 2^n-atom W state assisted by quantum dots in optical microcavities

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Deng, Yun; Li, Hui-Ran; Wang, Xiaojun

    2015-10-01

    Multipartite entangled state plays a crucial role in quantum applications. We propose theoretical schemes to generate entanglements among several trapped atoms with the help of quantum dots in single-side optical microcavities. In the first scheme, a basic architecture will be built to produce arbitrary N-atom GHZ state by using only one auxiliary photon. Moreover, using a photon state with multiple modes, we can realize 2^n-atom W state. All these schemes are insensitive to the variation of the atom-photon coupling rates and are also right for remotely trapped atoms by using the photonic transmissions, local quantum operations, and classical channel. Simulations show that our schemes are faithful and available with present physical techniques.

  19. Determination of atomic hydrogen densities in the MLT and thermospheric regions from coincident ground-based and satellite airglow data

    NASA Astrophysics Data System (ADS)

    Mierkiewicz, E. J.; Bishop, J.; Roesler, F. L.; Nossal, S. M.; Gomez, J. F.; Madsen, G. J.

    2003-04-01

    Coincident ground- and satellite-based geocoronal hydrogen emission data are presented, along with forward-modeling analysis results. Atomic hydrogen plays several unique roles in the terrestrial atmosphere. For example, as a daughter of the important mesospheric minor species H2O and CH4, knowledge of the MLT atomic hydrogen density distribution and associated vertical flux may prove to be valuable in understanding the chemistry in that region. The interactions of the geocorona, plasmasphere, and ring current via atomic hydrogen transport provide another example of increasing interest, given the use of energetic neutral atom imaging in recent (e.g., NASA/IMAGE) and upcoming magnetospheric missions. Recent advances in Fabry-Perot instrumentation (e.g., annular summing spectroscopy) have greatly increased the quality and quantity of ground-based geocoronal Balmer ? emissions data, and have enabled the first detailed ground-based measurements of the extremely faint (sub-Rayleigh) Balmer ? airglow. Extensive Balmer ? and ? data sets have been obtained with two large aperture (15 cm), double-etalon, Fabry-Perot spectrometers located at Pine Bluff, WI (PBO) and at Kitt Peak, AZ (WH?M). Absolute intensity calibration has been made through comparisons with well-established nebular emission sources. Complementing these measurements, satellite missions have provided large data sets of FUV and EUV emission measurements, including Lyman line intensities. The EURD instrument for measurements of the diffuse interstellar radiation field, on the Spanish satellite MiniSAT-01, provided numerous data sets coincident with our ground-based measurements. Data and analysis results for early March 2000 are being presented. The Balmer ? and ? intensity measurements, through the intensity variations with solar depression angle and viewing geometry, provide tight constraints on thermospheric and exospheric atomic hydrogen abundances. The coincident EURD measurements of Lyman ? and ? nightside intensities provide independent constraints given the different viewing schemes and optically thick character of the resonance transitions. Forward modeling using the lyao_rt radiative transport code is currently being applied to seek self-consistent fits to the diverse data sets and to assess the feasibility of extracting vertical fluxes. The PBO Fabry-Perot operates at high resolving power ( 85,000), allowing Balmer ? line profile observations to be carried out. A significant decrease in Balmer ? Doppler width with increasing shadow altitude is detected. Preliminary applications of lyao_rt indicate good agreement with Doppler width trends in the nonisothermal geocorona. This work is funded by the National Science Foundation through grants ATM-9908775, ATM-0003166, AST96-19424 and AST02-04973.

  20. Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy

    SciTech Connect

    Young, C.E.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.

    1983-01-01

    Velocity distributions and relative populations in the fine-structure levels of the a/sup 5/D/sub J/ ground state of Fe atoms, produced by sputtering with 3 keV argon ions, have been investigated by Doppler shifted laser induced fluorescence. The laser system employs a single-mode, scanning ring dye laser, amplified by a sequence of three excimer-pumped flowing-dye cells. Frequency doubling in a KD*P crystal was used to produce high energy (> .5 mJ) pulses of narrowband tunable UV output near 300 nm. Laser power influence on effective velocity bandwidth was investigated. Favorable light-collection geometry minimized distortion of the velocity spectra from apparatus-averaging effects. In impurity flux diagnostic applications in fusion devices, substantial spatial averaging may occur. In the latter case, the narrow velocity bandwidth (70 m/s, transform limit) of the present laser system is particularly useful.

  1. Application of Generalized Sturmians to the Bound States of Two-Electron Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Red, Eddie; Wynn, Albert, III; Weatherford, Charles

    2006-03-01

    A variation on the method of Generalized Sturmians [J. Avery, Hyperspherical Harmonics and GeneralizedSturmians, Kluwer, 2000], is applied to the calculation of the ground and excited states of two-electron atoms and molecules (etc. He, H2). In the present implementation of this method, each determinant formed from a set of primitive one-electron Sturmians, is required to separately solve the Schdinger equation. In the process, the screening constant of each one- electron Sturmian orbital is non-iteratively uniquely determined. The resultant generalized eigenvalue problem however has a non-positive- definite overlap matrix. The method of corresponding orbitals[H.F. King et. al. J. Chem. Phys. 47, 1936 (1967)] is used to produce a positive-definite overlap matrix. A CI calculation is then performed whereby the Hartree-Fock calculation is avoided. Results will be presented and compared with Hartree-Fock based CI calculations.

  2. Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy

    SciTech Connect

    Young, C.E.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.

    1984-04-01

    Velocity distributions and relative populations in the fine-structure levels of the a /sup 5/D/sub J/ ground state of Fe atoms, produced by sputtering with 3 keV argon ions, have been investigated by Doppler-shifted laser-induced fluorescence. The laser system employs a single-mode, scanning ring dye laser, amplified by a sequence of three excimer-pumped flowing dye cells. Frequency doubling in a KD*P crystal was used to produce high energy (>0.5 mJ) pulses of narrowband tunable UV output near 300 nm. Laser power influence on effective velocity bandwidth was investigated. Favorable light-collection geometry minimized distortion of the velocity spectra from apparatus-averaging effects. In impurity flux diagnostic applications in fusion devices, substantial spatial averaging may occur. In the latter case, the narrow velocity bandwidth (70 m/s, transform limit) of the present laser system is particularly useful.

  3. Ground state properties of superheavy nuclei with Z=117 and Z=119

    SciTech Connect

    Ren Zhongzhou; Chen Dinghan; Xu Chang

    2006-11-02

    We review the current studies on the ground-state properties of superheavy nuclei. It is shown that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. This can lead to the existence of isomers in superheavy region and it plays an important role for the stability of superheavy nuclei. Some new results on Z=117 and Z=119 isotopes are presented. The agreement between theoretical results and experimental data clearly demonstrates the validity of theoretical models for the ground-state properties of superheavy nuclei.

  4. Bulk-edge correspondence of entanglement spectrum in two-dimensional spin ground states

    NASA Astrophysics Data System (ADS)

    Santos, Raul A.

    2013-01-01

    General local spin S ground states, described by a valence bond solid (VBS) on a two-dimensional lattice are studied. The norm of these ground states is mapped to a classical O(3) model on the same lattice. Using this quantum-to-classical mapping, we obtain the partial density matrix ρA associated with a subsystem A of the original ground state. We show that the entanglement spectrum of ρA in a translation invariant lattice is related with the spectrum of a quantum XXX Heisenberg model and all its conserved charges on the boundary of the region A.

  5. Time-resolved probing of the ground state coherence in rubidium.

    PubMed

    Oberst, Martin; Vewinger, Frank; Lvovsky, A I

    2007-06-15

    We demonstrate the preparation and probing of the coherence between the hyperfine ground states |S(1/2),F=1> and |5S(1/2),F=2> of the Rb87 isotope. The effects of various coherence control techniques, i.e., fractional stimulated Raman adiabatic passage and coherent population return, on the coherence are investigated. These techniques are implemented using nearly degenerate pump and Stokes lasers at 795 nm (Rb D1 transition), which couple the two hyperfine ground states via the excited state |5P(1/2),F=1> through a resonant two-photon process in which a coherent superposition of the two hyperfine ground states is established. The medium is probed by an additional weak laser, which generates a four-wave mixing signal proportional to the ground state coherence and allows us to monitor its evolution in time. The experimental data are compared with numerical simulations. PMID:17572770

  6. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  7. Cooperative ground-water investigations in Massachusetts by the United States Geological Survey, 1938-50

    USGS Publications Warehouse

    Brashears, M.L., Jr.

    1950-01-01

    The United States Geological Survey in cooperation with the Massachusetts Department of Public Works in 1938 began an investigation of the ground-water conditions in Massachusetts. This work is part of a larger cooperative program that includes surface-water investigations, geologic studies, and topographic mapping. The purpose of the ground-water studies is to obtain detailed information concerning the occurrence and availability of ground water throughout the State. The information is used by the Highway Division of the Department of Public Works in connection with design, construction, and maintenance of highways. These studies also provided a basis for the more effective utilization of the ground-water resources of the State. They indicate where additional developments can be made safely or where present use may be excessive. Reports covering the ground-water studies are listed in the appendix.

  8. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    SciTech Connect

    Cross, J.B. ); Koontz, S.L. . Lyndon B. Johnson Space Center); Lan, E.H. )

    1991-01-01

    The effects of atomic oxygen on boron nitride, silicon nitride, solar cell interconnects used on the Intelsat 6 satellite, organic polymers, and MoS{sub 2} and WS{sub 2} dry lubricant have been studied in low Earth orbit (LEO) flight experiments and in our ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and ESCA analysis to measure chemical composition changes. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN overcoated on thin silver was observed. No permeation of atomic oxygen through Si{sub 3}N{sub 4} was observed. Test results on the Intelsat 6 satellite interconnects used on its photovoltaic array indicate that more than 60--80% of the original thickness of silver should remain after completion of the proposed Space Shuttle rescue/reboost mission. Gas phase reaction products produced by the interaction of high kinetic energy atomic oxygen (AO) with Kapton were found to be H{sub 2}, H{sub 2}O, CO, and CO{sub 2} with NO being a possible secondary product. Hydrogen abstraction at high AO kinetic energy is postulated to be the key reaction controlling the erosion rate of Kapton. An Arrhenius-like expression having an activation barrier of 0.4 eV can be fit to the data, which suggests that the rate limiting step in the AO/Kapton reaction mechanism can be overcome by translational energy. Oxidation of MoS{sub 2} and WS{sub 2} dry lubricants in both ground-based and orbital exposures indicated the formation of MoO{sub 3} and WO{sub 3} respectively. A protective oxide layer is formed {approx}30 monolayers thick which has a high initial friction coefficient until the layer is worn off.

  9. Slow ground state molecules from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.

    2014-12-01

    We describe the generation and properties of a cryogenic beam of 7Li2 dimers from sublimation of a neon matrix where lithium atoms have been implanted via laser ablation of solid precursors of metallic lithium or lithium hydride (LiH). Different sublimation regimes lead to pulsed molecular beams with different temperatures, densities and forward velocities. With laser absorption spectroscopy these parameters were measured using the molecular 7Li2 (R) transitions A1? u+(v\\prime =4,J\\prime =J\\prime\\prime +1) ?ftarrow X 1? g+(v\\prime\\prime =0,J\\prime\\prime =0,1,3). In a typical regime, sublimating a matrix at 16 K, translational temperatures of 6-8 K with a drift velocity of 130 m s-1 in a free expanding pulsed beam with molecular density of 109 cm-3, averaged along the laser axis, were observed. Rotational temperatures around 5-7 K were obtained. In recent experiments we were able to monitor the atomic Li signalin the D2 lineconcomitantly with the molecular signal in order to compare them as a function of the number of ablation pulses. Based on the data and a simple model, we discuss the possibility that a fraction of these molecules are being formed in the matrix, by mating atoms from different ablation pulses, which would open up the way to formation of other more interesting and difficult molecules to be studied at low temperatures. Such a source of cryogenic molecules have possible applications encompassing fundamental physics tests, quantum information studies, cold collisions, chemistry, and trapping.

  10. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrdinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:?10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrdinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrdinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial ? (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=?+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: 10 minutes (depends on basis size and computer speed)

  11. Explaining the Temperature Dependence of Spirilloxanthin’s S* Signal by an Inhomogeneous Ground State Model

    PubMed Central

    2013-01-01

    We investigate the nature of the S* excited state in carotenoids by performing a series of pump–probe experiments with sub-20 fs time resolution on spirilloxanthin in a polymethyl-methacrylate matrix varying the sample temperature. Following photoexcitation, we observe sub-200 fs internal conversion of the bright S2 state into the lower-lying S1 and S* states, which in turn relax to the ground state on a picosecond time scale. Upon cooling down the sample to 77 K, we observe a systematic decrease of the S*/S1 ratio. This result can be explained by assuming two thermally populated ground state isomers. The higher lying one generates the S* state, which can then be effectively frozen out by cooling. These findings are supported by quantum chemical modeling and provide strong evidence for the existence and importance of ground state isomers in the photophysics of carotenoids. PMID:23577754

  12. Optical pumping of metastable NH radicals into the paramagnetic ground state

    SciTech Connect

    Meerakker, Sebastiaan Y.T. van de; Mosk, Allard P.; Jongma, Rienk T.; Sartakov, Boris G.; Meijer, Gerard

    2003-09-01

    We here report on the optical pumping of both {sup 14}NH and {sup 15}NH radicals from the metastable a {sup 1}{delta} state into the X {sup 3}{sigma}{sup -} ground state in a molecular beam experiment. By inducing the hitherto unobserved spin-forbidden A {sup 3}{pi} <- a {sup 1}{delta} transition, followed by spontaneous emission to the X {sup 3}{sigma}{sup -} state, a unidirectional pathway for population transfer from the metastable state into the electronic ground state is obtained. The optical pumping scheme demonstrated here opens up the possibility to accumulate NH radicals in a magnetic or optical trap.

  13. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  14. Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered ground states at high densities and crystalline ground states at low densities in d -dimensional Euclidean space Rd. In the previous paper in this series, we numerically studied the entropically favored ground states in the canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper, we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically. Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions. Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess long-range orientational order but have zero shear modulus. We outline some possible future avenues of research to elucidate our understanding of this unusual phase of matter.

  15. Atomic solid state energy scale: Universality and periodic trends in oxidation state

    NASA Astrophysics Data System (ADS)

    Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram; Pereira, Clifford B.; Wager, John F.; Keszler, Douglas A.

    2015-11-01

    The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (EG). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IP versus EG are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above -4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy -4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/-) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state.

  16. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  17. Bott Periodicity for Z_2 Symmetric Ground States of Gapped Free-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Kennedy, R.; Zirnbauer, M. R.

    2016-03-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a ( d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.

  18. Bott Periodicity for {Z_2} Symmetric Ground States of Gapped Free-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Kennedy, R.; Zirnbauer, M. R.

    2015-11-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.

  19. Electric-field effect on shallow impurity ground state in nanowire superlattice

    NASA Astrophysics Data System (ADS)

    Gutirrez, W.; Galvn-Moya, J. E.; Garca, L. F.; Mikhailov, I. D.

    2009-02-01

    We have developed a variational formalism to analyze the effect of electric field on the donor ground state in a nanowire superlattice with cylindrical cross-section. The trial function is taken as a product of the free-electron ground state wave function with an envelope function that is a solution of a differential equation arising from the Schrdinger variational principle. We establish a close relationship between the donor ground state energy and density of charge induced by the unbound electron at the point of donor location. Also, we show that electric field applied along the crystal growth direction can easily shift the peak position of the free-electron density distribution from the central well toward one of the nanowire ends, providing a variation of the average electron-ion separation and a considerable alteration of the donor ground state energy.

  20. Trajectory approach to the Schrdinger-Langevin equation with linear dissipation for ground states

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2015-11-01

    The Schrdinger-Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrdinger-Langevin equation yields the complex quantum Hamilton-Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  1. Ground-state properties of boron-doped diamond

    SciTech Connect

    Zarechnaya, E. Yu. Isaev, E. I. Simak, S. I.; Vekilov, Yu. Kh.; Dubrovinsky, L. S.; Dubrovinskaia, N. A.; Abrikosov, I. A.

    2008-04-15

    Boron-doped diamond undergoes an insulator-metal or even a superconducting transition at some critical value of the dopant concentration. We study the equilibrium lattice parameter and bulk modulus of boron-doped diamond experimentally and in the framework of the density functional method for different levels of boron doping. We theoretically consider the possibility for the boron atoms to occupy both substitutional and interstitial positions and investigate their influence on the electronic structure of the material. The data suggest that boron softens the lattice, but softening due to substitutions of carbon with boron is much weaker than due to incorporation of boron into interstitial positions. Theoretical results obtained for substitution of carbon are in very good agreement with our experiment. We present a concentration dependence of the lattice parameter in boron-doped diamond, which can be used for to identify the levels of boron doping in future experiments.

  2. Ground-state properties and superfluidity of two- and quasi-two-dimensional solid 4He.

    PubMed

    Cazorla, C; Astrakharchik, G E; Casulleras, J; Boronat, J

    2010-04-28

    In a recent study we have reported a new type of trial wavefunction symmetric under the exchange of particles, which is able to describe a supersolid phase. In this work, we use the diffusion Monte Carlo method and this model wavefunction to study the properties of solid (4)He in two- and quasi-two-dimensional geometries. In the purely two-dimensional (2D) case, we obtain results for the total ground-state energy and freezing and melting densities which are in good agreement with previous exact Monte Carlo calculations performed with a slightly different interatomic potential model. We calculate the value of the zero-temperature superfluid fraction ?(s)/? of 2D solid (4)He and find that it is negligible in all the considered cases, similarly to what is obtained in the perfect (free of defects) three-dimensional crystal using the same computational approach. Interestingly, by allowing the atoms to move locally in the direction perpendicular to the plane where they are confined to zero-point oscillations (quasi-2D crystal), we observe the emergence of a finite superfluid density that coexists with the periodicity of the system. PMID:21386422

  3. Ground-state and spectral properties of an asymmetric Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  4. Ground and Excited States of an Anisotropically Confined Condensed Bose Gas

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.; Feder, David L.; Clark, Charles W.

    1998-03-01

    The ground and excited states of a weakly interacting and dilute Bose gas confined in a completely anisotropic harmonic oscillator potential are determined self-consistently for both zero and finite temperatures. The numerical calculations employ an efficient procedure based on the discrete variable representation (DVR).(J.C. Light, I.P. Hamilton, and J.V. Lill, J. Chem. Phys. 82), 1400 (1985). Standard iterative techniques applied to the solution of the non-linear differential equation for the condensate are usually non-convergent, particularly for large number of atoms. This limitation is overcome using the method of the direct inversion in the iterated subspace.(P. Pulay, Chem. Phys. Lett. 73), 393 (1980), J. Comp. Chem. 3, 556 (1982). The sparse structure of the DVR representation also enables the efficient application of iterative techniques, such as the Davidson and/or Lanczos methods, to extract the relevant eigenvalues. The results are compared with recent experimental data obtained for Bose-condensed alkali metal vapors confined in magnetic traps.

  5. Teleportation with insurance of an entangled atomic state via cavity decay

    SciTech Connect

    Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam

    2005-03-01

    We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.

  6. A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1986-01-01

    The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.

  7. Multiple-time-scale perturbation theory: Radiative decay of coupled atomic states

    NASA Astrophysics Data System (ADS)

    Brooks, G. L., Jr.; Scarfone, L. M.

    1982-12-01

    The spontaneous radiative decay to the ground state of an atomic system initially in the higher of two excited states, coupled in a radiationless fashion by an external field, is investigated by the method of multiple-time-scale perturbation theory. The coupled differential equations of motion for the probability amplitudes are solved to second order, while the usual secular behavior of conventional time-dependent perturbation theory is eliminated in terms of two natural time scales: a fast time scale corresponding to the reciprocal of the level transition frequency and a slower time scale associated with the inverse of the radiation linewidth. Expressions are obtained to this order for the energy shifts and decay characteristics of the excited states and the energy distribution of the final-state photons, quantities previously determined by Fourier analysis and contour integration and by the phenomenological approach of Weisskopf and Wigner. A detailed comparison of these various methods of solution includes conditions under which the present results agree to second order with the previous calculations.

  8. Theoretical studies on ground and excited states of the BrO 4 radical

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2009-11-01

    MRCI and DFT calculations were performed on ground state and excited states of the BrO 4 radical. The ground state is confirmed to be X 2B 1 in C2v symmetry. MRCI vertical excitation energies ( Tvert) were obtained for 24 states. The lowest Tvert values are 0.76 eV for 1 2A 2, 1.40 eV for 1 2B 2 and 2.25 eV for 1 2A 1. Electronic transitions from the ground state to 1 2A 1 and 2 2A 1, vertically at 2.25 and 3.37 eV, are predicted. Optimized geometries, harmonic vibrational frequencies and adiabatic excitation energies ( Te) were obtained by DFT methods for seven excited states. Te for 1 2A 1 is 1.52 eV.

  9. Molecular reorganization of selected quinoline derivatives in the ground and excited statesInvestigations via static DFT.

    PubMed

    B?aziak, Kacper; Panek, Jaros?aw J; Jezierska, Aneta

    2015-07-21

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied. PMID:26203021

  10. Designer spin systems via inverse statistical mechanics. II. Ground-state enumeration and classification

    NASA Astrophysics Data System (ADS)

    Marcotte, tienne; DiStasio, Robert A., Jr.; Stillinger, Frank H.; Torquato, Salvatore

    2013-11-01

    In the first paper of this series [DiStasio, Jr., Marcotte, Car, Stillinger, and Torquato, Phys. Rev. B10.1103/PhysRevB.88.134104 88, 134104 (2013)], we applied inverse statistical-mechanical techniques to study the extent to which targeted spin configurations on the square lattice can be ground states of finite-ranged radial spin-spin interactions. In this sequel, we enumerate all of the spin configurations within a unit cell on the one-dimensional integer lattice and the two-dimensional square lattice up to some modest size under periodic boundary conditions. We then classify these spin configurations into those that can or cannot be unique classical ground states of the aforementioned radial pair spin interactions and found the relative occurrences of these ground-state solution classes for different system sizes. As a result, we also determined the minimal radial extent of the spin-spin interaction potentials required to stabilize those configurations whose ground states are either unique or degenerate (i.e., those sharing the same radial spin-spin correlation function). This enumeration study has established that unique ground states are not limited to simple target configurations. However, we also found that many simple target spin configurations cannot be unique ground states.

  11. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    NASA Astrophysics Data System (ADS)

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for ? = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of ? = 1/2, which is highly mixed with 4?- and 2? states in ? - S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm-1 above, respectively. The equilibrium bond length 1.712 and the harmonic vibrational frequency 903 cm-1 of the 5/2 state are close to the experimental measurement of 1.724 and 909 cm-1, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for ? = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.

  12. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide.

    PubMed

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for ? = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of ? = 1/2, which is highly mixed with (4)?(-) and (2)? states in ? - S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm(-1) above, respectively. The equilibrium bond length 1.712 and the harmonic vibrational frequency 903 cm(-1) of the 5/2 state are close to the experimental measurement of 1.724 and 909 cm(-1), which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for ? = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths. PMID:25747077

  13. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    SciTech Connect

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-07

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with {sup 4}Σ{sup −} and {sup 2}Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm{sup −1} above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm{sup −1} of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm{sup −1}, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.

  14. Ordered ground states of metallic hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  15. Using soil stress state transducers in freezing ground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three instrumented test sections of sand, silt and clay, were constructed to monitor the impact of frost layers on vehicle-induced stresses and to assess the performance of the sensors used to measure such stresses. One of the instruments used to measure in-situ stress is the soil Stress State Tran...

  16. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  17. Alpha decay of 184-224Bi isotopes from the ground state and isomeric state

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Priyanka, B.

    2013-12-01

    The -decay half-lives for the favored and unfavored transitions of the isotopes of Bi ( Z = 83 nuclei in the region , from both the ground state (g.s.) and the isomeric state (i.s.) have been studied systematically within the Coulomb and proximity potential model (CPPM). The half-lives have been evaluated using the experimental Q-values. The computed half-lives are compared with the experimental data and they are in good agreement. We have modified the assault frequency and redetermined the half-lives and they show a better agreement with the experimental value. The standard deviation of the logarithm of the half-life with the former assault frequency is found to be 1.234 and with the modified assault frequency, it is found to be 0.935. This reveals that the CPPM, with the modified deformation-dependent assault frequency is more apt for the alpha-decay studies. Using our model we could also demonstrate the influence of the N = 126 , neutron shell closure in both parent and daughter nuclei on the alpha-decay half-lives.

  18. Core-level spectroscopy to probe the oxidation state of single europium atoms.

    PubMed

    Tizei, Luiz H G; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2015-05-15

    The valence of individual europium atoms confined in carbon nanotubes is successfully measured by using core-level electron energy loss spectroscopy. Changes in the oxidation state at the atomic scale have been observed in Eu atomic chains exposed to oxygen. A transitory behavior has been identified where multiple atoms show a signal consistent with a sum of Eu^{2+} and Eu^{3+}. This indicates that single atoms change their valence state multiple times during the reaction, suggesting that oxidation in confined spaces and with extra energy input (from the electron beam) might not be a simple one step electron transfer event. PMID:26024198

  19. Core-Level Spectroscopy to Probe the Oxidation State of Single Europium Atoms

    NASA Astrophysics Data System (ADS)

    Tizei, Luiz H. G.; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2015-05-01

    The valence of individual europium atoms confined in carbon nanotubes is successfully measured by using core-level electron energy loss spectroscopy. Changes in the oxidation state at the atomic scale have been observed in Eu atomic chains exposed to oxygen. A transitory behavior has been identified where multiple atoms show a signal consistent with a sum of Eu2 + and Eu3 +. This indicates that single atoms change their valence state multiple times during the reaction, suggesting that oxidation in confined spaces and with extra energy input (from the electron beam) might not be a simple one step electron transfer event.

  20. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  1. Ground-state properties of a triangular triple quantum dot connected to superconducting leads

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Sato, Izumi; Shimamoto, Masashi; Tanaka, Yoichi

    2015-03-01

    We study ground-state properties of a triangular triple quantum dot connected to two superconducting (SC) leads. In this system orbital motion along the triangular configuration causes various types of quantum phases, such as the SU(4) Kondo state and the Nagaoka ferromagnetic mechanism, depending on the electron filling. The ground state also evolves as the Cooper pairs penetrate from the SC leads. We describe the phase diagram in a wide range of the parameter space, varying the gate voltage, the couplings between the dots and leads, and also the Josephson phase between the SC gaps. The results are obtained in the limit of large SC gap, carrying out exact diagonalization of an effective Hamiltonian. We also discuss in detail a classification of the quantum states according to the fixed point of the Wilson numerical renormalization group (NRG). Furthermore, we show that the Bogoliubov zero-energy excitation determines the ground state of a ? Josephson junction at small electron fillings.

  2. Protolytic dissociation of cyanoanilines in the ground and excited state in water and methanol solutions.

    PubMed

    Szczepanik, Beata; Styrcz, Stanis?aw; Gra, Maciej

    2008-11-15

    The effect of cyano substituents on the photoacidity of mono- and dicyanoanilines has been investigated. It was demonstrated that the cyano substitution increases significantly the acidity of aniline derivatives in the excited state in comparison to the ground state. 3,5-Dicyanoaniline is the strongest acid in the lowest excited singlet state, while 4-cyanoaniline is the weakest one. The derivatives of aniline with two cyano groups in o,o'-position show different properties from those characteristic for aniline and other investigated cyanoanilines. In the methanol solution with sodium methanolate the anions of 2,6-dicyano-3,5-dimethylaniline and 2,6-dicyano-3,5-diphenylaniline appear already in the ground state. The electronic ground and excited state charge distributions and dipole moments of all investigated cyanoanilines have been evaluated by ab initio calculations using the GAMESS program. PMID:18378186

  3. Protolytic dissociation of cyanoanilines in the ground and excited state in water and methanol solutions

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Styrcz, Stanis?aw; Gra, Maciej

    2008-11-01

    The effect of cyano substituents on the photoacidity of mono- and dicyanoanilines has been investigated. It was demonstrated that the cyano substitution increases significantly the acidity of aniline derivatives in the excited state in comparison to the ground state. 3,5-Dicyanoaniline is the strongest acid in the lowest excited singlet state, while 4-cyanoaniline is the weakest one. The derivatives of aniline with two cyano groups in o, o'-position show different properties from those characteristic for aniline and other investigated cyanoanilines. In the methanol solution with sodium methanolate the anions of 2,6-dicyano-3,5-dimethylaniline and 2,6-dicyano-3,5-diphenylaniline appear already in the ground state. The electronic ground and excited state charge distributions and dipole moments of all investigated cyanoanilines have been evaluated by ab initio calculations using the GAMESS program.

  4. Spin-split antibonding molecular ground state in manganese-doped quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Qu, Fanyao; Villegas-Lelovsky, L.; Morais, P. C.

    2015-09-01

    Tunnel coupling between two dots in manganese-doped InAs/GaAs quantum dot molecules (QDMs), valence band mixing, and p -d exchange interaction between holes and localized d electrons give rise to a tunability of charge, spin, and molecular orbitals. The interplay among them determines the nature of the molecular ground state. Remarkably, unlike usual diatomic molecules in which the bonding (BD) state is always the ground state, we found that the molecular ground state in Mn-doped QDMs is of antibonding (AB) character. Furthermore, it is a spin-split state and can be switched into the spin-split BD type. We also demonstrate that this unusual behavior can be tuned by the lateral confinement strength of the QDMs, the concentration, and the distribution of manganese as well as the electric field applied along the direction of the QDM axis.

  5. Ground-state features in the THz spectra of molecular clusters of ?-HMX.

    PubMed

    Huang, Lulu; Shabaev, Andrew; Lambrakos, Samuel G; Massa, Lou

    2012-10-01

    We present calculations of absorption spectra arising from molecular vibrations at THz frequencies for molecular clusters of the explosive HMX using density functional theory (DFT). The features of these spectra can be shown to follow from the coupling of vibrational modes. In particular, the coupling among ground-state vibrational modes provides a reasonable molecular-level interpretation of spectral features associated with the vibrational modes of molecular clusters. THz excitation from the ground state is associated with frequencies that characteristically perturb molecular electronic states, in contrast to frequencies, which are usually substantially above the mid-infrared (mid-IR) range, that can induce appreciable electronic-state transition. Owing to this characteristic of THz excitation, one is able to make a direct association between local oscillations about ground-state minima of molecules, either isolated or comprising a cluster, and THz absorption spectra. The DFT software program GAUSSIAN was used for the calculations of the absorption spectra presented here. PMID:23031709

  6. Generating Spin Squeezed State in Atomic Bose-Einstein Condensate via Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Liu, Desheng

    2016-03-01

    We present a theoretical scheme for generating spin squeezed state of atom-photon in atomic Bose-Einstein condensate(BEC) via electromagnetically induced transparency(EIT). Here we focus on the influence of the laser-atom dipole interaction and the two-photon detuning on the degree of spin squeezing. The stronger laser-atom dipole interaction and the smaller two-photon detuning more rapidly induces the stronger spin squeezing.

  7. New Evidence for Localized Electronic States on Atomically Sharp Field Emitters

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Lang, Norton D.; Hussey, Brian W.; Chang, T. H. Philip; Mackie, William A.

    1996-08-01

    We have studied field emission from atomically sharp tungsten-carbide-coated W<111> tips, and from atomically sharp HfC<100> and ZrC<100> tips. We observed multiple-peaked total energy distributions from the apex atoms. These narrow and intense peaks have strong angular anisotropy, and their relative magnitudes depend on the extraction field. They suggest the presence of localized states on the atom at the apex of the tip.

  8. Ground radiation tests and flight atomic oxygen tests of ITO protective coatings for Galileo Spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.

    1986-01-01

    Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.

  9. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields With Those in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Dill, Grace C.; Loftus, Ryan J.; deGroh, Kim K.; Miller, Sharon K.

    2013-01-01

    The atomic oxygen erosion yields of 26 materials (all polymers except for pyrolytic graphite) were measured in two directed hyperthermal radio frequency (RF) plasma ashers operating at 30 or 35 kHz with air. The hyperthermal asher results were compared with thermal energy asher results and low Earth orbital (LEO) results from the Materials International Space Station Experiment 2 and 7 (MISSE 2 and 7) flight experiments. The hyperthermal testing was conducted to a significant portion of the atomic oxygen fluence similar polymers were exposed to during the MISSE 2 and 7 missions. Comparison of the hyperthermal asher prediction of LEO erosion yields with thermal energy asher erosion yields indicates that except for the fluorocarbon polymers of PTFE and FEP, the hyperthermal energy ashers are a much more reliable predictor of LEO erosion yield than thermal energy asher testing, by a factor of four.

  10. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.

    PubMed

    Nishimoto, Yoshio

    2016-02-11

    Accounting for solvent effects in quantum chemical calculations is vital for the accurate description of potential energy surfaces in solution. In this study, we derive a formulation of the analytical first-order geometrical derivative of ground- and excited-state energies within the time-dependent density-functional tight-binding (TD-DFTB) method with the polarizable continuum model (PCM), TD-DFTB/PCM. The performance of this is then evaluated for a series of halogen-exchange SN2 reactions. DFTB/PCM reproduces DFT results well for isolated monohalogenated methanes, but its agreement for transition structures significantly depends on the halogen element. The performance of TD-DFTB/PCM is evaluated for the excited-state intramolecular proton transfer (ESIPT) reaction of 3-hydroxyflavone (3HF) in ethanol. TD-DFTB/PCM reproduces the barrier height of the ESIPT reaction in terms of geometry and energy relatively well, but it fails to reproduce the experimental absorption and fluorescence energies as a consequence of the absence of long-range corrections. Computational timings with and without PCM show that the additional cost of PCM for C500H502 is only 10% greater than the corresponding calculation in vacuum. Furthermore, the potential applications of TD-DFTB/PCM are highlighted by applying it to a double-stranded DNA complexed with dye (PDB ID 108D ). We conclude that TD-DFTB/PCM single-point calculations and geometry optimizations for systems consisting of more than 1000 and 500 atoms, respectively, is now manageable and that properties predicted with TD-DFTB must be interpreted with care. PMID:26761635

  11. Recommended practices for in-space and ground laboratory. Atomic oxygen exposure and analysis

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Koontz, Steve; Mccargo, Matt; Pippin, Gary; Rutledge, Sharon

    1992-01-01

    A detailed guide to testing materials for atomic oxygen durability in earth orbit environments is presented. The steps covered include sample preparation, including masking of the sample, dehydration, weighing, and handling; effective fluence prediction, including the use of witness samples (notably Kapton); plasma facility and operational considerations, involving such matters as avoidance of silicone contamination, the use of continuous versus incremental ashing, and temperature of operation; and erosion yield measurement, with calculation methods and protective coating performance indices provided.

  12. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  13. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The

  14. Non-Elastic Processes in Atom Rydberg-Atom Collisions: Review of State of Art and Problems

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Srećković, V. A.; Ignjatović, Lj. M.; Klyucharev, A. N.; Dimitrijević, M. S.; Sakan, N. M.

    2015-12-01

    In our previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n- n') mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence of the ( n- n')-mixing during a symmetric atom Rydberg-atom collision processes on the intensity of chemi-ionization process. It will be taken into account H(1s) + H ∗( n) collisional systems, where the principal quantum number is n>> 1. It will be demonstrated that the inclusion of ( n- n') mixing in the calculation, influences significantly on the values of chemi-ionization rate coefficients, particularly in the lower part of the block of the Rydberg states. Different possible channels of the ( n- n')-mixing influence on chemi-ionization rate coefficients will be demonstrated. The possibility of interpretation of the ( n- n')-mixing influence will be considered on the basis of two existing methods for describing the inelastic processes in symmetrical atom Rydberg-atom collisions.

  15. Calculation of the wave functions of the ground and weakly excited states of helium II

    SciTech Connect

    Tomchenko, M. D.

    2006-01-15

    The wave functions of the ground ({psi}{sub 0}) and the first excited ({psi}{sub k}) states of He II in the second-order approximation, i.e., up to the first two corrections to the corresponding solutions for a weakly nonideal Bose gas, are determined by the collective variable method, which was proposed by Bogolyubov and Zubarev and developed in the studies by Yukhnovskii and Vakarchuk. The functions {psi}{sub 0} and {psi}{sub k} = {psi}{sub k}{psi}{sub 0} are determined as the eigenfunctions of the N-particle Schroedinger equation from a system of coupled equations for {psi}{sub 0}, {psi}{sub k}, and the quasiparticle spectrum E(k) of helium II. The results consist in the following: (1) these equations are solved numerically for a higher order approximation compared with those investigated earlier (the first-order approximation), and (2) {psi}{sub 0} and {psi}{sub k} are derived from a model potential of interaction between He{sup 4} atoms (rather than from the structure factor as earlier) in which the potential barrier is joined with the attractive potential found from experiment. The height V{sub 0} of the potential barrier is a free parameter. Except for V{sub 0}, the model does not have any free parameters or functions. The calculated values of the structure factor, the ground-state energy E{sub 0}, and the quasiparticle spectrum E(k) of He II are in agreement with the experimental values for V{sub 0} {approx} 100 K. The second-order correction to the logarithm of {psi}{sub 0} significantly affects the value of E{sub 0} and provides the asymptotics E(k {sup {yields}} 0) = ck, while the second-order correction to {psi}{sub k} slightly affects the E(k). The second-order corrections to {psi}{sub 0} and {psi}{sub k} have a smaller effect on the results compared with the first-order corrections, whereby the theory is in agreement with experiment; therefore, one may assume that the truncated {psi}{sub 0} and {psi}{sub k} well describe the microstructure of He II. Thus, the series for {psi}{sub 0} and {psi}{sub k} can be truncated in spite of the fact that the expansion parameter is not very small ({approx}1/2)

  16. The ground electronic state of KCs studied by Fourier transform spectroscopy.

    PubMed

    Ferber, R; Klincare, I; Nikolayeva, O; Tamanis, M; Knckel, H; Tiemann, E; Pashov, A

    2008-06-28

    We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X (1)Sigma(+) ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 degrees C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar(+) laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm(-1)), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm(-1) tuning ranges, respectively). The LIF to the ground state was recorded by a Bruker IFS-125HR Fourier transform spectrometer with a spectral resolution of 0.03 cm(-1). Particularly, by applying the 850 nm laser diode we were able to observe LIF progressions to very high vibrational levels of the ground state close to the dissociation limit. The present data field contains 7226 term values for the ground state X (1)Sigma(+) and covers a range from v(")=0 to 97 with J(") varying from 12 to 209. More than 10 000 fluorescence lines were used to fit the ground state potential energy curve via the inverted perturbation approach procedure. The present empirical potential extends up to approximately 12.6 A and covers more than 99% of the potential well depth, it describes most of the spectral lines with an accuracy of about 0.003 cm(-1) and yields a dissociation energy of 4069.3+/-1.5 cm(-1) for the ground state X (1)Sigma(+). First observations of the triplet ground state a (3)Sigma(+) of KCs are presented, and preliminary values of few main molecular constants could be derived. PMID:18601341

  17. Simple model of self-supported deformed states of isolated atoms

    SciTech Connect

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2010-01-15

    We propose a simple three-body model of an atom in which one electron on a circular Rydberg orbit is treated as an independent particle and the remaining core electrons are collectively described as a single object. Within this model we predict the existence of stable deformed states of atoms. The deformation is generated by a bootstrap mechanism. The atomic core is polarized by the excited electron and the induced dipole moment keeps this electron localized. The deformed stable states of the atom are similar to the Trojan states observed in recent experiments. However, in the present case the breaking of the rotational symmetry does not require the presence of external fields.

  18. Simple model of self-supported deformed states of isolated atoms

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2010-01-01

    We propose a simple three-body model of an atom in which one electron on a circular Rydberg orbit is treated as an independent particle and the remaining core electrons are collectively described as a single object. Within this model we predict the existence of stable deformed states of atoms. The deformation is generated by a bootstrap mechanism. The atomic core is polarized by the excited electron and the induced dipole moment keeps this electron localized. The deformed stable states of the atom are similar to the Trojan states observed in recent experiments. However, in the present case the breaking of the rotational symmetry does not require the presence of external fields.

  19. Towards Chemically Stable Fermionic Ground State Molecules with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Zwierlein, Martin

    2013-05-01

    Quantum gases with dipolar interactions will open new avenues for the creation of novel quantum many-body systems with intriguing properties, ranging from crystalline over magnetic to topological phases. A promising route for the experimental realization of dipolar quantum gases is the formation of fermionic ground-state molecules with a large electric dipole moment, giving rise to long-range anisotropic interactions. With our experiment we work towards the realization of fermionic ground state molecules of 23Na40K. The NaK ground state molecule is chemically stable and possesses a large induced electric dipole moment of 2.72 Debye. In pioneering studies, we have created nearly degenerate samples of weakly bound 23Na40K Feshbach molecules. With a long lifetime and a significant admixture of the electronic spin singlet state, the Feshbach molecules are an ideal starting point to reach the singlet rovibrational ground state with a two-photon STIRAP transfer. Aiming for an efficient transfer path, we have performed spectroscopic studies on excited and ground state molecular potentials of 23Na40K and will report on our current progress. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  20. Achieving the quantum ground state of a mechanical oscillator using a Bose-Einstein condensate with back-action and cold damping feedback schemes

    NASA Astrophysics Data System (ADS)

    Mahajan, Sonam; Aggarwal, Neha; Bhattacherjee, Aranya B.; ManMohan

    2013-04-01

    We present a detailed study to show the possibility of approaching the quantum ground state of a hybrid optomechanical quantum device formed by a Bose-Einstein condensate (BEC) confined inside a high-finesse optical cavity with an oscillatory end mirror. Cooling is achieved using two experimentally realizable schemes: back-action cooling and cold damping quantum feedback cooling. In both the schemes, we found that increasing the two-body atom-atom interaction brings the mechanical oscillator to its quantum ground state. It has been observed that back-action cooling is more effective in the good cavity limit, while the cold damping cooling scheme is more relevant in the bad cavity limit. It is also shown that in the cold damping scheme, the device is more efficient in the presence of a BEC than in the absence of a BEC.