Science.gov

Sample records for ground state energy

  1. Ground-state energy of nuclear matter

    NASA Astrophysics Data System (ADS)

    Baker, George A., Jr.; Benofy, L. P.; Fortes, Mauricio

    1988-07-01

    The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k6F for the ladder approximation and through order k6FlnkF for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Padé extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.

  2. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  3. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  4. Estimation of beryllium ground state energy by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-01

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  5. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  6. A Remark on the Ground State Energy of Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Hogreve, H.

    2011-08-01

    Monotonicity properties of the ground state energy of bosonic atoms as established in a recent paper by M.K.H. Kiessling [J. Stat. Phys. 139:1063 (2009)] are studied. Symmetry and scaling arguments lead to a more direct proof of a slightly stronger result of this monotonicity and the behavior of the ground state energy as a function of the number of bosonic electrons. Furthermore, invoking appropriate lower and upper bounds on two-electron systems, the stability of the bosonics He- ion is rigorously demonstrated.

  7. Ground-state energy and relativistic corrections for positronium hydride

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-07-15

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10{sup -10}, which is a significant improvement over previous nonrelativistic results.

  8. Approximating ground and excited state energies on a quantum computer

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2015-04-01

    Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with degrees of freedom. Our algorithm computes estimates of a constant number of different low-order eigenvalues with error and success probability at least , with cost polynomial in and . This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

  9. Unparticle contribution to the hydrogen atom ground state energy

    NASA Astrophysics Data System (ADS)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  10. Improvement in a phenomenological formula for ground state binding energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    2016-07-01

    The phenomenological formula for ground state binding energy derived earlier [G. Gangopadhyay, Int. J. Mod. Phys. E 20 (2011) 179] has been modified. The parameters have been obtained by fitting the latest available tabulation of experimental values. The major modifications include a new term for pairing and introduction of a new neutron magic number at N = 160. The new formula reduced the root mean square deviation to 363keV, a substantial improvement over the previous version of the formula.

  11. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  12. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  13. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  14. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  15. Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.

    PubMed

    Dubinets, N O; Safonov, A A; Bagaturyants, A A

    2016-05-01

    Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one. PMID:27080987

  16. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  17. Ground state energy and width of {sup 7}He from {sup 8}Li proton knockout

    SciTech Connect

    Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.

    2008-10-15

    The ground state energy and width of {sup 7}He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. {sup 7}He was produced by proton knockout from a secondary {sup 8}Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125({sub -15}{sup +40}) keV.

  18. Ground-state structures and the random-state energy of the Madelung lattice

    SciTech Connect

    Magri, R.; Wei, S.; Zunger, A. )

    1990-12-15

    We consider the classic Madelung problem of a lattice with {ital N} sites labeled {ital i}, each occupied by either an {ital A} or a {ital B} atom, and bearing a point charge {ital Q}{sub {ital i}} that depends on the environment of {ital i}. We find that, out of the 2{sup {ital N}} possible lattice configurations of this binary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}} fcc alloy, the lowest-energy ground-state structures'' are the {ital A}{sub 3}{ital B}-, {ital A}{sub 2}{ital B}{sub 2}- and {ital AB}{sub 3}-ordered superlattices with ordering vector (1,0,1/2). On the other hand, for the pseudobinary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}}{sub C} zinc-blende alloy, the ground state corresponds to phase separation into {ital AC}+{ital BC}. Contrary to the accepted view, the Madelung energy of the random binary alloy is found to be nonvanishing.

  19. Global ab initio ground-state potential energy surface of N4

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Yang, Ke R.; Varga, Zoltan; Truhlar, Donald G.

    2013-07-01

    We present a global ground-state potential energy surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in N2-N2 collisions. To obtain the surface, complete active space second-order perturbation theory calculations were performed for the ground singlet state with an active space of 12 electrons in 12 orbitals and the maug-cc-pVTZ triple zeta basis set. About 17 000 ab initio data points have been calculated for the N4 system, distributed along nine series of N2 + N2 geometries and three series of N3 + N geometries. The six-dimensional ground-state potential energy surface is fitted using least-squares fits to the many-body component of the electronic energies based on permutationally invariant polynomials in bond order variables.

  20. Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.; Walsh, B. C.; Steiner, E.

    1974-01-01

    Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.

  1. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  2. Learning Approach on the Ground State Energy Calculation of Helium Atom

    NASA Astrophysics Data System (ADS)

    Shah, Syed Naseem Hussain

    2010-07-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function. The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  3. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  4. Momentum Distribution and Ground-State Energy of Liquid 4He at the Absolute Zero Temperature

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Watanabe, Y.

    1980-11-01

    In the scheme of the density and phase operator approach, the momentum distribution nk and the ground-state energy E0 are obtained by employing the structure factor and the radial distribution function calculated by Chang and Campbell for the Morse dipole-dipole potential. The condensate fraction, the ratio of the occupation number of the single-particle zero-momentum state N0/N amounts to 0.096. The momentum distribution diverges as k-1 in the low-wave number limit. The ground-state energy becomes E0=-6.9NK at the mean density ρ0=0.02185Å-3.

  5. Ground state energy of solid molecular hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1972-01-01

    The present status of the theoretical equation of state of solid molecular hydrogen is reviewed. Different quantum mechanical calculations by several groups lead to results which generally agree with each other but which disagree systematically with the measured pressure-volume curve at pressures larger than about 3000 atm. A new calculation of this curve is presented including the effect of the anisotropic interaction between H2 molecules within a completely quantum-mechanical formalism. The results show that inclusion of this interaction removes the discrepancy between theory and experiment at high pressures and that a quantum-mechanical treatment is necessary to realize its full effect.

  6. A simple volcano potential with an analytic, zero-energy, ground state

    NASA Astrophysics Data System (ADS)

    Nieto, M. M.

    2000-08-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  7. Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Akbas, H.; Sucu, S.; Minez, S.; Dane, C.; Akankan, O.; Erdogan, I.

    2016-06-01

    We have studied and computed variationally the impurity energy, impurity energy turning points, and ground state normalized binding energy as functions of the impurity position for shallow impurity in asymmetric quantum wells under hydrostatic pressure. We found that the normalized binding energy significantly depends on the asymmetry of the well, besides depending on the impurity position and hydrostatic pressure. Also, the dependence of the positive normalized binding energy on the pressure can be used to find out the degree of the asymmetry of the well or the impurity position in the well.

  8. Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities

    NASA Astrophysics Data System (ADS)

    Klöpfer, Denis; De Martino, Alessandro; Matrasulov, Davron U.; Egger, Reinhold

    2014-08-01

    We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corresponding low-energy scattering problem.

  9. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  10. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  11. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  12. Dynamics of ground and excited state vibrational relaxation and energy transfer in transition metal carbonyls.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Spall, Steven J; Keane, Theo; Blake, Alexander J; Wilson, Claire; Meijer, Anthony J H M; Weinstein, Julia A

    2014-10-01

    Nonlinear vibrational spectroscopy provides insights into the dynamics of vibrational energy transfer in and between molecules, a crucial phenomenon in condensed phase physics, chemistry, and biology. Here we use frequency-domain 2-dimensional infrared (2DIR) spectroscopy to investigate the vibrational relaxation (VR) and vibrational energy transfer (VET) rates in different solvents in both the electronic ground and excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine), a prototypical transition metal carbonyl complex. The strong C≡O and ester C═O stretch infrared reporters, located on opposite sides of the molecule, were monitored in the 1600-2100 cm(-1) spectral region. VR in the lowest charge transfer triplet excited state ((3)CT) is found to be up to eight times faster than in the ground state. In the ground state, intramolecular anharmonic coupling may be solvent-assisted through solvent-induced frequency and charge fluctuations, and as such VR rates are solvent-dependent. In contrast, VR rates in the solvated (3)CT state are surprisingly solvent-insensitive, which suggests that predominantly intramolecular effects are responsible for the rapid vibrational deactivation. The increased VR rates in the excited state are discussed in terms of intramolecular electrostatic interactions helping overcome structural and thermodynamic barriers for this process in the vicinity of the central heavy atom, a feature which may be of significance to nonequilibrium photoinduced processes observed in transition metal complexes in general. PMID:25198700

  13. Relativistic corrections to the ground-state energy of the positronium molecule

    SciTech Connect

    Bubin, Sergiy; Stanke, Monika; Kedziera, Dariusz; Adamowicz, Ludwik

    2007-06-15

    The leading-order relativistic corrections to the ground-state energy of the positronium molecule (Ps{sub 2}) have been computed within the framework of perturbation theory. As the zero-order wave function we used a highly accurate nonrelativistic variational expansion in terms of 6000 explicitly correlated Gaussians that yielded the lowest variational upper bound for this system to date. We also report some expectation values representing the properties of Ps{sub 2}.

  14. On the ground state energy of the δ-function Bose gas

    NASA Astrophysics Data System (ADS)

    Tracy, Craig A.; Widom, Harold

    2016-07-01

    The weak coupling asymptotics, to order {(c/ρ )}2, of the ground state energy of the delta-function Bose gas is derived. Here 2c≥slant 0 is the delta-function potential amplitude and ρ the density of the gas in the thermodynamic limit. The analysis uses the electrostatic interpretation of the Lieb–Liniger integral equation. Dedicated to Professor Tony Guttmann on the occasion of his 70th birthday.

  15. Ground-state selection from anharmonic zero-point energy in the pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Hizi, Uzi; Henley, Christopher L.

    2004-03-01

    In the pyrochlore lattice Heisenberg antiferromagnet, for large spin length S, the massive classical ground state degeneracy is partly lifted by the zero-point energy of quantum fluctuations at harmonic order in spin waves. [1] In a system of O(L^3) spins, there remained O(exp(const L)) collinear states, exactly degenerate to that order. We have extended the calculation to quartic order, assuming a Gaussian variational wavefunction (equivalent to Hartree-Fock approximation). Preliminary quartic calculations do break the harmonic-order degeneracy of two periodic ground states. We estimate the scaling with S of the mean-square spin fluctuations (which diverge at harmonic order). The results differ from analogous ones for the kagome Heisenberg antiferromagnet [2], where the harmonic-order ground states are coplanar. Our aim is to represent the quartic energy differences by an effective Ising Hamiltonian in the spirit of [1]. [1] C. L. Henley, APS March Meeting 2001, abstract W24.010. [2] A. Chubukov, PRL 69, 832 (1992); C. L. Henley and E. P. Chan, J. Mag. Mag. Mater. 140-144, 1693 (1995).

  16. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  17. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Xiao, Jing-Ling

    2006-10-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  18. CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.

    PubMed

    Barletta, Paolo; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Valeev, Edward F; Császár, Attila G

    2006-11-28

    The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed. PMID:17144700

  19. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    NASA Astrophysics Data System (ADS)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  20. Covariant energy density functionals: Nuclear matter constraints and global ground state properties

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Agbemava, S. E.

    2016-05-01

    The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Dutra et al. [Phys. Rev. C 90, 055203 (2014), 10.1103/PhysRevC.90.055203] will not necessarily lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not only by nuclear matter properties but also by underlying shell effects. The mismatch of phenomenological content, existing in all modern functionals, related to nuclear matter physics and the physics of finite nuclei could also be responsible.

  1. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed. PMID:26605574

  2. Structural expansions for the ground state energy of a simple metal

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1973-01-01

    A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.

  3. Impact of ground- and excited-state aromaticity on cyclopentadiene and silole excitation energies and excited-state polarities.

    PubMed

    Jorner, Kjell; Emanuelsson, Rikard; Dahlstrand, Christian; Tong, Hui; Denisova, Aleksandra V; Ottosson, Henrik

    2014-07-21

    A new qualitative model for estimating the properties of substituted cyclopentadienes and siloles in their lowest ππ* excited states is introduced and confirmed through quantum chemical calculations, and then applied to explain earlier reported experimental excitation energies. According to our model, which is based on excited-state aromaticity and antiaromaticity, siloles and cyclopentadienes are cross-hyperconjugated "aromatic chameleons" that adapt their electronic structures to conform to the various aromaticity rules in different electronic states (Hückel's rule in the π(2) electronic ground state (S0) and Baird's rule in the lowest ππ* excited singlet and triplet states (S1 and T1)). By using pen-and-paper arguments, one can explain polarity changes upon excitation of substituted cyclopentadienes and siloles, and one can tune their lowest excitation energies by combined considerations of ground- and excited-state aromaticity/antiaromaticity effects. Finally, the "aromatic chameleon" model can be extended to other monocyclic compound classes of potential use in organic electronics, thereby providing a unified view of the S0, T1, and S1 states of a range of different cyclic cross-π-conjugated and cross-hyperconjugated compound classes. PMID:25043523

  4. Energy splitting of the ground-state doublet in the nucleus 229Th.

    PubMed

    Beck, B R; Becker, J A; Beiersdorfer, P; Brown, G V; Moody, K J; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2007-04-01

    The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV). PMID:17501268

  5. Decomposition of Pyruvic Acid on the Ground-State Potential Energy Surface.

    PubMed

    da Silva, Gabriel

    2016-01-21

    A potential energy surface is reported for isomerization and decomposition of gas-phase pyruvic acid (CH3C(O)C(O)OH) in its ground electronic state. Consistent with previous works, the lowest energy pathway for pyruvic acid decomposition is identified as decarboxylation to produce hydroxymethylcarbene (CH3COH), with overall barrier of 43 kcal mol(-1). This study discovers that pyruvic acid can also isomerize to the α-lactone form with a barrier of only 36 kcal mol(-1), from which CO elimination can occur at 49 kcal mol(-1) above pyruvic acid. An additional novel channel is identified for the tautomerisation of pyruvic acid to the enol form, via a double H-shift mechanism. The barrier for this process is 51 kcal mol(-1), which is around 20 kcal mol(-1) lower than the barrier for conventional keto-enol tautomerization via a 1,3-H shift transition state. Rate coefficients are calculated for pyruvic acid decomposition through RRKM theory/master equation simulations at 800-2000 K and 1 atm, showing good agreement with the available experimental data. The dissociation of vibrationally excited pyruvic acid produced through photoexcitation and subsequent internal conversion to the ground state is also modeled under tropospheric conditions and is seen to produce appreciable quantities of CO (∼1-4%) in addition to CH3COH via the dominant CO2 loss channel. PMID:26587666

  6. An upper limit to ground state energy fluctuations in nuclear masses

    SciTech Connect

    Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Velazquez, Victor; Isacker, Piet van; Zuker, Andres P.

    2007-02-12

    Shell model calculations are employed to estimate un upper limit of statistical fluctuations in the nuclear ground state energies. In order to mimic the presence of quantum chaos associated with neutron resonances at energies between 6 to 10 MeV, calculations include random interactions in the upper shells. The upper bound for the energy fluctuations at mid-shell is shown to have the form {sigma}(A) {approx_equal} 20A-1.34 MeV. This estimate is consistent with the mass errors found in large shell model calculations along the N=126 line, and with local mass error estimated using the Garvey-Kelson relations, all being smaller than 100 keV.

  7. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  8. The ground-state potential energy curve of the radium dimer from relativistic coupled cluster calculations

    NASA Astrophysics Data System (ADS)

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Dammalapati, Umakanth; Knoop, Steven; Visscher, Lucas

    2015-08-01

    The potential energy curve for the ground-state of radium dimer (Ra2) is provided by means of atomic and molecular relativistic coupled cluster calculations. The short-range part of this curve is defined by an equilibrium bond length of 5.324 Å, a dissociation energy of 897 cm-1, and a harmonic vibrational frequency of 20.5 cm-1. The asymptotic behavior at large interatomic distances is characterized by the van der Waals coefficients C6 = 5.090 × 103, C8 = 6.978 × 105, and C10 = 8.786 × 107 atomic units. The two regions are matched in an analytical potential to provide a convenient representation for use in further calculations, for instance, to model cold collisions between radium atoms. This might become relevant in future experiments on ultracold, optically trapped, radioactive radium atoms that are used to search for a permanent electric dipole moment.

  9. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  10. A new ``spectroscopic'' potential energy surface for formaldehyde in its ground electronic state

    NASA Astrophysics Data System (ADS)

    Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per; Thiel, Walter

    2011-06-01

    We report a new "spectroscopic" potential energy surface (PES) of formaldehyde (H212C16O) in its ground electronic state, obtained by refining an ab initio PES in a least-squares fitting to the experimental spectroscopic data for formaldehyde currently available in the literature. The ab initio PES was computed using the CCSD(T)/aug-cc-pVQZ method at 30 840 geometries that cover the energy range up to 44 000 cm-1 above equilibrium. Ro-vibrational energies of formaldehyde were determined variationally for this ab initio PES by means of the program TROVE [Theoretical ROtation-Vibration Energies; S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)], 10.1016/j.jms.2007.07.009. The parameter values in the analytical representation of the PES were optimized in fittings to 319 ro-vibrational energies with J = 0, 1, 2, and 5. The initial parameter values in the fittings were those of the ab initio PES, the ro-vibrational eigenfunctions obtained from this PES served as a basis set during the fitting process, and constraints were imposed to ensure that the refined PES does not deviate unphysically from the ab initio one in regions of configuration space not sampled by the experimental data. The resulting refined PES, referred to as H2CO-2011, reproduces the available experimental J ⩽ 5 data with a root-mean-square error of 0.04 cm-1.

  11. The Role of the Zero-Point Field in the Shift of the Ground State Energy of Atoms

    NASA Astrophysics Data System (ADS)

    Huang, X. Y.; Peng, J. S.

    1988-01-01

    Suppose there is a zero-point field corresponding to the zero-point energy in vacuum. We can use time-dependent perturbation theory to calculate the influence of the field on the energy of atoms. When the field is applied to atoms which are in the ground state initially, the energy change of the atoms shows a linear dependence on time with a constant energy shift. This constant shift is the usual energy shift of atoms.

  12. Ionization energies and term energies of the ground states 1s22s of lithium-like systems

    NASA Astrophysics Data System (ADS)

    Li, Jin-Ying; Wang, Zhi-Wen

    2014-01-01

    We extend the Hamiltonian method of the full-core plus correlation (FCPC) by minimizing the expectation value to calculate the non-relativistic energies and the wave functions of 1s22s states for the lithium-like systems from Z = 41 to 50. The mass-polarization and the relativistic corrections including the kinetic-energy correction, the Darwin term, the electron—electron contact term, and the orbit—orbit interaction are calculated perturbatively as first-order correction. The contribution from quantum electrodynamic (QED) is also explored by using the effective nuclear charge formula. The ionization potential and term energies of the ground states 1s22s are derived and compared with other theoretical calculation results. It is shown that the FCPC methods are also effective for theoretical calculation of the ionic structure for high nuclear ion of lithium-like systems.

  13. Analytic variational calculation of the ground-state binding energy of hydrogen in intermediate and intense magnetic fields

    NASA Technical Reports Server (NTRS)

    Wilson, L. W.

    1974-01-01

    The present work investigates analytically the effect of an intermediate or intense magnetic field, such as probably exist in white dwarfs and near pulsars, on the binding energy of the hydrogen ground state. A wave-function 'prescription' is given for an analytic variational calculation of the binding energy. The calculation still gives a smooth transition between intermediate and intense fields. An explicit calculation of the ground-state binding energy as B goes to infinity is provided for the Yafet et al. (1956) trial function.

  14. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  15. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  16. The ground-state potential energy curve of the radium dimer from relativistic coupled cluster calculations.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Dammalapati, Umakanth; Knoop, Steven; Visscher, Lucas

    2015-08-28

    The potential energy curve for the ground-state of radium dimer (Ra2) is provided by means of atomic and molecular relativistic coupled cluster calculations. The short-range part of this curve is defined by an equilibrium bond length of 5.324 Å, a dissociation energy of 897 cm(-1), and a harmonic vibrational frequency of 20.5 cm(-1). The asymptotic behavior at large interatomic distances is characterized by the van der Waals coefficients C6 = 5.090 × 10(3), C8 = 6.978 × 10(5), and C10 = 8.786 × 10(7) atomic units. The two regions are matched in an analytical potential to provide a convenient representation for use in further calculations, for instance, to model cold collisions between radium atoms. This might become relevant in future experiments on ultracold, optically trapped, radioactive radium atoms that are used to search for a permanent electric dipole moment. PMID:26328843

  17. Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates

    NASA Astrophysics Data System (ADS)

    Aftalion, Amandine; Mason, Peter

    2016-08-01

    We classify the ground states and topological defects of two-component Bose-Einstein condensates under the effect of internal coherent Rabi coupling. We present numerical phase diagrams which show the boundaries between symmetry-breaking components and various vortex patterns (triangular, square, bound state between vortices). We estimate the Rabi energy in the Thomas-Fermi limit which allows us to have an analytical description of the point energy leading to the formation of the various vortex patterns.

  18. Theoretical study of the structure and analytic potential energy function for the ground state of the PO2 molecule

    NASA Astrophysics Data System (ADS)

    Zeng, Hui; Zhao, Jun

    2012-07-01

    In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2ν symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν1 = 386 cm-1, symmetric stretching frequency ν2 = 1095 cm-1, and asymmetric stretching frequency ν3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  19. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    ERIC Educational Resources Information Center

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  20. Hartree-Fock ground-state energy of anyons with no Coulomb interaction in the zero effective field

    NASA Astrophysics Data System (ADS)

    Sitko, Piotr

    1994-05-01

    We find, in the Hartree-Fock approximation, the ground-state energy of anyons with no Coulomb interaction in the case when the external magnetic field precisely cancels the average statistical field. From the point of view of the fractional quantum Hall effect it is shown that statistics transmutations to superfermions at filling fractions v = {1}/{2 p} are not energetically favourable.

  1. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  2. Hylleraas-configuration-interaction nonrelativistic energies for the 1S ground states of the beryllium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Sims, James S.; Hagstrom, Stanley A.

    2014-06-01

    In a previous work, Sims and Hagstrom ["Hylleraas-configuration-interaction study of the 1 1S ground state of neutral beryllium," Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the 1S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 1S isoelectronic sequence. The best nonrelativistic energies for Be, B+, and C++ obtained are -14.6673 5649 269, -24.3488 8446 36, and -36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.

  3. Hylleraas-configuration-interaction nonrelativistic energies for the {sup 1}S ground states of the beryllium isoelectronic sequence

    SciTech Connect

    Sims, James S.; Hagstrom, Stanley A.

    2014-06-14

    In a previous work, Sims and Hagstrom [“Hylleraas-configuration-interaction study of the 1 {sup 1}S ground state of neutral beryllium,” Phys. Rev. A 83, 032518 (2011)] reported Hylleraas-configuration-interaction (Hy-CI) method variational calculations for the {sup 1}S ground state of neutral beryllium with an estimated accuracy of a tenth of a microhartree. In this work, the calculations have been extended to higher accuracy and, by simple scaling of the orbital exponents, to the entire Be 2 {sup 1}S isoelectronic sequence. The best nonrelativistic energies for Be, B{sup +}, and C{sup ++} obtained are −14.6673 5649 269, −24.3488 8446 36, and −36.5348 5236 25 hartree, respectively. Except for Be, all computed nonrelativistic energies are superior to the known reference energies for these states.

  4. The ground state tunneling splitting and the zero point energy of malonaldehyde: A quantum Monte Carlo determination

    NASA Astrophysics Data System (ADS)

    Viel, Alexandra; Coutinho-Neto, Maurício D.; Manthe, Uwe

    2007-01-01

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7±0.3cm-1 is obtained, and the vibrational ground state energy is found to be 15122±4cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21±0.09cm-1 and the vibrational ground state energy to 14385±2cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  5. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface. PMID:17228955

  6. Face-dependent Auger neutralization and ground-state energy shift for He in front of Al surfaces

    SciTech Connect

    Wethekam, S.; Winter, H.; Valdes, Diego; Monreal, R. C.

    2008-08-15

    He atoms and ions with keV energies are scattered under grazing angles of incidence from Al(111), Al(100), and Al(110) surfaces. Fractions of surviving ions and normal energy gains of He{sup +} ions prior to neutralization, derived from shifts of angular distributions for incident atoms and ions, are compared to results from three-dimensional Monte Carlo simulations based on theoretically calculated Auger neutralization rates and He ground-state energy shifts. From the good agreement of experimental data with simulations, we conclude a detailed microscopic understanding for a model system of ion-surface interactions. Our work provides further evidence for the recently reported surface Miller index dependence for the neutralization of He{sup +} ions at metal surfaces. The study is extended to the face dependence of the He ground-state energy shift.

  7. Lowest bound of energies for random interactions and the origin of spin-zero ground state dominance in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.; Arima, A.; Zhao, Y. M.

    2006-01-01

    In this report we study the origin of spin-zero ground-state dominance for even-even nuclei in the presence of random two-body interactions. We evaluate the ground-state energy in terms of the energy centroid and the width of the random Hamiltonian. For both fermions and bosons in a single orbital, we obtain excellent agreement between the spin-I ground state probabilities predicted by using our formula and those obtained by diagonalizing the random Hamiltonian.

  8. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  9. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data. PMID:21280724

  10. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+

    NASA Astrophysics Data System (ADS)

    Antonov, Ivan O.; Barker, Beau J.; Heaven, Michael C.

    2011-01-01

    The ground electronic state of BeOBe+ was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is 2Σg+. Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm-1] was refined over previous measurements. Results from recent theoretical calculations for BeOBe+ (multireference configuration interaction) were found to be in good agreement with the experimental data.

  11. Probing Collins conjecture with correlation energies and entanglement entropies for the ground state of the helium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Ho, Yew Kam; Lin, Yen-Chang

    2016-05-01

    Correlation energy of a quantum system is defined as the difference between its exact energy Eex, and its Hartree-Fock energy EHF. In a recent related development, entanglement measures can be quantified with von Neumann entropy SvN(ρ) = - Tr(ρlog2 ρ) or linear entropy SL(ρ) = 1 - Tr(ρ2) , where ρ is the one-particle reduced density matrix, and Tr(ρ2) is defined as the purity of state. In the present work we calculate SL and SvN for the ground 1s21 S states in helium-like ions for Z = 2 to 15, using configuration interaction (CI) with B-Spline basis up to about 6000 terms to construct the wave functions, and with which density matrix, linear and von Neumann entropies are calculated. We have found close relationship between the reduced correlation energy, defined as Ecorr = (ECI- EHF) /ECI (with ECI being our calculated energy), and SL or SvN. Our results support Collins conjecture that there is a linear relationship between correlation energy and entanglement entropy, i.e., Ecorr = CS, where C is called Collins constant. Using the calculated ground state energies for Z = 2 to Z = 15, and the entanglement measured with linear entropy SL for such states, C is determined as 0.90716. At the meeting, we will present result for Collins constant determined from von Neumann entropy, and details of our calculations. This work was supported by the MOST in Taiwan.

  12. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  13. Full configuration interaction pseudopotential determination of the ground-state potential energy curves of Li2 and LiH

    NASA Astrophysics Data System (ADS)

    Maniero, Angelo M.; Acioli, Paulo H.

    A full configuration interaction (CI) with a norm-conserving pseudopotential procedure to determine potential energy surfaces is proposed. Analysis of the potentiality and the possible sources of inaccuracies of the methodology is given in terms of its application to the generation of the ground-state potential energy curves of the LiH and Li2 molecules. The vibrational energy levels were obtained using the discrete variable representation. The agreement between our results and those from Rydberg-Klein-Ress-derived potentials is very good. The extension of this procedure to larger systems is straightforward.

  14. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    SciTech Connect

    Adame, J.; Warzel, S.

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  15. Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field

    SciTech Connect

    Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok

    2015-05-15

    The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.

  16. The nonresonant two-photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S

    NASA Astrophysics Data System (ADS)

    Fischer, Ingo; Lochschmidt, Andreas; Strobel, Andreas; Niedner-Schatteburg, Gereon; Mueller-Dethlefs, Klaus; Bondybey, Vladimir E.

    1993-03-01

    Zero kinetic energy photoelectron spectra from the electronic ground state of hydrogen sulfide are obtained via nonresonant two-photon ionization with complete rotational resolution in the ion. The two-photon spectra are compared with those recently obtained via one-photon VUV photoionization. The spectra show a close similarity, but type a transitions in the two-photon spectra are twice as intense.

  17. A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations.

    PubMed

    Loco, Daniele; Polack, Étienne; Caprasecca, Stefano; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Mennucci, Benedetta

    2016-08-01

    A fully polarizable implementation of the hybrid quantum mechanics/molecular mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent relaxation of both the MM induced dipoles and the QM electronic density, is used for ground state energies and extended to electronic excitations in the framework of time-dependent density functional theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET(30) scale is presented. The results show that the QM/AMOEBA model not only properly describes specific and bulk effects in the ground state but it also correctly responds to the large change in the solute electronic charge distribution upon excitation. PMID:27340904

  18. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  19. A new six-dimensional analytical potential up to chemically significant energies for the electronic ground state of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kuhn, Bernd; Rizzo, Thomas R.; Luckhaus, David; Quack, Martin; Suhm, Martin A.

    1999-08-01

    We report calculations of the electronic ground state potential energy surface (PES) of hydrogen peroxide covering, in an almost global fashion, all six internal degrees of freedom by two different ab initio techniques. Density functional theory (DFT) calculations using the Becke 3 parameter Lee-Yang-Parr (B3LYP) hybrid functional and multiconfigurational second order perturbation theory (CASPT2) calculations, both using large basis sets, are performed for a wide range of geometries (8145 DFT and 5310 CASPT2 single-point energies). We use a combined data set of mostly DFT with additional CASPT2 ab initio points and the complete CASPT2 surface to fit a total of four different 6D analytical representations. The resulting potentials contain 70-76 freely adjusted parameters and represent the ground state PES up to 40000 cm-1 above the equilibrium energy with a standard deviation of 100-107 cm-1 without any important artifacts. One of the model surfaces is further empirically refined to match the bond dissociation energy D0 for HOOH→2OH . The potentials are designed for energy regions accessible by vibrational fundamental and overtone spectroscopy including the dissociation channel into hydroxyl radicals. Characteristic properties of the model surfaces are investigated by means of stationary point analyses, torsional barrier heights, harmonic frequencies, low-dimensional cuts and minimum energy paths for dissociation. Overall good agreement with high-level ab initio calculations, especially for the CASPT2 based potentials, is achieved. The drastic change in geometry at intermediate O-O distances, which reflects the transition from covalent to hydrogen bonding, is reproduced quantitatively. We calculate fully 6D anharmonic zero point energies and ground state torsional splittings with the diffusion quantum Monte Carlo method in perfect agreement, within statistical error bars, with experiment for the CASPT2 based potentials. Variational vibrational calculations in the

  20. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  1. Incremental expansions for the ground-state energy of the two-dimensional Hubbard model

    SciTech Connect

    Malek, J.; Flach, S.; Kladko, K.

    1999-02-01

    A generalization of Faddeev{close_quote}s approach of the three-body problem to the many-body problem leads to the method of increments. This method was recently applied to account for the ground-state properties of Hubbard-Peierls chains [J. Malek, K. Kladko, and S. Flach, JETP Lett. {bold 67}, 1052 (1998)]. Here we generalize this approach to two-dimensional square lattices and explicitly treat the incremental expansion up to third order. Comparing our numerical results with various other approaches (Monte Carlo, cumulant approaches) we show that incremental expansions are very efficient because good accuracy with these approaches is achieved treating lattice segments composed of eight sites only. {copyright} {ital 1999} {ital The American Physical Society}

  2. Ground-state-energy theorem and the virial theorem of a many-particle system in d dimensions

    NASA Technical Reports Server (NTRS)

    Iwamoto, N.

    1984-01-01

    The equivalence of Pauli's ground-state-energy theorem and the virial theorem is demonstrated for a many-particle system interacting with an interparticle potential in d dimensions at zero and finite temperatures. Pauli's theorem has an integral form in which the variable is the coupling constant e-squared, while the virial theorem has a differential form in which the variable has the number density n. The essence of the equivalence proof consists in changing the variable from n to e-squared by noting the dependence of the excess free energy on dimensionless quantities for zero-temperature and classical cases.

  3. Determination of the ground-state potential energy curve of 6LiH up to dissociation

    NASA Astrophysics Data System (ADS)

    Verma, K. K.; Stwalley, W. C.

    1982-09-01

    An ultraviolet argon ion laser (3336 Å) has been used to excite the A 1Σ+-X1Σ+ system of the 6LiH molecule. A long progression of R-P doublets is observed in the range 0⩽v''⩽21. This is the first time ground-state levels above v''=12 have been observed for the lithium hydride molecule. Based upon these results, we have constructed a Rydberg-Klein-Rees (RKR) potential energy curve which corresponds to over 99% of the ground state potential well. This experimental curve is compared with theoretical ab initio calculations for the X 1Σ+ state of LiH. We find that Docken and Hinze's X state potential energy curve [J. Chem. Phys. 57, 4928 (1972)] is probably the most accurate among the published ab initio calculations in the region of curve crossing of the zero order curves representing the ionic and covalent configurations of LiH, although some more recent calculations are of comparable accuracy.

  4. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  5. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented. PMID:20136303

  6. Calculation of the ground-state energy and average distance between particles for the nonsymmetric muonic {sup 3}He atom

    SciTech Connect

    Eskandari, M.R.; Rezaie, B.

    2005-07-15

    A calculation of the ground-state energy and average distance between particles in the nonsymmetric muonic {sup 3}He atom is given. We have used a wave function with one free parameter, which satisfies boundary conditions such as the behavior of the wave function when two particles are close to each other or far away. In the proposed wave function, the electron-muon correlation function is also considered. It has a correct behavior for r{sub 12} tending to zero and infinity. The calculated values for the energy and expectation values of r{sup 2n} are compared with the multibox variational approach and the correlation function hyperspherical harmonic method. In addition, to show the importance and accuracy of approach used, the method is applied to evaluate the ground-state energy and average distance between the particles of nonsymmetric muonic {sup 4}He atom. Our obtained results are very close to the values calculated by the mentioned methods and giving strong indications that the proposed wave functions, in addition to being very simple, provide relatively accurate values for the energy and expectation values of r{sup 2n}, emphasizing the importance of the local properties of the wave function.

  7. The Ground State of a Gross-Pitaevskii Energy with General Potential in the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Karali, Georgia; Sourdis, Christos

    2015-08-01

    We study the ground state which minimizes a Gross-Pitaevskii energy with general non-radial trapping potential, under the unit mass constraint, in the Thomas-Fermi limit where a small parameter tends to 0. This ground state plays an important role in the mathematical treatment of recent experiments on the phenomenon of Bose-Einstein condensation, and in the study of various types of solutions of nonhomogeneous defocusing nonlinear Schrödinger equations. Many of these applications require delicate estimates for the behavior of the ground state near the boundary of the condensate, as , in the vicinity of which the ground state has irregular behavior in the form of a steep corner layer. In particular, the role of this layer is important in order to detect the presence of vortices in the small density region of the condensate, to understand the superfluid flow around an obstacle, and it also has a leading order contribution in the energy. In contrast to previous approaches, we utilize a perturbation argument to go beyond the classical Thomas-Fermi approximation and accurately approximate the layer by the Hastings-McLeod solution of the Painlevé-II equation. This settles an open problem (cf. Aftalion in Vortices in Bose Einstein Condensates. Birkhäuser Boston, Boston, 2006, pg. 13 or Open Problem 8.1), answered very recently only for the special case of the model harmonic potential (Gallo and Pelinovsky in Asymptot Anal 73:53-96, 2011). In fact, we even improve upon previous results that relied heavily on the radial symmetry of the potential trap. Moreover, we show that the ground state has the maximal regularity available, namely it remains uniformly bounded in the -Hölder norm, which is the exact Hölder regularity of the singular limit profile, as . Our study is highly motivated by an interesting open problem posed recently by A ftalion, Jerrard, and R oyo-L etelier (J Funct Anal 260:2387-2406 2011), and an open question of G allo and P elinovsky (J Math Anal

  8. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  9. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    NASA Astrophysics Data System (ADS)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  10. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    SciTech Connect

    Dawes, Richard E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang; Jiang, Bin; Guo, Hua E-mail: hguo@unm.edu

    2013-11-28

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.

  11. Effect of Rasbha spin-orbit interaction on the ground state energy of a hydrogenic D{sup 0} complex in a Gaussian quantum dot

    SciTech Connect

    Boda, Aalu Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma

    2015-06-24

    The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.

  12. On a Universal Potential Energy Function and the Importance of Ionic Structures for the Ground State of Molecules

    NASA Astrophysics Data System (ADS)

    Van Hooydonk, G.

    1982-09-01

    The Kratzer-Fues-Varshni-V-potential, applied to ionic dissociation energies, is shown to yield rather accurate potential energy curves in the bonding region for H2, HF, LiH, Li2 and LiF. Vibrational levels, calculated by this ionic approximation to the ground state of widely differing molecules, nearly coincide with RKR-data. At the repulsive side of the curve and up to 2re, the agreement with RKR-curves is even better than for Morse's curve, also for the "covalent" molecules H2 and Li2. Calculated spectroscopical constants αe and ωeχe are far better than those calculated with Morse's function. Even the existence of a maximum in the potential curve at larger r-values seems not in confict with an ionic approximation. From the universal character of the function used, it is concluded that a reasonable approximation for the ground state of all molecules considered is one in terms of ionic structures, even for H2 and especially for Li2. According to the present results, the term "covalent bonding" seems to be definitely superfluous, as the usually made distinction between ionic and covalent bonding is more appearant than real.

  13. Connection between the upper and lower energy regions of the potential energy surface of the ground electronic state of the HSO2 system.

    PubMed

    Freitas, Gabriel N; Garrido, Juan D; Ballester, Maikel Y; Nascimento, Marco Antonio Chaer

    2012-07-26

    The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless, controversy still exists about a possible connection between the upper and lower energy regions of the potential energy surface (PES) for the ground electronic state of the system. Very recently, a path to connect these regions was proposed based on studies at the CASPT2/aug-cc-pV(T+d)Z level of calculation but the small energy difference between some of the transitions states along that path suggested the necessity of calculations at a higher level of theory. In the present work, we report a CCSD(T)/aug-cc-pV(T+d)Z study of the stationary states associated to the proposed connection path, including assessment of the most reliable complete basis set (CBS) extrapolation scheme for the system. Among the new features, the present calculations show that there are no structures corresponding to the HSO(2)(b) minimum and the TS3 saddle point obtained at the CASPT2 level and that the connection path between the upper and lower energy regions of the PES for the ground electronic state involves only one transition state and most probably more than one electronic state. PMID:22708986

  14. Ground states of holographic superconductors

    SciTech Connect

    Gubser, Steven S.; Nellore, Abhinav

    2009-11-15

    We investigate the ground states of the Abelian Higgs model in AdS{sub 4} with various choices of parameters, and with no deformations in the ultraviolet other than a chemical potential for the electric charge under the Abelian gauge field. For W-shaped potentials with symmetry-breaking minima, an analysis of infrared asymptotics suggests that the ground state has emergent conformal symmetry in the infrared when the charge of the complex scalar is large enough. But when this charge is too small, the likeliest ground state has Lifshitz-like scaling in the infrared. For positive mass quadratic potentials, Lifshitz-like scaling is the only possible infrared behavior for constant nonzero values of the scalar. The approach to Lifshitz-like scaling is shown in many cases to be oscillatory.

  15. Ground water and energy

    SciTech Connect

    Not Available

    1980-05-01

    In view of complex environmental/energy decisions, the Environmental Impacts Division of the Office of Technology Impacts develops analytical methods for conducting policy analyses supporting decision making. The methods development process often begins with a workshop of leading experts and specialists in the relevant disciplines and issue areas; workshop findings are subsequently utilized by OTI to form a more solid foundation for viable policies. The National Workshop on Ground Water and Energy Production was envisioned as a tool through which OTI could obtain insights, information, and methods (on environmental, economical, physical, political, legal, and social issues) to use in its analyses, models, and assessments. To accomplish this, the Workshop comprised both plenary sessions and individual working groups. The former provided opportunities for all participants to explore issues from a broad perspective, whereas the latter enabled participants to focus on the three following areas: ground water supply; conflicts and barriers to its use; and alternatives or solutions to the various issues. This report summarizes information and insights gained by the Office of Technology Impacts during the course of the Workshop. The Key Findings section summarizes the most important facts discovered during the Workshop. The three general topics that follow (Supply, Conflicts and Barriers, and Alternatives) are those described in the Core Issues statements. The statements are reflective of the recommendations and analyses prepared by the several working groups.

  16. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  17. Unification of ground-state aromaticity criteria - structure, electron delocalization, and energy - in light of the quantum chemical topology.

    PubMed

    Badri, Zahra; Foroutan-Nejad, Cina

    2016-04-28

    In the present account we investigate a theoretical link between the bond length, electron sharing, and bond energy within the context of quantum chemical topology theories. The aromatic stabilization energy, ASE, was estimated from this theoretical link without using isodesmic reactions for the first time. The ASE values obtained from our method show a meaningful correlation with the number of electrons contributing to the aromaticity. This theoretical link demonstrates that structural, electronic, and energetic criteria of aromaticity - ground-state aromaticity - belong to the same class and guarantees that they assess the same property as aromaticity. Theory suggests that interatomic exchange-correlation potential, obtained from the theory of Interacting Quantum Atoms (IQA), is linearly connected to the delocalization index of Quantum Theory of Atoms in Molecules (QTAIM) and the bond length through a first order approximation. Our study shows that the relationship between energy, structure and electron sharing marginally deviates from the ideal linear form expected from the first order approximation. The observed deviation from linearity was attributed to a different contribution of exchange-correlation to the bond energy for the σ- and π-frameworks. Finally, we proposed two-dimensional energy-structure-based aromaticity indices in analogy to the electron sharing indices of aromaticity. PMID:26678719

  18. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.

    PubMed

    Li, Shuhua; Li, Wei; Fang, Tao

    2005-05-18

    An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules at the Hartree-Fock (HF) and post-HF levels is described. The physical foundation of this approach is attributed to the "quantum locality" of the electron correlation energy and the HF total energy, which is revealed by a new energy decomposition analysis of the HF total energy proposed in this work. This approach is based on the molecular fractionation with conjugated caps (MFCC) scheme (Zhang, D. W.; Zhang, J. Z. H. J. Chem. Phys. 2003, 119, 3599), by which a macromolecule is partitioned into various capped fragments and conjugated caps formed by two adjacent caps. We find that the MFCC scheme, if corrected by the interaction between non-neighboring fragments, can be used to predict the total energy of large molecules only from energy calculations on a series of small subsystems. The approach, named as energy-corrected MFCC (EC-MFCC), computationally achieves linear scaling with the molecular size. Our test calculations on a broad range of medium- and large molecules demonstrate that this approach is able to reproduce the conventional HF and second-order Moller-Plesset perturbation theory (MP2) energies within a few millihartree in most cases. With the EC-MFCC optimization algorithm described in this work, we have obtained the optimized structures of long oligomers of trans-polyacetylene and BN nanotubes with up to about 400 atoms, which are beyond the reach of traditional computational methods. In addition, the EC-MFCC approach is also applied to estimate the heats of formation for a series of organic compounds. This approach provides an appealing approach alternative to the traditional additivity rules based on either bond or group contributions for the estimation of thermochemical properties. PMID:15884963

  19. Comparing models for the ground state energy of a trapped one-dimensional Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Loft, N. J. S.; Kristensen, L. B.; Thomsen, A. E.; Zinner, N. T.

    2016-06-01

    We discuss the local density approximation approach to calculating the ground state energy of a one-dimensional Fermi gas containing a single impurity, and compare the results with exact numerical values that we have for up to 11 particles for general interaction strengths and up to 30 particles in the strongly interacting case. We also calculate the contact coefficient in the strongly interacting regime. The different theoretical predictions are compared to recent experimental results with few-atom systems. Firstly, we find that the local density approximation suffers from great ambiguity in the few-atom regime, yet it works surprisingly well for some models. Secondly, we find that the strong interaction theories quickly break down when the number of particles increase or the interaction strength decreases.

  20. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Sims, James S.; Hagstrom, Stanley A.

    2006-03-01

    Born-Oppenheimer approximation Hylleraas variational calculations with up to 7034 expansion terms are reported for the Σg+1 ground state of neutral hydrogen at various internuclear distances. The nonrelativistic energy is calculated to be -1.174475714220(1)hartree at R =1.4bohr, which is four orders of magnitude better than the best previous Hylleraas calculation, that of Wolniewicz [J. Chem. Phys. 103, 1792 (1995)]. This result agrees well with the best previous variational energy, -1.174475714216hartree, of Cencek (personal communication), obtained using explicitly correlated Gaussians (ECGs) [Cencek and Rychlewski, J. Chem. Phys. 98, 1252 (1993); Cencek et al., ibid. 95, 2572 (1995); Rychlewski, Adv. Quantum Chem. 31, 173 (1998)]. The uncertainty in our result is also discussed. The nonrelativistic energy is calculated to be -1.174475931399(1)hartree at the equilibrium R =1.4011bohr distance. This result also agrees well with the best previous variational energy, -1.174475931389hartree, of Cencek and Rychlewski [Rychlewski, Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (Wiley, New York, 2003), Vol. 2, pp. 199-218; Rychlewski, Explicitly Correlated Wave Functions in Chemistry and Physics Theory and Applications, edited by J. Rychlewski (Kluwer Academic, Dordrecht, 2003), pp. 91-147.], obtained using ECGs.

  1. Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Löffler, Stefan; Eder, Franz; Meyer, Jannik C.; Su, Dangsheng; Schattschneider, Peter

    2013-11-14

    Both the unoccupied and ground electronic states of graphite have been studied by electron energy-loss spectroscopy in a transmission electron microscope. Electron energy-loss near-edge structures of the K-edge of carbon have been investigated in detail for scattering angles from 0 to 2.8 mrad. The π{sup *} and σ{sup *} components were separated. The angular and energy dependences of the π{sup *} and σ{sup *} structures were in fair agreement with theory. Electron energy loss Compton spectra of graphite were recorded at scattering angles from 45 to 68 mrad. One Compton scattering spectrum was obtained in 1 min compared with several hours or days using photons. The contributions of core electrons were calculated by the exact Hartree-Slater method in the Compton scattering region. The electron Compton profile for graphite is in good agreement with other conventional Compton profile measurements, as well as with theory, thus establishing the validity of the technique.

  2. High precision variational calculations for the Born-Oppenheimer energies of the ground state of the hydrogen molecule.

    PubMed

    Sims, James S; Hagstrom, Stanley A

    2006-03-01

    Born-Oppenheimer approximation Hylleraas variational calculations with up to 7034 expansion terms are reported for the 1sigma(g)+ ground state of neutral hydrogen at various internuclear distances. The nonrelativistic energy is calculated to be -1.174 475 714 220(1) hartree at R = 1.4 bohr, which is four orders of magnitude better than the best previous Hylleraas calculation, that of Wolniewicz [J. Chem. Phys. 103, 1792 (1995)]. This result agrees well with the best previous variational energy, -1.174 475 714 216 hartree, of Cencek (personal communication), obtained using explicitly correlated Gaussians (ECGs) [Cencek and Rychlewski, J. Chem. Phys. 98, 1252 (1993); Cencek et al., ibid. 95, 2572 (1995); Rychlewski, Adv. Quantum Chem. 31, 173 (1998)]. The uncertainty in our result is also discussed. The nonrelativistic energy is calculated to be -1.174 475 931 399(1) hartree at the equilibrium R = 1.4011 bohr distance. This result also agrees well with the best previous variational energy, -1.174 475 931 389 hartree, of Cencek and Rychlewski [Rychlewski, Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (Wiley, New York, 2003), Vol. 2, pp. 199-218; Rychlewski, Explicitly Correlated Wave Functions in Chemistry and Physics Theory and Applications, edited by J. Rychlewski (Kluwer Academic, Dordrecht, 2003), pp. 91-147.], obtained using ECGs. PMID:16526839

  3. LiH potential energy curves for ground and excited states with the free complement local Schrödinger equation method

    NASA Astrophysics Data System (ADS)

    Bande, Annika; Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2010-08-01

    The two lowest singlet and triplet Σ + potential energy curves of LiH were calculated using the free complement (FC) local Schrödinger equation (LSE) method. The overall potential curves and the properties calculated therefrom, like equilibrium bond length, dissociation energy, adiabatic and vertical excitation energies, zero point energy, vibrational spacings, etc., demonstrated the high accuracy of the FC LSE method for both the ground and excited states in comparison to the reference calculations and experiments.

  4. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  5. Nonadiabatic couplings in low-energy collisions of hydrogen ground-state atoms

    SciTech Connect

    Wolniewicz, L.

    2003-10-01

    The effect of nonadiabatic couplings on low-energy s-wave scattering of two hydrogen atoms is investigated. Coupling matrix elements are computed in a wide range of internuclear distances. The resulting scattering equations are numerically unstable and therefore are integrated only approximately. Computations are performed for H, D, and T atoms. The phase shifts in the zero velocity limit are inversely proportional to the nuclear reduced mass {delta}{sub 0}{approx_equal}0.392/{mu}. This leads to infinite scattering lengths.

  6. Constructive methods for the ground-state energy of fully interacting fermion gases

    SciTech Connect

    Aguilera Navarro, V.C.; Baker G.A. Jr.; Benofy, L.P.; Fortes, M.; de Llano, M.

    1987-11-01

    A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is applied to a typical fully interacting fermion gas. This is ''neutron matter'' interacting via (a) the repulsive ''Bethe homework-problem'' potential, (b) a hard-core--plus--square-well potential, and (c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-nucleon potential. Pade extrapolation techniques and generalizations thereof are employed to represent both the density dependence as well as the attractive coupling dependence of the perturbation expansion. Equations of state are constructed and compared with Jastrow--Monte Carlo calculations as well as expectations based on semiempirical mass formulas. Excellent agreement is found with the latter.

  7. Constructive methods for the ground-state energy of fully interacting fermion gases

    NASA Astrophysics Data System (ADS)

    Aguilera Navarro, V. C.; Baker, George A., Jr.; Benofy, L. P.; Fortes, M.; de Llano, M.

    1987-11-01

    A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is applied to a typical fully interacting fermion gas. This is ``neutron matter'' interacting via (a) the repulsive ``Bethe homework-problem'' potential, (b) a hard-core-plus-square-well potential, and (c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-nucleon potential. Padé extrapolation techniques and generalizations thereof are employed to represent both the density dependence as well as the attractive coupling dependence of the perturbation expansion. Equations of state are constructed and compared with Jastrow-Monte Carlo calculations as well as expectations based on semiempirical mass formulas. Excellent agreement is found with the latter.

  8. Existence and structure of infinitely degenerate zero-energy ground states of a Wess-Zumino-type model in supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ogurisu, Osamu

    1993-05-01

    It is known that the N=2 Wess-Zumino supersymmetric quantum mechanical model with the superpotential V(z)=λeαz(λ ∈ C{0},α≥0) has infinitely many bosonic zero-energy ground states and no fermionic zero-energy ground states [A. Arai, J. Math. Phys. 30, 1164 (1989)]. In this article, these results are extended to a more general model. The main results include the following: (1) identification of the spectra of the Hamiltonian H of the model; (2) non-Fredholmness of a supercharge of the model, which is a Dirac-type operator; (3) existence of infinitely many bosonic zero-energy states of H; (4) nonexistence of fermionic zero-energy states of H.

  9. Ground energy coupling

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  10. Ground state number fluctuations of trapped particles

    NASA Astrophysics Data System (ADS)

    Tran, Muoi N.

    This thesis encompasses a number of problems related to the number fluctuations from the ground state of ideal particles in different statistical ensembles. In the microcanonical ensemble most of these problems may be solved using number theory. Given an energy E, the well-known problem of finding the number of ways of distributing N bosons over the excited levels of a one-dimensional harmonic spectrum, for instance, is equivalent to the number of restricted partitions of E. As a result, the number fluctuation from the ground state in the microcanonical ensemble for this system may be found analytically. When the particles are fermions instead of bosons, however, it is difficult to calculate the exact ground state number fluctuation because the fermionic ground state consists of many levels. By breaking up the energy spectrum into particle and hole sectors, and mapping the problem onto the classic number partitioning theory, we formulate a method of calculating the particle number fluctuation from the ground state in the microcanonical ensemble for fermions. The same quantity is calculated for particles interacting via an inverse-square pairwise interaction in one dimension. In the canonical ensemble, an analytical formula for the ground state number fluctuation is obtained by using the mapping of this system onto a system of noninteracting particles obeying the Haldane-Wu exclusion statistics. In the microcanonical ensemble, however, the result can be obtained only for a limited set of values of the interacting strength parameter. Usually, for a discrete set of a mean-field single-particle quantum spectrum and in the microcanonical ensemble, there are many combinations of exciting particles from the ground state. The spectrum given by the logarithms of the prime number sequence, however, is a counterexample to this rule. Here, as a consequence of the fundamental theorem of arithmetic, there is a one-to-one correspondence between the microstate and the macrostate

  11. Benchmark quantum Monte Carlo calculations of the ground-state kinetic, interaction and total energy of the three-dimensional electron gas.

    PubMed

    Gurtubay, I G; Gaudoin, R; Pitarke, J M

    2010-02-17

    We report variational and diffusion quantum Monte Carlo ground-state energies of the three-dimensional electron gas using a model periodic Coulomb interaction and backflow corrections for N = 54, 102, 178, and 226 electrons. We remove finite-size effects by extrapolation and we find lower energies than previously reported. Using the Hellman-Feynman operator sampling method introduced in Gaudoin and Pitarke (2007 Phys. Rev. Lett. 99 126406), we compute accurately, within the fixed-node approximation, the separate kinetic and interaction contributions to the total ground-state energy. The difference between the interaction energies obtained from the original Slater-determinant nodes and the backflow-displaced nodes is found to be considerably larger than the difference between the corresponding kinetic energies. PMID:21389370

  12. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  13. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    SciTech Connect

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; López Navarrete, Juan T.; Casado, Juan

    2014-02-07

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  14. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    NASA Astrophysics Data System (ADS)

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; Sun, Zhe; Li, Yuan; López Navarrete, Juan T.; Wu, Jishan; Casado, Juan

    2014-02-01

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  15. Coupled-Cluster Study of the Lower Energy Region of the Ground Electronic State of the HSO2 Potential Energy Surface.

    PubMed

    Rodríguez-Linares, Diana; Freitas, Gabriel N; Ballester, Maikel Y; Nascimento, Marco Antonio Chaer; Garrido, Juan D

    2015-08-13

    This work reports CCSD(T)/aug-cc-pV(T+d)Z ab initio calculations for the lower energy region of the ground electronic state of the HSO2 system. Optimized geometries, total energies, zero-point vibrational energies, frequencies, complete basis set extrapolations, and reaction paths are reported at the same level of calculation. The connection of the two minima (synperiplanar HOSO and HSO2) with the dissociation limit H + SO2 through the van der Waals minimum H···SO2 was established. An important quantitative discrepancy with previous works is the fact that at the present level of calculation the energy difference between transition states connecting the global minimum synperiplanar HOSO to the HSO2 minimum (TS5) and to the van der Waals minimum H···SO2 (TS6) is negligible, implying that the forward barriers after the synperiplanar HOSO global minimum have practically the same height. This result suggests that these two transition states may be involved in the path of the global minimum toward the exit channel H + SO2. As a consequence, trajectories for the OH + SO collisions could evolve through the well formed by the HSO2 minimum, therefore opening two competitive channels for the OH + SO → H + SO2 reaction, a fact never reported in trajectory calculations. PMID:26186974

  16. Model analysis of ground-state dissociation energies and equilibrium separations in alkali-metal diatomic compounds

    NASA Astrophysics Data System (ADS)

    Lombardi, Erminio; Jansen, Laurens

    1986-05-01

    Ground-state dissociation energies De and equilibrium distances Re for the series of homonuclear alkali-metal diatomic molecules Li2,Na2,..., as well as those for six heteronuclear alkali-metal diatomic compounds, are evaluated on the basis of a simple valence-bond model. Each alkali-metal atom in a diatomic molecule is characterized by two quantities: a Gaussian parameter βe of the valence-electron function and a valence-to-core ``relative-size'' parameter γ≡(βc/βe)2, with βc the Gaussian parameter for the core-electron charge distribution. For the homonuclear diatomic molecules, accurate results are obtained with a 2s Gaussian valence function (r2-a2)G orthogonalized to the core. For each homonuclear diatomic molecule there exists an optimal (βe,γ) set yielding values of De and Re in practically quantitative agreement with experiment. The quantities βe and γ exhibit the expected physical behavior over the series in that βe decreases from Li2 to Cs2, and γ is highest for the lightest diatomic molecule Li2. The compounds K2, Rb2, and Cs2 are found to be ``Heitler-London'' molecules to within 5% of their binding energies. An approximate, similar, analysis of six heteronuclear diatomic compounds yields close agreement with experiment for LiNa and RbCs, whereas with the other four compounds (LiK, NaK, NaRb, and NaCs) the agreement with experimental De and Re is to within at most 5%. Also RbCs is a ``Heitler-London'' molecule to a very good approximation.

  17. Effect of Rashba spin-orbit interaction on the ground state energy of a D0 centre in a GaAs quantum dot with Gaussian confinement

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sanjeev; Boda, Aalu; Mukhopadhyay, Soma; Chatterjee, Ashok

    2015-12-01

    The ground state energy of a neutral hydrogenic donor impurity (D0) trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated in the presence of Rashba spin-orbit interaction. The effect of the spin-orbit interaction is incorporated by performing a unitary transformation and retaining terms up to quadratic in the spin-orbit interaction coefficient. For the resulting Hamiltonian, the Rayleigh-Ritz variational method is employed with a simple wave function within the framework of effective-mass envelope function theory to determine the ground state energy and the binding energy of the donor complex. The results show that the Rashba spin-orbit interaction reduces the total GS energy of the donor impurity.

  18. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  19. Binding energy of the ground and first few excited states of hydrogenic donor impurity in a rectangular GaAs quantum dot in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Kang, Yun; Li, Xian-Li

    2014-12-01

    Within the quasi-one-dimensional effective potential model and effective mass approximation, we calculate the ground and the first 9 excited-state binding energies of a hydrogenic donor impurity in a rectangular quantum dot (RQD) in the presence of electric field. The analytical form of the quasi-one-dimensional effective potential replacing the three-dimensional Coulomb potential in our model is derived by Fourier transforms. We discuss detailedly dependence of the binding energies on the impurity positions and electric fields. For the ground-state binding energy, our results qualitatively agree with that of Mendoza et al. (2005) in which they only calculated the ground-state binding energies in cubic quantum dots by variational method. However, for first 9 excited-state binding energies, such dependence has complex manner since there are two or three peaks in the electronic probability density distribution curves. The strengths and positions of these peaks in RQD affect the interaction potential between electron and impurity, which appears to be the critical control on the binding energies of impurity. The applied electric field pushes the positions of these peaks downwards, and the strengths of peaks located at the upper half of RQD increase while the strengths of lower peaks firstly decrease, then increase with increasing electric field. The high peak strength can lead to increase of the binding energy while the large distance between the position of peak and impurity center results in reduce of the energy, which is an interesting competition. This competition is more obvious for excited-state binding energies of off-central impurity.

  20. On the ground state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.

    1998-05-01

    In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved

  1. Ground state of the hydrogen negative ion

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan

    2009-03-01

    Based on recently developed variational many-body Schr"odinger equation for electrons with Coulomb interactions [1], we provide first numerical results for the ground state electron structure of the hydrogen negative ion. It is shown that Fermi-Teller promotion effect together with non-adiabatic screening effects due to the Pauli's exclusion principle are responsible for the weak binding of the anion. The calculated ionization potential J=-1/2 - 2 λ+ <1/r12> of the hydrogen negative ion is compared with the experiment, where λ is the mean binding energy per one electron in the ground state.[0pt] [1] B. D. Obreshkov , Phys. Rev. A 78, 032503 (2008).

  2. Rotational energy surface and quasiclassical analysis of the rotational energy level cluster formation in the ground vibrational state of PH 3

    NASA Astrophysics Data System (ADS)

    Petrov, Sergey V.; Kozlovskii, Borislav M.

    2007-06-01

    We report and substantiate a method for constructing the rotational energy surface (RES) of a molecule as a pure classical object. For an arbitrary molecule we start from the potential energy surface rather than from a conventional "effective Hamiltonian". The method is used for constructing the RES of the PH 3 molecule in its ground vibrational state. We have used an ab initio potential energy surface [D. Wang, Q. Shi, Q.-S. Zhu, J. Chem. Phys. 112 (2000) 9624-9631; S.N. Yurchenko, M. Carvajal, P. Jensen, F. Herregodts, T.R. Huet, Chem. Phys. 290 (2003) 59-67.]. The shape of the RES is shown not to change for J from 0 to 120. The procedure of quasiclassical quantization of the RES was also undertaken, yielding a set of quasiclassical critical values of the angular momentum. The results explain the structure of quantum rotational energy levels obtained by variational calculations [S.N. Yurchenko, W. Thiel, S. Patchkovskii, P. Jensen, Phys. Chem. Chem. Phys. 7 (2005) 573-582].

  3. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    ERIC Educational Resources Information Center

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  4. Triaxiality of the ground states in the 174W

    NASA Astrophysics Data System (ADS)

    Ya, Tu; Chen, Y. S.; Liu, L.; Gao, Z. C.

    2016-05-01

    We have performed calculations for the ground states in 174W by using the projected total energy surface (PTES) calculations. Both the ground state (g.s.) band and its γ band reproduce the experimental data. Further discussion about the triaxiality in 174W has been made by transition quardrupole moment (Qt) and comparing between the PTES and TRS methods.

  5. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  6. The energy level spacing between the ground and first excited states in InAs/GaAs quantum dots as a measure of the zero dimensionality

    NASA Astrophysics Data System (ADS)

    Lee, U. H.; Jang, Y. D.; Lee, H.; Lee, D.; Kim, J. S.; Leem, J. Y.; Noh, S. K.

    2003-04-01

    We suggest a figure of merit for the zero dimensionality, which is the most important property in quantum dots (QD). QD samples emitting at longer wavelengths are turned out to have the larger energy level spacings between the ground and first excited states. The QDs have the stronger quantum effect likely due to the taller height and are closer to an ideal zero-dimensional system.

  7. Analytical energy gradient of the symmetry-adapted-cluster configuration-interaction general-R method for singlet to septet ground and excited states.

    PubMed

    Ishida, Mayumi; Toyota, Kazuo; Ehara, Masahiro; Frisch, Michael J; Nakatsuji, Hiroshi

    2004-02-01

    A method of calculating analytical energy gradients of the singlet and triplet excited states, ionized states, electron-attached states, and high-spin states from quartet to septet states by the symmetry-adapted-cluster configuration-interaction general-R method is developed and implemented. This method is a powerful tool in the studies of geometries, dynamics, and properties of the states of molecules in which not only one-electron processes but also two- and multielectron processes are involved. The performance of the present method was confirmed by calculating the geometries and the spectroscopic constants of the diatomic and polyatomic molecules in various electronic states involving the ground state and the one- to three-electron excited states. The accurate descriptions were obtained for the equilibrium geometries, vibrational frequencies, and adiabatic excitation energies, which show the potential usefulness of the present method. The particularly interesting applications were to the C' 1Ag state of acetylene, the A 2Deltau and B 2Sigmau+ states of CNC and the 4B1 and a 4Piu states of N3 radical. PMID:15268403

  8. Ground state fidelity from tensor network representations.

    PubMed

    Zhou, Huan-Qiang; Orús, Roman; Vidal, Guifre

    2008-02-29

    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields. PMID:18352611

  9. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  10. Harmonically trapped fermions in two dimensions: Ground-state energy and contact of SU(2) and SU(4) systems via a nonuniform lattice Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Luo, Zhihuan; Berger, Casey E.; Drut, Joaquín E.

    2016-03-01

    We study harmonically trapped, unpolarized fermion systems with attractive interactions in two spatial dimensions with spin degeneracies Nf=2 and 4 and N /Nf=1 ,3 ,5 , and 7 particles per flavor. We carry out our calculations using our recently proposed quantum Monte Carlo method on a nonuniform lattice. We report on the ground-state energy and contact for a range of couplings, as determined by the binding energy of the two-body system, and show explicitly how the physics of the Nf-body sector dominates as the coupling is increased.

  11. Energy of the ground and 2{sup +} excited states of {sub {lambda}}{sub {lambda}}{sup 10}Be: A partial ten-body model

    SciTech Connect

    Shoeb, Mohammad; Sonika

    2009-08-15

    The energies of the ground and excited 2{sup +} states of {sub {lambda}}{sub {lambda}}{sup 10}Be have been calculated variationally in the Monte Carlo framework. The hypernucleus is treated as a partial ten-body problem in the {lambda}{lambda}+{alpha}{alpha} model where nucleonic degrees of freedom of {alpha}'s are taken into consideration ignoring the antisymmetrization between two {alpha}'s. The central two-body {lambda}N and {lambda}{lambda} and the three-body dispersive and two-pion exchange {lambda}NN forces, constrained by the {lambda}p scattering data and the observed ground state energies of {sub {lambda}}{sup 5}He and {sub {lambda}}{sub {lambda}}{sup 6}He, are employed. The product-type trial wave function predicts binding energy for the ground state considerably less than for the event reported by Danysz et al.; however, it is consistent with the value deduced assuming a {gamma} ray of 3.04 MeV must have escaped undetected in the decay of the product {sub {lambda}}{sup 9}Be* {yields} {sub {lambda}}{sup 9}Be+{gamma} of the emulsion event {sub {lambda}}{sub {lambda}}{sup 10}Be{yields} {pi}{sup -}+p+{sub {lambda}}{sup 9}Be* and for the excited 2{sup +} state closer to the value measured in the Demachi-Yanagi event. The hypernucleus {sub {lambda}}{sub {lambda}}{sup 10}Be has an oblate shape in the excited state. These results are consistent with the earlier four-body {alpha} cluster model approach where {alpha}'s are assumed to be structureless entities.

  12. Mass selected anion-zero kinetic energy photoelectron spectroscopy (anion-ZEKE): Ground and low excited states of FeO

    NASA Astrophysics Data System (ADS)

    Drechsler, G.; Boesl, U.; Bäßmann, C.; Schlag, E. W.

    1997-08-01

    Photodetachment-photoelectron (PD-PES) and anion-zero kinetic energy photoelectron (anion-ZEKE) spectra of FeO have been measured. The vibrational progression bands of the X 5Δi(FeO)←X5Δ7/2(FeO-) transition in the PD-PES spectrum exhibit substructure which could not be resolved in earlier PD-PES spectra. A comparison with the high resolution anion-ZEKE spectrum clearly shows the existence of a second low energetic electronic state which could be the a 7Σ+ of neutral FeO proposed by several authors. In addition, for the A 5Σ+ state of FeO an excess energy of 4050 cm-1 was found. Vibrational frequencies for the X 5Δ, a 7Σ+, and A 5Σ+ states have been determined as 882, 887, and 800 cm-1. All spin orbit splittings of the neutral and anionic ground states could be measured directly or deduced from spin orbit combination transitions. We succeeded in resolving the rotational envelope of the vibrational origin of the neutral-anion ground states transition with indicated single rotational lines of the ΔJ =+3/2 branch.

  13. Low-energy excitations and ground-state selection in the quantum breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11

    NASA Astrophysics Data System (ADS)

    Haku, T.; Kimura, K.; Matsumoto, Y.; Soda, M.; Sera, M.; Yu, D.; Mole, R. A.; Takeuchi, T.; Nakatsuji, S.; Kono, Y.; Sakakibara, T.; Chang, L.-J.; Masuda, T.

    2016-06-01

    We study low-energy excitations in the quantum breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11 by a combination of inelastic neutron scattering (INS) and thermodynamical property measurements. The INS spectra are quantitatively explained by spin-1/2 single-tetrahedron model having X X Z anisotropy and Dzyaloshinskii-Moriya interactions. This model has a twofold degeneracy of the lowest-energy state per tetrahedron and well reproduces the magnetization curve at 0.5 K and heat capacity above 1.5 K. At lower temperatures, however, we observe a broad maximum in the heat capacity around 63 mK, demonstrating that a unique quantum ground state is selected due to extra perturbations with an energy scale smaller than the instrumental resolution of INS.

  14. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  15. Characterization of the X~ 2A1 (0,0,0) ground vibronic state of CH2+ by pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Willitsch, S.; Merkt, F.

    2003-02-01

    The rotational structure of the X˜ 2A1 (0,0,0) ground vibronic state of CH2+ has been observed by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy. Rotational levels with asymmetric top rotational quantum numbers N+⩽5 and Ka+⩽2 have been used to derive a purely experimental r0 structure [rCH=(1.1049±0.0041) Å, αHCH=(139.77±0.27) degrees]. Whereas the positions of the Ka+=0 and 1 levels are in good agreement with previous results, the positions of the Ka+=2 levels, which are observed for the first time, suggest that the theoretical description of the bending potential and of the Renner-Teller effect in CH2+ could still be refined. The single photon photoionization dynamics of the CH2 X˜3B1 ground state is also consistent with a bent geometry for the ground state of CH2+. First PFI-ZEKE photoelectron spectra of CD2 are also presented.

  16. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  17. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters.

    PubMed

    Souza, T X R; Macedo, C A

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh's conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  18. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  19. Photodissociation of CS2 in the vacuum ultraviolet - Determination of bond dissociation energy from the lowest vibrational level of the ground state CS2.

    NASA Technical Reports Server (NTRS)

    Okabe, H.

    1972-01-01

    Photolysis in the vacuum ultraviolet results almost exclusively in the production of S(super-3)P atoms, which is in apparent violation of spin conservation. The threshold energy of incident photons required to produce fluorescence was used to calculate the bond dissociation energy (from the lowest vibrational level of the ground state), and the result agrees with the value previously derived from the photoionization of CS2. The fluorescence excitation spectrum shows peaks corresponding to Rydberg series I and II, indicating that the observed photodissociation of CS2 in the vacuum ultraviolet is mainly the result of predissociation from Rydberg states. The absorption coefficient of CS2 was measured in the region of 1200 to 1400 A.

  20. A shock-tube determination of the CN ground state dissociation energy and electronic transition moments for the CN violet and red band systems

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Nicholls, R. W.

    1973-01-01

    The CN ground state dissociation energy and the sum of squares of the electronic transition moments of the CN violet bands have been simultaneously determined from spectral emission measurements behind incident shock waves. The unshocked test gases were composed of various CO2-CO-N2-Ar mixtures, and the temperatures behind the incident shocks ranged from 3500 to 8000 K. The variation of the electronic transition moment with internuclear separation was found to be small for both the CN violet and red band systems.

  1. Triplet (S = 1) Ground State Aminyl Diradical

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada

    2008-04-02

    Aminyl diradical, which is stable in solution at low temperatures, is prepared. EPR spectra and SQUID magnetometry indicate that the diradical is planar and it possesses triplet ground state, with strong ferromagnetic coupling.

  2. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  3. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  4. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  5. Neutrino ground state in a dense star

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Tytgat, Michel H. G.

    1998-05-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars.

  6. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero

  7. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH{sub 2}{sup +}

    SciTech Connect

    Li, Y. Q.; Zhang, P. Y.; Han, K. L.

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.

  8. Global analytical potential energy surface for the electronic ground state of NH3 from high level ab initio calculations.

    PubMed

    Marquardt, Roberto; Sagui, Kenneth; Zheng, Jingjing; Thiel, Walter; Luckhaus, David; Yurchenko, Sergey; Mariotti, Fabio; Quack, Martin

    2013-08-15

    The analytical, full-dimensional, and global representation of the potential energy surface of NH(3) in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20,000 hc cm(–1). MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10,000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r(eq)(NH(3)) ≈ 101.28 pm, α(eq)(NH(3)) ≈ 107.03°, the inversion barrier at r(inv)(NH(3)) ≈ 99.88 pm and 1774 hc cm(–1) above the NH(3) minimum, and dissociation channel energies 41,051 hc cm(–1) (for NH(3) → ((2)B(2))NH(2) + ((2)S(1/2))H) and 38,450 hc cm(–1) (for NH(3) → ((3)Σ(–))NH +((1)Σ(g)(+))H(2)); the average agreement between calculated and experimental vibrational line positions is 11 cm(–1) for (14)N(1)H(3) in the spectral region up to 5000 cm(–1). A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given. PMID:23688044

  9. Energy dissipation in the ground-state vibrational manifolds of β -carotene homologues: A sub-20-fs time-resolved transient grating spectroscopic study

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masazumi; Yamauchi, Kensei; Sugisaki, Mitsuru; Gall, Andrew; Robert, Bruno; Cogdell, Richard J.; Hashimoto, Hideki

    2008-05-01

    Transient grating (TG) signals in β -carotene homologues, by using sub-20-fs excitation pulses, were measured in order to investigate the dependence of the vibrational coherence dynamics on the π -conjugation length of these carotenoids. The experimental TG traces can be well reproduced by computational simulations based on a Brownian oscillator model using the spectral density determined from their respective resonance Raman spectra and their previously reported excited-state population-relaxation times. The total dephasing times of the ground-state vibrational modes of the homologues were determined by applying a wavelet transformation of their coherent oscillations, which were observed in the experimental TG traces. The total dephasing time decreases as the number of conjugated C=C double bonds increases. The decoherence of the ground-state vibrational modes in the homologues is mainly caused by system-bath interactions. The dephasing time of the C-C stretching modes strongly depends on the conjugation length, whereas that of the C=C stretching does not. This trend clearly shows that shorter-chain carotenoids have a specific major channel of energy dissipation to the environment (the C=C stretching), whereas the longer-chain carotenoids do not.

  10. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  11. Ab initio adiabatic and quasidiabatic potential energy surfaces of H+ + CO system: A study of the ground and the first three excited electronic states

    NASA Astrophysics Data System (ADS)

    Saheer, V. C.; Kumar, Sanjay

    2016-01-01

    The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.

  12. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively. PMID:24952535

  13. Microwave Spectrum for a Second Higher Energy Conformer of Cyclopropanecarboxylic Acid and Determination of the Gas Phase Structure of the Ground State.

    PubMed

    Pejlovas, Aaron M; Lin, Wei; Kukolich, Stephen G

    2015-10-01

    Microwave spectra for a higher-energy conformer of cyclopropanecarboxylic acid (CPCA) were measured using a Flygare-Balle-type pulsed-beam Fourier transform microwave spectrometer. The rotational constants (in megahertz) and centrifugal distortion constants (in kilohertz) for this higher-energy conformer are A = 7452.3132(57), B = 2789.8602(43), C = 2415.0725(40), DJ = 0.29(53), and DJK = 2.5(12). Differences between rotational constants for this excited-state conformation and the ground state are primarily due to the acidic OH bond moving from a position cis relative to the cyclopropyl group about the C1-C9 bond to the more stable trans conformation. Calculations indicate that the relative abundance of the higher-energy state should be 15% to 17% at room temperature, but the observed relative abundance for the supersonic expansion conditions is about 1%. The measurements of rotational transitions for the trans form of CPCA were extended to include all of the unique (13)C singly substituted positions. These measurements, along with previously measured transitions of the parent and -OD isotopologues, were used to determine a best-fit gas-phase structure. PMID:26359681

  14. Accurate double many-body expansion potential energy surface by extrapolation to the complete basis set limit and dynamics calculations for ground state of NH2.

    PubMed

    Li, Yongqing; Yuan, Jiuchuang; Chen, Maodu; Ma, Fengcai; Sun, Mengtao

    2013-07-15

    An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the H2(X1Σg+)+N(2D) and NH (X3Σ-)+H(2S) dissociation channels involving nitrogen in the ground N(4S) and first excited N(2D) states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner-Teller degeneracy of the 12A″ and 12A' states of NH 2. Such a work can both be recommended for dynamics studies of the N(2D)+H2 reaction and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen-containing systems. In turn, a test theoretical study of the reaction N(2D)+H2(X1Σg+)(ν=0,j=0)→NH (X3Σ-)+H(2S) has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result. PMID:23666848

  15. Accurate ab initio double many-body expansion potential energy surface for ground-state H2S by extrapolation to the complete basis set limit.

    PubMed

    Song, Y Z; Varandas, A J C

    2009-04-01

    A single-sheeted potential energy surface is reported for the electronic ground-state of H(2)S by fitting accurate multireference configuration interaction energies calculated using aug-cc-pVTZ and aug-cc-pVQZ basis sets with extrapolation of the electron correlation energy to the complete basis set limit, plus extrapolation to the complete basis set limit of the complete-active-space self-consistent field energy. A switching function formalism has been used to warrant the correct behavior at the H(2)(X (1)Sigma(g) (+))+S((1)D) and SH(X (2)Pi)+H((2)S) dissociation limits. The topographical features of the novel global potential energy surface are examined in detail, with the former being used for exploratory quasiclassical trajectory calculations of the thermal rate constant for the S((1)D)+H(2), S((1)D)+D(2), and S((1)D)+HD reactions at room temperature. A comparison with other available potential energy surfaces as well as kinetics data is also provided. PMID:19355742

  16. Observation of mini-band formation in the ground and high-energy electronic states of super-lattice solar cells

    NASA Astrophysics Data System (ADS)

    Usuki, Takanori; Matsuochi, Kouki; Nakamura, Tsubasa; Toprasertpong, Kasidit; Fukuyama, Atsuhiko; Sugiyama, Masakazu; Nakano, Yoshiaki; Ikari, Tetsuo

    2016-03-01

    Multiple Quantum wells (MQWs) have been studied as one promising material for high-efficiency nextgeneration solar cells. However, a portion of photo-excited carriers recombine in MQWs, resulting in the degradation of cell performance. Super-lattice (SL) structures, where quantum states in neighboring quantum wells strongly couple with each other, have been proposed for the carrier collection improvement via the tunneling transport through mini-bands. Therefore, it is important to characterize mini-band formation in various types of SL structures. We examined p-i-n GaAs-based solar cells whose i layers contain 20 stacks of InGaAs/GaAsP MQW structures with 2.1-nm GaAsP barriers (thin-barrier cell), with 2.1-nm barriers and 3-nm GaAs interlayers in between GaAsP barriers and InGaAs wells (stepbarrier cell), and with 7.8-nm barriers (thick-barrier cell). We investigated the optical absorption spectra of the SL solar cells using piezoelectric photo-thermal (PPT) spectroscopy. In the thick-barrier cell, one exciton peak was observed near the absorption edge of MQWs. On the other hand, we confirmed a split of the exciton peak for the thin-barrier SL, suggesting the formation of mini-band. Moreover, in the step-barrier cell, the mini-band at the ground state disappears since thick GaAs interlayers isolate each quantum-well ground state and, instead, the mini-band formation of highenergy states could be observed. By estimating from the energy-level calculation, this is attributed to the mini-band formation of light-hole states. This can well explain the improvement of carrier collection efficiency (CCE) of the thinbarrier and the step-barrier cells compared with the thick-barrier cell.

  17. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  18. Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study

    NASA Astrophysics Data System (ADS)

    Cockett, Martin C. R.; Ozeki, Hiroyuki; Okuyama, Katsuhiko; Kimura, Katsumi

    1993-05-01

    The two-color (1+1') threshold photoelectron spectra of naphthalene in a supersonic free jet have been recorded via nine vibronic levels of the S1 electronic state up to about 1420 cm-1 above the S1 band origin. The threshold photoelectron spectra recorded via the S1 band origin and via totally symmetric ag vibronic levels show significant intensity in Δν=+1 transitions in nontotally symmetric vibrations having b1g symmetry indicating that the ionization transition gains significant intensity through a vibronic coupling mechanism between the two lowest doublet cationic states. The strongest departure from the expected Δν=0 propensity in the threshold photoelectron spectra occurs through excitation of the totally symmetric 8 mode having ag symmetry indicating that a considerable displacement occurs along the normal coordinate of this 8 mode upon ionization from the S1 state. The superior resolution of the threshold photoelectron technique over conventional photoelectron methods has allowed accurate values for the fundamental vibrational frequencies of naphthalene in its ground cationic state to be determined and it has also allowed a more rigorous investigation of the vibronic coupling mechanism that occurs between the two lowest doublet cationic states. Moreover, an improved value for the adiabatic ionization energy of naphthalene of 65 687±7 cm-1 (8.1442±0.0009 eV) has been determined.

  19. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  20. Trapped antihydrogen in its ground state.

    PubMed

    Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2012-03-16

    Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out. PMID:22540471

  1. Photoionization of the Ne-like Si4+ ion in ground and metastable states in the 110-184-eV photon energy range

    NASA Astrophysics Data System (ADS)

    Bizau, J.-M.; Mosnier, J.-P.; Kennedy, E. T.; Cubaynes, D.; Wuilleumier, F. J.; Blancard, C.; Champeaux, J.-P.; Folkmann, F.

    2009-03-01

    We present measurements of the absolute photoionization cross section of the neonlike Si4+ ion over the 110-184 eV photon energy range. The measurements were performed using two independent merged-beam setups at the super-ACO and ASTRID synchrotron-radiation facilities, respectively. Signals produced in the photoionization of the 2p subshell of the Si4+ ion both from the 2p6S10 ground state and the 2p53sP30,2 metastable levels were observed. Calculations of the 2p photoionization cross sections were carried out using a multi-configuration Dirac-Fock code. They give results in good agreement with the measured spectra. Comparison with other available theoretical results is also presented.

  2. Zero kinetic energy (ZEKE) photoelectron spectroscopy of ammonia by nonresonant two-photon ionization from the neutral ground state

    NASA Astrophysics Data System (ADS)

    Reiser, Georg; Habenicht, Wieland; Mueller-Dethlefs, Klaus

    1993-06-01

    Results are presented of nonresonant two-photon zero kinetic energy spectroscopy of ammonia, with resolution down to 0.4/cm. The spectra provide new rotational and vibrational data on the nu(2) vibrational progression of NH3(+). The adiabatic (field corrected) ionization energy is confirmed at 82,159 +/- 1 per cm.

  3. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  4. Individual Atoms in their Quantum Ground State

    NASA Astrophysics Data System (ADS)

    Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.

    2016-05-01

    An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.

  5. Magnetic ground state of FeSe

    PubMed Central

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  6. Magnetic ground state of FeSe.

    PubMed

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K; Iida, K; Christianson, A D; Walker, H C; Adroja, D T; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  7. Magnetic ground state of FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-07-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities.

  8. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Gou, Dezhi; Kuang, Xiaoyu Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  9. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    NASA Astrophysics Data System (ADS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  10. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment.

    PubMed

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained. PMID:25612710

  11. An ab initio calculation of the rotational-vibrational energies in the electronic ground state of NH2

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Buenker, Robert J.; Hirsch, Gerhard; Rai, Sachchida N.

    We have calculated ab initio the three-dimensional potential-energy surface of the NH2 molecule at 145 nuclear geometries spanning energy ranges of about 18 000 cm-1 for the NH stretch and 12 000 cm-1 for the bend. The ab initio configuration-interaction calculations were done using the multireference MRD-CI method. The calculated equilibrium configuration has NH bond length re = 1·0207 Å and bond angle α = 103·1°. The rotational-vibrational energies for 14NH2, 14NHD and 14ND2 were calculated variationally using the Morse-oscillator rigid-bender internal-dynamics Hamiltonian. For 14NH2 we calculate that υ1 = 3267 (3219) cm-1, υ2 = 1462 (1497) cm-1 and υ3 = 3283 (3301) cm-1, where experimental values are given in parentheses.

  12. Positron and positronium chemistry by quantum Monte Carlo. V. The ground state potential energy curve of e+LiH

    NASA Astrophysics Data System (ADS)

    Mella, Massimo; Morosi, Gabriele; Bressanini, Dario; Elli, Stefano

    2000-10-01

    The potential energy curve of e+LiH has been computed by means of diffusion Monte Carlo using explicitly correlated trial wave functions. This curve allows us to compute the adiabatic total and binding energies and the vibrational spectrum of e+LiH, and the adiabatic positron affinity of LiH. Using these results, we discuss the possibility to detect spectroscopically e+LiH in the gas phase, in order to have the first direct observation of a positron-containing system.

  13. Coulomb interaction energy including overlap effects for the ground states of LiNa and Na 2

    NASA Astrophysics Data System (ADS)

    Bussery, B.; Achkar, Y.; Aubert-Frécon, M.

    1989-01-01

    A recently proposed method to calculate first-order electrostatic as well as second-order induction and dispersion energies including charge-overlap effects for the interaction between two atoms each with one active electron is applied to the systems Li(2s) + Na(3s) and Na(3s) + Na(3s), giving the induction energy for both systems. The variation with R of the relative contribution of the overlapping and non-overlapping configuration space regions is discussed for the largest dispersion and induction terms.

  14. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  15. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  16. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  17. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  18. Measurement of Charge Transfer Rate Coefficient Between Ground-State N(2+) Ion and He at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.

  19. Calculation of the ground-state energy [ital V][sub 0] of quasifree positrons in rare-gas fluids

    SciTech Connect

    Plenkiewicz, B.; Frongillo, Y.; Jay-Gerin, J. )

    1993-01-01

    The energy [ital V][sub 0] of the bottom of the conduction band (relative to vacuum) of quasifree positrons in rare-gas fluids is calculated as a function of fluid density. The calculations are performed within the framework of the Wigner-Seitz approximation [Phys. Rev. 43, 804 (1933)] for nonpolar fluids, using a semiempirical analytical potential to model the positron--rare-gas-atom interactions. For all the rare gases studied, [ital V][sub 0] is negative and decreases almost linearly with increasing density. Extended to the solid-phase density range, our [ital V][sub 0] calculations are in good agreement with available experimental data for rare-gas crystals.

  20. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  1. Phase diagram of the ground states of DNA condensates.

    PubMed

    Hoang, Trinh X; Trinh, Hoa Lan; Giacometti, Achille; Podgornik, Rudolf; Banavar, Jayanth R; Maritan, Amos

    2015-12-01

    The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective self-attraction promoting compaction. x=1 corresponds to the wormlike chain model. Surprisingly, the phase diagram as well as the transition lines between the ground states are found to be a function of x. The model provides a simple explanation for the results of prior experimental and computational studies and makes predictions for the specific geometries of the ground states. The results underscore the impact of the form of the microscopic bending energy at macroscopic observable scales. PMID:26764619

  2. Translational and rotational energy measurements of desorbed water molecules in their vibrational ground state following 157 nm irradiation of amorphous solid water

    NASA Astrophysics Data System (ADS)

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Watanabe, Naoki

    2011-05-01

    Water ice is the major solid component in a variety of astrophysical environments, e.g., cold and dense molecular clouds. Photodesorption plays a dominant role in consuming ice in such cold regions. In this study, photodesorption of vibrationally ground-state H 2O( v = 0) from amorphous solid water has been investigated at 157 nm. Using a resonance-enhanced multiphoton ionization technique, the translational and rotational energy distributions of photodesorbed H 2O( v = 0) were measured, i.e., Boltzmann distributions at 1800 and 300 K, respectively. These energies are in good accordance with those predicted by classical molecular calculations for water photodesorption due to a kick-out mechanism following absorption of a single photon; hot H atom released by photodissociation of H 2O in ice transfers enough momentum to another H 2O molecule to kick it off the surface. Desorption of D 2O( v = 0) following 193 nm photoirradiation of a D 2O/H 2S mixed ice was investigated to provide further direct evidence for the operation of a kick-out mechanism. The other desorption mechanisms were also discussed in the context of possible photodesorption of vibrationally excited H 2O.

  3. Ground state degeneracy of interacting spinless fermions

    NASA Astrophysics Data System (ADS)

    Wei, Zhong-Chao; Han, Xing-Jie; Xie, Zhi-Yuan; Xiang, Tao

    2015-10-01

    We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation. Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all dimensions with arbitrary lattice structures.

  4. Beyond mean-field ground-state energies and correlation properties of a trapped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sofianos, S. A.; Das, T. K.; Chakrabarti, B.; Lekala, M. L.; Adam, R. M.; Rampho, G. J.

    2013-01-01

    A two-body correlated basis set is used to develop a many-body theory which is valid for any number of bosons in the trap. The formalism incorporates the van der Waals interaction and two-body correlations in an exact way. The theory has successfully been applied to Bose-Einstein condensates—dilute weakly interacting and also dilute but having a large scattering length. Even in the extreme dilute condition, we observe the breakdown of the shape-independent approximation and the interatomic correlation plays an important role in the large particle-number limit. This correlated many-body calculation can handle, within the two-body correlation approximation, the entire range of atom number of experimentally achieved condensates. Next we successfully push the basis function for large scattering lengths where the mean-field results are manifestly bad. The sharp increase in correlation energy clearly shows the beyond-mean-field effect. We also calculate one-particle densities for various scattering lengths and particle numbers. Our many-body calculation exhibits the finite-size effect in the one-body density.

  5. Charge Transfer Between Ground-State N(2+) and H2, N2, and CO at Electron-Volt Energies

    NASA Technical Reports Server (NTRS)

    Fang, Z.; Kwong, Victor H. S.

    1997-01-01

    The charge-transfer rate coefficients for reactions of N(2+)(2 S(sup 2)2p(sup 2)P(sup 0)) with H2, N2, and CO are measured using ion storage. A cylindrical rf ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The rate coefficients were derived from the decay rate of the ion signal. The rate coefficients for the above three reactions are 3.38(0.35) x 10(exp -11)sq sm/s at T(sub equiv.)=2.9 x 10(exp 3) K, 2.10(0.18) x 10(exp -9)sq sm/s at T(sub equiv.) = 1.3 x 10(exp 4) K, and 3.37(0.29) x 10(exp -9)sq cm/s at T(sub equiv.) = 1.3 x 10(exp 4) K, respectively. No theoretical or other experimental values are available at this energy range.

  6. Experimental evidence of resonant energy collisional transfers between argon 1s and 2p states and ground state H atoms by laser collisional induced fluorescence

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; van Dijk, Jan; Kroesen, Gerrit

    2015-04-01

    In this paper, laser collisional induced fluorescence (LCIF) is used to probe resonant excitation transfers in an argon/hydrogen plasma resulting from heavy particle collisions. Different radiative transitions between the 1s and 2p states (in Paschen's notation) of argon are optically pumped by a nanosecond laser pulse. The spontaneous fluorescence and collisional responses of the argon and hydrogen systems are monitored by optical emission spectroscopy. A surfatron plasma source is used to generate an argon plasma with a few per cent hydrogen addition at pressures between 0.65 and 20 mbar. The electron density is measured independently by means of Thomson scattering. The overall response of the plasma due to optical pumping of argon is briefly discussed and an overview of the known heteronuclear excitation transfers in an argon/hydrogen plasma is given. The propagation of the shortcut in the Ar(1s) to H(n = 2) excitation transfer due to the optical pumping of the Ar(1s) states is seen in the atomic hydrogen LCIF responses. For the first time, we give direct experimental evidence of the existence of an efficient excitation transfer: Additionally, measurements are performed in order to estimate the resonant energy transfer between the resonant argon 1s states and hydrogen atoms: for which no previously measured cross sections could be found in the literature. These are extra quenching channels of argon 1s and 2p states that should be included in collisional-radiative modeling of argon-hydrogen discharges. The high repetition rate of the dye laser allows us to obtain a high sensitivity in the measurements. LCIF is shown to be a powerful tool for unraveling electron and also heavy particle excitation channels in situ in the plasma phase. The technique was previously developed for measuring electron or species densities locally in the plasma, but we show that it can be advantageously used to probe collisional transfers between very short-lived species which exist

  7. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  8. Tuning the Ground State Symmetry of Acetylenyl Radicals.

    PubMed

    Zeng, Tao; Danovich, David; Shaik, Sason; Ananth, Nandini; Hoffmann, Roald

    2015-08-26

    The lowest excited state of the acetylenyl radical, HCC, is a (2)Π state, only 0.46 eV above the ground state, (2)Σ(+). The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of (2)Π and (2)Σ(+) states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with (2)Π ground states (NaOCC, H2NCC ((2)A″), HCSi, FCSi, etc.) and vary the (2)Σ(+)-(2)Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  9. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  10. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  11. Ground-state phases of polarized deuterium species

    SciTech Connect

    Panoff, R.M.; Clark, J.W.

    1987-10-01

    Microscopic prediction of the ground-state phase of electron-spin-aligned bulk atomic deuterium (Darrow-down) is attempted, based on the variational Monte Carlo method. The accurate pair potential of Kolos and Wolniewicz is assumed, and three versions of Darrow-down are considered, which, respectively, involve one, two, and three equally occupied nuclear spin states. The most definitive results on the zero-temperature equations of state of these systems are obtained with optimized ground-state trial wave functions incorporating Jastrow pair correlations, triplet correlations, and momentum-dependent backflow effects. The species Darrow-down/sub 3/ is bound already at the pure Jastrow level, while the energy expectation value of Darrow-down/sub 2/ dips below zero upon supplementing the Jastrow description by triplets and momentum-dependent backflow. The variational energy of Darrow-down/sub 1/ remains positive under all current refinements of the ground-state trial function. We conclude that the systems Darrow-down/sub 3/ and Darrow-down/sub 2/, if they could be manufactured and stabilized at relevant densities, would be Fermi liquids at sufficiently low temperature; on the other hand, it is likely that Darrow-down/sub 1/ would remain gaseous down to absolute zero.

  12. Evaluating the Performance of DFT Functionals in Assessing the Interaction Energy and Ground-State Charge Transfer of Donor/Acceptor Complexes: Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ) as a Model Case.

    PubMed

    Sini, Gjergji; Sears, John S; Brédas, Jean-Luc

    2011-03-01

    We have evaluated the performance of several density functional theory (DFT) functionals for the description of the ground-state electronic structure and charge transfer in donor/acceptor complexes. The tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) complex has been considered as a model test case. Hybrid functionals have been chosen together with recently proposed long-range corrected functionals (ωB97X, ωB97X-D, LRC-ωPBEh, and LC-ωPBE) in order to assess the sensitivity of the results to the treatment and magnitude of exact exchange. The results show an approximately linear dependence of the ground-state charge transfer with the HOMOTTF-LUMOTCNQ energy gap, which in turn depends linearly on the percentage of exact exchange in the functional. The reliability of ground-state charge transfer values calculated in the framework of a monodeterminantal DFT approach was also examined. PMID:26596294

  13. Ground state properties of alkali and alkaline-earth hydrides

    NASA Astrophysics Data System (ADS)

    Fuentealba, P.; Reyes, O.; Stoll, H.; Preuss, H.

    1987-11-01

    The ground state potential energy curves of alkali (LiH to CsH) and alkaline-earth monohydrides (BeH to BaH) have been calculated. A pseudopotential formalism including a core-polarization potential has been used. For the valence correlation energy, two different methods, the local spin-density functional and the configuration interaction with single and double excitations, have been employed. Dissociation energies, bond lengths, vibrational frequencies, anharmonicity constants, and dipole moments are reported. The agreement with experimental values, where available, is very good. A discussion and a comparison with other theoretical values, at different levels of approximation, are also included.

  14. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGESBeta

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  15. Ground State Properties and Bubble Structure of Synthesized Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Ikram, M.; Patra, S. K.

    2013-01-01

    We calculate the ground state properties of recently synthesized superheavy elements (SHEs) from Z = 105-118 along with the predicted proton magic Z = 120. The relativistic and nonrelativistic mean field formalisms are used to evaluate the binding energy (BE), charge radius, quadrupole deformation parameter and the density distribution of nucleons. We analyzed the stability of the nuclei based on BE and neutron to proton ratio. We also studied the bubble structure which reveals the special features of the superheavy nuclei.

  16. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  17. Ground electronic states of RbO2+, CsO2+ and FrO2: the ionization energies of RbO2 and CsO2.

    PubMed

    Lee, Edmond P F; Wright, Timothy G

    2005-04-14

    Calculations are performed to establish the ground electronic states of RbO2+, CsO2+, and FrO2. In the case of the cations, both linear and C2v orientations were considered; for FrO2, the two lowest electronic states, 2A2 and 2B2, were considered in C2v symmetry. In addition, calculations were also performed on the x2 A2 ground states of RbO2 and CsO2 to derive ionization energies. Binding energies and heats of formation are also derived. The bonding in FrO2 is found to be less ionic than that of RbO2 and CsO2. PMID:16833657

  18. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  19. Probing the ground state in gauge theories

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-03-01

    We consider two very different models of the flux tube linking two heavy quarks: a string linking the matter fields and a Coulombic description of two separately gauge invariant charges. We compare how close they are to the unknown true ground state in compact U(1) and the SU(2) Higgs model. Simulations in compact U(1) show that the string description is better in the confined phase but the Coulombic description is best in the deconfined phase; the last result is shown to agree with analytical calculations. Surprisingly in the nonabelian theory the Coulombic description is better in both the Higgs and confined phases. This indicates a significant difference in the width of the flux tubes in the two theories.

  20. Ground states of finite spherical Yukawa crystals

    NASA Astrophysics Data System (ADS)

    Baumgartner, H.; Asmus, D.; Golubnychiy, V.; Ludwig, P.; Kählert, H.; Bonitz, M.

    2008-09-01

    Small three-dimensional strongly coupled clusters of charged particles in a spherical confinement potential arrange themselves in nested concentric shells. If the particles are immersed into a background plasma the interaction is screened. The cluster shell configuration is known to be sensitive to the screening strength. With increased screening, an increased population of the inner shell(s) is observed. Here, we present a detailed analysis of the ground state shell configurations and configuration changes in a wide range of screening parameters for clusters with particle numbers N in the range of 11 to 60. We report three types of anomalous behaviors which are observed upon increase of screening, at fixed N or for an increase of N at fixed screening. The results are obtained by means of extensive first principle molecular dynamics simulations.

  1. Energy from the Ground Up.

    ERIC Educational Resources Information Center

    Sailer, Fred

    1992-01-01

    A closed-loop geothermal heating system in a Minnesota school uses the earth's temperature as a counterweight to the extremes of temperature on the surface and in the school. The system is expected to recoup its extra investment in fewer than five years of service. Cites statistics concerning energy management in schools. (MLF)

  2. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which

  3. a Variational Ground State for the Fractional Quantum Hall Effect.

    NASA Astrophysics Data System (ADS)

    Galejs, Robert Julian

    1987-09-01

    The fractional quantum Hall effect has aroused much interest in recent years. A large portion of the research in this field has centered on the theoretical understanding of the ground state properties of a system of two-dimensional electrons in a perpendicular magnetic field. One of the most successful models for such a system is that of Laughlin, who proposed a trial wavefunction to model the ground state for certain electron densities. The present work examines the ground state of this system variationally for three and four electrons. The ground state was modeled as a sum of Slater determinants composed of one-electron functions from the lowest Landau level. This wavefunction was placed on a disk of neutralizing charge and the coefficients of the determinants varied to minimize the energy. This variational wavefunction may be compared directly with Laughlin's, as well as model densities not described by Laughlin. The energy per electron was found to vary smoothly as a function of filling factor except at discrete points where there was an upward cusp. Downward cusps, as found by other investigators, were not found in this work. In the smooth portions, the wavefunction is incompressible whereas at the cusps, the wavefunction undergoes a drastic change. In the presence of impurities, these upward cusps smooth out and the wavefunction is now charge-density-wave -like near the former location of the cusps. This variation between incompressible and charge-density-wave behavior may give an explanation of the behavior of the Hall plateau widths as a function of impurity concentration. At a filling factor of 1/3 it was found that the Laughlin wavefunction is a very good approximation to the ground state, giving a very large overlap with and only a slightly higher energy than the variational state calculated here. Laughlin's excited states appear to be a good approximation as well, although the details of their charge density may not be. A new class of wavefunctions was

  4. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  5. Ground state of the universe in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Gorobey, Natalia; Lukyanenko, Alexander

    2016-01-01

    We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

  6. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  7. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  8. Mixed configuration ground state in iron(II) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-01

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2 ,3 edges of α -Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3Eg(a1g 2eg3b2g 1) and 3B2 g(a1g 1eg4b2g 1) with the two configurations coupled by the spin-orbit interaction. The 3Eg(b ) and 3B2 g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1 g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  9. Ground-state energetics of helium and deuterium fermion fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.; Smith, R. A.; Clark, J. W.; Panoff, R. M.

    1981-12-01

    The method of correlated basis functions (CBF) is applied to the evaluation of the ground-state energy of atomic fermion fluids as a function of density. As a first step, liquid 3He in both unpolarized and fully polarized spin configurations is considered variationally, using Slater-Jastrow trial wave functions. Results are reported for a conventional analytic choice of the state-independent two-body correlation function f(r) and for the optimal f(r) determined by the solution of a suitable Euler equation. The Jastrow treatment is found to be inadequate in that (i) the energy expectation value lies above the experimental equilibrium energy by some 1.5 K, and (ii) the polarized phase is predicted to be more stable than the unpolarized one. For a given polarization, a correlated basis is formed by application of the assumed Jastrow correlation factor to the elements of a complete set of noninteracting-Fermi-gas Slater determinants. The exact ground-state energy may be developed in a perturbation expansion in the correlated basis, the leading term being the Jastrow energy expectation value. Considerable improvement on the Jastrow description of the unpolarized phase is achieved upon inclusion of the correlated two-particle-two-hole component of the second-order CBF perturbation correction. At the experimental equilibrium density, this contribution, which incorporates important momentum- and spin-dependent correlations, can amount to some 0.6-1.1 K [depending on the choice of f(r)]. The required correlated-basis matrix elements are calculated by Fermi hypernetted-chain (FHNC) techniques, crucial Pauli effects of the elementary diagrams being introduced through the FHNC/C algorithm. The Euler equation is approximated within the same framework. The momentum-space integrations in the second-order perturbation correction are evaluated by a Monte Carlo procedure. One may reasonably expect that further refinements of the CBF method will lead to an accurate microscopic

  10. Ground-state properties of quantum triangular ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-03-01

    Motivated by recent quantum Monte Carlo (QMC) simulations of the quantum Kagome ice model by Juan Carrasquilla et al., [Nat. Commun., 6, 7421 (2015), 10.1038/ncomms8421], we study the ground-state properties of this model on the triangular lattice. In the presence of a magnetic field h , the Hamiltonian possesses competing interactions between a Z2-invariant easy-axis ferromagnetic interaction J±± and a frustrated Ising term Jz. As in the U(1)-invariant model, we obtain four classical distinctive phases, however, the classical phases in the Z2-invariant model are different. They are as follows: a fully polarized (FP) ferromagnet for large h , an easy-axis canted ferromagnet (CFM) with broken Z2 symmetry for small h and dominant J±±, a ferrosolid phase with broken translational and Z2 symmetries for small h and dominant Jz, and two lobes with m ==±1 /6 for small h and dominant Jz. We show that quantum fluctuations are suppressed in this model, hence the large-S expansion gives an accurate picture of the ground-state properties. When quantum fluctuations are introduced, we show that the ferrosolid state is the ground state in the dominant Ising limit at zero magnetic field. It remains robust for Jz→∞ . With nonzero magnetic field the classical lobes acquire a finite magnetic susceptibility with no Sz order. We present the trends of the ground-state energy and the magnetizations. We also present a detail analysis of the CFM.

  11. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  12. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  13. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-01

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation. PMID:26588541

  14. Constrained path Monte Carlo method for fermion ground states

    SciTech Connect

    Zhang, S. |; Carlson, J.; Gubernatis, J.E.

    1997-03-01

    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By constraining the determinants according to a trial wave function {vert_bar}{psi}{sub T}{r_angle}, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if {vert_bar}{psi}{sub T}{r_angle} is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16{times}16 and for various electron fillings and interaction strengths. With simple single-determinant wave functions as {vert_bar}{psi}{sub T}{r_angle}, the method yields accurate (often to within a few percent) estimates of the ground-state energy as well as correlation functions, such as those for electron pairing. We conclude by discussing possible extensions of the algorithm. {copyright} {ital 1997} {ital The American Physical Society}

  15. Constrained path Monte Carlo method for fermion ground states

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei; Carlson, J.; Gubernatis, J. E.

    1997-03-01

    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By constraining the determinants according to a trial wave function \\|ψT>, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if \\|ψT> is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16×16 and for various electron fillings and interaction strengths. With simple single-determinant wave functions as \\|ψT>, the method yields accurate (often to within a few percent) estimates of the ground-state energy as well as correlation functions, such as those for electron pairing. We conclude by discussing possible extensions of the algorithm.

  16. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature

    SciTech Connect

    Shah, S.; Ghosh, K.; Jejurikar, S.; Mishra, A.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Highlights: • Investigation of ground state energy in single and multi-layered InAs/GaAs QD. • Strain reducing layer (InGaAs) prevents the formation of non-radiative. • Strain reducing layer (InGaAs) is responsible for high activation energy. • Significant deviation from the Varshni model, E(T) = E − αT{sup 2}/T + β. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activation energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E − ∞ T{sup 2}/T + β, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 °C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.

  17. Determination of the ground state energies of the H{2/+}, D{2/+} and H{2/+} molecular ions taking into account relativistic corrections

    NASA Astrophysics Data System (ADS)

    Dineykhan, M.; Zhaugasheva, S. A.; Bekbaev, A. K.; Ishmukhamedov, I. S.

    2012-12-01

    On the basis of determination of the asymptotic behavior of correlation functions of the corresponding field currents with the corresponding quantum numbers an analytic method for determination of the energy spectrum of three-body Coulomb system is suggested. Our results show that the constituent masses of particles, which we have defined as masses of particles in a bound state, differ from masses of particles in a free-state. The constituent mass to the free state mass relation for the electron is greater than the same mass relation for the proton, deuteron and triton. It was also found that this constituent electron mass has different values in each systems, i.e. in H{2/+}, D{2/+} and T{2/+} hydrogen molecular ions. The contributions of exchange and self-energy diagrams were taken into account in the determination of the energy spectrum of the three-body Coulomb system. Our results show that the self-energy diagram contribution is inversely proportional to the square of the constituent mass of particles. This contribution is sufficient for the electron and is negligible for the proton, deuteron and triton. When defining the energy and the wave function (WF), it is necessary to take into account the contributions of both the exchange and self-energy diagrams.

  18. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  19. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  20. Dissociation energies and potential energy functions for the ground X {sup 1}Σ{sup +} and “avoided-crossing” A {sup 1}Σ{sup +} states of NaH

    SciTech Connect

    Walji, Sadru-Dean; Sentjens, Katherine M.; Le Roy, Robert J.

    2015-01-28

    A direct-potential-fit analysis of all accessible data for the A {sup 1}Σ{sup +} − X {sup 1}Σ{sup +} system of NaH and NaD is used to determine analytic potential energy functions incorporating the correct theoretically predicted long-range behaviour. These potentials represent all of the data (on average) within the experimental uncertainties and yield an improved estimate for the ground-state NaH well depth of D{sub e} = 15797.4 (±4.3) cm{sup −1}, which is ∼20 cm{sup −1} smaller than the best previous estimate. The present analysis also yields the first empirical determination of centrifugal (non-adiabatic) and potential-energy (adiabatic) Born-Oppenheimer breakdown correction functions for this system, with the latter showing that the A-state electronic isotope shift is −1.1(±0.6) cm{sup −1} going from NaH to NaD.

  1. A study of the ground and excited states of Al3 and Al3-. II. Computational analysis of the 488 nm anion photoelectron spectrum and a reconsideration of the Al3 bond dissociation energy

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.; Schultz, Nathan E.; Truhlar, Donald G.; Leopold, Doreen G.

    2009-01-01

    Computational results are reported for the ground and low-lying excited electronic states of Al3- and Al3 and compared with the available spectroscopic data. In agreement with previous assignments, the six photodetachment transitions observed in the vibrationally resolved 488nm photoelectron spectrum of Al3- are assigned as arising from the ground X˜A1'1(A11) and excited B23 states of Al3- and accessing the ground X˜A1'2(A12) and excited A2″2(B12), A24, and B22 states of Al3 (with C2v labels for D3h states in parentheses). Geometries and vibrational frequencies obtained by PBE0 hybrid density functional calculations using the 6-311+G(3d2f) basis set and energies calculated using coupled cluster theory with single and double excitations and a quasiperturbative treatment of connected triple excitations (CCSD(T)) with the aug-cc-pVxZ {x =D, T, Q} basis sets with exponential extrapolation to the complete basis set limit are in good agreement with experiment. Franck-Condon spectra calculated in the harmonic approximation, using either the Sharp-Rosenstock-Chen method which includes Duschinsky rotation or the parallel-mode Hutchisson method, also agree well with the observed spectra. Possible assignments for the higher-energy bands observed in the previously reported UV photoelectron spectra are suggested. Descriptions of the photodetachment transition between the Al3- and Al3 ground states in terms of natural bond order (NBO) analyses and total electron density difference distributions are discussed. A reinterpretation of the vibrational structure in the resonant two-photon ionization spectrum of Al3 is proposed, which supports its original assignment as arising from the X˜A1'2 ground state, giving an Al3 bond dissociation energy, D0(Al2-Al), of 2.403±0.001eV. With this reduction by 0.3eV from the currently recommended value, the present calculated dissociation energies of Al3, Al3-, and Al3+ are consistent with the experimental data.

  2. State energy information networks

    SciTech Connect

    Tatar, J.; Ettinger, G.; Wrabel, M.

    1984-06-01

    In November 1983, Argonne National Laboratory (ANL) initiated a study under the sponsorship of the US Department of Energy (DOE) State Programs Branch to examine state energy information networks. Goal was to help DOE decide how best to allocate resources to assist states in acquiring information related to state energy programs and policies.

  3. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  4. Ground state of the three-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi; Koike, Soh; Yamaji, Kunihiko

    2001-11-01

    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by our calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8 doping. Incommensurate magnetic structures become stable due to hole doping in the underdoped region, where the transfer tpp between oxygen orbitals plays an important role in determining a stable stripe structure.

  5. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16O to 106265Sg and 108264Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N ≥ 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N ≥ 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from 70Se to 252Cf with a root-mean-square deviation of 1.052 MeV.

  6. A MRSDCI characterization of the ground state of CaC

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Pelegrini, Marina; Roberto-Neto, Orlando; Machado, Francisco B. C.

    2002-09-01

    Accurate potential energy curves, dipole moment functions, dissociation energies and spectroscopic constants for six electronic states ( 3Σ-, 3Π, 5Σ-, 1Δ, 1Π, 1Σ+) of the CaC molecule are reported with the multireference singles and doubles configuration interaction methodology. The ground state has symmetry 3Σ -, with a dissociation energy ( D0) equal to 1.94 eV. The 5Σ - state is the first excited state lying 695 cm-1 above the 3Σ - ground state. The 1Δ and 3Π states are the second and third excited states separated, respectively, by 10 763 and 12 167 cm-1 from the 3Σ - ground state.

  7. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the

  8. Effect of disorder on the ground-state properties of graphene

    NASA Astrophysics Data System (ADS)

    Asgari, R.; Vazifeh, M. M.; Ramezanali, M. R.; Davoudi, E.; Tanatar, B.

    2008-03-01

    We calculate the ground-state energy of Dirac electrons in graphene in the presence of disorder. We take randomly distributed charged impurities at a fixed distance from the graphene sheet and surface fluctuations (ripples) as the main scattering mechanisms. A mode-coupling approach to the scattering rate and random-phase approximation for the ground-state energy incorporating the many-body interactions and the disorder effects yields good agreement with the experimental inverse compressibility.

  9. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  10. Ground-State of the Bose-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Mancini, J. D.; Fessatidis, V.; Bowen, S. P.; Murawski, R. K.; Maly, J.

    The Bose-Hubbard Model represents a s simple theoretical model to describe the physics of interacting Boson systems. In particular it has proved to be an effective description of a number of physical systems such as arrays of Josephson arrays as well as dilute alkali gases in optical lattices. Here we wish to study the ground-state of this system using two disparate but related moments calculational schemes: the Lanczos (tridiagonal) method as well as a Generalized moments approach. The Hamiltonian to be studied is given by (in second-quantized notation): H = - t ∑ < i , j > bi†bj +U/2 ∑ inini - 1 - μ ∑ ini . Here i is summed over all lattice sites, and < i , j > denotes summation over all neighbhoring sites i and j, while bi† and bi are bosonic creation and annihilation operators. ni = bi†bi gives the number of particles on site i. Parameter t is the hopping amplitude, describing mobility of bosons in the lattice. Parameter U describes the on-site interaction, repulsive, if U > 0 , and attractive for U < 0 . μ is the chemical potential. Both the ground-state energy and energy gap are evaluated as a function of t, U and μ.

  11. Advanced concepts in ground thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  12. Comparison of ground- and excited-state raman transitions using resonant coherent stokes generation

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Hochstrasser, R. M.

    1981-11-01

    Coherent Stokes generation was explored as a means to investigate vibrational dephasing in both the ground state and first excited singlet state of pentacene in benzoic acid. The dephasing-induced coherent emission (DICE) was used to obtain the ground- and excited-state Ramon linewidths between 1.6 K and 200 K. The broadening for both modes displayed an Arrhenius energy of ≈100 cm -1.

  13. Helimagnons in a chiral ground state of the pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.

    2013-02-01

    The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems.

  14. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  15. State energy overview

    SciTech Connect

    Not Available

    1982-09-01

    This publication presents an overview of selected energy-related data for the United States, for each State, and for the District of Columbia. Included are the quantities of energy produced and consumed, estimates of fuel reserves, and the value of nonrenewable fuels produced by type. Also provided for each State are selected demographic and energy-related information that have been ranked and expressed as a percent of the national total. This overview provides a ready reference and a quick access to selected State energy information and State rankings for various socioeconomics and energy items.

  16. Ground state degeneracy, energy barriers, and molecular dynamics evidence for two-dimensional disorder in black phosphorus and monochalcogenide monolayers at finite temperature

    NASA Astrophysics Data System (ADS)

    Mehboudi, Mehrshad; Barraza-Lopez, Salvador; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Churchill, Hugh O. H.; Pacheco-Sanjuan, Alejandro A.; Harriss, Edmund O.; Kumar, Pradeep

    Mono-layers of black phosphorus and other two dimensional materials such as mono-layers of SiSe, GeS, GeSe, GeTe, Sns, SnSe, and SnTe with a similar crystalline structure have a four-fold degenerate ground state that leads to two-dimensional disorder at finite temperature. Disorder happens when neighboring atoms gently re-accommodate bonds beyond a critical temperature. In this talk, the effect of atomic numbers on the transition temperature will be discussed. In addition Car-Parinello molecular dynamics calculations at temperatures 30, 300 and 1000 K were performed on supercells containing more than five hundred atoms and the results from these calculations confirm the transition onto a two-dimensional disordered structure past the critical temperature, which is close to room temperature for many of these compounds. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  17. Ground-state and quenched-state properties of a one-dimensional interacting lattice gas in a random potential

    SciTech Connect

    Fonk, Y.; Hilhorst, H.J.

    1987-12-01

    The authors determine the zero-temperature properties of a one-dimensional lattice gas of particles that interact via a nearest neighbor exclusion potential and are subject to a random external field. The model is a special limiting case of the random field Ising chain. We calculate (1) the energy and density of the ground state as well as the local energy-density correlation and (2) the pair correlation function. The latter calculation gives access to all higher order correlations. The structure factor is shown to be a squared Lorentzian. The authors also compare the ground state to the quenched state obtained by sequentially filling the lowest available energy levels.

  18. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    Disordered hyperuniform many-particle systems have been receiving recent attention because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. It has been shown numerically that systems of particles interacting with ``stealthy'' bounded, long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are, counterintuitively, disordered, hyperuniform and highly degenerate. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space is highly nontrivial because the dimensionality of the configuration space depends on the number density and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. A new type of statistical-mechanical theory had to be invented to characterize these exotic states of matter. I report on some initial progress that we have made in this direction. We show that stealthy disordered ground states behave like ''pseudo''-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for the structure and thermodynamic properties of the stealthy disordered ground states and associated excited states are in excellent agreement with computer simulations across dimensions.

  19. Ground state and constrained domain walls in Gd /Fe multilayers

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Prieto, José L.; Mathur, Neil D.

    2005-03-01

    The magnetic ground state of antiferromagnetically coupled Gd /Fe multilayers and the evolution of in-plane domain walls is modeled with micromagnetics. The twisted state is characterized by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios MFe:MGd, the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio MFe:MGd but also by the thicknesses of the layers; that is by the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe-aligned and the Gd-aligned state in favor of the twisted state. On the other hand, ultrathin layers exclude the twisted state, since wider domain walls cannot form in these ultrathin layers.

  20. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  1. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    1982-11-01

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  2. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  3. Comments on variational ground states for lattice hamiltonians

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Bovier, Anton

    1984-02-01

    We find that the nearest neighbour Jastrow type ground state cannot yield a Lorentz invariant vacuum in the continuum. This is explicitly demonstrated for the chiral model in 1+1 dimensions. The Jastrow ground state is found to be an exact ground state of a new hamiltonian which differs from the original by seemingly ``irrelevant terms'' at the continuum. However these terms prevent the restoration of Lorentz invariance. Finally we speculate that the new hamiltonian can be a non-relativistic approximation with galilean invariance.

  4. Ground state for CH2 and symmetry for methane decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Luo, Wen-Lang; Ruan, Wen; Jiang, Gang; Zhu, Zheng-He

    2008-06-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is tilde X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, i.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to tilde X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) i.e. CH4 → CH2+H2, is forbidden and the decomposition type (2) i.e. CH4 → CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  5. The effect of gap in n(k, ρ) on the single-particle properties of nucleons and the ground-state binding energy of closed-shell nuclei

    NASA Astrophysics Data System (ADS)

    Mariji, H.

    2016-04-01

    The present work evaluates the effect of gap in the density-dependent one-body momentum distribution, n(k,ρ), at the Fermi surface on the calculation of the single-particle properties of nucleons, i.e., the momentum- and density-dependent single-particle potential and the nucleon effective mass, and also on the calculation of the ground-state binding energy of the selected closed-shell nuclei, i.e., 16O, 40Ca, and 56Ni. In order to do this, n(k,ρ) is constructed by use of the calculations of the lowest-order constrained variational method for the symmetric nuclear matter with the Av_{18} potential up to J_{max}=2 and 5. It is shown that the gap in n(k,ρ) at the Fermi surface has no significant effect on the calculation of single-particle properties in the case of J_{max}=5. In the relevant evaluation of the ground-state binding energy of selected nuclei, it is seen that the binding energy of 16O, improved by including n(k,ρ), is closer to the experimental data, contrary to 40Ca and 56Ni.

  6. State Energy Overview 1982

    SciTech Connect

    Not Available

    1984-08-01

    Data are presented for the 50 states and the District of Columbia. Included are the quantities of energy produced and consumed, estimates of fuel reserves, the value of nonrenewable fuels produced by type, energy expenditures, and consumer prices. Also provided for each state are selected demographic and energy-related data that have been ranked and expressed as a percent of the national total. This overview provides a ready reference and a quick access to selected state energy information and state rankings for various socioeconomic and energy items. Methodology is detailed; a glossary is provided.

  7. Mass coefficient and Grodzins relation for the ground-state band and {gamma} band

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2006-12-15

    It is shown that the available experimental data on the energies of the first and the {gamma}-vibrational 2{sup +} states and the reduced E2 transition probabilities from these states to the ground state require for the explanation significantly different values of the mass coefficients for the rotational motion and {gamma}-vibrations.

  8. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    PubMed

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  9. Antifreeze acceptability for ground-coupled heat pump ground loops in the United States

    SciTech Connect

    Den Braven, K.R.

    1998-10-01

    When designing and installing closed-loop ground-coupled heat pumps systems, it is necessary to be aware of applicable environmental regulations. Within the United States, nearly half of the states have regulations specifying or restricting the use of particular antifreezes or other fluids within the ground loop of a ground-coupled heat pump system. A number of other states have regulations pending. While all of these regulations are based on the need to preserve groundwater and/or aquifer quality, the list of acceptable antifreezes varies among those states with specified fluids. Typical antifreezes in use include ethylene glycol, propylene glycol, brines, alcohols, and potassium acetate. Each of these has its benefits and drawbacks. The status of the regulations has been determined for all of the states. An overview of the regulations is presented in this paper, along with a summary of the states` concerns.

  10. Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide 32S16O3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called 6-fold rotational energy clusters at high rotational excitation are investigated. The SO3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S-O bonds. This behaviour is characterized theoretically in the J range from 100-250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.