Science.gov

Sample records for ground state rotational

  1. Ground-state rotational constants of 12CH 3D

    NASA Astrophysics Data System (ADS)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  2. On the internal rotations in p-cresol in its ground and first electronically excited states

    NASA Astrophysics Data System (ADS)

    Hellweg, Arnim; Hättig, Christof

    2007-07-01

    The overall rotation and internal rotation of p-cresol (4-methyl-phenol) has been studied by comparison of the microwave spectrum with accurate ab initio calculations using the principal axis method in the electronic ground state. Both internal rotations, the torsions of the methyl and the hydroxyl groups relative to the aromatic ring, have been investigated. The internal rotation of the hydroxyl group can be approximately described as the motion of a symmetrical rotor on an asymmetric frame. For the methyl group it has been found that the potential barrier hindering its internal rotation is very small with the first two nonvanishing Fourier coefficients of the potential V3 and V6 in the same order of magnitude. Different splittings of b-type transitions for the A and E species of the methyl torsion indicate a top-top interaction between both internal rotors through the benzene ring. An effective coupling potential for the top-top interaction could be estimated. The hindering barriers of the hydroxyl and methyl rotation have been calculated using second-order Møller-Plesset perturbation theory and the approximate coupled-cluster singles-and-doubles model (CC2) in the ground state and using CC2 and the algebraic diagrammatic construction through second order in the first electronically excited state. The results are in excellent agreement with the experimental values.

  3. Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Zubov, A. S.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2011-10-01

    Using the statistical and quantum diffusion approaches, we study the population of ground-state rotational bands of superheavy nuclei produced in the fusion-evaporation reactions 208Pb(48Ca,2n)254No, 206Pb(48Ca,2n)252No, and 204Hg(48Ca,2n)250Fm. By describing the relative intensities of E2 transitions between the rotational states, the entry spin distributions of residual nuclei, and the excitation functions for these reactions, the dependence of fission barriers of shell-stabilized nuclei on angular momentum is investigated.

  4. Rotational Spectroscopy on Ultracold 23 Na40 K Ground State Molecules

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee Woo; Yan, Zoe; Loh, Huanqian; Zwierlein, Martin

    2016-05-01

    Ultracold molecules with controllable dipolar long-range interactions will open up new routes for quantum simulation and the creation of novel states of matter. In particular, the molecules' rich internal degrees of freedom allow for versatile control of intermolecular interactions by applying static electric and microwave fields. Starting from an ultracold, spin-polarized ensemble of trapped fermionic 23 Na40 K molecules in the absolute ground state, we perform microwave spectroscopy on the first rotationally excited state for a range of magnetic and electric fields. Extracting the rotational and hyperfine coupling constants, we comprehensively understand the observed spectra. Following the coherent transfer of the entire ensemble of chemically stable 23 Na40 K molecules to the first rotationally excited state, we observe a lifetime of more than 3 sec, comparable to the lifetime in the rovibrational ground state. The collisional stability of excited rotational states opens up intriguing prospects for the control of intermolecular van-der-Waals interactions via electric fields.

  5. Optical cooling of AlH+ to the rotational ground state

    NASA Astrophysics Data System (ADS)

    Lien, Chien-Yu; Seck, Christopher; Odom, Brian

    2014-05-01

    We demonstrate cooling of the rotational degree of freedom of trapped diatomic molecular ions to the rotational ground state. The molecule of interested, AlH+, is co-trapped and sympathetically cooled with Ba+ to milliKelvin temperatures in its translational degree of freedom. The nearly diagonal Franck-Condon-Factors between the electronic X and A states of AlH+ create semi-closed cycling transitions between the vibrational ground states of X and A states. A spectrally filtered femtosecond laser is used to optically pump the population to the two lowest rotational levels, with opposite parities, in as fast as 100 μs via driving the A-X transition. In addition, a cooling scheme relying on vibrational relaxation brings the population to the N = 0 positive-parity level in as fast as 100 ms. The population distribution among the rotational levels is detected by resonance-enhanced multiphoton dissociation (REMPD) and time-of-flight mass-spectrometry (TOFMS). Although the current two-photon state readout scheme is destructive, a scheme of single-molecule fluorescence detection is also considered.

  6. Ground and Low-Lying Collective States of Rotating Three-Boson System

    NASA Astrophysics Data System (ADS)

    Imran, Mohd.; Ahsan, M. A. H.

    2016-04-01

    The ground and low-lying collective states of a rotating system of N = 3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime. The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≥ L ≥ 4N to obtain the ground and low-lying eigenstates. Our numerical results show that breathing modes with N-body eigenenergy spacing of 2ħω⊥, known to exist in strictly 2D system with zero-range (δ-function) interaction potential, may as well exist in quasi-2D system with finite-range Gaussian interaction potential. To gain an insight into the many-body states, the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates. In the rapidly rotating regime the ground state in angular momentum subspaces L = (q/2)N (N ‑ 1) with q = 2, 4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose-Laughlin like state. We further observe that the first breathing mode exhibits features similar to the Bose-Laughlin state in having eigenenergy, von Neumann entropy and internal structure independent of interaction for the three-boson system considered here. On the contrary, for eigenstates lying between the Bose-Laughlin like ground state and the first breathing mode, values of eigenenergy, von Neumann entropy and internal structure are found to vary with interaction.

  7. Ground state of rotating ultracold quantum gases with anisotropic spin—orbit coupling and concentrically coupled annular potential

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tan, Ren-Bing; Du, Zhi-Jing; Zhao, Wen-Yu; Zhang, Xiao-Fei; Zhang, Shou-Gang

    2014-07-01

    Motivated by recent experimental realization of synthetic spin—orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose—Einstein condensates with anisotropic Rashba spin—orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin—orbit coupling and rotational frequency. Moreover, the phase transitions between different ground state phases induced by the anisotropic spin—orbit coupling are obviously different from the isotropic one.

  8. Rotational Spectra of Urea in its Ground and First Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Thomas, Jessica; Medvedev, Ivan; Kisiel, Zbigniew

    2014-06-01

    Urea is an important terrestrial bio-molecule, which has been tentatively detected in the interstellar medium. To match the much improved range and sensitivities of modern sub-millimeter telescopes a broad laboratory assay of rotational transitions needs to be recorded in order to aid in the definitive identification of this molecule. This paper focuses on the spectroscopic assignment of the rotational transitions of urea in the 207-500 GHz range which belong to its ground and first excited vibrational states. Remijan, A.J., L.E. Snyder, B.A. McGuire, H.-L. Kuo, L.W. Looney, D.N. Friedel, G.Y. Golubiatnikov, F.J. Lovas, V.V. Ilyushin, E.A. Alekseev, S.F. Dyubko, B.J. McCall, and J.M. Hollis, Observational Results of a Multi-Telescope Campaign in Search of Interstellar Urea [NH22CO]. The Astrophysical Journal, 2014. 783(2): p. 77

  9. Line strengths of rovibrational and rotational transitions within the X^3Σ {^-} ground state of NH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; van Hemert, Marc C.; Groenenboom, Gerrit C.

    2014-08-01

    A new line list for rovibrational and rotational transitions, including fine structure, within the NH X^3Σ {^-} ground state has been created. It contains line intensities in the form of Einstein A and f-values, for all possible bands up to v' = 6, and for J up to between 25 and 44. The intensities are based on a new dipole moment function (DMF), which has been calculated using the internally contracted multi-reference configuration interaction method with an aug-cc-pV6Z basis set. The programs RKR1, LEVEL, and PGOPHER were used to calculate line positions and intensities using the most recent spectroscopic line position observations and the new DMF, including the rotational dependence on the matrix elements. The Hund's case (b) matrix elements from the LEVEL output (available as Supplement 1 of the supplementary material) have been transformed to the case (a) form required by PGOPHER. New relative intensities for the (1,0) band have been measured, and the calculated and observed Herman-Wallis effects are compared, showing good agreement. The line list (see Supplement 5 of the supplementary material) will be useful for the study of NH in astronomy, cold and ultracold molecular systems, and in the nitrogen chemistry of combustion.

  10. Line strengths of rovibrational and rotational transitions in the X2 Π ground state of OH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; Sneden, Christopher; Afşar, Melike; Li, Gang; Gordon, Iouli E.

    2016-01-01

    A new line list including positions and absolute transition strengths (in the form of Einstein A values and oscillator strengths) has been produced for the OH ground X2 Π state rovibrational (Meinel system) and pure rotational transitions. All possible transitions are included with v‧ and v ″ up to 13, and J up to between 9.5 and 59.5, depending on the band. An updated fit to determine molecular constants has been performed, which includes some new rotational data and a simultaneous fitting of all molecular constants. The absolute transition strengths are based on a new dipole moment function, which is a combination of two high level ab initio calculations. The calculations show good agreement with an experimental v = 1 lifetime, experimental μv values, and Δv=2 line intensity ratios from an observed spectrum. To achieve this good agreement, an alteration in the method of converting matrix elements from Hund's case (b) to (a) was made. Partitions sums have been calculated using the new energy levels, for the temperature range 5-6000 K, which extends the previously available (in HITRAN) 70-3000 K range. The resulting absolute transition strengths have been used to calculate O abundances in the Sun, Arcturus, and two red giants in the Galactic open and globular clusters M67 and M71. Literature data based mainly on [O I] lines are available for the Sun and Arcturus, and excellent agreement is found.

  11. Passive Measurement of Hydrogen Ground State Rotational and Vibrational Temperatures in Kinetic Plasmas

    SciTech Connect

    D.R. Farley, D.P. Ludberg and S.A. Cohen

    2010-09-21

    A dipole-quadrupole electron-impact excitation model, consistent with molecular symmetry rules, is presented to fit ro-vibronic spectra of the hydrogen Fulcher-α Q-branch line emissions for passively measuring the rotational temperature of hydrogen neutral molecules in kinetic plasmas with the coronal equilibrium approximation. A quasi-rotational temperature and quadrupole contribution factor are adjustable parameters in the model. Quadrupole excitation is possible due to a violation of the 1st Born approximation for low to medium energy electrons (up to several hundred eV). The Born-Oppenheimer and Franck-Condon approximations are implicitly shown to hold. A quadrupole contribution of 10% is shown to fit experimental data at several temperatures from different experiments with electron energies from several to 100 eV. A convenient chart is produced to graphically determine the vibrational temperature of the hydrogen molecules from diagonal band intensities, if the ground state distribution is Boltzmann. Hydrogen vibrational modes are long-lived, surviving up to thousands of wall collisions, consistent with multiple other molecular dynamics computational results. The importance of inter-molecular collisions during a plasma pulse are also discussed.

  12. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  13. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    NASA Astrophysics Data System (ADS)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  14. The Rotational Spectra of Propyne in the Ground, V(10) = 1, V(10) = 2, and V(9) = 1 Vibrational States

    NASA Astrophysics Data System (ADS)

    Ware, John Matthew

    The problem of a vibrating-rotating polyatomic molecule is treated, with emphasis given to the case of molecules with C(,3V) sym- metry. It is shown that several of the gross features of the rotational spectra of polyatomic molecules in excited vibrational states can be predicted by group theoretical considerations. Expressions for the rotational transition frequencies of molecules of C(,3V) symmetry in the ground vibrational state, singly excited degenerate vibrational states, and doubly excited degenerate vibrational states are given. The deri- vation of these expressions by fourth order perturbation theory as given by Amat, Nielsen, and Tarrago is discussed. The ground and V(,10) = 1 rotational spectra of propyne have been investigated in the 17 to 70 GHz, and 17 to 53 GHz regions, respec- tively, and compared with predictions based on higher frequency measurements. The V(,9) = 1 and V(,10) = 2 rotational spectra of propyne have been investigated and assigned for the first time. A perturbation of the V(,9) = 1 rotational spectra for K = -L has been discovered and discussed. Methods of assignment for excited vibrational state spectra are discussed in detail. The methods of assignment given here allow the analysis of spectra where only a relatively small number of experi- mental points are available. A discrepancy has been found in the interpretation of recently reported infrared results on the rotational spectra of propyne in the V(,10) = 1, 2, 3, and 4 vibrational states. The constants of anharmoni- city which describe the change of the rotational constant, B, with the level of excitation of the V(,10) vibrational mode are rederived from microwave data. It is shown that microwave measurements increase the accuracy of one of these constants by over an order of magnitude.

  15. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  16. High-Resolution Rotational Analysis of Deuterated Hypochlorous Acid: Ground State, (100), and (020) Vibrational States

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Jing; Ulenikov, O. N.; Bekhtereva, E. S.; Ding, Yun; He, Sheng-Gui; Hu, Shui-Ming; Wang, Xiang-Huai; Zhu, Qing-Shi

    2001-09-01

    The high-resolution Fourier transform spectra of the DOCl molecule were recorded and analyzed in the region of the ν1 and 2ν2 bands. Transitions belonging to the ν1 and 2ν2 bands were assigned up to Jmax=55 and 46, respectively. The sets of spectroscopic parameters of the (100) and (020) vibrational states obtained from the fit reproduce their energies derived from the experimental data with accuracies close to experimental uncertainties.

  17. Potential function of the internal rotation of a methacrolein molecule in the ground ( S 0) electronic state

    NASA Astrophysics Data System (ADS)

    Koroleva, L. A.; Krasnoshchekov, S. V.; Matveev, V. K.; Pentin, Yu. A.

    2016-08-01

    The structural parameters of s- trans- and s- cis-isomers of a methacrolein molecule in the ground ( S 0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (Δ H) of the isomers. It is shown that the V n parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s- trans- and s- cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.

  18. The ground states and spin textures of rotating two-component Bose-Einstein condensates in an annular trap

    NASA Astrophysics Data System (ADS)

    Jin, Jingjing; Zhang, Suying; Han, Wei; Wei, Zhifeng

    2013-04-01

    We investigate the ground states and spin textures of rotating two-component Bose-Einstein condensates (BECs) confined in an annular potential. For the two-component miscible BECs, we analytically give the critical angular velocity of each component with the Thomas-Fermi approximation (TFA), at which the density profile changes from a disc shape into an annulus shape, forming a giant vortex. We present a phase diagram showing three kinds of density profiles of the ground states that are two disc shaped, one disc and another annulus shaped, and two annulus shaped. For the two-component immiscible BECs with particle number grave imbalance, we also discuss their ground states using the TFA, and three kinds of symmetrical structures of the density profiles are classified analytically. The spin textures of the two-component immiscible BECs have been studied and we find three kinds of symmetrical structures of the spin textures in the annular trap. One of these textures is an annular skyrmion which has been observed in harmonic potentials. Both of the other spin textures contain a new structure composed of concentric double-annulus skyrmion whose topological charge is the sum of the ones of two annular skyrmions, and the topological charge of each annular skyrmion is equal to the absolute value of the difference between the quantum numbers of circulation of two components inside this annular skyrmion. We also prove that these new textures are robust by investigating the dynamical behaviours of the system under external disturbances.

  19. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  20. Excitation of the ground state rotational band in 20Ne by 0.8 GeV protons

    NASA Astrophysics Data System (ADS)

    Blanpied, G. S.; Balchin, G. A.; Langston, G. E.; Ritchie, B. G.; Barlett, M. L.; Hoffmann, G. W.; McGill, J. A.; Franey, M. A.; Gazzaly, M.; Wildenthal, B. H.

    1984-10-01

    Angular distributions for the scattering of 0.8 GeV polarized protons from the ground state rotational band in 20Ne are reported. Cross sections and analyzing powers for protons exciting these states were measured with a high resolution spectrometer. Coupled channels and distorted wave Born approximation analyses of scattering data for the 0+, 2+, 4+, and experimentally unresolved 6+ states are presented. The observed cross section data for the 0+, 2+, and 4+ states are reproduced quite well with the coupled channels calculations, and the large hexadecapole deformation reported previously is confirmed. The distorted wave Born approximation results are equally good for the 0+ angular distribution, but are a significantly poorer representation of the cross section data for the 2+ and 4+ states. Both calculations do equally well in explaining the 0+ analyzing power data and both fail to explain the 4+ analyzing power data past the region of the first maximum. The coupled channels results do a better job in explaining the 2+ analyzing power data. The multipole moments of the deformed optical potential used in the coupled channels calculations are related to those of the matter distributions by Satchler's theorem. These are compared to the moments found using other hadronic probes, those of the charge distribution determined by electromagnetic measurements, and to moments from shell model and Hartree-Fock calculations.

  1. Rotational energy surface and quasiclassical analysis of the rotational energy level cluster formation in the ground vibrational state of PH 3

    NASA Astrophysics Data System (ADS)

    Petrov, Sergey V.; Kozlovskii, Borislav M.

    2007-06-01

    We report and substantiate a method for constructing the rotational energy surface (RES) of a molecule as a pure classical object. For an arbitrary molecule we start from the potential energy surface rather than from a conventional "effective Hamiltonian". The method is used for constructing the RES of the PH 3 molecule in its ground vibrational state. We have used an ab initio potential energy surface [D. Wang, Q. Shi, Q.-S. Zhu, J. Chem. Phys. 112 (2000) 9624-9631; S.N. Yurchenko, M. Carvajal, P. Jensen, F. Herregodts, T.R. Huet, Chem. Phys. 290 (2003) 59-67.]. The shape of the RES is shown not to change for J from 0 to 120. The procedure of quasiclassical quantization of the RES was also undertaken, yielding a set of quasiclassical critical values of the angular momentum. The results explain the structure of quantum rotational energy levels obtained by variational calculations [S.N. Yurchenko, W. Thiel, S. Patchkovskii, P. Jensen, Phys. Chem. Chem. Phys. 7 (2005) 573-582].

  2. Torsional Splitting in the Rotational Spectrum from 8 TO 650 GHz of the Ground State of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.

    2013-06-01

    Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.

  3. π*-σ* hyperconjugation mechanism on the rotational barrier of the methyl group (III): Methyl-azabenzenes in the ground, excited, and anionic states

    NASA Astrophysics Data System (ADS)

    Kawamura, Y.; Nagasawa, T.; Nakai, H.

    2001-05-01

    We theoretically investigate the internal rotations of the methyl group in methyl-azabenzenes, such as o- and m-methylpyridines, 2-methylpyrazine, 4-methylpyrimidine, 4-methylpyridadine, and 4-methyl-1,2,3-triazine in the ground, excited, and anionic states. The calculated rotational barriers reproduce well the experimental data. Orbital pictures are given for the barrier changes by excitation and electron attachment. An idea of π*-σ* hyperconjugation is applied for a comprehensive interpretation of the barrier changes. A correlation is found between the rotational barriers and the splitting of the lowest and next-lowest unoccupied molecular orbitals.

  4. Dimethyl ether: laboratory spectra up to 2.1 THz. Torsion-rotational spectra within the vibrational ground state

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Drouin, B. J.; Pearson, J. C.; Müller, H. S. P.; Lewen, F.; Schlemmer, S.; Giesen, T. F.

    2009-09-01

    Dimethyl ether (CH_3OCH_3) is one of the largest organic molecules detected in the interstellar medium. As an asymmetric top molecule with two methyl groups which undergo large amplitude motions and a dipole moment of μ=1.3 D, it conveys a dense spectrum throughout the terahertz region and contributes to the spectral line confusion in astronomical observations at these frequencies. In this paper, we present rotational spectra of dimethyl ether in its ground vibrational states, which have been measured in the laboratory and analyzed covering frequencies up to 2.1 THz. The analysis is based on an effective Hamiltonian for a symmetric two-top rotor and includes experimental data published so far. Frequency predictions are presented up to 2.5 THz for astronomical applications with accuracies better than 1 MHz. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/635

  5. Analysis of the rotational spectrum of the ground and first torsional excited states of monodeuterated ethane, CH3CH2D

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian J.; Groner, Peter; Yu, Shanshan; Pearson, John C.

    2015-01-01

    The pure rotational spectrum of mono-deuterated ethane, CH3CH2D, has been measured up to 1600 GHz and spectroscopic constants have been fit to 984 transitions in the ground state and 422 transitions in the first torsional excited state (ν18). Analyses of the ground state data were performed with the programs SPFIT, ERHAM and XIAM and of the first torsional state with SPFIT and ERHAM to extract molecular and spectroscopic constants. A combined fit of both states using ERHAM was used to determine ρ = 0.4344026(68), which in the symmetric limit is the ratio Iα/Iz and a measure of the periodicity of the internal rotation energy with K and the energy differences between the A and E torsional substates, ΔE(E-A), of 74.167(18) and -3382.23(34) MHz for the ground and excited states, respectively. Using these energy differences and the overtone transitions Δv = 2 from Raman measurements in the literature, the coefficients V3 and V6 of the potential function of the internal rotation in CH3CH2D were determined as V3 = 1004.56(4) cm-1 and V6 = 7.09(12) cm-1. This analysis lays the ground work for the assignment of the IR spectrum of CH3CH2D between (680-880 cm-1) which will help quantify isotopic ratios by remote sensing missions.

  6. Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide 32S16O3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called 6-fold rotational energy clusters at high rotational excitation are investigated. The SO3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S-O bonds. This behaviour is characterized theoretically in the J range from 100-250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  7. Rotational Spectrum of SO_3 and Theoretical Evidence for the Formation of Rotational Energy Level Clusters in its Vibrational Ground State

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide SO_3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called rotational energy clusters at high rotational excitation are investigated. The SO_3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S--O bonds. This behaviour is characterized theoretically in the J range from 100 through 250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  8. New Line Lists for Rovibrational and Rotational Transitions Within the NH X^3Σ{^-} and OH X^2Π Ground States

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin; Li, Gang; Groenenboom, Gerrit

    2014-06-01

    A new line list for rovibrational and rotational transitions within the NH X^3Σ{^-} ground state has been created, including line intensities in the form of Einstein A and f-values, for all possible bands up to v^'=6. The intensities are based on a new dipole moment function (DMF), which has been calculated using the internally contracted MRCI method with an aug-cc-pV6Z basis set. The programs RKR1, LEVEL and PGOPHER were used to calculate line positions and intensities using the most recent spectroscopic observations and the new DMF, and including the rotational dependence on the matrix elements. The Hund's case (b) matrix elements from the LEVEL output have been transformed to the case (a) form required by PGOPHER. Equivalent calculations have been performed for the OH X^2Π ground state. This includes a new DMF calculation using the internally contracted MR-ACPF method with an aug-cc-pV6Z basis set. A similar line list has been produced for rovibrational and rotational transitions for all possible transitions up to v^'=13.

  9. Rotation-torsion analysis of the Si2H6 infrared fundamental ν, perturbed by excited torsional levels of the vibrational ground state

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.; Horneman, V.-M.

    The lowest infrared active perpendicular fundamental ν9 of disilane has been analysed on a Fourier transform spectrum between 320 and 430 cm-1, at the spectral resolution of 0.0012 cm-1. The rotation-torsion structure of this band is affected by x,y Coriolis interactions with excited torsional levels of the vibrational ground state, correlating with components of 3ν4 and 4ν4 in the high barrier limit. The interaction of ν9 and 4ν4, forbidden in the D3d symmetry limit, is allowed between components of E torsional symmetry under the G36(EM) extended molecular group, because of the large amplitude of the internal rotation motion. We could determine the values of the main vibration-rotation-torsion parameters of ν9, interaction parameters, and the vibrational wavenumbers of the four torsional components of 3ν4 and of the E3d component of 4ν4. The intrinsic torsional splitting of ν9 is found to be smaller than in the ground vibrational state by 0.0066 cm-1, in good agreement with our theoretical predictions. The possibility of observing the effects of D3d-forbidden interactions in the spectra of ethane-like molecules is also discussed.

  10. Examining Rotational Ground Motion Induced by Tornados

    NASA Astrophysics Data System (ADS)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  11. Direct observation of the fundamental vibration-rotation transitions within the NiD X2Δ ground state by CO-Faraday-L.M.R. spectroscopy and zero field transitions in NiH

    NASA Astrophysics Data System (ADS)

    Lipus, K.; Simon, U.; Bachem, E.; Nelis, Th.; Urban, W.

    We report the first direct observation of the vibration-rotation spectrum of nickel-deuteride in its X2Δ ground state by CO-Faraday-L.M.R. spectroscopy. A set of effective molecular parameters is given. We present first results on the vibration-rotation spectroscopy of NiH, employing a tunable diode laser spectrometer.

  12. Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by muon spin rotation

    NASA Astrophysics Data System (ADS)

    Martin, N.; Deutsch, M.; Bert, F.; Andreica, D.; Amato, A.; Bonfà, P.; De Renzi, R.; Rößler, U. K.; Bonville, P.; Fomicheva, L. N.; Tsvyashchenko, A. V.; Mirebeau, I.

    2016-05-01

    We have studied by muon spin resonance (μ SR ) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double-period oscillations at short-time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014), 10.1103/PhysRevB.89.184425], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well-separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively, associated with short-range and long-range ordered helices, coexist in a large temperature range below TN=170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state, and peculiar band structure of MnGe into account.

  13. Ground State Spin Logic

    NASA Astrophysics Data System (ADS)

    Whitfield, James; Faccin, Mauro; Biamonte, Jacob

    2013-03-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  14. An ab initio calculation of the rotational-vibrational energies in the electronic ground state of NH2

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Buenker, Robert J.; Hirsch, Gerhard; Rai, Sachchida N.

    We have calculated ab initio the three-dimensional potential-energy surface of the NH2 molecule at 145 nuclear geometries spanning energy ranges of about 18 000 cm-1 for the NH stretch and 12 000 cm-1 for the bend. The ab initio configuration-interaction calculations were done using the multireference MRD-CI method. The calculated equilibrium configuration has NH bond length re = 1·0207 Å and bond angle α = 103·1°. The rotational-vibrational energies for 14NH2, 14NHD and 14ND2 were calculated variationally using the Morse-oscillator rigid-bender internal-dynamics Hamiltonian. For 14NH2 we calculate that υ1 = 3267 (3219) cm-1, υ2 = 1462 (1497) cm-1 and υ3 = 3283 (3301) cm-1, where experimental values are given in parentheses.

  15. Note: Improved line strengths of rovibrational and rotational transitions within the X3Σ- ground state of NH

    NASA Astrophysics Data System (ADS)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.

    2015-07-01

    Recently, a line list including positions and transition strengths was published for the NH X3Σ- rovibrational and rotational transitions. The calculation of the transition strengths requires a conversion of transition matrix elements from Hund's case (b) to (a). The method of this conversion has recently been improved during other work on the OH X2Π rovibrational transitions, by removing an approximation that was present previously. The adjusted method has been applied to the NH line list, resulting in more accurate transition strengths. An updated line list is presented that contains all possible transitions with v' and v″ up to 6, and J up to between 25 and 44, depending on the band.

  16. Translational and rotational energy measurements of desorbed water molecules in their vibrational ground state following 157 nm irradiation of amorphous solid water

    NASA Astrophysics Data System (ADS)

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Watanabe, Naoki

    2011-05-01

    Water ice is the major solid component in a variety of astrophysical environments, e.g., cold and dense molecular clouds. Photodesorption plays a dominant role in consuming ice in such cold regions. In this study, photodesorption of vibrationally ground-state H 2O( v = 0) from amorphous solid water has been investigated at 157 nm. Using a resonance-enhanced multiphoton ionization technique, the translational and rotational energy distributions of photodesorbed H 2O( v = 0) were measured, i.e., Boltzmann distributions at 1800 and 300 K, respectively. These energies are in good accordance with those predicted by classical molecular calculations for water photodesorption due to a kick-out mechanism following absorption of a single photon; hot H atom released by photodissociation of H 2O in ice transfers enough momentum to another H 2O molecule to kick it off the surface. Desorption of D 2O( v = 0) following 193 nm photoirradiation of a D 2O/H 2S mixed ice was investigated to provide further direct evidence for the operation of a kick-out mechanism. The other desorption mechanisms were also discussed in the context of possible photodesorption of vibrationally excited H 2O.

  17. Portable sensor technology for rotational ground motions

    NASA Astrophysics Data System (ADS)

    Bernauer, Felix; Wassermann, Joachim; Guattari, Frédéric; Igel, Heiner

    2016-04-01

    In this contribution we present performance characteristics of a single component interferometric fiber-optic gyroscope (IFOG). The prototype sensor is provided by iXBlue, France. It is tested in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology), on its applicability as a portable and field-deployable sensor for rotational ground motions. To fully explore the benefits of this new seismic observable especially in the fields of vulcanology, ocean generated noise and geophysical exploration, such a sensor has to fulfill certain requirements regarding portability, power consumption, time stamping stability and dynamic range. With GPS-synchronized time stamping and miniseed output format, data acquisition is customized for the use in seismology. Testing time stamping accuracy yields a time shift of less than 0.0001 s and a correlation coefficient of 0.99 in comparison to a commonly used data acquisition system, Reftek 120. Sensor self-noise is below 5.0 ṡ 10‑8 rads‑1Hz‑1/2 for a frequency band from 0.001 Hz to 5.0 Hz. Analysis of Allan deviation shows an angle random walk of 3.5 ṡ 10‑8 rads‑1Hz‑1/2. Additionally, the operating range diagram is shown and ambient noise analysis is performed. The sensitivity of sensor self-noise to variations in surrounding temperature and magnetic field is tested in laboratory experiments. With a power consumption of less than 10 W, the whole system (single component sensor + data acquisition) is appropriate for field use with autonomous power supply.

  18. Rotation spectrum and high resolution infrared spectra of the fundamental bands of 121SbD 3. Determination of the ground state and equilibrium structures. Ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; Di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    2006-01-01

    The high resolution infrared spectrum of 121SbD 3, recorded between 20 and 350 cm -1 and in the regions of bending and stretching fundamental bands, centred at 600 and 1350 cm -1, has been analysed. Splittings of the K″=3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k-ℓ)=±3, ±6 and ±9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined fitting simultaneously the rotational transitions and about 9000 ground state combination differences obtained from lines assigned in the ro-vibrational spectra. The A and B reductions of the rotational Hamiltonian have been applied in the analysis of the ground state. They provided almost equivalent results. The molecular parameters of the 1 1, 2 1, 3 1 and 4 1 states have been obtained from the simultaneous analysis of the ν1 ( A1)/ ν3 ( E) stretching and of the ν2 ( A1)/ ν4 ( E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to Coriolis and k-type rovibrational interactions that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries have been determined and compared to those of 121SbH 3 and of 123SbD 3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets have been carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 121-stibine. The theoretical constants and structural parameters are in good agreement with the experimental data.

  19. Internal rotation, spin-orbit coupling, and low-frequency vibrations in the ? ground state of CH3-CC-CH+3 and CD3-CC-CD+3

    NASA Astrophysics Data System (ADS)

    Jacovella, Ugo; Gans, Bérenger; Merkt, Frédéric

    2015-08-01

    Pulsed-field-ionisation zero-kinetic-energy (PFI-ZEKE) photoelectron spectra of 2-butyne (CH3-CC-CH3) and its fully deuterated isotopomer have been recorded in the region of the origin band of the ? ionising transition. The spectral congestion originating from the combined effects of the internal rotation of the methyl groups, the spin-orbit coupling, and the Jahn-Teller effect prevented the full resolution of the rotational structure of the photoelectron spectra. A tentative analysis of the rotational branch structure of the photoelectron spectra using rovibronic photoionisation selection rules derived in the permutation-inversion spin double group G36(M2) suggests a splitting of ∼10.5 cm-1 between the two spin-orbit components E3/2 and E1/2 of the ? 2 E1 ground state and an almost free internal rotation of the methyl groups in the cations. Assignments are proposed for several low-lying vibrational levels of the cations.

  20. Ground-state spin logic

    NASA Astrophysics Data System (ADS)

    Whitfield, J. D.; Faccin, M.; Biamonte, J. D.

    2012-09-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground-state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground-state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  1. Ground states of holographic superconductors

    SciTech Connect

    Gubser, Steven S.; Nellore, Abhinav

    2009-11-15

    We investigate the ground states of the Abelian Higgs model in AdS{sub 4} with various choices of parameters, and with no deformations in the ultraviolet other than a chemical potential for the electric charge under the Abelian gauge field. For W-shaped potentials with symmetry-breaking minima, an analysis of infrared asymptotics suggests that the ground state has emergent conformal symmetry in the infrared when the charge of the complex scalar is large enough. But when this charge is too small, the likeliest ground state has Lifshitz-like scaling in the infrared. For positive mass quadratic potentials, Lifshitz-like scaling is the only possible infrared behavior for constant nonzero values of the scalar. The approach to Lifshitz-like scaling is shown in many cases to be oscillatory.

  2. Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions

    USGS Publications Warehouse

    Spudich, Paul; Fletcher, Jon B.

    2009-01-01

    In two previous articles we presented a formulation for inferring the strains and rotations of the ground beneath a seismic array having a finite footprint. In this article we derive expressions for the error covariance matrices of the inferred strains and rotations, and we present software for the calculation of ground strains, rotations, and their variances from short baseline array ground-motion data.

  3. Molecular heat pump for rotational states

    SciTech Connect

    Lazarou, C.; Keller, M.; Garraway, B. M.

    2010-01-15

    In this work, we investigate the theory for three different unidirectional population-transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state, the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping, we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses, we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems.

  4. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  5. The ground-state average structure of methyl isocyanide

    NASA Astrophysics Data System (ADS)

    Mackenzie, M. W.; Duncan, J. L.

    1982-11-01

    The use of recently determined highly precise inertial data for various isotopic modifications of methyl isocyanide has enabled the ground-state average, or rz, structure to be determined to within very narrow limits. Harmonic corrections to ground-state rotational constants have been calculated using a high-quality, experimentally determined harmonic force field. The derived zero-point inertial constants are sufficiently accurate to enable changes in the CH bond length and NCH bond angle on deuteration to be determined. The present rz structure determination is believed to be a physically realistic estimate of the ground-state average geometry of methyl isocyanide.

  6. Dynamics of molecules in extreme rotational states

    PubMed Central

    Yuan, Liwei; Teitelbaum, Samuel W.; Robinson, Allison; Mullin, Amy S.

    2011-01-01

    We have constructed an optical centrifuge with a pulse energy that is more than 2 orders of magnitude larger than previously reported instruments. This high pulse energy enables us to create large enough number densities of molecules in extreme rotational states to perform high-resolution state-resolved transient IR absorption measurements. Here we report the first studies of energy transfer dynamics involving molecules in extreme rotational states. In these studies, the optical centrifuge drives CO2 molecules into states with J ∼ 220 and we use transient IR probing to monitor the subsequent rotational, translational, and vibrational energy flow dynamics. The results reported here provide the first molecular insights into the relaxation of molecules with rotational energy that is comparable to that of a chemical bond.

  7. Rotational Spectra of Symmetric Top Molecules in Ground and Different Vibrational Excited States, and Phenomenon of Resonance – Applying in CF3CCH

    PubMed Central

    Motamedi, Masoud

    2007-01-01

    This paper deals with review of exploration of resonance in symmetric top molecules in different vibrational excited states, vt = n (n =1, 2, 3, 4). Calculations for CF3CCH shows that resonance take place at k=xℓℓ+(A-B)-2AζAζ-(A-B) and k=xℓℓ+(A-B)-2AζAζ-(A-B) for v10 = 2 and v10 = 3 respectively. In order to account for splitting about 3 MHz for the − 2 series in v10 = 4 is necessary to introduce the element 〈 J,k, ℓ|f24| J,k + 2, ℓ − 4〉 in fitting program.

  8. Millimeter wave and terahertz spectra and global fit of torsion-rotation transitions in the ground, first and second excited torsional states of 13CH3OH methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Lees, R. M.; Hao, Yun; Müller, H. S. P.; Endres, C. P.; Lewen, F.; Schlemmer, S.; Menten, K. M.

    2014-09-01

    Methanol is observed in a wide range of astrophysical sources throughout the universe, and comprehensive databases of the millimeter and THz spectra of CH3OH and its principal isotopologues represent important tools for the astronomical community. A previous combined analysis of microwave and millimeter wave spectra of 13CH3OH together with Fourier transform far-infrared spectra was limited to the first two torsional states, νt = 0 and 1, for J values up to 20. The limits on frequency and quantum number coverage have recently been extended by new millimeter and THz measurements on several different spectrometers in the Cologne laboratory in the frequency windows 34-70 GHz, 75-120 GHz, 240-340 GHz, 360-450 GHz and 1.12-1.50 THz. With the new data, the global treatment has now been expanded to include the first three torsional states for J values up to 30. The current 13CH3OH data set contains about 2300 microwave, millimeter-wave, sub-millimeter and THz lines and about 17,100 Fourier-transform far-infrared lines, representing the most recent available information in the quantum number ranges J ⩽ 30, K ⩽ 13 and νt ⩽ 2. The transitions have been successfully fitted to within the assigned measurement uncertainties of ±50 kHz for most of the frequency-measured (i.e. MW, MMW, Sub-MMW, THz) lines and ±6 MHz for the FIR lines. A convergent global fit was achieved using 103 adjustable parameters to reach an overall weighted standard deviation of 1.37. Our new C-13 methanol database is improved substantially compared to the existing one (Li-Hong et al., 1997), and will be available in the Cologne Database for Molecular Spectroscopy, CDMS (http://www.astro.uni-koeln.de/cdms/), in support of astronomical studies associated with results from HIFI (Heterodyne Instrument for the Far-Infrared) on the Herschel Space Observatory and new observations from SOFIA (Stratospheric Observatory For Infrared Astronomy) and ALMA (Atacama Large Millimeter/Submillimeter Array).

  9. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  10. Toward Triplet Ground State LiNa Molecules

    NASA Astrophysics Data System (ADS)

    Jamison, Alan; Rvachov, Timur; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    We present progress toward creation of ultracold ground-state triplet LiNa molecules. This molecule is expected to have a long lifetime in the triplet ground state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. Our progress includes the first observation of triplet excited states in this molecule, achieved through photoassociation of ultracold mixtures of 6-Li and Na. We compare experimental results to a variety of near-dissociation expansions as well as ab initio potentials.

  11. Synchronous states of slowly rotating pendula

    NASA Astrophysics Data System (ADS)

    Kapitaniak, Marcin; Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej; Kapitaniak, Tomasz

    2014-08-01

    Coupled systems that contain rotating elements are typical in physical, biological and engineering applications and for years have been the subject of intensive studies. One problem of scientific interest, which among others occurs in such systems is the phenomenon of synchronization of different rotating parts. Despite different initial conditions, after a sufficiently long transient, the rotating parts move in the same way - complete synchronization, or a permanent constant shift is established between their displacements, i.e., the angles of rotation - phase synchronization. Synchronization occurs due to dependence of the periods of rotating elements motion and the displacement of the base on which these elements are mounted. We review the studies on the synchronization of rotating pendula and compare them with the results obtained for oscillating pendula. As an example we consider the dynamics of the system consisting of n pendula mounted on the movable beam. The pendula are excited by the external torques which are inversely proportional to the angular velocities of the pendula. As the result of such excitation each pendulum rotates around its axis of rotation. It has been assumed that all pendula rotate in the same direction or in the opposite directions. We consider the case of slowly rotating pendula and estimate the influence of the gravity on their motion. We classify the synchronous states of the identical pendula and observe how the parameters mismatch can influence them. We give evidence that synchronous states are robust as they exist in the wide range of system parameters and can be observed in a simple experiment.

  12. Magnetization ground state and reversal modes of magnetic nanotori

    NASA Astrophysics Data System (ADS)

    Vojkovic, Smiljan; Nunez, Alvaro S.; Altbir, Dora; Carvalho-Santos, Vagson L.

    2016-07-01

    In this work, and by means of micromagnetic simulations, we study the magnetic properties of toroidal nanomagnets. The magnetization ground state for different values of the aspect ratio between the toroidal and polar radii of the nanotorus has been obtained. Besides, we have shown that the vortex and the in-plane single domain states can appear as ground states for different ranges of the aspect ratio, while a single domain state with an out-of-plane magnetization is not observed. The hysteresis curves are also obtained, evidencing the existence of two reversal modes depending on the geometry: a vortex mode and a coherent rotation. A comparison between toroidal and cylindrical nanoparticles has been performed evidencing that nanotori can accommodate a vortex as the ground state for smaller volume than cylindrical nanorings.

  13. Optical Characterization of Deep-Space Object Rotation States

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2014-09-01

    Analysis of time-series data can yield remarkably accurate estimates of the frequency of a satellites brightness modulations. These apparent or synodic frequencies can vary in time, differing from the actual rotation rate of the object by an amount that depends on the relative angular motion between the satellite, illuminator, and observer for reflected light measurements (or between the satellite and observer for thermal emission measurements). When detected with sufficient accuracy, such synodic frequency variations can be exploited to characterize an objects rotation state, using an analysis that does not require any a priori knowledge of the objects shape. For instance, this shape-independent analysis method can be used to derive spin-axis orientations and sidereal rotation rates for spinning objects. Remotely determining such rotation parameters can be useful in many circumstances, such as when performing anomaly resolution of satellites that have lost stabilization. Unfortunately, synodic variations cannot be detected by ground-based observers for many deep-space objects due to low rates of relative angular motion. This is especially true for objects in geosynchronous orbit. In these cases, deriving spin-axis orientations can be accomplished using a shape-dependent method that employs a model of the shape and reflectance characteristics of the object. Our analysis indicates that a simple cylinder model can often suffice to characterize rotation states for upper-stage rocket bodies.

  14. Rotational spectra of the X 2Sigma(+) states of CaH and CaD

    NASA Technical Reports Server (NTRS)

    Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.

    1993-01-01

    The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.

  15. Coherent Control of Ground State NaK Molecules

    NASA Astrophysics Data System (ADS)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  16. Effects of rotational states on the c /a ratio in solid hydrogens

    NASA Astrophysics Data System (ADS)

    Strzhemechny, Mikhail A.; Hemley, Russell J.

    2015-04-01

    We propose an approach to the problem of lattice distortions at low temperatures and ambient pressure in the solid hydrogens in their rotational ground states that explicitly accounts for the molecular nature of the constituent particles. The model is based on the idea that the second-order rotation-related correction to the ground-state energy depends on the lattice parameters. The calculated ground-state rotation-related contributions, δgs=c /a -(8/3 ) 1 /2 , are negative for all species, amounting to about -1.5 ×10-5 for H2 and D2, whereas for HD this contribution is about -0.6 ×10-3 , which is roughly 50 times larger. This substantial difference stems from the fact that the rotational dynamics in the homonuclear solids and in HD differ appreciably. The approach can be generalized to high pressures.

  17. Triplet (S = 1) Ground State Aminyl Diradical

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Pink, Maren; Rajca, Suchada

    2008-04-02

    Aminyl diradical, which is stable in solution at low temperatures, is prepared. EPR spectra and SQUID magnetometry indicate that the diradical is planar and it possesses triplet ground state, with strong ferromagnetic coupling.

  18. On the ground state of metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  19. Lattice QCD Beyond Ground States

    SciTech Connect

    Huey-Wen Lin; Saul D. Cohen

    2007-09-11

    In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.

  20. Mimicking time evolution within a quantum ground state: Ground-state quantum computation, cloning, and teleportation

    SciTech Connect

    Mizel, Ari

    2004-07-01

    Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  1. Ground State and Excited State H-Atom Temperatures in a Microwave Plasma Diamond Deposition Reactor

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Chenevier, M.; Breton, Y.; Petiau, M.; Booth, J. P.; Hassouni, K.

    1996-09-01

    Ground electronic state and excited state H-atom temperatures are measured in a microwave plasma diamond deposition reactor as a function of a low percentage of methane introduced in the feed gas and the averaged input microwave power density. Ground state H-atom temperatures (T_H) and temperature of the H-atom in the n=3 excited state (T_{Hα}) are obtained from the measurements respectively of the excitation profile by Two-photon Allowed transition Laser Induced Fluorescence (TALIF) and the Hα line broadening by Optical Emission Spectroscopy (OES). They are compared to gas temperatures calculated with a 1D diffusive non equilibrium H{2} plasma flow model and to ground electronic state rotational temperatures of molecular hydrogen measured previously by Coherent Anti-Stokes Raman Spectroscopy.

  2. Continuous Optical Production of Ultracold Vibronic Ground State Polar Molecules

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Colin David

    We present recent results on the formation of ultracold polar molecules via photoassociation. Beginning with pre-cooled samples of Rb and Cs atoms, we produce electronically-excited molecules that inherit the ultracold temperature of their atomic precursors. In order to create large samples of ultracold molecules in their vibrational and rotational X 1Sigma+(upsilon=J=0) ground state, we study two different photoassociative regimes. In the first, molecules are created in a particular highly vibrationally-excited molecular state and decay strongly to a weakly-bound vibrational level in the ground a3Sigma + state. To study a possible population transfer scheme from this state to the X1Sigma+(upsilon=J=0) ground state, we present high-resolution depletion spectroscopy of the a 3Sigma+ c3Sigma+ transition for use in the first stage of a proposed Stimulated Raman Adiabatic Passage (STIRAP) transfer. In the second photoassociative regime, molecules are created in deeply-bound, electronically-excited vibrational levels that decay directly to the X1Sigma+(upsilon=0) state, obviating the need for population transfer. Through theoretical analysis and subsequent experimental verification, we demonstrate continuous formation of X 1Sigma+(upsilon=0) RbCs molecules at rates in excess of 103/s. We then conclude with detailed calculations of a method to purify the molecular sample of unwanted excited molecular states, based on inelastic scattering with ultracold Cs atoms.

  3. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  4. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  5. Ground state number fluctuations of trapped particles

    NASA Astrophysics Data System (ADS)

    Tran, Muoi N.

    This thesis encompasses a number of problems related to the number fluctuations from the ground state of ideal particles in different statistical ensembles. In the microcanonical ensemble most of these problems may be solved using number theory. Given an energy E, the well-known problem of finding the number of ways of distributing N bosons over the excited levels of a one-dimensional harmonic spectrum, for instance, is equivalent to the number of restricted partitions of E. As a result, the number fluctuation from the ground state in the microcanonical ensemble for this system may be found analytically. When the particles are fermions instead of bosons, however, it is difficult to calculate the exact ground state number fluctuation because the fermionic ground state consists of many levels. By breaking up the energy spectrum into particle and hole sectors, and mapping the problem onto the classic number partitioning theory, we formulate a method of calculating the particle number fluctuation from the ground state in the microcanonical ensemble for fermions. The same quantity is calculated for particles interacting via an inverse-square pairwise interaction in one dimension. In the canonical ensemble, an analytical formula for the ground state number fluctuation is obtained by using the mapping of this system onto a system of noninteracting particles obeying the Haldane-Wu exclusion statistics. In the microcanonical ensemble, however, the result can be obtained only for a limited set of values of the interacting strength parameter. Usually, for a discrete set of a mean-field single-particle quantum spectrum and in the microcanonical ensemble, there are many combinations of exciting particles from the ground state. The spectrum given by the logarithms of the prime number sequence, however, is a counterexample to this rule. Here, as a consequence of the fundamental theorem of arithmetic, there is a one-to-one correspondence between the microstate and the macrostate

  6. Trapped antihydrogen in its ground state.

    PubMed

    Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2012-03-16

    Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out. PMID:22540471

  7. NEW GROUND-STATE MEASUREMENTS OF ETHYL CYANIDE

    SciTech Connect

    Brauer, Carolyn S.; Pearson, John C.; Drouin, Brian J.; Yu, Shanshan

    2009-09-01

    The spectrum of ethyl cyanide, or propionitrile (CH{sub 3}CH{sub 2}CN), has been repeatedly observed in the interstellar medium with large column densities and surprisingly high temperatures in hot core sources. The construction of new, more sensitive, observatories accessing higher frequencies such as Herschel, ALMA, and SOFIA have made it important to extend the laboratory data for ethyl cyanide to coincide with the capabilities of the new instruments. We report extensions of the laboratory measurements of the rotational spectrum of ethyl cyanide in its ground vibrational state to 1.6 THz. A global analysis of the ground state, which includes all of the previous data and 3356 newly assigned transitions, has been fitted to within experimental error to J = 132, K = 36, using both Watson A-reduced and Watson S-reduced Hamiltonians.

  8. Measuring both Rotational and Translational Ground-Motions from Explosions and Local Earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, B.; Lee, W.; Lin, C.; Liu, C.; Shin, T.; Teng, T.; Wu, C.

    2008-12-01

    Since rotational motions can "contaminate" translational ground-motion measurements due to the induced perturbation of the Earth's gravitational field, we started a program to measure rotational ground motions near Hualien (Taiwan) in December, 2000. However, no useful data were obtained after 3 years, until a rotational sensor of much higher sensitivity was deployed at the HGSD station in eastern Taiwan in December, 2004. Rotational and translational seismograms were obtained from several hundred local earthquakes. As noted by several authors before, we found a linear relationship between peak rotational rate (PRR in mrad/s) and peak ground acceleration (PGA in m/s2) from local earthquakes in Taiwan: PRR = 0.002 + 1.301 PGA, with a correlation coefficient of 0.988. Taking advantage of two large explosions of the TAIGER Active Seismic Experiment, we deployed 13 accelerometers and 8 rotational sensors within 600 m from the N3 shot points and obtained some interesting results, which will be presented by Langston et al. in this Session. In December, 2007, we began an instrument array deployment along the Meishan fault in southwestern Taiwan, where a major earthquake occurred in 1906 with surface rupture of more than 12 km long. The deployed instruments are: (1) a 32-element seismic array in free-field, (2) a 32-element accelerometer array in a building, (3) a six-channel unit with a low-gain broadband seismometer and an accelerometer, and (4) two six-channel units with an accelerometer and an external rotational senor. We have 8 rotational sensors now deployed in Taiwan and seven new rotational sensors are scheduled for deployment soon in a program to assess the effect of ground rotation on traditional measurements of translational strong ground motions.

  9. Individual Atoms in their Quantum Ground State

    NASA Astrophysics Data System (ADS)

    Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.

    2016-05-01

    An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.

  10. Microwave Spectra of Furazan. IV. Rotation Spectra of Vibrationally Excited States of Perdeuterated Furazan

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1990-10-01

    The pure rotation spectra of molecules in 25 vibrationally excited states of perdeuterated furazan, C2D2N2O, have been studied by double resonance modulation (DRM) microwave spectroscopy. Twelve of these spectra have been correlated, -on the basis of relative intensity measurements under DRM -, with fundamental vibrations as previously established by IR spectroscopy. Rotational parameters for these 12 fundamental levels are reported, and the contributions to the effective rotational constants and to the inertia defect of the ground state of d2 -furazan have been determined for 10 modes of vibration.

  11. Mass coefficient and Grodzins relation for the ground-state band and {gamma} band

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2006-12-15

    It is shown that the available experimental data on the energies of the first and the {gamma}-vibrational 2{sup +} states and the reduced E2 transition probabilities from these states to the ground state require for the explanation significantly different values of the mass coefficients for the rotational motion and {gamma}-vibrations.

  12. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  13. Recovery of Near-Fault Ground Motion by Introducing Rotational Motions

    NASA Astrophysics Data System (ADS)

    Chiu, H. C.

    2014-12-01

    Near-fault ground motion is the key data to seismologists for revealing the seismic faulting and earthquake physics and strong-motion data is the only near-fault seismogram that can keep on-scale recording in a major earthquake. Unfortunately, this type of data might be contaminated by the rotation induced effects such as the centrifugal acceleration and the gravity effects. We analyze these effects based on a set of collocated rotation-translation data of small to moderate earthquakes. Results show these rotation effects could be negligible in small ground motion, but they might have a radical growing in the near-fault/extremely large ground motions. In order to extract more information from near-fault seismogram for improving our understating of seismic faulting and earthquake physics, it requires six-component collocated rotation-translation records to reduce or remove these effects.

  14. A high precision, compact electromechanical ground rotation sensor

    SciTech Connect

    Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; and others

    2014-05-15

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10{sup −11}m/√( Hz ). We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10{sup −9} rad /√( Hz ) at 10 mHz and 6.4 × 10{sup −10} rad /√( Hz ) at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  15. A high precision, compact electromechanical ground rotation sensor.

    PubMed

    Dergachev, V; DeSalvo, R; Asadoor, M; Bhawal, A; Gong, P; Kim, C; Lottarini, A; Minenkov, Y; Murphy, C; O'Toole, A; Peña Arellano, F E; Rodionov, A V; Shaner, M; Sobacchi, E

    2014-05-01

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1 × 10⁻¹¹ m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7 × 10⁻⁹ rad/√Hz at 10 mHz and 6.4 × 10⁻¹⁰ rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality. PMID:24880388

  16. Solid state replacement of rotating mirror cameras

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Bartolick, Joseph M.

    2007-01-01

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed 'In-situ Storage Image Sensor' or 'ISIS', by Prof. Goji Etoh has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  17. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  18. Short Rotation Crops in the United States

    SciTech Connect

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  19. On the ground state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.

    1998-05-01

    In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved

  20. Magnetic properties of ground-state mesons

    NASA Astrophysics Data System (ADS)

    Šimonis, V.

    2016-04-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties ( i.e., usual magnetic moments) to be of sufficiently high quality, too.

  1. Ground-state energy of nuclear matter

    NASA Astrophysics Data System (ADS)

    Baker, George A., Jr.; Benofy, L. P.; Fortes, Mauricio

    1988-07-01

    The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k6F for the ladder approximation and through order k6FlnkF for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Padé extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.

  2. Ground state of the hydrogen negative ion

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan

    2009-03-01

    Based on recently developed variational many-body Schr"odinger equation for electrons with Coulomb interactions [1], we provide first numerical results for the ground state electron structure of the hydrogen negative ion. It is shown that Fermi-Teller promotion effect together with non-adiabatic screening effects due to the Pauli's exclusion principle are responsible for the weak binding of the anion. The calculated ionization potential J=-1/2 - 2 λ+ <1/r12> of the hydrogen negative ion is compared with the experiment, where λ is the mean binding energy per one electron in the ground state.[0pt] [1] B. D. Obreshkov , Phys. Rev. A 78, 032503 (2008).

  3. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  4. Ground state degeneracy of interacting spinless fermions

    NASA Astrophysics Data System (ADS)

    Wei, Zhong-Chao; Han, Xing-Jie; Xie, Zhi-Yuan; Xiang, Tao

    2015-10-01

    We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation. Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all dimensions with arbitrary lattice structures.

  5. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  6. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  7. Seafloor ground rotation observations: potential for improving signal-to-noise ratio on horizontal OBS components

    NASA Astrophysics Data System (ADS)

    Lindner, Fabian; Wassermann, Joachim; Schmidt-Aursch, Mechita; Schreiber, Ulrich; Igel, Heiner

    2015-04-01

    It is well known that the horizontal components of ocean bottom seismometer (OBS) records have a very poor signal-to-noise (S/N) ratio compared to the vertical components, the difference substantially exceeding that of terrestrial records. This is unfortunate as 1) OBS experiments are expensive and the main possibility to gather data in offshore areas, and 2) today we are more and more interested in modelling complete waveforms including all three components aiming at optimally constraining geophysical parameters for inverse problems for Earth's structure and seismic sources. Despite the fact that it is expected that tilting is the major cause of this high S/N - to our knowledge - this effect has never been directly observed. The reason is that (standard) instruments for the measurement of uncontaminated rotational ground motions with the required sensitivity still do not exist. Here, we report observations from an experiment we carried out in the North Sea, close to the island of Helgoland in the summer of 2014. A commercial fibre-optic gyro (usually used for navigation purposes) recording ground rotation rate with a sensitivity of approx. 10-7 rad/s was mounted on an OBS system together with a broadband seismometer. The system was lowered to the seafloor for about a week. To investigate a potential connection between rotational ground motions around the two horizontal axes (i.e., tilting) we calculate the coherence between the corresponding motion components (e.g., rotations around x-axis and translational motions along y-axis, and vice versa). We find very high correlations, on average exceeding 0.73 in the period interval 7-13 seconds. Correlations seem to increase with noise amplitude. Rotation rate amplitudes are in the range of 10-6 -10-5 rad/s. This clearly indicates that the horizontal translational components are severely contaminated by rotations around the horizontal axes. The ground rotation observations allow correcting for this effect thereby

  8. Ground state fidelity from tensor network representations.

    PubMed

    Zhou, Huan-Qiang; Orús, Roman; Vidal, Guifre

    2008-02-29

    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields. PMID:18352611

  9. The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state

    NASA Technical Reports Server (NTRS)

    Plummer, G. M.; Herbst, E.; De Lucia, F. C.; Blake, G. A.

    1986-01-01

    Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH3) in its ground v(t) = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v(t) = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J not greater than 30 and rotational energy of not more than 350/cm. The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band.

  10. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y.

    2014-07-14

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC{sup +}). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC{sup +}(X{sup ~}) ground state are …10σ{sup 2} 5π{sup 4} 11σ{sup 2} (X{sup ~1}Σ{sup +}). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm{sup −1} (6.9889 ± 0.0001 eV) and the rotation constant B{sub 0}{sup +} = 0.5681 ± 0.0007 cm{sup −1}. The latter value allows the determination of the bond distance r{sub 0}{sup +} = 1.671 ± 0.001 Å for NbC{sup +}(X{sup ~1}Σ{sup +}). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D{sub 0}’s) for NbC{sup +} and NbC, D{sub 0}(NbC{sup +}) − D{sub 0}(NbC) = −1855.4 ± 0.9 cm{sup −1} (−0.2300 ± 0.0001 eV). The energetic values and the B{sub 0}{sup +} constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  11. Reducing collective quantum state rotation errors with reversible dephasing

    SciTech Connect

    Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.

    2014-12-29

    We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.

  12. Ground-state structures of Hafnium clusters

    SciTech Connect

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  13. Adaptation of the S-5-S pendulum seismometer for measurement of rotational ground motion

    NASA Astrophysics Data System (ADS)

    Knejzlík, Jaromír; Kaláb, Zdeněk; Rambouský, Zdeněk

    2012-10-01

    The Russian electrodynamic seismometer model S-5-S has been adapted for the measurement of rotational ground motion. The mechanical system of the original S-5-S seismometer consists of electrodynamic sensing and damping transducer coils mounted on an asymmetrical double-arm pendulum. This pendulum is suspended on a footing using two pairs of crossed flat springs, which operate as the axis of rotation. The pendulum is stabilised by an additional spring. The S-5-S can be used either as a vertical or as a horizontal sensor. The adaptation of the S-5-S seismometer described below involves removal of the additional spring and installation of an additional mass on the damping arm. Strain gauge angle sensors are installed on one pair of the crossed flat springs. The main dynamic parameters of the rotational seismometer created in this way, i.e. the natural period and damping, are controlled electronically by feedback currents proportional to the angular displacement and angular velocity, both fed to the damping transducer coil. This new seismometer, named the S-5-SR, enables measurement of the rotational component of ground motion around the horizontal or the vertical axes. The output signal from this S-5-SR seismometer can be proportional either to rotational displacement or rotational velocity.

  14. Inhibited rotational quenching in oriented ultra-high rotational states of CO2

    NASA Astrophysics Data System (ADS)

    Toro, Carlos; Liu, Qingnan; Echebiri, Geraldine O.; Mullin, Amy S.

    2013-07-01

    We demonstrate long-lived rotational orientation of CO2 molecules originally prepared in an optical centrifuge. The optical centrifuge traps molecules in a strong optical field and spins them to high rotational states by angular acceleration of the optical field. In the case of CO2, the optical centrifuge creates ultra-high rotational states with J ≥ 220. Polarisation-dependent, high-resolution transient infrared (IR) absorption was used to measure the spatial orientation of CO2 molecules in the (0000, J = 76) state following the optical centrifuge pulse and subsequent collisional energy transfer. Transient Doppler-broadened line profiles show that CO2 molecules in J = 76 probed with an IR transition dipole parallel to the initial plane of rotation are more plentiful and have higher translational temperatures than molecules with an IR transition dipole perpendicular to this plane. Time-dependent data show that the initial angular momentum orientation persists even after thousands of collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. These observations demonstrate that the optical centrifuge prepares an anisotropic rotational distribution and that molecules in oriented, ultra-high angular momentum states require many more collisions to randomise their orientation than do those in low rotational states.

  15. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  16. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  17. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  18. Probing the ground state in gauge theories

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-03-01

    We consider two very different models of the flux tube linking two heavy quarks: a string linking the matter fields and a Coulombic description of two separately gauge invariant charges. We compare how close they are to the unknown true ground state in compact U(1) and the SU(2) Higgs model. Simulations in compact U(1) show that the string description is better in the confined phase but the Coulombic description is best in the deconfined phase; the last result is shown to agree with analytical calculations. Surprisingly in the nonabelian theory the Coulombic description is better in both the Higgs and confined phases. This indicates a significant difference in the width of the flux tubes in the two theories.

  19. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  20. Ground states of finite spherical Yukawa crystals

    NASA Astrophysics Data System (ADS)

    Baumgartner, H.; Asmus, D.; Golubnychiy, V.; Ludwig, P.; Kählert, H.; Bonitz, M.

    2008-09-01

    Small three-dimensional strongly coupled clusters of charged particles in a spherical confinement potential arrange themselves in nested concentric shells. If the particles are immersed into a background plasma the interaction is screened. The cluster shell configuration is known to be sensitive to the screening strength. With increased screening, an increased population of the inner shell(s) is observed. Here, we present a detailed analysis of the ground state shell configurations and configuration changes in a wide range of screening parameters for clusters with particle numbers N in the range of 11 to 60. We report three types of anomalous behaviors which are observed upon increase of screening, at fixed N or for an increase of N at fixed screening. The results are obtained by means of extensive first principle molecular dynamics simulations.

  1. Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar.

    PubMed

    Tkáč, Ondřej; Saha, Ashim K; Loreau, Jérôme; Parker, David H; van der Avoird, Ad; Orr-Ewing, Andrew J

    2015-06-11

    Rotationally inelastic scattering of ND3 with Ar is studied at mean collision energies of 410 and 310 cm(–1). In the experimental component of the study, ND3 molecules are prepared by supersonic expansion and subsequent hexapole state selection in the ground electronic and vibrational levels and in the jk(±) = 1(1) rotational level. A beam of state-selected ND3 molecules is crossed with a beam of Ar, and scattered ND3 molecules are detected in single final j′k′(±) quantum states using resonance enhanced multiphoton ionization spectroscopy. State-to-state differential cross sections for rotational-level changing collisions are obtained by velocity map imaging. The experimental measurements are compared with close-coupling quantum-mechanical scattering calculations performed using an ab initio potential energy surface. The computed DCSs agree well with the experimental measurements, confirming the high quality of the potential energy surface. The angular distributions are dominated by forward scattering for all measured final rotational and vibrational inversion symmetry states. This outcome is in contrast to our recent results for inelastic scattering of ND3 with He, where we observed significant amount of sideways and backward scattering for some final rotational levels of ND3. The differences between He and Ar collision partners are explained by differences in the potential energy surfaces that govern the scattering dynamics. PMID:25532415

  2. Engineering the Ground State of Complex Oxides

    NASA Astrophysics Data System (ADS)

    Meyers, Derek Joseph

    Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies. The first of the three methods involves a relatively new set of compounds which adhere to a unique paradigm in chemical doping, a-site ordered perovskites. These compounds are iso-structural, i.e. constant symmetry, despite changing the dopant ions. We find that these materials, featuring Cu at the doped A-site, display the Zhang-Rice state, to varying degrees, found in high temperature superconducting cuprates, with the choice of B-site allowing "self-doping" within the material. Further, we find that within CaCu3Ir 4O12 the Cu gains a localized magnetic moment and leads to the experimentally observed heavy fermion state in the materials, one of only two such non-f-electron heavy fermion materials. Next, epitaxial constraint is used to modify the ground state of the rare-earth nickelates in ultra thin film form. Application of compressive (tensile) strain is found to suppress (maintain) the temperature at which the material goes through a Mott metal-insulator transition. Further, while for EuNiO3 thin films the typical bulk-like magnetic and charge ordering is found to occur, epitaxial strain is found to suppress the charge ordering in NdNiO3 thin films due to pinning to the substrate and the relatively weak tendency to monoclinically distort. Finally, the creation of superlattices of EuNiO3 and LaNiO3 was shown to not only allow the selection of the temperature at which

  3. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  4. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  5. Ground-state phase diagram of the quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Liu, Maoxin; Luo, Hong-Gang; Lin, Hai-Qing; You, J. Q.

    2015-11-01

    The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.

  6. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  7. Magnetic ground state of FeSe

    PubMed Central

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  8. Magnetic ground state of FeSe.

    PubMed

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K; Iida, K; Christianson, A D; Walker, H C; Adroja, D T; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Zhao, Jun

    2016-01-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986

  9. Magnetic ground state of FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun

    2016-07-01

    Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities.

  10. Neutrino ground state in a dense star

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Tytgat, Michel H. G.

    1998-05-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars.

  11. Observation and Calculation of the Quasibound Rovibrational Levels of the Electronic Ground State of H2+

    NASA Astrophysics Data System (ADS)

    Beyer, Maximilian; Merkt, Frédéric

    2016-03-01

    Although the existence of quasibound rotational levels of the X+ 2Σg+ ground state of H2+ was predicted a long time ago, these states have never been observed. Calculated positions and widths of quasibound rotational levels located close to the top of the centrifugal barriers have not been reported either. Given the role that such states play in the recombination of H (1 s ) and H+ to form H2+, this lack of data may be regarded as one of the largest unknown aspects of this otherwise accurately known fundamental molecular cation. We present measurements of the positions and widths of the lowest-lying quasibound rotational levels of H2+ and compare the experimental results with the positions and widths we calculate using a potential model for the X+ state of H2+ which includes adiabatic, nonadiabatic, relativistic, and radiative corrections to the Born-Oppenheimer approximation.

  12. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; Stein, Aaron; Langridge, Sean; Marrows, Christopher H.

    2011-01-01

    Recent advances in nanotechnology allow model systems to be constructed, in which frustrated interactions can be tuned at will, such as artificial spin ice. The symmetry of the square ice lattice leads to the emergence of a long-range-ordered ground state from the manifold of frustrated states. However, it is experimentally very difficult to access using the effective thermodynamics of rotating-field demagnetization protocols, because the energy barriers to thermal equilibrium are extremely large. Here we study an as-fabricated sample that approaches the ground state very closely. We identify the small localized departures from the ground state as elementary excitations of the system, at frequencies that follow a Boltzmann law. We therefore identify the state we observe as the frozen-in residue of true thermodynamics that occurred during the fabrication of the sample. The relative proportions of different excitations are suggestive of monopole interactions during thermalization.

  13. Tunable ground states in helical p-wave Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Yu, Dongyang; Chen, Chongju; Zhang, Yinhan; Jin, Biao

    2016-07-01

    We study new types of Josephson junctions composed of helical p-wave superconductors with {k}x\\hat{x}+/- {k}y\\hat{y} and {k}y\\hat{x}+/- {k}x\\hat{y}-pairing symmetries using quasi-classical Green’s functions with generalized Riccati parametrization. The junctions can host rich ground states: π phase, 0 + π phase, φ 0 phase and φ phase. The phase transition can be tuned by rotating the magnetization in the ferromagnetic interface. We present the phase diagrams in the parameter space formed by the orientation of the magnetization or by the magnitude of the interfacial potentials. The selection rules for the lowest order current which are responsible for the formation of the rich phases are summarized from the current-phase relations based on the numerical calculation. We construct a Ginzburg–Landau type of free energy for the junctions with d-vectors and the magnetization, which not only reveals the interaction forms of spin-triplet superconductivity and ferromagnetism, but can also directly lead to the selection rules. In addition, the energies of the Andreev bound states and the novel symmetries in the current-phase relations are also investigated. Our results are helpful both in the prediction of novel Josephson phases and in the design of quantum circuits.

  14. Interface Representations of Critical Ground States

    NASA Astrophysics Data System (ADS)

    Kondev, Jane

    1995-01-01

    We study the critical properties of the F model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice, by mapping these models to models of rough interfaces. In particular, we construct operators in a systematic way, which is provided by the interface representation, and we show that their scaling dimensions can be related to the stiffness of the interface. Two types of operators are found, and they correspond to electric and magnetic charges in the Coulomb gas which is related to the interface model by the usual duality transformation. Furthermore, we find that the stiffness of the interface models, and therefore all the critical exponents, can be calculated exactly by considering the contour correlation function which measures the probability that two points on the interface belong to the same contour loop. The exact information about the stiffness also allows us to analyze in detail the conformal field theories (CFT) that represent the scaling limits of the interface models. We find that CFT's associated with the F model, the three -coloring model, and the four-coloring model, have chiral symmetry algebras given by the su(2)_{k=1 }, su(3)_{k=1}, and su(4) _{k=1} Kac-Moody algebras, respectively. The three-coloring and the four coloring-model are ground states of certain antiferromagnetic Potts models, and the behavior of these Potts models at small but finite temperatures is determined by topological defects that can be defined in the associated interface models. In this way we calculate the correlation length and the specific heat of the Potts models, and they are in good agreement with numerical simulations. We also present our Monte-Carlo results for the scaling dimensions of operators in the four-coloring model, and they are in excellent agreement with our analytical results. Finally, we define geometrical exponents for contour loops on self -affine interfaces and calculate their values as a function of the

  15. Triaxiality of the ground states in the 174W

    NASA Astrophysics Data System (ADS)

    Ya, Tu; Chen, Y. S.; Liu, L.; Gao, Z. C.

    2016-05-01

    We have performed calculations for the ground states in 174W by using the projected total energy surface (PTES) calculations. Both the ground state (g.s.) band and its γ band reproduce the experimental data. Further discussion about the triaxiality in 174W has been made by transition quardrupole moment (Qt) and comparing between the PTES and TRS methods.

  16. Ground based studies of the vibrational and rotational dynamics of acoustically levitated drops and shells

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Leung, E.

    1990-01-01

    A substantial amount of experimental data can be gathered on the dynamics of acoustically positioned liquids in a ground-based laboratory and during short duration low-gravity parabolic flights of the KC-135. The preliminary results of a set of measurements of the static shape, of the vibrational spectrum, and the rotation equilibrium shapes of simple drops and liquid shells carried out using ultrasonic levitators working between 19 and 40 kHz is presented. The droplet diameter ranges between 1 and 5 mm, the surface tension of the liquid used varies between 25 and 70 dynes/cm, and the viscosity is changed between 1 to 1,000 cP. Of particular interest is the variation of the frequency of the fundamental mode of shape oscillation with various factors, and the effects of static drop shape deformation on the limit of stability of the axisymmetric shape of a drop in solid-body rotation.

  17. Ground Demonstration of Synchronized Formation Rotations for Precision, Multi-Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Keim, Jason A.; Hadaegh, Fred Y.

    2008-01-01

    This paper reports the ground demonstration of precision synchronized formation rotations with better than 6 arcmin/5 cm performance in the Formation Control Testbed (FCT). The FCT currently consists of two, five degree-of-freedom, air bearing-levitated robots. The sixth degree-of-freedom, vertical translation, is being added in November 2007. Each robot has a suite of flight-like avionics and actuators, including a star tracker, fiber-optic gyroscopes, reaction wheels, cold-gas thrusters, inter-robot communication, and on-board computers that run the Formation and Attitude Control System software.

  18. Pseudosteady-state mixed convection inside rotating spherical containers

    SciTech Connect

    Khodadadi, J.M.; Li, W.; Shi, X.

    1999-07-01

    A computational study of the pseudosteady-state two-dimensional mixed convection within rotating spherical containers is presented. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables, whereby the time-dependent continuity, momentum and energy equations in the spherical coordinate system are solved. Natural convection effect is modeled via the Boussinesq approximation. For a fixed Prandtl number of 4.62, parametric studies were performed by varying the Rayleigh number in order to cover the laminar regime adequately. For a given Rayleigh number, the ratio of Gr/Re{sup 2} was varied between 0.1 and 10. Given a Rayleigh number, the streamline patterns maintain their general shape with a dominant rotating vortex. As the forced convection effect becomes less marked, the streamlines exhibit less pronounced gradients near the surface of the sphere. As the rotational effect become more marked, the extent of the deviation from the limiting case of non-rotating spheres becomes more noticed. However, the bottom of the sphere still remains to be the region with enhanced heat transfer. Given a rotational Reynolds number, the streamline patterns are not affected greatly as the natural convection is promoted, however the temperature gradients near the surface are markedly enhanced. It is noticed that as natural convection effects are promoted, the greater portion of the sphere's surface experiences enhanced heat transfer rates. Given a Rayleigh number, the contours of the azimuthal velocity exhibit a nearly vertical equally-spaced pattern suggesting that solid-body rotation for high rotational Reynolds numbers. However, as the natural convection effects are enhanced, the contours become more slanted. The variation of the mean Nusselt number with the Reynolds and Rayleigh numbers is also quantified.

  19. Probabilistic rotational state preparation of a single molecular ion though consecutive partial projection measurements

    NASA Astrophysics Data System (ADS)

    Drewsen, Michael

    2016-05-01

    Fully quantum state prepared molecular ions are of interest for a wide range of research fields, including ultra-cold chemistry, ultra-high resolution spectroscopy for test of fundamental physics, and quantum information science. Cooling of the translational degrees of freedom of trapped molecular ions into the millikelvin range has become routine through Coulomb interactions with simultaneously trapped and Doppler laser-cooled atomic ions, and recently it has even become possible to prepare a single molecular ion in its absolute ground state with respect to its quantized motion in the external trapping potential. With respect to the internal rovibrational degrees of freedom, significant progress towards single quantum state preparation has as well recently been realized by a series of complementary methods. In the talk, a novel method for probabilistic rotational state preparation of polar molecular ions based on consecutive partial projection measurements will be discussed. Results of state preparation of vibrational cold single MgH+ ions in the rotational ground or first excited state with maximum likelihood estimated populations of 0.98 and 0.95, respectively, will be presented.

  20. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.

    2012-09-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  1. From rotating atomic rings to quantum Hall states

    PubMed Central

    Roncaglia, M.; Rizzi, M.; Dalibard, J.

    2011-01-01

    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state. PMID:22355562

  2. Rotating mirror plasmas in the quest of magnetofluid states

    NASA Astrophysics Data System (ADS)

    Quevedo, Hernan Javier

    The goal of this dissertation is to describe and discuss the first steps taken by the Magneto Bernoulli eXperiment (MBX) to create magnetofluid states in the laboratory using a rotating plasma in an external mirror magnetic field. The terminology magnetofluid has been introduced to characterize a plasma model, based on 2-fluid theory, that treats the flow and the magnetic field in a symmetrical way. Many interesting astrophysical and laboratory problems involve large flows and fall in this category. Based on the set of parameters where MBX should run, we set up the experiment, and added different probes to diagnose the rotating plasma. We have also installed a data acquisition system, and set up an archive system (to store the data) that can be accessed worldwide. Experimental results demonstrate that supersonic flows can be generated with biasing electrodes at the throat of the mirror magnetic field. Alfvenic flows needed for a transition to magnetofluid states could not be reached because the initial plasma density was too low. At low bias (slow rotational speed) the plasma has E x B/B 2 drift rotation and the magnetic fields lines are equipotentials. With a higher bias, we observed large potential drops along the field lines. We also observed an asymmetry in the polarity of the bias which leads to constraints in the control of the sheared plasma flow. We present a model that captures many of these features. In conjunction with experimental efforts we develop a theory for a rotating plasma embedded in an external mirror magnetic field. An analytic solution that involves rigid rotation of the plasma shows important differences between a 2-fluid system and ideal MHD. We find high non equipotential magnetic lines and asymmetry to compare with the experimental results.

  3. A prediction of the rotational states for partially deuterated ammonium ions in NH4 - xDxClO4

    NASA Astrophysics Data System (ADS)

    Maki, Kazuo

    1983-01-01

    Splittings of the librational ground state of partially deuterated ammonium ions in the ammonium perchlorate crystal are calculated. Heat capacity anomalies are predicted to be observed at around 1-3 K, a careful measurement of which will be very useful for characterizing the anisotropy of the rotational potential.

  4. Global ab initio ground-state potential energy surface of N4

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Yang, Ke R.; Varga, Zoltan; Truhlar, Donald G.

    2013-07-01

    We present a global ground-state potential energy surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in N2-N2 collisions. To obtain the surface, complete active space second-order perturbation theory calculations were performed for the ground singlet state with an active space of 12 electrons in 12 orbitals and the maug-cc-pVTZ triple zeta basis set. About 17 000 ab initio data points have been calculated for the N4 system, distributed along nine series of N2 + N2 geometries and three series of N3 + N geometries. The six-dimensional ground-state potential energy surface is fitted using least-squares fits to the many-body component of the electronic energies based on permutationally invariant polynomials in bond order variables.

  5. The millimeter and submillimeter laboratory spectrum of methyl formate in its ground symmetric torsional state

    NASA Technical Reports Server (NTRS)

    Plummer, G. M.; Herbst, E.; De Lucia, F.; Blake, G. A.

    1984-01-01

    Over 200 rotational lines of methyl formate in its ground (v sub t = 0), symmetric (A) torsional state have been measured in the frequency range 140-550 GHz. Analysis of these and lower frequency transitions permits accurate prediction (below 0.1 MHz) of over 10,000 transitions at frequencies below 600 GHz with angular momentum J lower than 50. The measured spectral lines have permitted identification of over 100 new methyl formate lines in Orion.

  6. Fast ground state manipulation of neutral atoms in microscopic optical traps.

    PubMed

    Yavuz, D D; Kulatunga, P B; Urban, E; Johnson, T A; Proite, N; Henage, T; Walker, T G; Saffman, M

    2006-02-17

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 microm at the level of 10(-3). Ramsey spectroscopy is used to measure a dephasing time of 870 micros, which is approximately 5000 longer than the time for a pi/2 pulse. PMID:16605988

  7. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    Disordered hyperuniform many-particle systems have been receiving recent attention because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. It has been shown numerically that systems of particles interacting with ``stealthy'' bounded, long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are, counterintuitively, disordered, hyperuniform and highly degenerate. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space is highly nontrivial because the dimensionality of the configuration space depends on the number density and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. A new type of statistical-mechanical theory had to be invented to characterize these exotic states of matter. I report on some initial progress that we have made in this direction. We show that stealthy disordered ground states behave like ''pseudo''-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for the structure and thermodynamic properties of the stealthy disordered ground states and associated excited states are in excellent agreement with computer simulations across dimensions.

  8. Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Systems of particles interacting with "stealthy" pair potentials have been shown to possess infinitely degenerate disordered hyperuniform classical ground states with novel physical properties. Previous attempts to sample the infinitely degenerate ground states used energy minimization techniques, introducing algorithmic dependence that is artificial in nature. Recently, an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure and thermodynamics that was shown to be in excellent agreement with corresponding computer simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we provide details and justifications of the simulation procedure, which involves performing molecular dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots for both the high-density disordered regime, where the theory applies, as well as lower densities. We also use numerical simulations to extend our study to the lower-density regime. We report results for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density regime, we verify the theoretical ansatz that stealthy disordered ground states behave like "pseudo" disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact integral conditions with very high accuracy. These results show that as the density decreases from the high-density limit, the disordered ground states in the canonical ensemble are characterized by an increasing degree of short-range order and eventually the system undergoes a phase transition to crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures that are part of the ground-state manifold but yet are not entropically favored. We also provide numerical evidence suggesting that different forms of stealthy pair potentials produce the same ground-state ensemble in the zero

  9. Ground state and constrained domain walls in Gd /Fe multilayers

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Prieto, José L.; Mathur, Neil D.

    2005-03-01

    The magnetic ground state of antiferromagnetically coupled Gd /Fe multilayers and the evolution of in-plane domain walls is modeled with micromagnetics. The twisted state is characterized by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios MFe:MGd, the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio MFe:MGd but also by the thicknesses of the layers; that is by the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe-aligned and the Gd-aligned state in favor of the twisted state. On the other hand, ultrathin layers exclude the twisted state, since wider domain walls cannot form in these ultrathin layers.

  10. Analysis of ground state in random bipartite matching

    NASA Astrophysics Data System (ADS)

    Shi, Gui-Yuan; Kong, Yi-Xiu; Liao, Hao; Zhang, Yi-Cheng

    2016-02-01

    Bipartite matching problems emerge in many human social phenomena. In this paper, we study the ground state of the Gale-Shapley model, which is the most popular bipartite matching model. We apply the Kuhn-Munkres algorithm to compute the numerical ground state of the model. For the first time, we obtain the number of blocking pairs which is a measure of the system instability. We also show that the number of blocking pairs formed by each person follows a geometric distribution. Furthermore, we study how the connectivity in the bipartite matching problems influences the instability of the ground state.

  11. Comments on variational ground states for lattice hamiltonians

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Bovier, Anton

    1984-02-01

    We find that the nearest neighbour Jastrow type ground state cannot yield a Lorentz invariant vacuum in the continuum. This is explicitly demonstrated for the chiral model in 1+1 dimensions. The Jastrow ground state is found to be an exact ground state of a new hamiltonian which differs from the original by seemingly ``irrelevant terms'' at the continuum. However these terms prevent the restoration of Lorentz invariance. Finally we speculate that the new hamiltonian can be a non-relativistic approximation with galilean invariance.

  12. Infrared spectroscopy of molecular ions in selected rotational and spin-orbit states.

    PubMed

    Jacovella, U; Agner, J A; Schmutz, H; Deiglmayr, J; Merkt, F

    2016-07-01

    First results are presented obtained with an experimental setup developed to record IR spectra of rotationally state-selected ions. The method we use is a state-selective version of a method developed by Schlemmer et al. [Int. J. Mass Spectrom. 185, 589 (1999); J. Chem. Phys. 117, 2068 (2002)] to record IR spectra of ions. Ions are produced in specific rotational levels using mass-analyzed-threshold-ionization spectroscopy. The state-selected ions generated by pulsed-field ionization of Rydberg states of high principal quantum number (n ≈ 200) are extracted toward an octupole ion guide containing a neutral target gas. Prior to entering the octupole, the ions are excited by an IR laser. The target gas is chosen so that only excited ions react to form product ions. These product ions are detected mass selectively as a function of the IR laser wavenumber. To illustrate this method, we present IR spectra of C2H2 (+) in selected rotational levels of the (2)Πu,3/2 and (2)Πu,1/2 spin-orbit components of the vibronic ground state. PMID:27394102

  13. Infrared spectroscopy of molecular ions in selected rotational and spin-orbit states

    NASA Astrophysics Data System (ADS)

    Jacovella, U.; Agner, J. A.; Schmutz, H.; Deiglmayr, J.; Merkt, F.

    2016-07-01

    First results are presented obtained with an experimental setup developed to record IR spectra of rotationally state-selected ions. The method we use is a state-selective version of a method developed by Schlemmer et al. [Int. J. Mass Spectrom. 185, 589 (1999); J. Chem. Phys. 117, 2068 (2002)] to record IR spectra of ions. Ions are produced in specific rotational levels using mass-analyzed-threshold-ionization spectroscopy. The state-selected ions generated by pulsed-field ionization of Rydberg states of high principal quantum number (n ≈ 200) are extracted toward an octupole ion guide containing a neutral target gas. Prior to entering the octupole, the ions are excited by an IR laser. The target gas is chosen so that only excited ions react to form product ions. These product ions are detected mass selectively as a function of the IR laser wavenumber. To illustrate this method, we present IR spectra of C 2 H2 + in selected rotational levels of the 2Πu,3/2 and 2Πu,1/2 spin-orbit components of the vibronic ground state.

  14. Antifreeze acceptability for ground-coupled heat pump ground loops in the United States

    SciTech Connect

    Den Braven, K.R.

    1998-10-01

    When designing and installing closed-loop ground-coupled heat pumps systems, it is necessary to be aware of applicable environmental regulations. Within the United States, nearly half of the states have regulations specifying or restricting the use of particular antifreezes or other fluids within the ground loop of a ground-coupled heat pump system. A number of other states have regulations pending. While all of these regulations are based on the need to preserve groundwater and/or aquifer quality, the list of acceptable antifreezes varies among those states with specified fluids. Typical antifreezes in use include ethylene glycol, propylene glycol, brines, alcohols, and potassium acetate. Each of these has its benefits and drawbacks. The status of the regulations has been determined for all of the states. An overview of the regulations is presented in this paper, along with a summary of the states` concerns.

  15. Rotating states of self-propelling particles in two dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

  16. Rotating states of self-propelling particles in two dimensions.

    PubMed

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small. PMID:16802998

  17. Approximating the ground state of gapped quantum spin systems

    SciTech Connect

    Michalakis, Spyridon; Hamza, Eman; Nachtergaele, Bruno; Sims, Robert

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  18. Non-equilibrium pressure control of the height of a large-scale, ground-coupled, rotating fluid column

    NASA Astrophysics Data System (ADS)

    Ash, R. L.; Zardadkhan, I. R.

    2013-05-01

    When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from the outer potential vortex region. Thus, the non-equilibrium region acts to confine and shield the central, rigid-body-like, rotating fluid core, justifying this examination of how such a rotating fluid column can interact with the ground. The resulting non-equilibrium ground-coupled, rotating fluid column solution was employed to estimate the central column heights of three well-documented dust devils, and the central column height predictions were consistent with published dust devil height statistics.

  19. Distribution of xp in some molecular rotational states

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.

    2014-02-01

    Developing the analysis of the distribution of the so-called posmom xp to some molecular rotational states for diatomic molecules and spherical cage molecules, we obtain posmometry (introduced recently by Bernard and Gill, 2010 [5]) of the spherical harmonics and demonstrate that it is similar to the momentum distributions of the stationary states for a one-dimensional simple harmonic oscillator. The results are not only potentially experimentally testable but also reflect a fact that the embedding of the two-dimensional spherical surface S2 in three-dimensional flat space R3 is physically self-consistent and appealing.

  20. Ground-state properties of the periodic Anderson model

    NASA Technical Reports Server (NTRS)

    Blankenbecler, R.; Fulco, J. R.; Gill, W.; Scalapino, D. J.

    1987-01-01

    The ground-state energy, hybridization matrix element, local moment, and spin-density correlations of a one-dimensional, finite-chain, periodic, symmetric Anderson model are obtained by numerical simulations and compared with perturbation theory and strong-coupling results. It is found that the local f-electron spins are compensated by correlation with other f-electrons as well as band electrons leading to a nonmagnetic ground state.

  1. Possible ground-state octupole deformation in /sup 229/Pa

    SciTech Connect

    Ahmad, I.; Gindler, J.E.; Betts, R.R.; Chasman, R.R.; Friedman, A.M.

    1982-12-13

    Evidence is presented for the occurrence of a (5/2)/sup + -/ parity doublet as the ground state of /sup 229/Pa, in agreement with a previous theoretical prediction. The doublet splitting energy is measured to be 0.22 +- 0.05 keV. The relation of this doublet to ground-state octupole deformation is discussed. .ID LV2109 .PG 1762 1764

  2. Theory of ground state factorization in quantum cooperative systems.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481

  3. Ground states of baryoleptonic Q-balls in supersymmetric models

    SciTech Connect

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  4. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    USGS Publications Warehouse

    Chi, W.-C.; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  5. Hindered rotational physisorption states of H2 on Ag(111) surfaces.

    PubMed

    Kunisada, Y; Kasai, H

    2015-07-15

    We have investigated the physisorption states of H2 on Ag(111) surfaces. To clarify the accurate adsorption properties of H2 on Ag(111), we performed first-principles calculations based on spin-polarized density functional theory (DFT) with the semiempirical DFT-D2 method and the newly-developed exchange functional with the non-local correlation functional vdW-DF2 (rev-vdW-DF2). We constructed exhaustive potential energy surfaces, and revealed that non-negligible out-of-plane potential anisotropy with a perpendicular orientation preference exists even for H2 physisorption on planar Ag(111), as predicted by previous results of resonance-enhanced multiphoton ionization spectroscopy and temperature-programmed desorption experiments. Therefore, the molecular rotational ground states of ortho-H2 split into two energy levels in the anisotropic potential. The obtained adsorption energy and the number of bound states, including the zero-point energies and the rotational energy shift, agree with diffractive and rotationally mediated selective adsorption scattering resonance measurements. The origin of the potential anisotropy on Ag(111) is a combination of the London dispersion interaction and the virtual transition of the metal electron to the unoccupied molecular state. PMID:26151425

  6. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  7. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data. PMID:21280724

  8. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+

    NASA Astrophysics Data System (ADS)

    Antonov, Ivan O.; Barker, Beau J.; Heaven, Michael C.

    2011-01-01

    The ground electronic state of BeOBe+ was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is 2Σg+. Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm-1] was refined over previous measurements. Results from recent theoretical calculations for BeOBe+ (multireference configuration interaction) were found to be in good agreement with the experimental data.

  9. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  10. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  11. The Submillimeter Spectrum of the Ground Torsional State of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Brauer, Carolyn S.; Yu, Shanshan; Drouin, Brian J.

    2009-06-01

    Methanol and its isotopologues are well known tracers of gas grain chemistry with deuteration of the methyl group being energetically favorable in very cold environments on grain surfaces. In order to study the early evolution of star forming cores, constrain grain chemistry, and to develop a methodology for addressing the completely asymmetric internal rotation problem, the spectrum of CH_2DOH in its ground torsional state has been investigated to 1.6 THz. The study has facilitated the assignment of a complete ladder of highly interconnected energy levels in the e_0, e_1 and o_1 sub-states. The ground state spectrum of completely asymmetric CH_2DOH with C_S symmetry has been assigned to J > 25 and K_a = 8,9,8 in each substate, respectively. This K-range facilitates coverage of one full period of ρK and provides some valuable insight into the completely asymmetric internal rotation problem. The energy level structure also provide a unique opportunity for a direct comparison to normal methanol with its C_{3V} internal rotation. The spectral features, analysis and energy level structure will be discussed and compared to that of normal methanol.

  12. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    NASA Astrophysics Data System (ADS)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  13. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  14. Solving quantum ground-state problems with nuclear magnetic resonance.

    PubMed

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10⁻⁵ decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers. PMID:22355607

  15. Stark effect and dipole moments of the ammonia dimer in different vibration-rotation-tunneling states

    NASA Astrophysics Data System (ADS)

    Cotti, Gina; Linnartz, Harold; Meerts, W. Leo; van der Avoird, Ad; Olthof, Edgar H. T.

    1996-03-01

    In this paper we present Stark measurements on the G:K=-1 vibration-rotation-tunneling (VRT) transition, band origin 747.2 GHz, of the ammonia dimer. The observed splitting pattern and selection rules can be explained by considering the G36 and G144 symmetries of the inversion states involved, and almost complete mixing of these states by the applied electric field. The absolute values of the electric dipole moments of the ground and excited state are determined to be 0.763(15) and 0.365(10) D, respectively. From the theoretical analysis and the observed selection rules it is possible to establish that the dipole moments of the two interchange states must have opposite sign. The theoretical calculations are in good agreement with the experimental results: The calculated dipole moments are -0.74 D for the lower and +0.35 D for the higher state. Our results, in combination with the earlier dipole measurements on the G:K=0 ground state and the G:K=1 transition with band origin 486.8 GHz, confirm that the ammonia dimer is highly nonrigid. Its relatively small and strongly K-dependent dipole moment, which changes sign upon far-infrared excitation, originates from the difference in dynamical behavior of ortho and para NH3.

  16. Production of rovibronic ground-state 85 Rb133 Cs molecules via photoassociation to Ω = 1 states

    NASA Astrophysics Data System (ADS)

    Shimasaki, Toshihiko; Kim, Jin Tae; Demille, David

    2016-05-01

    We have extensively investigated short-range photoassociation (PA) to the (2) 3Π1 , (2) 1Π1 , and (3) 3Σ1+ states of 85 Rb133 Cs in the region between 11650 cm-1 and 12100 cm-1, where strong mixing between triplet and singlet states is expected. In contrast to the previously observed two-photon cascade decay from the (2) 3Π0 states, here we observe that the PA excited states can directly decay to the rovibronic ground state X1Σ+(v = 0 , J = 0) by a one-photon transition. We have observed rich hyperfine structures of the PA states, which were unresolved in previous cold beam experiments in the same region. Based on the analysis of vibrational and rotational branching ratios in the decay process to the X1Σ+ state, we will discuss the molecule production rate in comparison with that for PA to the (2) 3Π0 states. We will also report on a similar study of PA to the B1 Π and (2) 3Σ1+ states of 85 Rb133 Cs, which also produce the rovibronic ground state X1Σ+(v = 0 , J = 0) via direct one-photon decay.

  17. Mars' rotational state and tidal deformations from radio interferometry of a network of landers.

    NASA Astrophysics Data System (ADS)

    Iess, L.; Giuliani, S.; Dehant, V.

    2012-04-01

    The precise determination of the rotational state of solar system bodies is one of the main tools to investigate their interior structure. Unfortunately the accuracies required for geophysical interpretations are very stringent, and generally unattainable from orbit using optical or radar tracking of surface landmarks. Radio tracking of a lander from ground or from a spacecraft orbiting the planet offers substantial improvements, especially if the lander lifetime is adequately long. The optimal configuration is however attained when two or more landers can be simultaneously tracked from a ground antenna in an interferometric mode. ESA has been considering a network of landers on Mars since many years, and recently this concept has been revived by the study of the Mars Network Science Mission (MNSM). The scientific rationale of MNSM is the investigation of the Mars' interior and atmosphere by means of a network of two or three landers, making it especially suitable for interferometric observations. In order to synthesize an interferometer, the MNSN landers must be tracked simultaneously from a single ground antenna in a coherent two-way mode. The uplink radio signal (at X- or Ka-band) is received by the landers' transponders and retransmitted to ground in the same frequency band. The signals received at ground station are then recorded (typically at few tens of kHz) and beaten against each other to form the output of the interferometer, a complex phasor. The differential phase retain information on Mars' rotational parameters and tidal deformations. A crucial aspect of the interferometric configuration is the rejection of common noise and error sources. Errors in the station location, Earth orientation parameters and ephemerides, path delays due to the Earth troposphere and ionosphere, and, to a good extent, interplanetary plasma are cancelled out. The main residual errors are due to differential path delays from Mars' atmosphere and differential drifts of the

  18. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters.

    PubMed

    Souza, T X R; Macedo, C A

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh's conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  19. Phase diagram of the ground states of DNA condensates.

    PubMed

    Hoang, Trinh X; Trinh, Hoa Lan; Giacometti, Achille; Podgornik, Rudolf; Banavar, Jayanth R; Maritan, Amos

    2015-12-01

    The phase diagram of the ground states of DNA in a bad solvent is studied for a semiflexible polymer model with a generalized local elastic bending potential characterized by a nonlinearity parameter x and effective self-attraction promoting compaction. x=1 corresponds to the wormlike chain model. Surprisingly, the phase diagram as well as the transition lines between the ground states are found to be a function of x. The model provides a simple explanation for the results of prior experimental and computational studies and makes predictions for the specific geometries of the ground states. The results underscore the impact of the form of the microscopic bending energy at macroscopic observable scales. PMID:26764619

  20. Estimation of beryllium ground state energy by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-01

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  1. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures. PMID:20867055

  2. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  3. Improved fair sampling of ground states in Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Katzgraber, Helmut G.; Zhu, Zheng; Ochoa, Andrew J.

    2015-03-01

    Verifying that an optimization approach can sample all solutions that minimize a Hamiltonian is a stringent test for any newly-developed algorithm. While most solvers easily compute the minimum of a cost function for small to moderate input sizes, equiprobable sampling of all ground-state configurations (within Poissonian fluctuations) is much harder to obtain. Most notably, methods such as transverse-field quantum annealing fail in passing this test for certain highly-degenerate problems. Here we present an attempt to sample ground states for Ising spin glasses based on a combination of low-temperature parallel tempering Monte Carlo combined with the cluster algorithm by Houdayer. Because the latter is rejection free and obeys details balance, the ground-state manifold is efficiently sampled. We illustrate the approach for Ising spin glasses on the D-Wave Two quantum annealer topology, known as the Chimera graph, as well as two-dimensional Ising spin glasses.

  4. Ground state alignment as a tracer of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, H.

    2012-12-01

    We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

  5. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  6. GROUND BEETLE OCCURRENCE IN ROTATED FIELDS OF BT CORN AND SOYBEAN IN THE SOUTH DAKOTA CORN ROOTWORM AREAWIDE SITE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground beetles are important generalist predators in agricultural landscapes. During 2000-2001 we placed 2 transects of pitfall traps in each of 4 fields of rotated lepidopteran Bt corn and soybean. Sampling was conducted on a weekly basis and traps remained open for a 2-day period. In 2000, we c...

  7. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide

  8. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  9. Extensive ground state entropy in supersymmetric lattice models

    SciTech Connect

    Eerten, Hendrik van

    2005-12-15

    We present the result of calculations of the Witten index for a supersymmetric lattice model on lattices of various type and size. Because the model remains supersymmetric at finite lattice size, the Witten index can be calculated using row-to-row transfer matrices and the calculations are similar to calculations of the partition function at negative activity -1. The Witten index provides a lower bound on the number of ground states. We find strong numerical evidence that the Witten index grows exponentially with the number of sites of the lattice, implying that the model has extensive entropy in the ground state.

  10. Constrained Path Quantum Monte Carlo Method for Fermion Ground States

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei; Carlson, J.; Gubernatis, J. E.

    1995-05-01

    We propose a new quantum Monte Carlo algorithm to compute fermion ground-state properties. The ground state is projected from an initial wave function by a branching random walk in an over-complete basis space of Slater determinants. By constraining the determinants according to a trial wave function \\|ΨT>, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if \\|ΨT> is exact. We report results on the two-dimensional Hubbard model up to size 16×16, for various electron fillings and interaction strengths.

  11. A Remark on the Ground State Energy of Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Hogreve, H.

    2011-08-01

    Monotonicity properties of the ground state energy of bosonic atoms as established in a recent paper by M.K.H. Kiessling [J. Stat. Phys. 139:1063 (2009)] are studied. Symmetry and scaling arguments lead to a more direct proof of a slightly stronger result of this monotonicity and the behavior of the ground state energy as a function of the number of bosonic electrons. Furthermore, invoking appropriate lower and upper bounds on two-electron systems, the stability of the bosonics He- ion is rigorously demonstrated.

  12. Characterizing Ground and Thermal States of Few-Body Hamiltonians.

    PubMed

    Huber, Felix; Gühne, Otfried

    2016-07-01

    The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can be used to characterize the complexity of the state and is important for possible experimental implementations. We provide methods to characterize the states generated by two- and, more generally, k-body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of which states are uniquely determined by their marginals and to a generalization of the concept of entanglement. Finally, certification methods for quantum simulation can be derived. PMID:27419547

  13. Characterizing Ground and Thermal States of Few-Body Hamiltonians

    NASA Astrophysics Data System (ADS)

    Huber, Felix; Gühne, Otfried

    2016-07-01

    The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can be used to characterize the complexity of the state and is important for possible experimental implementations. We provide methods to characterize the states generated by two- and, more generally, k -body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of which states are uniquely determined by their marginals and to a generalization of the concept of entanglement. Finally, certification methods for quantum simulation can be derived.

  14. Rotation states of the nucleus of Comet Halley compatible with spacecraft images

    NASA Astrophysics Data System (ADS)

    Abergel, A.; Bertaux, J. L.

    1990-07-01

    The positions of the nucleus of Comet Halley have been interpreted, for the observations conducted by the flybys of Vegas 1 and 2 and Giotto, with a pure rotation motion and a period of about 54 hours. Comparisons with ground-based estimates of either the angular momentum or the instantaneous rotation axis of the nucleus indicate that the observed rotation axis during the three spacecraft encounters was moving; on this basis it is suggested that the rotation rate of the nucleus cannot be simple, for all that it may not be far from a pure rotation.

  15. Theoretical study on the ground electronic state of FO(+) and FO(-).

    PubMed

    Li, Song; Zheng, Rui; Chen, Shan-Jun; Zhu, De-Sheng; Fan, Qun-Chao

    2014-12-10

    The equilibrium structures of the ground electronic states for molecular ions FO(+) and FO(-) have been calculated by using the multi-reference configuration interaction method in combination with the augmented correlation-consistent basis sets up through sextuple zeta quality. The equilibrium parameters, potential energy curves and spectroscopic constants are derived for both species. The extrapolation schemes are adopted to estimate the complete basis set limit. The corrections of core-valence correlation and relativistic effect are included to improve the accuracy of the calculations. The vibrational energy levels as well as rotational and centrifugal distortion constants of the ground electronic states for both systems are obtained by solving the radial Schrödinger equation of nuclear motion. The computations on neutral FO radical are also carried out to investigate the ionization potentials and the electron affinities. PMID:24996216

  16. Static Properties and Stark Effect of the Ground State of the HD Molecular Ion

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1999-01-01

    We have calculated static properties of the ground state of the HD(+) ion and its lowest-lying P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2(+) and D2(+) [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary to include high powers of the internuclear distance to localize the nuclear motion. We obtain good values of the energies of the ground S-state and lowest P-state and compare them with earlier calculations. Expectation values are obtained for various operators, the Fermi contact parameters, and the permanent quadrupole moment. The cusp conditions are also calculated. The polarizability was then calculated using second-order perturbation theory with intermediate P pseudostates. Since the nuclei in HD(+) are not of equal mass there is dipole coupling between the lowest two rotational states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is calculated variationally as a function of the applied electric field.

  17. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Ground State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2013-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two inequivalent methyl group internal rotors which corresponds to the two vibrational motions, ν_{28} and ν_{29}. Due to these internal rotations, a rotational transition could be split into maximum five components. The skeletal torsion (ν_{30}) is another low-lying state (ν_{30}) that interacts with the ν_{28} and ν_{29} modes. The microwave spectra of the trans-ethyl methyl ether molecule in the ν_{28} = 1, ν_{29} = 1, and ν_{30} = 1, 2 and 3 have been extensively studied by using Hougen's tunneling matrix formalism. The microwave spectroscopy in the ground state was studied by several groups. The splitting due to the ν_{28} mode (C-CH_3 internal rotation) is small in the ground state and was not fully resolved in most of the previous studied rotational transitions. In this paper, we report the results of the pulsed nozzle-jet Fourier transform microwave spectroscopy so as to measure the fully resolved spectra. The submillmeter wave spectroscopy was also carried out. Our analysis including the previously reported transitions would be useful for astronomical observations. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {269}, 242 2011. K. Kobayashi, T. Matsui, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {255}, 164 2009. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc.{251}, 301 2008. K. Kobayashi, K. Murata, S. Tsunekawa, and N. Ohashi Int. Symposium on Mol. Spectrosc., 65th Meeting TH15 2010.} M. Hayashi, and K. Kuwada J. Mol. Structure {28}, 147 1975. M. Hayashi, and M. Adachi J. Mol. Structure {78}, 53 1982. S. Tsunekawa, Y. Kinai, Y. Kondo, H. Odashima, and K. Takagi Molecules {8}, 103 2003. U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia, and E. Herbst Astrophys. J. Suppl. {144}, 277 2003.

  18. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  19. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGESBeta

    Moller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  20. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  1. Determination of the Ground Vibrational State Parameters of the C2D4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Zhang, F.; Gromova, O. V.; Buttersack, T.

    2016-07-01

    The object of the study is the C2D4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The analysis of high-resolution spectra of the deuterated ethylene molecule was made in the range of 600-1200 cm-1, specifically bands ν7 and ν12. The results obtained were used to determine high-accurate values of the vibrational-rotational levels of the ground vibrational state of the C2D4 molecule.

  2. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  3. Measured atomic ground-state polarizabilities of 35 metallic elements

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Indergaard, John; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walt A.

    2015-01-01

    Advanced pulsed cryogenic molecular-beam electric deflection methods involving position-sensitive mass spectrometry and 7.87-eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the Periodic Table. Concurrent Stern-Gerlach deflection measurements verified the ground-state condition of the measured atoms. Comparison with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the Periodic Table.

  4. Rotation state of 495 Eulalia and its implication

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Ďurech, J.; Pravec, P.; Oey, J.; Vraštil, J.; Hornoch, K.; Kušnirák, P.; Groom, R.; Warner, B. D.; Bottke, W. F.

    2016-01-01

    Context. The low-albedo part of the Nysa-Polana-Hertha asteroid complex has recently been found to consist of at least two families. The larger of them has been associated with asteroid 495 Eulalia, hereafter named the Eulalia family. The unstable location of this body very close to Jupiter's 3:1 mean motion resonance (J3/1 resonance) at the periphery of the associated family in the space of proper orbital elements makes this case peculiar. Aims: We consider the possibility that 495 Eulalia was originally positioned farther from the J3/1 resonance when the family formed via a catastrophic impact than it is today. It was then transported to its current orbit by the Yarkovsky thermal forces over hundreds of millions of years. This requires that 495 Eulalia had a prograde rotation state. Methods: We use photometric observations and lightcurve inversion methods to determine the rotation pole of 495 Eulalia. Numerical simulation accounting for perturbations from the Yarkovsky effect then reveals the possible pathways of Eulalia orbital evolution. Results: We find that both of the possible pole solutions are prograde, in accordance with our initial hypothesis. In studying the long-term evolution of Eulalia's spin state, we show that the obliquity can oscillate over a large interval of values yet always remain <90°. We estimate that Eulalia could have migrated by as much as ~0.007 au toward the J3/1 resonance within the past 1 Gyr. Our numerical runs show that it could have originated in the orbital zone well aligned with other family members in proper eccentricity, whichafter it gained its current orbit by chaotic evolution along the J3/1 resonance.

  5. A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state

    NASA Astrophysics Data System (ADS)

    Levrard, B.

    2008-02-01

    In a recent paper, Wisdom [Wisdom, J., 2008. Icarus, 193, 637-640] derived concise expressions for the rate of tidal dissipation in a synchronously rotating body for arbitrary orbital eccentricity and obliquity. He provided numerical evidence than the derived rate is always larger than in an asymptotic nonsynchronous rotation state at any obliquity and eccentricity. Here, I present a simple mathematical proof of this conclusion and show that this result still holds for any spin-orbit resonance.

  6. Ground State of the Parallel Double Quantum Dot System

    NASA Astrophysics Data System (ADS)

    Žitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-01

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln⁡2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry “dark state” on the dots.

  7. Measured Atomic Ground State Polarizabilities of 35 Metallic Elements

    NASA Astrophysics Data System (ADS)

    Indergaard, John; Ma, Lei; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walter

    2015-03-01

    Advanced pulsed cryogenic molecular beam electric deflection methods utilizing a position-sensitive mass spectrometer and 7.87 eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the periodic table for the first time. These measurements increase the total number of experimentally obtained atomic polarizabilities from 23 to 57. Concurrent Stern-Gerlach deflection measurements verified the ground state condition of the measured atoms. Generating higher temperature beams allowed for the comparison of relative populations of the ground and excited states in order to extract the true temperature of the atomic beam, which followed the nominal temperature closely over a wide temperature range. Comparison of newly measured polarizabilities with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the periodic table. Cluster Lab at Georgia Tech.

  8. Ground state occupation probabilities of neutrinoless double beta decay candidates

    NASA Astrophysics Data System (ADS)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  9. Nonmagnetic ground state of PuO2

    NASA Astrophysics Data System (ADS)

    Shick, A. B.; Kolorenč, J.; Havela, L.; Gouder, T.; Caciuffo, R.

    2014-01-01

    The correlated band theory implemented as a combination of the local density approximation with the exact diagonalization of the Anderson impurity model is applied to PuO2. We obtain an insulating electronic structure consistent with the experimental photoemission spectra. The calculations yield a band gap of 1.8 eV and a nonmagnetic singlet ground state that is characterized by a noninteger filling of the plutonium f shell (nf≈4.5). Due to sizable hybridization of the f shell with the p states of oxygen, the ground state is more complex than the four-electron Russell-Saunders 5I4 manifold split by the crystal field. The inclusion of hybridization improves the agreement between the theory and experiment for the magnetic susceptibility.

  10. Ground-state phases of polarized deuterium species

    SciTech Connect

    Panoff, R.M.; Clark, J.W.

    1987-10-01

    Microscopic prediction of the ground-state phase of electron-spin-aligned bulk atomic deuterium (Darrow-down) is attempted, based on the variational Monte Carlo method. The accurate pair potential of Kolos and Wolniewicz is assumed, and three versions of Darrow-down are considered, which, respectively, involve one, two, and three equally occupied nuclear spin states. The most definitive results on the zero-temperature equations of state of these systems are obtained with optimized ground-state trial wave functions incorporating Jastrow pair correlations, triplet correlations, and momentum-dependent backflow effects. The species Darrow-down/sub 3/ is bound already at the pure Jastrow level, while the energy expectation value of Darrow-down/sub 2/ dips below zero upon supplementing the Jastrow description by triplets and momentum-dependent backflow. The variational energy of Darrow-down/sub 1/ remains positive under all current refinements of the ground-state trial function. We conclude that the systems Darrow-down/sub 3/ and Darrow-down/sub 2/, if they could be manufactured and stabilized at relevant densities, would be Fermi liquids at sufficiently low temperature; on the other hand, it is likely that Darrow-down/sub 1/ would remain gaseous down to absolute zero.

  11. On the weighting of SABER temperature profiles for comparison with ground based hydroxyl rotational temperatures.

    NASA Astrophysics Data System (ADS)

    French, William; Mulligan, Frank

    2010-05-01

    Kinetic temperature profiles are retrieved from limb-emission radiance measurements of CO2 at 15 and 4.3 um by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite. Profiles extend from about 20-120km and measurements are available since the spacecraft launch in Dec-2001. Hydroxyl (6-2) band rotational temperatures are measured using a ground-based scanning spectrometer at Davis station, Antarctica (68°S, 78°E). Measurements are available each year since 1995 on nights between early February and late October, when the sun is more than 6° below the horizon. In order to compare temperatures from these two instruments we must derive hydroxyl layer equivalent temperatures for the SABER profiles using a weighting function which represents the hydroxyl layer profile. In this study, we examine a number of different weighting profiles to determine the best equivalent to hydroxyl nightly average temperatures at Davis. These profiles include (1) the customary Gaussian peaked at 87km and width 8km [Baker and Stair, 1988 :Physica Scripta. 37 611-622], (2) the layer profile derived from WINDIIUARS hydroxyl height profiles [She and Lowe, 1998 :JASTP 60, 1573-1583], (3) layer profiles derived from the hydroxyl volume emission rate (VER) from the SABER OH-B channel at 1.6um, which contains the Meinel OH(4-2) and OH(5-3) bands and (4) a Gaussian fitted to the SABER hydroxyl VER peak. The comparison is made with approximately 2500 SABER retrievals from overpasses within 500km of Davis station, and with solar zenith angle >97°, which have coincident hydroxyl temperature measurements over the 8 winters between 2002 and 2009. Due to the satellite 60 day yaw cycle the sampling over Davis has occurred in approximately the same three time intervals each year; between days 75-140, 196-262 and 323-014, however the latter interval is entirely rejected on the solar zenith

  12. Periodic Striped Ground States in Ising Models with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Seiringer, Robert

    2016-06-01

    We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c (p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2d and J in a left neighborhood of J c (p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.

  13. Mixed configuration ground state in iron(II) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-01

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2 ,3 edges of α -Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3Eg(a1g 2eg3b2g 1) and 3B2 g(a1g 1eg4b2g 1) with the two configurations coupled by the spin-orbit interaction. The 3Eg(b ) and 3B2 g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1 g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  14. Guidelines for ground motion definition for the eastern United States

    SciTech Connect

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.

  15. Ground-state properties of quantum triangular ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-03-01

    Motivated by recent quantum Monte Carlo (QMC) simulations of the quantum Kagome ice model by Juan Carrasquilla et al., [Nat. Commun., 6, 7421 (2015), 10.1038/ncomms8421], we study the ground-state properties of this model on the triangular lattice. In the presence of a magnetic field h , the Hamiltonian possesses competing interactions between a Z2-invariant easy-axis ferromagnetic interaction J±± and a frustrated Ising term Jz. As in the U(1)-invariant model, we obtain four classical distinctive phases, however, the classical phases in the Z2-invariant model are different. They are as follows: a fully polarized (FP) ferromagnet for large h , an easy-axis canted ferromagnet (CFM) with broken Z2 symmetry for small h and dominant J±±, a ferrosolid phase with broken translational and Z2 symmetries for small h and dominant Jz, and two lobes with m ==±1 /6 for small h and dominant Jz. We show that quantum fluctuations are suppressed in this model, hence the large-S expansion gives an accurate picture of the ground-state properties. When quantum fluctuations are introduced, we show that the ferrosolid state is the ground state in the dominant Ising limit at zero magnetic field. It remains robust for Jz→∞ . With nonzero magnetic field the classical lobes acquire a finite magnetic susceptibility with no Sz order. We present the trends of the ground-state energy and the magnetizations. We also present a detail analysis of the CFM.

  16. The puzzle of the steady-state rotation of a reverse sprinkler

    NASA Astrophysics Data System (ADS)

    Rueckner, Wolfgang

    2015-04-01

    The continuous rotation of the reverse sprinkler has been a puzzle for over two decades. This article presents a series of experiments that demonstrate that a properly designed reverse sprinkler experiences no steady-state torque and does not rotate. Ignoring transients when the flow starts and stops, if any sustained rotation of the reverse sprinkler occurs, it is because a force couple produces a torque accompanied by vortex flow inside the body of the sprinkler. No steady-state rotation occurs if the vortex is suppressed or prevented from forming in the first place. Demonstrative proof is given that an ideal reverse sprinkler does not rotate.

  17. a Variational Ground State for the Fractional Quantum Hall Effect.

    NASA Astrophysics Data System (ADS)

    Galejs, Robert Julian

    1987-09-01

    The fractional quantum Hall effect has aroused much interest in recent years. A large portion of the research in this field has centered on the theoretical understanding of the ground state properties of a system of two-dimensional electrons in a perpendicular magnetic field. One of the most successful models for such a system is that of Laughlin, who proposed a trial wavefunction to model the ground state for certain electron densities. The present work examines the ground state of this system variationally for three and four electrons. The ground state was modeled as a sum of Slater determinants composed of one-electron functions from the lowest Landau level. This wavefunction was placed on a disk of neutralizing charge and the coefficients of the determinants varied to minimize the energy. This variational wavefunction may be compared directly with Laughlin's, as well as model densities not described by Laughlin. The energy per electron was found to vary smoothly as a function of filling factor except at discrete points where there was an upward cusp. Downward cusps, as found by other investigators, were not found in this work. In the smooth portions, the wavefunction is incompressible whereas at the cusps, the wavefunction undergoes a drastic change. In the presence of impurities, these upward cusps smooth out and the wavefunction is now charge-density-wave -like near the former location of the cusps. This variation between incompressible and charge-density-wave behavior may give an explanation of the behavior of the Hall plateau widths as a function of impurity concentration. At a filling factor of 1/3 it was found that the Laughlin wavefunction is a very good approximation to the ground state, giving a very large overlap with and only a slightly higher energy than the variational state calculated here. Laughlin's excited states appear to be a good approximation as well, although the details of their charge density may not be. A new class of wavefunctions was

  18. The Determination Of Titan'S Rotational State From Cassini Sar Images

    NASA Astrophysics Data System (ADS)

    Persi Del Marmo, Paolo; Iess, L.; Picardi, G.; Seu, R.; Bertotti, B.

    2007-10-01

    SAR images acquired by the spacecraft Cassini in overlapping strips have been used to determine the vectorial angular velocity of Titan. The method entails the tracking of surface landmarks at different times (and mean anomalies), spanning a period from 2004 to 2007. Each image is referenced both in an inertial frame and in the IAU, Titan-centric, body-fixed reference frame. This referencing is quite precise (accuracy of Cassini relative to Titan position smaller than 100 m). The IAU body-fixed frame assumes a spin axis different from the actual one. By correlating the two images of the same surface region, one gets a two-dimensional vector, which retains information about the true spin axis. This vector provides the magnitude and direction of the displacement to be applied to a reference point of each image in order to produce maximum correlation. The correlation results therefore in a new Titan-centric, inertial referencing of the images, R(t1) and R(t2). The spin axis s is then obtained by requiring that [R(t2) - R(t1)] • s = 0 for each overlapping image pairs. Left hand sides cannot be simultaneously zeroed because Titan doesn't move respect to the known polar axis and the real spin axis must be determined by means of a least square procedure. The magnitude of the angular velocity is then derived from the angle and time between two observations. The Titan pole position estimated is consistent with the occupancy of a Cassini state. If Titan were a rigid body in a Cassini state (with an icy crust anchored to the mantle), one could use theoretical arguments to derive the moment of inertia from the obliquity and the second degree gravity field. However, our results suggest that those theoretical arguments cannot be straightforwardly applied to Titan, whose rotational state is more complex than expected.

  19. Approximating ground and excited state energies on a quantum computer

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2015-04-01

    Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with degrees of freedom. Our algorithm computes estimates of a constant number of different low-order eigenvalues with error and success probability at least , with cost polynomial in and . This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

  20. Quantum-classical equivalence and ground-state factorization

    NASA Astrophysics Data System (ADS)

    Abouie, Jahanfar; Sepehrinia, Reza

    2016-02-01

    We have performed an analytical study of quantum-classical equivalence for quantum XY-spin chains with arbitrary interactions to explore the classical counterpart of the factorizing magnetic fields that drive the system into a separable ground state. We demonstrate that the factorizing line in the parameter space of a quantum model is equivalent to the so-called natural boundary that emerges in mapping the quantum XY-model onto the two-dimensional classical Ising model. As a result, we show that the quantum systems with the non-factorizable ground state could not be mapped onto the classical Ising model. Based on the presented correspondence we suggest a promising method for obtaining the factorizing field of quantum systems through the commutation of the quantum Hamiltonian and the transfer matrix of the classical model.

  1. Simulation of the hydrogen ground state in stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  2. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  3. Kac-Moody symmetries of critical ground states

    NASA Astrophysics Data System (ADS)

    Kondev, Jané; Henley, Christopher L.

    1996-02-01

    The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2) k=1 , su(3) k=1 , and the su(4) k=1 Kac-Moody algebra, respectively. Our approach is based on the Frenkel-Kac-Segal vertex operator construction of level-one Kac-Moody algebras.

  4. The valence-fluctuating ground state of plutonium

    PubMed Central

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian-Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-01-01

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. Our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials. PMID:26601219

  5. On the correct electronic ground state of Tc( g )

    SciTech Connect

    Rard, J.A. ); Rand, M.H. ); Thornback, J.R. ); Wanner, H. )

    1991-05-01

    The electronic ground state of Tc({ital g}) is {sup 6}{ital S}{sub 5/2}, which arises from a 4{ital d}{sup 5}5{ital s}{sup 2} valence electron configuration. However, there are several treatises and review articles in which the ground state is incorrectly given as {ital S}{sub 9/2} with a valence electron configuration of 4{ital d}{sup 6}5{ital s}{sup 1}. The origin of this incorrect assignment was traced to the misinterpretation of a paper on the hyperfine splitting of the optical spectrum of technetium, and to confusion between nuclear and electronic spins.

  6. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  7. Nuclear quadrupole moment of the {sup 99}Tc ground state

    SciTech Connect

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-05-15

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2{sup +} ground state of {sup 99}Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc{sub 2} and ZrTc{sub 2}. If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the {sup 99}Tc ground state quadrupole moment could be further reduced.

  8. The valence-fluctuating ground state of plutonium

    SciTech Connect

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian -Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  9. Topological entanglement entropy, ground state degeneracy and holography

    NASA Astrophysics Data System (ADS)

    Parnachev, Andrei; Poovuttikul, Napat

    2015-10-01

    Topological entanglement entropy, a measure of the long-ranged entanglement, is related to the degeneracy of the ground state on a higher genus surface. The exact relation depends on the details of the topological theory. We consider a class of holographic models where such relation might be similar to the one exhibited by Chern-Simons theory in a certain large N limit. Both the non-vanishing topological entanglement entropy and the ground state degeneracy in these holographic models are consequences of the topological Gauss-Bonnet term in the dual gravitational description. A soft wall holographic model of confinement is used to generate finite correlation length but keep the disk topology of the entangling surface in the bulk, necessary for nonvanishing topological entanglement entropy.

  10. Ground-State Structures of Atomic Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    McMahon, Jeffrey M.; Ceperley, David M.

    2011-04-01

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (rs=1.23) that remains stable to 1 TPa (rs=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (rs=0.92).

  11. Collisional state-changing of OH- rotations by interaction with Rb atoms in cold traps

    NASA Astrophysics Data System (ADS)

    González-Sánchez, L.; Carelli, F.; Gianturco, F. A.; Wester, R.

    2015-11-01

    We employ an accurate, ab initio potential energy surface (PES) which describes the electronic interaction energy between the molecular anion OH- (1Σ+) and the neutral rubidium atom Rb (2 S), to evaluate the elastic and inelastic cross sections over a range of energies representative of the conditions of low-T experiments in MOT traps, when combined with laser-cooled rubidium gas. The system is considered to be in its vibrational ground state, while the first four rotational levels are taken to be involved in the cooling and heating collisional processes that are computed here. The corresponding cooling and heating rates up to about 35 K are obtained from the calculations and compared with the recent results in a similar experiments, where He was the partner atom of the current anion.

  12. Photoionization of furan from the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nada; Decleva, Piero

    2016-02-01

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  13. Tuning the Ground State Symmetry of Acetylenyl Radicals.

    PubMed

    Zeng, Tao; Danovich, David; Shaik, Sason; Ananth, Nandini; Hoffmann, Roald

    2015-08-26

    The lowest excited state of the acetylenyl radical, HCC, is a (2)Π state, only 0.46 eV above the ground state, (2)Σ(+). The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of (2)Π and (2)Σ(+) states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with (2)Π ground states (NaOCC, H2NCC ((2)A″), HCSi, FCSi, etc.) and vary the (2)Σ(+)-(2)Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  14. Tuning the Ground State Symmetry of Acetylenyl Radicals

    PubMed Central

    2015-01-01

    The lowest excited state of the acetylenyl radical, HCC, is a 2Π state, only 0.46 eV above the ground state, 2Σ+. The promotion of an electron from a π bond pair to a singly occupied σ hybrid orbital is all that is involved, and so we set out to tune those orbital energies, and with them the relative energetics of 2Π and 2Σ+ states. A strategy of varying ligand electronegativity, employed in a previous study on substituted carbynes, RC, was useful, but proved more difficult to apply for substituted acetylenyl radicals, RCC. However, π-donor/acceptor substitution is effective in modifying the state energies. We are able to design molecules with 2Π ground states (NaOCC, H2NCC (2A″), HCSi, FCSi, etc.) and vary the 2Σ+–2Π energy gap over a 4 eV range. We find an inconsistency between bond order and bond dissociation energy measures of the bond strength in the Si-containing molecules; we provide an explanation through an analysis of the relevant potential energy curves. PMID:27162981

  15. Ground-state entanglement in the XXZ model

    SciTech Connect

    Gu Shijian; Lin Haiqing; Tian Guangshan

    2005-05-15

    In this paper, we investigate spin entanglement in the XXZ model defined on a d-dimensional bipartite lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously that the ground-state concurrence reaches maximum at the isotropic point. For dimensionality d{>=}2, the concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range order.

  16. Ground State Properties and Bubble Structure of Synthesized Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Ikram, M.; Patra, S. K.

    2013-01-01

    We calculate the ground state properties of recently synthesized superheavy elements (SHEs) from Z = 105-118 along with the predicted proton magic Z = 120. The relativistic and nonrelativistic mean field formalisms are used to evaluate the binding energy (BE), charge radius, quadrupole deformation parameter and the density distribution of nucleons. We analyzed the stability of the nuclei based on BE and neutron to proton ratio. We also studied the bubble structure which reveals the special features of the superheavy nuclei.

  17. Improvement in a phenomenological formula for ground state binding energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    2016-07-01

    The phenomenological formula for ground state binding energy derived earlier [G. Gangopadhyay, Int. J. Mod. Phys. E 20 (2011) 179] has been modified. The parameters have been obtained by fitting the latest available tabulation of experimental values. The major modifications include a new term for pairing and introduction of a new neutron magic number at N = 160. The new formula reduced the root mean square deviation to 363keV, a substantial improvement over the previous version of the formula.

  18. Electronic and ground state properties of ThTe

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Purvee; Singh, Sadhna

    2016-05-01

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  19. Ground-state energy and relativistic corrections for positronium hydride

    SciTech Connect

    Bubin, Sergiy; Varga, Kalman

    2011-07-15

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10{sup -10}, which is a significant improvement over previous nonrelativistic results.

  20. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  1. Efficient determination of alloy ground-state structures

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Shitara, Kazuki; Tanaka, Isao

    2014-11-01

    We propose an efficient approach to accurately finding the ground-state structures in alloys based on the cluster expansion method. In this approach, a small number of candidate ground-state structures are obtained without any information regarding the energy. To generate the candidates, we employ the convex hull constructed from the correlation functions of all possible structures by using an efficient algorithm. This approach is applicable to not only simple lattices, but also complex lattices. First, we evaluate the convex hulls for binary alloys with four types of simple lattice. Then we discuss the structures on the vertices. To examine the accuracy of this approach, we perform a set of density functional theory calculations and the cluster expansion for the Ag-Au alloy and compare the formation energies of the vertex structures with those of all possible structures. As applications, the ground-state structures of the intermetallic compounds CuAu, CuAg, CuPd, AuAg, AuPd, AgPd, MoTa, MoW, and TaW are similarly evaluated. Finally, the energy distribution is obtained for different cation arrangements in the MgAl2O4 spinel, for which long-range interactions are essential for the accurate description of its energetics.

  2. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  3. Constrained path Monte Carlo method for fermion ground states

    SciTech Connect

    Zhang, S. |; Carlson, J.; Gubernatis, J.E.

    1997-03-01

    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By constraining the determinants according to a trial wave function {vert_bar}{psi}{sub T}{r_angle}, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if {vert_bar}{psi}{sub T}{r_angle} is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16{times}16 and for various electron fillings and interaction strengths. With simple single-determinant wave functions as {vert_bar}{psi}{sub T}{r_angle}, the method yields accurate (often to within a few percent) estimates of the ground-state energy as well as correlation functions, such as those for electron pairing. We conclude by discussing possible extensions of the algorithm. {copyright} {ital 1997} {ital The American Physical Society}

  4. Constrained path Monte Carlo method for fermion ground states

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei; Carlson, J.; Gubernatis, J. E.

    1997-03-01

    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an overcomplete basis of Slater determinants. By constraining the determinants according to a trial wave function \\|ψT>, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if \\|ψT> is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16×16 and for various electron fillings and interaction strengths. With simple single-determinant wave functions as \\|ψT>, the method yields accurate (often to within a few percent) estimates of the ground-state energy as well as correlation functions, such as those for electron pairing. We conclude by discussing possible extensions of the algorithm.

  5. Significance of rotating ground motions on nonlinear behavior of symmetric and asymmetric buildings in near fault sites

    USGS Publications Warehouse

    Kalkan, Erol; Juan Carlos Reyes

    2012-01-01

    Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.

  6. Kohn-Sham Theory for Ground-State Ensembles

    SciTech Connect

    Ullrich, C. A.; Kohn, W.

    2001-08-27

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles.

  7. Competing ground states of a Peierls-Hubbard nanotube

    NASA Astrophysics Data System (ADS)

    Ohara, Jun; Yamamoto, Shoji

    2009-07-01

    Motivated by iodo platinum complexes assembled within a quadratic-prism lattice, [Pt(C2H8N2)(C10H8N2)I]4(NO3)8, we investigate the ground-state properties of a Peierls-Hubbard four-legged tube. Making a group-theoretical analysis, we systematically reveal a variety of valence arrangements, including half-metallic charge-density-wave states. Quantum and thermal phase competition is numerically demonstrated with particular emphasis on doping-induced successive insulator-to-metal transitions with conductivity increasing stepwise.

  8. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  9. Nuclear ground-state masses and deformations: FRDM(2012)

    NASA Astrophysics Data System (ADS)

    Möller, P.; Sierk, A. J.; Ichikawa, T.; Sagawa, H.

    2016-05-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A = 339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient L, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses. The values of ten constants are determined directly from an optimization to fit ground-state masses of 2149 nuclei ranging from 16O to 106265Sg and 108264Hs. The error of the mass model is 0.5595 MeV for the entire region of nuclei included in the adjustment, but is only 0.3549 MeV for the region N ≥ 65. We also provide masses in the FRLDM, which in the more accurate treatments now has an error of 0.6618 MeV, with 0.5181 MeV for nuclei with N ≥ 65, both somewhat larger than in the FRDM. But in contrast to the FRDM, it is suitable for studies of fission and has been extensively so applied elsewhere, with FRLDM(2002) constants. The FRLDM(2012) fits 31 fission-barrier heights from 70Se to 252Cf with a root-mean-square deviation of 1.052 MeV.

  10. Ground state of naphthyl cation: Singlet or triplet?

    SciTech Connect

    Dutta, Achintya Kumar; Vaval, Nayana Pal, Sourav; Manohar, Prashant U.

    2014-03-21

    We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ{sup ′}) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

  11. Semiclassical vibration-rotation transition probabilities for motion in molecular state averaged potentials.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1971-01-01

    Collision-induced vibration-rotation transition probabilities are calculated from a semiclassical three-dimensional model, in which the collision trajectory is determined by the classical motion in the interaction potential that is averaged over the molecular rotational state, and compared with those for which the motion is governed by a spherically averaged potential. For molecules that are in highly excited rotational states, thus dominating the vibrational relaxation rate at high temperature, it is found that the transition probability for rotational state averaging is smaller than that for spherical averaging. For typical collisions, the transition cross section is decreased by a factor of about 1.5 to 2.

  12. The nonresonant two-photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S

    NASA Astrophysics Data System (ADS)

    Fischer, Ingo; Lochschmidt, Andreas; Strobel, Andreas; Niedner-Schatteburg, Gereon; Mueller-Dethlefs, Klaus; Bondybey, Vladimir E.

    1993-03-01

    Zero kinetic energy photoelectron spectra from the electronic ground state of hydrogen sulfide are obtained via nonresonant two-photon ionization with complete rotational resolution in the ion. The two-photon spectra are compared with those recently obtained via one-photon VUV photoionization. The spectra show a close similarity, but type a transitions in the two-photon spectra are twice as intense.

  13. Ground state of the three-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi; Koike, Soh; Yamaji, Kunihiko

    2001-11-01

    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by our calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8 doping. Incommensurate magnetic structures become stable due to hole doping in the underdoped region, where the transfer tpp between oxygen orbitals plays an important role in determining a stable stripe structure.

  14. Continuous Vibrational Cooling of Ground State Rb2

    NASA Astrophysics Data System (ADS)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν < 35. The molecules may then be further cooled using a broadband superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  15. The Determination Of Titan's Rotational State From Cassini SAR Images

    NASA Astrophysics Data System (ADS)

    Persi Del Marmo, P.; Iess, L.; Picardi, G.; Seu, R.; Bertotti, B.

    2007-12-01

    - referenced vectors. Titan's rotational state is therefore more complex than expected. If Titan were a rigid body in a Cassini state (with an icy crust anchored to the mantle), one could use theoretical arguments to derive the moment of inertia from the obliquity and the second degree gravity field. However, the new findings suggest that those theoretical arguments cannot be straightforwardly applied.

  16. Microwave Spectrum of the PD2 Radical in the 2B1 Ground Electronic State

    PubMed

    Hirao; Hayakashi; Yamamoto; Saito

    1998-02-01

    The rotational spectrum of the PD2 radical in the 2B1 ground electronic state was observed in the region 165-463 GHz using a source-modulated microwave spectrometer. The PD2 radical was generated in a free-space absorption cell by a dc glow discharge of D2 over red phosphorus grains which were placed in the middle of the Pyrex glass cell. One hundred thirty fine and hyperfine components of 20 b-type rotational transitions were measured and analyzed by least-squares methods. The rotational and centrifugal distortion constants, the spin-rotation coupling constants with their centrifugal distortion terms, and the hyperfine coupling constants of both the phosphorus and the deuterium nuclei were precisely determined. The phosphorus nuclear spin-rotation coupling constants were found to have relatively large values: Caa(P) = 0.4815(89) MHz, Cbb(P) = 0.2501 (104) MHz, and Ccc(P) = 0.0564 (74) MHz, as suggested from those of PH2. The harmonic force field of PH2 was derived from centrifugal distortion constants, inertial defects, and the reported vibrational frequencies for PH2 and PD2. The determined force field was used to make harmonic corrections to the observed moments of inertia, and the rz structures for both species were derived,PH2: rz(PH) = 1.43365(23) A, thetaz(HPH) = 91.622(32)degreesandPD2: rz(PD) = 1.42852(17) A, thetaz(DPD) = 91.646(23)degrees,where errors in parentheses are due to residual inertial defects of the corrected moments of inertia. Copyright 1998 Academic Press. Copyright 1998Academic Press PMID:9473433

  17. Prediction and Control of Slip-Free Rotation States in Sphere Assemblies

    NASA Astrophysics Data System (ADS)

    Stäger, D. V.; Araújo, N. A. M.; Herrmann, H. J.

    2016-06-01

    We study fixed assemblies of touching spheres that can individually rotate. From any initial state, sliding friction drives an assembly toward a slip-free rotation state. For bipartite assemblies, which have only even loops, this state has at least four degrees of freedom. For exactly four degrees of freedom, we analytically predict the final state, which we prove to be independent of the strength of sliding friction, from an arbitrary initial one. With a tabletop experiment, we show how to impose any slip-free rotation state by only controlling two spheres, regardless of the total number.

  18. Prediction and Control of Slip-Free Rotation States in Sphere Assemblies.

    PubMed

    Stäger, D V; Araújo, N A M; Herrmann, H J

    2016-06-24

    We study fixed assemblies of touching spheres that can individually rotate. From any initial state, sliding friction drives an assembly toward a slip-free rotation state. For bipartite assemblies, which have only even loops, this state has at least four degrees of freedom. For exactly four degrees of freedom, we analytically predict the final state, which we prove to be independent of the strength of sliding friction, from an arbitrary initial one. With a tabletop experiment, we show how to impose any slip-free rotation state by only controlling two spheres, regardless of the total number. PMID:27391726

  19. Estimating the ground-state probability of a quantum simulation with product-state measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce; Freericks, James

    2015-10-01

    .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know a priori what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  20. On the vibrational assignment in the ground electronic state of NO3

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Fujimori, Ryuji; Tang, Jian; Ishiwata, Takashi

    2015-08-01

    The vibration-rotational structure of the ground A2‧ state of the NO3 radical is re-considered, because Hirota (2015) presented an objection to the vibrational assignment of our previous papers (Kawaguchi et al., 2011, 2013; Fujimori et al., 2013). The present study examines the vibrational assignment in the following points, (1) laser induced fluorescence (LIF) spectra observed by Fukushima and Ishiwata in the 1050 cm-1 region, (2) Fourier transform (FT) spectra of vibrational bands from the v4 = 1 state, and a diode laser spectrum of the 2ν4 band. These considerations support our previous assignments, that is, ν3 + ν4 = 1492 cm-1 and ν3 = 1055 cm-1 for 14NO3.

  1. Haloalkane- Aromatic Complexes in the Ground and Excited States. Molecular Orbital Calculation

    NASA Astrophysics Data System (ADS)

    Brinn, I. M.

    1980-04-01

    CNDO/2 calculations have been carried out on a series of haloalkane-aromatic 1: 1 complexes in the ground and first excited singlet states and one 2 : 1 complex in the ground state. Calculated stabilities agree very well with reported experimental results for the ground state. Our calculations indicate that the substituent effect on complex stability in excited states will be the opposite of that found for the ground state.

  2. Unstable rotational states of string models and width of a hadron

    SciTech Connect

    Sharov, G. S.

    2009-06-01

    Rotational states (planar uniform rotations) of various string hadron models are tested for stability with respect to small disturbances. These models include an open or closed string carrying n massive points (quarks), and their rotational states result in a set of quasilinear Regge trajectories. It is shown that rotations of the linear string baryon model q-q-q and the similar states of the closed string are unstable, because spectra of small disturbances for these states contain complex frequencies, corresponding to exponentially growing modes of disturbances. Rotations of the linear model are unstable for any values of points' masses, but for the closed string we have the threshold effect. This instability is important for describing excited hadrons; in particular, it increases predictions for their width {gamma}. Predicted large values {gamma} for N, {delta} and strange baryons in comparison with experimental data result in unacceptability of the linear string model q-q-q for describing these baryon states.

  3. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  4. Dunham coefficients for the X1Σ+ ground state of BH and BD

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Ghazizadeh, Ehsan

    2015-06-01

    All available spectroscopic data for the X1Σ+, A1Π and B1Σ+ states of BH and BD have been combined in a multi-isotopologue fit to obtain Dunham coefficients for the X1Σ+ ground state. With no vibration-rotation data available for BD, the only way to determine the v = 1 ← 0 interval in the X1Σ+ ground state of BD was to use the 1-1 and 1-0 bands of the B1Σ+ - X1Σ+ system. An incorrect J assignment was found in the published data of the 1-0 band of the B1Σ+ - X1Σ+ system of BD, making them inconsistent with the more accurate data from the A1Π - X1Σ+ system. With the correct J assignment, the v = 1 ← 0 interval in the X1Σ+, A1Π and B1Σ+ states of 11BD were determined to be 1690.773, 1581.095 and 1687.90 cm-1, respectively. The values listed in Huber and Herzberg's book differ from the above values by ∼2B, because they are based on an incorrect J assignment.

  5. Ground state of the universe in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Gorobey, Natalia; Lukyanenko, Alexander

    2016-01-01

    We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

  6. Rovibrational constants of the ground state and v9 = 1 state of 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Woo, J. Q.; Ng, L. L.; Wong, Andy; McNaughton, Don

    2016-03-01

    The Fourier transform infrared (FTIR) rovibrational spectrum of the b-type ν9 band of 13C2D4 was recorded at a unapodized resolution of 0.0063 cm-1 in the 2230-2450 cm-1 region. By assigning and fitting a total of 1171 rotationally resolved infrared transitions of the ν9 band and using the Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v9 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the infrared fit was 0.00043 cm-1. The ground state constants of 13C2D4 were determined with higher accuracy than previously by fitting 1485 ground state combination-differences (GSCDs) from the present and previous infrared measurements, with rms deviation of 0.00034 cm-1. The band center of ν9 band of 13C2D4 was determined to be at 2324.3593 cm-1. The equilibrium state rovibrational constants up to all 5 quartic terms were derived from theoretical harmonic calculations at three levels of theory: B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVTZ using the principal axis coordinate system. These constants agreed reasonably well with the ground state constants of 13C2D4 derived from the present experimental GSCD fit. Furthermore, all 3 rotational constants of the upper state (v9 = 1) and of the ground state of 13C2D4 were obtained from anharmonic calculations using B3LYP and MP2 levels with the cc-pVTZ basis set. The calculated rotational constants were found to agree with those derived experimentally within 0.40%.

  7. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  8. Spatial competition of the ground states in 1111 iron pnictides

    NASA Astrophysics Data System (ADS)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  9. Ground state solutions for non-autonomous fractional Choquard equations

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Hong; Liu, Chungen

    2016-06-01

    We consider the following nonlinear fractional Choquard equation, {(‑Δ)su+u=(1+a(x))(Iα ∗ (|u| p))|u| p‑2uin RN,u(x)→0as |x|→∞, here s\\in (0,1) , α \\in (0,N) , p\\in ≤ft[2,∞ \\right) and \\frac{N-2s}{N+α}<\\frac{1}{p}<\\frac{N}{N+α} . Assume {{\\lim}|x|\\to ∞}a(x)=0 and satisfying suitable assumptions but not requiring any symmetry property on a(x), we prove the existence of ground state solutions for (0.1).

  10. Unparticle contribution to the hydrogen atom ground state energy

    NASA Astrophysics Data System (ADS)

    Wondrak, Michael F.; Nicolini, Piero; Bleicher, Marcus

    2016-08-01

    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schrödinger perturbation theory, we obtain the energy shift of the ground state and compare it with experimental data. Bounds on the unparticle energy scale ΛU as a function of the scaling dimension dU and the coupling constant λ are derived. We show that there exists a parameter region where bounds on ΛU are stringent, signaling that unparticles could be tested in atomic physics experiments.

  11. All-optical reconstruction of atomic ground-state population

    NASA Astrophysics Data System (ADS)

    London, P.; Firstenberg, O.; Shuker, M.; Ron, A.

    2010-04-01

    The population distribution within the ground state of an atomic ensemble is of great significance in a variety of quantum-optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical-pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme, which result from the symmetry properties of the dipole matrix elements, are discussed.

  12. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  13. Ground state properties of alkali and alkaline-earth hydrides

    NASA Astrophysics Data System (ADS)

    Fuentealba, P.; Reyes, O.; Stoll, H.; Preuss, H.

    1987-11-01

    The ground state potential energy curves of alkali (LiH to CsH) and alkaline-earth monohydrides (BeH to BaH) have been calculated. A pseudopotential formalism including a core-polarization potential has been used. For the valence correlation energy, two different methods, the local spin-density functional and the configuration interaction with single and double excitations, have been employed. Dissociation energies, bond lengths, vibrational frequencies, anharmonicity constants, and dipole moments are reported. The agreement with experimental values, where available, is very good. A discussion and a comparison with other theoretical values, at different levels of approximation, are also included.

  14. Impact of the nuclear equation of state on models of rotating neutron stars

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1991-06-03

    The impact of the nuclear equation of state on the properties of rotating neutron stars from two different sources, stable rotation at the general relativistic Kepler period and rotation at the gravitational radiation-reaction driven instability mode, is analyzed. For this purpose models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity by applying a refined version of Hartle's perturbative stellar structure equations. The investigation is based on a representative collection of a total of seventeen nuclear equations of state, covering both non-relativistic as well as relativistic ones. 41 refs., 3 figs., 2 tabs.

  15. Reanalysis of the ground and three torsional excited states of trans-ethyl methyl ether by using an IAM-like tunneling matrix formalism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2016-03-01

    The trans-ethyl methyl ether has two inequivalent methyl internal rotors and shows tunneling splittings of maximum up to five components. However, the barrier of these two internal rotation potentials were relatively high and the five components were not resolved in the ground state microwave spectra. In this study, well-resolved Fourier transform microwave ground state spectrum was measured for the first time to resolve the five components. The ground state microwave spectra were reanalyzed based on these new measurements and the additional millimeter-wave spectra as well as those studied previously by Fuchs et al. Ninety Fourier transform microwave spectral lines were assigned to 107 transitions in the ground state and 3508 conventional microwave absorption lines were assigned up to Ka = 16 of the ground state, including all 707 lines reported by Fuchs et al. In addition, 10 transitions were observed by the double resonance experiment. They were least-squares-analyzed by the use of an internal axis method (IAM)-like tunneling matrix formalism based on an extended permutation-inversion group theoretical idea. Twenty-two molecular parameters composed of rotational constants, centrifugal distortion constants, internal rotation parameters and internal rotation tunneling parameters were determined for the ground state. The microwave spectra in the three torsionally excited states, that is, the ν28 = 1 C-CH3 torsional state, the ν29 = 1 O-CH3 torsional state and the ν30 = 1 skeletal torsional state, were also reanalyzed by using the IAM-like tunneling matrix formalism and somewhat extended line assignments.

  16. Ground-state energetics of helium and deuterium fermion fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.; Smith, R. A.; Clark, J. W.; Panoff, R. M.

    1981-12-01

    The method of correlated basis functions (CBF) is applied to the evaluation of the ground-state energy of atomic fermion fluids as a function of density. As a first step, liquid 3He in both unpolarized and fully polarized spin configurations is considered variationally, using Slater-Jastrow trial wave functions. Results are reported for a conventional analytic choice of the state-independent two-body correlation function f(r) and for the optimal f(r) determined by the solution of a suitable Euler equation. The Jastrow treatment is found to be inadequate in that (i) the energy expectation value lies above the experimental equilibrium energy by some 1.5 K, and (ii) the polarized phase is predicted to be more stable than the unpolarized one. For a given polarization, a correlated basis is formed by application of the assumed Jastrow correlation factor to the elements of a complete set of noninteracting-Fermi-gas Slater determinants. The exact ground-state energy may be developed in a perturbation expansion in the correlated basis, the leading term being the Jastrow energy expectation value. Considerable improvement on the Jastrow description of the unpolarized phase is achieved upon inclusion of the correlated two-particle-two-hole component of the second-order CBF perturbation correction. At the experimental equilibrium density, this contribution, which incorporates important momentum- and spin-dependent correlations, can amount to some 0.6-1.1 K [depending on the choice of f(r)]. The required correlated-basis matrix elements are calculated by Fermi hypernetted-chain (FHNC) techniques, crucial Pauli effects of the elementary diagrams being introduced through the FHNC/C algorithm. The Euler equation is approximated within the same framework. The momentum-space integrations in the second-order perturbation correction are evaluated by a Monte Carlo procedure. One may reasonably expect that further refinements of the CBF method will lead to an accurate microscopic

  17. Ground state of bilayer hα-silica: mechanical and electronic properties.

    PubMed

    Han, Yang; Hu, Ming

    2015-12-18

    The family of two-dimensional (2D) crystals was recently joined by silica, one of the most abundant resources on earth. So far two different polymorphs of this material, namely a tetrahedra-shaped monolayer and a fully saturated bilayer structure, have been synthesized on various metal substrates and their fascinating properties enable 2D silica to hold promise in nanoelectronic device applications. In this paper a new ground state of bilayer-AAr-stacking hα-silica-has been discovered by first principles calculations. The new structure is featured with a formation of Si-Si bonds between all sp(3) hybridized SiO3 triangular pyramids, lying respectively in different silica layers, with an intrinsic rotational angle of about 12.5° along the out-of-plane Si-Si bond. Due to the doubled number of Si-Si bonds in the new structure, the system energy is lowered by nearly three times more than that reported recently in literature (0.8 eV) (Özçelik et al 2014 Phys. Rev. Lett. 112 246803), when compared with the single layer hα-silica. A mechanical property investigation shows that the AAr-stacking bilayer hα-silica possesses high in-plane stiffness and a negative Poisson's ratio, which stems from the intrinsic rotational angle of the SiO3 triangular pyramids. Strikingly, the negative Poisson's ratio evolves into positive at a critical tensile strain ϵ ≈ 1.2%. Such negative-to-positive evolvement is associated with the adaptation of the rotational angle to the applied strain and the structure transition into the nearby valley of the energy landscape. The detailed transition process has been thoroughly analyzed. The electronic properties of the new ground state are also calculated, along with their response to the external strain. Our new ground state structure introduces a new member to the family of 2D bilayer silica materials and is expected to facilitate experimental studies identifying the related structures and exploring further physical and chemical properties

  18. Ground state of bilayer hα-silica: mechanical and electronic properties

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hu, Ming

    2015-12-01

    The family of two-dimensional (2D) crystals was recently joined by silica, one of the most abundant resources on earth. So far two different polymorphs of this material, namely a tetrahedra-shaped monolayer and a fully saturated bilayer structure, have been synthesized on various metal substrates and their fascinating properties enable 2D silica to hold promise in nanoelectronic device applications. In this paper a new ground state of bilayer—AAr-stacking hα-silica—has been discovered by first principles calculations. The new structure is featured with a formation of Si-Si bonds between all sp3 hybridized SiO3 triangular pyramids, lying respectively in different silica layers, with an intrinsic rotational angle of about 12.5° along the out-of-plane Si-Si bond. Due to the doubled number of Si-Si bonds in the new structure, the system energy is lowered by nearly three times more than that reported recently in literature (0.8 eV) (Özçelik et al 2014 Phys. Rev. Lett. 112 246803), when compared with the single layer hα-silica. A mechanical property investigation shows that the AAr-stacking bilayer hα-silica possesses high in-plane stiffness and a negative Poisson’s ratio, which stems from the intrinsic rotational angle of the SiO3 triangular pyramids. Strikingly, the negative Poisson’s ratio evolves into positive at a critical tensile strain ɛ ≈ 1.2%. Such negative-to-positive evolvement is associated with the adaptation of the rotational angle to the applied strain and the structure transition into the nearby valley of the energy landscape. The detailed transition process has been thoroughly analyzed. The electronic properties of the new ground state are also calculated, along with their response to the external strain. Our new ground state structure introduces a new member to the family of 2D bilayer silica materials and is expected to facilitate experimental studies identifying the related structures and exploring further physical and chemical

  19. Mercury's rotational state from combined MESSENGER laser altimeter and image data

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  20. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  1. Cloning and variation of ground state intestinal stem cells.

    PubMed

    Wang, Xia; Yamamoto, Yusuke; Wilson, Lane H; Zhang, Ting; Howitt, Brooke E; Farrow, Melissa A; Kern, Florian; Ning, Gang; Hong, Yue; Khor, Chiea Chuen; Chevalier, Benoit; Bertrand, Denis; Wu, Lingyan; Nagarajan, Niranjan; Sylvester, Francisco A; Hyams, Jeffrey S; Devers, Thomas; Bronson, Roderick; Lacy, D Borden; Ho, Khek Yu; Crum, Christopher P; McKeon, Frank; Xian, Wa

    2015-06-11

    Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen Clostridium difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine. PMID:26040716

  2. Helimagnons in a chiral ground state of the pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.

    2013-02-01

    The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems.

  3. Photoionization of potassium atoms from the ground and excited states

    SciTech Connect

    Zatsarinny, O.; Tayal, S. S.

    2010-04-15

    The Dirac-based B-spline R-matrix method is used to investigate the photoionization of atomic potassium from the 4s ground and 4p, 5s-7s, 3d-5d excited states. The effect of the core polarization by the outer electron is included through the polarized pseudostates. Besides the dipole core polarization, we also found a noticeable influence of the quadrupole core polarization. We obtained excellent agreement with experiment for cross sections of the 4s photoionization, including accurate description of the near-threshold Cooper-Seaton minimum. We also obtained close agreement with experiment for the 4p photoionization, but there are unexpectedly large discrepancies with available experimental data for photoionization of the 5d and 7s excited states.

  4. Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen; Duffar, Thierry

    2015-11-01

    The influence of rotating magnetic fields (RMF) on species transport and interface stability during the growth of Cd0.96Zn0.04Te:In crystals by using the traveling heater method (THM), under microgravity and terrestrial conditions, is numerically investigated. The numerical results are compared to ground and space experiments. The modeling of THM under ground conditions shows very deleterious effects of the natural convection on the morphological stability of the growth interface. The vertical flow transports the liquid of low Te concentration from the dissolution interface to the growth interface, which is consequently destabilized. The suppression of this flow, in low-gravity conditions, results in higher morphological stability of the growth interface. Application of RMF induces a two flow cell pattern, which has a destabilizing effect on the growth interface. Simulations performed by varying the magnetic field induction in the range of 1 - 3 mT show optimal conditions for the growth with a stable interface at low strength of the magnetic field (B = 1 mT). Computations of indium distribution show a better homogeneity of crystals grown under purely diffusive conditions. Rotating magnetic fields of B = 1 mT induce low intensity convection, which generates concentration gradients near the growth interface. These numerical results are in agreement with experiments performed during the FOTON M4 space mission, showing good structural quality of Cd0.96Zn0.04Te crystals grown at very low gravity level. Applying low intensity rotating magnetic fields in ground experiments has no significant influence on the flow pattern and solute distribution. At high intensity of RMF (B = 50 mT), the buoyancy convection is damped near the growth front, resulting in a more stable advancing interface. However, convection is strengthening in the upper part of the liquid zone, where the flow becomes unsteady. The multi-cellular unsteady flow generates temperature oscillations, having

  5. Nuclear Magnetic Moment of the {sup 57}Cu Ground State

    SciTech Connect

    Minamisono, K.; Mertzimekis, T.J.; Pereira, J.; Mantica, P.F.; Pinter, J.S.; Stoker, J.B.; Tomlin, B.E.; Weerasiri, R.R.; Davies, A.D.; Hass, M.; Rogers, W.F.

    2006-03-17

    The nuclear magnetic moment of the ground state of {sup 57}Cu(I{sup {pi}}=3/2{sup -},T{sub 1/2}=196.3 ms) has been measured to be vertical bar {mu}({sup 57}Cu) vertical bar =(2.00{+-}0.05){mu}{sub N} using the {beta}-NMR technique. Together with the known magnetic moment of the mirror partner {sup 57}Ni, the spin expectation value was extracted as <{sigma}{sigma}{sub z}>=-0.78{+-}0.13. This is the heaviest isospin T=1/2 mirror pair above the {sup 40}Ca region for which both ground state magnetic moments have been determined. The discrepancy between the present results and shell-model calculations in the full fp shell giving {mu}({sup 57}Cu){approx}2.4{mu}{sub N} and <{sigma}{sigma}{sub z}>{approx}0.5 implies significant shell breaking at {sup 56}Ni with the neutron number N=28.

  6. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    SciTech Connect

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  7. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers

    DOE PAGESBeta

    Sivadas, Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-06-16

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. In conclusion, our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  8. Ground-State of the Bose-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Mancini, J. D.; Fessatidis, V.; Bowen, S. P.; Murawski, R. K.; Maly, J.

    The Bose-Hubbard Model represents a s simple theoretical model to describe the physics of interacting Boson systems. In particular it has proved to be an effective description of a number of physical systems such as arrays of Josephson arrays as well as dilute alkali gases in optical lattices. Here we wish to study the ground-state of this system using two disparate but related moments calculational schemes: the Lanczos (tridiagonal) method as well as a Generalized moments approach. The Hamiltonian to be studied is given by (in second-quantized notation): H = - t ∑ < i , j > bi†bj +U/2 ∑ inini - 1 - μ ∑ ini . Here i is summed over all lattice sites, and < i , j > denotes summation over all neighbhoring sites i and j, while bi† and bi are bosonic creation and annihilation operators. ni = bi†bi gives the number of particles on site i. Parameter t is the hopping amplitude, describing mobility of bosons in the lattice. Parameter U describes the on-site interaction, repulsive, if U > 0 , and attractive for U < 0 . μ is the chemical potential. Both the ground-state energy and energy gap are evaluated as a function of t, U and μ.

  9. Ground state for CH2 and symmetry for methane decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Luo, Wen-Lang; Ruan, Wen; Jiang, Gang; Zhu, Zheng-He

    2008-06-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is tilde X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, i.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to tilde X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) i.e. CH4 → CH2+H2, is forbidden and the decomposition type (2) i.e. CH4 → CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  10. The ground state far infrared spectrum of NH3

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Margolis, J. S.

    1983-01-01

    The NH3 far infrared spectrum is particularly useful for the study of planetary composition and atmospheric dynamics. Studies of this spectrum were conducted by Dowling (1969), Helminger et al. (1971), and Urban et al. (1981). Sattler et al. (1981) have reported measurements of a few nu2 lines with tunable diode lasers. By using simple sum rules, these lines and accurate ground state inversion lines considered by Poynter and Kakar (1975) have been employed in the present investigation to deduce a few of the far infrared ground state transitions. An extensive set of high signal/noise, high resolution (0.0048 per cm) scans of the nu2 bands of NH3 from about 600 per cm through about 1300 per cm ait a series of low pressures have been made in order to accurately determine both the line positions and strengths. The obtained data provide line positions with an absolute accuracy of about 0.0001 per cm in the more favorable cases.

  11. The valence-fluctuating ground state of plutonium

    DOE PAGESBeta

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; et al

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  12. On the nature of the oligoacene ground state

    NASA Astrophysics Data System (ADS)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  13. Microwave Spectra of Furazan. III. Rotation Spectra of Vibrationally Excited States

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1990-10-01

    The pure rotational spectra of molecules in 21 vibrationally excited states of the heterocyclic compound furazan (C2H2N2O) have been detected and studied by DRM microwave spectroscopy. Rotational parameters are reported for the 12 fundamental levels below 1500 cm-1 , and the contri-butions from 10 vibrational modes to the effective rotational constants and to the inertia defect of furazan are calculated.

  14. Electric-field effects on He ground-state photoionization

    NASA Astrophysics Data System (ADS)

    Fang, T. K.; Chung, Kwong T.

    2001-04-01

    A saddle-point complex-rotation method is used to study the photoionization of helium in the presence of a dc electric field. A four-angular-symmetry calculation (i.e. Lmax = 3) is carried out to study two locally isolated resonance groups, one consisting of He (2, 5c) 1Po, (2, 5b) 1Se, (2, 6b) 1Po and (2, 6a) 1Se states, and the other consisting of He (2, 6c) 1Po, (2, 6b) 1Se, (2, 7b) 1Po and (2, 7a) 1Se states. The variations of the structure of cross section profiles and resonance strengths for the ML = 0 components of these two resonance groups are examined in detail. A general Ntot-state sum rule for the total resonance strength Stot is shown, which suggests that the sum of the total resonance strength of a locally isolated resonance group is not affected by the presence of a weak static field. We have also performed a five-symmetry (i.e. Lmax = 4) multichannel calculation for the doubly excited spectra converging to the n = 3 threshold of He+. Overlapping resonances are found and resolved.

  15. Ground-State Proton Transfer Kinetics in Green Fluorescent Protein

    PubMed Central

    2015-01-01

    Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install and monitor a 13C directly adjacent to the GFP chromophore ionization site. The chemical shift of this probe is highly sensitive to the protonation state of the chromophore, and the resulting spectra reflect the thermodynamics and kinetics of the proton transfer in the NMR line shapes. This information is complemented by time-resolved NMR, fluorescence correlation spectroscopy, and steady-state absorbance and fluorescence measurements to provide a picture of chromophore ionization reactions spanning a wide time domain. Our findings indicate that proton transfer in GFP is described well by a two-site model in which the chromophore is energetically coupled to a secondary site, likely the terminal proton acceptor of ESPT, Glu222. Additionally, experiments on a selection of GFP circular permutants suggest an important role played by the structural dynamics of the seventh β-strand in gating proton transfer from bulk solution to the buried chromophore. PMID:25184668

  16. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state

    SciTech Connect

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Nakajima, Masakazu; Endo, Yasuki

    2015-12-28

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r{sub 0}(C–C) = 1.3971 Å and r{sub 0}(C–H) = r{sub 0}(C–D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C–H and C–D are identical unlike small aliphatic hydrocarbons, in which r{sub 0}(C–D) is about 5 mÅ shorter than r{sub 0}(C–H). It is considered that anharmonicity is very small in the C–H stretching vibration of aromatic hydrocarbons.

  17. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  18. Lifetimes of superdeformed rotational states in {sup 36}Ar.

    SciTech Connect

    Svensson, C. E.; Macchiavelli, A. O.; Juodagalvis, A.; Poves, A.; Ragnarsson, I.; Aberg, S.; Appelbe, D. E.; Austin, R. A. E.; Ball, G. C.; Carpenter, M. P.; Caurier, E.; Clark, R. M.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Janssens, R. V. F.; Lane, G. J.; Lee, I. Y.; Nowacki, F.; Sarantites, D. G.; Stephens, F. S.; Vetter, K.; Ward, D.; Physics; LBNL; Lund Inst. of Tech.; Univ. Autonoma de Madrid; McMaster Univ.; TRIUMF; Univ. Louis Pasteur; Washington Univ.

    2001-06-01

    Lifetimes have been measured in a superdeformed rotational band recently identified in the N=Z nucleus {sup 36}Ar. A large low-spin quadrupole deformation ({beta}{sub 2}=0.46{+-}0.03) is confirmed and a decrease in the collectivity is observed as the high-spin band termination at I{sup {pi}}=16{sup +} is approached. Detailed comparisons of the experimental B(E2) values with the results of cranked Nilsson-Strutinsky and large-scale (s{sub 1/2}d{sub 3/2})-pf spherical shell model calculations indicate the need for a more refined treatment of transition matrix elements close to termination in the former, and the inclusion of the complete sd-pf model space in the latter description of this highly-collective rotational band.

  19. High-pressure magnetic state of MnP probed by means of muon-spin rotation

    NASA Astrophysics Data System (ADS)

    Khasanov, R.; Amato, A.; Bonfà, P.; Guguchia, Z.; Luetkens, H.; Morenzoni, E.; De Renzi, R.; Zhigadlo, N. D.

    2016-05-01

    We report a detailed muon-spin rotation study of the pressure evolution of the magnetic order in the manganese-based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors Q aligned along the crystallographic c and b directions, respectively) which transform into each other through first-order phase transitions as a function of pressure and temperature. Our data suggest that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.

  20. Equation of State Dependence of Gravitational Waves from Rapidly Rotating Core-Collapse

    NASA Astrophysics Data System (ADS)

    Richers, Sherwood; Ott, Christian D.; Abdikamalov, Ernazar

    2016-03-01

    We carry out axisymmetric simulations of rotating core-collapse, exploring over 92 precollapse rotational configurations and 18 different finite-temperature microphysical equations of state (EOS) using the general-relativistic hydrodynamical code CoCoNuT. Our focus is on gravitational wave (GW) emission. We find that the GW wave signature depends systematically on the rotation rate of the inner core at bounce and the compactness of the protoneutron star (PNS), set by the EOS and rotation. The GW signal from core bounce is almost independent of the EOS. However, the frequency of the post-bounce ring down signal from the fundamental quadrupole oscillation mode of the PNS is dependent on both rotation and the EOS, increasing with rotation rate and compactness. We will discuss the origin of the EOS-dependent f-mode frequency variation and its potential observability with Advanced LIGO.

  1. First resonant tunneling via a light-hole ground state

    NASA Astrophysics Data System (ADS)

    Lampin, J. F.; Mollot, F.

    1998-07-01

    We report the demonstration of resonant tunneling of light-holes through an AlAs/GaAs 0.7P 0.3 double-barrier heterostructure. The tensile strain in the quantum well reverses the order of the light- and heavy-hole levels, the first light-hole level becoming the ground state. The I( V) characteristics are measured at different temperatures and compared to those of a standard AlAs/GaAs unstrained structure. The peak current density of the first light-hole resonance and its peak-to-valley current ratio are enhanced. They reach 28 A/cm 2 and 3.4 : 1 at 15 K. A negative differential resistance is observed up to 250 K.

  2. Masses of Ground- and Excited-State Hadrons

    NASA Astrophysics Data System (ADS)

    Roberts, Hannes L. L.; Chang, Lei; Cloët, Ian C.; Roberts, Craig D.

    2011-07-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Δ masses and those of the dressed-quark and diquark correlations they contain.

  3. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  4. Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States

    NASA Astrophysics Data System (ADS)

    Michaud, Frédéric; Vernay, François; Manmana, Salvatore R.; Mila, Frédéric

    2012-03-01

    We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1·Si)(Si·Si+1)+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.

  5. Chirped-Pulsed Ftmw Spectrum of 4-FLUOROBENZYL Alcohol. Structure and Torsional Motions in the Ground Electronic State Phase

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2010-06-01

    Previous studies of 4-fluorobenzyl alcohol (4FBA) in the gas phase have revealed the existence of tunneling splittings in its high resolution electronic spectrum. These could be attributed either to the ground S0 state, or the excited S1 state, or both. Motivated by this finding, we report here a study of the CP-FTMW spectrum of 4FBA. Its pure rotational spectrum was collected using a series of 250 MHz chirped pulses, over the frequency range of 6.5-18 GHz. Analysis of this data shows that 4FBA has a gauche structure and yields the V2 barrier for CH2OH torsion, from which the predicted tunneling splittings in the ground state have been extracted.

  6. Tensor Forces and the Ground-State Structure of Nuclei

    SciTech Connect

    Rocco Schiavilla

    2007-03-01

    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A {le} 8, using accurate variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of 'np' pairs is found to be much larger than that of 'pp' pairs for values of the relative momentum in the range (300--600) MeV/c and vanishing total momentum. This large difference, more than an order of magnitude, is seen in all nuclei considered, and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of 'np' pairs, which are known to be predominantly in deuteron-like states, while they are ineffective for 'pp' pairs, which are mostly in {sup 1}S{sub 0} states. These features should be easily observable in two-nucleon knock-out processes, for example in A(e,e{prime} np) and A(e,e{prime} pp) reactions.

  7. Tensor Forces and the Ground-State Structure of Nuclei

    SciTech Connect

    Schiavilla, R.; Wiringa, R. B.; Pieper, Steven C.; Carlson, J.

    2007-03-30

    Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A{<=}8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of np pairs is found to be much larger than that of pp pairs for values of the relative momentum in the range (300-600) MeV/c and vanishing total momentum. This order of magnitude difference is seen in all nuclei considered and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of np pairs, which are predominantly in deuteronlike states, while they are ineffective for pp pairs, which are mostly in {sup 1}S{sub 0} states. These features should be easily observable in two-nucleon knockout processes, such as A(e,e{sup '}np) and A(e,e{sup '}pp)

  8. Realization of Ground State Artificial Skyrmion Lattices at Room Temperature

    NASA Astrophysics Data System (ADS)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew J.; Kirby, Brian J.; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Fischer, Peter; Liu, Kai

    Artificial skyrmion lattices stable at ambient conditions offer a convenient and powerful platform to explore skyrmion physics and topological phenomena and motivates their inclusion in next-generation data and logic devices. In this work we present direct experimental evidence of artificial skyrmion lattices with a stable ground state at room temperature. Our approach is to pattern vortex-state Co nanodots (560 nm diameter) in hexagonal arrays on top of a Co/Pd multilayer with perpendicular magnetic anisotropy; the skyrmion state is prepared using a specific magnetic field sequence. Ion irradiation has been employed to suppress PMA in the underlayer and allow imprinting of the vortex structure from the nanodots to form skyrmion lattices, as revealed by polarized neutron reflectometry. Circularity control is realized through Co dot shape asymmetry, and confirmed by microscopy and FORC magnetometry. The vortex polarity is set during the field sequence and confirmed by magnetometry. Spin-transport studies further demonstrate a sensitivity to the skyrmion spin texture.Work supported by NSF (DMR-1008791, ECCS-1232275 and DMR-1543582)

  9. Ground States of a Disordered Frustrated Quantum Dimer Magnet

    NASA Astrophysics Data System (ADS)

    Hristov, Alexander; Shapiro, Maxwell; Fisher, Ian; Lee, Minseong; Rodenbach, Linsey; Bernheisel, Ashley; Choi, Eun Sang; Park, Ju-Hyun; Civale, Leonardo; Munsie, Tim; Luke, Graeme

    2015-03-01

    We present results of thermodynamic measurements of the site-diluted spin-dimer magnet Ba3 (Mn1-xVx)2 O8, including magnetization, torque magnetometry, and AC susceptibility. The parent compound Ba3Mn2O8 is a frustrated S = 1 quantum dimer-magnet with a singlet ground state, and triplet and quintuplet excitations. A magnetic field can be used to tune the energy spectrum of this system, yielding successive triplet and quintuplet condensates at low temperatures. Site substitution with S = 0 V breaks Mn-dimers, introducing site disorder into the high-field ordered states. This substitution also introduces unpaired S = 1 Mn ions, and it has been an open question whether such spins order at low temperatures. Here, we present evidence of the spin-freezing of unpaired Mn ions below 240mK for all compositions measured, from x=0.05 to 0.85. We also present the evolution of the high field ordered state with increasing disorder. NSF DMR-Award 1205165.

  10. Evaluation of rotating-cylinder and piston-cylinder reactors for ground-based emulsion polymerization

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.

    1987-01-01

    The objectives of this program are to apply ground-based emulsion polymerization reactor technology to improve the production of: monodisperse latex particles for calibration standards, chromatographic separation column packing, and medical research; and commercial latexes such as those used for coatings, foams, and adhesives.

  11. Ground beetle (Coleoptera: Carabidae) assemblages in the Conservation Reserve Program crop rotation systems in Interior Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult ground beetles (Coleoptera: Carabidae) abundance and diversity were documented on Conservation Research Program (CRP) agricultural lands in Delta Junction, Alaska (64ºN, 145º W). Twenty species were documented based on a total sample of 6,116 specimens collected during 2006 and 2007. Two speci...

  12. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  13. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach

    NASA Astrophysics Data System (ADS)

    Lu, Yongchuan; Wang, Chen

    2016-07-01

    We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

  14. Rotating machinery prognostics: State of the art, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Heng, Aiwina; Zhang, Sheng; Tan, Andy C. C.; Mathew, Joseph

    2009-04-01

    Machinery prognosis is the forecast of the remaining operational life, future condition, or probability of reliable operation of an equipment based on the acquired condition monitoring data. This approach to modern maintenance practice promises to reduce downtime, spares inventory, maintenance costs, and safety hazards. Given the significance of prognostics capabilities and the maturity of condition monitoring technology, there have been an increasing number of publications on rotating machinery prognostics in the past few years. These publications covered a wide spectrum of prognostics techniques. This review article first synthesises and places these individual pieces of information in context, while identifying their merits and weaknesses. It then discusses the identified challenges, and in doing so, alerts researchers to opportunities for conducting advanced research in the field. Current methods for predicting rotating machinery failures are summarised and classified as conventional reliability models, condition-based prognostics models and models integrating reliability and prognostics. Areas in need of development or improvement include the integration of condition monitoring and reliability, utilisation of incomplete trending data, consideration of effects from maintenance actions and variable operating conditions, derivation of the non-linear relationship between measured data and actual asset health, consideration of failure interactions, practicability of requirements and assumptions, as well as development of performance evaluation frameworks.

  15. Antiferromagnetic ground state in NpCoGe

    NASA Astrophysics Data System (ADS)

    Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.

    2014-03-01

    NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.

  16. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  17. All-Optical Scheme to Produce Quantum Degenerate Dipolar Molecules in the Vibronic Ground State

    NASA Astrophysics Data System (ADS)

    Mackie, Matt; Debrosse, Catherine

    2010-03-01

    We consider two-color heteronuclear photoassociation of Bose-condensed atoms into dipolar molecules in the J=1 vibronic ground state, where a free-ground laser couples atoms directly to the ground state and a free-bound laser couples the atoms to an electronically-excited state. The addition of the excited state creates a second pathway for creating ground state molecules, leading to quantum interference between direct photoassociation and photoassociation via the excited molecular state, as well as a dispersive-like shift of the free-ground resonance position. Using LiNa as an example, these results are shown to depend on the detuning and intensity of the free-bound laser, as well as the semi-classical size of both molecular states. Despite strong enhancement, coherent conversion to the LiNa vibronic ground state is possible only in a limited regime near the free-bound resonance.

  18. Assignment of the Sub-Millimeter Wave Spectrum of Methyl Carbamate, NH_2COOCH_3, in the First Excited State of the Methyl Group Internal Rotation

    NASA Astrophysics Data System (ADS)

    Groner, P.

    2009-06-01

    The rotational spectrum of methyl carbamate in the first excited torsional state (up to 149 GHz) has been analyzed recently for rotational quantum number J up to 20 together with transitions in the ground state. An extended analysis of the rotational spectrum in the ground state between 10 and 371 GHz with over 6000 transitions with J up to 60 has also been published. In the spectra recorded at that time by the FASSST method, about 3000 transitions belonging to the first torsional excited state of the methyl group have now been assigned and analyzed, about half of them belonging to the E torsional species. Both the newly assigned and previously published transitions have been used to fit less than 45 spectroscopic parameters of an effective rotational Hamiltonian for such systems, achieving a dimensionless standard deviation of 1.33. A somewhat unexpected result was the value of the {ρ} parameter of 0.063628(20) which differed significantly from the value obtained for the ground state of 0.058791(15). The discrepancy will be investigated in the near future. Hopefully, a resolution of the problem can be achieved by a combined fit of all excited and ground state transitions using common {ρ} and {β} parameters with {β} as the angle between the {ρ}-axis and the a principal axis. V. Ilyushin, E. Alekseev, J. Demaison, I. Kleiner, J. Mol. Spectrosc. 240, 127 (2006). P. Groner, M. Winnewisser, I. R. Medvedev, F. C. De Lucia, E. Herbst, K. V. L. N. Sastry, Astrophys. J. Suppl. Ser. 169, 28 (2007). P. Groner, J. Chem. Phys. 107, 4483 (1997).

  19. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  20. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  1. Liquid ground state, gap, and excited states of a strongly correlated spin chain.

    PubMed

    Lesanovsky, Igor

    2012-03-01

    We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the exact excitation gap, as well as the exact wave functions for a couple of excited states are analytically derived and discussed. We outline how this system can be experimentally realized in a lattice gas of Rydberg atoms. PMID:22463419

  2. State resolved photodissociation of vibrationally excited water: Rotations, stretching vibrations, and relative cross sections

    SciTech Connect

    Vander Wal, R.L.; Scott, J.L.; Crim, F.F. )

    1991-02-01

    The state resolved photodissociation of highly vibrationally excited water molecules using laser induced fluorescence detection of the OH product demonstrates the control that the initially selected state exerts over product state populations. These vibrationally mediated photodissociation experiments, in which one photon prepares a highly vibrationally excited molecule and a second photon dissociates it, determine the role of overall rotations and of O--H stretching vibrations as well as measure the relative cross section for the photodissociation of water. The {ital rotational} {ital state} of the vibrationally excited water molecule governs the rotational state of the OH product of the dissociation, in agreement with {ital ab} {ital initio} calculations and previous measurements on single rotational states excited in the fundamental asymmetric stretching vibration band. The initially selected {ital vibrational} {ital state} of the water molecule determines the vibrational energy disposal in the products, which agrees with a simple qualitative model based on the pattern of the initially selected vibrational wave function. Dissociating vibrational states with similar energies but very different nuclear motions produces dramatically different product vibrational state populations. The vibrational energy initially present in the surviving bond primarily appears as vibrational excitation of the product. Dissociation of the {vert bar}04{r angle}{sup {minus}} state produces no vibrationally excited OH, but dissociation of the {vert bar}13{r angle}{sup {minus}} state produces mostly vibrationally excited products.

  3. Pyrolysis of sulfur tetrafluoride over boron: Excited-state rotational spectra and equilibrium structure of fluorothioborine (FBS)

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Esposti, C. Degli

    2001-10-01

    The unstable FBS molecule has been produced in the gas phase by a high-temperature reaction between crystalline boron and sulfur tetrafluoride. Its rotational spectrum has been observed in the millimeter-wave region, from 75 to 460 GHz, for different isotopic species and vibrational states. All the excited states which approximately lie below 1700 cm-1, that are 1000 (F-B stretch), 0110 (FBS bend), 0001 (B=S stretch), 2000, 0200, 0220, 0310, 0330, 0400, 0420, 0440, 1110, 1200, and 1220, have been investigated for the most abundant isotopomer F11B32S. The analysis of the spectra has been performed taking simultaneously into account the Fermi interaction which couples the states ν1,ν2,ν3 with ν1-1, ν2+2,ν3, and l-type resonances between different sublevels of a given vibrational bending state. This procedure allowed us to calculate directly deperturbed parameters and, in addition, yielded reliable estimates of the vibrational energy difference between the interacting levels and of the normal coordinate cubic force constant k122. Rotational spectra in the ground and various excited states have been also recorded and analyzed for the less abundant isotopic species F10B32S, F11B34S, F10B34S, F11B33S, and F10B33S. The very weak spectrum in the 0001 state was successfully observed for the pair of isotopomers F11B32S and F10B32S, whose equilibrium rotational constants could be accurately calculated yielding the first evaluation of the equilibrium structure of fluorothioborine: re(F-B)=1.2762±0.0002 Å and re(B=S)=1.6091±0.0002 Å.

  4. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free

  5. New Ground-State Crystal Structure of Elemental Boron.

    PubMed

    An, Qi; Reddy, K Madhav; Xie, Kelvin Y; Hemker, Kevin J; Goddard, William A

    2016-08-19

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β-B). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β-B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ-B, is based on the Cmcm orthorhombic space group. Quantum mechanics predicts that the newly identified τ-B structure is 13.8  meV/B more stable than β-B. The τ-B structure allows 6% more charge transfer from B_{57} units to nearby B_{12} units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ-B structure to be the ground state structure for elemental boron at atmospheric pressure. PMID:27588864

  6. New Ground-State Crystal Structure of Elemental Boron

    NASA Astrophysics Data System (ADS)

    An, Qi; Reddy, K. Madhav; Xie, Kelvin Y.; Hemker, Kevin J.; Goddard, William A.

    2016-08-01

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β -B ). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β -B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ -B , is based on the C m c m orthorhombic space group. Quantum mechanics predicts that the newly identified τ -B structure is 13.8 meV /B more stable than β -B . The τ -B structure allows 6% more charge transfer from B57 units to nearby B12 units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ -B structure to be the ground state structure for elemental boron at atmospheric pressure.

  7. Making classical ground-state spin computing fault-tolerant.

    PubMed

    Crosson, I J; Bacon, D; Brown, K R

    2010-09-01

    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error-free manner when working at nonzero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error-free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error-free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity. PMID:21230024

  8. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  9. Arsenic in Ground-Water Resources of the United States

    USGS Publications Warehouse

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  10. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor.

    PubMed

    Rodrigues, Michael L M; Leão, Versiane A; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan

    2015-07-01

    The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (-208μm+147μm), ferrous iron concentration (1.25-10.0g/L) and pH (1.5-2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20mm-long) working with increased solids concentration (up to 25.0g/L). Because there was as the faster leaching kinetics at 50°C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8days and microscopic observations by SEM-EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20mm-size sheets. PMID:25899037

  11. C60 rotation in the solid state - Dynamics of a faceted spherical top

    NASA Astrophysics Data System (ADS)

    Johnson, Robert D.; Yannoni, Costantino S.; Dorn, Harry C.; Salem, Jesse R.; Bethune, Donald S.

    1992-03-01

    The C-13 NMR technique is presently used to ascertain the solid-state rotational dynamics of C60. The 283 K molecular reorientation correlation time tau, at 9.1 picosecs, implies a rotational-diffusion constant of 1.8 x 10 exp 10/sec; this is only three times longer than the calculated tau value for free rotation, and is shorter than the value measured for C60 in solution. Below 260 K, a second phase with much longer reorientation time is noted. In both phases, tau exhibits Arrhenius behavior. These results are noted to parallel those established for adamantane.

  12. Vibrationally mediated photodissociation of H 2O 2 (4 vOH): rotational state dependent photodissociation cross sections and vibrational state mixing

    NASA Astrophysics Data System (ADS)

    Brouard, M.; Mabbs, R.

    1993-03-01

    A reinvestigation of the vibrationally mediated photodissociation spectrum of the 3rd OH stretching overtone (4 vOH) of jetcooled H 2O 2, first observed by Crim and co-workers, reveals anomalous double resonance spectral intensities compared with those observed via high-resolution absorption spectroscopy. The origin of these intensity perturbations is traced to J' KaKc level dependent variations in the photodissociation cross section, δ 00, out of the intermediate overtone state. The photofragment OH(X, v=0) rotational state distribution generated by photodissociation of H 2O 2 (4 vOH, J' KaKc=2 02) has been determined. Combined with the relative cross-section data, these results imply that delocalization of the overtone state wavefunction into wideamplitude OO stretching regions of the ground state is profoundly influenced by parent molecular rotation, primarily about the a and b axes. The intermediate state with J'=0 is shown to be much more highly localized, and hence more likely to display mode selective behaviour, than its J' >0 counterparts.

  13. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  14. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  15. Rotation of a bulky triptycene in the solid state: toward engineered nanoscale artificial molecular machines.

    PubMed

    Jiang, Xing; Rodríguez-Molina, Braulio; Nazarian, Narega; Garcia-Garibay, Miguel A

    2014-06-25

    We report the design and dynamics of a solid-state molecular rotor with a large triptycene rotator. With a cross-section and surface area that are 2 and 3 times larger than those of the phenylene rotators previously studied in the solid state, it is expected that van der Waals forces and steric hindrance will render the motion of the larger triptycene more difficult. To address this challenge, we used a rigid and shape-persistent stator in a dendritic structure that reaches ca. 3.6 nm in length. Using variable-temperature solid-state (2)H NMR spectroscopy, we determined a symmetric three-fold rotational potential with a barrier of 10.2 kcal/mol and a pre-exponential factor of 1.1 × 10(10) s(-1), which correspond to ca. 4600 Brownian jumps per second in the solid state at 300 K. PMID:24911467

  16. Infrared and far-infrared laser magnetic resonance spectroscopy of the GeH radical - Determination of ground state parameters

    NASA Technical Reports Server (NTRS)

    Brown, J. M.; Evenson, K. M.; Sears, T. J.

    1985-01-01

    The GeH radical has been detected in its ground 2 Pi state in the gas phase reaction of fluorine atoms with GeH4 by laser magnetic resonance techniques. Rotational transitions within both 2 Pi 1/2 and 2 Pi 3/2 manifolds have been observed at far-infrared wavelengths and rotational transitions between the two fine structure components have been detected at infrared wavelengths (10 microns). Signals have been observed for all five naturally occurring isotopes of germanium. Nuclear hyperfine structure for H-1 and Ge-73 has also been observed. The data for the dominant isotope (/Ge-74/H) have been fitted to within experimental error by an effective Hamiltonian to give a set of molecular parameters for the X 2 Pi state which is very nearly complete. In addition, the dipole moment of GeH in its ground state has been estimated from the relative intensities of electric and magnetic dipole transitions in the 10 micron spectrum to be 1.24(+ or - 0.10) D.

  17. Analysis of the Rotational Structure of ˜{B}^2A' ← ˜{X}^2A' Transition of Isopropoxy Radical: Isolated State vs. Coupled States Model

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun

    2013-06-01

    Isopropoxy radicals are reactive intermediates in atmospheric and combustion chemistry. From the theoretical point of view, they represent an extreme case of ``isotopically'' substituted methoxy radicals with two methyl groups playing the role of heavy hydrogen isotopes. Previously the rotationally resolved spectra of ˜{B}^2A' ← ˜{X}^2A' electronic transition were successfully analyzed using a simple effective rotational Hamiltonian of the isolated ˜{X} and ˜{B} states. However, a number of the experimentally determined parameters appeared dramatically inconsistent with the quantum chemistry calculations and theoretical predictions based on the symmetry arguments. Recently, we analyzed these spectra using a coupled two state model, which explicitly includes interactions between the ground ˜{X}^2A' state and low-lying excited ˜{A}^2A^'' state. In this presentation we will discuss the results of this analysis and compare the parameters of both models and their physical significance. D. G. Melnik, T. A. Miller and J. Liu, TI15, 67^{th Molecular Spectroscopy Symposium}, Columbus, 2012

  18. Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.

    1995-01-01

    We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.

  19. Rotational Excitation Spectroscopy with the Scanning Tunneling Microscope - Distinction of Nuclear Spin States

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-03-01

    The appeal of inelastic electron tunneling spectroscopy with the scanning tunneling microscope (STM) stems from its unmatched spatial resolution and the ability to measure the magnetic, electronic and vibrational properties of individual atoms and molecules. Rotational excitations of molecules could provide additional information of surface processes but have hitherto remained elusive. Here we demonstrate rotational excitation spectroscopy (RES) with the STM for hydrogen and its isotopes on graphene and hexagonal boron nitride. Since the Pauli principle imposes restrictions on the allowed rotational levels J for molecules with identical nuclei, a certain alignment of the nuclear spins entails a specific set of rotational levels. Conversely, measuring the rotational levels allows characterizing the molecular nuclear spin state. We measured excitation energies at 44 meV and 21 meV, corresponding to rotational transitions J = 0 --> 2 for hydrogen and deuterium. We thereby identify the nuclear spin isomers para-H2 and ortho-D2. For HD, we observe J = 0 --> 1 and J = 0 --> 2 transitions, as expected for heteronuclear diatomics. Our measurements demonstrate the potential of STM-RES in the study of nuclear spin states with unprecedented spatial resolution. We acknowledge funding from the Swiss National Science Foundation under Projects No. 140479 and No. 148891.

  20. Effect of the equation of state on the maximum mass of differentially rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Studzińska, A. M.; Kucaba, M.; Gondek-Rosińska, D.; Villain, L.; Ansorg, M.

    2016-08-01

    Knowing the value of the maximum mass of a differentially rotating relativistic star is a key-step toward the understanding of the signals to be expected from the merger of binary neutron stars, one of the most awaited alternative sources of gravitational waves after binary black holes. In this article, we study the effects of differential rotation and of the equation of state on the maximum mass of rotating neutron stars modeled as relativistic polytropes with various adiabatic indices. Calculations are performed using a highly accurate numerical code, based on a multi-domain spectral method. We thoroughly explore the parameter space and determine how the maximum mass depends on the stiffness, on the degree of differential rotation and on the maximal density, taking into account all the types of solutions that were proven to exist in a preceding article (Ansorg et al. 2009). The highest increase with respect to the maximum mass for non-rotating stars with the same equation of state is reached for a moderate stiffness. With differential rotation, the maximum mass can even be 3-4 times higher than it is for static stars. This result may have important consequences for the gravitational wave signal from coalescing neutron star binaries or for some supernovae events.

  1. Spectral Assignments and Analysis of the Ground State of Nitromethane in High-Resolution FTIR Synchrotron Spectra

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Billinghurst, Brant E.; May, Tim E.; Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The Fourier Transform infrared spectra of CH3NO2, have been recorded, in the 400-950 wn spectral region, at a resolution of 0.00096 wn, using the Far-Infrared Beamline at Canadian Light Source. The observed spectra contain four fundamental vibrations: the NO2 in-plane rock (475.2 wn), the NO2 out-of-plane rock (604.9 wn), the NO2 symmetric bend (657.1 wn), and the CN-stretch (917.2 wn). For the lowest torsional state of CN-stretch and NO2 in-plane rock, transitions involving quantum numbers, " = 0; " {≤ 50} and {_a}" {≤ 10}, have been assigned with the aid of an automated ground state combination difference program together with a traditional Loomis Wood approach Ground state combination differences derived from more than 2100 infrared transitions have been fit with the six-fold torsion-rotation program developed by Ilyushin et al. Additional sextic and octic centrifugal distortion parameters are derived for the ground vibrational state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, J. Mol. Spectrosc., 259, 26, (2010).

  2. Orbital rotation in the lowest triplet state of benzophenone

    SciTech Connect

    Dinse, K.P.; Pratt, D.W.

    1982-04-07

    Optically detected magnetic resonance (ODMR) and electron-nuclear double resonance (ODENDOR) spectroscopy at both zero and high magnetic fields were used to examine single crystals of 4,4'-dibromodiphenyl ether (DOE) containing 0.1 mol % of an enriched perdeuterio (/sup 17/O) benzophenone (/sup 17/O-BP-d/sub 10/) guest. Representative spectra are presented and explanations are offered for the electron spin transitions. The summarized results indicate the currently used atomic orbital functions do not provide an accurate description of the lowest excited states of many aromatic carbonyls. (BLM)

  3. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-01

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation. PMID:26588541

  4. Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases.

    PubMed

    Morris, Alexis G; Feder, David L

    2007-12-14

    Through exact numerical diagonalization for small numbers of atoms, we show that it is possible to access quantum Hall states in harmonically confined Bose gases at rotation frequencies well below the centrifugal limit by applying a repulsive Gaussian potential at the trap center. The main idea is to reduce or eliminate the effective trapping frequency in regions where the particle density is appreciable. The critical rotation frequency required to obtain the bosonic Laughlin state can be fixed at an experimentally accessible value by choosing an applied Gaussian whose amplitude increases linearly with the number of atoms while its width increases as the square root. PMID:18233424

  5. Ground beef consumption patterns in the United States, FoodNet, 2006 through 2007.

    PubMed

    Taylor, Ethel V; Holt, Kristin G; Mahon, Barbara E; Ayers, Tracy; Norton, Dawn; Gould, L Hannah

    2012-02-01

    Infection resulting from foodborne pathogens, including Escherichia coli O157:H7, is often associated with consumption of raw or undercooked ground beef. However, little is known about the frequency of ground beef consumption in the general population. The objective of this study was to describe patterns of self-reported ground beef and pink ground beef consumption using data from the 2006 through 2007 FoodNet Population Survey. From 1 July 2006 until 30 June 2007, residents of 10 FoodNet sites were contacted by telephone and asked about foods consumed within the previous week. The survey included questions regarding consumption of ground beef patties both inside and outside the home, the consumption of pink ground beef patties and other types of ground beef inside the home, and consumption of ground beef outside the home. Of 8,543 survey respondents, 75.3% reported consuming some type of ground beef in the home. Of respondents who ate ground beef patties in the home, 18.0% reported consuming pink ground beef. Consumption of ground beef was reported most frequently among men, persons with incomes from $40,000 to $75,000 per year, and persons with a high school or college education. Ground beef consumption was least often reported in adults ≥65 years of age. Men and persons with a graduate level education most commonly reported eating pink ground beef in the home. Reported consumption of ground beef and pink ground beef did not differ by season. Ground beef is a frequently consumed food item in the United States, and rates of consumption of pink ground beef have changed little since previous studies. The high rate of consumption of beef that has not been cooked sufficiently to kill pathogens makes pasteurization of ground beef an important consideration, especially for those individuals at high risk of complications from foodborne illnesses such as hemolytic uremic syndrome. PMID:22289595

  6. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    SciTech Connect

    Rodrigues, Michael L.M.; Leão, Versiane A.; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan

    2015-07-15

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets.

  7. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  8. Semistable extremal ground states for nonlinear evolution equations in unbounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    2008-02-01

    In this paper we show that dissipative reaction-diffusion equations in unbounded domains posses extremal semistable ground states equilibria, which bound asymptotically the global dynamics. Uniqueness of such positive ground state and their approximation by extremal equilibria in bounded domains is also studied. The results are then applied to the important case of logistic equations.

  9. Rovibrational constants of the ground state and v8 = 1 state of 13C2HD3 by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.

    2016-06-01

    The Fourier transform infrared (FTIR) spectrum of the c-type ν8 band of 13C2HD3 was recorded for the first time at a unapodized resolution of 0.0063 cm-1 in the wavenumber region of 830-1000 cm-1. Through the fitting of a total of 1057 assigned infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v8 = 1) up to five quartic centrifugal distortion terms were derived for the first time with a root-mean-square (rms) deviation of 0.00073 cm-1. The band center of ν8 of 13C2HD3 was found to be 913.011021(55) cm-1. Ground state rovibrational constants up to five quartic terms of 13C2HD3 were also determined from a fit of 453 ground state combination-differences from the present infrared measurements with an rms deviation of 0.00072 cm-1 for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0012 cm-1. From the ground state rotational constants, the inertial defect of 13C2HD3 was calculated to be 0.06973(16) uÅ2, showing the high planarity of the molecule.

  10. Static Electric Quadrupole Moments in the Ground State and K = 4-1 Bands in 168Er

    NASA Astrophysics Data System (ADS)

    Thakur, P.; Behra, M. S.; Dogra, R.; Bhati, A. K.; Bedi, S. C.

    2002-07-01

    The time differential perturbed angular correlation (TDPAC) technique has been used to study the nuclear quadrupole interactions of the first excited state of ground state rotational band (2+, 80 keV, T1/2 = 1.88 ns) and the band head of the = 41- band (41-,1094 keV, T1/2 = 120 ns) in the 168Er nucleus of a polycrystalline Er host. At room temperature we obtained the electric quadrupole interaction frequencies ω0(K= 0) = 457(15) Mrad/s and ω0(K= 4) = 69(2) Mrad/s, respectively, for the 2+ and 4- isomeric states of 168Er. The ratio of the spectroscopic quadrupole moments, i. e. Qs (K= 4)/Qs (K= 0) = 0.69(3), is independent of any model approximation and the electric field gradient at 168Er in the host metal

  11. The rotational spectrum of the NiS radical in the X3Sigma- state.

    PubMed

    Yamamoto, Takuya; Tanimoto, Mitsutoshi; Okabayashi, Toshiaki

    2007-07-28

    The rotational spectrum of the NiS radical in the X(3)Sigma(-) state was observed by employing a source-modulation microwave spectrometer. The NiS radical was generated in a free space cell by a dc glow discharge in H(2)S diluted with Ar. The nickel atoms were supplied by the sputtering reaction from a nickel cathode. Rotational transitions with J = 11-10 to 25-24 were measured in the region between 135 and 314 GHz. Rotational, centrifugal distortion and several fine-structure constants were determined by a least-squares analysis. Other spectroscopic parameters such as dissociation energy, vibrational wavenumber and equilibrium bond length were also derived from the determined molecular constants. Excitation energies of the lowest (3)Pi and (1)Sigma(+) states were estimated from the fine-structure constants, lambda and gamma. PMID:17622409

  12. Reinvestigation of the microwave and new high resolution far-infrared spectra of cis-methyl nitrite, CH 3ONO: Rotational study of the two first torsional states

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Pirali, O.; Roy, P.; Guillemin, J.-C.; Orphal, J.; Margulès, L.; Motiyenko, R. A.; Cooke, S. A.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2011-05-01

    The first far-infrared high resolution absorption measurement of the cis-methyl nitrite molecule has been recorded in the range 15-400 cm -1 using the synchrotron AILES beamline radiation at SOLEIL with a resolution of 0.0011 cm -1. First assignments for the pure rotational transitions (15-65 cm -1) belonging to the ground ν t (= ν15) = 0 and first ν t = 1 excited torsional state are based on measurements from previous studies performed in the 13-40 GHz spectral range, as well as on new millimeter-wave measurements performed at Lille in the spectral range 75-465 GHz. A few measurements and remeasurements in the 1.8-13 GHz were also performed using the chirped FT-MW spectrometer located in North Texas. The pure rotational transitions in the far-infrared and in the microwave spectral range belonging to the two first torsional states have been globally fitted using the RAM ("Rho Axis Method") dealing with the rotation-torsion Hamiltonian and implemented in the BELGI code. A total of 708 and 713 microwave transitions (6 ⩽ J ⩽ 40, Kamax ⩽ 23) belonging to the ground torsional state ν t = 0 and 1 have been fitted with root-mean-square (rms) deviations of 37.4 kHz and 32.3 kHz respectively, and 3170 pure rotational transitions in the far-infrared range (12 ⩽ J max ⩽ 65, 0 ⩽ Kamax ⩽ 48) belonging to ν t = 0 and 1 have been fitted with a rms deviation of 0.00017 cm -1, using 35 parameters. Since in the far-infrared spectral range, the A-E internal rotor splittings have not been observed for the transitions belonging to the torsional ground ν t = 0 state of the cis-methyl nitrite species, another fit was performed on those lines, using a Watson type Hamiltonian for comparison.

  13. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation

    NASA Astrophysics Data System (ADS)

    Weidt, S.; Randall, J.; Webster, S. C.; Standing, E. D.; Rodriguez, A.; Webb, A. E.; Lekitsch, B.; Hensinger, W. K.

    2015-07-01

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n ¯=0.13 (4 ) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n =0 ⟩ and |n =1 ⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  14. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-07-01

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation. This is a powerful tool for the implementation of quantum operations, where rf or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of n[over ¯]=0.13(4) after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the |n=0⟩ and |n=1⟩ Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost 2 orders of magnitude compared with our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system. PMID:26182094

  15. Simultaneous Evaluation of Multiple Rotationally Excited States of Floppy Molecules Using Diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    McCoy, Anne B.; Ford, Jason E.; Marlett, Melanie L.; Petit, Andrew S.

    2014-06-01

    In this work, an extension to diffusion Monte Carlo (DMC) is proposed, allowing for the simultaneous calculation of the energy and wave function of multiple rotationally excited states of floppy molecules. The total wave function is expanded into a set of Dirac δ-functions called walkers, while the rotational portion of the wave function is expanded in a symmetric top basis set. Each walker is given a rotational state vector containing coefficients for all states of interest. The positions of the atoms and the coefficients in the state vector evolve according to the split operator approximation of the quantum propagator. The method was benchmarked by comparing calculated rotation-vibration energies for H_3^+, H_2D^+, and H_3O^+ to experimental values. For low to moderate values of J, the resulting energies are within the statistical uncertainty of the calculation. Rotation-vibration coupling is captured through flexibility introduced in the form of the vibrational wave function. This coupling is found to increase with increasing J-values. Based on the success achieved through these systems, the method was applied to CH_5^+ and its deuterated isotopologues for v = 0, J ≥ 10. Based on these calculations, the energy level structure of CH_5^+ is found to resemble that for a of a spherical top, and excitations up to J = 10 displayed insignificant rotation-vibration coupling. Extensions of this approach that explicitly account for vibrations will also be discussed. ` A. S. Petit, J. E. Ford and A. B. McCoy, J. Phys. Chem. A, in press, K. D. Jordan Festschrift, DOI: 10.1021/jp408821a

  16. Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond.

    PubMed

    Kostenko, Arseni; Tumanskii, Boris; Karni, Miriam; Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira; Apeloig, Yitzhak

    2015-10-01

    We report the first direct spectroscopic observation by electron paramagnetic resonance (EPR) spectroscopy of a triplet diradical that is formed in a thermally induced rotation around a main-group π bond, that is, the SiSi double bond of tetrakis(di-tert-butylmethylsilyl)disilene (1). The highly twisted ground-state geometry of singlet 1 allows access to the perpendicular triplet diradical 2 at moderate temperatures of 350-410 K. DFT-calculated zero-field splitting (ZFS) parameters of 2 accurately reproduce the experimentally observed half-field transition. Experiment and theory suggest a thermal equilibrium between 1 and 2 with a very low singlet-triplet energy gap of only 7.3 kcal mol(-1) . PMID:26297814

  17. Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence

    NASA Astrophysics Data System (ADS)

    Parniak, Michał; Leszczyński, Adam; Wasilewski, Wojciech

    2016-05-01

    We demonstrate coupling of light resonant to transition between two excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a nonlinear process of four-wave mixing is used to achieve light emission proportional to independently prepared ground-state atomic coherence. Strong correlations between stimulated Raman-scattering light heralding the generation of ground-state coherence and the four-wave mixing signal are measured and shown to survive the storage period, which is promising in terms of quantum memory applications. The process is characterized as a function of laser detunings.

  18. The Submillimeter Spectrum of CH_3CH_2CN in its Ground Vibrational State

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Pearson, John C.; Drouin, Brian J.; Yu, Shanshan

    2009-06-01

    Propionitrile (CH_3CH_2CN) is routinely observed with large column densities and at surprisingly high temperatures in hot core sources. The development of new, more sensitive observatories such as Herschel, ALMA and SOFIA have made it important to extend the laboratory data for propionitrile to coincide with the capabilities of the new instruments. In the present work, the laboratory measurements of the rotational spectrum of propionitrile have been extended to 1.6 THz. A global analysis of 4606 ground state transitions, which includes 2159 newly assigned transitions, has been fit to within experimental error to J=138, K=45, using both Watson A-reduced and Watson S-reduced Hamiltonians. The newly assigned transitions are primarily b-type, high K and very high J asymmetry split ^aR-branch transitions. The derived constants show a decided advantage of the Watson S-reduction in the analysis of this near-prolate (κ=0.96) asymmetric top. The spectrum and molecular constants will be presented. footnote

  19. Pressure dependence of the magnetic ground states in MnP

    DOE PAGESBeta

    Matsuda, Masaaki; Ye, Feng; Dissanayake, Sachith E.; Cheng, J. -G.; Chi, Songxue; Ma, Jie; Zhou, H. D.; Yan, Jia -Qiang; Kasamatsu, S.; Sugino, O.; et al

    2016-03-17

    MnP, a superconductor under pressure, exhibits a ferromagnetic order below TC~290 K followed by a helical order with the spins lying in the ab plane and the helical rotation propagating along the c axis below Ts~50 K at ambient pressure. We performed single-crystal neutron diffraction experiments to determine the magnetic ground states under pressure. Both TC and Ts are gradually suppressed with increasing pressure and the helical order disappears at ~1.2 GPa. At intermediate pressures of 1.8 and 2.0 GPa, the ferromagnetic order first develops and changes to a conical or two-phase (ferromagnetic and helical) structure with the propagation alongmore » the b axis below a characteristic temperature. At 3.8 GPa, a helical magnetic order appears below 208 K, which hosts the spins in the ac plane and the propagation along the b axis. The period of this b axis modulation is shorter than that at 1.8 GPa. Here, our results indicate that the magnetic phase in the vicinity of the superconducting phase may have a helical magnetic correlation along the b axis.« less

  20. A new ``spectroscopic'' potential energy surface for formaldehyde in its ground electronic state

    NASA Astrophysics Data System (ADS)

    Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per; Thiel, Walter

    2011-06-01

    We report a new "spectroscopic" potential energy surface (PES) of formaldehyde (H212C16O) in its ground electronic state, obtained by refining an ab initio PES in a least-squares fitting to the experimental spectroscopic data for formaldehyde currently available in the literature. The ab initio PES was computed using the CCSD(T)/aug-cc-pVQZ method at 30 840 geometries that cover the energy range up to 44 000 cm-1 above equilibrium. Ro-vibrational energies of formaldehyde were determined variationally for this ab initio PES by means of the program TROVE [Theoretical ROtation-Vibration Energies; S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)], 10.1016/j.jms.2007.07.009. The parameter values in the analytical representation of the PES were optimized in fittings to 319 ro-vibrational energies with J = 0, 1, 2, and 5. The initial parameter values in the fittings were those of the ab initio PES, the ro-vibrational eigenfunctions obtained from this PES served as a basis set during the fitting process, and constraints were imposed to ensure that the refined PES does not deviate unphysically from the ab initio one in regions of configuration space not sampled by the experimental data. The resulting refined PES, referred to as H2CO-2011, reproduces the available experimental J ⩽ 5 data with a root-mean-square error of 0.04 cm-1.

  1. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices

    SciTech Connect

    Röhm, André; Lingnau, Benjamin; Lüdge, Kathy

    2015-05-11

    We predict a significant increase of the 3 dB-cutoff-frequency on the ground-state lasing wavelength for two-state-lasing quantum-dot lasers using a microscopically motivated multi-level rate-equation model. After the onset of the second lasing line, the excited state acts as a high-pass filter, improving the ground-state response to faster modulation frequencies. We present both numerically simulated small-signal and large-signal modulation results and compare the performance of single and two-state lasing devices. Furthermore, we give dynamical arguments for the advantages of two-state lasing on data-transmission capabilities.

  2. Optically detected magnetic resonance studies of photoexcited /sup 17/O-benzophenone. Orbital rotation in the lowest triplet state

    SciTech Connect

    Waeckerle, G.; Baer, M.; Zimmermann, H.; Dinse, K.H.; Yamauchi, S.; Kashmar, R.J.; Pratt, D.W.

    1982-03-01

    The magnetically active isotope of oxygen /sup 17/O has been used to probe the changes in the electron charge and spin density distributions in oxygen valence orbitals which occur when benzophenone is excited to its lowest triplet state. The data obtained include the optically detected magnetic resonance (ODMR) and electron-nuclear double resonance spectra at both zero and high magnetic fields. New methods of analysis of zero-field ODMR spectra, appropriate when the second-order hyperfine splitting exceeds the quadrupole coupling, are described. This analysis yields the principal values of the electron fine-structure (D), oxygen hyperfine (A), and oxygen quadrupole (Q) tensors, and the orientation of their principal axes with respect to the molecular frame. It is found, consistent with expectations for an n..pi..( state, that the direction of the largest component of Q is different from that of the ground state. It is also found, by two independent methods, that the principal transverse axes of A and Q do not conform to the local C/sub 2v/ symmetry axes of the carbonyl group. This result is interpreted to mean that the axis of the n-type oxygen 2p orbital is rotated out of the carbonyl plane, a rotation which appears to be direct consequence of n..pi..(/..pi pi..( configurational mixing. In agreement with this, the principal values of D, A, and Q are different from those expected for a ''pure'' n..pi..( state. Other consequences of n..pi..(/..pi pi..( mixing, not only in benzophenone but also in the lowest triplet states of other aromatic carbonyls, are discussed briefly.

  3. Electronic transport, density of states and ground state properties of Li In binary alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Rafique, S. M.; Sinha, T. P.

    2008-10-01

    The electronic transport properties of Li-In binary alloy have been studied by Harrison's first principle pseudopotential technique. The Percus-Yevik hard sphere model is used to compute the partial structure factors S ij( k) for the alloy at the desired composition. We have also calculated the ground state properties of Li-In alloy employing full-potential linearized augmented plane wave (FLAPW) method. The equilibrium values of bulk modulus and its pressure derivative have been estimated through optimization of the crystal structure of the Li-In alloy. The calculated total density of states (DOS) and the partial DOS around the Fermi energy are used to explain the variation of resistivity of the alloy with carrier concentration.

  4. Ground-state structures and the random-state energy of the Madelung lattice

    SciTech Connect

    Magri, R.; Wei, S.; Zunger, A. )

    1990-12-15

    We consider the classic Madelung problem of a lattice with {ital N} sites labeled {ital i}, each occupied by either an {ital A} or a {ital B} atom, and bearing a point charge {ital Q}{sub {ital i}} that depends on the environment of {ital i}. We find that, out of the 2{sup {ital N}} possible lattice configurations of this binary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}} fcc alloy, the lowest-energy ground-state structures'' are the {ital A}{sub 3}{ital B}-, {ital A}{sub 2}{ital B}{sub 2}- and {ital AB}{sub 3}-ordered superlattices with ordering vector (1,0,1/2). On the other hand, for the pseudobinary {ital A}{sub 1{minus}{ital x}}{ital B}{sub {ital x}}{sub C} zinc-blende alloy, the ground state corresponds to phase separation into {ital AC}+{ital BC}. Contrary to the accepted view, the Madelung energy of the random binary alloy is found to be nonvanishing.

  5. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Guidry, Mike

    2016-03-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments.

  6. Development of three-dimensional state-space wake theory and application in dynamic ground effect

    NASA Astrophysics Data System (ADS)

    Yu, Ke

    In topics of rotorcraft wake analysis, state-space wake theory has a recognized reputation for advantages in real-time simulation, preliminary design and eigenvalue analysis. Developments in the past decades greatly improved range of validity and accuracy of the state-space modeling approach. This work focuses on further improvement of the state-space wake theory and applications in representing dynamic ground effect. Extended state-space model is developed to represent non-zero mass flux on rotor disk. Its instant practical application, representing ground effect with a mass source ground rotor, is evaluated in both steady and dynamic aspects. Investigations of partial ground effect simulation by state-space model are carried out in different rotor configurations. Additional work is done in improving simulation efficiency of practical application of state-space modeling.

  7. The Ground State of Monolayer Graphene in a Strong Magnetic Field

    PubMed Central

    Wu, Lian-Ao; Guidry, Mike

    2016-01-01

    Experiments indicate that the ground state of graphene in a strong magnetic field exhibits spontaneous breaking of SU(4) symmetry. However, the nature of the corresponding emergent state is unclear because existing theoretical methods approximate the broken-symmetry solutions, yielding nearly-degenerate candidate ground states having different emergent orders. Resolving this ambiguity in the nature of the strong-field ground state is highly desirable, given the importance of graphene for both fundamental physics and technical applications. We have discovered a new SO(8) symmetry that recovers standard graphene SU(4) quantum Hall physics, but predicts two new broken-SU(4) phases and new properties for potential ground states. Our solutions are analytical; thus we capture the essential physics of spontaneously-broken SU(4) states in a powerful yet solvable model useful both in correlating existing data and in suggesting new experiments. PMID:26927477

  8. Diffraction pattern by rotated conical tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.

    2016-06-01

    The method for determination of diffraction pattern for irregular 3D objects with application on rotated conical tracks in solid state nuclear track detector (SSNTD) wasdescribed in this paper. The model can be applied for different types of the diffraction (Fresnel, Fraunhofer) and arbitrary shapes of the obstacle. By applying the developed model on conical tracks it was fond that diffraction pattern strongly depends from radius, length and rotation angle of the conical tracks. These dependences were investigated in this paper and results can be applied for determination of inner tracks structure via diffraction pattern.

  9. Comparison of ground- and excited-state raman transitions using resonant coherent stokes generation

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Hochstrasser, R. M.

    1981-11-01

    Coherent Stokes generation was explored as a means to investigate vibrational dephasing in both the ground state and first excited singlet state of pentacene in benzoic acid. The dephasing-induced coherent emission (DICE) was used to obtain the ground- and excited-state Ramon linewidths between 1.6 K and 200 K. The broadening for both modes displayed an Arrhenius energy of ≈100 cm -1.

  10. Ground state and excitations of the supersymmetric extended Hubbard model with long-range interaction

    SciTech Connect

    Wang, D.F.; Liu, J.T.

    1996-07-01

    We examine the ground state and excitations of the one-dimensional supersymmetric extended Hubbard model with long-range interaction. The ground state wave-function and low lying excitations are given explicitly in the form of a Jastrow product of two-body terms. This result motivates an asymptotic Bethe ansatz solution for the model. We present evidence that this solution is in fact exact and spans the complete spectrum of states. {copyright} {ital 1996 The American Physical Society.}

  11. Exact ground states of large two-dimensional planar Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Pardella, G.; Liers, F.

    2008-11-01

    Studying spin-glass physics through analyzing their ground-state properties has a long history. Although there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices (up to 30002 spins) within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus. Moreover, they show that the method can also be used for computing ground states of planar graphs. Furthermore, we point out that the correctness of heuristically computed ground states can easily be verified. Finally, we evaluate the solution quality of heuristic variants of the L. Bieche approach.

  12. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  13. Hindered and modulated rotational states and spectra of adsorbed diatomic molecules

    SciTech Connect

    Shih, Y.T.; Chuu, D.S.; Mei, W.N.

    1996-10-01

    Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscillatory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also found that the rotational levels were grouped into bands when the azimuthal modulation strength was increased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and agreement with the previous experiment was obtained. {copyright} {ital 1996 The American Physical Society.}

  14. Characterization of the X~ 2A1 (0,0,0) ground vibronic state of CH2+ by pulsed-field-ionization zero-kinetic-energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Willitsch, S.; Merkt, F.

    2003-02-01

    The rotational structure of the X˜ 2A1 (0,0,0) ground vibronic state of CH2+ has been observed by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy. Rotational levels with asymmetric top rotational quantum numbers N+⩽5 and Ka+⩽2 have been used to derive a purely experimental r0 structure [rCH=(1.1049±0.0041) Å, αHCH=(139.77±0.27) degrees]. Whereas the positions of the Ka+=0 and 1 levels are in good agreement with previous results, the positions of the Ka+=2 levels, which are observed for the first time, suggest that the theoretical description of the bending potential and of the Renner-Teller effect in CH2+ could still be refined. The single photon photoionization dynamics of the CH2 X˜3B1 ground state is also consistent with a bent geometry for the ground state of CH2+. First PFI-ZEKE photoelectron spectra of CD2 are also presented.

  15. A MRSDCI characterization of the ground state of CaC

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Pelegrini, Marina; Roberto-Neto, Orlando; Machado, Francisco B. C.

    2002-09-01

    Accurate potential energy curves, dipole moment functions, dissociation energies and spectroscopic constants for six electronic states ( 3Σ-, 3Π, 5Σ-, 1Δ, 1Π, 1Σ+) of the CaC molecule are reported with the multireference singles and doubles configuration interaction methodology. The ground state has symmetry 3Σ -, with a dissociation energy ( D0) equal to 1.94 eV. The 5Σ - state is the first excited state lying 695 cm-1 above the 3Σ - ground state. The 1Δ and 3Π states are the second and third excited states separated, respectively, by 10 763 and 12 167 cm-1 from the 3Σ - ground state.

  16. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  17. Bulk-edge correspondence of entanglement spectrum in two-dimensional spin ground states

    NASA Astrophysics Data System (ADS)

    Santos, Raul A.

    2013-01-01

    General local spin S ground states, described by a valence bond solid (VBS) on a two-dimensional lattice are studied. The norm of these ground states is mapped to a classical O(3) model on the same lattice. Using this quantum-to-classical mapping, we obtain the partial density matrix ρA associated with a subsystem A of the original ground state. We show that the entanglement spectrum of ρA in a translation invariant lattice is related with the spectrum of a quantum XXX Heisenberg model and all its conserved charges on the boundary of the region A.

  18. Ground state properties of superheavy nuclei with Z=117 and Z=119

    SciTech Connect

    Ren Zhongzhou; Chen Dinghan; Xu Chang

    2006-11-02

    We review the current studies on the ground-state properties of superheavy nuclei. It is shown that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. This can lead to the existence of isomers in superheavy region and it plays an important role for the stability of superheavy nuclei. Some new results on Z=117 and Z=119 isotopes are presented. The agreement between theoretical results and experimental data clearly demonstrates the validity of theoretical models for the ground-state properties of superheavy nuclei.

  19. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  20. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  1. Molecular spectroscopy for producing ultracold ground-state NaRb molecules

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    Recently, we have successfully created an ultracold sample of absolute ground-state NaRb molecules by two-photon Raman transfer of weakly bound Feshbach molecules. Here we will present the detailed spectroscopic investigations on both the excited and the rovibrational ground states for finding the two-photon path. For the excited state, we focus on the A1Σ+ /b3 Π singlet and triplet admixture. We discovered an anomalously strong coupling between the Ω =0+ and 0- components which renders efficient population transfer possible. In the ground state, the pure nuclear hyperfine levels have been clearly resolved, which allows us to create molecules in the absolute ground state directly with Raman transfer. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13- IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  2. ROTATION STATE OF COMET 103P/HARTLEY 2 FROM RADIO SPECTROSCOPY AT 1 mm

    SciTech Connect

    Drahus, Michal; Jewitt, David; Guilbert-Lepoutre, Aurelie; Waniak, Waclaw; Hoge, James; Lis, Dariusz C.; Yoshida, Hiroshige; Peng, Ruisheng; Sievers, Albrecht

    2011-06-10

    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through millimeter/submillimeter spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 {+-} 0.15 minutes day{sup -1} and the period itself is 18.32 {+-} 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate.

  3. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  4. Short rotation woody crops: Using agroforestry technology for energy in the United States

    SciTech Connect

    Wright, L L; Ranney, J W

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  5. Short rotation woody crops: Using agroforestry technology for energy in the United States

    SciTech Connect

    Wright, L.L.; Ranney, J.W.

    1991-12-31

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC`s and environmental concerns are described.

  6. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    PubMed

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules. PMID:26670839

  7. Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2015-08-01

    Stealthy potentials, a family of long-range isotropic pair potentials, produce infinitely degenerate disordered ground states at high densities and crystalline ground states at low densities in d -dimensional Euclidean space Rd. In the previous paper in this series, we numerically studied the entropically favored ground states in the canonical ensemble in the zero-temperature limit across the first three Euclidean space dimensions. In this paper, we investigate using both numerical and theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold of stealthy potentials at densities in which crystal ground states are favored entropically. Our numerical results enable us to devise analytical models of this phase in two, three, and higher dimensions. Utilizing this model, we estimated the size of the feasible region in configuration space of the stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size limit, which is consistent with our recent previous work. In two dimensions, we also determine exact expressions for the pair correlation function and structure factor of the analytical model of stacked-slider phases and analyze the connectedness of the ground-state manifold of stealthy potentials in this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter; they are nonperiodic, statistically anisotropic structures that possess long-range orientational order but have zero shear modulus. We outline some possible future avenues of research to elucidate our understanding of this unusual phase of matter.

  8. The Ground and Two Lowest-lying Singlet Excited Electronic States of Copper Hydroxide (CuOH)

    SciTech Connect

    Wang, Suyun; Paul, Ankan; DeYonker, Nathan John; Yamaguchi, Yukio; Schaefer, Henry F

    2005-07-12

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Σ+ and 1Π stationary points, and for the bent ground-state1A', and excited-states 2 1A" and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas–Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X˜ 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol-1 for the 2 1A' state and 52.6 kcal mol-1 for the 1 1A" state. The theoretical CC and CASSCF methods show lower

  9. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope

    NASA Astrophysics Data System (ADS)

    Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.

    2016-08-01

    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.

  10. Features of simultaneous ground- and excited-state lasing in quantum dot lasers

    SciTech Connect

    Zhukov, A. E. Maximov, M. V.; Shernyakov, Yu. M.; Livshits, D. A.; Savelyev, A. V.; Zubov, F. I.; Klimenko, V. V.

    2012-02-15

    The lasing spectra and light-current (L-I) characteristics of an InAs/InGaAs quantum dot laser emitting in the simultaneous lasing mode at the ground- and excited-state optical transitions are studied. Lasing and spontaneous emission spectra are compared. It is shown that ground-state quenching of lasing is observed even in the absence of active region self-heating or an increase in homogeneous broadening with growth in the current density. It is found that the intensities of both lasing and spontaneous emission at the ground-state transition begin to decrease at a pump intensity that significantly exceeds the two-level lasing threshold. It is also found that different groups of quantum dots are involved in ground- and excited-state lasing.

  11. Trajectory approach to the Schrödinger-Langevin equation with linear dissipation for ground states

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2015-11-01

    The Schrödinger-Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger-Langevin equation yields the complex quantum Hamilton-Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  12. Bott Periodicity for Z_2 Symmetric Ground States of Gapped Free-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Kennedy, R.; Zirnbauer, M. R.

    2016-03-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a ( d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.

  13. Analytic models for the density of a ground-state spinor condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2015-08-01

    We demonstrate that the ground state of a trapped spin-1 and spin-2 spinor ferromagnetic Bose-Einstein condensate (BEC) can be well approximated by a single decoupled Gross-Pitaevskii (GP) equation. Useful analytic models for the ground-state densities of ferromagnetic BECs are obtained from the Thomas-Fermi approximation (TFA) to this decoupled equation. Similarly, for the ground states of spin-1 antiferromagnetic and spin-2 antiferromagnetic and cyclic BECs, some of the spin-component densities are zero, which reduces the coupled GP equation to a simple reduced form. Analytic models for ground-state densities are also obtained for antiferromagnetic and cyclic BECs from the TFA to the respective reduced GP equations. The analytic densities are illustrated and compared with the full numerical solution of the GP equation with realistic experimental parameters.

  14. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  15. Arsenic in Ground Water of the United States

    MedlinePlus

    ... Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of minerals dissolving from weathered rocks and soils. Several types of cancer have been linked to ...

  16. Vibronic Interaction and Vibrational Assignment for NO_3 in the Ground Electronic State

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    The strongest IR band of NO_3 appears at 1492 wn and has been assigned traditionally to the N-O degenerate stretching νb{3} mode. In 2007 Stanton proposed the νb{3} to be about 500 wn lower, i.e. it is located around 1000 wn, based on theoretical calculations. Jacox and collaborators supported this proposal, on the basis of their IR spectra observed in Ne matrix, and reassigned the 1492 wn band to νb{3} + νb{4}. The traditional vibrational assignment is referred to as Assignment I and the Stanton-Jacox one to as Assignment II, and thus the upper state of the 1492 wn band Z is νb{3} and νb{3} + νb{4} for Assignment I and II, respectively. Kawaguchi, Ishiwata, and Hirota (KIH) have been making much effort to settle which assignment is correct, by observing and analyzing FTIR spectra. They thought in 2009 that the observation of hot bands from the in-plane ONO degenerate bending νb{4} state to the Z state will make it possible for KIH to select the correct assignment among the two. Namely for Assignment I only one hot band of E - E type (i.e. νb{3} - νb{4}) will appear, whereas three bands for Assignment II: E - E, A1 - E, and A2 - E. It was straightforward to detect and assign the E - E type hot band, because the upper state is Z in common with that of the 1492 wn band. After careful searching for the spectra, KIH arrived at a conclusion that there is only one A - E type hot band present, which is difficult to reconcile with Assignment II, and the observed A - E hot band is reasonably ascribed to 2νb{2} - νb{4} in Assignment I. The NO3 radical has been thought to be subjected to strong vibronic interaction. This view originated from an anomalous νb{4} progression appearing in the NO_3- photoelectron spectra by Neumark et al.; they explained this observation in terms of Herzberg-Teller (H-T) effect with a sizable interaction parameter. However, KIH did not observe any anomalous features in the νb{4} vibration-rotation structure, which would be caused by

  17. Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.; Walsh, B. C.; Steiner, E.

    1974-01-01

    Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.

  18. Ground-state cooling of quantum systems via a one-shot measurement

    NASA Astrophysics Data System (ADS)

    Pyshkin, P. V.; Luo, Da-Wei; You, J. Q.; Wu, Lian-Ao

    2016-03-01

    We prove that there exists a family of quantum systems that can be cooled to their ground states by a one-shot projective measurement on the ancillas coupled to these systems. Consequently, this proof gives rise to the conditions for achieving the one-shot measurement ground-state cooling (OSMGSC). We also propose a general procedure for finding unitary propagators and corresponding Hamiltonians to realize such cooling by means of inverse engineering techniques.

  19. Effect of disorder on the ground-state properties of graphene

    NASA Astrophysics Data System (ADS)

    Asgari, R.; Vazifeh, M. M.; Ramezanali, M. R.; Davoudi, E.; Tanatar, B.

    2008-03-01

    We calculate the ground-state energy of Dirac electrons in graphene in the presence of disorder. We take randomly distributed charged impurities at a fixed distance from the graphene sheet and surface fluctuations (ripples) as the main scattering mechanisms. A mode-coupling approach to the scattering rate and random-phase approximation for the ground-state energy incorporating the many-body interactions and the disorder effects yields good agreement with the experimental inverse compressibility.

  20. An approximate solution to the stress and deformation states of functionally graded rotating disks

    NASA Astrophysics Data System (ADS)

    Sondhi, Lakshman; Sanyal, Shubhashis; Saha, Kashi Nath; Bhowmick, Shubhankar

    2016-07-01

    The present work employs variational principle to investigate the stress and deformation states and estimate the limit angular speed of functionally graded high-speed rotating annular disks of constant thickness. Assuming a series approximation following Galerkin's principle, the solution of the governing equation is obtained. In the present study, elasticity modulus and density of the disk material are taken as power function of radius with the gradient parameter ranging between 0.0 and 1.0. Results obtained from numerical solutions are validated with benchmark results and are found to be in good agreement. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of FGM rotating disks with constant thickness and different gradient parameter. Furthermore, the stress and deformation state of the disk at constant angular speed and limit angular speed is investigated to explain the existence of optimum gradient parameters.

  1. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    SciTech Connect

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-03-07

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with {sup 4}Σ{sup −} and {sup 2}Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm{sup −1} above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm{sup −1} of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm{sup −1}, which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.

  2. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation.

    PubMed

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-21

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH5(+)) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In

  3. Symmetry Beyond Perturbation Theory: Floppy Molecules and Rotation-Vibration States

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-06-01

    In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH_5^+). For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3) This leads to a group theoretical foundation of the technique of equivalent rotations. The MS group of protonated methane (G240) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH_5^+ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. P. Kumar and D. Marx, Physical Chemistry Chemical Physics 8, 573 (2006) Z. Jin, B. J. Braams, and J. M. Bowman, The Journal of Physical Chemistry A 110, 1569 (2006) A. S. Petit, J. E

  4. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-01

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In

  5. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    PubMed

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. PMID:20036173

  6. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  7. Using soil stress state transducers in freezing ground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three instrumented test sections of sand, silt and clay, were constructed to monitor the impact of frost layers on vehicle-induced stresses and to assess the performance of the sensors used to measure such stresses. One of the instruments used to measure in-situ stress is the soil Stress State Tran...

  8. Ordered ground states of metallic hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  9. Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.

    PubMed

    Dubinets, N O; Safonov, A A; Bagaturyants, A A

    2016-05-01

    Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one. PMID:27080987

  10. The interaction potential of NO-H2 in ground and A Rydberg state

    NASA Astrophysics Data System (ADS)

    Pajón-Suárez, Pedro; Valentín-Rodríguez, Mónica; Hernández-Lamoneda, Ramón

    2016-08-01

    The interaction potential for the ground and A Rydberg state of NO-H2 has been calculated using high level ab initio methods. The complex is very floppy in nature and large amplitude motions are expected to characterize its dynamics. The ground state is characterized by two very close-lying states which exhibit crossings. By analogy with other complexes the Rydberg state is characterized by much smaller well depth and larger intermolecular distance. We compare with model potentials used in previous molecular dynamics simulations of photoexcitation and relaxation and conclude on the importance of performing new studies.

  11. C60 rotation in the solid state: dynamics of a faceted spherical top.

    PubMed

    Johnson, R D; Yannoni, C S; Dorn, H C; Salem, J R; Bethune, D S

    1992-03-01

    The rotational dynamics of C(60) in the solid state have been investigated with carbon-13 nuclear magnetic resonance ((13)C NMR). The relaxation rate due to chemical shift anisotropy (1/9T1(CSA)(1)) was precisely measured from the magnetic field dependence of T(1), allowing the molecular reorientational correlation time, tau, to be determined. At 283 kelvin, tau = 9.1 picoseconds; with the assumption of diffusional reorientation this implies a rotational diffusion constant D = 1.8 x 10(10) per second. This reorientation time is only three times as long as the calculated tau for free rotation and is shorter than the value measured for C(60) in solution (15.5 picoseconds). Below 260 kelvin a second phase with a much longer reorientation time was observed, consistent with recent reports of an orientational phase transition in solid C(60). In both phases tau showed Arrhenius behavior, with apparent activation energies of 1.4 and 4.2 kilocalories per mole for the high-temperature (rotator) and low-temperature (ratchet) phases, respectively. The results parallel those found for adamantane. PMID:17816831

  12. Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH 3

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per

    2006-09-01

    We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.

  13. Ground-state properties of a triangular triple quantum dot connected to superconducting leads

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Sato, Izumi; Shimamoto, Masashi; Tanaka, Yoichi

    2015-03-01

    We study ground-state properties of a triangular triple quantum dot connected to two superconducting (SC) leads. In this system orbital motion along the triangular configuration causes various types of quantum phases, such as the SU(4) Kondo state and the Nagaoka ferromagnetic mechanism, depending on the electron filling. The ground state also evolves as the Cooper pairs penetrate from the SC leads. We describe the phase diagram in a wide range of the parameter space, varying the gate voltage, the couplings between the dots and leads, and also the Josephson phase between the SC gaps. The results are obtained in the limit of large SC gap, carrying out exact diagonalization of an effective Hamiltonian. We also discuss in detail a classification of the quantum states according to the fixed point of the Wilson numerical renormalization group (NRG). Furthermore, we show that the Bogoliubov zero-energy excitation determines the ground state of a π Josephson junction at small electron fillings.

  14. The Ground State of the Pseudogap in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Valla, T.; Fedorov, A. V.; Lee, Jinho; Davis, J. C.; Gu, G. D.

    2006-12-01

    We present studies of the electronic structure of La2 xBaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or “stripes” develop near the doping level of x = 18. Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = 18. Thus, the nonsuperconducting, striped state at x = 18 is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge ordered structures instead of becoming superconducting.

  15. Mott Insulating Ground State on a Triangular Surface Lattice

    SciTech Connect

    Weitering, H.; Shi, X.; Weitering, H.; Johnson, P.; Chen, J.; DiNardo, N.; DiNardo, N.; Kempa, K.

    1997-02-01

    Momentum-resolved direct and inverse photoemission spectra of the K/Si(111)-({radical}(3){times}{radical}(3))R30{degree}-B interface reveals the presence of strongly localized surface states. The K overlayer remains nonmetallic up to the saturation coverage. This system most likely presents the first experimental realization of a frustrated spin 1/2 Heisenberg antiferromagnet on a two-dimensional triangular lattice. {copyright} {ital 1997} {ital The American Physical Society}

  16. Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Rudowicz, C.

    2016-05-01

    We investigated the ground state of Ho atoms adsorbed on the Pt(111) surface, for which conflicting results exist. The density functional theory (DFT) calculations yielded the Ho ground state as | Jz=±8 > . Interpretation of x-ray absorption spectroscopy and x-ray magnetic circular dichroism spectra and the magnetization curves indicated the ground state as | Jz=±6 > . Superposition model is employed to predict the crystal-field (CF) parameters based on the structural data for the system Ho/Pt(111) obtained from the DFT modeling. Simultaneous diagonalization of the free-ion (HFI) and the trigonal CF Hamiltonian (HCF) within the whole configuration 4 f10 of H o3 + ion was performed. The role of the trigonal CF terms, neglected in the pure uniaxial CF model used previously for interpretation of experimental spectra, is found significant, whereas the sixth-rank CF terms may be neglected in agreement with the DFT predictions. The results provide substantial support for the experimental designation of the | Jz=±6 > ground state, albeit with subtle difference due to admixture of other | Jz> states, but run against the DFT-based designation of the | Jz=±8 > ground state. A subtle splitting of the ground energy level with the state (predominantly), | Jz=±6 > is predicted. This paper provides better insight into the single-ion magnetic behavior of the Ho/Pt(111) system by helping to resolve the controversy concerning the Ho ground state. Experimental techniques with greater resolution powers are suggested for direct confirmation of this splitting and C3 v symmetry experienced by the Ho atom.

  17. Ground-state and quenched-state properties of a one-dimensional interacting lattice gas in a random potential

    SciTech Connect

    Fonk, Y.; Hilhorst, H.J.

    1987-12-01

    The authors determine the zero-temperature properties of a one-dimensional lattice gas of particles that interact via a nearest neighbor exclusion potential and are subject to a random external field. The model is a special limiting case of the random field Ising chain. We calculate (1) the energy and density of the ground state as well as the local energy-density correlation and (2) the pair correlation function. The latter calculation gives access to all higher order correlations. The structure factor is shown to be a squared Lorentzian. The authors also compare the ground state to the quenched state obtained by sequentially filling the lowest available energy levels.

  18. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  19. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  20. Ground state energy of solid molecular hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1972-01-01

    The present status of the theoretical equation of state of solid molecular hydrogen is reviewed. Different quantum mechanical calculations by several groups lead to results which generally agree with each other but which disagree systematically with the measured pressure-volume curve at pressures larger than about 3000 atm. A new calculation of this curve is presented including the effect of the anisotropic interaction between H2 molecules within a completely quantum-mechanical formalism. The results show that inclusion of this interaction removes the discrepancy between theory and experiment at high pressures and that a quantum-mechanical treatment is necessary to realize its full effect.

  1. Rotation State of Comet 103P/Hartley 2 from Radio Spectroscopy at 1 mm

    NASA Astrophysics Data System (ADS)

    Drahus, Michał; Jewitt, David; Guilbert-Lepoutre, Aurélie; Waniak, Wacław; Hoge, James; Lis, Dariusz C.; Yoshida, Hiroshige; Peng, Ruisheng; Sievers, Albrecht

    2011-06-01

    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through millimeter/submillimeter spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 ± 0.15 minutes day-1 and the period itself is 18.32 ± 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate. Based on observations carried out with the IRAM 30 m, JCMT 15 m, and CSO 10.4 m telescopes. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). JCMT is operated by Joint Astronomy Centre and supported by STFC (UK), NRC (Canada), and NWO (Netherlands). CSO is operated by Caltech and supported through NSF grant AST-0540882 (USA).

  2. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    USGS Publications Warehouse

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  3. Using Diffusion Monte Carlo to Probe the Rotationally Excited States of H_3^+ and its Isotopologues

    NASA Astrophysics Data System (ADS)

    Wellen, Bethany A.; Petit, Andrew S.; McCoy, Anne B.

    2011-06-01

    H3-ND_n^+ are among the most abundant polyatomic ions in the universe. Moreover, the deuterated isotopologues are thought to play a key role in the astrochemical reactions governing the H/D fractionation of "metallic" species in the interstellar medium. An accurate quantum mechanical treatment of these species, as well as any reactions involving them, requires a methodology capable of capturing their large fluxionality as well as the constraints, due to particle exchange symmetries, on their physically allowed rovibrational states. Diffusion Monte Carlo (DMC) has been shown to be a highly successful technique for treating quantum zero-point effects of very floppy molecules and clusters and our group has recently developed a fixed-node DMC methodology capable of including the effects of rotational excitation. Here, we report the results of DMC calculations of the rotationally excited states of H_3^+ and its isotopologues. In particular, comparison with converged variational calculations involving states with J ≤ 20 provides the most thorough test yet of the range of quantum states over which the assumptions underlying our rotationally excited state DMC methodology can be reliably applied. Finally, the implications of this work on our overall goal of using DMC based methodologies to map out the energetics of the reaction of H3-ND_n^+ with HD will be discussed. T. R. Geballe and T. Oka, Science 312, 1610 (2006) E. Hugo, O. Asvany, and S. Schlemmer, J. Chem. Phys. 130, 164302 (2009) A. S. Petit and A. B. McCoy, J. Phys. Chem. A 113, 12706 (2009)

  4. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  5. The ground electronic state of KCs studied by Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferber, R.; Klincare, I.; Nikolayeva, O.; Tamanis, M.; Knöckel, H.; Tiemann, E.; Pashov, A.

    2008-06-01

    We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X 1Σ+ ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 °C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar+ laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm-1), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm-1 tuning ranges, respectively). The LIF to the ground state was recorded by a Bruker IFS-125HR Fourier transform spectrometer with a spectral resolution of 0.03 cm-1. Particularly, by applying the 850 nm laser diode we were able to observe LIF progressions to very high vibrational levels of the ground state close to the dissociation limit. The present data field contains 7226 term values for the ground state X 1Σ+ and covers a range from v''=0 to 97 with J'' varying from 12 to 209. More than 10 000 fluorescence lines were used to fit the ground state potential energy curve via the inverted perturbation approach procedure. The present empirical potential extends up to approximately 12.6 A˚ and covers more than 99% of the potential well depth, it describes most of the spectral lines with an accuracy of about 0.003 cm-1 and yields a dissociation energy of 4069.3+/-1.5 cm-1 for the ground state X 1Σ+. First observations of the triplet ground state a 3Σ+ of KCs are presented, and preliminary values of few main molecular constants could be derived.

  6. Towards Chemically Stable Fermionic Ground State Molecules with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Zwierlein, Martin

    2013-05-01

    Quantum gases with dipolar interactions will open new avenues for the creation of novel quantum many-body systems with intriguing properties, ranging from crystalline over magnetic to topological phases. A promising route for the experimental realization of dipolar quantum gases is the formation of fermionic ground-state molecules with a large electric dipole moment, giving rise to long-range anisotropic interactions. With our experiment we work towards the realization of fermionic ground state molecules of 23Na40K. The NaK ground state molecule is chemically stable and possesses a large induced electric dipole moment of 2.72 Debye. In pioneering studies, we have created nearly degenerate samples of weakly bound 23Na40K Feshbach molecules. With a long lifetime and a significant admixture of the electronic spin singlet state, the Feshbach molecules are an ideal starting point to reach the singlet rovibrational ground state with a two-photon STIRAP transfer. Aiming for an efficient transfer path, we have performed spectroscopic studies on excited and ground state molecular potentials of 23Na40K and will report on our current progress. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  7. Ground-state properties of linear-exchange quantum spin models

    NASA Astrophysics Data System (ADS)

    Danu, Bimla; Kumar, Brijesh; Pai, Ramesh V.

    2012-10-01

    We study a class of one-dimensional antiferromagnetic quantum spin-1/2 models using DMRG. The exchange interaction in these models decreases linearly with the separation between the spins, Jij = R - |i - j| for |i - j| < R, where R is a positive integer ⩾2. For |i - j| ⩾ R, the interaction is zero. It is known that all the odd-R models have the same exact dimer ground state as the Majumdar-Ghosh (MG) model. In fact, R = 3 is the MG model. However, for an even R, the exact ground state is not known in general, except for R = 2 (the integrable nearest-neighbor Heisenberg chain) and the asymptotic limit of R in which the MG dimer state emerges as the exact ground state. Therefore, we numerically study the ground-state properties of the finite even-R ≠ 2 models, particularly for R = 4, 6 and 8. We find that, unlike R = 2, the higher even-R models are spin-gapped, and exhibit robust dimer order of the MG type in the ground state. The spin-spin correlations decay rapidly to zero, albeit showing weak periodic revivals.

  8. The rotational spectrum of nitric acid - The first five vibrational states

    NASA Technical Reports Server (NTRS)

    Crownover, Richard L.; Booker, Randy A.; De Lucia, Frank C.; Helminger, Paul

    1988-01-01

    The details of work on the nu(8) vibrational state, which arise from the NO2 out-of-plane vibration, are reported. For this state, over 210 transitions have been measured in the millimeter and submillimeter spectral region and analyzed with Watson's A-reduced centrifugal distortion Hamiltonian. Also included in this work is a comparison of all these spectra and an overview of the millimeter and submillimeter spectra associated with these states. Although at the high sensitivity available in laboratory experiments, many additional lines are observable, all arise from vibrational states whose populations are more than 100 times lower than the ground state. The most prominent of these are due to the states which give rise to the perturbed 2 nu(9) and nu(5) bands near 11 microns. These results provide a significant data base for both atmospheric remote sensing experiments and spectral analyses of data in other spectral regions, especially the IR.

  9. Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes

    PubMed Central

    Andrews, Logan D.; Fenn, Tim D.; Herschlag, Daniel

    2013-01-01

    Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition

  10. Production of a Quantum Gas of Rovibronic Ground-State Molecules in AN Optical Lattice

    NASA Astrophysics Data System (ADS)

    Danzl, Johann G.; Mark, Manfred J.; Haller, Elmar; Gustavsson, Mattias; Hart, Russell; Nägerl, Hanns-Christoph

    2010-02-01

    Recent years have seen tremendous progress in the field of cold and ultracold molecules. A central goal in the field is currently the realization of stable rovibronic ground-state molecular samples in the regime of quantum degeneracy, e.g. in the form of molecular Bose-Einstein condensates, molecular degenerate Fermi gases, or, when an optical lattice is present, molecular Mott-insulator phases. However, molecular samples are not readily cooled to the extremely low temperatures at which quantum degeneracy occurs. In particular, laser cooling, the 'workhorse' for the field of atomic quantum gases, is generally not applicable to molecular samples. Here we take an important step beyond previous work1 and provide details on the realization of an ultracold quantum gas of ground-state dimer molecules trapped in an optical lattice as recently reported in Ref. 2. We demonstrate full control over all internal and external quantum degrees of freedom for the ground-state molecules by deterministically preparing the molecules in a single quantum state, i.e. in a specific hyperfine sublevel of the rovibronic ground state, while the molecules are trapped in the motional ground state of the individual lattice wells. We circumvent the problem of cooling by associating weakly-bound molecules out of a zero-temperature atomic Mott-insulator state and by transferring these to the absolute ground state in a four-photon STIRAP process. Our preparation procedure directly leads to a long-lived, lattice-trapped molecular many-body state, which we expect to form the platform for many of the envisioned future experiments with molecular quantum gases, e.g. on precision molecular spectroscopy, quantum information science, and dipolar quantum systems.

  11. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  12. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  13. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    NASA Astrophysics Data System (ADS)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  14. Observation of γ-vibrations and alignments built on non-ground-state configurations in ¹⁵⁶Dy

    DOE PAGESBeta

    Zhu, C. -H.; Hartley, D. J.; Riedinger, L. L.; Sharpey-Schafer, J. F.; Almond, J. M.; Beausang, C.; Carpenter, M. P.; Chiara, C. J.; Cooper, N.; Curien, D.; et al

    2015-03-26

    The exact nature of the lowest Kπ=2⁺ rotational bands in all deformed nuclei remains obscure. Traditionally they are assumed to be collective vibrations of the nuclear shape in the γ degree of freedom perpendicular to the nuclear symmetry axis. Very few such γ-bands have been traced past the usual back-bending rotational alignments of high-j nucleons. We have investigated the structure of positive-parity bands in the N=90 nucleus ¹⁵⁶Dy, using the ¹⁴⁸Nd(¹²C,4n)¹⁵⁶Dy reaction at 65 MeV, observing the resulting γ-ray transitions with the Gammasphere array. The even- and odd-spin members of the π=2⁺ γ-band are observed to 32⁺ and 31⁺ respectively.more » This rotational band faithfully tracks the ground-state configuration to the highest spins. The members of a possible γ-vibration built on the aligned yrast S-band are observed to spins 28⁺ and 27⁺. An even-spin positive-parity band, observed to spin 24⁺, is a candidate for an aligned S-band built on the seniority-zero configuration of the 0₂⁺ state at 676 keV. As a result, the crossing of this band with the 0₂⁺ band is at hwc = 0.28(1) MeV and is consistent with the configuration of the 0₂⁺ band not producing any blocking of the monopole pairing.« less

  15. Observation of γ-vibrations and alignments built on non-ground-state configurations in ¹⁵⁶Dy

    SciTech Connect

    Zhu, C. -H.; Hartley, D. J.; Riedinger, L. L.; Sharpey-Schafer, J. F.; Almond, J. M.; Beausang, C.; Carpenter, M. P.; Chiara, C. J.; Cooper, N.; Curien, D.; Gall, B. J. P.; Garrett, P. E.; Janssens, R. V. F.; Kondev, F. G.; Kulp, W. D.; Lauritsen, T.; McCutchan, E. A.; Miller, D.; Piot, J.; Redon, N.; Riley, M. A.; Simpson, J.; Stefanescu, I.; Werner, V.; Wang, X.; Wood, J. L.; Majola, S. N. T.; Zhu, S.

    2015-03-26

    The exact nature of the lowest Kπ=2⁺ rotational bands in all deformed nuclei remains obscure. Traditionally they are assumed to be collective vibrations of the nuclear shape in the γ degree of freedom perpendicular to the nuclear symmetry axis. Very few such γ-bands have been traced past the usual back-bending rotational alignments of high-j nucleons. We have investigated the structure of positive-parity bands in the N=90 nucleus ¹⁵⁶Dy, using the ¹⁴⁸Nd(¹²C,4n)¹⁵⁶Dy reaction at 65 MeV, observing the resulting γ-ray transitions with the Gammasphere array. The even- and odd-spin members of the π=2⁺ γ-band are observed to 32⁺ and 31⁺ respectively. This rotational band faithfully tracks the ground-state configuration to the highest spins. The members of a possible γ-vibration built on the aligned yrast S-band are observed to spins 28⁺ and 27⁺. An even-spin positive-parity band, observed to spin 24⁺, is a candidate for an aligned S-band built on the seniority-zero configuration of the 0₂⁺ state at 676 keV. As a result, the crossing of this band with the 0₂⁺ band is at hwc = 0.28(1) MeV and is consistent with the configuration of the 0₂⁺ band not producing any blocking of the monopole pairing.

  16. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  17. Interactions Between Ground-State Nitrogen Atoms and Molecules

    NASA Technical Reports Server (NTRS)

    Vanderslice, Joseph T.; Mason, Edward A.; Lippincott, Ellis R.

    1959-01-01

    Potential-energy curves for nitrogen atom (N-N) interactions corresponding to the X (1)Sigma(sup +, sub g), A (3)Sigma(sup +, sub u), (5)Sigma(sup +, sub g), (7)Sigma(sup +, sub u), B (3) Pi(sub g), C (3)(Pi(su u)and a (1)Pi(sub g) states of the nitrogen molecule N2 as well as curves for the atom-molecules (N-N2) and molecule-molecule (N2-N2) interactions have been calculated. All calculations have been based as nearly as possible on experimental data, including spectroscopically determined vibrational energy levels, scattering cross sections of atomic beams in gases, and measured vibrational relaxation times. In cases where experimental data were not available, approximate quantum-mechanical calculations have been made. Results obtained by these various methods are remarkably consistent with one another and are believed to have good accuracy.

  18. Ground state energy and width of {sup 7}He from {sup 8}Li proton knockout

    SciTech Connect

    Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.

    2008-10-15

    The ground state energy and width of {sup 7}He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. {sup 7}He was produced by proton knockout from a secondary {sup 8}Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125({sub -15}{sup +40}) keV.

  19. Momentum Distribution and Ground-State Energy of Liquid 4He at the Absolute Zero Temperature

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Watanabe, Y.

    1980-11-01

    In the scheme of the density and phase operator approach, the momentum distribution nk and the ground-state energy E0 are obtained by employing the structure factor and the radial distribution function calculated by Chang and Campbell for the Morse dipole-dipole potential. The condensate fraction, the ratio of the occupation number of the single-particle zero-momentum state N0/N amounts to 0.096. The momentum distribution diverges as k-1 in the low-wave number limit. The ground-state energy becomes E0=-6.9NK at the mean density ρ0=0.02185Å-3.

  20. Learning Approach on the Ground State Energy Calculation of Helium Atom

    SciTech Connect

    Shah, Syed Naseem Hussain

    2010-07-28

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  1. Learning Approach on the Ground State Energy Calculation of Helium Atom

    NASA Astrophysics Data System (ADS)

    Shah, Syed Naseem Hussain

    2010-07-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function. The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  2. Exact many-electron ground states on the diamond Hubbard chain

    NASA Astrophysics Data System (ADS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  3. A quantum gas of ground state molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Danzl, Johann; Mark, Manfred; Haller, Elmar; Gustavsson, Mattias; Hart, Russell; Nägerl, Hanns-Christoph

    2009-05-01

    Ultracold samples of molecules are ideally suited for fundamental studies in physics and chemistry. For many of the proposed experiments full molecular state control and high phase space densities are needed. We create a dense quantum gas of ground state Cs2 molecules trapped at the wells of a 3D optical lattice, i.e. a molecular Mott-insulator-like state with ground state molecules with vibrational quantum number v = 0. We first efficiently produce weakly bound molecules with v 155 on a Feshbach resonance out of an atomic Mott-insulator state that is obtained from a Bose-Einstein condensate (BEC) of Cs atoms. These molecules are then (coherently) transferred to the ground state by two sequential two-photon STIRAP processes via the intermediate vibrational level v 73 ^1. The molecule production efficiency and the single-step STIRAP transfer efficiency reach 50% and 80%, respectively. We discuss the stability of the system and our progress towards the creation of a BEC of ground state molecules, which is expected to form when the molecular Mott-like state is ``melted'' upon lowering the lattice depth and releasing the molecules from the wells into a large volume trap. ^1J. G. Danzl, E. Haller, M. Gustavsson, M. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.-C. Nägerl, Science 321, 1062 (2008).

  4. Universal dynamic magnetism in Yb pyrochlores with disparate ground states

    NASA Astrophysics Data System (ADS)

    Hallas, A. M.; Gaudet, J.; Butch, N. P.; Tachibana, M.; Freitas, R. S.; Luke, G. M.; Wiebe, C. R.; Gaulin, B. D.

    2016-03-01

    The ytterbium pyrochlore magnets, Yb2B2O7 (B =Sn ,Ti ,Ge ) are well described by Seff=1 /2 quantum spins decorating a network of corner-sharing tetrahedra and interacting via anisotropic exchange. Structurally, only the nonmagnetic B -site cation, and hence primarily the lattice parameter, changes across the series. Nonetheless, a range of magnetic behaviors is observed: the low-temperature magnetism in Yb2Ti2O7 and Yb2Sn2O7 has a ferromagnetic character, while Yb2Ge2O7 displays an antiferromagnetically ordered Néel state at low temperatures. While the static properties of the ytterbium pyrochlores are distinct, inelastic neutron scattering measurements reveal a common character to their exotic spin dynamics. All three ytterbium pyrochlores show a gapless continuum of spin excitations, resembling overdamped ferromagnetic spin waves at low Q . Furthermore, the specific heat of the series also follows a common form, with a broad, high-temperature anomaly followed by a sharp low-temperature anomaly at TC or TN. The novel spin dynamics we report correlate strongly with the broad specific heat anomaly only, remaining unchanged across the sharp anomaly. This result suggests that the primary order parameter in the ytterbium pyrochlores associated with the sharp anomaly is "hidden" and not simple magnetic dipole order.

  5. Hydrogeologic factors that influence ground water movement in the desert southwest United States

    USGS Publications Warehouse

    Chuang, Frank C.; McKee, Edwin H.; Howard, Keith A.

    2003-01-01

    A project to study ground-water and surface-water interactions in the desert southwestern United States was initiated in 2001 by the Tucson, Arizona office of the Water Resources Division, U.S. Geological Survey (USGS). One of the goals of the Southwest Ground-water Resources Project was to develop a regional synthesis that includes the use of available digital geologic data, which is growing rapidly due to the increasing use of Geographic Information Systems (GIS). Included in this report are the digital maps and databases of geologic information that should have a direct impact on the studies of ground-water flow and surface-water interaction. Ground-water flow is governed by many geologic factors or elements including rock and soil permeability, stratigraphy and structural features. These elements directly influence ground-water flow, which is key to understanding the possible inter-connectivity of aquifer systems in desert basins of the southwestern United States. We derive these elements from the evaluation of regional geology and localized studies of hydrogeologic basins. These elements can then be applied to other unstudied areas throughout the desert southwest. This report presents a regional perspective of the geologic elements controlling ground-water systems in the desert southwest that may eventually lead to greater focus on smaller sub-regions and ultimately, to individual ground-water basins.

  6. Interactions leading to disordered ground states and unusual low-temperature behavior.

    PubMed

    Batten, Robert D; Stillinger, Frank H; Torquato, Salvatore

    2009-09-01

    We have shown that any pair potential function v(r) possessing a Fourier transform V(k) that is positive and has compact support at some finite wave number K yields classical disordered ground states for a broad density range [R. D. Batten, F. H. Stillinger, and S. Torquato, J. Appl. Phys. 104, 033504 (2008)]. By tuning a constraint parameter chi (defined in the text), the ground states can traverse varying degrees of local order from fully disordered to crystalline ground states. Here, we show that in two dimensions, the " k -space overlap potential," where V(k) is proportional to the intersection area between two disks of diameter K whose centers are separated by k , yields anomalous low-temperature behavior, which we attribute to the topography of the underlying energy landscape. At T=0 , for the range of densities considered, we show that there is continuous energy degeneracy among Bravais-lattice configurations. The shear elastic constant of ground-state Bravais-lattice configurations vanishes. In the harmonic regime, a significant fraction of the normal modes for both amorphous and Bravais-lattice ground states have vanishing frequencies, indicating the lack of an internal restoring force. Using molecular-dynamics simulations, we observe negative thermal-expansion behavior at low temperatures, where upon heating at constant pressure, the system goes through a density maximum. For all temperatures, isothermal compression reduces the local structure of the system unlike typical single-component systems. PMID:19905060

  7. Interactions leading to disordered ground states and unusual low-temperature behavior

    NASA Astrophysics Data System (ADS)

    Batten, Robert D.; Stillinger, Frank H.; Torquato, Salvatore

    2009-09-01

    We have shown that any pair potential function v(r) possessing a Fourier transform V(k) that is positive and has compact support at some finite wave number K yields classical disordered ground states for a broad density range [R. D. Batten, F. H. Stillinger, and S. Torquato, J. Appl. Phys. 104, 033504 (2008)]. By tuning a constraint parameter χ (defined in the text), the ground states can traverse varying degrees of local order from fully disordered to crystalline ground states. Here, we show that in two dimensions, the “ k -space overlap potential,” where V(k) is proportional to the intersection area between two disks of diameter K whose centers are separated by k , yields anomalous low-temperature behavior, which we attribute to the topography of the underlying energy landscape. At T=0 , for the range of densities considered, we show that there is continuous energy degeneracy among Bravais-lattice configurations. The shear elastic constant of ground-state Bravais-lattice configurations vanishes. In the harmonic regime, a significant fraction of the normal modes for both amorphous and Bravais-lattice ground states have vanishing frequencies, indicating the lack of an internal restoring force. Using molecular-dynamics simulations, we observe negative thermal-expansion behavior at low temperatures, where upon heating at constant pressure, the system goes through a density maximum. For all temperatures, isothermal compression reduces the local structure of the system unlike typical single-component systems.

  8. Creation of an Ultracold Gas of Ground-State Dipolar 23Na 87 Molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier; Wang, Dajun

    2016-05-01

    We report the successful production of an ultracold sample of absolute ground-state 23Na 87Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 1011 cm-3 . By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state 23Na 87Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state 23Na 87Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions.

  9. Exact ground states and topological order in interacting Kitaev/Majorana chains

    NASA Astrophysics Data System (ADS)

    Katsura, Hosho; Schuricht, Dirk; Takahashi, Masahiro

    2015-09-01

    We study a system of interacting spinless fermions in one dimension that, in the absence of interactions, reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. In the noninteracting case, a signal of topological order appears as zero-energy modes localized near the edges. We show that the exact ground states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We prove the uniqueness of the obtained ground states and show that they can be continuously deformed to the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly that there exists a set of operators each of which maps one of the ground states to the other with opposite fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero modes.

  10. Boron: do we know the ground state structure?

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi

    2006-03-01

    Boron is only the fifth element in the periodic table, having a simple electronic configuration, yet, it is known to form one of the most complicated crystal structures, β-rhombohedral structure. Up to date, the best estimate on the number of atoms in its hexagonal unit cell is 320.1, not even an integer number. The key concept to understand its complexity is covalency and electron deficiency: It does not have enough valence electrons to form a simple covalent crystal, like carbon or silicon. Instead it forms a complicated packing of icosahedrons. The structural model of β-boron was developed in the 1960s based on X-ray experiment. Although this model structure captures the most of the structural characteristics of β-boron, it has a crucial pitfall; the number of atoms per cell estimated by X-ray experiment does not agree with the number of atoms estimated by the pycnometric density. In 1988, Slack et al. discovered four more POS, by which the discrepancy in the number of atoms is reconciled [J. of Solid State Chem. 76, 52 (1988)]. There still remains an unanswered question; how are these POS atoms configured? Is it completely random? Or there is some kind of order as it has been suggested in Slack’s paper? A major challenge here is the astronomical number of possible configurations, roughly 150 million even for the irreducible cell. We tackle this problem using ab-initio simulated annealing coupled with a Lattice Model Monte Carlo simulated annealing. Our results reveal that the stable structure, indeed, has a certain type of correlation in its POS configuration. More detail on the structural property and its impact on electronic property of β-boron will be discussed at the presentation. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  11. High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of 34S16O2

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Sams, Robert L.; Ngom, El Hadji A.

    2008-11-01

    A high resolution (0.0018 cm-1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3 %) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 - ν2 , ν1, ν1 + ν2 - ν2, ν3, ν2 + ν3 - ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fitted together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fitted. For the (010), (110), (011) states, a simple Watson type Hamilton sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (020), (100) and (101) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK=2 term to model the Fermi interaction between the (020) and (100) levels and a ΔK=3 term to model the Coriolis interaction between the (100) and (001) levels. Precise Hamiltonian constants were derived for the (000), (010), (100), (001), (020), (110) and (011) vibrational states.

  12. Anomalous magnetic hyperfine structure of the 229Th ground-state doublet in muonic atoms

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.

    2016-07-01

    The magnetic hyperfine (MHF) splitting of the ground and low-energy 3 /2+(7.8 ±0.5 eV) levels in the 229Th nucleus in the muonic atom (μ1S1 /2 -229Th) * is calculated considering the distribution of the nuclear magnetization in the framework of the collective nuclear model with wave functions of the Nilsson model for the unpaired neutron. It is shown that (a) deviation of the MHF structure of the isomeric state exceeds 100% from its value for a pointlike nuclear magnetic dipole (the order of sublevels is reversed); (b) partial inversion of levels of the 229Th ground-state doublet and spontaneous decay of the ground state to the isomeric state occur; (c) the E 0 transition, which is sensitive to differences in the mean-square charge radii of the doublet states, is possible between mixed sublevels with F =2 ; and (d) MHF splitting of the 3 /2+ isomeric state may be in the optical range for certain values of the intrinsic gK factor and a reduced probability of a nuclear transition between the isomeric and the ground states.

  13. Preformation probability inside α emitters having different ground state spin-parity than their daughters

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Botros, M. M.; Refaie, A. I.

    2015-10-01

    The ground state spin and parity of a daughter formed in a radioactive α emitter are expected to influence the preformation probability of the α and daughter clusters inside it. We investigate the α and daughter preformation probability inside odd-A and doubly odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground state to ground state unfavored decays. This is to extract precise information about the effect of the difference in the spin-parity of the ground states of the involved nuclei far away from any influence from the excitation energy, if the decays are coming from isomeric states. The calculations are done for 161 α emitters, with 65 ≤Z ≤112 and 84 ≤N ≤173 , in the framework of the extended cluster model, with the Wentzel-Kramers-Brillouin penetrability and assault frequency. We used a Hamiltonian energy density scheme based on the Skyrme SLy4 interaction to compute the interaction potential. The α -plus-cluster preformation probability is extracted from the calculated decay width and the experimental half-life time. We discussed in detailed steps the effect of the angular momentum of the emitted α particle on the various physical quantities involved in the unfavored decay process and how it finally increases the half-life time. We found that if the ground state spin and/or parity of parent and daughter nuclei are different, then the preformation probability of the α cluster inside the parent is less than it would be if they had similar spin-parity. We modified the formula that gives the α preformation probability in terms of the numbers of protons and neutrons outside the shell closures of the parent, to account for this hindrance in the preformation probability for the unfavored decays between ground states.

  14. State-to-state cross-sections for rotationally inelastic collision of LiH with Ne

    NASA Astrophysics Data System (ADS)

    Feng, Eryin; Huang, Wuyin; Cui, Zhifeng; Zhang, Weijun

    2004-08-01

    The close coupling calculation of rotationally inelastic collision of Ne with LiH is first performed by employing a recently computed ab initio potential energy surface [Chem. Phys. Lett. 327 (2000) 305]. State-to-state differential, partial and integral cross-sections are calculated. Differential cross-sections show the feature of forward scattering for low Δ j inelastic transitions and backward scattering for high Δ j transitions. Two maxima exist in the curve of partial cross-sections and they are originated from different mechanism. The dependence of the integral cross-sections on j' for initial states j=0,1 displays a pronounced oscillatory structure rather than a monotonic one, and dependence on low collision energy presents resonance feature. These features are related to the anisotropic interaction potential.

  15. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  16. Fine structure of alpha decay to rotational states of heavy nuclei

    SciTech Connect

    Wang, Y. Z.; Dong, J. M.; Peng, B. B.; Zhang, H. F.

    2010-06-15

    To gain a better insight into alpha-decay fine structure, we calculate the relative intensities of alpha decay to 2{sup +} and 4{sup +} rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer's formula. The calculated relative intensities of alpha decay to 2{sup +} states are in good agreement with the experimental data. For the relative intensities of alpha decay to 4{sup +} states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of alpha-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

  17. Solvent effects on the absorption and fluorescence spectra of quinine sulphate: Estimation of ground and excited-state dipole moments

    NASA Astrophysics Data System (ADS)

    Joshi, Sunita; Pant, Debi D.

    2012-06-01

    Ground and excited state dipole moments of probe quinine sulphate (QS) was obtained using Solvatochromic shift method. Higher dipole moment is observed for excited state as compared to the ground state which is attributed to the higher polarity of excited state.

  18. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    NASA Astrophysics Data System (ADS)

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; Hertel, Riccardo; Heinonen, Olle G.

    2015-08-01

    We study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. We find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge "melting" above a critical temperature at which the magnetic symmetry is restored.

  19. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    PubMed

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-01

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. PMID:26542565

  20. Relativistic Quark-Model Results for Baryon Ground and Resonant States

    SciTech Connect

    Plessas, W.; Melde, T.

    2008-10-13

    Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and hyperon electromagnetic structures, is addressed. In the following, recent covariant predictions for pion, eta, and kaon partial decay widths of light and strange baryon resonances below 2 GeV are summarized. These results exhibit a characteristic pattern that is distinct from nonrelativistic or relativized decay studies performed so far. Together with a detailed analysis of the spin, flavor, and spatial structures of the wave functions, it supports a new and extended classification scheme of baryon ground and resonant states into SU(3) flavor multiplets.

  1. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  2. Quantum entangled ground states of two spinor Bose-Einstein condensates

    SciTech Connect

    Xu, Z. F.; Lue, R.; You, L.

    2011-12-15

    We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein condensates including quantum fluctuations. The noncommuting terms in the spin-dependent Hamiltonian under the single-spatial-mode approximation make it difficult to obtain exact eigenstates. Utilizing spin-z-component conservation and total spin angular momentum conservation, we numerically derive information on the building blocks and evaluate the von Neumann entropy to quantify the ground states. The mean-field phase boundaries are found to remain largely intact, yet the ground states show fragmented and entangled behaviors within large parameter spaces of interspecies spin-exchange and singlet-pairing interactions.

  3. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE PAGESBeta

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  4. Essentially exact ground-state calculations by superpositions of nonorthogonal Slater determinants

    NASA Astrophysics Data System (ADS)

    Goto, Hidekazu; Kojo, Masashi; Sasaki, Akira; Hirose, Kikuji

    2013-05-01

    An essentially exact ground-state calculation algorithm for few-electron systems based on superposition of nonorthogonal Slater determinants (SDs) is described, and its convergence properties to ground states are examined. A linear combination of SDs is adopted as many-electron wave functions, and all one-electron wave functions are updated by employing linearly independent multiple correction vectors on the basis of the variational principle. The improvement of the convergence performance to the ground state given by the multi-direction search is shown through comparisons with the conventional steepest descent method. The accuracy and applicability of the proposed scheme are also demonstrated by calculations of the potential energy curves of few-electron molecular systems, compared with the conventional quantum chemistry calculation techniques.

  5. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S.

    2015-11-01

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  6. Ground state of an ultrastrongly coupled qubit-oscillator system with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2016-06-01

    We study the effect of inversion symmetry breaking on properties of the ground state of a qubit-oscillator system within the ultrastrong-coupling regime. We obtain the solution of the ground state through the approximate analytical approach, which, under the near-resonance condition, agrees well with the numerical simulation. We demonstrate that, due to the inversion symmetry breaking, the ground state becomes asymmetric and the qubit-oscillator entanglement entropy strongly depends on the mean dipole moments. Furthermore, we find that the attainable maximum entanglement entropy undergoes a sharp change across a critical point and the minimum value of the Wigner function has a quadratic dependence on the mean dipole moments.

  7. Antibonding hole ground state in InAs quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Planelles, Josep

    2015-01-01

    Using four-band kṡp Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.

  8. Antibonding hole ground state in InAs quantum dot molecules

    SciTech Connect

    Planelles, Josep

    2015-01-22

    Using four-band k⋅p Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.

  9. The ground states of Perovskite nickelates: A dynamical mean field approach

    NASA Astrophysics Data System (ADS)

    Misra, D.; Taraphder, A.

    2014-04-01

    The Perovskite Nickelates (RNiO3,R=Rare-earth) exhibit a strong connection between their structural, transport and magnetic properties. All the members of Nickelate series have orthorhombic structure except LaNiO3 which has a rhombohedral symmetry. While the ground states of most of the Nickelates are antiferromagnetic insulators, and they undergo a sharp, temperature driven metal-Insulator transition, LaNiO3 is a paramagnetic metal irrespective of the temperature and does not undergo any metal-insulator transition. Whether the AFM insulating ground state of Nickelates (R≠La) is due to charge or orbital ordering or both, is a matter of current dispute. Here we give a theoretical account of the metallic property of LaNiO3 and insulating ground states of other Nickelates, using LCAO and static mean field calculation, followed by a dynamical mean field analysis.

  10. Arsenic in ground water of the United States: occurrence and geochemistry

    USGS Publications Warehouse

    Welch, Alan H.; Westjohn, D.B.; Helsel, Dennis R.; Wanty, Richard B.

    2000-01-01

    Concentrations of naturally occurring arsenic in ground water vary regionally due to a combination of climate and geology. Although slightly less than half of 30,000 arsenic analyses of ground water in the United States were ≤ 1 µg/L, about 10% exceeded 0 µg/L. At a broad regional scale, arsenic concentrations exceeding 10 µg/L appear to be more frequently observed in the western United States than in the eastern half. Arsenic concentrations in ground water of the Appalachian Highlands and the Atlantic plain generally are very low (≤ 1 µg/L). Concentrations are somewhat greater in the Interior Plains and the Rocky Mountain System, investigations of ground water in New England, Michigan, Minnesota, South Dakota, Oklahoma, and Wisconsin within the last decade suggest that arsenic concentrations exceeding 10 µg/L are more widespread and common than previously recognized. Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 µg/L a ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can release arsenic to alkaline ground water, such as that found in some felsic volcanic rocks and alkaline aquifers of the Western United States. Sulfide minerals are both a source and sink for arsenic. Geothermal water and high evaporation rates also are associated with arsenic concentrations ≥ 10g/L in ground and surface water, particularly in the west.

  11. Mass selected anion-zero kinetic energy photoelectron spectroscopy (anion-ZEKE): Ground and low excited states of FeO

    NASA Astrophysics Data System (ADS)

    Drechsler, G.; Boesl, U.; Bäßmann, C.; Schlag, E. W.

    1997-08-01

    Photodetachment-photoelectron (PD-PES) and anion-zero kinetic energy photoelectron (anion-ZEKE) spectra of FeO have been measured. The vibrational progression bands of the X 5Δi(FeO)←X5Δ7/2(FeO-) transition in the PD-PES spectrum exhibit substructure which could not be resolved in earlier PD-PES spectra. A comparison with the high resolution anion-ZEKE spectrum clearly shows the existence of a second low energetic electronic state which could be the a 7Σ+ of neutral FeO proposed by several authors. In addition, for the A 5Σ+ state of FeO an excess energy of 4050 cm-1 was found. Vibrational frequencies for the X 5Δ, a 7Σ+, and A 5Σ+ states have been determined as 882, 887, and 800 cm-1. All spin orbit splittings of the neutral and anionic ground states could be measured directly or deduced from spin orbit combination transitions. We succeeded in resolving the rotational envelope of the vibrational origin of the neutral-anion ground states transition with indicated single rotational lines of the ΔJ =+3/2 branch.

  12. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    NASA Astrophysics Data System (ADS)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  13. State-to-state rotational energy-transfer measurements in the nu(2) = 1 state of ammonia by infrared-infrared double resonance

    NASA Technical Reports Server (NTRS)

    Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.

    1992-01-01

    The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.

  14. Cold collisions of ground-state calcium atoms in a laser field: A theoretical study

    SciTech Connect

    Bussery-Honvault, Beatrice; Launay, Jean-Michel; Moszynski, Robert

    2003-09-01

    State-of-the-art ab initio techniques have been applied to compute the potential-energy curves for the ground X {sup 1}{sigma}{sub g}{sup +} and excited {sup 1}{pi}{sub g}(4s3d) states of the calcium dimer in the Born-Oppenheimer approximation. The weakly bound ground state was calculated by symmetry-adapted perturbation theory, while the strongly bound excited state was computed using a combination of the linear-response theory within the coupled-cluster singles and doubles framework for the core-valence electronic correlation and of the full configuration interaction for the valence-valence correlation. The ground-state potential has been corrected by considering the relativistic terms resulting from the first-order many-electron Breit theory, and the retardation corrections. The magnetic electronic transition dipole moment governing the {sup 1}{pi}{sub g}(leftarrow){sup 1}{sigma}{sub g}{sup +} transitions has been obtained as the first residue of the polarization propagator computed with the coupled-cluster method restricted to single and double excitations. The computed energies and transition moments have been analytically fitted and used in the dynamical calculations of the rovibrational energy levels, ground-state scattering length, photoassociation intensities at ultralow temperatures, and spontaneous emission coefficients from the {sup 1}{pi}{sub g}(4s3d) to the X {sup 1}{sigma}{sub g}{sup +} state. The spectroscopic constants of the theoretical ground-state potential are in a good agreement with the experimental values derived from the Fourier-transform spectra [O. Allard et al., Eur. Phys. J. D (to be published)]. The theoretical s-wave scattering length for the ground state is a=44 bohrs, suggesting that it should be possible to obtain a stable Bose-Einstein condensate of calcium atoms. Finally, the computed photoassociation intensities and spontaneous emission coefficients suggest that it should be possible to obtain cold calcium molecules by

  15. Creating Fermionic Ground State Molecules of 23Na40K with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Will, Sebastian; Zwierlein, Martin

    2013-05-01

    In our experiment, we work towards creating fermionic ground state molecules of 23Na40K with strong dipolar interactions. These molecules will be chemically stable in the rovibrational ground state, and will carry a large induced dipole moment of 2.72 Debye. Building up on our previous work, we have done photoassociation spectroscopy on the 23Na-40K mixture in order to understand the molecular excited state potentials and identify possible intermediate states for efficient STIRAP transfer of Feshbach molecules down to the absolute rovibrational ground state. In addition, our recent effort in doing two-photon spectroscopy to locate the absolute rovibrational ground state will be presented. Our work paves the way towards creating stable dipolar quantum gases, which will open up new avenues to quantum many-body phases with intriguing properties such as supersolidity and topological phases. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  16. Accurate rest frequencies for the submillimetre-wave lines of C{3}O in ground and vibrationally excited states below 400 cm-1

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Degli Esposti, C.; Dore, L.

    2008-12-01

    The submillimetre-wave spectrum of C3O (X^1Σ^+) has been investigated in the laboratory using a source-modulation microwave spectrometer equipped with a gas-phase flow pyrolysis system for the production of unstable chemical species. C3O was produced by thermal decomposition of fumaryl chloride at 900 °C. Thirty-seven new rotational transitions were observed in the frequency range 307-740 GHz for the ground vibrational state, reaching a J quantum number as high as 76. Additionally, new millimetre-wave and submillimetre-wave lines were recorded for the bending fundamental v5 = 1, and for its overtones v5 = 2 and v5 = 3 whose rotational spectra have been identified for the first time. The new laboratory measurements provide much improved rest frequencies in the submillimetre spectral region for the ground state spectra of C3O, and for the first levels of its low-energy v5 vibrational ladder, useful for the radioastronomical identification of their rotational lines in the ISM. Tables 5 to 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/492/875

  17. Preparing ground states of quantum many-body systems on a quantum computer

    NASA Astrophysics Data System (ADS)

    Poulin, David

    2009-03-01

    The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.

  18. Ground states of spin-2 condensates in an external magnetic field

    SciTech Connect

    Zheng, G.-P.; Tong, Y.-G.; Wang, F.-L.

    2010-06-15

    The possible ground states of spin-2 Bose-Einstein condensates in an external magnetic field are obtained analytically and classified systematically according to the population of the condensed atoms at the hyperfine sublevels. It is shown that the atoms can populate simultaneously at four hyperfine sublevels in a weak magnetic field with only the linear Zeeman energy, in contrast to that in a stronger magnetic field with the quadratic Zeeman energy, where condensed atoms can at most populate at three hyperfine sublevels in the ground states. Any spin configuration we obtained will give a closed subspace in the order parameter space of the condensates.

  19. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  20. The Nature of the Ground States of Cobalt(II) and Nickel(II) Carboxypeptidase A

    PubMed Central

    Rosenberg, Robert C.; Root, Charles A.; Wang, Run-Han; Cerdonio, Massimo; Gray, Harry B.

    1973-01-01

    The magnetic susceptibilities of cobalt(II) and nickel(II) derivaties of carboxypeptidase A (CPA) follow the Curie law over a wide temperature range. The observed magnetic moments of Co(II)CPA and Ni(II)CPA are 4.77 ± 0.15 and 2.53 ± 0.10 Bohr Magnetons, respectively. The magnetic and spectral properties of Ni(II)CPA are consistent only with an octahedral ground-state geometry, whereas Co(II)CPA has a probable five-coordinate structure. The results establish ordinary metal-ion ground states for two metallocarboxypeptidase A derivatives which exhibit full peptidase activity. PMID:4509646

  1. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Datta Pramanik, U.; Aumann, T.; Beceiro, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chatterjee, S.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Gonzalez-Diaz, D.; Emling, H.; Diaz Fernandez, P.; Fraile, L. M.; Ershova, O.; Geissel, H.; Heil, M.; Jonson, B.; Kelic, A.; Johansson, H.; Kruecken, R.; Kroll, T.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Munzenberg, G.; Marganiec, J.; Nociforo, C.; Najafi, A.; Panin, V.; Paschalis, S.; Pietri, S.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Ray, J.; Simon, H.; Scheidenberger, C.; Typel, S.; Taylor, J.; Togano, Y.; Volkov, V.; Weick, H.; Wagner, A.; Wamers, F.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2014-03-01

    Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s)⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  2. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  3. Model valence-fluctuation systems: variational ground states and magnetic responses

    SciTech Connect

    Brandow, B.H.

    1980-04-01

    Variational ground-state wavefunctions are presented and optimized for two model valence-fluctuation systems, based on Anderson lattice Hamiltonians in the U ..-->.. infinity limit. Although these wavefunctions are approximate, they are treated in an essentially exact manner. The )f/sup 0/, f/sup 1/; n = 1) system has an intuitively reasonable ground-state susceptibility, while the )f/sup 1/, f/sup 2/; n = 2) system is found to exhibit an insulating gap. Due to their different crystal symmetries, this gap should be realized in SmB/sub 6/ but not in SmS.

  4. Ground-state properties of third-row elements with nonlocal density functionals

    SciTech Connect

    Bagno, P.; Jepsen, O.; Gunnarsson, O.

    1989-07-15

    The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are calculated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expansion functionals. The PW functional is found to give somewhat better results than the LMH functional and both are found to typically remove half the errors in the local-spin-density (LSD) approximation, while the gradient expansion gives worse results than the local-density approximation. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground state.

  5. Ground State of Magnetic Dipoles on a Two-Dimensional Lattice: Structural Phases in Complex Plasmas

    SciTech Connect

    Feldmann, J. D.; Kalman, G. J.; Hartmann, P.; Rosenberg, M.

    2008-02-29

    We study analytically and by molecular dynamics simulations the ground state configuration of a system of magnetic dipoles fixed on a two-dimensional lattice. We find different phases, in close agreement with previous results. Building on this result and on the minimum energy requirement we determine the equilibrium lattice configuration, the magnetic order (ferromagnetic versus antiferromagnetic), and the magnetic polarization direction of a system of charged mesoscopic particles with magnetic dipole moments, in the domain where the strong electrostatic coupling leads to a crystalline ground state. Orders of magnitudes of the parameters of the system relevant to possible future dusty plasma experiments are discussed.

  6. Ground-state and finite-temperature energetics and topologies of germanium microclusters

    SciTech Connect

    Antonio, G.A.; Feuston, B.P.; Kalia, R.K.; Vashishta, P.

    1988-06-15

    We have investigated the ground-state and finite-temperature properties of Ge microclusters (N = 2 to 14) using molecular dynamics (MD) simulation along with the method of steepest-descent quench (SDQ). The interaction potential adopted is the three-body Stillinger--Weber potential as modified by Ding and Andersen for amorphous Ge. Our results indicate that the experimentally observed greater stability of certain cluster sizes can be explained by the topology and energetics of the clusters at finite temperature rather than by the binding energies of the ground-state structures.

  7. Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.

    2015-10-01

    In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

  8. High-fidelity rapid ground-state loading of an ultracold gas into an optical lattice.

    PubMed

    Masuda, Shumpei; Nakamura, Katsuhiro; del Campo, Adolfo

    2014-08-01

    A protocol is proposed for the rapid coherent loading of a Bose-Einstein condensate into the ground state of an optical lattice, without residual excitation associated with the breakdown of adiabaticity. The driving potential required to assist the rapid loading is derived using the fast-forward technique, and generates the ground state in any desired short time. We propose an experimentally feasible loading scheme using a bichromatic lattice potential, which approximates the fast-forward driving potential with high fidelity. PMID:25148323

  9. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  10. Generalized Frequency Domain State-Space Models for Analyzing Flexible Rotating Spacecraft

    NASA Astrophysics Data System (ADS)

    Turner, James D.; Elgohary, Tarek A.

    2012-06-01

    The mathematical model for a flexible spacecraft that is rotating about a single axis rotation is described by coupled rigid and flexible body degrees-of-freedom, where the equations of motion are modeled by integro-partial differential equations. Beam-like structures are often useful for analyzing boom-like flexible appendages. The equations of motion are analyzed by introducing generalized Fourier series that transform the governing equations into a system of ordinary differential equations. Though technically straightforward, two problems arise with this approach: (1) the model is frequency-truncated because a finite number of series terms are retained in the model, and (2) computationally intense matrix-valued transfer function calculations are required for understanding the frequency domain behavior of the system. Both of these problems are resolved by: (1) computing the Laplace transform of the governing integro-partial differential equation of motion; and (2) introducing a generalized state space (consisting of the deformational coordinate and three spatial partial derivatives, as well as single and double spatial integrals of the deformational coordinate). The resulting math model is cast in the form of a linear state-space differential equation that is solved in terms of a matrix exponential and convolution integral. The structural boundary conditions defined by Hamilton's principle are enforced on the closed-form solution for the generalized state space. The generalized state space model is then manipulated to provide analytic scalar transfer function models for original integro-partial differential system dynamics. Symbolic methods are used to obtain closed-form eigen decomposition- based solutions for the matrix exponential/convolution integral algorithm. Numerical results are presented that compare the classical series based approach with the generalized state space approach for computing representative spacecraft transfer function models.

  11. Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels

    NASA Astrophysics Data System (ADS)

    Kevin, Garapo; Mhlambululi, Mafu; Francesco, Petruccione

    2016-07-01

    We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds. Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  12. Magnetization ground states and phase diagrams for a nanosized Co hollow sphere: An onion-type magnetization state

    NASA Astrophysics Data System (ADS)

    Kong, Desheng; Wang, Siming; Chen, Chinping

    2008-07-01

    The magnetization ground states (MGSs) for a nanosized Co hollow sphere, with the outer radius, R <50 nm, have been studied numerically by micromagnetic simulation using object oriented micromagnetic framework (OOMMF). In addition to the originally known single domain and vortex-curling states, a three dimensional "onion" state with a corresponding analytical expression is proposed and confirmed as one of the ground states. Two phase diagrams, one for a single crystalline and the other for a polycrystalline nanosphere, are obtained for the three MGSs. The result reveals that the magnetic anisotropy has a significant effect on the phase line in the diagrams. The finite temperature effect and the blocking properties of the nanosphere for the magnetization reversal are discussed.

  13. Ground-state angular momentum, spectral asymmetry, and topology in chiral superfluids and superconductors

    NASA Astrophysics Data System (ADS)

    Ojanen, Teemu

    2016-05-01

    Recently, it was discovered that the ground-state orbital angular momentum in two-dimensional chiral superfluids with pairing symmetry (px+i py) ν depends on the winding number ν in a striking manner. The ground-state value for the ν =1 case is Lz=ℏ N /2 as expected by counting the Cooper pairs, while a dramatic cancellation takes place for ν >1 . The origin of the cancellation is associated with the topological edge states that appear in a finite geometry and give rise to a spectral asymmetry. Here, we study the reduction of orbital angular momentum for different potential profiles and pairing strengths, showing that the result Lz=ℏ N /2 is robust for ν =1 under all studied circumstances. We study how angular momentum depends on the gap size Δ /EF and obtain the result Lz=ℏ/ν 2 N (1 -μ/EF) for ν =2 ,3 . Thus, the gap dependence of Lz for ν <4 enters at most through the chemical potential while ν ≥4 is qualitatively different. In addition, we generalize the spectral asymmetry arguments to total angular momentum in the ground state of triplet superfluids where due to a spin-orbit coupling Lz is not a good quantum number. We find that the ground-state total angular momentum also behaves very differently depending on total angular momentum of the Cooper pairs.

  14. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    SciTech Connect

    Wang, Hanquan

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  15. Ground state structures and excited state dynamics of pyrrole-water complexes: Ab initio excited state molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Anupriya; Kołaski, Maciej; Kim, Kwang S.

    2008-01-01

    Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted π-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34a.u.) around ˜100fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the π H-bonded water molecule and then the charge transfer takes place from this water molecule to the σ H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53a.u.) around ˜100fs.

  16. Raman analysis of bond conformations in the rotator state and premelting of normal alkanes.

    PubMed

    Kotula, Anthony P; Walker, Angela R Hight; Migler, Kalman B

    2016-06-14

    We perform Raman spectroscopic measurements on normal alkanes (CnH2n+2) to quantify the n dependence of the conformational disorder that occurs below the melt temperature. We employ a three-state spectral analysis method originally developed for semi-crystalline polyethylene that posits crystalline, amorphous, and non-crystalline consecutive trans (NCCT) conformations to extract their respective mass fractions. For the alkanes studied that melt via a rotator phase (21 ≤n≤ 37), we find that conformational disorder can be quantified by the loss of NCCT mass fraction, which systematically decreases with increasing chain length. For those that melt directly via the crystal phase (n≥ 40), we observe NCCT conformational mass fractions that are independent of chain length but whose disordered mass fraction increases with length. These complement prior IR measurements which measure disorder via gauche conformations, but have not been able to measure the mass fraction of this disorder as a function of n. An interesting feature of the three-state analysis when applied to alkanes is that the measured fraction of disordered chain conformations in the rotator phase of (10 to 30)% greatly exceeds the mass fraction of gauche bonds (1 to 7)% as measured from IR; we reconcile this difference through DFT calculations. PMID:27174157

  17. Rotational state distributions from vibrational autoionization of H2 revisited

    SciTech Connect

    Pratt, Stephen T.; McCormack, E. F.; Dehmer, Joseph L.; Dehmer, Patricia M.

    1990-01-01

    Photoelectron spectra of vibrationally autoionized (X ²Σ⁺g)np, v=1,2 Rydberg states of H2 were obtained by using an optical--optical double-resonance technique. The spectra were obtained by using a hemispherical electrostatic electron energy analyzer that had sufficient resolution to determine the rotational state distributions of the H⁺2 ions. The ionization process occurred in a magnetic and electric field-free region. All of the results are consistent with the assumptions that the photoelectrons are ejected as p waves and that spin effects are negligible. This is in sharp contrast to our earlier results obtained by using a magnetic bottle electron spectrometer, in which the ionization process occurred in a 0.5--1.0 T magnetic field [J. L. Dehmer et al., J. Chem. Phys. 90, 6243 (1989)]. It is concluded that the magnetic field can significantly modify the rotational distributions observed for vibrational autoionization. The implications of this conclusion are discussed, with particular attention to other experiments performed with the magnetic bottle spectrometer.

  18. Effects of Rotational State Excitations on the Dissociative Adsorption Dynamics of D2/Cu(111)

    NASA Astrophysics Data System (ADS)

    Diño, Wilson; Kasai, Hideaki; Okiji, Ayao

    1995-07-01

    Recent time-of-flight experiments show a non-monotonous dependence of the dissociative adsorption/sticking* probability of D2(H2)/Cu(111) on the initial rotational state. There is an observed decrease in the sticking probability with a slight increase in the initial rotational state quantum number j. As j is increased further, the sticking probability eventually increases. We show that, to account for this interesting behaviour, there are two opposing factors working for and against the adsorption process: STEERING EFFECT and ENERGY TRANSFER EFFECT. The first is dueto a dynamical reorientation of the molecule, and the latter is due to the coupling of therotational motion to the translational motion along the reaction path. To illustrate these two effects, we performed quantum mechanical model calculations using a variation of the coupled-channel method, a physically realistic model potential based on available potential energy (hyper-) surface plots for D2(H2)/Cu for two different orientations-parallel and perpendicular to the surface, and the concept of a reaction path.

  19. Rotational isomerism and physical properties of long-chain molecules in solid states

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.

    1985-01-01

    Rotational isomerism occurring in solid state of organic long-chain compounds, including synthetic linear polymers, have been concerned in connection with the macroscopic physical properties of bulk materials. The conformational order in the non-crystalline part of polyethylene has been investigated by Raman spectra, and related to the elastic behaviors of bulk samples. In the solid-state phase transition induced by mechanical forces of poly(butylene terephthalate) the macroscopic strain has been related directly to the conformational conversion of the molecules. Concerning the piezoelectric and pyroelectric activities of poly(vinylidene fluoride), polymorphism, phase transition, and structural change on the poling process have been investigated. A ferroelectric-paraelectric phase transition has been found for a series of copolymers of vinylidene fluoride and trifluoroethylene. On the phase transition a great change in molecular conformation is accompanied with the scrambling of the dipolar orientation. This is the characteristic of polymer ferroelectrics in which the dipolar units are linked with each other by covalent bonds in a molecular chain. Spectroscopic evidences are presented indicating that the thermodynamic stability of polymorphs of n-fatty acids is closely related to the rotational isomerism occurring in the carboxyl groups.

  20. Stationary State After a Quench to the Lieb-Liniger from Rotating BECs

    NASA Astrophysics Data System (ADS)

    Bucciantini, Leda

    2016-08-01

    We study long-time dynamics of a bosonic system after suddenly switching on repulsive delta-like interactions. As initial states, we consider two experimentally relevant configurations: a rotating BEC and two counter-propagating BECs with opposite momentum, both on a ring. In the first case, the rapidity distribution function for the stationary state is derived analytically and it is given by the distribution obtained for the same quench starting from a BEC, shifted by the momentum of each boson. In the second case, the rapidity distribution function is obtained numerically for generic values of repulsive interaction and initial momentum. The significant differences for the case of large versus small quenches are discussed.

  1. Millimeter and Submillimeter Wave Spectra of the HCOO^{13}CH_{3} Isotopolog of Methylformate in the Ground State and in the First Excited Torsional State.

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Margules, L.; Huet, T. R.; Motiyenko, R. A.; Carvajal, M.; Kleiner, I.; Guillemin, J. C.; Tercero, B.; Cernicharo, J.

    2013-06-01

    The detection of nineteen new rotational transitions of the parent molecule of methylformate (HCOOCH_{3}) in the second lowest excited torsional mode (ν_{t} =2) was recently reported in Orion-KL, as well as the detection of eighty new lines corresponding to the two ^{18}O isotopologs of methylformate in their ground states. The laboratory work on HCOO^{13}CH_{3} was continued. A wide spectral range from 50 to 940 GHz was recorded in Lille with the submillimeter-wave spectrometer based on harmonic generation of a microwave synthesizer source, using a multiplication chain of solid state sources (50-100 and 150-940 GHz) and a backward wave oscillator (100-150 GHz), and coupled to a 2.2 m cell. The absolute accuracy of the line positions is better than 30 kHz up to 630 GHz and 50 kHz above. The two states (ν_{t} = 0 and 1) were fitted together using the RAM Hamiltonian of the BELGI program and a new set of 45 parameters was accurately determined. The fit contains 7050 lines corresponding to the ground state up to J = 78 and K_{a} = 34 and 1907 lines related to ν_{t} =1 up to J = 59 and K_{a} = 24. The detection of new ν_{t} =1 lines in Orion KL will be reported and discussed. This work is supported by the French Programme National de Physico-Chimie du Milieu Interstellaire (CNRS), by CNES, and by the Spanish Government through the grants FIS2011-28738-C02-02 and CONSOLIDER 2009-00038. S. Takano, Y. Sakai, S. Kakimoto, M. Sasaki, and K. Kobayashi PASJ. {64}, 89, 2012. B. Tercero, et al. A& A. {538}, A199, 2012. M. Carvajal, et al. A& A. {500}, 1109, 2009.

  2. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  3. Bibliography on ground water in glacial-aquifer systems in the Northeastern United States

    USGS Publications Warehouse

    Wiltshire, Denise A.; Lyford, Forest P.; Cohen, A.J.

    1986-01-01

    The U.S. Geological Survey established the Regional Aquifer-System Analysis (RASA) program to evaluate major interconnected aquifers or groups of aquifers that share similar characteristics within a region. One of the objectives of the Northeastern Glacial RASA is to provide information on the occurrence and quality of ground water in glacial deposits in ten States: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, Ohio, Pennsylvania, and New Jersey. To help meet the objectives of the RASA program, an automated bibliographic data base was developed. The data base contains references to ground-water resources of glacial-aquifer systems in the ten States listed above. This bibliography contains more than 700 ground-water related references that date from 1839 through 1984. The bibliography lists books, journal articles, conference proceedings, government and other technical reports, theses, and maps. Unpublished manuscripts, publications in press, newspaper articles, and book reviews are omitted from the bibliography.

  4. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    PubMed Central

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417

  5. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE PAGESBeta

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  6. Conformational analysis of N-methylformamide in ground S0 and excited S1 and T1 electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-07-01

    For conformers of the N-methylformamide (HCONHCH3) molecule, calculations of equilibrium geometry parameters, harmonic vibration frequencies, energy differences and potential barriers to conformational transitions were performed in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states. In the S0 state, the molecule exists in trans and cis stable conformations (having Cs symmetry). Our calculations show that the electronic excitations T1←S0 and S1←S0 cause changes in the structure of conformers: both HCON and HNCC fragments become pyramidal and rotate around the CN bond. As a result, in each excited electronic state under consideration, there are 12 minima forming six pairs of equivalent conformers separated by relatively small potential barriers. One- and two-dimensional potential energy surface sections corresponding to different intramolecular large-amplitude motions were calculated using the MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1 and T1) methods. Anharmonic vibrational problems for large-amplitude motions were solved, and the corresponding frequencies were estimated.

  7. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  8. Zero-point fluctuations in the ground state of a mesoscopic normal ring

    NASA Astrophysics Data System (ADS)

    Cedraschi, Pascal; Büttiker, Markus

    2001-04-01

    We investigate the persistent current of a ring with an in-line quantum dot capacitively coupled to an external circuit. Of special interest is the magnitude of the persistent current as a function of the external impedance in the zero-temperature limit when the only fluctuations in the external circuit are zero-point fluctuations. These are time-dependent fluctuations that polarize the ring-dot structure and we discuss in detail the contribution of displacement currents to the persistent current. We have earlier discussed an exact solution for the persistent current and its fluctuations based on a Bethe ansatz. In this work, we emphasize a physically more intuitive approach using a Langevin description of the external circuit. This approach is limited to weak coupling between the ring and the external circuit. We show that the zero-temperature persistent current obtained in this approach is consistent with the persistent current calculated from the Bethe ansatz solution. In the absence of coupling our system is a two level system consisting of the ground state and the first excited state. In the presence of coupling we investigate the projection of the actual state on the ground state and the first exited state of the decoupled ring. With each of these projections we can associate a phase-diffusion time. In the zero-temperature limit we find that the phase-diffusion time of the excited state projection saturates, whereas the phase-diffusion time of the ground state projection diverges.

  9. Resetting transcription factor control circuitry toward ground-state pluripotency in human.

    PubMed

    Takashima, Yasuhiro; Guo, Ge; Loos, Remco; Nichols, Jennifer; Ficz, Gabriella; Krueger, Felix; Oxley, David; Santos, Fatima; Clarke, James; Mansfield, William; Reik, Wolf; Bertone, Paul; Smith, Austin

    2014-09-11

    Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells. PMID:25215486

  10. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  11. Is rotating between static and dynamic work beneficial for our fatigue state?

    PubMed

    Luger, Tessy; Bosch, Tim; Hoozemans, Marco J M; Veeger, DirkJan H E J; de Looze, Michiel P

    2016-06-01

    Shoulder disorders comprise a large part of work-related musculoskeletal disorders. Risk factors, such as repetitiveness and monotony, may cause muscle fatigue and be attenuated by task rotation. We investigated rotation between a dynamic box-lifting task and a relatively static pick-and-place task and aimed to determine whether (1) a high rotation frequency leads to less fatigue development than a low rotation frequency, and (2) a self-selected rotation frequency leads to less fatigue development than imposed rotation frequencies. Ten participants performed four one-hour rotation schedules: two low frequency rotation schedules rotating at 30min, one high frequency rotation schedule rotating every sixth minute, and a self-selected rotation schedule. Borg, SOFI and electromyography of Trapezius and Deltoid subparts served as fatigue indicators. We found significant signs of fatigue for most schedules regarding the Borg and SOFI ratings and the M. Trapezius pars Descendens. Task rotation frequency had no significant effect on any of the outcome parameters, whereas the self-selected rotation schedule clearly resulted in less development of perceived fatigue than imposed schedules. In conclusion, we think that freedom of rotation has the greatest potential to attenuate potential development of musculoskeletal disorders and we require due caution with the use and interpretation of EMG indicators of fatigue. PMID:27101392

  12. Efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates based on their characterizations

    SciTech Connect

    Bao, Weizhu; Chern, I-Liang; Zhang, Yanzhi

    2013-11-15

    In this paper, we propose efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates (BECs) with/without the Ioffe–Pritchard magnetic field B(x). When B(x)≠0, a numerical method is introduced to compute the ground states and it is also applied to study properties of ground states. Numerical results suggest that the densities of m{sub F}=±1 components in ground states are identical for any nonzero B(x). In particular, if B(x)≡B≠0 is a constant, the ground states satisfy the single-mode approximation. When B(x)≡0, efficient and simpler numerical methods are presented to solve the ground states of spin-1 BECs based on their ferromagnetic/antiferromagnetic characterizations. Numerical simulations show that our methods are more efficient than those in the literature. In addition, some conjectures are made from our numerical observations.

  13. Interpretation of rapidly rotating pulsars

    SciTech Connect

    Weber, F. . Inst. fuer Theoretische Physik); Glendenning, N.K. )

    1992-08-05

    The minimum possible rotational period of pulsars, which are interpreted as rotating neutron stars, is determined by applying a representative collection of realistic nuclear equations of state. It is found that none of the selected equations of state allows for neutron star rotation at periods below 0.8--0.9 ms. Thus, this work strongly supports the suggestion that if pulsars with shorter rotational periods were found, these are likely to be strange-quark-matter stars. The conclusion that the confined hadronic phase of nucleons and nuclei is only metastable would then be almost inescapable, and the plausible ground-state in that event is the deconfined phase of (3-flavor) strange-quark-matter.

  14. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    NASA Astrophysics Data System (ADS)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  15. Ground and excited states of iron centers in ZnO: Pulse-EPR and magneto-optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Azamat, D. V.; Debus, J.; Yakovlev, D. R.; Ivanov, V. Yu.; Godlewski, M.; Fanciulli, M.; Bayer, M.

    2015-11-01

    We report on the ground- and excited-state properties of Fe3 + centers in hydrothermally and chemical-vapor-transport grown single ZnO crystals studied by continuous-wave electron-paramagnetic resonance (EPR) under dark and laser-illuminated conditions, pulsed-EPR and magneto-photoluminescence. By use of EPR experiments, the fine-structure parameters of the Fe3 + spin Hamiltonian are determined. Three types of charge-compensated Fe3 + centers are identified and the charge conversion from Fe2 + to Fe3 + is highlighted. The magneto-optical studies of the Zeeman components of the spin-forbidden electric-dipole transitions from excited T41(G ) to ground A61(6S) states of the Fe3 + center indicate the trigonal symmetry of the fine structure of the lowest Γ8(T41) excited state. The energy positions of the Zeeman components are measured in the external magnetic field of 8 T rotated in (1 2 ¯10 ) and (0001) crystal planes. The angular variation of the Zeeman lines exhibits two magnetically nonequivalent Fe3 + centers. These features result from the contribution of high-rank Zeeman terms of dimension B J3 in the spin Hamiltonian. For the electron spin S =5 /2 system of the trigonal Fe3 + ion, we further demonstrate the tuning of one-photon Rabi oscillations by means of electron spin-echo measurements.

  16. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  17. Role of the helium ground state in (e,3e) processes

    SciTech Connect

    Ancarani, L.U.; Montagnese, T.; Dal Cappello, C.

    2004-07-01

    Absolute (e,3e) measurements on helium, at high incident energy, have been recently reproduced by a calculation in the first Born approximation [Phys. Rev. Lett. 91, 73201 (2003)]. The theoretical model is based on the product of three Coulomb waves for the final state and the use of Pluvinage wave function for the initial helium ground state. The authors suggest that the good agreement obtained is strongly related to the quality of the initial state, in particular to the fact that it is diagonal in all Coulomb interactions. In this paper, we show that this conclusion is not correct. We construct three other helium ground states to demonstrate that diagonalizing the Hamiltonian is not the deciding factor in obtaining agreement with the absolute experimental data.

  18. Quantum ground state of self-organized atomic crystals in optical resonators

    SciTech Connect

    Fernandez-Vidal, Sonia; De Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-15

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  19. The ground state of the Pomeron and its decays to light mesons and photons

    NASA Astrophysics Data System (ADS)

    Godizov, A. A.

    2016-07-01

    The problem of the timelike Pomeron coupling to light mesons and photons is considered in light of available data on high-energy meson-proton scattering. A possible correspondence of the f_2(1950) resonance to the ground state of the Pomeron is argued.

  20. Transient state of polarization in optical ground wire caused by lightning and impulse current

    NASA Astrophysics Data System (ADS)

    Kurono, Masahiro; Isawa, K.; Kuribara, Masayuki

    1996-08-01

    This paper describes a transient state of polarization in an optical ground wire (OPGW) theoretically, experimentally and with field measurements in lightning conditions, which is considered one of the fastest phenomena of polarization fluctuations in the natural environment. These characteristics will be required for optical coherent communication for utilities in future and for application to sensing of lightning with OPGW.