Science.gov

Sample records for ground-based microgravity analog

  1. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  2. Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog

    NASA Technical Reports Server (NTRS)

    Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.

    2002-01-01

    Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.

  3. Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions.1 We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA's VESsel GENeration Analysis (VESGEN) software2 before and after head-down tilt (HDT), a ground-based microgravity analog For our preliminary study of masked images, two groups of venous trees with and without small veins (G=7) were clearly identified by VESGEN analysis. Upon completing all images and unmasking the subject status of pre- and post- HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged HDT and microgravity. Greater peripapillary retinal thickening was measured following 70-day HDT bed rest than 14-day HDT bed rest, suggesting that time of HDT may increase the amount of optic disc swelling.3 Spectralis OCT detected retinal nerve fiber layer thickening post HDT, without clinical signs of optic disc edema. Such changes may have resulted from HDT-induced cephalad fluid shifts. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

  4. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. PMID:16010759

  5. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  6. Ground based research in microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Tom

    1994-01-01

    The core activities performed during this time period have been concerned with tracking the TEMPEST experiments on the shuttle with drops of Zr, Ni, and Nb alloys. In particular a lot of Zr drops are being made to better define the recalescence characteristics of that system so that accurate comparisons of the drop tube results with Tempest can be made. A new liner, with minimal reflectivity characteristics, has been inserted into the drop tube in order to improve the recalescence measurements of the falling drops. The first installation to make the geometric measurements to ensure a proper fit has been made. The stovepipe sections are currently in the shop at MSFC being painted with low reflectivity black paint. Work has also continued on setting up the MEL apparatus obtained from Oak Ridge in the down stairs laboratory at the Drop Tube Facilities. Some ground-based experiments on the same metals as are being processed on TEMPEST are planned for the MEL. The flight schedules for the KC-135 experiments are still to be determined in the near future.

  7. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. PMID:25712570

  8. Ground based preparation for microgravity growth of alloy semiconductors

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Crouch, R. K.; Simchick, R. T.; Sorokach, S. K.; Rosch, W.; Knuteson, D. J.; Barber, P. G.

    1991-01-01

    Ground-based research conducted in order to prepare a microgravity space flight experiment is presented. The thermophysical properties of a PbSnTe alloy used for semiconductors are investigated, and furnace calibration and fluid-flow measurements are performed. The alloy has a zero energy crossing at approximately 40 percent SnTe in its band-gap vs composition diagram, which facilitates the design of long-wavelength IR detectors and lasers. The uniformity of devices made from this material depends on the ratio of PbTe and SnTe and requires the composition of the crystal growth to be closely controlled. The main obstacle to such control is the fact that liquid of this material is always solutally or thermally unstable, and, in a high-temperature gradient, the double convective instability cannot be made stable by balancing thermal and solutal expansion. In order to extend the science of crystal growth, the limits of suppression of convection have to be tested in low earth orbit.

  9. Ground Based Microgravity Emissions Testing Of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Samorezov, Sergey; McNelis, Anne M.

    2004-01-01

    To control microgravity environment on the International Space Station (ISS), NASA developed payloads have to meet the payload integration requirements of the Space Station Program, specifically a microgravity allocation plan. The Microgravity Emissions Laboratory (MEL) was developed at NASA Glenn Research Center (GRC) for verification of the payloads compliance with payload integration requirements. MEL is a 6 degree of freedom inertial measurement system capable of characterizing the microgravity emissions, generated by a disturber, down to a micro g. Microgravity Emissions tests provide a payload developer with a tool to assess payload's compliance with the requirements, i.e. forces and moments, generated by the payload at its center of gravity. Forces and moments are presented in time domain for both stationary and transient signals, and in frequency domain for the stationary signals. To date, MEL conducted over thirty tests of ISS hardware. The test results are being successfully used by the payload developers for design verification and improvement.

  10. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    Since the beginning of human spaceflight, the value of understanding mechanisms of physiological adaptation to microgravity became apparent to life scientists who were interested in maintining crew health and developing countermeasures agains adverse effects of the mission. However, several characteristics associated the the logistics of spaceflight presented significant limitations to the scientific study of human adaptation to microgravity. Because space missions are so infrequent and involve minimal numbers of crewmembers, meaninful statistical analysis of data are limited. Reproducibility of results from spaceflight experiments is difficult to assess since there are few repeated space missions involving the same crewmembers. Since the emphasis of space missions is placed on operations, experiments are compromised without adequate control over various factors (e.g., time, diet, physical activities, etc.) that can impact measured responses. With the mimimal opportunity to collect spaceflight data, there is a high risk of experiments that simultaneously interfere with other experiments by the increasing demand on the crewmembers to participate in mumerous experiments proposed by multiple investigators. The technology and ability to measure physiological functions necessary to test specific hypotheses can be severely limited by physical space and power constraints of the space enviroment. Finally, technical and logistical aspects of space missions such as launch delays, extended missions, and inflight operational emergencies can significantly compromise the timing and control of experiments. These limitations have stimulated scientists to develop ground-based analogs of microgravity in an effort to investigate the effects of spaceflight on physiological function in a controlled experimental setting. The purpose of this paper is to provide a selected comparison of data collected from ground-based experiments with those obtained from spaceflight in an effort to

  11. Postural Responses Following Space Flight and Ground Based Analogs

    NASA Technical Reports Server (NTRS)

    Kofman, Igor S.; Reschke, Millard F.; Cerisano, Jody M.; Fisher, Elizabeth A.; Tomilovskaya, Elena V.; Kozlovskaya, Inessa B.; Bloomberg, Jacob B.

    2013-01-01

    With the transition from the Shuttle program to the International Space Station (ISS), the opportunity to fly sensorimotor experiments in a weightless environment has become increasingly more difficult to obtain. As a result, more investigations have turned to ground-based analogs as a way of evaluating an experiment's viability. The two primary analogs available to most investigators are 6deg head down bed rest (HDBR) and dry immersion (DI). For the time being, HDBR investigations have been associated with studies conducted in the United States while the Russians and several other European Union states have concentrated their efforts on using DI as the space flight analog of choice. While either model may be viable for cardiovascular, bone and other system changes, vestibular and sensorimotor investigators have retained serious reservations of either analog's potential to serve as a replacement for a true weightless environment. These reservations have merit, but it is worthwhile to consider that not all changes associated with sensorimotor function during space flight are the result of top-down modifications, but may also be due to the lack, or change, of appropriate support surfaces applying force to the bottom of the feet. To this end we have compared quiet stance postural responses between short duration Space Shuttle flights, long duration ISS flights and HDBR of varying duration. Using these three platforms, representing different modifications of support we investigated postural ataxia using a quiet stance model. Quiet stance was obtained by asking the subjects to stand upright on a force plate, eyes open, arms at the side of the body for three min. From the force plate we obtained average sway velocity in two axes as well as length of line (stabilogram). These parameters were then related to EMG activity recorded from the medial gastrocnemius and lateral tibialis. It is significant to note that postural ataxia measured as quiet stance shows analogous

  12. Analogs of microgravity: head-down tilt and water immersion.

    PubMed

    Watenpaugh, Donald E

    2016-04-15

    This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. PMID:26869710

  13. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    NASA Technical Reports Server (NTRS)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  14. Microgravity Investigation of Crew Reactions in 0-G (MICR0-G): Ground-Based Development Effort

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    2002-01-01

    This report describes the technology development of an advanced load sensor ground-based prototype and details the preliminary tests in microgravity during parabolic flights. The research effort is entitled, the Microgravity Investigation and Crew Reactions in 0-G (MICR0-G), a ground-based research effort funded by the National Aeronautics and Space Administration (NASA). The MICR0-G project was a follow-on to the Enhanced Dynamic Load Sensors (EDLS) spaceflight experiment flown on the Russian Space Station Mir. The technology development of the advanced load sensor prototype has been carried out by the Massachusetts Institute of Technology (MIT), with collaboration from Politecnico di Milano University and the Italian Space Agency (ASI). The key hardware of the advanced sensor prototype is a set of two types of load sensors - a hand-hold and foot restraints - similar in appearance to the mobility aids found in the Space Shuttle orbiter to assist the crew in moving inside the spacecraft, but able to measure the applied forces and moments about the x-, y-, and z- axes. The aim of Chapter 1 is to give a brief overview of the report contents. The first section summarizes the previous research efforts on astronaut-induced loads in microgravity. The second section provides information on the MICR0-G research project and the technology development work conducted at MIT. Section 1.3 details the motivation for designing a new generation of load sensors and describes the main enhancements and contributions of the MICR0-G advanced load sensors system compared to the EDLS system. Finally, the last section presents the outline of the report.

  15. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology

    PubMed Central

    Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C.M.; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J.A.; Lebert, Michael; Medina, F. Javier; Vagt, Nicole; Ullrich, Oliver

    2013-01-01

    Abstract Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature. Key Words: 2-D clinostat—3-D clinostat—Gravity—Magnetic levitation—Random positioning machine—Simulated microgravity—Space biology. Astrobiology 13, 1–17. PMID:23252378

  16. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    NASA Astrophysics Data System (ADS)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  17. Ground-based research of LiIO3 and NaClO3 crystal growth under microgravity environment

    NASA Astrophysics Data System (ADS)

    Song, Youting

    Ground-based research of LiIO3 and NaClO3 crystal growth under microgravity environment Youting Song*, Wanchun Chen, Xiaolong Chen Institute of Physics and Beijing National Lab-oratory for Condensed Matter Physics, Beijing, 100080 P. R. China ytsong@aphy.iphy.ac.cn The progress in ground-based research of LiIO3 and NaClO3 crystal growth under micro-gravity environment was reported. (a) A new apparatus used for growth of large size of LiIO3 crystals by the evaporation method has been developed, in which the hydrophobic poly-terafluorothytene micro-filtration (PEFT) film was used to resist the leakage of LiIO3 solution and control the growth rate of LiIO3 crystals along with CaCl2 adsorbent. The pore diameters of PEFT film should be between 0.1-1.0m, and the optimal weight of the adsorbent should be as three times as that of the solvent H2O evaporated. During crystal growth, the solution is re-plenished by a creeping pump to avoid separating the growing crystal from the solution. Using this technique we have obtained good quality LiIO3 crystals in the ground-based experiments. (b) The nucleating experiment of NaClO3 seed-induction was carried out in a ground-based en-vironment, and experimental results showed that seed-induction of NaClO3 played certainly a role of increasing crystal chiral enantiomer excess (cee), which will become the basis of contrast experiment under microgravity environment.

  18. Long-duration bed rest as an analog to microgravity.

    PubMed

    Hargens, Alan R; Vico, Laurence

    2016-04-15

    Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards. PMID:26893033

  19. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground Based Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    In January 1992, the IML-1 FES experiment produced a set of classic experimental data and a 40 hour holographic "movie" of an ensemble of spheres in a fluid in microgravity. Because the data are in the form of holograms, we can study the three-dimensional distribution of particles with unprecedented detail by a variety of methods and for a wide variety of interests. The possession of the holographic movie is tantamount to having a complex experiment in space while working in an easily accessible laboratory on earth. The movie contains a vast amount of useful data, including residual g, g-jitter, convection and transport data, and particle fluid interaction data. The information content in the movie is so great that we have scarcely begun to tap into the data that is actually available in the more than 1000 holograms, each containing as much as 1000 megabytes of information. This ground-based project is exploiting this data and the concept of holographic storage of spaceflight data to provide an understanding of the effects of microgravity in materials processing. This paper provides the foundation, objectives, and status of the ground based project. The primary objective of this project is to advance the understanding of microgravity effects on crystal growth, convection in materials processing in the space environment, and complex transport phenomena at low Reynolds numbers. This objective is being achieved both experimentally and theoretically. Experiments are making use of existing holographic data recorded during the IML- I spaceflight. A parallel theoretical effort is providing the models for understanding the particle fields and their physics in the microgravity environment.

  20. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  1. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  2. Fluid-structural dynamics of ground-based and microgravity caloric tests

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  3. Adaptation of Motility Analysis Apparatus for Space Science and Microgravity Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Johnson, Jacqueline U.

    1996-01-01

    Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.

  4. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  5. Condensation of cosmic analog material in microgravity conditions - Preliminary analysis of a first set of flights

    NASA Technical Reports Server (NTRS)

    Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.

    1992-01-01

    The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.

  6. Quantitative Computer Tomography for Determining Composition of Microgravity and Ground Based Solid Solutions

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Engel, H. P.

    1999-01-01

    Advances in x-ray Computer Tomography (CT) have been led by the medical profession, and by evaluation of industrial products, particularly castings. Porosity can readily be determined as a function of the density of a material, and CT is thus an industrially important NDE tool. Providing high purity, 100% dense standards of pure elements and compounds can be fabricated, the composition of solid solution alloys can be determined by measuring the CT number, which is a function of the absorption of the sample. Average densities across slices 1 mm thick can generally be determined to better than 1 percent. With present technology this spatial sensitivity is less than ideal, but important benefits can nevertheless be obtained by using CT, particularly single crystals, prior to making any destructive assault upon the sample. The sample can in fact be examined prior to removal from the mold within which it has been grown and, in the cases of microgravity flight samples, before removal from the cartridge assembly. This greatly assists the researcher in the characterization of the products, particularly as a guide to cutting and sampling. Examples of work with germanium-silicon alloys and mercury cadmium telluride taken with a radioactive cobalt source will be demonstrated.

  7. Laminar Dust Flames: A Program of Microgravity and Ground Based Studies at McGill

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Lee, John

    1999-01-01

    Fundamental knowledge of heterogeneous combustion mechanisms is required to improve utilization of solid fuels (e.g. coal), safe handling of combustible dusts in industry, and solid propulsion systems. The objective of the McGill University research program on dust combustion is to obtain a reliable set of data on basic combustion parameters for dust suspensions (i.e. laminar burning velocity, flame structure, quenching distance, flammability limits, etc.) over a range of particle sizes, dust concentrations, and types of fuel. This set of data then permits theoretical models to be validated and, when necessary, new models to be developed to describe the detailed reaction mechanisms and transport processes. Microgravity is essential to the generation of a uniform dust suspension of arbitrary particle size and concentration. When particles with a characteristic size on the order of tens of microns are suspended, they rapidly settle in a gravitational field. To maintain a particulate in suspension for time duration adequate to carry out combustion experiments invariably requires continuous convective flow in excess of the gravitational settling velocity (which is comparable with and can even exceed the dust laminar burning velocity). This makes the experiments turbulent in nature and thus renders it impossible to study laminar dust flames. Even for small particle sizes on the order of microns, a stable laminar dust flow can be maintained only for relatively low dust concentrations at normal gravity conditions. High dust loading leads to gravitational instability of the dust cloud and to the formation of recirculation cells in the dust suspension in a confined volume, or to the rapid sedimentation of the dense dust cloud, as a whole, in an unconfined volume. Many important solid fuels such as carbon and boron also have low laminar flame speeds (of the order of several centimeters per second). Convection that occurs in combustion products due to buoyancy disrupts the

  8. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  9. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; He, Xiao-Min; Carter, Daniel C.

    1992-01-01

    Crystals of human serum albumin have been successfully grown in a variety of gels using crystallization conditions otherwise equivalent to those utilized in the popular hanging-drop vapor-equilibrium method. Preliminary comparisons of gel grown crystals with crystals grown by the vapor diffusion method via both ground-based and microgravity methods indicate that crystals superior in size and quality may be grown by limiting solutal convection. Preliminary X-ray diffraction statistics are presented.

  10. Loss of Signal Transduction and Inhibition of Lymphocyte Locomotion in a Ground-Based Model of Microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.

    1999-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as true gravity (TG) and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled Type I collagen (Pellis et al., 1994, 1997). We used the rotating-wall vessel bioreactor (RWV) as a prototype for modeled microgravity. After observing that lymphocyte locomotion was severely affected in modeled microgravity, we found that polyclonal activation of lymphocytes before exposure to modeled microgravity reversed the locomotion inhibition. Phorbol myristate acetate (PMA) treatment of normal peripheral blood lymphocytes, after exposure to modeled microgravity, restored lymphocyte locomotion by 84%. Calcium ionophore had no effect on modeled microgravity-exposed lymphocytes. Therefore, the signal pathways involving calcium may not be affected by modeled microgravity. However, direct activation of Protein Kinase C (PKC) with PMA was effective in restoring locomotion in modeled microgravity almost comparable to normal levels in lymphocytes cultured in static T flasks. Thus, events either at the level of PKC or upstream are affected by modeled microgravity. Treatment of lymphocytes with mitomycin C prior to exposure to modeled microgravity, followed by PMA, restored locomotion to the same extent as nonmitomycin C-treated lymphocytes exposed to modeled microgravity (80-85%). Therefore 1) new DNA synthesis is not necessary to restore locomotion and 2) traditional activation and locomotion share common pathways up to PKC. Thereafter the signals diverge. Furthermore PMA added immediately before or after initiation of modeled microgravity prevents the loss of lymphocyte locomotion.

  11. Pharmacokinetics of Intranasal Scopolamine Gel Formation During Antiorthostatic Bedrest - A Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Lakshmi, Putcha; Singh, R. P.; Crady, V. A.; Derendorf, H.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is the most frequently used drug for the treatment of motion sickness (MS) which is currently available in transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability thus allowing precise and reduced dosing options in addition to offering rescue and treatment options. As such, an intranasal gel dosage formulation of scopolamine (INSCOP) was developed and Pharmacokinetics (PK) and bioavailability were determined under IND guidelines. The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostatic bedrest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 and 0.4 mg doses of INSCOP during AMB and ABR in a four-way crossover design. Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose. Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration versus time curve (AUC) during ABR after the 0.4 mg dose. This difference in AUC and Cls at the higher but not the lower dose during ABR may suggest that ABR may affect metabolism and/or clearance at higher doses of INSCOP. These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  12. T cell regulation in microgravity - The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities

    NASA Astrophysics Data System (ADS)

    Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver

    2014-11-01

    Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.

  13. Pharmacokinetics of Intranasal Scopolamine Gel Formulation During Antiorthostatic Bed Rest, a Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra P.; Daniels, Vernie R.; Crady, Camille J.; Derendorf, H.; Putcha, L.

    2011-01-01

    Statement of Purpose, Innovation or Hypothesis: Space Motion sickness (SMS) is a long-standing problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is frequently used for the treatment of motion sickness (MS), and is available as transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability, thus allowing precise and reduced dosing in addition to offering rescue and treatment options. An intranasal gel dosage formulation of scopolamine (INSCOP) was developed and pharmacokinetics (PK) and bioavailability were determined in clinical trials with human subjects under IND guidelines.Description of Methods and Materials: The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostaticbed rest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 mg and 0.4 mg doses of INSCOP during AMB and ABR in a 4-way crossover design.Data and Results: Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose, Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration-versus-time curve (AUC) during ABR after the 0.4 mg dose.Interpretation, Conclusion or Significance: The difference in AUC and Cls at the higher (0.4 mg) but not the lower dose (0.2 mg) during ABR suggests that ABR may affect metabolism and/or clearance of INSCOP at higher doses . These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  14. Yin-yang of space travel: lessons from the ground-based models of microgravity and their applications to disease and health for life on Earth

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Yamauchi, K.; Hales, N.; Sundaresan, A.; Pellis, N.; Yamamoto, S.; Andrassy, R.

    Space flight environment has numerous clinical effects on human physiology; however, the advances made in physical and biological sciences have benefited humans on Earth. Space flight induces adverse effects on bone, muscle, cardiovascular, neurovestibular, gastrointestinal, and immune function. Similar pathophysiologic changes are also observed in aging with debilitating consequences. Anti-orthostatic tail-suspension (AOS) of rodents is an in vivo model to study many of these effects induced by the microgravity environment of space travel. Over the years AOS has been used by several researchers to study bone demineralization, muscle atrophy, neurovestibular and stress related effects. ecently we employed the AOS model in parallel with in vitro cell culture microgravity analog (Bioreactor) to document the decrease in immune function and its reversal by a nutritional countermeasure. We have modified the rodent model to study nutrient effects and benefits in a short period of time, usually within one to two weeks, in contrast to conventional aging research models which take several weeks to months to get the same results. This model has a potential for further development to study the role of nutrition in other pathophysiologies in an expedited manner. Using this model it is possible to evaluate the response of space travelers of various ages to microgravity stressors for long-term space travel. Hence this modified model will have significant impact on time and financial research budget. For the first time our group has documented a true potential immunonutritional countermeasure for the space flight induced effects on immune system (Clinical Nutrition 2002). Based on our nutritional and immunological studies we propose application of these microgravity analogs and its benefits and utility for nutritional effects on other physiologic parameters especially in aging. (Supported by NASA NCC8-168 grant, ADK)

  15. Progress toward studies of bubble-geometry Bose-Einstein condensates in microgravity with a ground-based prototype of NASA CAL

    NASA Astrophysics Data System (ADS)

    Lundblad, Nathan; Jarvis, Thomas; Paseltiner, Daniel; Lannert, Courtney

    2016-05-01

    We have proposed using NASA's Cold Atom Laboratory (CAL, launching to the International Space Station in 2017) to generate bubble-geometry Bose-Einstein condensates through radiofrequency dressing of an atom-chip magnetic trap. This geometry has not been truly realized terrestrially due to the perturbing influence of gravity, making it an ideal candidate for microgravity investigation aboard CAL. We report progress in the construction of a functional prototype of the orbital BEC apparatus: a compact atom-chip machine loaded by a 2D+MOT source, conventional 3D MOT, quadrupole trap, and transfer coil. We also present preliminary modeling of the dressed trap uniformity, which will crucially inform the geometric closure of the BEC shell surface as atom number, bubble radius, and bubble aspect ratio are varied. Finally, we discuss plans for experimental sequences to be run aboard CAL guided by intuition from ground-based prototype operation. JPL 1502172.

  16. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground-Based Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Rangel, Roger; Witherow, William; Rogers, Jan

    2001-01-01

    The IML-1 Spaceflight produced over 1000 holograms of a well-defined particle field in the low g Spacelab environment; each containing as much as 1000 megabytes of information. This project took advantage of these data and the concept of holographic "virtual" spaceflight to advance the understanding of convection in the space shuttle environment, g-jitter effects on crystal growth, and complex transport phenomena in low Reynolds number flows. The first objective of the proposed work was to advance the understanding of microgravity effects on crystal growth. This objective was achieved through the use of existing holographic data recorded during the IML-1 Spaceflight. The second objective was to design a spaceflight experiment that exploits the "virtual space chamber concept" in which holograms of space chambers can provide a virtual access to space. This led to a flight definition project, which is now underway under a separate contract known as SHIVA, Spaceflight Holography Investigation in a Virtual Apparatus.

  17. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  18. Ground Based Experiments in Support of Microgravity Research Results-Vapor Growth of Organic Nonlinear Optical Thin Film

    NASA Technical Reports Server (NTRS)

    Zugrav, M. Ittu; Carswell, William E.; Haulenbeek, Glen B.; Wessling, Francis C.

    2001-01-01

    This work is specifically focused on explaining previous results obtained for the crystal growth of an organic material in a reduced gravity environment. On STS-59, in April 1994, two experiments were conducted with N,N-dimethyl-p-(2,2-dicyanovinyl) aniline (DCVA), a promising nonlinear optical (NLO) material. The space experiments were set to reproduce laboratory experiments that yielded small, bulk crystals of DCVA. The results of the flight experiment, however, were surprising. Rather than producing a bulk single crystal, the result was the production of two high quality, single crystalline thin films. This result was even more intriguing when it is considered that thin films are more desirable for NLO applications than are bulk single crystals. Repeated attempts on the ground to reproduce these results were fruitless. A second set of flight experiments was conducted on STS-69 in September 1995. This time eight DCVA experiments were flown, with each of seven experiments containing a slight change from the first reference experiment. The reference experiment was programmed with growth conditions identical to those of the STS-59 mission. The slight variations in each of the other seven were an attempt to understand what particular parameter was responsible for the preference of thin film growth over bulk crystal growth in microgravity. Once again the results were surprising. In all eight cases thin films were grown again, albeit with varying quality. So now we were faced with a phenomenon that not only takes place in microgravity, but also is very robust, resisting all attempts to force the growth of bulk single crystals.

  19. Cosmic dust analog simulation in a microgravity environment: The STARDUST program

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dell'aversana, P.; Mele, F.; Mennella, V.

    1995-01-01

    We have undertaken a project called STARDUST which is a collaboration with Italian and American investigators. The goals of this program are to study the condensation and coagulation of refractory materials from the vapor and to study the properties of the resulting grains as analogs to cosmic dust particles. To reduce thermal convective currents and to develop valuable experience in designing an experiment for the Gas-Grain Simulation Facility aboard Space Station, Freedom we have built and flown a new chamber to study these processes under periods of microgravity available on NASA's KC-135 Research Aircraft. Preliminary results from flights with magnesium and zinc are discussed.

  20. Microgravity.

    PubMed

    Prisk, G Kim

    2011-01-01

    Gravity profoundly affects the overall mechanics of the respiratory system. Functional residual capacity, when measured in sustained microgravity, is intermediate to that present in the standing and supine postures in 1G, consistent with early modeling studies. This change occurs almost exclusively through changes in the abdominal compliance and thus in the volume of the abdominal compartment, with the rib cage being relatively unaffected by gravity. Microgravity leaves vital capacity unaltered once the initial translocation of blood into the thorax is corrected by homeostatic mechanisms, but residual volume is reduced, likely through a more uniform distribution of alveolar size permitting deflation to a lower overall lung volume. Expiratory flows are unaffected by microgravity provided they are measured following normalization of the intrathoracic blood volume. During sleep in microgravity, there is an almost complete abolition of obstructive sleep apnea events. PMID:23737183

  1. Development of a Ground-Based Analog to the Advanced Resistive Exercise Device Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Newby, Nathaniel J.; Scott-Pandorf, M. M.; Caldwell, E.; DeWitt, J.K.; Fincke, R.; Peters, B.T.

    2010-01-01

    NASA and Wyle engineers constructed a Horizontal Exercise Fixture (HEF) that was patented in 2006. Recently modifications were made to HEF with the goal of creating a device that mimics squat exercise on the Advanced Resistive Exercise Device (ARED) and can be used by bed rest subjects who must remain supine during exercise. This project posed several engineering challenges, such as how best to reproduce the hip motions (we used a sled that allowed hip motion in the sagittal plane), how to counterweight the pelvis against gravity (we used a pulley and free-weight mechanism), and how to apply large loads (body weight plus squat load) to the shoulders while simultaneously supporting the back against gravity (we tested a standard and a safety bar that allowed movement in the subject s z-axis, both of which used a retractable plate for back support). METHODS An evaluation of the HEF was conducted with human subjects (3F, 3M), who performed sets of squat exercises of increasing load from 10-repetition maximum (RM) up to 1-RM. Three pelvic counterweight loads were tested along with each of the two back-support squat bars. Data collection included 3-dimensional ground reaction forces (GRF), muscle activation (EMG), body motion (video-based motion capture), and subjective comments. These data were compared with previous ground-based ARED study data. RESULTS All subjects in the evaluation were able to perform low- to high-loading squats on the HEF. Four of the 6 subjects preferred a pelvic counterweight equivalent to 60 percent of their body weight. Four subjects preferred the standard squat bar, whereas 2 female subjects preferred the safety bar. EMG data showed muscle activation in the legs and low back typical of squat motion. GRF trajectories and eccentric-concentric loading ratios were similar to ARED. CONCLUSION: Squat exercise performed on HEF approximated squat exercise on ARED.

  2. Ground-based experiments complement microgravity flight opportunities in the investigation of the effects of space flight on the immune response: is protein kinase C gravity sensitive?

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.

  3. Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras

    NASA Astrophysics Data System (ADS)

    Snyder, Casey J.; Khan, Shuhab D.; Bhattacharya, Janok P.; Glennie, Craig; Seepersad, Darsel

    2016-08-01

    Ground-based terrestrial laser scanning and hyperspectral sensors were used to image fine-scale heterogeneity in outcrops of prodeltaic heterolithic facies of Parasequence 6 of the Cretaceous Ferron Notom delta in Southern Utah. Previous work shows that Parasequence 6 is an upward coarsening fluvial-dominated, wave-influenced deltaic deposit containing heterolithic thin-bedded facies representing distal delta front and proximal prodelta environments. Primarily, the thin beds have been interpreted as turbidites, storm beds (tempestites), and hyperpycnites. These deposits represent analogs for thin-bedded unconventional pay zones that lie at the margins of conventional deltaic sandstone reservoirs. The terrestrial laser scanner was used to create a centimeter- to decimeter-scale, digital representation of the outcrops in three dimensions. Hyperspectral sensors record electromagnetic radiation reflected off the outcrops in 840 contiguous bands, which were then used to generate a spectral signature for each pixel sampled. The spectral signatures are a function of mineralogy, chemistry, surface alteration, grain-size, and cements, and were used to distinguish thin mudstones from sandstones within an interbedded succession at the base of a deltaic parasequence. Comparison between the spectral signatures recorded from the outcrop and those of reference materials, and with previous facies architecture studies, enables lithofacies to be identified and subsequently accurately mapped. Hyperspectral data are then draped over the terrestrial laser scanner model to generate a spatially-accurate detailed three-dimensional (3D) geologic map of the heterogeneity. Approximately 100 m of outcrop was imaged laterally with the hyperspectral camera and terrestrial laser scanner on the previously mapped distal delta front and prodeltaic facies of Parasequence 6. Bed thickness data, based on measurements made along depositional dip versus strike, show that bed geometries are anisotropic

  4. Electrodeposition in microgravity: Ground-based experiments

    NASA Technical Reports Server (NTRS)

    Riley, C.; Coble, H. D.

    1982-01-01

    Electrodeposition was studied at one-hundreth g and compared with bench studies at 1 g. The low gravity was achieved during KC-135 aircraft parobolic flights. Flow in a simple cobalt cell (1 M CoSO4) operating under typical commercial conditions (10 to 20 mA/sq cm and 1 V) was monitored with a Schlieren optical system. Natural convection was absent at one-hundreth g. Quantitative comparisons on a cobalt cell with shielded electrodes using interferometry were carried out. Fringe shift differences indicate greater semi-infinite linear diffusion at 1 g than at one-hundreth g for cobalt. Since a shielded electrode operates under diffusion controlled conditions, no differences between 1 g and one-hundreth g would be expected. Similar comparisons on a shielded electrode copper cell were inconclusive. Bench codeposition experiments using polystyrene neutral buoyancy particles coupled with a shielded electrode cobalt cell were begun. Tracking of 12 micron particles showed no measurable difference between thermal/Brownian motion when the cell was operational or nonoperational. Initial experiments on codeposition quality showed a strong dependence upon cathode surface preparation in a shielded electrode configuration.

  5. Characteristics of human dendritic cells generated in a microgravity analog culture system

    NASA Technical Reports Server (NTRS)

    Savary, C. A.; Grazziuti, M. L.; Przepiorka, D.; Tomasovic, S. P.; McIntyre, B. W.; Woodside, D. G.; Pellis, N. R.; Pierson, D. L.; Rex, J. H.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Generation of an effective immune response requires that antigens be processed and presented to T lymphocytes by antigen-presenting cells, the most efficient of which are dendritic cells (DC). Because of their influence on both the innate and the acquired arms of immunity, a defect in DC would be expected to result in a broad impairment of immune function, not unlike that observed in astronauts during or after space flight. In the study reported here, we investigated whether DC generation and function are altered in a culture environment that models microgravity, i.e., the rotary-cell culture system (RCCS). We observed that RCCS supported the generation of DC identified by morphology, phenotype (HLA-DR+ and lacking lineage-associated markers), and function (high allostimulatory activity). However, the yield of DC from RCCS was significantly lower than that from static cultures. RCCS-generated DC were less able to phagocytose Aspergillus fumigatus conidia and expressed a lower density of surface HLA-DR. The proportion of DC expressing CD80 was also significantly reduced in RCCS compared to static cultures. When exposed to fungal antigens, RCCS-generated DC produced lower levels of interleukin-12 and failed to upregulate some costimulatory/adhesion molecules involved in antigen presentation. These data suggest that DC generation, and some functions needed to mount an effective immune response to pathogens, may be disturbed in the microgravity environment of space.

  6. Signaling in Human and Murine Lymphocytes in Microgravity: Parallels and Contrasts

    NASA Technical Reports Server (NTRS)

    Neal, Pellis; Alamelu, Sundaresan; Kulkarni, A. D.; Yamauchi, K.

    2006-01-01

    Immune function in space undergoes dramatic changes, some of which are detrimental to lymphocyte function. These changes may lead to significant immune suppression. Studies with human lymphocytes both in space flight and with ground-based models (NASA in vitro ground-based microgravity analog) indicate that T cell activation is inhibited in microgravity. Other lymphocyte functions, such as locomotion, are also inhibited. There is about an 80 percent homology in the immune response of mice to that of humans. A murine model was investigated because of its ability to parallel some microgravity using hind limb suspension. In in vivo antiorthostatically (AOS)-suspended mice, T cell activation is greatly suppressed, with the majority of activation related cytokines being inhibited. PHA activation in lymphocytes derived from AOS mice (in vivo ground-based microgravity analog) is also suppressed. Calcium ionophore studies in human lymphocytes exposed to modeled microgravity indicate that the calcium pathways are probably unaffected in microgravity. IP3 (inositol triphosphate) receptor expression in both human and mouse lymphocytes cultured in modeled microgravity indicate no suppression of calcium signaling. In the human system, microgravity seems to inhibit signaling cascades either at the level of, or up-stream of, Protein Kinase C (PKC). In particular, a membrane event, such as phospholipase C gamma 1 activity in human lymphocytes is affected, with its direct upstream effector, LAT, being deficiently expressed. In the mouse pathway, LAT is undiminished while another critical intermediate, SLP-76, is diminished significantly. This study identifies critical stages in the human and mouse immune systems and in lymphocytes as a function of microgravity.

  7. Analogy between training for dancers and problems of adjustment to microgravity: an evaluation of the subjective vertical in dancers.

    PubMed

    Dubois, K

    1991-01-01

    "Moderne dance" (as opposed to a more academic or classical dance form) uses techniques from kinesiology, anatomy and improvization which are adapted to a cultural, technological and political environment. The function of a choreographic system is to take and give a measure of the world. This includes, with the present tendency of the evolution of culture, a new "naturalism" which seeks the secrets of the body. Dance movements express in terms of space the dimension fo the infinite. It gives somehow the measure of a world within which everything is relative. Except for the speed of light, time and space are bound together by the same principle. The qualities of body awareness and specific motricity in dancers imply--besides a strict discipline--balance, coordination, muscular performance and perfect orientation, problems that astronauts also encounter in microgravity. Could chosen exercises used in modern dance technique be applied to the training of astronauts? Dancer-choreographer Kitsou Dubois has been working in this direction since 1988. She was granted a "Villa Medicis Hors Les Murs" by the French Ministry of Foreign Affairs, to carry on with her research at NASA, Houston, Tex. in April 1989. It allowed her to investigate the reality of this analogy. She intends to evaluate the dancers' subjective vertical refering to Mittelstaedt's observations on the proportional relationship between "space sickness" and some astronauts poor evaluation of the subjective vertical. This study should create a relationship between a choreographer's empirical intuition and a scientific reality. PMID:11540741

  8. Analogy between training for dancers and problems of adjustment to microgravity: An evaluation of the subjective vertical in dancers

    NASA Astrophysics Data System (ADS)

    Dubois, Kitsou

    "Moderne dance" (as opposed to a more academic or classical dance form) uses techniques from kinesiology, anatomy and improvization which are adapted to a cultural, technological and political environment. The function of a choreographic system is to take and give a measure of the world. This includes, with the present tendency of the evolution of culture, a new "naturalism" which seeks the secrets of the body. Dance movements express in terms of space the dimension fo the infinite. It gives somehow the measure of a world within which everything is relative. Except for the speed of light, time and space are bound together by the same principle. The qualities of body awareness and specific motricity in dancers imply—besides a strict discipline—balance, coordination, muscular performance and perfect orientation, problems that astronauts also encounter in microgravity. Could chosen exercises used in modern dance technique be applied to the training of astronauts? Dancer-choreographer Kitsou Dubois has been working in this direction since 1988. She was granted a "Villa Medicis Hors Les Murs" by the French Ministry of Foreign Affairs, to carry on with her research at NASA, Houston, Tex. in April 1989. It allowed her to investigate the reality of this analogy. She intends to evaluate the dancers' subjective vertical refering to Mittelstaedt's observations on the proportional relationship between "space sickness" and some astronauts poor evaluation of the subjective vertical. This study should create a relationship between a choreographer's empirical intuition and a scientific reality.

  9. Lunar Analog

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  10. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  11. Ground based infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.

    1988-01-01

    Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer.

  12. THEMIS Ground-based Magnetometers

    NASA Astrophysics Data System (ADS)

    Pierce, D.; Means, J. D.; Dearborn, D.; Russell, C. T.; Strangeway, R. J.; Mende, S.; Craig, N.; Angelopoulos, V.

    2004-05-01

    This paper describes the design and development of a fluxgate suitable for full earth's field ground measurements and to be used for the ground-based segment of the THEMIS project.. The operation of the electronics is based on a 2nd order sigma-delta technique that yields a 24 bit/axis vector value with 4ppm measurement resolution at 2Hz without the use of analog to digital converters. This digital design produces superior noise performance over more conventional techniques while dramatically increasing the resolution of the magnetic field measurement. The magnetometer system is equipped with a DAC offsetting system which by program control can offset the Earth's field in any sensor orientation. Time and position data are maintained to an accuracy of 100usec and 40 meters with a dedicated Trimble Acutime2000 GPS receiver. The magnetometer may be powered from any un-regulated DC source capable of delivering 300ma. @ +10-24VDC. All data are output via USB or RS-232 interface to LabView host software which has been developed to support either Windows or Linux operating systems.Interrogation and control of the magnetometer is available via TCP protocol through a host internet connection.

  13. Microgravity science and applications program

    NASA Technical Reports Server (NTRS)

    Schmitz, Robert A.; Newcomb, John F.

    1991-01-01

    This paper provides an overview of NASA's microgravity science and applications program. It describes the program mission and goals and provides an overview of the process used to develop experimental concepts into actual flight experiments. The paper then overviews the present ground-based research and flight experiment portions of the microgravity science and applications program, examines recent results, and outlines flights planned for the near future.

  14. Electrophoresis. [in microgravity environment

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Ground-based techniques for electrophoresis take account of the need either to circumvent the effects of gravity to prevent convection, or to use gravity for fluid stabilization through artificial density gradients. The microgravity environments of orbiting spacecraft provides a new alternative for electrophoresis by avoiding the need for either of these two approaches. The paper presents some theoretical considerations concerning electrophoresis, examines certain experimental techniques (zone and high density gel electrophoresis, isoelectric focusing and isotachophoresis), and examines the electrophoresis of living cells.

  15. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  16. Comparison of Changes in Immunological Parameters in Human Lymphocytes in 2D Versus 3D Clinostats-Goal Towards Microgravity Analog Calibration for Future Space Experiments

    NASA Astrophysics Data System (ADS)

    Sundaresan, Alamelu; Russomano, Thais; Pellis, Neal R.

    2008-06-01

    Exposure to microgravity may produce changes in the performance of the immunological system at the cellular level as well as in the major physiological systems of the body. Studies in true spaceflight and similar studies in 2D clinostats (Rotating wall vessels) related to decreased immune function in astronaut blood and normal human lymphocytes indicate a decrease in cell proliferation, T cell activation, locomotion and altered lymphocyte signal transduction (Sundaresan and Pellis, 2008, Sundaresan et al., 2004). The present study was designed to investigate whether the proliferation and viability of lymphocytes are reduced by exposure to rotation in a 3D-Clinostat, which is used to simulate microgravity for cells.

  17. Second Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.

  18. Ground-based IRCM testing

    NASA Astrophysics Data System (ADS)

    Greer, Derek; Owen, Mark

    2010-04-01

    Recent advances in the ability to perform comprehensive ground based Infrared Countermeasure (IRCM) testing have the capability to fill the Test and Evaluation (T&E) gaps for existing and future weapons system acquisition. IRCM testing has historically been dominated and in a manner limited by expensive live fire testing requirements. While live fire testing is a vital part of IRCM T&E, next generation technological developments now enable closed-loop, ground-based IRCM testing to provide valuable complementary test data at a much lower cost. The high cost and limited assets that have prevented live fire and flight testing from providing a thorough hardware based data set required for previous T&E analysis is no longer an issue. In the past, traditional physics based digital system model (DSM) analysis has been utilized to augment the IRCM data sets to make them statistically significant. While DSM is a useful tool in the development of IRCM systems, the newly developed installed system testing utilizing a hardware-in-the-loop construct provides for an enhanced level of fidelity and assurance that the systems will meet the warfighter's needs. The goal of the newly developed test technologies is to develop a statistical significant data set utilizing hardware-in-the-loop at a significantly lower cost than historical methods.

  19. Low Temperature Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Strayer, D.

    1993-01-01

    The recent flight of the Lambda Point Experiment has demonstrated the potential for performing precise tests of fundamental theories using low temperature techniques in Earth orbit. NASA's Microgravity Science and Applications Division has established a program of successor expermients to investigate other aspects of condensed matter physics using the same low temperature flight facility. This paper describes the new investigations that have been chosen for flight experiments, and those selected for ground-based studies that could lead to flight experiments later.

  20. Simulated microgravity alters the expression of key genes involved in fracture healing

    NASA Astrophysics Data System (ADS)

    McCabe, N. Patrick; Androjna, Caroline; Hill, Esther; Globus, Ruth K.; Midura, Ronald J.

    2013-11-01

    Fracture healing in animal models has been shown to be altered in both ground based analogs of spaceflight and in those exposed to actual spaceflight. The molecular mechanisms behind altered fracture healing as a result of chronic exposure to microgravity remain to be elucidated. This study investigates temporal gene expression of multiple factors involved in secondary fracture healing, specifically those integral to the development of a soft tissue callus and the transition to that of hard tissue. Skeletally mature female rats were subjected to a 4 week period of simulated microgravity and then underwent a closed femoral fracture procedure. Thereafter, they were reintroduced to the microgravity and allowed to heal for a 1 or 2 week period. A synchronous group of weight bearing rats was used as a normal fracture healing control. Utilizing Real-Time quantitative PCR on mRNA from fracture callus tissue, we found significant reductions in the levels of transcripts associated with angiogenesis, chondrogenesis, and osteogenesis. These data suggest an altered fracture healing process in a simulated microgravity environment, and these alterations begin early in the healing process. These findings may provide mechanistic insight towards developing countermeasure protocols to mitigate these adaptations.

  1. Microgravity Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.

    1985-01-01

    A Microgravity Materials Science Laboratory (MMSL) has been planned, designed, and is being developed. This laboratory will support related efforts to define the requirements for the Microgravity and Materials Processing Laboratory (MMPF) and the MMPF Test Bed for the Space Station. The MMSL will serve as a check out and training facility for science mission specialists for STS, Spacelab and Space Station prior to the full operation of the MMPF Test Bed. The focus of the MMSL will be on experiments related to the understanding of metal/ceramic/glass solidification, high perfection crystal growth and fluid physics. This ground-based laboratory will be used by university/industry/government researchers to examine and become familiar with the potential of new microgravity materials science concepts and to conduct longer term studies aimed at fully developing a l-g understanding of materials and processing phenomena. Such research will help create new high quality concepts for space experiments and will provide the basis for modeling, theories, and hypotheses upon which key space experiments can be defined and developed.

  2. Response and adaptation of bone cells to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Li, Runzhi; Su, Peihong; Arfat, Yasir; Zhang, Ge; Shang, Peng; Qian, Airong

    2014-11-01

    Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut's health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.

  3. Immune Function Changes during a Spaceflight-Analog Undersea Mission

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence

    2008-01-01

    There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.

  4. New findings and instrumentation from the NASA Lewis microgravity facilities

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Greenberg, Paul S.

    1990-01-01

    The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.

  5. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  6. Flight Analogs (Bed Rest Research)

    NASA Video Gallery

    Flight Analogs / Bed Rest Research Projects provide NASA with a ground based research platform to complement space research. By mimicking the conditions of weightlessness in the human body here on ...

  7. Microgravity and Cellular Consequences in Lymphocyte Function

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Sundaresan, Alamelu

    2004-01-01

    Mammalian cells adapt to the environment of low gravity and express a series of responses, some possibly from direct effects on cells and others based on environmental conditions created by microgravity. Human lymphocytes in microgravity culture are functionally diminished in activation and locomotion. Both processes are integral to optimal immune response to fight pathogens. The NASA Rotating-wall vessel (RWV) is a well-accepted analog for microgravity culture on the ground. Gene array experiments and immunoblotting identified upstream events in human lymphocytes adapting to microgravity analog culture. Microgravity induces selective changes, many of which are cell membrane related. Results showed that upstream of PKC in the T cell activation cascade, PLC-gamma and LAT are significantly diminished. ZAP 70 which controls LAT activation is also down regulated in modeled microgravity. Thus events governing cell shape might warrant attention in microgravity conditions. The goal of this study is to delineate response suites that are consequential, direct or indirect effects of the microgravity environment and which of these are essential to lymphocytes

  8. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  9. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  10. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.

  11. Microgravity Effects on Transendothelial Transport

    NASA Technical Reports Server (NTRS)

    Tarbell, John M.

    1996-01-01

    The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.

  12. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  13. Ontogenesis of mammals in microgravity

    NASA Technical Reports Server (NTRS)

    Gazenko, O. G. (Editor)

    1993-01-01

    This report is an English translation of a Russian report prepared by a group of authors from the USSR, Bulgaria, Hungary, the GDR, Poland, Czechoslovakia, France, and the USA. It presents results of the first microgravity experiment on mammalian embryology performed during the flight of the biosatellite Cosmos-1514 and in ground-based simulation studies. An overview is provided of the data available about the role of gravity in animal growth and development, and future studies into this problem are discussed. A new introduction has been provided for the English version.

  14. RWPV bioreactor mass transport: earth-based and in microgravity

    NASA Technical Reports Server (NTRS)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  15. Cokriging with ground-based radiometry

    NASA Technical Reports Server (NTRS)

    Atkinson, P. M.; Webster, R.; Curran, P. J.

    1992-01-01

    The formulas for cokriging and a coherent coregionalization model are presented. The model is applied to design sampling strategies for surveys using a ground-based radiometer. Results indicate that cokriging based on measured radiation is nine times as efficient as kriging the cover alone. It is concluded that cokriging in conjunction with ground-based radiometry provides an economical and operational technique for using reflectance to estimate the earth surface properties.

  16. Microgravity Platforms

    NASA Technical Reports Server (NTRS)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  17. The Use of Microgravity To Emulate Three-Dimensional Tissue Interactions in Colorectal Cancer Metastasis

    NASA Technical Reports Server (NTRS)

    Jessup, J. Milburn

    1997-01-01

    The hypothesis of this ground-based project was that simulated microgravity may be used to recreate with high fidelity the in vivo environment in tissue culture. The objectives were to determine whether: (1) simulated microgravity induces differentiation within poorly differentiated human colon carcinoma cells that are similar to that observed in experimental metastases in vivo in nude mice; and (2) the use of simulated microgravity helps define the experimental metastatic potential of human colorectal carcinoma.

  18. Microgravity science and applications: Apparatus and facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.

  19. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  20. The VO and Ground-Based Data

    NASA Astrophysics Data System (ADS)

    Huchra, John

    The era of extremely large public databases in astronomy is upon us. such databases are opening the field to new research and new researchers. However it is important to be sure the resources are available to properly archive ground-based astronomical data and include the necessary quality checks and calibrations. A Virtual Observatory without proper archives will have limited usefulness. This also implies that with limited resources not all data can or should be archived. NASA already has a very good handle on US space-based astronomical data. Agencies and organizations that operate astronomical facilities particularly ground based observatories need to plan and budget for these activities now. We should not underestimate the effort required to produce high quality data products that will be useful for the broader community. Currently the best way to ""fill"" archives is with data ftom surveys. That will continue to be the case for most ground based observatories.

  1. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  2. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  3. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  4. The Microgravity Demonstrator.

    ERIC Educational Resources Information Center

    Rogers, Melissa J. B.; Wargo, Michael J.

    The Microgravity Demonstrator is a tool used to create microgravity conditions in the classroom. A series of demonstrations is used to provide a dramatically visual, physical connection between free-fall and microgravity conditions in order to understand why various types of experiments are performed under microgravity conditions. The manual is…

  5. The Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Primm, Lowell (Technical Monitor)

    2001-01-01

    The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.

  6. MSFC Skylab ground-based astronomy program

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.

    1974-01-01

    The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.

  7. New scientific equipment for protein crystallization in microgravity, BELKA, and its approbation on the Bion-M No. 1 spacecraft

    SciTech Connect

    Baskakova, S. S. Kovalyov, S. I.; Kramarenko, V. A.; Zadorozhnaya, L. A.; Lyasnikova, M. S.; Dymshits, Y. M.; Shishkov, V. A.; Egorov, A. V.; Dolgin, A. M.; Voloshin, A. E.; Kovalchuk, M. V.

    2015-01-15

    A space experiment on the crystallization of lisozyme and glucose isomerase proteins in UK-1 and UK-2 crystallizers on the scientific equipment BELKA on the Bion-M no. 1 spacecraft was performed in April–May 2013. A ground-based experiment was carried out simultaneously at the Institute of Crystallography of the Russian Academy of Sciences (IC RAS). Transparent crystals were obtained in both cases. The lisozyme crystals grown in microgravity are larger than their terrestrial analogs. An optical study of glucose isomerase crystals grown in space has shown that the coalescence of equally oriented crystallites leads to the formation of quasi-single-crystal blocks. An X-ray diffraction experiment on lisozyme crystals has revealed the resolutions for crystals obtained under terrestrial conditions and in space to be 1.74 and 1.58 Å, respectively.

  8. Hindlimb unloading: rodent analog for microgravity.

    PubMed

    Globus, Ruth K; Morey-Holton, Emily

    2016-05-15

    The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development. PMID:26869711

  9. Bacillus thuringiensis Conjugation in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  10. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  11. Microbial Cellulose Assembly in Microgravity

    NASA Technical Reports Server (NTRS)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  12. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  13. Performance evaluation of ground based radar systems

    NASA Astrophysics Data System (ADS)

    Grant, Stanley E.

    1994-06-01

    Ground based radar systems are a critical resource to the command, control, and communications system. This thesis provides the tools and methods to better understand the actual performance of an operational ground based radar system. This thesis defines two measurable performance standards: (1) the baseline performance, which is based on the sensor's internal characteristics, and (2) the theoretical performance, which considers not only the sensor's internal characteristics, but also the effects of the surrounding terrain and atmosphere on the sensor's performance. The baseline radar system performance, often used by operators, contractors, and radar modeling software to determine the expected system performance, is a simplistic and unrealistic means to predict actual radar system performance. The theoretical radar system performance is more complex; but, the results are much more indicative of the actual performance of an operational radar system. The AN/UPS-1 at the Naval Postgraduate School was used as the system under test to illustrate the baseline and theoretical radar system performance. The terrain effects are shown by performing a multipath study and producing coverage diagrams. The key variables used to construct the multipath study and coverage diagrams are discussed in detail. The atmospheric effects are illustrated by using the Integrated Refractive Effects Prediction System (IREPS) and the Engineer's Refractive Effects Prediction System (EREPS) software tools to produce propagations conditions summaries and coverage displays.

  14. Enzyme Kinetics in Microgravity

    NASA Astrophysics Data System (ADS)

    Liu, C. C.; Licata, V. J.

    2010-04-01

    The kinetics of some enzymes have been found to be enhanced by the microgravity environment. This is a relatively small effect, but is sufficient to have physiological effects and to impact pharmaceutical therapy in microgravity.

  15. NASA's Microgravity Materials Science Program

    NASA Astrophysics Data System (ADS)

    Gillies, Donald C.

    1997-07-01

    The Microgravity Research Division of NASA funds materials science research through biannual research programs known as NASA Research Announcements (NRA). Selection is via external peer review with proposals being categorized for ground based research or flight definition status. Topics of special interest to NASA are described in the NRAs and guidelines for successful proposals are outlined. The procedure for progressing from selection to a manifested flight experiment will involve further reviews of the science and also of the engineering needed to complete the experiment successfully. The topics of interest to NASA within the NRAs cover a comprehensive range of subjects, but with the common denominator that the proposed work must necessitate access to the microgravity environment for successful completion. Understanding of the fundamental nature of microstructure and its effects on properties is a major part of the program because it applies to almost all fields of materials science. Other important aspects of the program include non-linear optical materials, glasses and ceramics, metal and alloys and the need to develop materials science specifically to support NASA's Human Exploration and Development of Space (HEDS) enterprise. The transition to the International Space Station (ISS) represents the next stage of the Materials Science program.

  16. Microgravity Science Glovebox Investigations SUBSA

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Vogel, M.; Volz, M. P.; Luz, P.; Jeter, L.; Spivey, Reggie; Duffar, Thierry; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is a Microgravity Science Glovebox Investigation manifested for the UF2 flight, on the U.S. Orbiter 111, to the International Space Station (ISS). SUBSA complements the "parent" flight investigation CG13 (Space-and Groundbased Crystal Growth Using a Baffle). During directional solidification, the disk-shaped baffle acts as a partition, creating a small melt zone at the solid-liquid interface. As a result, the level of buoyancy-driven convection at the interface is significantly reduced. In space, the baffle will reduce convection driven by residual micro acceleration. The baffle reduces the Rayleigh number (Ra) of the melt by a factor of 103. The combined effect of the baffle and microgravity will yield a reduction in Ra by a factor of 107 to 109 approaching effectively the acceleration conditions in "nanogravity". The results of ground based tests and numerical modeling will be presented. The furnace for directional solidification (flight hardware and the ground unit) was developed by Tec-Masters Inc. The flight ampoules were produced jointly at Rensselaer, Tec-Masters Inc. and Crystallod Inc.

  17. The Microgravity Demonstrator

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Wargo, Michael J.

    1999-01-01

    The Demonstrator is a tool to create microgravity conditions in your classroom. A series of demonstrations is used to provide a dramatically visual, physical connection between free-fall and microgravity conditions and to understand why various types of experiments are performed under microgravity conditions. A wealth of back-round material on free-fall, microgravity, and micro-gravity sciences is available in two educational documents available through the NASA Teacher Resource Centers: Microgravity-Activity Guide for Science, Mathematics, and Technology Education, and The Mathematics of Microgravity. The remainder of this manual is divided into five sections. The first explains how to put the Microgravity Demonstrator together. The next section introduces the individual demonstrations and discusses the underlying physical science concepts. Following that are detailed steps for conducting each demonstration to make your use of the Demonstrator most effective. Next are some ideas on how to make your own Microgravity Demonstrator. The last section is a tips and troubleshooting guide for video connections and operations. If you have one of the NASA Microgravity Demonstrators, this entire manual should be useful. If you have a copy of the Microgravity Demonstrator Videotape and would like to use that as a teaching tool, the Demonstrations and Scientific Background section of this manual will give you insight into the science areas studied in microgravity.

  18. Novel Receptor-Based Countermeasures to Microgravity-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    OMalley, Bert W.

    1999-01-01

    The biological actions mediated by the estrogen receptor (ER), vitamin D receptor (VDR) and Ca(sup 2+) (sub o) -sensing receptor (CaR) play key roles in the normal control of bone growth and skeletal turnover that is necessary for skeletal health. These receptors act by controlling the differentiation and/or function of osteoblasts and osteoclasts, and other cell types within the bone and bone marrow microenvironment. The appropriate use of selective ER modulators (SERMS) which target bone, vitamin D analogs that favor bone formation relative to resorption, and CaR agonists may both stimulate osteoblastogenesis and inhibit osteoclastogenesis and the function of mature osteoclasts, should make it possible to prevent the reduction in bone formation and increase in bone resorption that normally contribute to the bone loss induced by weightlessness. Indeed, there may be synergistic interactions among these receptors that enhance the actions of any one used alone. Therefore, we proposed to: 1) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoblastogenesis and mature osteoblast function under conditions of 1g and simulated microgravity; 2) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoclastogenesis and bone resorption under conditions of lg and simulated microgravity; and 3) carry out baseline studies on the skeletal localization of the CaR in normal rat bone as well as the in vivo actions of our novel ER- and VDR-based therapeutics in the rat in preparation for their use, alone or in combination, in well-established ground-based models of microgravity and eventually in space flight.

  19. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  20. Ground-Based Gamma Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Holder, Jamie

    2014-10-01

    This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the ˜300 submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur (Stawarz, L., 33rd ICRC, Rio de Janeiro, Brazil, Rapporteur talk: Space-based Gamma-Ray Astronomy, 2013). Any review of this nature is unavoidably subjective and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

  1. Microgravity science and applications bibliography, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1989 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; and experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  2. Microgravity science and applications bibliography, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supported research. It encompasses literature published but not cited in the 1988 Revision and that literature which has been published in the past year. Subdivisions of the Bibliography include: electronic materials, metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  3. Microgravity science and applications bibliography, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments using a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1990 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: Electronic materials; Metals, alloys, and composites; Fluids, interfaces and transport; Glasses and ceramics; Biotechnology; Combustion science; and Experimental technology, instrumentation, and facilities. Also included are a limited number of publications from the European, Soviet, and Japanese programs.

  4. Cardiovascular physiology - Effects of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V.; Hoffler, G. W.

    1992-01-01

    Experiments during spaceflight and its groundbase analog, bedrest, provide consistent data which demonstrate that numerous changes in cardiovascular function occur as part of the physiological adaptation process to the microgravity environment. These include elevated heart rate and venous compliance, lowered blood volume, central venous pressure and stroke volume, and attenuated autonomic reflex functions. Although most of these adaptations are not functionally apparent during microgravity exposure, they manifest themselves during the return to the gravitational challenge of earth's terrestrial environment as orthostatic hypotension and instability, a condition which could compromise safety, health and productivity. Development and application of effective and efficient countermeasures such as saline "loading," intermittent venous pooling, pharmacological treatments, and exercise have become primary emphases of the space life sciences research effort with only limited success. Successful development of countermeasures will require knowledge of the physiological mechanisms underlying cardiovascular adaptation to microgravity which can be obtained only through controlled, parallel groundbased research to complement carefully designed flight experiments. Continued research will provide benefits for both space and clinical applications as well as enhance the basic understanding of cardiovascular homeostasis in humans.

  5. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  6. Flocculation and aggregation in a microgravity environment (FAME)

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.

    1994-01-01

    An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.

  7. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  8. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  9. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  10. Ground Based Studies of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Trafton, Laurence M.

    2005-01-01

    This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.

  11. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  12. Material research in microgravity

    NASA Technical Reports Server (NTRS)

    Langbein, D.

    1984-01-01

    A popular discussion is given of microgravity effects in engineering and medicine gained from Skylab experience. Areas covered include crystal growing, liquid surface properties, diffusion, ferromagnetism, and emulsions.

  13. Microgravity noncontact temperature requirements at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Santoro, G.

    1989-01-01

    NASA Lewis Research Center is currently supporting 66 microgravity science and applications projects. The 66 projects are separated into 23 flight projects and 43 ground-based projects. The part of the NASA Lewis program dealing with flight experiments is divided into six areas: Combustion Science, Materials Science, Fluid Physics, Instrumentation/Equipment, Advanced Technology Development, and Space Station Multi-User Facility studies. The part of the NASA Lewis program dealing with ground-based experiments is coincidentally also divided into six areas: Electronic Materials, Combustion Science, Fluid Dynamics and Transport Phenomena, Metals and Alloys, Glasses and Ceramics, and Physics and Chemistry Experiments. Several purposes exist for ground-based experimenting. Preliminary information is necessary before a decision can be made for flight status, the short low gravity durations available in ground facilities are adequate for a particular study, or extensive ground-based research must be conducted to define and support the microgravity science endeavors contemplated for space. Not all of the 66 microgravity science and application projects at NASA Lewis have temperature requirements, but most do. Since space allocation does not permit a review of all the pertinent projects, a decision was made to restrict the coverage to the science flight projects, flight projects minus the advanced technology development, and multiuser facility efforts. Very little is lost by this decision as the types of temperature requirements for science flight projects can be considered representative of those for the ground-based projects. The noncontact temperature needs at NASA Lewis, as represented by the science flight projects are discussed by describing briefly the experiments themselves, by displaying an illustration of each experimental setup, and by specifying their temperature requisites.

  14. Proposed ground-based control of accelerometer on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Delombard, Richard

    1993-01-01

    This paper describes the innovative control of an accelerometer to support the needs of the scientists operating science experiments that are on-board Space Station Freedom (SSF). Accelerometers in support of science experiments on the shuttle have typically been passive, record-only devices that present data only after the mission or that present limited data to the crew or ground operators during the mission. With the advent of science experiment operations on SSF, the principal investigators will need microgravity acceleration data during, as well as after, experiment operations. Because their data requirements may change during the experiment operations, the principal investigators will be allocated some control of accelerometer parameters. This paper summarizes the general-purpose Space Acceleration Measurement System (SAMS) operation that supports experiments on the shuttle and describes the control of the SAMS for Space Station Freedom. Emphasis is placed on the proposed ground-based control of the accelerometer by the principal investigators.

  15. Brine shrimp development in space: ground-based data to shuttle flight results

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; DeBell, L.; Hawkins, L.; Metcalf, J.; Guikema, J. A.; Rosowski, J.

    1992-01-01

    The brine shrimp, Artemia salina, has been used as a model system to assess microgravity effects on developing organisms. Following fertilization and early development, the egg can arrest in early gastrula as a dehydrated cyst stage that is stable to harsh environments over long time periods. When salt water is added, the cysts can reactivate, with embryonic development and egg hatching occurring in about 24 h. A series of larval molts or instars, over about a 2 week period, results in the adult crustacean. We have assessed these developmental events in a closed syringe system, a bioprocessing module, in ground-based studies, and have conducted preliminary in-orbit experiments aboard the Space Shuttle Atlantis during the flights of STS-37 and STS-43. Although the in-flight data are limited, spectacular degrees of development have been achieved.

  16. Role for Lower Extremity Interstitial Fluid Volume Changes in the Development of Orthostasis after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Summers, Richard L.; Martin, David S.; Meck, Janice V.; Coleman, Thomas G.

    2007-01-01

    vein diameter and stroke volume upon tilting in contrast to the observations made before bed rest (54 vs 23% respectively). Compliance in the calf increased by an average of 36% by day 27 of bedrest. A systems analysis using a computer model of cardiovascular physiology suggests that microgravity induced interstitial volume depletion results in an accentuation of venous blood volume sequestration and is the initiating event in reentry orthostasis. This hypothesis was tested in volunteer subjects using a ground-based spaceflight analog model that simulated the body fluid redistribution induced by microgravity exposure. Measurements of changes in the interstitial spaces and observed responses of the anterior tibial vein with tilt, together with the increase in calf compliance, were consistent with our proposed mechanism for the initiation of postflight orthostasis often seen in astronauts.

  17. Commercial applications in biomedical processing in the microgravity environment

    NASA Astrophysics Data System (ADS)

    Johnson, Terry C.; Taub, Floyd

    1995-01-01

    A series of studies have shown that a purified cell regulatory sialoglycopeptide (CeReS) that arrests cell division and induces cellular differentiation is fully capable of functionally interacting with target insect and mammalian cells in the microgravity environment. Data from several shuttle missions suggest that the signal transduction events that are known to be associated with CeReS action function as well in microgravity as in ground-based experiments. The molecular events known to be associated with CeReS include an ability to interfere with Ca2+ metabolism, the subsequent alkalinization of cell cytosol, and the inhibition of the phosphorylation of the nuclear protein product encoded by the retinoblastoma (RB) gene. The ability of CeReS to function in microgravity opens a wide variety of applications in space life sciences.

  18. Development of life sciences equipment for microgravity and hypergravity simulation

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  19. Use of microgravity simulators for plant biological studies.

    PubMed

    Herranz, Raúl; Valbuena, Miguel A; Manzano, Aránzazu; Kamal, Khaled Y; Medina, F Javier

    2015-01-01

    Simulated microgravity and partial gravity research on Earth is highly convenient for every space biology researcher due to limitations of access to spaceflight. However, the use of ground-based facilities for microgravity simulation is far from simple. Microgravity simulation usually results in the need to consider additional environmental parameters which appear as secondary effects in the generation of altered gravity. These secondary effects may interfere with gravity alteration in the changes observed in the biological processes under study. Furthermore, ground-based facilities are also capable of generating hypergravity or fractional gravity conditions, which are worth being tested and compared with the results of microgravity exposure. Multiple technologies (2D clinorotation, random positioning machines, magnetic levitators or centrifuges), experimental hardware (proper use of containers and substrates for the seedlings or cell cultures), and experimental requirements (some life support/environmental parameters are more difficult to provide in certain facilities) should be collectively considered in defining the optimal experimental design that will allow us to anticipate, modify, or redefine the findings provided by the scarce spaceflight opportunities that have been (and will be) available. PMID:25981780

  20. Changes in leg volume during microgravity simulation

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Hedge, Vickie; Coleman, Eugene; Uri, John J.; Moore, Thomas P.

    1992-01-01

    Little published information exists regarding the magnitude and time course of cephalad fluid shift resulting from microgravity simulations. Six subjects were exposed to 150 min each at horizontal bed rest, 6-deg head-down tilt, and horizontal water immersion. Fluid shift was estimated by calculating leg volumes from eight serial girth measurements from groin to ankle before, during, and after exposure. Results were compared with data from the first 3 h of spacecraft. By the end of exposure, total leg volume for the six subjects decreased by 2.6 +/- 0.8 percent, 1.7 +/- 1.2 percent, and 4.0 +/- 1.6 percent for horizontal, head-down, and immersion, respectively. Changes had plateaued for horizontal and head-down and had slowed for immersion. Relatively more fluid was lost from the lower leg than the thigh for all three conditions, particularly head-down. During the first 3 h of spaceflight, total leg volume decreased by 8.6 percent, and relatively more fluid was lost from the thigh than the lower leg. The difference in volume changes in microgravity and simulated microgravity may be caused by the small transverse pressures still present in ground-based simulations and the extremely nonlinear compliance of tissue.

  1. Smoldering, Transition and Flaming in Microgravity

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Lo, T. L.; Walther, D. C.; Urban, D. L.

    2001-01-01

    A research project is underway to study smolder and the transition to flaming in microgravity. The Microgravity Smoldering Combustion (MSC) flight project is an ongoing research project to provide a better understanding of the controlling mechanisms of smoldering combustion. The Smoldering Transition and Flaming (STAF) project is a recently established research program that will utilize the Fluids and Combustion Facility (FCF) of the ISS to examine the transition from smolder to flaming in microgravity. In forced flow smolder experiments ambient pressure in the MSC chamber rises, thus motivating the need to understand the effects of pressure on smoldering combustion. Further, the STAF experiment has constraints on experimental scale and testing at elevated pressure may be a mechanism to reduce the sample size by enhancing the smolder reaction. In the work we are reporting here, a series of ground-based tests determine the effects of pressure on smoldering combustion. These tests are compared with data obtained from experiments conducted aboard the Space Shuttle in flights STS-69 and STS-77. Measurements of one-dimensional smolder propagation velocity are made by thermocouple probing and a non-intrusive Ultrasound Imaging System (UIS)]. Thermocouples are also used to obtain reaction temperatures and the UIS is used to determine permeabilities of the fuel in real-time.

  2. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  3. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  4. Functional assessment of ubiquitin-depended processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins

  5. Development of an improved ground-based prototype of space vegetable-producing facility

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, S.; Zhu, J.; Wang, X.; Ai, W.; Wei, M.; Qin, L.; Deng, Y.

    Based on the development of a ground-based prototype of space vegetable-producing facility development of its improved prototype has been finished so as to make its operating principle adapt to the space microgravity environment better According to the developing experience of first-generation prototype of the space vegetable-producing facility and detailed demonstration and design of technique plan its blueprint design and machining of related components whole facility installment debugging and trial operations were done Its growing chamber contains a volume of about 0 5m 3 and a growing area of approximate 0 5m 2 the atmospheric environmental parameters in the growing chamber and water content in the growing media were totally and effectively controlled lighting sources are the combinations of both red and blue light emitting diode LED The following demonstrating results showed that the entire system design of the facility is reasonable and its operating principle can meet nearly the requirements of space microgravity environment Therefore our plant growing technique in space was advanced greatly which laid an important foundation for next development of the space vegetable-producing facility to be tested and applied in space station

  6. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  7. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  8. Microgravity Manufacturing Via Fused Deposition

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Griffin, M. R.

    2003-01-01

    Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

  9. Archiving Microgravity Flight Data and Samples

    NASA Technical Reports Server (NTRS)

    1996-01-01

    To obtain help in evaluating its current strategy for archiving data and samples obtained in microgravity research, NASA's Microgravity Science and Applications Division (MSAD) asked the Space Studies Board's Committee on Microgravity Research for guidance on the following questions: What data should be archived and where should it be kept? In what form should the data be maintained (electronic files, photographs, hard copy, samples)? What should the general format of the database be? To what extent should it be universally accessible and through what mechanisms? Should there be a period of time for which principal investigators have proprietary access? If so, how long should proprietary data be stored? What provisions should be made for data obtained from ground-based experiments? What should the deadline be for investigators placing their data in the archive? How long should data be saved? How long should data be easily accessible? As a prelude to making recommendations for optimum selection and storage of microgravity data and samples, the committee in this report briefly describes NASA's past archiving practices and outlines MSAD's current archiving strategy. Although the committee found that only a limited number of experiments have thus far been archived, it concluded that the general archiving strategy, characterized by MSAD as minimalist, appears viable. A central focus of attention is the Experiment Data Management Plan (EDMP), MSAD's recently instituted data management and archiving framework for flight experiments. Many of the report's recommendations are aimed at enhancing the effectiveness of the EDMP approach, which the committee regards as an appropriate data management method for MSAD. Other recommendations provide guidance on broader issues related to the questions listed above. This report does not address statutory or regulatory records retention requirements.

  10. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sytkowski, A. J.; Davis, K. L.

    2001-01-01

    Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.

  11. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith

    1992-01-01

    The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.

  12. Machining in Microgravity

    NASA Astrophysics Data System (ADS)

    Vincent, Graylan

    2003-01-01

    A CNC mill was flown aboard NASA's KC-135 ``Weightless Wonder'' microgravity research aircraft to investigate the effect of gravity on the machining process and to demonstrate the feasibility and functionality of a CNC mill in a weightless environment, such as aboard the International Space Station. The experiment hypothesis was that the surface roughness of milling cuts made in microgravity would be of higher quality than cuts made in a gravitational environment due to increased chip removal. The technical problems associated with microgravity machining (such as the chip removal and collection process), and the engineering solutions to these problems were also evaluated in this experiment.

  13. Effects of microgravity on osteoblast growth

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V.

    1998-01-01

    Studies from space flights over the past two decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. Recently analyzed data from the 1973-1974 Skylabs disclose that there is a rise in the systemic hormone, cortisol, which may play a role in bone loss in flight. In two flights where bone growth was measured (Skylabs 3 and 4), the crew members had a significant loss of calcium accompanied by a rise in 24 hour urinary cortisol during the entire flight period. In ground-based work on osteoblasts, we have demonstrated that equivalent amounts of glucocorticoids can inhibit osteoblast cell growth. In addition, this laboratory has recently studied gene growth and activation of mouse osteoblasts (MC3T3-E1) during spaceflight. Osteoblast cells were grown on glass coverslips, loaded in the Biorack plunger boxes 18 hours before launch and activated 19 hours after launch in the Biorack incubator under microgravity conditions. The osteoblasts were launched in a serum deprived state, activated and collected in microgravity. Samples were collected at 29 hours after sera activation (0-g, n=4; 1-g, n=4). The osteoblasts were examined for changes in gene expression and cell morphology. Approximately one day after growth activation, remarkable differences were observed in gene expression in 0-g and 1-g flight samples. The 0-g activated cells had increased c-fos mRNA when compared to flight 1-g controls. The message of immediate early growth gene, cox-2 was decreased in the microgravity activated cells when compared to ground or 1-g flight controls. Cox-1 was not

  14. Fundamental results from microgravity cell experiments with possible commericial applications

    NASA Technical Reports Server (NTRS)

    Winget, Charles M.; Fast, Thomas N.; Hinds, Williams E.; Schaefer, R. L.; Callahan, Paul X.

    1989-01-01

    Some of the major milestones are presented for studies in cell biology that were conducted by the Soviet Union and the United States in the upper layers of the atmosphere and in outer space for more than thirty-five years. The goals have changed as new knowledge is acquired and the priorities for the use of microgravity have shifted toward basic research and commercial applications. Certain details concerning the impact of microgravity on cell systems is presented. However, it needs to be emphasized that in planning and conducting microgravity experiments, there are some important prerequisites not normally taken into account. Apart from the required background knowledge of previous microgravity and ground-based experiments, the investigator should have the understanding of the hardware as a physical unit, the complete knowledge of its operation, the range of its capabilities and the anticipation of problems that may occur. Moreover, if the production of commercial products in space is to be manifested, data obtained from previous microgravity experiments must be used to optimize the design of flight hardware.

  15. Development requirements for a successful ground based CELSS demonstration

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Considerations critical to a ground based control demonstration were identified. The controlled ecological life support system technologies were assessed for nutrition and food processing, food production, waste processing, and systems engineering/modeling.

  16. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1993-01-01

    A new method of providing power to space vehicles consists of using ground-based lasers to beam power to photovoltaic receivers in space. This can be used as a power source for electrically propelled orbital transfer vehicles.

  17. Challenges and Opportunities for Ground-based Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.

    2013-12-01

    I summarize the current status of ground-based helioseismic observations, in particular the two operational networks GONG and BiSON. I then discuss requirements for continued and future ground-based observations based on key science drivers, finishing with a discussion of SPRING, a proposed future high-spatial-resolution network that would provide helioseismic data and a broad range of synoptic data products.

  18. Microgravity Simulation Facility (MSF)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye

    2016-01-01

    The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.

  19. Microgravity strategic plan, 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA agency-wide microgravity strategic plan is presented, and its research, applications, and commercialization for the 1990's is addressed. The plan presents an analysis of the current situation, identifies critical factors, and defines goals, objectives, and strategies, which are intended to: (1) provide a context for decision making; (2) assure realism in long-range planning and direction for hardware development; and (3) establish a framework for developing a national microgravity research plan.

  20. Multilateral Collaborations in Analog Research

    NASA Technical Reports Server (NTRS)

    Cromwell, R. l.

    2016-01-01

    International collaborations in studies utilizing ground-based space flight analogs are an effective means for answering research questions common to participating agencies. These collaborations bring together worldwide experts to solve important space research questions. By collaborating unnecessary duplication of science is reduced, and the efficiency of analog use is improved. These studies also share resources among agencies for cost effective solutions to study implementation. Recently, NASA has engaged in collaborations with international partners at a variety of analog sites. The NASA Human Exploration Research Analog (HERA) is currently hosting investigator studies from NASA and from the German Space Agency (DLR). These isolation studies will answer questions in the areas of team cohesion, sleep and circadian rhythms, and neurobehavioral correlates to function. Planning for the next HERA campaign is underway as proposal selections are being made from the International Life Sciences Research Announcement (ILSRA). Studies selected from the ILSRA will be conducted across 4 HERA missions in 2017. NASA is planning collaborative studies with DLR at the :envihab facility in Cologne, Germany. Investigations were recently selected to study the effects of 0.5% CO2 exposure over 30 days of bed rest. These studies will help to determine the fidelity of this ground-based analog for studying the visual impairment intracranial pressure syndrome. NASA is also planning a multilateral collaboration at :envihab with DLR and the European Space Agency (ESA) to examine artificial gravity as a countermeasure to mitigate the effects of 60 days of bed rest. NASA is also considering collaborations with the Russian Institute for Biomedical Problems (IBMP) in studies that will utilize their Ground-based Experimental Facility (NEK). The NEK is comprised of 4 interconnected modules and a Martian surface simulator. This isolation analog can support 3 -10 crew members for long duration

  1. Microbial Responses to Microgravity and Other Low-Shear Environments

    PubMed Central

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.

    2004-01-01

    Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters. PMID:15187188

  2. Microbial Responses to Microgravity and Other Low-Shear Environments

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.

    2004-01-01

    Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.

  3. Sleep and vestibular adaptation: implications for function in microgravity

    NASA Technical Reports Server (NTRS)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  4. Microgravity science and applications bibliography, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and the literature which was published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluid dynamics and transports; biotechnology; glass and ceramics; and combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collections of reports and a cross reference index.

  5. Microgravity science and applications bibliography, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metals, Alloys, and Composites; Fluid Dynamics and Transport; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of an anonymously authored collection of reports and a cross reference index.

  6. Microgravity science and applications bibliography, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or ground-based activities providing supporting research. It encompasses literature published in FY-86 and part of FY-87 but not cited in the 1985 Revision, pending publications, and those submitted for publication during this time period. Subdivisions of the bibliography include six major categories: Electronic Materials, Metals, Alloys, and Combustion Science. Other categories include Experimental Technology and General Studies. Included are publications from the European and Soviet programs. In addition, there is a list of patents and a cross reference index.

  7. Microgravity science and applications bibliography, 1985 revision

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1985-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include six major categories: Electronic Materials; Metal, Alloys, and Composites; Fluid Dynamics and Transports; Biotechnology; Glass and Ceramics; and Combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collection of reports and a cross reference index.

  8. Microgravity Outreach and Education

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Rosenberg, Carla B.

    2000-01-01

    The NASA Microgravity Research Program has been actively developing classroom activities and educator's guides since the flight of the First United States Microgravity Laboratory. In addition, various brochures, posters, and exhibit materials have been produced for outreach efforts to the general public and to researchers outside of the program. These efforts are led by the Microgravity Research Outreach/Education team at Marshall Space Flight Center, with classroom material support from the K-12 Educational Program of The National Center for Microgravity Research on Fluids and Combustion (NCMR), general outreach material development by the Microgravity Outreach office at Hampton University, and electronic/media access coordinated by Marshall. The broad concept of the NCMR program is to develop a unique set of microgravity-related educational products that enable effective outreach to the pre-college community by supplementing existing mathematics, science, and technology curricula. The current thrusts of the program include summer teacher and high school internships during which participants help develop educational materials and perform research with NCMR and NASA scientists; a teacher sabbatical program which allows a teacher to concentrate on a major educational product during a full school year; frequent educator workshops held at NASA and at regional and national teachers conferences; a nascent student drop tower experiment competition; presentations and demonstrations at events that also reach the general public; and the development of elementary science and middle school mathematics classroom products. An overview of existing classroom products will be provided, along with a list of pertinent World Wide Web URLs. Demonstrations of some hands on activities will show the audience how simple it can be to bring microgravity into the classroom.

  9. Effects of Simulated Microgravity on Sensitivity of Human Fibroblasts to Radiation

    NASA Technical Reports Server (NTRS)

    Whitehead, Nickolas

    2016-01-01

    Living organisms are exposed to radiation in space that consists of high energy protons and heavy charged particles. For humans, exposure to this environment is expected to cause cancer and other harmful effects. Current assessment of space radiation risk to astronauts is based on the information gained from human data and animal experiments under 1g gravity. If spaceflight factors, such as microgravity, affect the repair of space radiation-induced damage, then one would expect an additional impact on the mutation rate in living cells and consequently on the accuracy of current ground-based risk assessment methods. The project I worked on consisted of using clonogenic assays to analyze the survival of human fibroblast AG01522 cells exposed to radiation with and without simulated microgravity. A random positioning machine (RPM) was used to simulate microgravity because of the principle of gravity-vector-averaging. The effects of simulated microgravity were studied after exposing the cells to different doses of gamma radiation.

  10. The Biophysics Microgravity Initiative

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2016-01-01

    Biophysical microgravity research on the International Space Station using biological materials has been ongoing for several decades. The well-documented substantive effects of long duration microgravity include the facilitation of the assembly of biological macromolecules into large structures, e.g., formation of large protein crystals under micro-gravity. NASA is invested not only in understanding the possible physical mechanisms of crystal growth, but also promoting two flight investigations to determine the influence of µ-gravity on protein crystal quality. In addition to crystal growth, flight investigations to determine the effects of shear on nucleation and subsequent formation of complex structures (e.g., crystals, fibrils, etc.) are also supported. It is now considered that long duration microgravity research aboard the ISS could also make possible the formation of large complex biological and biomimetic materials. Investigations of various materials undergoing complex structure formation in microgravity will not only strengthen NASA science programs, but may also provide invaluable insight towards the construction of large complex tissues, organs, or biomimetic materials on Earth.

  11. Airway closure in microgravity.

    PubMed

    Dutrieue, Brigitte; Verbanck, Sylvia; Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Recent single breath washout (SBW) studies in microgravity and on the ground have suggested an important effect of airway closure on gas mixing in the human lung, reflected particularly in the phase III slope of vital capacity SBW and bolus tests. In order to explore this effect, we designed a SBW in which subjects inspired 2-l from residual volume (RV) starting with a 150 ml bolus of He and SF6. In an attempt to vary the pattern of airways closure configuration before the test, the experiments were conducted in 1G and in microgravity during parabolic flight allowing the pre-test expiration to RV to be either in microgravity or at 1.8 G, with the actual test gas inhalation performed entirely in microgravity. Contrary to our expectations, the measured phase III slope and phase IV height and volume obtained from seven subjects in microgravity were essentially identical irrespective of the gravity level during the pre-test expiration to RV. The results suggest that airway closure configuration at RV before the test inspiration has no apparent impact on phases III and IV generation. PMID:15979418

  12. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  13. Microgravity Environment Description Handbook

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; McPherson, Kevin; Hrovat, Kenneth; Moskowitz, Milton; Rogers, Melissa J. B.; Reckart, Timothy

    1997-01-01

    The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center (LeRC) manages the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) instruments to measure the microgravity environment on orbiting space laboratories. These laboratories include the Spacelab payloads on the shuttle, the SPACEHAB module on the shuttle, the middeck area of the shuttle, and Russia's Mir space station. Experiments are performed in these laboratories to investigate scientific principles in the near-absence of gravity. The microgravity environment desired for most experiments would have zero acceleration across all frequency bands or a true weightless condition. This is not possible due to the nature of spaceflight where there are numerous factors which introduce accelerations to the environment. This handbook presents an overview of the major microgravity environment disturbances of these laboratories. These disturbances are characterized by their source (where known), their magnitude, frequency and duration, and their effect on the microgravity environment. Each disturbance is characterized on a single page for ease in understanding the effect of a particular disturbance. The handbook also contains a brief description of each laboratory.

  14. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  15. Ground Base Skylab Electron Beam Welds in Tantalum

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.

  16. Granular convection in microgravity.

    PubMed

    Murdoch, N; Rozitis, B; Nordstrom, K; Green, S F; Michel, P; de Lophem, T-L; Losert, W

    2013-01-01

    We investigate the role of gravity on convection in a dense granular shear flow. Using a microgravity-modified Taylor-Couette shear cell under the conditions of parabolic flight microgravity, we demonstrate experimentally that secondary, convective-like flows in a sheared granular material are close to zero in microgravity and enhanced under high-gravity conditions, though the primary flow fields are unaffected by gravity. We suggest that gravity tunes the frictional particle-particle and particle-wall interactions, which have been proposed to drive the secondary flow. In addition, the degree of plastic deformation increases with increasing gravitational forces, supporting the notion that friction is the ultimate cause. PMID:23383851

  17. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; T'ien, J. S.; Chang, P.; Shu, Y.

    1999-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame in microgravity is used as a model of a non-propagating, steady-state, pure diffusion flame. The present work is a continuation of two small-scale, space-based experiments on candle flames, one on the Shuttle and the other on the Mir OS. The previous studies showed nearly steady dim blue flames with flame lifetimes as high as 45 minutes, and 1 Hz spontaneous flame oscillations prior to extinction. The present paper summarizes the results of the modeling efforts to date.

  18. Glass formation in microgravity

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1987-01-01

    An account is given of containerless glass-forming experiments conducted aboard the Space Shuttle in 1985, using a single-axis acoustic levitator furnace apparatus. An attempt was made to obtain quantitative evidence for the suppression of heterogeneous nucleation/crystallization in containerless melts under microgravity conditions, as well as to study melt homogenization in the absence of gravity-driven convection and assess the feasibility of laser fusion target glass microsphere preparation with a microgravity apparatus of the present type. A ternary calcia-gallia-silica glass thus obtained indicated a 2-3-fold increase in glass-formation tendency for this material composition in microgravity, by comparison with 1g.

  19. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  20. Ground-Based Observations of Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Ringuette, R. A.; Cannady, N.; Case, G. L.; Cherry, M. L.; Granger, D.; Isbert, J.; Stewart, M.

    2010-10-01

    First seen from space by the BATSE gamma ray telescope in the 1990s, Terrestrial Gamma ray Flashes (TGFs) consist of extremely fast bursts of high energy (up to 40 MeV) gamma rays correlated with intense lightning from thunderstorms. Spacecraft experiments are sensitive to very large events, but ground-based detectors closer to the thunderstorms may provide data on the intensity spectrum of smaller events. Four detectors consisting of NaI scintillators viewed by photomultipliers have been placed on rooftops at LSU's Baton Rouge campus to monitor TGFs. The setup and design of the ground-based experiment will be discussed.

  1. Changes in gene expression and signal transduction in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    2001-01-01

    Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.

  2. Cardiovascular regulation in microgravity

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. G.; Lane, L. D.; Wright, S. J.; Meny, G. M.; Buckey, J. C.; Levine, B. D.; Gaffney, F. A.; Watenpaugh, D. E.; Arbeille, P.; Baisch, F.

    1997-01-01

    The human cardiovascular adaptation to microgravity was investigated in the framework of the German Spacelab D2 mission. Preflight and postflight studies were performed to examine the relationship between disuse atrophy and the function of cardiac and skeletal muscles. Special attention was given to fluid load responses and postflight orthostatic hypotension. The preflight measurements were obtained, in supine and sitting positions. These measurements, carried out in the four D2 crew members, were performed six and nine months before flight and on mission day number five. The results obtained on the male crew showed that the stroke volume data from microgravity are virtually identical to preflight measurements in the sitting position.

  3. Microgravity and the lung

    NASA Technical Reports Server (NTRS)

    West, John B.

    1991-01-01

    Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.

  4. MSG: Microgravity Science Glovebox

    SciTech Connect

    Baugher, C.R.; Ramachandran, N.; Roark, W.

    1996-12-31

    The capabilities of the Space Station glovebox facility is described. Tentatively scheduled to be launched in 1999, this facility called the Microgravity Sciences Glovebox (MSG), will provide a robust and sophisticated platform for doing microgravity experiments on the Space Station. It will provide an environment not only for testing and evaluating experiment concepts, but also serve as a platform for doing fairly comprehensive science investigations. Its design has evolved substantially from the middeck glovebox, now flown on Space Shuttle missions, not only in increased experiment volume but also in significant capability enhancements. The system concept, functionality and architecture are discussed along with technical information that will benefit potential science investigators.

  5. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  6. Microgravity strategic planning exercise

    NASA Technical Reports Server (NTRS)

    Halpern, Richard; Downey, Jim; Harvey, Harold

    1991-01-01

    The Center for Space and Advanced Technology supported a planning exercise for the Microgravity Program management at the Marshall Space Flight Center. The effort focused on the status of microgravity work at MSFC and elsewhere with the objective of preparing a goal-oriented strategic planning document which could be used for informational/brochure purposes. The effort entailed numerous interactions and presentations with Field Center programmatic components and Headquarters personnel. Appropriate material was consolidated in a draft format for a MSFC Strategic Plan.

  7. Microgravity Science and Applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The report presents fifteen papers from a workshop on microgravity science and applications held at the Jet Propulsion Laboratory in Pasadena, California, on December 3 to 4, 1984. The workshop and panel were formed by the Solid State Sciences Committee of the Board on Physics and Astronomy of the National Research Council in response to a request from the Office of Science and Technology Policy. The goal was to review the microgravity science and applications (MSA) program of NASA and to evaluate the quality of the program. The topics for the papers are metals and alloys, electronic materials, ceramics and glasses, biotechnology, combustion science, and fluid dynamics.

  8. Microgravity robotics technology program

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.; Lawrence, Charles; Brush, Andrew S.

    1988-01-01

    A research program to develop technology for robots operating in the microgravity environment of the space station laboratory is described. These robots must be capable of manipulating payloads without causing them to experience harmful levels of acceleration, and the motion of these robots must not disturb adjacent experiments and operations by transmitting reactions that translate into damaging effects throughout the laboratory. Solutions to these problems, based on both mechanism technology and control strategies, are discussed. Methods are presented for reduction of robot base reactions through the use of redundant degrees of freedom, and the development of smoothly operating roller-driven robot joints for microgravity manipulators is discussed.

  9. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  10. Current program to investigate phenomena in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Oran, William A.

    1986-01-01

    Current NASA Microgravity Science and Applications Division Shuttle and terrestrial experiments to acquire basic data for space-based materials processing activities are summarized. The research is carried out to increase the understanding and to improve ground-based and space-based processing, to enhance the understanding of basic physical phenomena, and to characterize the forces which effect low-gravity processing. The main areas of research are crystal growth, metallic alloy solidification, bioseparation processes, blood rheology, containerless processing, and studies of combustion processes, chemical and transport phenomena, cloud microphysics and fluid behavior and surface phenomena in microgravity. Specific experiments, which exemplify the research goals and were performed on KC-135 flights along Keplerian trajectories and on Shuttle missions, are described.

  11. Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture

    PubMed Central

    Wuest, Simon L.; Richard, Stéphane; Kopp, Sascha

    2015-01-01

    Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imaging and partial gravity simulations, for example, are of particular interest. For obtaining valuable and reliable results from RPM experiments, the appropriate use of the RPM is of utmost importance. The simulation of microgravity requires that the RPM's rotation is faster than the biological process under study, but not so fast that undesired side effects appear. It remains a legitimate question, however, whether the RPM can accurately and reliably simulate microgravity conditions comparable to real microgravity in space. We attempt to answer this question by mathematically analyzing the forces working on the samples while they are mounted on the operating RPM and by comparing data obtained under real microgravity in space and simulated microgravity on the RPM. In conclusion and after taking the mentioned constraints into consideration, we are convinced that simulated microgravity experiments on the RPM are a valid alternative for conducting examinations on the influence of the force of gravity in a fast and straightforward approach. PMID:25649075

  12. Microgravity Control Integration Process

    NASA Astrophysics Data System (ADS)

    Heese, J.; Grodsinsky, Carlos M.

    2002-01-01

    To verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks during any ISS microgravity period, a control integration process must be followed. Currently no facility racks have taken this process from start to finish. The authors are assisting the NASA Glenn Research Center (GRC) Fluids Combustion Facility (FCF) in this process. The major topics to be addressed in this paper are: 1) ISS Program Microgravity Requirements, 2) Rack Microgravity Control Approaches, 3) Integration Process Flow, 4) Required ISS Program Inputs, 5) Facility Analytical Work, 6) Facility Testing Work, 7) Facility Output to ISS Program, and 8) Verification &Validation Process. The ISS payload microgravity requirements are given in PIRN 110H to the ISS Program document SSP 57000. These requirements are based on being a "good neighbor" by limiting the payload disturbances on the environment of adjacent rack payloads during ISS microgravity periods. The ARIS PIRN, which is still pending ISS Program approval, addresses onboard rack disturbances being transmitted to offboard locations and specific ARIS items such as rack sway space and accelerometer saturation. To meet the facilities' microgravity requirements, various active or passive isolation approaches can be utilized. These include the Active Rack Isolation System (ARIS), the Passive Rack Isolation System (PaRIS), damping material inserted into the four external ARIS snubber cups, or local isolation at the individual onboard rack disturbers. ARIS utilizes a controller specifically tuned for the facility and eight pushrods, which will coordinate the racks movement in the low frequency range (.01 Hz to 2 Hz). PaRIS utilizes eight spring / dampers to isolate the rack from the ISS module structure at frequencies above 0.5 Hz. Local onboard rack isolation approaches involve the use of damping materials, isolation grommets, or wire rope isolators for

  13. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1992-01-01

    This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined.

  14. Ground-Based Sensing System for Weed Mapping in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ground-based weed mapping system was developed to measure weed intensity and distribution in a cotton field. The weed mapping system includes WeedSeeker® PhD600 sensor modules to indicate the presence of weeds between rows, a GPS receiver to provide spatial information, and a data acquisition and ...

  15. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  16. Challenges and Rewards in Ground-Based Observing

    NASA Astrophysics Data System (ADS)

    Reardon, Kevin P.

    2016-05-01

    DKIST will be largest ground-based project in solar physics, and will offer access and data to the whole community. In pursuit of exciting science, many users may have their first encounters with high-resolution, ground-based solar observations. New facilities, space or ground-based, all bring particular signatures in their data. While tools or processed datasets might serve to minimize such non-solar signatures, it is nonetheless important for users to understand the impacts on observation planning, the nature of the corrections applied, and any residual effects on their data.In this talk I will review some of the instrumental and atmospheric signatures that are important for ground-based observing, in particular in planning for the potential capabilities of the DKIST Data Center. These techniques include image warping, local PSF deconvolution, atmospheric dispersion correction, and scattered light removal. I will present examples of data sets afflicted by such problems as well as some of the algorithms used in characterizing and removing these contributions. This will demonstrate how even with the challenges of observing through a turbulent atmosphere, it is possible to achieve dramatic scientific results.

  17. Vigilant Eagle: ground-based countermeasure system against MANPADS

    NASA Astrophysics Data System (ADS)

    Vollin, Jeff

    2006-05-01

    Man-Portable Air Defense Systems, or MANPADS, have arisen as a major threat to commercial and military air traffic. While no MANPADS attacks have yet occurred within the United States, the risk posed by these weapons is undeniable. MANPADS were originally developed by the Soviet Union and the United States for tactical air defense, but since then these weapons have proliferated around the world. Two major approaches to countering these weapons have arisen: aircraft based and ground based. Aircraft-based systems typically use either flares or lasers to either confuse or blind the oncoming missile, thus driving it off target. These systems have been in use for many years on military aircraft and have been proven effective. However, when one considers the commercial air travel industry, the cost of providing a countermeasure system on every plane becomes prohibitive. A ground-based system by contrast protects every aircraft arriving or departing from an airport. By deploying a ground-based system at high-traffic and hub airports, a large percentage of the flying public can be protected affordably. Vigilant Eagle is such a ground based system which uses High Power Microwaves (HPM) to accomplish this mission.

  18. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  19. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  20. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  1. Drosophila melanogaster, a model system for comparative studies on the responses to real and simulated microgravity.

    PubMed

    Marco, R; Laván, D A; van Loon, J J W A; Leandro, L J; Larkin, O J; Dijkstra, C; Anthony, P; Villa, A; Davey, M R; Lowe, K C; Power, J B; Medina, F J

    2007-07-01

    A key requirement to enhance our understanding of the response of biological organisms to different levels of gravity is the availability of experimental systems that can simulate microgravity and hypergravity in ground-based laboratories. This paper compares the results obtained from analysing gene expression profiles of Drosophila in space versus those obtained in a random position machine (RPM) and by centrifugation. The correlation found validates the use of the RPM simulation technique to establish the effects of real microgravity on biological systems. This work is being extended to investigate Drosophila development in another gravity modifying instrument, the levitation magnet. PMID:18372731

  2. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  3. NASA Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1999-01-01

    The Fiscal Year 1998 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1998 and highlights of the ground- and-flight-based research are provided.

  4. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan R. (Editor); Henderson, Robin N. (Technical Monitor)

    2000-01-01

    The Fiscal Year 1999 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1999 and highlights of the ground-and-flight research are provided.

  5. Unit Operations in Microgravity.

    ERIC Educational Resources Information Center

    Allen, David T.; Pettit, Donald R.

    1987-01-01

    Presents some of the work currently under way in the development of microgravity chemical processes. Highlights some of the opportunities for materials processing in outer space. Emphasizes some of the contributions that chemical engineers can make in this emerging set of technologies. (TW)

  6. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  7. Physiology in microgravity.

    PubMed

    West, J B

    2000-07-01

    Studies of physiology in microgravity are remarkably recent, with almost all the data being obtained in the past 40 years. The first human spaceflight did not take place until 1961. Physiological measurements in connection with the early flights were crude, but, in the past 10 years, an enormous amount of new information has been obtained from experiments on Spacelab. The United States and Soviet/Russian programs have pursued different routes. The US has mainly concentrated on relatively short flights but with highly sophisticated equipment such as is available in Spacelab. In contrast, the Soviet/Russian program concentrated on first the Salyut and then the Mir space stations. These had the advantage of providing information about long-term exposure to microgravity, but the degree of sophistication of the measurements in space was less. It is hoped that the International Space Station will combine the best of both approaches. The most important physiological changes caused by microgravity include bone demineralization, skeletal muscle atrophy, vestibular problems causing space motion sickness, cardiovascular problems resulting in postflight orthostatic intolerance, and reductions in plasma volume and red cell mass. Pulmonary function is greatly altered but apparently not seriously impaired. Space exploration is a new frontier with long-term missions to the moon and Mars not far away. Understanding the physiological changes caused by long-duration microgravity remains a daunting challenge. PMID:10904075

  8. Animal surgery in microgravity

    NASA Technical Reports Server (NTRS)

    Campbell, Mark R.; Billica, Roger D.; Johnston, Smith L., III

    1993-01-01

    Prototype hardware and procedures which could be applied to a surgical support system on SSF are realistically evaluated in microgravity using an animal model. Particular attention is given to the behavior of bleeding in a surgical scenario and techniques for hemostasis and fluid management.

  9. Microgravity Science Research Panel

    NASA Technical Reports Server (NTRS)

    Carpenter, Bradley M.; Trinh, Eugene H.; DeLucas, Lawrence J.; Larson, David; Koss, Matthew; Ostrach, Simon

    2000-01-01

    This document is a transcription of the Microgravity Science Research Panel's discussion about their research and about some of the contributions that they feel have been important to the field during their time with the program. The panel includes Dr. Eugene Trinh, Dr. Lawrence DeLucas, Dr. Charles Bugg, Dr. David Larson, and Dr. Simon Ostrach.

  10. Lymphocyte Functions in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Risin, Diane; Sundaresan, A.; Cooper, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    To understand the mechanism of immunity impairment in space it is important to analyze the direct effects of space-related conditions on different lymphocytes functions. Since 1992, we are investigating the effect of modeled and true microgravity (MG) on numerous lymphocyte functions. We had shown that modeled (MMG) and true microgravity inhibit lymphocyte locomotion through type I collagen. Modeled microgravity also suppresses polyclonal and antigen-specific lymphocyte activation. Polyclonal activation of lymphocytes prior to exposure to MMG abrogates the MG-induced inhibition of lymphocyte locomotion. The relationship between activation deficits and the loss of locomotion in MG was investigated using PKC activation by phorbol ester (PMA) and calcium ionophore (ionomycin). Direct activation of PKC by PMA substantially restored the MMG-inhibited lymphocyte locomotion and PHA-induced lymphocyte activation lonomycin by itself did not restore either locomotion or activation of the lymphocytes, indicating that these changes are not related to the impairment in the calcium flux in MMG. Treatment of lymphocytes with PMA before exposure to MMG prevented the loss of locomotion. It was observed that DNA synthesis is not necessary for restoration of locomotion since mitomicin C treated and untreated cells recovered their locomotion to the same level after PKC activation. Our recent data indicate that microgravity may selectively effect the expression of novel Ca2+ independent isoforms of PKC, in particularly PKC sigma and delta. This provides a new insight in understanding of the mechanisms of MG-sensitive cellular functions.

  11. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  12. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  13. Microgravity Emissions Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Goodnight, Thomas W.; McNelis, Anne M.

    2001-01-01

    The Microgravity Emissions Laboratory (MEL) was developed for the support, simulation, and verification of the International Space Station microgravity environment. The MEL utilizes an inertial measurement system using acceleration emissions generated by various operating components of the space station. These emissions, if too large, could hinder the science performed on the space station by disturbing the microgravity environment. Typical test components are disk drives, pumps, motors, solenoids, fans, and cameras. These components will produce inertial forces, which disturb the microgravity on-orbit station environment. These components, usually housed within a station rack, must meet acceleration limits imposed at the rack interface for minimizing the onboard station-operating environment. The NASA Glenn Research Center developed this one-of-a-kind laboratory for testing components and, eventually, rack-level configurations. The MEL approach is to measure the component's generated inertial forces. This force is a product of the full diagonal mass matrix including the test setup (the center of gravity, mass moment of inertia, and weight) and the resolved diagonal rigid-body acceleration determined from measurements using the 10 apparatus accelerometers. The mass matrix can be test derived. The bifilar torsional pendulum method is used to measure the moment of inertia for the test component.

  14. Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS)

    NASA Astrophysics Data System (ADS)

    Correll, Melanie J.; Edelmann, Richard E.; Hangarter, Roger P.; Mullen, Jack L.; Kiss, John Z.

    Phototropism and gravitropism play key roles in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. The blue-light response is controlled by the phototropins while the red-light response is mediated by the phytochrome family of photoreceptors. In order to better characterize root phototropism, we plan to perform experiments in microgravity so that this tropism can be more effectively studied without the interactions with the gravity response. Our experiments are to be performed on the European Modular Cultivation System (EMCS), which provides an incubator, lighting system, and high resolution video that are on a centrifuge palette. These experiments will be performed at μg, 1g (control) and fractional g-levels. In order to ensure success of this mission on the International Space Station, we have been conducting ground-based studies on growth, phototropism, and gravitropism in experimental unique equipment (EUE) that was designed for our experiments with Arabidopsis seedlings. Currently, the EMCS and our EUE are scheduled for launch on space shuttle mission STS-121. This project should provide insight into how the blue- and red-light signaling systems interact with each other and with the gravisensing system.

  15. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  16. Ground-based PIV and numerical flow visualization results from the surface tension driven convection experiment

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Wernet, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  17. GSBMS, a Ground Based Facility in Toulouse for plants, cells and microorganisms

    NASA Astrophysics Data System (ADS)

    Pereda-Loth, Veronica; Gasset, Gilbert; Eche, Brigitte; Gauquelin-Koch, Guillemette; Ginibri, Didier; Collin, Laetitia; Courtade-Saidi, Monique

    2012-07-01

    GSBMS (Scientific Group of Space Biology and Medicine) was created in 1992 by a group of scientists willing to share their skills, knowledge and expertise on space science. Our main topics are: gravitational biology, physiology, radiobiology and medicine at the University of Toulouse. GSBMS is a horizontal structure, supported by CNES, which can help user teams to prepare and develop experiments which require microgravity environment (Space Station, automatic spacecraft, Airbus-0g ). GSBMS is also part of the ESA-Ground Based Facility program. The scientific teams that have been granted to carry out a space experiment can find in GSBMS the expertise needed to finalize their project by doing preliminary tests necessary to prove the relevance of future space experiments and all over the following operational phases of a selected experiment until the launching. GSBMS make available to scientific teams, some devices to generate either Hypergravity (centrifuge 1g-5g) or alteration of the gravitational stimulus (RPM and clinostats). GSBMS has also developed an innovating device providing continuous low dose γ radiations (patent pending). GSBMS has participated to several Biological Space experiments using devices like Biobloc, Cytos, Biorack, Biopan, Ibis, Kubik, EMCS. Recently, GSBMS participated to the logistics ant technical support for PolCa, Gravigen and Genara-A Experiment in the last two years.

  18. Non-contact temperature measurement requirements of ground-based research and flight programs at JPL

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1989-01-01

    The Modular Containerless Processing Facility project is responsible for the development of flight equipment and of the accompanying scientific and technological research necessary to carry out containerless investigations in the low gravity of earth orbit. The requirement for sample temperature measurement is just one of the many physical properties determination needs that must be satisfied before the useful exploitation of low gravity and containerless experimentation techniques can be achieved. The specific implementation of temperature measurement for the ground-based research program is different from that of the flight hardware development project. The needs of the latter must also be differentiated according to the chronological order of the relevant space flight missions. Immediate demands of Spacelab instruments must be addressed by the adaptation of existing reliable technology to the special and restrictive on-orbit environment, while more advanced and yet unperfected techniques will be assigned to enterprises further in the future. The wide range of application of the containerless methods to the study of phenomena involving different states of matter and environmental conditions requires the satisfaction of a variety of boundary conditions through different approaches. An important issue to be resolved will be whether an integrated program dedicated to solve the problems of all the microgravity experimental effort will allow the solution of specific demands of existing as well as future flight equipment.

  19. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  20. Quantitative Measurement of Oxygen in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  1. Spaceflight Nutrition Research: Platforms and Analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Understanding human adaptation to weightlessness requires research in either the true microgravity environment or iii a ground-based model. Over the years, many flight platforms have been available, and many ground models have emerged for both human and animal studies of the effects of spaceflight on physiology. In this review, we provide a brief description of these models and the main points to be considered when choosing a model. We do not intend to provide a comprehensive overview of each platform or model, but rather to provide the reader with an overview of the options available for space nutrition research, and the relative merits and/or drawbacks of each.

  2. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  3. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  4. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  5. New developments for ground based instruments at Esrange

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    2001-08-01

    Development on the Esrange MST radar system, ESRAD, the establishment of a new optical platform called KEOPS and the collection of other ground based instruments, makes Esrange to an unique place for space related research using rockets and balloons. ESRAD located at 67°53'N and 21°06'E is operated jointly by the Swedish Institute of Space Physics and SSC, Esrange. The radar is a MST-type operating at 52 MHz and has been in near continuous operation since 1996. The Kiruna Esrange Optical Platform System, KEOPS is located at 67°52'N and 21°04'E on a mountain at 530 m latitude 1.5 km west of Esrange. KEOPS facility is an excellent place for location of optical ground based instruments. Telescience applications by remote interaction using Internet are offered.

  6. The WASP and NGTS ground-based transit surveys

    NASA Astrophysics Data System (ADS)

    Wheatley, P. J.

    2015-10-01

    I will review the current status of ground-based exoplanet transit surveys, using the Wide Angle Search for Planets (WASP) and the Next Generation Transit Survey (NGTS) as specific examples. I will describe the methods employed by these surveys and show how planets from Neptune to Jupiter-size are detected and confirmed around bright stars. I will also give an overview of the remarkably wide range of exoplanet characterization that is made possible with large-telescope follow up of these bright transiting systems. This characterization includes bulk composition and spin-orbit alignment, as well as atmospheric properties such as thermal structure, composition and dynamics. Finally, I will outline how ground-based photometric studies of transiting planets will evolve with the advent of new space-based surveys such as TESS and PLATO.

  7. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  8. GLAST and Ground-based {gamma}-ray astronomy

    SciTech Connect

    Funk, S.; Carson, J. E.; Giebels, B.; Longo, F.; McEnery, J. E.; Paneque, D.; Reimer, O.; Reyes, L. C

    2007-07-12

    The launch of the Gamma-ray Large Area Space Telescope (GLAST) in 2007 will open the possibility of combined studies of astrophysical sources with existing ground-based VHE {gamma}-ray experiments such as H.E.S.S., VERITAS and MAGIC. Ground-based {gamma}-ray observatories provide complementary capabilities for spectral, temporal, spatial and population studies of high-energy {gamma}-ray sources. Joint observations cover a huge energy range, from 20 MeV to over 50 TeV. The LAT will survey the entire sky every three hours, allowing us to perform long-term monitoring of variable sources under uniform observation conditions and to detect flaring sources promptly. Imaging atmospheric Cherenkov telescopes (IACTs) will complement these observations with high-sensitivity pointed observations on regions of interest.

  9. GLAST and Ground-Based Gamma-Ray Astronomy

    SciTech Connect

    Funk, S.; Carson, J.E.; Giebels, B.; Longo, F.; McEnery, J.E.; Paneque, D.; Reimer, O.; Reyes, L.C.

    2007-10-10

    The launch of the Gamma-ray Large Area Space Telescope (GLAST) in 2007 will open the possibility of combined studies of astrophysical sources with existing ground-based VHE {gamma}-ray experiments such as H.E.S.S., VERITAS and MAGIC. Ground-based {gamma}-ray observatories provide complementary capabilities for spectral, temporal, spatial and population studies of high-energy {gamma}-ray sources. Joint observations cover a huge energy range, from 20 MeV to over 50 TeV. The LAT will survey the entire sky every three hours, allowing us to perform long-term monitoring of variable sources under uniform observation conditions and to detect flaring sources promptly. Imaging atmospheric Cherenkov telescopes (IACTs) will complement these observations with high-sensitivity pointed observations on regions of interest.

  10. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  11. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1992-01-01

    Ground-based high-power CW lasers can be used to beam power to photovoltaic receivers in space that furnish electricity to space vehicles; this energy can also be used to power electric-propulsion orbital transfer vehicles. An account is presently given of the anticipated requirements for the pulsed FEL lasers, large adaptive optics, photovoltaic receivers, and high specific impulse electrical propulsion. Preliminary system analysis results are presented.

  12. New Ground Based facilities in QSO research; The GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, J. M.

    New ground based observing opportunities are becoming, or about to become, available to astronomers for QSO research. These, combined with state of the art focal plane instruments, provide unprecedented sensitivity for detecting faint surface brightness features. During the talk I will take the liberty of talking about one of these new large telescope facilities currently being built in Spain, and will discuss some of the advantages for QSO research offered by these new facilities.

  13. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  14. Fostering Multilateral Involvement in Analog Research

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2015-01-01

    International collaboration in space flight research is an effective means for conducting investigations and utilizing limited resources to the fullest extent. Through these multilateral collaborations mutual research questions can be investigated and resources contributed by each international partner to maximize the scientific benefits to all parties. Recently the international partners embraced this approach to initiate collaborations in ground-based space flight analog environments. In 2011, the International Analog Research Working Group was established, and later named the International Human Space Flight Analog Research Coordination Group (HANA). Among the goals of this working group are to 1) establish a framework to coordinate research campaigns, as appropriate, to minimize duplication of effort and enhance synergy; 2) define what analogs are best to use for collaborative interests; and 3) facilitate interaction between discipline experts in order to have the full benefit of international expertise. To accomplish these goals, HANA is currently engaged in developing international research campaigns in ground-based analogs. Plans are being made for an international solicitation for proposals to address research of common interest to all international partners. This solicitation with identify an analog environment that will best accommodate the types of investigations requested. Once selected, studies will be integrated into a campaign and implemented at the analog site. Through these combined efforts, research beneficial to all partners will be conducted efficiently to further address human risks of space exploration.

  15. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures. PMID:23736241

  16. Silicon carbide optics for space and ground based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  17. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  18. Crystallization of Biological Macromolecules in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Chayen, N. E.; Helliwell, J. R.

    2000-01-01

    An overview of microgravity crystallization explaining why microgravity is used, factors which affect crystallization, the method of crystallization and the environment itself. Also covered is how best to make use of microgravity and what the future might hold.

  19. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  20. Surgical bleeding in microgravity

    NASA Technical Reports Server (NTRS)

    Campbell, M. R.; Billica, R. D.; Johnston, S. L. 3rd

    1993-01-01

    A surgical procedure performed during space flight would occur in a unique microgravity environment. Several experiments performed during weightlessness in parabolic flight were reviewed to ascertain the behavior of surgical bleeding in microgravity. Simulations of bleeding using dyed fluid and citrated bovine blood, as well as actual arterial and venous bleeding in rabbits, were examined. The high surface tension property of blood promotes the formation of large fluid domes, which have a tendency to adhere to the wound. The use of sponges and suction will be adequate to prevent cabin atmosphere contamination with all bleeding, with the exception of temporary arterial droplet streams. The control of the bleeding with standard surgical techniques should not be difficult.

  1. Plasmid acquisition in microgravity

    NASA Technical Reports Server (NTRS)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  2. Microgravity particle reduction system

    NASA Technical Reports Server (NTRS)

    Brandon, Vanessa; Joslin, Michelle; Mateo, Lili; Tubbs, Tracey

    1988-01-01

    The Controlled Ecological Life Support System (CELSS) project, sponsored by NASA, is assembling the knowledge required to design, construct, and operate a system which will grow and process higher plants in space for the consumption by crew members of a space station on a long term space mission. The problem of processing dry granular organic materials in microgravity is discussed. For the purpose of research and testing, wheat was chosen as the granular material to be ground into flour. Possible systems which were devised to transport wheat grains into the food processor, mill the wheat into flour, and transport the flour to the food preparation system are described. The systems were analyzed and compared and two satisfactory systems were chosen. Prototypes of the two preferred systems are to be fabricated next semester. They will be tested under simulated microgravity conditions and revised for maximum effectiveness.

  3. Amphibian development in microgravity

    NASA Technical Reports Server (NTRS)

    Souza, K. A.

    1987-01-01

    The results of experiments performed by the U.S. Biosatellites 1 and 2 and the Gemini VIII and XII missions and by the Soviet Salyut and Soyuz missions on the effect of gravity on the development of prefertilized amphibian egg and, in particular, of the vestibular system of amphibian embryo are described. In these experiments, the condition of microgravity was reached only after the prefertilized eggs were in the early stages of first cell division or in the blastula stage. No significant changes were observed in the morphology of the embryos or in the vestibular system of embyos developed, respectively, for 2-5 days or 20 days under conditions of microgravity. Experiments planned for future spaceflights are discussed.

  4. ISS Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    The Microgravity performance assessment of the International Space Station (ISS) is comprised of a quasi-steady, structural dynamic and a vibro-acoustic analysis of the ISS assembly-complete vehicle configuration. The Boeing Houston (BHOU) Loads and Dynamics Team is responsible to verify compliance with the ISS System Specification (SSP 41000) and USOS Segment (SSP 41162) microgravity requirements. To verify the ISS environment, a series of accelerometers are on-board to monitor the current environment. This paper summarizes the results of the analysis that was performed for the Verification Analysis Cycle (VAC)-Assembly Complete (AC) and compares it to on-orbit acceleration values currently being reported. The analysis will include the predicted maximum and average environment on-board ISS during multiple activity scenarios

  5. Cartilage Engineering and Microgravity

    NASA Astrophysics Data System (ADS)

    Toffanin, R.; Bader, A.; Cogoli, A.; Carda, C.; Fantazzini, P.; Garrido, L.; Gomez, S.; Hall, L.; Martin, I.; Murano, E.; Poncelet, D.; Pörtner, R.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    The complex effects of mechanical forces and growth factors on articular cartilage development still need to be investigated in order to identify optimal conditions for articular cartilage repair. Strictly controlled in vitro studies under modelled or space microgravity conditions can improve our understanding of the fundamental role of gravity in articular cartilage development. The main objective of this Topical Team is to use modelled microgravity as a tool to elucidate the fundamental science of cartilage regeneration. Particular attention is, therefore, given to the effects of physical forces under altered gravitational conditions, applied using controlled bioreactor systems, on cell metabolism, cell differentiation and tissue development. Specific attention is also directed toward the potential advantages of using magnetic resonance methods for the non-destructive characterisation of scaffolds, chondrocytes-polymer constructs and tissue engineered cartilage.

  6. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jimmy Grisham of the Microgravity Program Plarning Integration Office at NASA/Marshall Space Flight Center (MSFC), demonstrates the classroom-size Microgravity Drop Tower Demonstrator. This apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  7. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jimmy Grisham of the Microgravity Program Plarning Integration Office at NASA/Marshall Space Flight Center, demonstrates the classroom-size Microgravity Drop Tower Demonstrator. The apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  8. Fourth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R. (Compiler)

    1997-01-01

    This Conference Publication contains 84 papers presented at the Fourth International Microgravity Combustion Workshop held in Cleveland, Ohio, from May 19 to 21, 1997. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  9. Microgravity Experiments On Animals

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.

    1991-01-01

    Paper describes experiments on animal subjects planned for Spacelab Life Sciences 1 mission. Laboratory equipment evaluated, and physiological experiments performed. Represents first step in establishing technology for maintaining and manipulating rodents, nonhuman primates, amphibians, and plants during space flight without jeopardizing crew's environment. In addition, experiments focus on effects of microgravity on cardiopulmonary, cardiovascular, and musculoskeletal systems; on regulation of volume of blood and production of red blood cells; and on calcium metabolism and gravity receptors.

  10. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  11. Microgravity Science Glovebox - Glove

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  12. Foam stability in microgravity

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Caps, H.; Delon, G.; Saint-Jalmes, A.; Rio, E.; Saulnier, L.; Adler, M.; Biance, A. L.; Pitois, O.; Cohen Addad, S.; Hohler, R.; Weaire, D.; Hutzler, S.; Langevin, D.

    2011-12-01

    Within the context of the ESA FOAM project, we have studied the stability of aqueous and non-aqueous foams both on Earth and in microgravity. Foams are dispersions of gas into liquid or solid. On Earth, the lifetime of a foam is limited by the free drainage. By drainage, we are referring to the irreversible flow of liquid through the foam (leading to the accumulation of liquid at the foam bottom, and to a global liquid content decreases within the foam). When the liquid films become thinner, they eventually break, and the foam collapses. In microgravity, this process is no more present and foams containing large amounts of liquid can be studied for longer time. While the difference between foaming and not-foaming solutions is clear, the case of slightly-foaming solutions is more complicated. On Earth, such mixtures are observed to produce unstable froth for a couple of seconds. However, these latter solutions may produce foam in microgravity. We have studied both configurations for different solutions composed of common surfactant, proteins, anti-foaming agents or silicon oil. Surprising results have been obtained, emphasizing the role played by gravity on the foam stabilization process.

  13. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  14. Exercise-training protocols for astronauts in microgravity.

    PubMed

    Greenleaf, J E; Bulbulian, R; Bernauer, E M; Haskell, W L; Moore, T

    1989-12-01

    The question of the composition of exercise protocols for use by astronauts in microgravity is unresolved. Based on our knowledge of physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100% of ground-based levels; the other assumes that maximal aerobic power in flight can be reduced by 10% of the ground-based level. A recommended prescription for in-flight prevention or partial suppression of calcium (bone) loss cannot be written until further research findings are obtained that elucidate the site, the magnitude, and the mechanism of the changes. Hopefully these proposed exercise prescriptions will stimulate further research and discussion resulting in even more efficient protocols that will help ensure the optimal health and well-being of our astronauts. PMID:2691487

  15. The unidirectional solidification of Al-4 wt pct Cu ingots in microgravity

    NASA Astrophysics Data System (ADS)

    Cahoon, J. R.; Chaturvedi, M. C.; Tandon, K. N.

    1998-03-01

    Three Al-4 wt pct Cu alloy ingots, 10 mm in diameter and 25-mm long, were unidirectionally solidified in microgravity during the flight of a sounding rocket, with solidification rates of about 1.6×10-4 m/s and temperature gradients of about 2600 K/m. The apparatus was comprised of three muffle furnaces, which melted the ingots prior to the launch of the rocket. Unidirectional solidification of the ingots was accomplished by chill plates attached to the furnaces, which were withdrawn from the ingots during the microgravity portion of the flight, bringing the chill plates into contact with the bases of the capsules containing the ingots. Solidification was complete in less than 4 minutes. For comparison, several ground-based ingots were solidified in unit gravity under similar conditions. Metallographic analysis of the solidified ingots showed that the macrostructures of the unit-gravity and microgravity ingots were similar, all exhibiting columnar grains. However, the microstructures were significantly different, with the microgravity ingots exhibiting primary dendrite spacings about 40 pct larger than the unit-gravity ingots and secondary dendrite arm spacings about 85 pct larger. The larger dendrite spacings for the ingots solidified in microgravity are explained by lower dendrite growth velocities. The absence of convective mixing in the microgravity ingots slightly increased temperature gradients in the liquid portion of the alloy during solidification, which resulted in decreased growth velocities.

  16. Frontal Polymerization in Microgravity

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    1999-01-01

    Frontal polymerization systems, with their inherent large thermal and compositional gradients, are greatly affected by buoyancy-driven convection. Sounding rocket experiments allowed the preparation of benchmark materials and demonstrated that methods to suppress the Rayleigh-Taylor instability in ground-based research did not significantly affect the molecular weight of the polymer. Experiments under weightlessness show clearly that bubbles produced during the reaction interact very differently than under 1 g.

  17. Antarctic Space Analog Program

    NASA Technical Reports Server (NTRS)

    Palinkas, Lawrence A; Gunderson, E. K. Eric; Johnson, Jeffrey C.; Holland, Albert W.

    1998-01-01

    The primary aim of this project was to examine group dynamics and individual performance in extreme, isolated environments and identify human factors requirements for long-duration space missions using data collected in an analog environment. Specifically, we wished to determine: 1) the characteristics of social relations in small groups of individuals living and working together in extreme, isolated environments, and 2) the environmental, social and psychological determinants of performance effectiveness in such groups. These two issues were examined in six interrelated studies using data collected in small, isolated research stations in Antarctica from 1963 to the present. Results from these six studies indicated that behavior and performance on long-duration space flights is likely to be seasonal or cyclical, situational, social, and salutogenic in nature. The project responded to two NASA program emphases for FY 1997 as described in the NRA: 1) the primary emphasis of the Behavior and Performance Program on determining long-term individual and group performance responses to space, identifying critical factors affecting those responses and understanding underlying mechanisms involved in behavior and performance, and developing and using ground-based models and analogs for studying space-related behavior and performance; and 2) the emphasis of the Data Analysis Program on extended data analysis. Results from the study were used to develop recommendations for the design and development of pre-flight crew training and in-flight psychological countermeasures for long-duration manned space missions.

  18. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ross, Howard D.; Frate, David T.; Tien, James S.; Shu, Yong

    1997-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame is used as a model combustion system, in that in microgravity it is one of the only examples of a non-propagating, steady-state, pure diffusion flame. Others have used the candle to study a number of combustion phenomena including flame flicker, flame oscillations, electric field effects and enhanced and reduced gravitational effects in flames. The present work is a continuation of a small-scale Shuttle experiment on candle flames. That study showed that the candle flame lifetimes were on the order of 40 seconds, the flames were dim blue after a transient ignition period, and that just prior to extinction the flames oscillated spontaneously for about five seconds at a frequency of 1 Hz. The authors postulated that the gas phase in the immediate vicinity of the flame was quasi-steady. Further away from the flame, however, the assertion of a quasi-steady flame was less certain, thus the authors did not prove that a steady flame could exist. They also speculated that the short lifetime of the candle flame was due to the presence of the small, weakly perforated box that surrounded the candle. The Candle Flames in Microgravity (CFM) experiment, with revised hardware, was recently flown aboard the Mir orbiting station, and conducted inside the glovebox facility by Dr. Shannon Lucid. In addition to the purposes described above, the experiments were NASA's first ability to ascertain the merits of the Mir environment for combustion science studies. In this article, we present the results of that experiment. We are also in the process

  19. Aseptic technique in microgravity.

    PubMed

    McCuaig, K

    1992-11-01

    Within the next decade, the United States will launch a space station into low Earth orbit as a preliminary step toward a manned mission to Mars. Provision of asepsis in the unique microgravity environment, essential in operative and invasive procedures, is addressed. An assessment of conventional terrestrial aseptic methods and possible modifications for a microgravity environment was done during the microgravity portion of parabolic flight on NASA KC-135 aircraft. During 110 parabolas on three flight days, a "surgical team" (surgeon, scrub nurse and circulating nurse) using a life size mannequin fastened to a prototype surgical "work station" (operating table), evaluated open and closed gloving (ten parabolas), skin preparation (six parabolas), surgical scrub methods (24 parabolas), gowning (22 parabolas) and draping (48 parabolas). Evaluated were povidone iodine solution, 1 percent povidone iodine detergent, Chloroxylenol with detergent, wet prep soap sponge, a water insoluble iodophor polymer (DuraPrep, 3M), disposable towels, disposable and reusable gowns, large and small disposable drapes with and without adhesive edges, disposable latex surgeon's gloves with and without packaging modifications and restraint mechanisms (tether, swiss seat, waist and foot restraint devices, fairfield and wire clamps and clips). Ease of use, provision of restraint for supplies and personnel and waste disposal were assessed. The literature was reviewed and its relevance to the space environment discussed, including risk factors, environmental contamination, immune status and microbiology. The microgravity environment, limited water supply and restricted operating area mandated that modifications of fabrication and packaging of supplies and technique be made to create and preserve asepsis. Material must meet stringent flammability and off-gassing standards. Either a chlorhexidine or povidone iodine detergent prepackaged brush and sponge would provide an adequate scrub plus

  20. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  1. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    1980-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  2. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  3. An experimental system for determining the influence of microgravity on B lymphocyte activation and cell fusion

    NASA Technical Reports Server (NTRS)

    Sammons, D. W.; Humphreys, R. C.; Emmons, S. P.; Zimmermann, U.; Gessner, P.; Klinman, N. R.; Neil, G. A.

    1992-01-01

    The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of ground-based technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, mitogen-driven B lymphocyte stimulation and culture were adapted that allow for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. It is believed that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bioseparation.

  4. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  5. Detection of the quantity of kinesin and microgravity-sensitive kinesin genes in rat bone marrow stromal cells grown in a simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Ni, Chengzhi; Wang, Chunyan; Li, Yuan; Li, Yinghui; Dai, Zhongquan; Zhao, Dongming; Sun, Hongyi; Wu, Bin

    2011-06-01

    Kinesin and kinesin-like proteins (KLPs) constitute a superfamily of microtubule motor proteins found in all eukaryotic organisms. Members of the kinesin superfamily are known to play important roles in many fundamental cellular and developmental processes. To date, few published studies have reported on the effects of microgravity on kinesin expression. In this paper, we describe the expression pattern and microgravity-sensitive genes of kinesin in rat bone marrow stromal cells cultured in a ground-based rotating bioreactor. The quantity of kinesin under the clinorotation condition was examined by immunoblot analysis with anti-kinesin. Furthermore, the distribution of kinesin at various times during clinorotation was determined by dual immunostaining, using anti-kinesin monoclonal antibody or anti-β-tubulin monoclonal antibody. In terms of kinesin quantity, we found that the ratios of the amounts of clinorotated/stationary KLPs decreased from clinorotation day 5 to day 10, although it increased on days 2 and 3. Immunofluorescence analysis revealed that kinesin in the nucleus was the first to be affected by simulated microgravity, following the kinesin at the periphery that was affected at various times during clinorotation. Real-time RT-PCR analysis of kinesin mRNA expression was performed and led to the identification of 3 microgravity-sensitive kinesin genes: KIF9, KIFC1, and KIF21A. Our results suggest that kinesin has a distinct expression pattern, and the identification of microgravity-sensitive kinesin genes offers insight into fundamental cell biology.

  6. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  7. Directional Solidification of Mercury Cadmium Telluride in Microgravity

    NASA Technical Reports Server (NTRS)

    Lechoczhy, Sandor L.; Gillies, Donald C.; Szofran, Frank R.; Watring, Dale A.

    1998-01-01

    Mercury cadmium telluride (MCT) has been directionally solidified for ten days in the Advanced Automated Directional Solidification Furnace (AADSF) on the second United States Microgravity Payload Mission (USMP-2). A second growth experiment is planned for the USMP-4 mission in November 1997. Results from USMP-2 demonstrated significant changes between microgravity and ground-based experiments, particularly in the compositional homogeneity. Changes were also observed during the microgravity mission which were dependent on the attitude of the space shuttle and the relative magnitudes of axial and transverse residual accelerations with respect to the growth axis of the crystal. Issues of shuttle operation, especially those concerned with safety and navigation, and the science needs of other payloads dictated the need for changes in attitude. One consequence for solidification of MCT in the USMP4 mission is the desire for a shorter growth time to complete the experiment without subjecting the sample to shuttle maneuvers. By using a seeded technique and a pre-processed boule of MCT with an established diffusion layer quenched into the solid, equilibrium steady state growth can be established within 24 hours, rather than the three days needed in USMP-2. The growth of MCT in AADSF during the USMP-4 mission has been planned to take less than 72 hours with 48 hours of actual growth time. A review of the USMP-2 results will be presented, and the rationale for the USMP-4 explained. Pre-mission ground based tests for the USN4P-4 mission will be presented, as will any available preliminary flight results from the mission.

  8. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  9. Ground-based observations of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.

    2015-10-01

    I will described the campaign of observations from ground-based (and Earth orbiting) telescopes that supports the Rosetta mission. Rosetta gets closer to the nucleus than any previous mission, and returns wonderfully detailed measurements from the heart of the comet, but at the cost of not seeing the large scale coma and tails. The ground-based campaign fills in the missing part of the picture, studying the comet at #1000km resolution, and following how the overall activity of the comet varies. These data provide context information for Rosetta, so changes in the inner coma seen by the spacecraft can be correlated with the phenomena observable in comets. This not only helps to complete our understanding of the activity of 67P, but also allows us to compare it with other comets that are only observed from the ground, and in that way extend the results of the Rosetta mission to the wider population. The ground-based campaign includes observations with nearly all major facilities world-wide. In 2014 the majority of data came from the ESO VLT, as the comet was still relatively faint and in Southern skies, but as it returns to visibility from Earth in 2015 it will be considerably brighter, approaching its perihelion in August, and at Northern declinations. I will show results from the 2014 campaign, including visible wavelength photometry and spectroscopy, and the latest results from early 2015 observations. I will also describe the varied observations that will be included in the campaign post-perihelion, and how all of these results fit around what we are learning about 67P from Rosetta.

  10. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    NASA Technical Reports Server (NTRS)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  11. Data Management for Ground-Based Science Surveys at CASU

    NASA Astrophysics Data System (ADS)

    Irwin, Mike

    2015-12-01

    In this talk I will review the data management facilities at CASU for handling large scale ground-based imaging and spectroscopic surveys. The overarching principle for all science data processing at CASU is to provide an end-to-end system that attempts to deliver fully calibrated optimally extracted data products ready for science use. The talk will outline our progress in achieving this and how end users visualize the state-of-play of the data processing and interact with the final products via our internal data repository.

  12. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, B.K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  13. Asteroseismology: Ground based efforts and the need for space observations

    NASA Technical Reports Server (NTRS)

    Gilliland, Ronald L.

    1994-01-01

    Detection of the oscillations expected to be present on solar-like stars is very difficult. Photometric observations from the ground suffer from two problems: (1) an atmospheric scintillation noise that drops only slowly with telescope aperture size, and (2) mode frequency spacings that require nearly continuous observations over at least several days for resolution. I will review the very limited possibilities for asteroseismology of solar-like stars from ground-based photometric observations. FRESIP could provide an excellent opportunity for pursuing asteroseismology observations of a far richer nature than can be contemplated from the ground.

  14. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Plasma volume is reduced by 10-20% within 24-48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced maximal oxygen uptake (VO2max) after return to one gravity (1G). Since there is no evidence to suggest that plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual space flight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a "resetting" to a lower operating point, which acts to limit plasma volume expansion during attempts to increase fluid intake. In ground based and space flight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline IG operating point. Fluid-loading and lower body negative pressure (LBNP) have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other hand, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective counter measures for the control of plasma volume in microgravity and during return to IG will depend upon testing that can be conducted under standardized controlled baseline conditions during both ground-based and space

  15. An infrared system for monitoring Drosophila motility during microgravity.

    PubMed

    Miller, Mark S; Fortney, Michael D; Keller, Tony S

    2002-12-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket. PMID:14638462

  16. Resistance to chemical disinfection under conditions of microgravity

    NASA Astrophysics Data System (ADS)

    Marchin, George L.

    1998-01-01

    In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700®), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

  17. An infrared system for monitoring Drosophila motility during microgravity

    NASA Technical Reports Server (NTRS)

    Miller, Mark S.; Fortney, Michael D.; Keller, Tony S.

    2002-01-01

    Presently, the precise mechanisms of the aging process are unknown. Examination and comprehension of the aging process in other species could lead to significant advances in the understanding of human aging. Drosophila melanogaster (fruit fly), commonly used for aging studies, is a widely studied organism in terms of behavior, development, and genetics. Previous microgravity experiments have shown a significant decrease in the life span of young male Drosophila after microgravity exposure. This decrease in lifespan may be related to locomotor activity, a convenient measure of overall physiological performance. This study describes the design and performance of a Drosophila Infrared Motility Monitoring System (DIMMS). The DIMMS uses a unique design of two infrared (IR) beams per fly to measure the locomotor activity of 240 flies. Locomotor activity is measured in terms of number of IR crossings per unit time, instantaneous velocity, and continuous velocity. Ground-based results using the DIMMS equipment agree well with previous values for Drosophila locomotor velocity. DIMMS is an improvement over equipment previously used due to its ability to continuously monitor locomotor activity throughout short-duration microgravity exposure. DIMMS is also lightweight, compact, and power efficient. DIMMS has been flight tested onboard NASA's KC-135 reduced gravity research aircraft and a Nike-Orion sounding rocket.

  18. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  19. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel

    1992-01-01

    The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.

  20. Countermeasures to microgravity

    NASA Technical Reports Server (NTRS)

    Luttges, Marvin W.

    1989-01-01

    Biological systems ranging from the most simple to the most complex generally survive exposure to microgravity. Changes in many characteristics of biological systems are well documented as a consequence of space flight. Attempts to devise countermeasures to microgravity may have direct pragmatic consequences for crew protection and may provide additional insights into the nature of microgravity influences on biological systems. Some of the most well documented changes occur in humans who have experienced space flight. Changes appear to be transient. Space adaption syndrome occurs relatively briefly whereas bone deterioration may require months of postflight time for restoration. It seems critical to recognize that these changes and others may derive from rather passive, active or even reactive changes in the biological systems that are hosts to them. For example, hydrostatic fluid redistributions may be quite passive occurrences that are realized through extensive fluid channels. Changes occur in cell metabolism because of fluid, nutrient and gas redistributions. Equally important are the misconstrued messages likely to be carried by fluid redistributions. These reactive events can trigger, for example, loss of fluids and electrolytes through altered kidney function. Each of these considerations must be evaluated in regard to the biological site affected. Countermeasures to the vast range of biological changes and sites are difficult to envision. The most obvious countermeasure is the restoration of gravity-like influences. Some options are discussed. Recent work has focussed on the use of magnetic fields. Pulsed electromagnetic fields (PEMF) are shown to alleviate bone deterioration produced in rodents exposed to tail suspension. Methods of PEMF exposure are consistent with human use in space. Related methods may provide muscular and neural benefits.

  1. Pulmonary function in microgravity

    NASA Technical Reports Server (NTRS)

    Guy, H. J.; Prisk, G. K.; West, J. B.

    1992-01-01

    We report the successful collection of a large quantity of human resting pulmonary function data on the SLS-1 mission. Preliminary analysis suggests that cardiac stroke volumes are high on orbit, and that an adaptive reduction takes at least several days, and in fact may still be in progress after 9 days on orbit. It also suggests that pulmonary capillary blood volumes are high, and remain high on orbit, but that the pulmonary interstitium is not significantly impacted. The data further suggest that the known large gravitational gradients of lung function have only a modest influence on single breath tests such as the SBN washout. They account for only approximately 25% of the phase III slope of nitrogen, on vital capacity SBN washouts. These gradients are only a moderate source of the cardiogenic oscillations seen in argon (bolus gas) and nitrogen (resident gas), on such tests. They may have a greater role in generating the normal CO2 oscillations, as here the phase relationship to argon and nitrogen reverses in microgravity, at least at mid exhalation in those subjects studied to date. Microgravity may become a useful tool in establishing the nature of the non-gravitational mechanisms that can now be seen to play such a large part in the generation of intra-breath gradients and oscillations of expired gas concentration. Analysis of microgravity multibreath nitrogen washouts, single breath washouts from more physiological pre-inspiratory volumes, both using our existing SLS-1 data, and data from the upcoming D-2 and SLS-2 missions, should be very fruitful in this regard.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Electrocrystallization in microgravity

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1986-01-01

    Electrocrystallization under microgravity conditions is proposed as a potential method of crystallization that would be almost completely free of fluid convection. Such crystallization may result in purer, more perfect, and larger crystals than is possible under normal gravity conditions. Observations made and data collected during the crystallization process under convection-free conditions should add to our knowledge of the crystallization process. The proposed method would allow easy comparison of crystals growth in space with those grown under normal gravity conditions. Nine types of electrocrystallization are presented: an example of each is discussed. Electrocrystallization is compared with the compartmental crystallization method used by 3M Corporation in recent shuttle experiments.

  3. Microgravity and Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  4. Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI.

    PubMed

    Marshall-Goebel, Karina; Ambarki, Khalid; Eklund, Anders; Malm, Jan; Mulder, Edwin; Gerlach, Darius; Bershad, Eric; Rittweger, Jörn

    2016-06-15

    Alterations in cerebral hemodynamics in microgravity are hypothesized to occur during spaceflight and could be linked to the Visual Impairment and Intracranial Pressure syndrome. Head-down tilt (HDT) is frequently used as a ground-based analog to simulate cephalad fluid shifts in microgravity; however, its effects on cerebral hemodynamics have not been well studied with MRI techniques. Here, we evaluate the effects of 1) various HDT angles on cerebral arterial and venous hemodynamics; and 2) exposure to 1% CO2 during an intermediate HDT angle (-12°) as an additional space-related environmental factor. Blood flow, cross-sectional area (CSA), and blood flow velocity were measured with phase-contrast MRI in the internal jugular veins, as well as the vertebral and internal carotid arteries. Nine healthy male subjects were measured at baseline (supine, 0°) and after 4.5 h of HDT at -6°, -12° (with and without 1% CO2), and -18°. We found a decrease in total arterial blood flow from baseline during all angles of HDT. On the venous side, CSA increased with HDT, and outflow decreased during -12° HDT (P = 0.039). Moreover, the addition of 1% CO2 to -12° HDT caused an increase in total arterial blood flow (P = 0.016) and jugular venous outflow (P < 0.001) compared with -12° HDT with ambient atmosphere. Overall, the results indicate decreased cerebral blood flow during HDT, which may have implications for microgravity-induced cerebral hemodynamic changes. PMID:27013606

  5. Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI

    PubMed Central

    Ambarki, Khalid; Eklund, Anders; Malm, Jan; Mulder, Edwin; Gerlach, Darius; Rittweger, Jörn

    2016-01-01

    Alterations in cerebral hemodynamics in microgravity are hypothesized to occur during spaceflight and could be linked to the Visual Impairment and Intracranial Pressure syndrome. Head-down tilt (HDT) is frequently used as a ground-based analog to simulate cephalad fluid shifts in microgravity; however, its effects on cerebral hemodynamics have not been well studied with MRI techniques. Here, we evaluate the effects of 1) various HDT angles on cerebral arterial and venous hemodynamics; and 2) exposure to 1% CO2 during an intermediate HDT angle (−12°) as an additional space-related environmental factor. Blood flow, cross-sectional area (CSA), and blood flow velocity were measured with phase-contrast MRI in the internal jugular veins, as well as the vertebral and internal carotid arteries. Nine healthy male subjects were measured at baseline (supine, 0°) and after 4.5 h of HDT at −6°, −12° (with and without 1% CO2), and −18°. We found a decrease in total arterial blood flow from baseline during all angles of HDT. On the venous side, CSA increased with HDT, and outflow decreased during −12° HDT (P = 0.039). Moreover, the addition of 1% CO2 to −12° HDT caused an increase in total arterial blood flow (P = 0.016) and jugular venous outflow (P < 0.001) compared with −12° HDT with ambient atmosphere. Overall, the results indicate decreased cerebral blood flow during HDT, which may have implications for microgravity-induced cerebral hemodynamic changes. PMID:27013606

  6. Ground-based visual inspection for CTBT verification

    SciTech Connect

    Hawkins, W.; Wohletz, K.

    1997-11-01

    Ground-based visual inspection will play an essential role in On-Site Inspection (OSI) for Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection will greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can ground-based visual inspection offer effective documentation in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending state may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection. The inspections will be carried out by inspectors from members of the CTBT Organization.

  7. Mitigating ground-based sensor failures with video motion detection

    NASA Astrophysics Data System (ADS)

    Macior, Robert E.; Knauth, Jonathan P.; Walter, Sharon M.; Evans, Richard

    2008-10-01

    Unattended Ground Sensor (UGS) systems typically employ distributed sensor nodes utilizing seismic, magnetic or passive IR sensing modalities to alarm if activity is present. The use of an imaging component to verify sensor events is beneficial to create actionable intelligence. Integration of the ground-based images with other ISR data requires that the images contain valid activity and are appropriately formatted, such as prescribed by Standard NATO Agreement (STANAG) 4545 or the National Imagery Transmission Format, version 2.1 (NITF 2.1). Ground activity sensors suffer from false alarms due to meteorological or biological activity. The addition of imaging allows the analyst to differentiate valid threats from nuisance alarms. Images are prescreened based on target size and temperature difference relative to the background. The combination of video motion detection based on thermal imaging with seismic, magnetic or passive IR sensing modalities improves data quality through multi-phenomenon combinatorial logic. The ground-based images having a nominally vertical aspect are transformed to the horizontal geospatial domain for exploitation and correlation of UGS imagery with other ISR data and for efficient archive and retrieval purposes. The description of an UGS system utilized and solutions that were developed and implemented during an experiment to correlate and fuse IR still imagery with ground moving target information, forming real-time, actionable, coalition intelligence, are presented.

  8. Light pollution simulations for planar ground-based light sources.

    PubMed

    Kocifaj, Miroslav

    2008-02-20

    The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages). PMID:18288228

  9. Ground-based solar astrometric measurements during the PICARD mission

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.

    2011-11-01

    PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.

  10. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  11. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  12. THEMIS Ground Based Magnetometers and the Involvement of GEONS Schools

    NASA Astrophysics Data System (ADS)

    Craig, N.; Peticolas, L.; Shutkin, A.; Dearborn, D.; Pierce, D.; Odenwald, S.; Orr, L.; Gehman, W.; Dewolf, C.; Walker, A.

    2005-05-01

    The THEMIS Education and Public Outreach team selected ten ground-based magnetometer stations each located in the proximity of a rural school in traditionally under-served, under-represented communities from Alaska to Vermont. These `ground based magnetometer' observatories will assist the THEMIS Mission's five identical satellites, called probes, when they are launched in the fall of 2006. The five probes, placed in strategic locations in Earth's magnetosphere, will help to determine the onset of auroral substorms. A teacher at each of these schools is responsible for their magnetometer data and system as well as using the data with their students through lesson plans developed collaboratively with the E/PO team. The network of teachers, students, and magnetometers together with other students who participate in monitoring the geomagnetic disturbances using the web is called the Geomagnetic Event Observation Network by Students (GEONS). We will report specific contributions to the project from the Oregon, South Dakota and Michigan GEONS teachers. We have installed five magnetometers during the Fall of 2004, and will be installing the remaining five in the Spring of 2005, and have started to display the data from the first five schools on the web. We will describe the pedagogical challenges of bringing understanding of the physics behind the THEMIS science which requires some understanding of magnetic fields, charged particles, forces, motions, and energy to middle school and high school classrooms. We will also include the formative evaluation results to date.

  13. Parabolic flight as a spaceflight analog.

    PubMed

    Shelhamer, Mark

    2016-06-15

    Ground-based analog facilities have had wide use in mimicking some of the features of spaceflight in a more-controlled and less-expensive manner. One such analog is parabolic flight, in which an aircraft flies repeated parabolic trajectories that provide short-duration periods of free fall (0 g) alternating with high-g pullout or recovery phases. Parabolic flight is unique in being able to provide true 0 g in a ground-based facility. Accordingly, it lends itself well to the investigation of specific areas of human spaceflight that can benefit from this capability, which predominantly includes neurovestibular effects, but also others such as human factors, locomotion, and medical procedures. Applications to research in artificial gravity and to effects likely to occur in upcoming commercial suborbital flights are also possible. PMID:26796759

  14. Analog earthquakes

    SciTech Connect

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  15. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart.

    PubMed

    Fuentes, Tania I; Appleby, Nancy; Raya, Michael; Bailey, Leonard; Hasaniya, Nahidh; Stodieck, Louis; Kearns-Jonker, Mary

    2015-01-01

    Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05). Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation). These microRNAs were unchanged in adult cardiac progenitors. The effect of

  16. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  17. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  18. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  19. Simulating regoliths in microgravity

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Rozitis, B.; Green, S. F.; Michel, P.; de Lophem, T.-L.; Losert, W.

    2013-07-01

    Despite their very low surface gravities, the surfaces of asteroids and comets are covered by granular materials - regolith - that can range from a fine dust to a gravel-like structure of varying depths. Understanding the dynamics of granular materials is, therefore, vital for the interpretation of the surface geology of these small bodies and is also critical for the design and/or operations of any device planned to interact with their surfaces. We present the first measurements of transient weakening of granular material after shear reversal in microgravity as well as a summary of experimental results recently published in other journals, which may have important implications for small-body surfaces. Our results suggest that the force contact network within a granular material may be weaker in microgravity, although the influence of any change in the contact network is felt by the granular material over much larger distances. This could mean that small-body surfaces are even more unstable than previously imagined. However, our results also indicate that the consequences of, e.g., a meteorite impact or a spacecraft landing, may be very different depending on the impact angle and location, and depending on the prior history of the small-body surface.

  20. Microgravity and the lung.

    PubMed

    Prisk, G K

    2000-07-01

    Although environmental physiologists are readily able to alter many aspects of the environment, it is not possible to remove the effects of gravity on Earth. During the past decade, a series of space flights were conducted in which comprehensive studies of the lung in microgravity (weightlessness) were performed. Stroke volume increases on initial exposure to microgravity and then decreases as circulating blood volume is reduced. Diffusing capacity increases markedly, due to increases in both pulmonary capillary blood volume and membrane diffusing capacity, likely due to more uniform pulmonary perfusion. Both ventilation and perfusion become more uniform throughout the lung, although much residual inhomogeneity remains. Despite the improvement in the distribution of both ventilation and perfusion, the range of the ventilation-to-perfusion ratio seen during a normal breath remains unaltered, possibly because of a spatial mismatch between ventilation and perfusion on a small scale. There are unexpected changes in the mixing of gas in the periphery of the lung, and evidence suggests that the intrinsic inhomogeneity of the lung exists at a scale of an acinus or a few acini. In addition, aerosol deposition in the alveolar region is unexpectedly high compared with existing models. PMID:10904076

  1. Supercritical microgravity droplet vaporization

    NASA Technical Reports Server (NTRS)

    Hartfield, J.; Curtis, E.; Farrell, P.

    1990-01-01

    Supercritical droplet vaporization is an important issue in many combustion systems, such as liquid fueled rockets and compression-ignition (diesel) engines. In order to study the details of droplet behavior at these conditions, an experiment was designed to provide a gas phase environment which is above the critical pressure and critical temperature of a single liquid droplet. In general, the droplet begins as a cold droplet in the hot, high pressure environment. In order to eliminate disruptions to the droplet by convective motion in the gas, forced and natural convection gas motion are required to be small. Implementation of this requirement for forced convection is straightforward, while reduction of natural convection is achieved by reduction in the g-level for the experiment. The resulting experiment consists of a rig which can stably position a droplet without restraint in a high-pressure, high temperature gas field in microgravity. The microgravity field is currently achieved by dropping the device in the NASA Lewis 2.2 second drop tower. The performance of the experimental device and results to date are presented.

  2. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  3. Straight Ahead in Microgravity

    NASA Technical Reports Server (NTRS)

    Clement, G.; Wood, S. J.

    2011-01-01

    INTRODUCTION The subjective straight-ahead direction is a very basic perceptual reference for spatial orientation and locomotion. The perceived straight-ahead along the horizontal and vertical meridian is largely determined by both otolith and somatosensory inputs which are altered in microgravity. The Straight Ahead in Microgravity (SAM) experiment will be conducted on the International Space Station (ISS) to examine how this spatial processing changes as a function of spaceflight. METHODS Data will be collected before the flight, at one-month intervals during long-duration stay (180 days) on board ISS, and after return to Earth. Control studies will also be performed during parabolic flights. Three different protocols will be used in each test session: (1) Fixation: The subject will be asked to look at actual targets (normal vision) and then to imagine these same targets (occluded vision) in the straight-ahead direction. Targets will be located at near distance (arm s length, 0.5m), medium distance (1 m), and far distance (beyond 2 m). This task will be successively performed with subject s body aligned with the spacecraft interior, and with subject s body tilted forward and backward by an operator. (2) Saccades: The subject will be asked to make horizontal and vertical saccades, first relative to the spacecraft interior reference system, and then relative to the subject s head reference system. This task will be successively performed with subject s body aligned with the spacecraft interior, and with subject s body tilted in roll or in pitch by an operator. (3) Linear Vestibulo-Ocular Reflex (VOR): The subject will be asked to stare at actual visual targets (normal vision) at various distances (near, medium, far) in the straight-ahead direction. Vision will then be occluded, and the subject will be asked to continue staring at the same imagined targets while he/she is passively translated forward-backward, up-down, or side-to-side. The subject's body motion will

  4. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  5. Space flight nutrition research: platforms and analogs.

    PubMed

    Smith, Scott M; Uchakin, Peter N; Tobin, Brian W

    2002-10-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section. PMID:12361789

  6. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  7. Microgravity Experiment System Using Balloon

    NASA Astrophysics Data System (ADS)

    Sawai, Shujiro; Hashimoto, Tatsuaki; Sawai, Shujiro; Sakai, Shin'ichiro; Bando, Nobutaka; Kobayashi, Hiroaki; Fujita, Kazuhisa; Inatomi, Yuko; Ishikawa, Takehiko; Yoshimitsu, Tetsuo; Saito, Yoshitaka

    Balloon based system to conduct microgravity experiment was developed. This system consists of high altitude balloon, Microgravity Operation Unit for Scientific Experiment (MOUSE), and Balloon based Operation Vehicle (BOV). BOV drops from the balloon. But due to the residual air drag, BOV do not fall freely. So, MOUSE floats freely inside BOV body. BOV itself is controlled not to collide to MOUSE, and it makes the residual gravity negligible inside MOUSE. Authors have conducted the flight campaign twice to show the feasibility of this microgravity experiment system.

  8. Confocal microscopy in microgravity research

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.; Brakenhoff, G. J.; Woldringh, C. L.; Aalders, J. W. G.; Imhof, J. P.; van Kralingen, P.; Mels, W. A.; Schreinemakers, P.; Zegers, A.

    We have studied the application and the feasibility of confocal scanning laser microscopy (CSLM) in microgravity research. Its superior spatial resolution and 3D imaging capabilities and its use of light as a probe, render this instrument ideally suited for the study of living biological material on a (sub-)cellular level. In this paper a number of pertinent biological microgravity experiments is listed, concentrating on the direct observation of developing cells and cellular structures under microgravity condition. A conceptual instrument design is also presented, aimed at sounding rocket application followed by Biorack/Biolab application at a later stage.

  9. Ground-Based Experiments on Vibrational Thermal Convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Rogers, Jeffrey L.

    1999-01-01

    Ground-based experiments on g-jitter effects in fluid flow provide insight that complements both theoretical studies and space-based experiments on this problem. We report preliminary results for experiments on Rayleigh-Benard convection subjected to time-dependent accelerations on a shaker table. For sinusoidal modulation, two qualitatively different pattern forming mechanisms come into play: geometry induced wavenumber selection (as in the standard "no-shake" Rayleigh-Benard problem) and dispersion induced wavenumber selection due to parametric instability (as in the Faraday surface-wave problem). We discuss preliminary results on the competition and co-existence of patterns due to these different instability mechanisms. We also discuss the implications of this work on the general question of pattern formation in the presence of noise.

  10. The STACEE Ground-Based Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Ragan, Ken

    2002-04-01

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a ground-based instrument designed to study astrophysical sources of gamma rays in the energy range from 50 to 500 GeV using an array of heliostat mirrors at the National Solar Thermal Test Facility in New Mexico. The mirrors collect Cherenkov light generated by gamma-ray air showers and concentrate it onto cameras composed of photomultiplier tubes. The STACEE instrument is now complete, and uses a total of 64 heliostats. Prototype instruments, using smaller numbers of heliostats, have previously detected gamma emission from both the Crab Nebula and the Active Galactic Nucleus Mrk421. The complete instrument has a lower threshold -- approximately 50 GeV -- than those prototypes due to superior triggering and electronics, including flash ADCs for every channel.We will discuss the performance of the complete instrument in its first full season of operation, and present preliminary results of selected observations.

  11. Modelling atmospheric turbulence effects on ground-based telescope systems

    SciTech Connect

    Bradford, L.W.; Flatte, S.M.; Max, C.E.

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  12. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  13. Telerobotic manipulator developments for ground-based space research

    NASA Technical Reports Server (NTRS)

    Herndon, J. N.; Babcock, S. M.; Butler, P. L.; Costello, H. M.; Glassell, R. L.; Kress, Reid L.; Kuban, D. P.; Rowe, J. C.; Williams, D. M.; Meintel, A. J.

    1988-01-01

    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the National Aeronautics and Space Administration (NASA) Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Automation Technology Branch at NASA Langley Research Center currently is sponsoring the Laboratory Telerobotic Manipulator (LTM) program at Oak Ridge National Laboratory to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research.

  14. Ground-based passive FT-IR spectrometry

    NASA Astrophysics Data System (ADS)

    Knapp, Robert B.; Combs, Roger J.; Kroutil, Robert T.

    2002-02-01

    Absorbance and transmittance spectra were acquired with ground-based passive FT-IR spectrometry for industrial stack evaluations and open-air controlled vapor generation experiments. The industrial stack effluents of sulfur dioxide and nitrous oxide were detected from a coal-burning power plant and an acid plant, respectively, with both MWIR and LWIR passive sensors. The controlled open-air experiments relied on only a LWIR sensor. These experiments produced plumes of methanol and ethanol at three and four elevated plume temperatures, respectively. Various vapor concentration pathlength produces of both ethanol and methanol were generated and gravimetrically monitored in the range from 0 to 300 ppm-m. The associated absorbance values for these concentration pathlength products were found to obey Beer's Law for each elevate stack temperature of 125, 150, 175, and 200 degrees C.

  15. Successes of and prospects for ground-based interferometry

    NASA Astrophysics Data System (ADS)

    Perrier, C.

    1992-05-01

    The development of optical interferometric techniques over the past twenty years is outlined, and future objectives are discussed. These techniques, still ground based, spanning from speckle imaging to long baseline direct beam recombination and analysis, are producing more and more scientific results. New techniques, such as adaptive optics, are continuously developed to take benefit of technical progress in detectors, sensors, and real time control. Part of the most recent results is due to critical progress in the visibility calibration. The range of scientific applications is already wide with results in binary stars, circumstellar envelopes, stellar diameters, solar system bodies, some atypical sources, a few extragalactic objects, and wide angle astrometry. Additionally, a deep knowledge was acquired on the atmospheric turbulence laws. The use of interferometry in the study of binary stars, circumstellar envelopes and stellar diameters is discussed.

  16. Ground-based lidar observations of ozone aerosol and temperature

    SciTech Connect

    Heaps, W.S.

    1987-09-01

    Several theories have been proposed to explain the recently discovered, springtime ozone depletion over Antarctica, but additional data is necessary to establish what processes are producing this phenomenon. The preliminary results of the 1986-1987 National Ozone Expedition indicate that nitrogen oxides were present smaller amounts than anticipated and that chlorine compounds were more prevalent. These findings support chemical theories based on chlorine or chlorine-bromine chemical mechanisms are affecting the level of ozone in the stratosphere; however, not all climate dynamic theories are discounted by these data. The objective is to use a ground-based laser radar system (lidar) in an upward-looking mode to record ozone profiles, aerosol content, and temperature profiles. Although the system was not principally designed for these measurements, the author has modified it slightly to collect these data.

  17. Identifying Solar Analogs in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek L.; Lezcano, Andrew; Preston, Heather L.

    2014-06-01

    Since human beings live on a planet orbiting a G2 V star, to us perhaps the most intrinsically interesting category of stars about which planets have been discovered is solar analogs. While Kepler has observed more than 26000 targets which have effective temperatures within 100K of the Sun, many of these are not true solar analogs due to activity, surface gravity, metallicity, or other considerations. Here we combine ground-based measurements of effective temperature and metallicity with data on rotational periods and surface gravities derived from 16 quarters of Kepler observations to produce a near-complete sample of solar analogs in the Kepler field. We then compare the statistical distribution of stellar physical parameters, including activity level, for subsets of solar analogs consisting of KOIs and those with no detected exoplanets. Finally, we produce a list of potential solar twins in the Kepler field.

  18. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages

  19. Ground-based vicarious radiometric calibration of Terra MODIS

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.; Thome, K.

    2009-12-01

    Accurate radiometric calibration is required by Earth-observing systems to ensure that the derived data products are of the highest quality. Preflight calibration is used as a baseline to understand the system before it is launched on orbit, while post-launch calibration is used to understand changes that may have occurred due to the nature of launching an instrument into space. On-orbit radiometric calibration ensures that changes in the system, including any onboard calibration sources, can be monitored. The Remote Sensing Group at the University of Arizona has been directly involved in the ground-based vicarious calibration of both Terra and Aqua MODIS since their respective launches in 1999 and 2002. RSG personnel are present at a test site during sensor overpass, and surface reflectance and atmospheric attenuation measurements are used as inputs to a radiative transfer code to determine the top-of-atmosphere radiance for the sensor under test. In the case of Terra MODIS, a 1-km2 site at Railroad Valley, Nevada, is used as a test site. This work presents results obtained using the reflectance-based approach at RSG’s Railroad Valley test site. Results from 10 years of in situ data collection at Railroad Valley show a percent difference in the seven land spectral channels between RSG and Terra MODIS ranging from 1.6 % in channel 6 (1632 nm), to 5.1% in channel 4 (553 nm). The average percent difference for Terra MODIS’s seven land channels and RSG is 3.5%. The uncertainty is within the 3-5% predicted for ground-based vicarious calibration.

  20. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  1. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.

    PubMed

    McCall, Corey; Rostosky, Rea; Wiard, Richard M; Inan, Omer T; Giovangrandi, Laurent; Cuttino, Charles Marsh; Kovacs, Gregory T A

    2015-08-01

    The use of a noninvasive hemodynamic monitor to estimate arterial stiffness, by measurement of pulse transit time (PTT), was demonstrated in microgravity. The monitor's utility for space applications was shown by establishing the correlation between ground-based and microgravity-based measurements. The system consists of a scale-based ballistocardiogram (BCG) and a toe-mounted photoplethysmogram (PPG). PTT was measured from the BCG I-wave to the intersecting tangents of the first trough and maximum first derivative of the PPG waveforms of each subject. The system was tested on a recent series of parabolic flights in which the PTT of nine subjects was measured on the ground and in microgravity. An average of 60.2 ms PTT increase from ground to microgravity environments was shown, and was consistent across all test subjects (standard deviation = 32.9 ms). This increase in PTT could be explained by a number of factors associated with microgravity and reported in previous research, including elimination of hydrostatic pressure, reduction of intrathoracic pressure, and reduction of mean arterial pressure induced by vasodilation. PMID:26737764

  2. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    PubMed

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects. PMID:24903274

  3. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  4. Straight Ahead in Microgravity

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Clement, G.

    2014-01-01

    This joint ESA-NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead, and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This project specifically addresses the sensorimotor research gap "What are the changes in sensorimotor function over the course of a mission?" Six ISS crewmembers will be requested to participate in three preflight sessions (between 120 and 60 days prior to launch) and then three postflight sessions on R+0/1 day, R+4 +/-2 days, and R+8 +/-2 days. The three specific aims include: (a) fixation of actual and imagined target locations at different distances; (b) directed eye and arm movements along different spatial reference frames; and (c) the vestibulo-ocular reflex during translation motion with fixation targets at different distances. These measures will be compared between upright and tilted conditions. Measures will then be compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the straight-ahead direction. The flight study was been approved by the medical review boards and will be implemented in the upcoming Informed Crew Briefings to solicit flight subject participation. Preliminary data has been recorded on 6 subjects during parabolic flight to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. During some parabolas, a vibrotactile sensory aid provided

  5. First International Microgravity Laboratory

    NASA Astrophysics Data System (ADS)

    McMahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  6. First International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    1990-01-01

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  7. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  8. Minor surgery in microgravity

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Krupa, Debra T.; Stonestreet, Robert; Kizzee, Victor D.

    1991-01-01

    The purpose is to investigate and demonstrate equipment and techniques proposed for minor surgery on Space Station Freedom (SSF). The objectives are: (1) to test and evaluate methods of surgical instrument packaging and deployment; (2) to test and evaluate methods of surgical site preparation and draping; (3) to evaluate techniques of sterile procedure and maintaining sterile field; (4) to evaluate methods of trash management during medical/surgical procedures; and (4) to gain experience in techniques for performing surgery in microgravity. A KC-135 parabolic flight test was performed on March 30, 1990 with the goal of investigating and demonstrating surgical equipment and techniques under consideration for use on SSF. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola.

  9. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  10. Liposome formation in microgravity

    NASA Astrophysics Data System (ADS)

    Claassen, D. E.; Spooner, B. S.

    Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.

  11. Triptycene analogs

    NASA Technical Reports Server (NTRS)

    Hua, Duy (Inventor); Perchellet, Jean-Pierre (Inventor)

    2004-01-01

    This invention provides analogs of triptycene which are useful as anticancer drugs, as well as for other uses. The potency of these compounds is in a similar magnitude as daunomycin, a currently used anticancer drug. Each compound of the invention produces one or more desired effects (blocking nucleoside transport, inhibiting nucleic acid or protein syntheses, decreasing the proliferation and viability of cancer cells, inducing DNA fragmentation or retaining their effectiveness against multidrug-resistant tumor cells).

  12. Microwave Dielectrophoretic Levitation In Microgravity

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.; Barmatz, Martin B.

    1993-01-01

    Two reports propose use of dielectrophoresis in microwave resonant cavities to levitate samples of materials for containerless processing in microgravity in vacuum or in any suitable atmosphere. Also describe experiments undertaken to verify feasibility of proposal.

  13. Microgravity Program strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.

  14. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Don Gillies, a materials scientist at NASA/Marshall Space Flight Center (MSFC), demonstrates the classroom-size Microgravity Drop Tower Demonstrator. The apparatus provides 1/6 second of microgravity for small experiments. A video camera helps teachers observe what happens inside the package. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  15. Students Observe Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    High school students observe the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 (USMP-4) mission (STS-87, Nov. 19 - Dec. 5, 1997) at the IDGE Remote Operations Control Center (ROCC) at Rensselaer Polytechnic Institute (RPI) in Troy, NY. As part of the its outreach activity, the experiment team set up the center so students and the public could observe IDGE in progress and learn more about space and microgravity research. Phot credit: RPI

  16. Students Observe Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    High school students observe the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 mission (STS-87, Nov. 19 - Dec. 5, 1997) at the IDGE Remote Operations Control Center (ROCC) at Rensselaer Polytechnic Institute (RPI) in Troy, NY. As part of the its outreach activity, the experiment team set up the center so students and the public could observe IDGE in progress and learn more about space and microgravity research. Photo credit: RPI

  17. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  18. Vitamin K Status in Spaceflight and Ground-Based Models of Spaceflight

    PubMed Central

    Zwart, Sara R; Booth, Sarah L; Peterson, James W; Wang, Zuwei; Smith, Scott M

    2011-01-01

    Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a variety of spaceflight and spaceflight analog (model) conditions, including long-duration spaceflight studies (n = 15), three bed rest studies (n = 15, 49, and 24), and a 14-day saturation dive (n= 6). In crew members who flew 2–6 months on the International Space Station, in-flight and postflight plasma phylloquinone concentrations were unchanged from the preflight mean. Consistent with this finding, urinary γ-carboxyglutamic acid (GLA), a measure of vitamin K-dependent protein turnover, did not change in response to flight. Serum undercarboxylated osteocalcin (%ucOC), a measure of vitamin K function, was generally unchanged in response to flight. Spaceflight findings were corroborated by findings of no changes in phylloquinone, urinary GLA, or %ucOC during or after bed rest in three separate bed rest studies (21–90 days in duration) or after a 14-day saturation dive. The data presented here do not support either a need for vitamin K supplementation during spaceflight or the suggestion of using vitamin K as a bone loss countermeasure in spaceflight. © 2011 American Society for Bone and Mineral Research. PMID:21541997

  19. Microgravity science and applications overview - Research, facility and instrumentation development, Space Station Freedom operations and utilization planning

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.

    1990-01-01

    An overview is provided of NASA's Microgravity Science and Applications Program, with emphasis on plans for evolution to the Space Station. The Microgravity Science and Applications Division program consists of two major parts including the ground-based research program and the flight program. Transition to flight experiment status may occur only after the ground-based research and testing demonstrates sufficient technical maturity to assure that scientific objectives can be met in space with a high degree of success. Program strategy calls for a transition to the Space Station Freedom before the end of the century. In this connection, six multi-user facilities are planned to be phased into operation aboard the Space Station over an extended time frame. It is projected that the design of these facilities will evolve based on experience with precursor experiment hardware designed and operated on Skylab and other carriers.

  20. Perturbation in T cell signal transduction pathway in microgravity

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Yamauchi, K.; Taga, M.; Odle, J.; Sundaresan, A.; Pellis, N.

    T lymphocytes are regulatory and effector components of the immune system. It has been documented that T cell function is down regulated in microgravity of space flight and also in microgravity analogs. Lymphocyte signal transduction and the function of its effector elements are essential for proper functioning of T cells in any environment. We have shown that T cell mediated responses are down regulated in the microgravity analogs; in vivo antiorthostatic suspension mouse model as well as the in vitro culture system of Bioreactor (BIO). One of the postulated mechanisms for this effect is perturbation in signal transduction mechanisms via disruption of cytoskeleton due to the tensile force acting on cell membranes. Using BIO cultured mouse splenocytes we analyzed T cell signaling molecules associated with T cell receptor (TcR) and essential in signal transduction and cellular function. ZAP-70, a protein tyrosine kinase, is unaltered in 1g, however, is decreased 50% in the BIO at 96 hrs. SLP-76 levels drop more than 50% early in Bio samples at 24 and 48 hrs. LAT was unchanged. Once activated, ZAP-70 interacts with and phosphorylates Vav, SLP-76 and LAT proteins resulting in one of the complexs, namely SLP- 76/Vav, which putatively plays a regulatory role in TcR signal transduction pathway, perhaps via the actin cytoskeleton. Thus the decrease in SLP -76 at earlier time point could lead to ineffective recruitment and activation of cytoskeleton. Further studies are underway to delineate the mechanisms of T cell down regulation in microgravity. (Supported by NASA NCC8-168 grant, ADK)

  1. Cardiovascular effects of weightlessness and ground-based simulation

    NASA Technical Reports Server (NTRS)

    Sandler, Harold

    1988-01-01

    A large number of animal and human flight and ground-based studies were conducted to uncover the cardiovascular effects of weightlessness. Findings indicate changes in cardiovascular function during simulations and with spaceflight that lead to compromised function on reambulation and/or return to earth. This altered state termed cardiovascular deconditioning is most clearly manifest when in an erect body state. Hemodynamic parameters inidicate the presence of excessive tachnycardia, hypotension (leading to presyncope in one-third of the subjects), decreased heart volume, decreased plasma and circulating blood volumes and loss of skeletal muscle mass, particularly in the lower limbs. No clinically harmful effects were observed to date, but in-depth follow-ups were limited, as was available physiologic information. Available data concerning the causes for the observed changes indicate significant roles for mechanisms involved with body fluid-volume regulation, altered cardiac function, and the neurohumoral control of the control of the peripheral circulation. Satisfactory measures are not found. Return to preflight state was variable and only slightly dependent on flight duration. Future progress awaits availability of flight durations longer than several weeks.

  2. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    NASA Technical Reports Server (NTRS)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  3. Ground deformation from ground-based SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tarchi, Dario; Casagli, Nicola; Fortuny-Guasch, Joaquim; Guerri, Letizia; Antonello, Giuseppe; Leva, Davide

    An in-depth analysis of the last two images acquired by the ground-based interferometric synthetic aperture radar system installed on Stromboli before the 5 April 2003 explosion allowed us to detect the precursory signals of the explosion related to ground deformation. In particular, it was possible to estimate the exact time of the explosion through the time domain analysis of raw data from the radar acquisition. This was interrupted by a blackout that occurred a few seconds after the event. The explosion onset time corresponds to a clear change in the intensity of the backscattered energy, related to the dense volcanic plume emission from the Crater. In addiction, the use of a particular interferometric processing technique for the last two acquisitions, consisting of the selection of synthetic sub-apertures from the main ones and creating with these a sequence of interferograms with a higher temporal resolution, detected precursory deformations starting 2 min before the explosion. These observations indicate the occurrence of an elastic deformation of a centimeter amplitude that affected the volcanic edifice progressively from the Crater down to the Sciara del Fuoco depression.

  4. Assuring Ground-Based Detect and Avoid for UAS Operations

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganeshmadhav Jagadeesh; Berthold, Randall; Fladeland, Matthew; Storms, Bruce; Sumich, Mark

    2014-01-01

    One of the goals of the Marginal Ice Zones Observations and Processes Experiment (MIZOPEX) NASA Earth science mission was to show the operational capabilities of Unmanned Aircraft Systems (UAS) when deployed on challenging missions, in difficult environments. Given the extreme conditions of the Arctic environment where MIZOPEX measurements were required, the mission opted to use a radar to provide a ground-based detect-and-avoid (GBDAA) capability as an alternate means of compliance (AMOC) with the see-and-avoid federal aviation regulation. This paper describes how GBDAA safety assurance was provided by interpreting and applying the guidelines in the national policy for UAS operational approval. In particular, we describe how we formulated the appropriate safety goals, defined the processes and procedures for system safety, identified and assembled the relevant safety verification evidence, and created an operational safety case in compliance with Federal Aviation Administration (FAA) requirements. To the best of our knowledge, the safety case, which was ultimately approved by the FAA, is the first successful example of non-military UAS operations using GBDAA in the U.S. National Airspace System (NAS), and, therefore, the first nonmilitary application of the safety case concept in this context.

  5. Nonlinear analysis of the ground-based magnetometer network

    NASA Astrophysics Data System (ADS)

    DiTommaso, Joseph Henry

    When the first magnetometer was created by Frederick Gauss in 1833, scientists gained a powerful tool for studying the structure, dynamics, and strength of the Earth's magnetic field: the magnetosphere. Since Gauss' time, the world's scientific community has established ground-based magnetometer stations around the globe in an effort to study local and global perturbations and patterns of the Earth's magnetic field. The main focus of this network has been monitoring the magnetic flux and impact from the Sun's constant outflow of radiation and particles known as the solar wind, as well as its more violent eruptive events. There has been little work, by comparison, into the signals and correlations within the network itself. Since the Earth's field can roughly be mapped to a dipole and disturbances often have a large scale structure, one can surmise there should be some correlation between stations based on their relative positions to one another. What that correlation is or represents is not clear. To investigate this possible correlation and its nature, a set of nonlinear analytic methods were conducted on magnetic data collected from stations scattered across North America over an 18 year period. The analysis was focused on searching for spatial and temporal correlations of nonperiodic signals in the magnetometer network. The findings from that analysis suggest there exist nonlocal correlations between stations that are dependent on position, which could be useful in the development of a space weather risk assessment.

  6. Ground based studies of thermocapillary flows in levitated drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1994-01-01

    Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.

  7. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  8. Time series inversion of spectra from ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.

    2013-07-01

    Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument, which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the Onsala Space Observatory (OSO) water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.

  9. Time series inversion of spectra from ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.

    2013-02-01

    Retrieving time series of atmospheric constituents from ground-based spectrometers often requires different temporal averaging depending on the altitude region in focus. This can lead to several datasets existing for one instrument which complicates validation and comparisons between instruments. This paper puts forth a possible solution by incorporating the temporal domain into the maximum a posteriori (MAP) retrieval algorithm. The state vector is increased to include measurements spanning a time period, and the temporal correlations between the true atmospheric states are explicitly specified in the a priori uncertainty matrix. This allows the MAP method to effectively select the best temporal smoothing for each altitude, removing the need for several datasets to cover different altitudes. The method is compared to traditional averaging of spectra using a simulated retrieval of water vapour in the mesosphere. The simulations show that the method offers a significant advantage compared to the traditional method, extending the sensitivity an additional 10 km upwards without reducing the temporal resolution at lower altitudes. The method is also tested on the OSO water vapour microwave radiometer confirming the advantages found in the simulation. Additionally, it is shown how the method can interpolate data in time and provide diagnostic values to evaluate the interpolated data.

  10. Localized Surface Deformation Monitoring Applications using Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Gurnani, G.; Fallert, Z.; Gilliam, J.

    2014-12-01

    Ground based interferometric radar (GBIR) measurements of localized surface deformation may be sought-after in various geosciences applications. The University of Missouri (MU) GBIR system is highly portable; moreover, it can be removed and re-positioned at the same point with geodetic-grade precision for long-term and repeat surveys. Initial quick-look imagery at C-band and Ku-band may be viewed in near real-time at the study site. Polarimetric calibration, radiometric calibration, and time-series analysis may further enhance the imagery. The MU GBIR has demonstrated millimeter and better sensitivity to localized surface deformation. Using real-aperture imaging and precision rotation, the MU GBIR acquires data by deploying three antennas that may be mounted parallel to one another on a 1-meter high tower. During typical operation, images are acquired by azimuthally rotating the GBIR antennas about its vertical axis. During deployment, the fast imaging capabilities allow a data collect scan in about 20 seconds for a 180 degree field of view. During the 2013 and 2014 field seasons using the MU GBIR, several locations were studied. The study sites include a rockfall experiment in Colorado, several dams in Kansas and Missouri, and a rock glacier in southern Colorado. Study results and additional progress will be presented. These projects are sponsored by grants from the University of Missouri Research Board and the National Science Foundation.

  11. A design for a ground-based data management system

    NASA Technical Reports Server (NTRS)

    Lambird, Barbara A.; Lavine, David

    1988-01-01

    An initial design for a ground-based data management system which includes intelligent data abstraction and cataloging is described. The large quantity of data on some current and future NASA missions leads to significant problems in providing scientists with quick access to relevant data. Human screening of data for potential relevance to a particular study is time-consuming and costly. Intelligent databases can provide automatic screening when given relevent scientific parameters and constraints. The data management system would provide, at a minimum, information of availability of the range of data, the type available, specific time periods covered together with data quality information, and related sources of data. The system would inform the user about the primary types of screening, analysis, and methods of presentation available to the user. The system would then aid the user with performing the desired tasks, in such a way that the user need only specify the scientific parameters and objectives, and not worry about specific details for running a particular program. The design contains modules for data abstraction, catalog plan abstraction, a user-friendly interface, and expert systems for data handling, data evaluation, and application analysis. The emphasis is on developing general facilities for data representation, description, analysis, and presentation that will be easily used by scientists directly, thus bypassing the knowledge acquisition bottleneck. Expert system technology is used for many different aspects of the data management system, including the direct user interface, the interface to the data analysis routines, and the analysis of instrument status.

  12. Ground-based gravitational-wave detection: now and future

    NASA Astrophysics Data System (ADS)

    Whitcomb, Stanley E.

    2008-06-01

    In the past three years, the first generation of large gravitational-wave interferometers has begun operation near their design sensitivities, taking up the mantle from the bar detectors that pioneered the search for the first direct detection of gravitational waves. Even as the current ground-based interferometers were reaching their design sensitivities, plans were being laid for the future. Advances in technology and lessons learned from the first generation devices have pointed the way to an order of magnitude improvement in sensitivity, as well as expanded frequency ranges and the capability to tailor the sensitivity band to address particular astrophysical sources. Advanced cryogenic acoustic detectors, the successors to the current bar detectors, are being researched and may play a role in the future, particularly at the higher frequencies. One of the most important trends is the growing international cooperation aimed at building a truly global network. In this paper, I survey the state of the various detectors as of mid-2007, and outline the prospects for the future.

  13. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  14. Spatial mapping of ground-based observations of total ozone

    NASA Astrophysics Data System (ADS)

    Chang, K.-L.; Guillas, S.; Fioletov, V. E.

    2015-10-01

    Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.

  15. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    NASA Astrophysics Data System (ADS)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  16. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    SciTech Connect

    Chiara, P.; Morelli, A.

    2010-05-28

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  17. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  18. Polarimetric Ground Based Interferometric Radar for Surface Deformation Mapping

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Deng, H.; Held, B.; Jenkins, W.

    2011-12-01

    Ground based interferometric radar (GBIR) measurements of surface deformation at sub-millimeter sensitivity may be desirable for a number of earth science applications including terrain mapping and monitoring of landslide movements. Through University of Missouri (MU) led efforts, a portable polarimetric GBIR has been developed for surface deformation mapping. Fully polarimetric capabilities allow the application of polarimetric interferometry, scatterer decomposition, and other advanced polarimetric methods. Using open literature techniques, polarimetric calibration and absolute radiometric calibration using known targets may be performed. The MU GBIR radiates electromagnetic waves at a number of free space wavelengths including C-band approximately 5.7 cm and Ku-band about 1.8 cm. The initial mechanical deployment setup time is typically about 10 minutes. For image formation, the MU GBIR employs azimuth scanning, which may collect data for a single pass interferogram in 20 seconds for a 180 degree azimuth sweep. Initial inteferograms may be formed at the deployment site in near real time. Moreover, the MU GBIR can be removed and re-positioned at the same point with relatively high (geodetic-grade) precision. A number of field experiments have been performed at various sites using the system. Demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed at a test site using the MU GBIR. Study results and further development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  19. Future enhancements to ground-based microburst detection

    NASA Technical Reports Server (NTRS)

    Campbell, Steven D.; Matthews, Michael P.; Dasey, Timothy J.

    1994-01-01

    This set of viewgraphs presents the results of the Cockpit Weather Information (CWI) program at M.I.T. Lincoln Laboratory. The CWI program has been funded through NaSA Langley Research Center by the joint NASA/FAA Integrated Airborne Wind Shear Program for the past four years. During this time, over 120 microburst penetrations by research aircraft have been conducted under Terminal Doppler Weather Radar (TDWR) testbed radar surveillance at Orlando, FL. The results of these in-situ measurements have been compared with ground-based detection methods. Several valuable insights were gained from this research activity. First, it was found that the current TDWR microburst shapes do not permit accurate characterization of microburst hazard in terms of the F factor hazard index, because they are based on loss value rather than shear. Second, it was found that the horizontal component of the F factor can be accurately estimated from shear, provided compensation is made for the dependence of outflow strength on altitude. Third, it was found that a simple continuity assumption for estimating the vertical component of the F factor yielded poor results. However, further research has shown that downdraft strength is correlated with features aloft detected by the TDWR radar scan strategy. The outcome of the CWI program is to move from the loss-based wind shear detection algorithm used in the TDWR to a shear-based detection scheme as proposed in the Integrated Terminal Weather System (ITWS).

  20. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    PubMed Central

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  1. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer.

    PubMed

    Liu, T Y; Wu, Q P; Sun, B Q; Han, F T

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10(-4)g0 (Earth's gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  2. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  3. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  4. Microgravity Science and Applications Program tasks, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  5. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  6. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  7. Calcium metabolism in microgravity.

    PubMed

    Heer, M; Kamps, N; Biener, C; Korr, C; Boerger, A; Zittermann, A; Stehle, P; Drummer, C

    1999-09-01

    Unloading of weight bearing bones as induced by microgravity or immobilization has significant impacts on the calcium and bone metabolism and is the most likely cause for space osteoporosis. During a 4.5 to 6 month stay in space most of the astronauts develop a reduction in bone mineral density in spine, femoral neck, trochanter, and pelvis of 1%-1.6% measured by Dual Energy X-ray Absorption (DEXA). Dependent on the mission length and the individual turnover rates of the astronauts it can even reach individual losses of up to 14% in the femoral neck. Osteoporosis itself is defined as the deterioration of bone tissue leading to enhanced bone fragility and to a consequent increase in fracture risk. Thinking of long-term missions to Mars or interplanetary missions for years, space osteoporosis is one of the major concerns for manned spaceflight. However, decrease in bone density can be initiated differently. It either can be caused by increases in bone formation and bone resorption resulting in a net bone loss, as obtained in fast looser postmenopausal osteoporosis. On the other hand decrease in bone formation and increase in bone resorption also leads to bone losses as obtained in slow looser postmenopausal osteoporosis or in Anorexia Nervosa patients. Biomarkers of bone turnover measured during several missions indicated that the pattern of space osteoporosis is very similar to the pattern of Anorexia Nervosa patients or slow looser postmenopausal osteoporosis. However, beside unloading, other risk factors for space osteoporosis exist such as stress, nutrition, fluid shifts, dehydration and bone perfusion. Especially nutritional factors may contribute considerably to the development of osteoporosis. From earthbound studies it is known that calcium supplementation in women and men can prevent bone loss of 1% bone per year. Based on these results we studied the calcium intake during several European missions and performed an experiment during the German MIR 97 mission

  8. Control issues of microgravity vibration isolation

    NASA Technical Reports Server (NTRS)

    Knospe, C. R.; Hampton, R. D.; Allaire, P. E.

    1991-01-01

    Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor designs. For example, it is shown that a focus on equivalent stiffness in isolation system design leads to a controller that sacrifices robustness for performance. Control theory as applied to vibration isolation is reviewed and passive analogies are discussed. The loop shaping trade-off is introduced and used to design a single-degree-of-freedom fedback controller. An algebraic control design methodology is contrasted to loop shaping and critiqued. Multi-axis vibration isolation and the problems of decoupled single loop control are introduced through a two-degree-of-freedom example problem. It is shown that center of mass uncertainty may result in instability when decoupled single loop control is used. This results from the ill-conditioned nature of the feedback control design. The use of the Linear Quadratic Regulator synthesis procedure for vibration isolation controller design is discussed.

  9. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  10. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  11. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  12. The Low Temperature Microgravity Physics Facility Project

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; Gannon, J.

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  13. Decreased succinate dehydrogenase activity of gamma and alpha motoneurons in mouse spinal cords following 13 weeks of exposure to microgravity.

    PubMed

    Ishihara, Akihiko; Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Ohira, Yoshinobu

    2013-10-01

    Cell body size and succinate dehydrogenase activity of motoneurons in the dorsolateral region of the ventral horn in the lumbar and cervical segments of the mouse spinal cord were assessed after long-term exposure to microgravity and compared with those of ground-based controls. Mice were housed in a mouse drawer system on the International Space Station for 13 weeks. The mice were transported to the International Space Station by the Space Shuttle Discovery and returned to Earth by the Space Shuttle Atlantis. No changes in the cell body size of motoneurons were observed in either segment after exposure to microgravity, but succinate dehydrogenase activity of small-sized (<300 μm(2)) gamma and medium-sized (300-700 μm(2)) alpha motoneurons, which have higher succinate dehydrogenase activity than large-sized (>700 μm(2)) alpha motoneurons, in both segments was lower than that of ground-based controls. We concluded that exposure to microgravity for longer than 3 months induced decreased succinate dehydrogenase activity of both gamma and slow-type alpha motoneurons. In particular, the decreased succinate dehydrogenase activity of gamma motoneurons was observed only after long-term exposure to microgravity. PMID:23943522

  14. Drop tower Beijing and short-time microgravity experiments

    NASA Astrophysics Data System (ADS)

    Wan, S. H.; Yin, M. G.; Guan, X. D.; Lin, H.; Xie, J. C.; Hu, Wen-Rui

    Being an important, large ground-based experiment facility for microgravity science, the drop tower of National Microgravity Lab, CAS was founded in 2003 and, since then, has been un-dertaking the experiments to meet the requirements in microgravity research. The 116 meters high drop tower is located in Zhong Guan Cun district, the scientific town of Beijing. Main components of the facility consist of the drop capsule, release mechanism and deceleration and recovery devices, and were developed with particular technical characteristics. Inner space of the drop tower was not vacuumed during the experiment, and a dual capsule system was adopted. The dual capsule comprises an inner and an outer capsule, and there is a space between in the evacuated atmosphere of 30 Pa. During the free fall, the outer capsule falls in normal atmospheric condition, and the inner capsule falls in vacuum. In addition, a single capsule configuration is also available for experiments w of lower gravity level. The residual acceleration is 10-5go or 10-3g0 related to dual capsule or single capsule arrangement respec-tively. An electric magnetic release system was used to release the capsule from position of 83 meters in height. The designed structure of the release mechanism guaranteed the release disturbance to be small enough. An elastic controllable decelerated system, consisted of the reversible mechanic/electric energy transducer, steel cables and rings, string bag, elastic rub-ber stringassembly, energy dissipation resistance, controlling computer system, was used in the drop tower facility. This system is effective to reduce the impact acceleration to a level of 15g0. The experiment data can be recorded by an on-board data acquisition and control system, and transmitted wirelessly to the control room. Many experiments related to the fluid physics, combustion, material science and other field have been successfully conducted by using the short-time microgravity facility of drop tower in

  15. Sleep and respiration in microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. K.

    1998-01-01

    Sleep studies conducted during the STS-90 Neurolab mission are explored. The relationship between sleep, melatonin, and circadian phase is reviewed. The study contained both sleep and awake components. The objectives of the sleep component were to test five hypotheses: that circadian rhythms of core body temperature and urinary melatonin are synchronized to required sleep-wake schedules, that spaceflight results in substantial disruption of sleep, that the pattern of chest and abdominal wall motion alters during the different sleep stages in microgravity, that arterial oxygen saturation is reduced during some stages of sleep in microgravity, and that pre-sleep administration of melatonin during microgravity results in improved sleep quality. The awake component tested three hypotheses: that ventilatory response to carbon dioxide is increased during exposure to microgravity and that this exacerbates sleep disruption, that ventilatory response to hypoxia is increased by exposure to microgravity, and that the improved sleep resulting from the pre-sleep administration of melatonin enhances next day cognition when compared to placebo.

  16. Jovian thundercloud research with ground-based telescope and spacecraft

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Nakajima, Kensuke; Takeuchi, Satoru; Sugiyama, Ko-Ichiro; Sato, Mitsuteru; Fukuhara, Tetsuya; Sato, Soga; Yair, Yoav; Aplin, Karen; Fischer, Georg

    2010-05-01

    The latest observational and theoretical studies suggest that thunderstorms, i.e., strong moist convective clouds in Jupiter's atmosphere are very important not only as an essential ingredient of meteorology of Jupiter, which determines the large scale structures such as belt/zone and big ovals, but also as a potentially very useful tool for probing the water abundance of the deep atmosphere, which is crucial to constrain the behavior of volatiles in early solar system. Here we suggest a very simple high-speed imaging unit onboard Jovian orbiter, Optical Lightning Detector, OLD, optimized for detecting optical emissions from lightning discharge in Jupiter. OLD consists of radiation-tolerant CMOS sensors and two H Balmer Alpha line (656.3nm) filters. In normal sampling mode the frame intervals is 29ms with a full frame format of 512x512 pixels and in high-speed sampling mode the interval could be reduced down to 0.1ms by concentrating a limited area of 30x30 pixels. Weight, size and power consumption are about 1kg, 16x7x5.5 cm (sensor) and 16x12x4 cm (circuit), and 4W, respectively, though they can be reduced according to the spacecraft resources. Also we plan to investigate the optical flashes using a ground-based middle-sized telescope, which will be built by Hokkaido University, with narrow-band high speed imaging unit. Observational strategy with such optical lightning detectors and spectral imagers, which enable us to estimate the horizontal motion and altitude of clouds, will be introduced.

  17. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    SciTech Connect

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.; Krueger, Steven K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.

  18. Simulating the Performance of Ground-Based Optical Asteroid Surveys

    NASA Astrophysics Data System (ADS)

    Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.

    2014-11-01

    We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel

  19. Cryogenics for ground based and space-borne instrumentation

    NASA Astrophysics Data System (ADS)

    Duband, L.

    In many space sciences project cryogenic detectors are essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. In addition several other components such as the optics can benefit from a cryogenic cooling which reduces the radiative loading. The Service des Basses Températ- ures (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now and features a dedicated laboratory, the Cryocoolers and Space Cryogenics group. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Études Spatiales (CNES). In this paper we mostly give an overview of the developments carried out at SBT along with several examples of other relevant systems. We use space cryogenics as a thread. However these coolers or techniques can be used on ground, particularly on remote locations where liquid cryogen are unavailable and/or where maintenance must be limited to a strict minimum. In this case they can be simplified and take advantage of on ground resources, and their cost can be significantly reduced. For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures.

  20. Ground-based Measurement Of Saharan Dust In Marine Environment

    NASA Astrophysics Data System (ADS)

    Jeong, M. J.; Ji, Q.; Tsay, S.; Hsu, C.; Hansell, R. A.; Augustine, D.

    2007-12-01

    An extensive field experiment, named NASA African Monsoon Multidisciplinary Analyses (NAMMA) was conducted during August-September of 2006 to investigate the genesis and development of hurricanes. Two ground-based mobile laboratories, Surface-sensing Measurements for Atmospheric Radiative Transfer (SMART) and Chemical, Optical, Microphysical Measurements of In-situ Troposphere (COMMIT), were deployed at Sal Island, Cape Verde to continuously monitor the structure and composition of the atmosphere in the major path of the Saharan Air Layer and the African Easterly Waves. A Micro-Pulse Lidar in SMART, which measures the vertical profiles of backscatter from the atmospheric particulates continuously, caught several episodes of Saharan dust layers reached the surface site. Simultaneously, physical and optical properties of aerosols (e.g., mixture of the Saharan dust and maritime aerosols) were captured by several instruments in COMMIT. In this study, we propose a novel method to separate dust properties from those of marine background aerosols by utilizing the synergy of a suite of in-situ measurements. Derived parameters are mass scattering coefficients and single scattering albedo (SSA) for dust near the surface (~10m). As a crosscheck, the SSA based on the surface measurements is compared with the result of Deep Blue satellite-based aerosol retrievals, which is now incorporated in the operational MODIS aerosol product. The presented preliminary results will be useful in studying the properties of Saharan dust originated from various source regions, which, in turns, can be used as inputs to aerosol transport models to help better understand the interactions between aerosol and cloud water cycle.

  1. Retrieval of ammonia from ground-based FTIR solar spectra

    NASA Astrophysics Data System (ADS)

    Dammers, E.; Vigouroux, C.; Palm, M.; Mahieu, E.; Warneke, T.; Smale, D.; Langerock, B.; Franco, B.; Van Damme, M.; Schaap, M.; Notholt, J.; Erisman, J. W.

    2015-11-01

    We present a retrieval method for ammonia (NH3) total columns from ground-based Fourier transform infrared (FTIR) observations. Observations from Bremen (53.10° N, 8.85° E), Lauder (45.04° S, 169.68° E), Réunion (20.9° S, 55.50° E) and Jungfraujoch (46.55° N, 7.98° E) were used to illustrate the capabilities of the method. NH3 mean total columns ranging 3 orders of magnitude were obtained, with higher values at Bremen (mean of 13.47 × 1015 molecules cm-2) and lower values at Jungfraujoch (mean of 0.18 × 1015 molecules cm-2). In conditions with high surface concentrations of ammonia, as in Bremen, it is possible to retrieve information on the vertical gradient, as two layers can be distinguished. The retrieval there is most sensitive to ammonia in the planetary boundary layer, where the trace gas concentration is highest. For conditions with low concentrations, only the total column can be retrieved. Combining the systematic and random errors we have a mean total error of 26 % for all spectra measured at Bremen (number of spectra (N) = 554), 30 % for all spectra from Lauder (N = 2412), 25 % for spectra from Réunion (N = 1262) and 34 % for spectra measured at Jungfraujoch (N = 2702). The error is dominated by the systematic uncertainties in the spectroscopy parameters. Station-specific seasonal cycles were found to be consistent with known seasonal cycles of the dominant ammonia sources in the station surroundings. The developed retrieval methodology from FTIR instruments provides a new way of obtaining highly time-resolved measurements of ammonia burdens. FTIR-NH3 observations will be useful for understanding the dynamics of ammonia concentrations in the atmosphere and for satellite and model validation. It will also provide additional information to constrain the global ammonia budget.

  2. Science Highlights from Ground-Based O/IR Interferometers

    NASA Astrophysics Data System (ADS)

    McAlister, Harold A.; Akeson, R.; Armstrong, T.; Bakker, E.; Boden, A.; ten Brummelaar, T.; Creech-Eakman, M.; Hutter, D.

    2007-05-01

    Ground-based optical/infrared long-baseline interferometry has come of age in the U.S. where several existing or planned facilities have produced remarkable scientific results demonstrating the power of the technique within a broad range of scientific applications. This paper presents brief overviews of the following facilities: the Palomar Testbed Interferometer (PTI) on Mt. Palomar, CA; the Navy Prototype Optical Interferometer (NPOI) located on Anderson Mesa near Flagstaff, AZ; the Keck Interferometer (KI) on Mauna Kea, HI; and the CHARA Array on Mt. Wilson, CA. Also described is the Magdalena Ridge Observatory Interferometer (MROI) to be built at the highest elevation of the Magdalena Mountains of New Mexico. Example scientific highlights to date include: The first measurement of stellar rotational oblateness (Altair), the detection of Cepheid pulsations, and ultra-precise astrometry of binaries with PTI; the first six-telescope images (the triple system eta Virginis) and constraints on disk parameters of Be stars with NPOI; resolving the nucleus of NGC 4151 and probing the inner disk regions of YSOs with KI; and, the first direct detection of gravity darkening in single stars (Regulus), calibration of the Baade-Wesselink method for Cepheids, and the first direct measurement of the diameter of an exoplanet (the transit system HD 189733) using the CHARA Array. While the great majority of results to date have focused on stellar astrophysics, the MROI strives to have sensitivity sufficient to access a number of AGN. Research with these independently operated facilities is sponsored by the California Institute of Technology and the Jet Propulsion Laboratory for PTI; the U.S. Naval Observatory and the Naval Research Laboratory for NPOI; the National Aeronautics and Space Administration for KI; and, the National Science Foundation and Georgia State University for the CHARA Array. Funding for MROI is administered through the Office of Naval Research.

  3. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  4. Ground-based observations of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Thomas, N.

    A series of ground-based 1-D spatially resolved, high resolution spectra (in SII, SIII, and OII) of the Io plasma torus were acquired in October 1999, around the time of the Galileo I24 passage through the IPT. In a previous paper (Thomas et al., JGR, 106, 26277, 2001), we have presented the initial results from these observations. In this presentation, we will describe recent more detailed analysis which seems to be lending further insight into the structure of the IPT. In particular, we have used an "onion-peeling" technique to remove line of sight effects from the observations. The resulting profiles, show the so-called ribbon region (5.7 RJ) being clearly separated from the cold torus (5.3 RJ) by a region of lower SII emission. SIII emission is now shown to be almost completely absent in the cold torus. The ratio of these two species is seen to rise systematically and almost linearly with jovicentric distance from the cold torus through to the warm torus (beyond 6.0 RJ). Models can be used to interpret this behaviour in terms of changing electron temperature with distance. We compare our results with the only other measurement of this property which was based on Voyager 1 PLS observations. We further show that the peak of OII emission is not centred at the, what we now call, the sulphur ribbon. We attempt to derive the relative composition of the three major species in the torus as a function of jovicentric distance using our data.

  5. Microgravity-Enhanced Stem Cell Selection

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  6. Microgravity Effects on Combustion of Polymers

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2007-01-01

    A viewgraph presentation describing various microgravity effects on the combustion of polymers is shown. The topics include: 1) Major combustion processes and controlling mechanisms in normal and microgravity environments; 2) Review of some buoyancy effects on combustion: melting of thermoplastics; flame strength, geometry and temperature; smoldering combustion; 3) Video comparing polymeric rods burning in normal and microgravity environments; and 4) Relation to spacecraft fire safety of current knowledge of polymers microgravity combustion.

  7. A ground-based comparison of nutrient delivery technologies originally developed for growing plants in the spaceflight environment.

    PubMed

    Porterfield, D M; Dreschel, T W; Musgrave, M E

    2000-01-01

    A ground-based comparison of plant nutrient delivery systems that have been developed for microgravity application was conducted for dwarf wheat (Triticum aestivum L. 'Yecora Rojo') and rapid-cycling brassica (Brassica rapa L. CrGC#1-33) plants. These experiments offer insight into nutrient and oxygen delivery concerns for greenhouse crop production systems. The experiments were completed over a 12-day period to simulate a typical space shuttle-based spaceflight experiment. The plant materials, grown either using the porous-tube nutrient delivery system, the phenolic foam support system, or a solidified agar nutrient medium, were compared by plant-growth analysis, root zone morphological measurements, elemental composition analysis, and alcohol dehydrogenase enzyme activity assay. The results of these analyses indicate that the porous tube plant nutrient delivery and the phenolic foam systems maintain plant growth at a higher level than the solidified agar gel medium system. Root zone oxygenation problems associated with the agar system were manifested through biochemical and morphological responses. The porous tube nutrient delivery system outperformed the other two systems on the basis of plant growth analysis parameters and physiological indicators of root zone aeration. This information is applicable to the current crop production techniques used in greenhouse-controlled environments. PMID:17654790

  8. The research of the current situation about the Compass ground-based augmentation system

    NASA Astrophysics Data System (ADS)

    Zhong, Xinying; Huang, Rijuan; Dan, Tang; Tang, Changzeng

    2015-12-01

    In the project of upgrading the Guangxi CORS(GXCORS) Beidou Ground-Based Augmentation System, Guangxi Bureau of Surveying, Mapping and Geoinformation, had completed the examination for the instrument of multiple producers about the Compass ground-based augmentation system. The contents of the tests contain the network RTK positioning accuracy, the static processing accuracy, the time availability, the space availability, the environmental availability, etc.. through analyzing the test data, in this paper, drawing some conclusions that reflect the current situation about the Compass Ground-based Augmentation System objectively, it is benefit for the construction and development of the Compass Ground-based Augmentation System.

  9. Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Valencia, Sandra; Welton, Ellsworth J.; Spinhirne, James D.

    2005-01-01

    The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track.

  10. Microgravity combustion of dust clouds: Quenching distance measurements

    NASA Technical Reports Server (NTRS)

    Goroshin, S.; Kleine, H.; Lee, J. H. S.; Frost, D.

    1995-01-01

    parameters is in a gravity-free environment. Access to the microgravity environment provided by the use of large-scale drop towers, parabolic flights of aircraft and rockets, and shuttle and space station orbits has permitted now to proceed with a systematic program of dust combustion microgravity research. For example, the NASA-Lewis drop tower and a Lear jet parabolic flight aircraft were used by Ross et al. and by Berlad and Tangirala for experiments with Iycopodium/air mixtures. The Japan Microgravity Center drop shaft (JAMIC) where a microgravity condition of 10(exp -4) g for 10 s is available, was recently used by Kobayashi, Niioka et al. for measuring flame propagation velocities in polymethyl methacrylate dust/air suspensions. Microgravity dust combustion experiments were started at McGill University in the early 90's under the sponsorship of the Canadian Space Agency. Several generations of dust combustion platforms permitting dust combustion microgravity experiments to be carried out on board a parabolic flight aircraft (KC-135, NASA) have been designed and tested. The experimental data and experience gained from this research allowed us to design and build in a current phase of this program the microgravity apparatus for the visual observation of freely propagating constant pressure laminar dust flames. Quenching distances in aluminum dust suspensions have been measured in a wide range of dust cloud parameters in ground-based experiments and in recent microgravity experiments (KC-135 parabolic flights, Houston, February 1995).

  11. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  12. Microgravity control of autophagy modulates osteoclastogenesis.

    PubMed

    Sambandam, Yuvaraj; Townsend, Molly T; Pierce, Jason J; Lipman, Cecilia M; Haque, Azizul; Bateman, Ted A; Reddy, Sakamuri V

    2014-04-01

    Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (μXg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that μXg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled μXg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in μXg subjected RAW 264.7 preosteoclast cells. RT(2) profiler PCR array screening for autophagy related genes identified that μXg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in μXg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under μXg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses μXg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that μXg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions

  13. Microgravity control of autophagy modulates osteoclastogenesis

    PubMed Central

    Sambandam, Yuvaraj; Townsend, Molly T.; Pierce, Jason J.; Lipman, Cecilia M.; Haque, Azizul; Bateman, Ted A.; Reddy, Sakamuri V.

    2015-01-01

    Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (μXg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that μXg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled μXg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in μXg subjected RAW 264.7 preosteoclast cells. RT2 profiler PCR array screening for autophagy related genes identified that μXg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in μXg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under μXg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses μXg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that μXg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions

  14. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  15. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    NASA Technical Reports Server (NTRS)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  16. Microgravity Researchers to Investigate Nanotechnology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cadmium sulfide -- a semiconductor material -- can be grown in nanoclusters. Small molecules of cadmium sulfide, shown here, can be prepared by traditional chemical methods. However, if larger, more uniform nanoparticles of cadmium sulfide could be fabricated, they may be used to improve electronic devices such as light emitting diodes and diode lasers. Using a NASA grant, Dr. Jimmy Mays of the University of Alabama at Birmingham is studying whether microgravity will enhance the size and shape of a nanoparticle. This experiment is managed by the Microgravity Research Program Office at NASA's Marshall Spce Flight Center in Huntsville, AL. Photo credit: NASA/Marshall Space Flight Center

  17. Transient pool boiling in microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, J. S.; Merte, H., Jr.; Keller, R. B.; Kirk, K.

    1992-01-01

    Transient nucleate pool boiling experiments using R113 are conducted for short times in microgravity and in earth gravity with different heater surface orientations and subcoolings. The heating surface is a transparent gold film sputtered on a quartz substrate, which simultaneously provides surface temperature measurements and permits viewing of the boiling process from beneath. For the microgravity experiments, which have uniform initial temperatures and no fluid motion, the temperature distribution in the R 113 at the moment of boiling inception is known. High speed cameras with views both across and through the heating surface record the boiling spread across the heater surface, which is classified into six distinct categories.

  18. Technology base for microgravity horticulture

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.

    1987-01-01

    Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.

  19. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  20. A microgravity vibration isolation rig

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti B.; Knospe, Carl R.; Allaire, Paul E.

    1992-01-01

    It is well known that the spacecraft environment deviates from a state of zero gravity due to various random as well as repetitive sources. Science experiments that require a microgravity environment must therefore be isolated from these disturbances. Active control of noncontact magnetic actuators enables such isolation. A one degree of freedom test rig has been constructed to demonstrate the isolation capability achievable using magnetic actuators. A cylindrical mass on noncontacting electromagnetic supports simulates a microgravity experiment on board an orbiter. Disturbances generated by an electrodynamic shaker are transmitted to the mass via dashpots representing umbilicals. A compact Lorentz actuator has been designed to provide attenuation of this disturbance.

  1. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  2. Human blood platelets at microgravity

    NASA Technical Reports Server (NTRS)

    Surgenor, D. MACN.; Ausprunk, D.; Blevins, D.; Chao, F. C.; Curby, W.

    1987-01-01

    A set of freshly collected and separated human platelet suspensions were transported, in three types of plastic containers, on a 6 day, 2 hr mission of the orbiter Columbia to study the effect of prolonged exposure of human blood cells to microgravity. A controlled environment at a temperature of 22 + or - 1 deg with air flow was provided and another set of samples held on the ground acted as controls. Paired comparisons of platelets at ug versus controls at lxg revealed superior platelet survival at microgravity. When viewed in terms of plastic type, ug platelets in containers fabricated from PVC-TOTM displayed the best overall postflight viability.

  3. Processing electronic photos of Mercury produced by ground based observation

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    New images of Mercury have been obtained by processing of ground based observations that were carried out using the short exposure technique. The disk of the planet extendeds usually from 6 to 7 arc seconds, with the linear size of the image in a focal plane of the telescope about 0.3-0.5 mm on the average. Processing initial millisecond electronic photos of the planet is very labour-consuming. Some features of processing of initial millisecond electronic photos by methods of correlation stacking were considered in (Ksanfomality et al., 2005; Ksanfomality and Sprague, 2007). The method uses manual selection of good photos including a so-called pilot- file, the search for which usually must be done manually. The pilot-file is the most successful one, in opinion of the operator. It defines the future result of the stacking. To change pilot-files increases the labor of processing many times. Programs of processing analyze the contents of a sample, find in it any details, and search for recurrence of these almost imperceptible details in thousand of other stacking electronic pictures. If, proceeding from experience, the form and position of a pilot-file still can be estimated, the estimation of a reality of barely distinct details in it is somewhere in between the imaging and imagination. In 2006-07 some programs of automatic processing have been created. Unfortunately, the efficiency of all automatic programs is not as good as manual selection. Together with the selection, some other known methods are used. The point spread function (PSF) is described by a known mathematical function which in its central part decreases smoothly from the center. Usually the width of this function is accepted at a level 0.7 or 0.5 of the maxima. If many thousands of initial electronic pictures are acquired, it is possible during their processing to take advantage of known statistics of random variables and to choose the width of the function at a level, say, 0.9 maxima. Then the

  4. Ground-based FTIR measurements of Antarctic trace gases

    NASA Astrophysics Data System (ADS)

    Dybdahl, Arthur W.

    2001-06-01

    Ground-based long path FTIR hyper-resolution spectroscopy was employed to measure solar absorption spectra at Arrival Heights, Antarctica during nearly the entire 1998-1999 daylight season. The spectra were analyzed to retrieve vertical total column amounts and volume mixing ratio (VMR)profiles for each of five atmospheric trace gases: HCl, HF, CH4, N 2O and O3. HCl is a major reservoir for free atomic chlorine that directly destroys ozone within the Antarctic stratosphere. This was the first time that these gases were measured over such a long period of time in Antarctica, from just after seasonal sunrise to the approach of sunset. Two analytical tools were used to analyze the absorption microwindows cut from the spectra measured with the University of Denver instrument called SORTI: SFIT-1 that retrieved the vertical column amounts for each of the five trace gases, and SFIT-1-plus-PROFIT that in addition to retrieving the total column amounts for each gas, also retrieved vertical VMR profiles extending from the surface up to an altitude of 80 km. The column amounts and VMR's for each tract gas were assessed for temporal behavior throughout the daylight season. The seasonal losses of HCl due to heterogeneous chemistry were measured. The springtime depletion of ozone within the stratosphere was measured along with its subsequent recovery during the summer and autumn seasons. An extensive error analysis was conducted for each trace gas employing the measured random errors and systematic errors to obtain the relative uncertainty associated with each total column amount calculated. A correlation analysis was performed to determine the inter- relationships among eleven physical and dynamic parameters that included total column amounts for each trace gas, the temperature and height of the Antarctic tropopause, and the potential vorticity obtained for each of four stratospheric altitudes. Historical comparisons of the total column abundances measured during this study

  5. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  6. Microgravity Emissions Laboratory Testing of the Physics of Colloids in Space Experiment

    NASA Astrophysics Data System (ADS)

    McNelis, Anne M.

    2002-01-01

    Microgravity Emissions Laboratory (MEL) in May of 2000 at NASA Glenn Research Center (GRC). PCS is a sub-rack payload that is accommodated in an EXPRESS-II rack on Space Station. This mission is the first flight of the Active Rack Isolation System - ISS Characterization Experiment (ARIS-ICE) on Station in the Express II rack. Fundamental PCS operation inertial responses were measured and are available for comparison to flight. Reported herein are the ground-based measurements for various PCS operations. capable of providing testing support for simulation and verification of the Space Station microgravity environment. MEL is capable of characterizing the operational emissions of components or rack-level disturbances. The inertial force output generated for the test article is utilized with FEA, SEA and other analysis tools to predict the on-orbit environment at specific interface or science region locations. GRC. Operations and Engineering Support are provided by the Technical Services Division at GRC.

  7. Use of microgravity to improve the efficiency and power output of Nd-doped laser glasses

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1992-01-01

    The objectives of this research are to: (1) obtain further evidence and understand the science for the reported improvement in chemical homogeneity in glasses prepared in microgravity; and (2) study the feasibility of improving the optical and fluorescence properties, particularly, the limit for Nd(+3) concentration quenching and threshold energy for laser action for laser glasses prepared in microgravity. Attention was directed to ground based investigation whose primary purpose was to determine the suitability and conditions for processing these laser glasses in space. This report describes that the scientific and technical information required for planning flight experiments for these glasses have been obtained, and the preparation for handling and analyzing post flight samples have also been taken. Instruments required for measuring the fluorescence properties of interest have been constructed. The optical and fluorescence properties for the glasses have been measured and made available for comparative property analysis.

  8. Suspension cell culture in microgravity and development of a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  9. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  10. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  11. The NASA Microgravity Fluid Physics Program - Knowledge for Use on Earth and Future Space Missions

    NASA Astrophysics Data System (ADS)

    Kohl, F. J.; Singh, B. S.; Shaw, N. J.; Hill, M. E.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  12. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.

    PubMed

    Bailey, Jeannie F; Hargens, Alan R; Cheng, Kevin K; Lotz, Jeffrey C

    2014-09-22

    Prolonged exposure to microgravity has shown to have deleterious effects on the human spine, indicated by low back pain during spaceflight and increased incidence of post-spaceflight herniated nucleus pulposus. We examined the effect of microgravity on biomechanical properties of lumbar and caudal discs from mice having been on 15-day shuttle mission STS-131. Sixteen C57BL/C mice (spaceflight group, n=8; ground-based control group, n=8) were sacrificed immediately after spaceflight. Physiological disc height (PDH) was measured in situ, and compressive creep tests were performed to parameterize biomechanical properties into endplate permeability (k), nuclear swelling pressure strain dependence (D), and annular viscoelasticity (G). For caudal discs, the spaceflight group exhibited 32% lower PDH, 70% lower D and crept more compared to the control mice (p=0.03). For lumbar discs, neither PDH nor D was significantly different between murine groups. Initial modulus, osmotic pressure, k and G for lumbar and caudal discs did not appear influenced by microgravity (p>0.05). Decreases in both PDH and D suggest prolonged microgravity effectively diminished biomechanical properties of caudal discs. By contrast, differences were not noted for lumbar discs. This potentially deleterious interaction between prolonged weightlessness and differential ranges of motion along the spine may underlie the increased cervical versus lumbar disc herniation rates observed among astronauts. PMID:25085756

  13. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  14. Preparation of large-particle-size monodisperse polystyrene latexes in microgravity

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.; Kornfeld, D. M.; Vicente, F. A.

    1982-01-01

    Three large-particle-size monodisperse latexes (3.44, 4.08, and 4.98 micron diameter) were prepared in an automated four-reactor apparatus on the third orbital mission of the 'Columbia' begun on March 22. Comparison with ground-based controls showed that the 4.98 micron-size flight sample was the more uniform; the uniformity at the other two sizes was about the same. The rates of polymerization in microgravity and on earth were the same within experimental error, demonstrating that radical-initiated vinyl addition polymerizations are unaffected by the weightless environment.

  15. Altered baroreflex control of forearm vascular resistance during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Doerr, D. F.; Vernikos, J.

    1994-01-01

    Reflex peripheral vasoconstriction induced by activation of cardiopulmonary baroreceptors in response to reduced central venous pressure (CVP) is a basic mechanism for elevating systemic vascular resistance and defending arterial blood pressure during orthostatically-induced reductions in cardiac filling and output. The sensitivity of the cardiopulmonary baroreflex response [defined as the slope of the relationship between changes in forearm vascular resistance (FVR) and CVP] and the resultant vasoconstriction are closely and inversely associated with the amount of circulating blood volume. Thus, a high-gain FVR response will be elicited by a hypovolemic state. Exposure to microgravity during spaceflight results in reduced plasma volume. It is therefore reasonable to expect that the FVR response to cardiopulmonary baroreceptor unloading would be accentuated following adaptation to microgravity. Such data could provide better insight about the physiological mechanisms underlying alterations in blood pressure control following spaceflight. We therefore exposed eleven men to 6 degrees head-down bedrest for 7 days and measured specific hemodynamic responses to low levels of the lower body negative pressure to determine if there are alterations in cardiopulmonary baroreceptor stimulus-FVR reflex response relationship during prolonged exposure to an analog of microgravity.

  16. Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  17. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  18. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  19. Toward a microgravity research strategy

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Recommendations of the Committee on Microgravity Research (CMGR) of the Space Studies Board of the National Research Council are found in the Summary and Recommendations in the front of the report. The CMGR recommends a long-range research strategy. The main rationale for the microgravity research program should be to improve our fundamental scientific and technical knowledge base, particularly in the areas that are likely to lead to improvements in processing and manufacturing on earth. The CMGR recommends research be categorized as Biological science and technology, Combustion, Fluid science, Fundamental phenomena, Materials, and Processing science and technology. The committee also recommends that NASA apply a set of value criteria and measurement indicators to define the research and analysis program more clearly. The CMGR recommends that the funding level for research and analysis in microgravity science be established as a fixed percentage of the total program of NASA's Microgravity Science and Applications Division in order to build a strong scientific base for future experiments. The committee also recommends a cost-effective approach to experiments. Finally the CMGR recommends that a thorough technical review of the centers for commercial development of space be conducted to determine the quality of their activities and to ascertain to what degree their original mission has been accomplished.

  20. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  1. Microgravity mechanisms and robotics program

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.

    1988-01-01

    The primary goal of this program is to produce the motion control tools necessary to enhance and enable a particular NASA mission - space laboratory-based microgravity experiments. To that end, a spectrum of technology is being developed in the disciplines of precision mechanisms and robotics.

  2. Exercise detraining: Applicability to microgravity

    NASA Technical Reports Server (NTRS)

    Coyle, Edward F.

    1994-01-01

    Physical training exposes the various systems of the body to potent physiologic stimuli. These stimuli induce specific adaptations that enhance an individual's tolerance for the type of exercise encountered in training. The level of adaptation and the magnitude of improvement in exercise tolerance is proportional to the potency of the physical training stimuli. Likewise, our bodies are stimulated by gravity, which promotes adaptations of both the cardiovascular and skeletal muscles. Exposure to microgravity removes normal stimuli to these systems, and the body adapts to these reduced demands. In many respects the cessation of physical training in athletes and the transition from normal gravity to microgravity represent similar paradigms. Inherent to these situations is the concept of the reversibility of the adaptations induced by training or by exposure to normal gravity. The reversibility concept holds that when physical training is stopped (i.e., detraining) or reduced, or a person goes from normal gravity to microgravity, the bodily systems readjust in accordance with the diminished physiologic stimuli. The focus of this chapter is on the time course of loss of the adaptations to endurance training as well as on the possibility that certain adaptations persist, to some extent, when training is stopped. Because endurance exercise training generally improves cardiovascular function and promotes metabolic adaptations within the exercising skeletal musculature, the reversibility of these specific adaptations is considered. These observations have some applicability to the transition from normal to microgravity.

  3. Dielectrophoresis in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Rose, R. M.

    1986-01-01

    Microgravity and vacuum, singly or combined, are uniquely advantageous media for the use of dielectrophoresis as a mmaterial s separation technology. In order to assess these advantages, a free-fall vacuum dielectrophoretic separator was designed and constructed for use at the earth's surface.

  4. Selected microgravity combustion diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Greenberg, Paul S.

    1993-01-01

    During FY 1989-1992, several diagnostic techniques for studying microgravity combustion have moved from the laboratory to use in reduced-gravity facilities. This paper discusses current instrumentation for rainbow schlieren deflectometry and thermophoretic sampling of soot from gas jet diffusion flames.

  5. Ground Based Test Results for Broad Band LIDAR

    NASA Astrophysics Data System (ADS)

    Heaps, W. S.; Georgieva, E.; Huang, W.; Baldauf, B.; McComb, T.

    2010-12-01

    a 1.57 μm superluminescent light emitting diode (SLED) amplified by an optical parametric amplifier (OPA). In 2008 NGAS, leveraging expertise in thulium (Tm) fiber laser systems and recognizing the merit of the broadband approach, suggested a partnership with GSFC to develop a broadband lidar operating at 2.05 μm. Such a system takes advantage of the broad Tm-fiber gain spectrum and the inherent mechanical robustness, compact size, simple power scalability, efficiency and high beam quality offered by fiber lasers. In early 2010 NGAS completed development of a laboratory level, highly efficient, Tm-fiber laser that produces a specially formatted pulsed broadband output around 2.05 μm, a spectral region where CO2 has strong atmospheric absorption features. NGAS has loaned this tunable 2.05 μm laser to GSFC which had concurrently developed a 2.05 μm lidar sensor/receiver. In May 2010 the two systems were tested together to provide proof of concept of 2.05 µm broadband detection of CO2. This presentation will present results of ground based testing of the 1.57 μm and the 2.05 μm systems and discuss their potential application as space borne sensors for the ASCENDS mission.

  6. Ground-based Space Weather Monitoring with LOFAR

    NASA Astrophysics Data System (ADS)

    Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital

    As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be

  7. Burning in Outer Space: Microgravity

    NASA Technical Reports Server (NTRS)

    Matkowsky, Bernard; Aldushin, Anatoly

    2000-01-01

    A better understanding of combustion can lead to significant technological advances, such as less polluting, more fuel-efficient vehicles. Unfortunately, gravity can interfere with the study of combustion. Gravity drags down gases that are cooler- and, therefore, denser-than heated gases. This movement mixes the fuel and the oxidizer substance that promotes burning. Because of this mixing, an observer cannot necessarily distinguish what is happening as a result of the natural combustion process and what is caused, by the pull of gravity. To remove this uncertainty, scientists can conduct experiments that simulate the negation of gravity through freefall. This condition is known as a microgravity environment. A micro-gravity experiment may take place in a chamber that is dropped down a hole or from a high-speed drop tower. The experiment also be conducted in an airplane or a rocket during freefall in a parabolic flight path. This method provides less than a minute of microgravity at most. An experiment that requires the prolonged absence of gravity may necessitate the use of an orbiting spacecraft as a venue. However, access to an orbital laboratory is difficult to acquire. High-end computing centers such as the NCCS can provide a practical alternative to operating in microgravity. Scientists can model phenomena such as combustion without gravitys observational interference. The study of microgravity combustion produces important benefits beyond increased observational accuracy. Certain valuable materials that are produced through combustion can be formed with a more uniform crystal structure-and, therefore, improved structural quality-when the pull of gravity is removed. Furthermore, understanding how fires propagate in the absence of gravity can improve fire safety aboard spacecraft.

  8. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  9. The Effect of Acute Microgravity on Mechanically-Induced Membrane Damage and Membrane-Membrane Fusion Events

    NASA Technical Reports Server (NTRS)

    Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  10. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  11. NASA HRP Immunology Discipline - Use of Terrestrial Analogs

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2014-01-01

    Due to the cost and operational constraints, as well as technical implementation limitations, it is desirous to perform relevant space physiology investigations first in terrestrial 'space analogs'. This is particularly true for initial investigations, which may then provide appropriate focus for subsequent flight investigations, or for mechanistic investigations that simply cannot be performed during spaceflight. Appropriate analog choice is extremely important. There are a wide variety of terrestrial space analogs, each relevant to a particular physiological discipline (or disciplines) and each with a particular fidelity (or lack thereof) to spaceflight, and each with unique operational constraints. The HRP Immunology Discipline is tasked with managing the HRP Risk concerning clinical risk for Astronaut crews related to spaceflight-associated immune dysregulation. Such dysregulation has been documented to occur during spaceflight, and found to persist for the duration of a 6-month ISS mission. Studies continue to characterize the onorbit phenomenon, but it generally consists of diminished immunocyte function, dysregulated cytokine profiles, and persistent herpesvirus reactivation. Causes are thought to synergistically include microgravity, psychological or physiological stress, radiation, and/or circadian misalignment. An appropriate terrestrial analog for immune dysregulation would replicate as many of these influences as possible. Such analogs may include clinostat or bioreactor cell culture (microgravity), hindlimb suspension (stress, fluid shifts, hypokinesis), or human deployment to remote or extreme environments (isolation, stress, circadian). Also, the laboratory setting may be used as an analog, or to augment analogs, such as sleep deprivation/misalignment or human centrifugation to replicate gravitational stress. As an appropriate example of a NASA Disciplines use of Terrestrial space analogs, this talk will discuss spaceflight associated immune

  12. Microgravity Experiment Programs for Students at the Bremen Drop Tower

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM established as a research center and currently headed by Prof. Dr. Claus Lämmerzahl is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM more than 70 scientists, engineers and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important university institutes for space sciences and technologies in Europe as well as worldwide well known in the space community. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM’s ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10 (-6) g (microgravity). The provided quality is one of the purest for experiments under weightlessness worldwide achieved. The scientists may choose between a single drop experiment with 4.74 s in simple free fall and a catapult experiment with 9.3 s of weightlessness. Either in the drop or in the worldwide unique catapult operation routine the repetition rates of microgravity experiments at ZARM are always the same, generally up to 3 times per day. Since the start of operation of the facility in 1990, over 6750 launches of more than 160 different experiment types from various scientific fields like Fundamental Physics, Combustion, Fluid Dynamics, Planetary Formation / Astrophysics, Biology and Materials Sciences have been successfully accomplished so far. In our paper we will report and inform about microgravity experiment programs for students like „Drop Your Thesis!“ by ESA and

  13. Microgravity Environment on the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin

    2004-01-01

    A primary feature of the International Space Station will be its microgravity environment--an environment in which the effects of gravity are drastically reduced. The International Space Station design has been driven by a long-standing, high-level requirement for a microgravity mode of operation. Various types of data are gathered when science experiments are conducted. The acceleration levels experienced during experiment operation should be factored into the analysis of the results of most microgravity experiments. To this end, the Space Acceleration Measurement System records the acceleration levels to support microgravity researchers for nearly three years of International Space Station operations. The Principal Investigator Microgravity Services project assists the experiments principal investigators with their analysis of the acceleration (microgravity) environment. The Principal Investigator Microgravity Services project provides cataloged data, periodic analysis summary reports, specialized reports for experiment teams, and real-time data in a variety of user-defined formats. Characterization of the various microgravity carriers (e.g., Shuttle and International Space Station) is also accomplished for the experiment teams. Presented in this paper will be a short description of how microgravity disturbances may affect some experiment classes, a snapshot of the microgravity environment, and a view into how well the space station is expected to meet the user requirements.

  14. Exoplanets -New Results from Space and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  15. Cockpit display of ground-based weather data during thunderstorm research flights

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Brown, Philip W.; Wunschel, Alfred J., Jr.; Stickle, Joseph W.

    1989-01-01

    This paper describes an integrated system for providing ground-based cockpit display, transmitting to an aircraft, upon request via VHF radio, important ground-based thunderstorm data such as radar precipitation reflectivity contours, aircraft ground track, and cloud-to-ground lightning locations. Examples of the airborne X-band weather radar display and the ground-based display are presented for two different missions during the NASA Storm Hazards Program. In spite of some limitation, the system was found to be helpful in the selection of the route of flight, the general ground track to be used, and, occasionally, in clarifying the location of a specific cell of interest.

  16. Determination of Roles of Microgravity and Ionizing Radiation on the Reactivation of Epstein-Barr Virus In Vitro

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K; Renner, Ashlie; Stowe, Raymond; Bloom, David; Pierson, Duane

    2015-01-01

    Astronauts experience symptomatic and asymptomatic herpes virus reactivation during spaceflight. We have shown increases in reactivation of Epstein-Barr virus (EBV), cytomegalovirus (CMV) and varicella zoster virus (VZV) and shedding in body fluids (saliva and urine) in astronauts during space travel. Alterations in immunity, increased stress hormone levels, microgravity, increased radiation, and other conditions unique to spaceflight may promote reactivation of latent herpes viruses. Unique mechanico-physico forces associated with spaceflight can have profound effects on cellular function, especially immune cells. In space flight analog studies such as Antarctica, bed rest studies, and NASA's undersea habitat (Aquarius), reactivation of these viruses occurred, but to a lesser extent than spaceflight. Spaceflight analogs model some spaceflight factors, but none of the analogs recreates all factors experienced in space. Most notably, microgravity and radiation are not included in many analogs. Stress, processed through the HPA axis and SAM systems, induces viral reactivation. However, the respective roles of microgravity and increased space radiation levels or if any synergy exists are not known. Therefore, we studied the effect of modeled space radiation and/or microgravity, independent of the immune system on the changes in cellular gene expression that results in viral (EBV) reactivation. The effects of modeled microgravity and low shear on EBV replication and cellular and EBV gene expression were studied in human B-lymphocyte cell cultures. Latently infected B-lymphocytes were propagated in the rotating wall bioreactor and irradiated with the various dosages of gamma irradiation. At specific time intervals following exposure to modeled microgravity, the cells and supernatant were harvested and reactivation of EBV were assessed by measuring EBV and gene expression, DNA methylation, and infectious virus production.

  17. Life and Microgravity Spacelab (LMS)

    NASA Astrophysics Data System (ADS)

    Downey, James Patton

    1998-02-01

    This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  18. Melting processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Glicksman, M. E.; Lupulescu, A.; Koss, M. B.

    2003-07-01

    The kinetics of melting pivalic acid (PVA) dendrites was observed under convection-free conditions on STS-87 as part of the United States Microgravity Payload Mission (USMP-4) flown on Columbia in 1997. Analysis of video data show that PVA dendrites melt without relative motion with respect to the quiescent melt phase. Dendritic fragments display shrinking to extinction, with fragmentation occurring at higher initial supercoblings. Individual fragments follow a characteristic time-dependence derived elsewhere. The microgravity melting kinetics against which the experimental observations are compared is based on conduction-limited quasi-static melting under shape-preserving conditions. Agreement between analytic theory and our experiments is found when the melting process occurs under shape-preserving conditions as measured using the C/A ratio of individual needle-like crystal fragments.

  19. Life and Microgravity Spacelab (LMS)

    NASA Technical Reports Server (NTRS)

    Downey, James Patton (Compiler)

    1998-01-01

    This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  20. Sixth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2001-01-01

    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  1. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  2. Fifth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  3. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  4. The Second International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This CP contains 40 papers presented at the Second International Microgravity Combustion Workshop held in Cleveland, OH, from September 15 to 17, 1992. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  5. Interpreting the International Space Station Microgravity Environment

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Kenneth; Kelly, Eric M.; Humphreys, Brad

    2005-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. A physical environment with very low-levels of acceleration and vibration has been accomplished by both the free fall associated with orbital flight and the design of the International Space Station. The International Space Station design has been driven by a long-standing, high-level requirement for a microgravity mode of operation. The Space Acceleration Measurement System has been in operation for nearly four years on the ISS measuring the microgravity environment in support of principal investigators and to characterize the ISS microgravity environment. The Principal Investigator Microgravity Services project functions as a detective to ascertain the source of disturbances seen in the ISS microgravity environment to allow correlation between that environment and experimental data. Payload developers need to predict the microgravity environment that will be imposed upon an experiment and ensure that the science and engineering requirements will be met. The Principal Investigator Microgravity Services project is developing n interactive tool to predict the microgravity environment at science payloads based on user defined operational scenarios. These operations (predictions and post-analyses) allow a researcher to examine the microgravity acceleration levels expected to exist when their experiment is operated and then receive an analysis of the environment which existed during their experiment operations. Presented in this paper will be descriptions of the environment predictive tool and an investigation into a previously unknown disturbance in the ISS microgravity environment.

  6. The 3rd International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Compiler)

    1995-01-01

    This Conference Publication contains 71 papers presented at the Third International Microgravity Combustion Workshop held in Cleveland, Ohio, from April 11 to 13, 1995. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  7. Student Observe Microgravity Space Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Paula Crawford (assisted by an American Sign Language interpreter) lectures students about materials science research in space during the U.S. Microgravity Payload-4 mission (STS-87, Nov. 19 - Dec. 5, 1997) in the visitor's center set up by the Isothermal Dendritic Growth Experiment (IDGE) team at Rensselaer Polytechnic Institute (RPI) in Troy, NY. IDGE, flown on three Space Shuttle mission, is yielding new insights into virtually all industrially relevant metal and alloy forming operation. Photo credit: Rensselaer Polytechnic Institute (RPI)

  8. Multiphase combustion experimentation in microgravity

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1983-01-01

    This paper examines the need for and implementation of microgravity combustion studies of two phase media. Experimental and analytical aspects of several heterogeneous kinetic systems are discussed. These include: flame propagation and extinction for quiescent clouds of uniformly premixed fuel particulates in an oxidizing atmosphere; autoignition of clouds of uniformly premixed fuel particulates in a quiescent oxidizing atmosphere; and the roles of catalytically significant surfaces in gaseous autoignition processes.

  9. [Early Development under Microgravity Conditions].

    PubMed

    Ogneva, I V

    2015-01-01

    The review is devoted to various aspects of early development under the space flight conditions. The different possible cell mechanosensors are considered. Structural and functional changes in the cells, predominantly, in non-muscle ones, were discussed. The results of the different experiments with the embryos of fish, amphibians, birds and mammals under microgravity conditions are shown discussing possible reasons for the development of morphological changes. PMID:26591615

  10. Particle cloud mixing in microgravity

    NASA Technical Reports Server (NTRS)

    Ross, H.; Facca, L.; Tangirala, V.; Berlad, A. L.

    1989-01-01

    Quasi-steady flame propagation through clouds of combustible particles requires quasi-steady transport properties and quasi-steady particle number density. Microgravity conditions may be employed to help achieve the conditions of quiescent, uniform clouds needed for such combustion studies. Joint experimental and theoretical NASA-UCSD studies were concerned with the use of acoustic, electrostatic, and other methods of dispersion of fuel particulates. Results of these studies are presented for particle clouds in long cylindrical tubes.

  11. Spacelab 3: Research in microgravity

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Cremin, J. W.; Hill, C. K.; Vaughan, O. H.; Theon, J. S.; Schmitz, R.

    1987-01-01

    The Spacelab 3 mission, which focused on research in microgravity, took place during the period April 29 through May 6, 1985. Spacelab 3 was the second flight of the National Aeronautics and Space Administration's modular Shuttle-borne research facility. An overview of the mission is presented. Preliminary scientific results from the mission were presented by investigators at a symposium held at Marshall Space Flight Center on December 4, 1985. This special issue is based on reports presented at that symposium.

  12. Manipulation hardware for microgravity research

    SciTech Connect

    Herndon, J.N.; Glassell, R.L.; Butler, P.L.; Williams, D.M. ); Rohn, D.A. . Lewis Research Center); Miller, J.H. )

    1990-01-01

    The establishment of permanent low earth orbit occupation on the Space Station Freedom will present new opportunities for the introduction of productive flexible automation systems into the microgravity environment of space. The need for robust and reliable robotic systems to support experimental activities normally intended by astronauts will assume great importance. Many experimental modules on the space station are expected to require robotic systems for ongoing experimental operations. When implementing these systems, care must be taken not to introduce deleterious effects on the experiments or on the space station itself. It is important to minimize the acceleration effects on the experimental items being handled while also minimizing manipulator base reaction effects on adjacent experiments and on the space station structure. NASA Lewis Research Center has been performing research on these manipulator applications, focusing on improving the basic manipulator hardware, as well as developing improved manipulator control algorithms. By utilizing the modular manipulator concepts developed during the Laboratory Telerobotic Manipulator program, Oak Ridge National Laboratory has developed an experimental testbed system called the Microgravity Manipulator, incorporating two pitch-yaw modular positioners to provide a 4 dof experimental manipulator arm. A key feature in the design for microgravity manipulation research was the use of traction drives for torque transmission in the modular pitch-yaw differentials.

  13. Microgravity combustion of dust suspensions

    NASA Technical Reports Server (NTRS)

    Lee, John H. S.; Peraldi, Olivier; Knystautas, Rom

    1993-01-01

    Unlike the combustion of homogeneous gas mixtures, there are practically no reliable fundamental data (i.e., laminar burning velocity, flammability limits, quenching distance, minimum ignition energy) for the combustion of heterogeneous dust suspensions. Even the equilibrium thermodynamic data such as the constant pressure volume combustion pressure and the constant pressure adiabatic flame temperature are not accurately known for dust mixtures. This is mainly due to the problem of gravity sedimentation. In normal gravity, turbulence, convective flow, electric and acoustic fields are required to maintain a dust in suspension. These external influences have a dominating effect on the combustion processes. Microgravity offers a unique environment where a quiescent dust cloud can in principle be maintained for a sufficiently long duration for almost all combustion experiments (dust suspensions are inherently unstable due to Brownian motion and particle aggregation). Thus, the microgravity duration provided by drop towers, parabolic flights, and the space shuttle, can all be exploited for different kinds of dust combustion experiments. The present paper describes some recent studies on microgravity combustion of dust suspension carried out on the KC-135 and the Caravelle aircraft. The results reported are obtained from three parabolic flight campaigns.

  14. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  15. Bioregenerative system components for microgravity

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.; Hessel, Michael I., Jr.

    1992-01-01

    The goal of the class was to design, fabricate, and test prototype designs that were independent, yet applicable to a Closed Loop Life Support System. The three prototypes chosen were in the areas of agar plant growth, regnerative filtration, and microgravity food preparation. The plant growth group designed a prototype agar medium growth system that incorporates nutrient solution replenishment and post-harvest refurbishment. In addition, the unit emphasizes material containment and minimization of open interfaces. The second project was a filter used in microgravity that has the capability to clean itself. The filters are perforated plates which slide through a duct and are cleaned outside of the flow with a vacuum system. The air in the duct is prevented from flowing outside of the duct by a network of sliding seals. The food preparation group developed a device which dispenses and mixes ingredients and then cooks the mixture in microgravity. The dry ingredients are dispensed from a canister by a ratchet-operated piston. The wet ingredients are dispensed from plastic bags through tubing attached to a syringe. Once inside the mixing chamber, the ingredients are mixed using a collapsible whisk and then pushed into the cooking device.

  16. Comparisons between Ground-Based Photometry and Space-Based Measurements of the Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Chapman, G.; Cookson, A.; Dobias, J.; Walton, S.

    2005-05-01

    We will review the usefulness of ground-based full-disk photometry in conjunction with space-based measurements of the Total Solar Irradiance (TSI). It is known that sunspots and faculae cause changes in the TSI. These features need to be modeled using ground-based photometry and their effects removed in order to search for possible other causes of TSI variation. Work to date has shown that approximately 94% of the variance in TSI can be explained by sunspots and faculae/network. Since ground-based photometry is carried out daily, it can help identify anomalies in space-based TSI measurements. Finally, ground-based photometry can help in tying together TSI measurements from different spacecraft that have different native irradiance scales. This work has been partially supported by grants from NASA and NSF.

  17. 10 years of the IAU Efforts for Capitalizing the Ground-Based Astrometry

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda; Thuillot, William

    2011-06-01

    In 2000 a new IAU working group was founded (IAU GA, Manchester): Future Development of Ground-Based Astrometry (FDGBA). It was revised in 2003 during the IAU GA in Sydney. A new one replaced it in 2006 (IAU GA, Prague): Astrometry by Small Ground-Based Telescopes (ASGBT). It was renewed for other three years during the IAU GA in Rio de Janeiro. The main aim of the working groups followed the Newsletter No. 1 of the IAU Commission 8, which says: The post-Hipparcos era has brought an element of uncertainty as to the goals and future programs for all of ground-based astrometry The purpose of the WGs was "to update and maintain information on astrometric programmes and activities carried out by small telescopes, to diffuse news through these pages and e-mails, to facilitate the collaborations and to help for the coordination of the activities, when possible, in astrometry from ground-based telescopes".

  18. Evaluation of a ground based manned demonstration as a milestone in CELSS development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for a ground based manned controlled ecological life support system demonstration are summarized for the following: nutrition and food processing, food production, waste processing, systems engineering and modeling, and ecology-systems safety.

  19. Assessing ground-based counts of nestling bald eagles in northeastern Minnesota

    USGS Publications Warehouse

    Fuller, M.R.; Hatfield, J.S.; Lindquist, E.L.

    1995-01-01

    We present evidence that the bald eagle (Haliaeetus leucocephalus) productivity survey in the Boundary Waters Canoe Area Wilderness of northeastern Minnesota may have underestimated the number of nestlings during 1986-1988. Recommendations are provided to achieve more accurate ground-based counts. By conducting ground-based observations for up to 1 hour/nest, an accurate count of the number of bald eagle nestlings can be obtained. If nests are only observed for up to 30 minutes/nest, an accurate determination of nest success can be made. The effort that managers put into counts should be based on the intended use of the productivity data. If small changes in mean productivity would trigger management action, the less acurate ground-based counts should be conducted with caution. Prior to implementing ground-based counts, a study like ours should estimate bias associated with different survey procedures and the observation time needed to achieve accurate results.

  20. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  1. Application of ground-based LIDAR for gully investigation in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detailed scientific investigation of gullies in agricultural fields requires accurate topographic information with adequate temporal and spatial resolution. New technologies, such as ground-based LIDAR systems, are capable of generating datasets with high temporal and spatial resolutions. The spatia...

  2. A Ground-Based Comparison of the Muscle Atrophy Research and Exercise System (MARES) and a Standard Isokinetic Dynamometer

    NASA Technical Reports Server (NTRS)

    Hackney, K. J.; English, K. L.; Redd, E.; DeWitt, J. K.; Ploutz-Snyder, R.; Ploutz-Snyder, L. L.

    2010-01-01

    PURPOSE: 1) To compare the test-to-test reliability of Muscle Atrophy Research and Exercise System (MARES) with a standard laboratory isokinetic dynamometer (ISOK DYN) and; 2) to determine if measures of peak torque and total work differ between devices. METHODS: Ten subjects (6M, 4F) completed two trials on both MARES and an ISOK DYN in a counterbalanced order. Peak torque values at 60 deg & 180 deg / s were obtained from five maximal repetitions of knee extension (KE) and knee flexion (KF). Total work at 180 deg / s was determined from the area under the torque vs. displacement curve during twenty maximal repetitions of KE and KF. Reliability of measures within devices was interpreted from the intraclass correlation coefficient (ICC) and compared between devices using the ratio of the within-device standard deviations. Indicators of agreement for the two devices were evaluated from: 1) a calculation of concordance (rho) and; 2) the correlation between the mean of measures versus the delta difference between measures (m u vs delta). RESULTS: For all outcome measures ICCs were high for both the ISOK DYN (0.95-0.99) and MARES (0.90-0.99). However, ratios of the within-device standard deviation were 1.3 to 4.3 times higher on MARES. On average, a wide range (3.3 to 1054 Nm) of differences existed between the values obtained. Only KE peak torque measured at 60 deg & 180 deg / s showed similarities between devices (rho = 0.91 & 0.87; Pearson's r for m u vs delta = -0.22 & -0.37, respectively). CONCLUSION: Although MARES was designed for use in microgravity it was quite reliable during ground-based testing. However, MARES was consistently more variable than an ISOK DYN. Future longitudinal studies evaluating a change in isokinetic peak torque or total work should be limited within one device.

  3. A ground-based comparison of the Muscle Atrophy Research and Exercise System (MARES) and a commercially available isokinetic dynamometer

    NASA Astrophysics Data System (ADS)

    English, Kirk L.; Hackney, Kyle J.; De Witt, John K.; Ploutz-Snyder, Robert J.; Goetchius, Elizabeth L.; Ploutz-Snyder, Lori L.

    2013-11-01

    IntroductionInternational Space Station (ISS) crewmembers perform muscle strength and endurance testing pre- and postflight to assess the physiologic adaptations associated with long-duration exposure to microgravity. However, a reliable and standardized method to document strength changes in-flight has not been established. To address this issue, a proprietary dynamometer, the Muscle Atrophy Research and Exercise System (MARES) has been developed and flown aboard the ISS. The aims of this ground-based investigation were to: (1) evaluate the test-retest reliability of MARES and (2) determine its agreement with a commercially available isokinetic dynamometer previously used for pre- and postflight medical testing. MethodsSix males (179.5±4.7 cm; 82.0±8.7 kg; 31.3±4.0 yr) and four females (163.2±7.3 cm; 63.2±1.9 kg; 32.3±6.8 yr) completed two testing sessions on a HUMAC NORM isokinetic dynamometer (NORM) and two sessions on MARES using a randomized, counterbalanced, cross-over design. Peak torque values at 60° and 180° s-1 were calculated from five maximal repetitions of knee extension (KE) and knee flexion (KF) for each session. Total work at 180° s-1 was determined from the area under the torque versus displacement curve during 20 maximal repetitions of KE and KF. ResultsIntraclass correlation coefficients were relatively high for both devices (0.90-0.99). Only one dependent measure, KE peak torque at 60° s-1 exhibited good concordance between devices (ρ=0.92) and a small average difference (0.9±17.3 N m). ConclusionMARES demonstrated acceptable test-retest reliability and thus should serve as a good tool to monitor in-flight strength changes. However, due to poor agreement with NORM, it is not advisable to compare absolute values obtained on these devices.

  4. Replication Experiments in Microgravity Liquid Phase Sintering

    NASA Astrophysics Data System (ADS)

    German, Randall M.; Johnson, John L.

    2016-05-01

    Although considerable experience exists with sintering on Earth, the behavior under reduced gravity conditions is poorly understood. This study analyzes replica microgravity liquid phase sintering data for seven tungsten alloys (35 to 88 wt pct tungsten) sintered for three hold times (1, 180, or 600 minutes) at 1773 K (1500 °C) using 0.002 pct of standard gravity. Equivalent sintering is performed on Earth using the same heating cycles. Microgravity sintering results in a lower density and more shape distortion. For Earth-based sintering, minimized distortion is associated with low liquid contents to avoid solid settling and slumping. Distortion in microgravity sintering involves viscous spreading of the component at points of contact with the containment crucible. Distortion in microgravity is minimized by short hold times; long hold times allow progressive component reshaping toward a spherical shape. Microgravity sintering also exhibits pore coalescence into large, stable voids that cause component swelling. The microgravity sintering results show good replication in terms of mass change and sintered density. Distortion is scattered but statistically similar between the replica microgravity runs. However, subtle factors, not typically of concern on Earth, emerge to influence microgravity sintering, such that ground experiments do not provide a basis to predict microgravity behavior.

  5. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    first of these hypotheses and set out to test it both experimentally and theoretically. We planned the following approaches: I .Pass electric current pulses through the MnBi/Bi eutectic during directional solidification in order to produce an oscillatory freezing rate. 2. Directionally solidify the MnBi/Bi eutectic on Mir using the QUELD II gradient freeze furnace developed by Professor Smith at Queen's University. 3. Select another fibrous eutectic system for investigation using the Accelerated Crucible Rotation Technique to introduce convection. 4. Develop theoretical models for eutectic solidification with an oscillatory freezing rate. Because of the problems with Mir, we substituted ground-based experiments at Queen's University with QUELD II vertical and horizontal, with and without vibration of the furnace. The Al-Si system was chosen for the ACRT experiments. Three related approaches were used to model eutectic solidification with an oscillatory freezing rate. A sharp interface model was used to calculate composition oscillations at the freezing interface in response to imposed freezing rate oscillations.

  6. Predictors of sprint start speed: the effects of resistive ground-based vs. inclined treadmill training.

    PubMed

    Myer, Gregory D; Ford, Kevin R; Brent, Jensen L; Divine, Jon G; Hewett, Timothy E

    2007-08-01

    There is currently no consensus with regard to the most effective method to train for improved acceleration, or with regard to which kinematic variable provides the greatest opportunity for improvement in this important performance characteristic. The purpose of this study was to determine the effects of resistive ground-based speed training and incline treadmill speed training on speed-related kinematic measures and sprint start speed. The hypothesis tested was that incline treadmill training would improve sprint start time, while the ground-based resistive training would not. Corollary hypotheses were that treadmill training would increase stride frequency and ground-based training would not affect kinematics during the sprint start. Thirty-one high school female soccer players (15.7 +/- 0.5 years) were assigned to either treadmill (n = 17) or ground-based (n = 14) training groups and trained 2 times a week for 6 weeks. The treadmill group utilized incline speed training on a treadmill, while the ground-based group utilized partner band resistance ground-based techniques. Three-dimensional motion analysis was used (4.5 m mark) before and after training to quantify kinematics during the fastest of 3 recorded sprint starts (9.1 m). Both groups decreased average sprint start time from 1.75 +/- 0.12 to 1.68 +/- 0.08 seconds (p < 0.001). Training increased stride frequency (p = 0.030) but not stride length. After training, total vertical pelvic displacement and stride length predicted 62% of the variance in sprint start time for the resistive ground-based group, while stride length and stride frequency accounted for 67% prediction of the variance in sprint start time for the treadmill group. The results of this study indicate that both incline treadmill and resistive ground-based training are effective at improving sprint start speed, although they potentially do so through differing mechanisms. PMID:17685716

  7. Science Teachers' Analogical Reasoning

    NASA Astrophysics Data System (ADS)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  8. Gravitational Sensitivity of Melts at the Growth of InSb:Te Crystals by the Bridgman and Floating Zone Methods under the Conditions of Microgravity

    NASA Astrophysics Data System (ADS)

    Zemskov, V. S.; Raukhman, M. R.; Shalimov, V. P.

    2001-07-01

    The comparative analysis of the results of space and ground-based experiments IMET RAS on the growth of InSb:Te crystals by the Bridgman method and floating zone method (FZM) is made for the purpose of studying the influence of microgravity on the growth, structure, and properties of grown crystals, and thus the gravity sensitivity of InSb melt is demonstrated. It is shown that, under microgravity conditions, the Bridgman method makes it possible to grow InSb:Te crystals without contact with the ampoule walls, which provides for the single crystal structure, the absence of striations, and a low dislocation density. For the first time, InSb:Te monocrystals were grown with the FZM under microgravity. The anomalous behavior of the impurity core (facet effect) in these crystals correlates with the changed magnitude and direction of the quasi-stationary (residual) microaccelerations.

  9. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  10. The use of Antarctic analogs for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Roberts, Barney; Lynch, John T.

    1991-01-01

    Potential approaches to the use of the Antarctic as an analog to the lunar and Mars planetary surface segments of the SEI are reviewed. It is concluded that a well-planned and sustained program of ground-based research and testing in environments analogous to the moon and Mars is a rational method for reducing the risks associated with human space missions. Antarctica may provide an ideal setting for testing critical technologies (habitat design, life support, and advanced scientific instrumentation), studying human factors and physiology, and conducting basic scientific research similar to and directly relevant to that planned for the SEI.

  11. Quenching dust mixtures: A new microgravity testing method using electric particulate suspensions

    SciTech Connect

    Colver, G.M.; Greene, N.; Shoemaker, D.; Kim, S.W.; Yu, T.U.

    2004-10-15

    The electric particulate suspension (EPS) is a combustion ignition system under development at Iowa State University for the evaluation of quenching effects of powders in microgravity (quenching distance, ignition energy, and flammability limits). Both walls and (inert) particles can be tested as quenching media. The EPS method has potential as a benchmark design for quenching powder flames that would provide NASA and the scientific community with a new fire safety standard. Because of its simplicity and size, it is also suitable for tests on the International Space Station and the Mars Rover. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory because it is closely related to characteristic flame thickness and flame structure. In microgravity, the EPS method is expected to produce dust suspensions that are highly uniform (before ignition) compared to 1-g, where gravity can cause stratification of the suspension. Microgravity will also permit increased concentrations of particles to be tested (for a given electric field strength). Several EPS experiments are reviewed, including X-Y laser scans for cloud stratification, particle velocity distribution evaluation by the use of particle tracking velocimetry/particle image velocimetry and a leak hole sampling rig, and measurement of particle slip velocity by the use of laser Doppler anemometry. Sample quenching and ignition energy curves are presented for aluminum powder and coal dust. Only ground-based data at 1-g are reported.

  12. Simulation of fluid flows during growth of organic crystals in microgravity

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Sutter, James K.; Balasubramaniam, R.; Fowlis, William K.; Radcliffe, M. D.; Drake, M. C.

    1987-01-01

    Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis.

  13. Depression, mood state, and back pain during microgravity simulated by bed rest

    NASA Technical Reports Server (NTRS)

    Styf, J. R.; Hutchinson, K.; Carlsson, S. G.; Hargens, A. R.

    2001-01-01

    OBJECTIVE: The objective of this study was to develop a ground-based model for spinal adaptation to microgravity and to study the effects of spinal adaptation on depression, mood state, and pain intensity. METHODS: We investigated back pain, mood state, and depression in six subjects, all of whom were exposed to microgravity, simulated by two forms of bed rest, for 3 days. One form consisted of bed rest with 6 degrees of head-down tilt and balanced traction, and the other consisted of horizontal bed rest. Subjects had a 2-week period of recovery between the studies. The effects of bed rest on pain intensity in the lower back, depression, and mood state were investigated. RESULTS: Subjects experienced significantly more intense lower back pain, lower hemisphere abdominal pain, headache, and leg pain during head-down tilt bed rest. They had higher scores on the Beck Depression Inventory (ie, were more depressed) and significantly lower scores on the activity scale of the Bond-Lader questionnaire. CONCLUSIONS: Bed rest with 6 degrees of head-down tilt may be a better experimental model than horizontal bed rest for inducing the pain and psychosomatic reactions experienced in microgravity. Head-down tilt with balanced traction may be a useful method to induce low back pain, mood changes, and altered self-rated activity level in bed rest studies.

  14. Nineteenth International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard (Compiler)

    2000-01-01

    The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here

  15. A Geology Sampling System for Microgravity Bodies

    NASA Technical Reports Server (NTRS)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  16. Turning toys into microgravity machines

    NASA Astrophysics Data System (ADS)

    Sumners, C.; Reiff, P.

    The Toys in Space program communicates the experience of being in space and ultimately living in space. In space, what would happen to a yo-yo's speed, a top's wobble, or your skill in playing soccer, throwing a boomerang or jumping rope? Discover how these toys and others have performed in microgravity and how these demonstrations can link children to the space program. On April 12, 1985 astronauts carried the first experiment package of miniature mechanical systems called toys into space. Since that time 54 toys have been demonstrated in microgravity. This summer, NASA and the Houston Museum of Natural Science have sponsored the first International Toys in Space project with sixteen toys chosen for their popularity and relevance around the world. This set of toys takes advantage of the larger Space Station by providing toys that take up more room - from two-person games of soccer, lacrosse, marbles, and hockey to a jump rope and several kinds of yoyos. Three earlier Toys in Space missions have shown that toys are ideal machines to demonstrate how gravity affects moving objects on the Earth's surface and how the motions of these objects change in microgravity. In this presentation, participants actually experiment with miniature versions of toys, predict their behavior on orbit, and watch the surprising results. Participants receive toy patterns to share with young people at home, around the world. The Toys in Space program scales for all ages. Young learners can use their observation and comparison skills while older students apply physics concepts to toy behaviors. Concepts demonstrated include all of Newton's Laws of Motion, gyroscopic stability, centripetal force, density, as well as conservation of linear and angular momentum.

  17. Review of European microgravity measurements

    NASA Technical Reports Server (NTRS)

    Hamacher, Hans

    1994-01-01

    AA In a French/Russion cooperation, CNES developed a microgravity detection system for analyzing the Mir space station micro-g-environment for the first time. European efforts to characterize the microgravity (1/9) environment within a space laboratory began in the late seventies with the design of the First Spacelab Mission SL-1. Its Material Science Double Rack was the first payload element to carry its own tri-axial acceleration package. Even though incapable for any frequency analysis, the data provided a wealth of novel information for optimal experiment and hardware design and operations for missions to come. Theoretical investigations under ESA contract demonstrated the significance of the detailed knowledge of micro-g data for a thorough experiment analysis. They especially revealed the high sensitivity of numerous phenomena to low frequency acceleration. Accordingly, the payloads of the Spacelab missions D-1 and D-2 were furnished with state-of-the-art detection systems to ensure frequency analysis between 0.1 and 100 Hz. The Microgravity Measurement Assembly (MMA) of D-2 was a centralized system comprising fixed installed as well as mobile tri-axial packages showing real-time data processing and transmission to ground. ESA's free flyer EURECA carried a system for continuous measurement over the entire mission. All EURECA subsystems and experimental facilities had to meet tough requirements defining the upper acceleration limits. In a French/Russion cooperation, CNES developed a mi crogravity detection system for analyzing the Mir space station micro-g-environment for the first time. An approach to get access to low frequency acceleration between 0 and 0.02 Hz will be realized by QSAM (Quasi-steady Acceleration Measurement) on IML-2, complementary to the NASA system Spacelab Acceleration Measurement System SAMS. A second flight of QSAM is planned for the Russian free flyer FOTON.

  18. Materials Research in Microgravity 2012

    NASA Technical Reports Server (NTRS)

    Hyers, R. (Editor); Bojarevis, V. (Editor); Downey, J.; Henein, H. (Editor); Matson, D.; Seidel, A. (Editor); Voss, D. (Editor); SanSoucie, M. (Compiler)

    2012-01-01

    Reducing gravitational effects such as thermal and solutal buoyancy enables investigation of a large range of different phenomena in materials science. The Symposium on Materials Research in Microgravity involved 6 sessions composed of 39 presentations and 14 posters with contributions from more than 14 countries. The sessions concentrated on four different categories of topics related to ongoing reduced-gravity research. Highlights from this symposium will be featured in the September 2012 issue of JOM. The TMS Materials Processing and Manufacturing Division, Process Technology and Modeling Committee and Solidification Committee sponsored the symposium.

  19. Life sciences, biotechnology, and microgravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Hayes, C.; Grindeland, R.; Lanhan, J. W.; Morrison, D.

    1987-01-01

    Growth hormone (GH) studies on rats flown aboard Spacelab 3 are discussed, and evidence for the direct effect of microgravity on cell function is reviewed. SL-3 rat GH cells were found to experience a secretory lesion (they contained more hormone per cell, but released less per cell relative to controls). Pituitary cell culture experiments on the STS-8 mission showed that GH cells did not subsequently release as much hormone as did control cells, indicating a secretory lesion. Changes in bone and muscle noted in SL-3 rats are related to GH cell findings.

  20. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  1. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  2. Japan's microgravity combustion science program

    NASA Technical Reports Server (NTRS)

    Sato, Junichi

    1993-01-01

    Most of energy used by us is generated by combustion of fuels. On the other hand, combustion is responsible for contamination of our living earth. Combustion, also, gives us damage to our life as fire or explosive accidents. Therefore, clean and safe combustion is now eagerly required. Knowledge of the combustion process in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding on combustion is far from complete. Especially, there is few useful information on practical liquid and solid particle cloud combustion. Studies on combustion process under microgravity condition will provide many informations for basic questions related to combustors.

  3. Microgravity human factors workstation development

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Wilmington, Robert P.; Morris, Randy B.; Jensen, Dean G.

    1992-01-01

    Microgravity evaluations of workstation hardware as well as its system components were found to be very useful for determining the expected needs of the Space Station crew and for refining overall workstation design. Research at the Johnson Space Center has been carried out to provide optimal workstation design and human interface. The research included evaluations of hand controller configurations for robots and free flyers, the identification of cursor control device requirements, and the examination of anthropometric issues of workstation design such as reach, viewing distance, and head clearance.

  4. Embryogenic plant cells in microgravity

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  5. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing

  6. Structural and functional changes in lymphocytes in microgravity

    NASA Astrophysics Data System (ADS)

    Risin, D.; Risin, S.; Ward, N.; Sundaresan, A.; Pellis, N. R.

    Impairment of the immunity in astronauts and cosmonauts even in short-term flights is a recognized risk. Long-term orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Since 1992 we are investigating the effect of modeled (MMG) and true microgravity on isolated lymphocytes in vitro. We had shown that modeled and true microgravity inhibit lymphocyte locomotion. Modeled microgravity also suppresses polyclonal and antigen-specific lymphocyte activation. At the same time polyclonal lymphocyte activation prior to exposure to MMG abrogates the MG-induced inhibition of lymphocyte locomotion. Analysis of the relationship between activation deficits and the loss of locomotion in MG suggested a fundamental defect in signal transduction mechanism that was confirmed in further studies. FACS analysis showed that MMG selectively inhibits the expression of PKC isoforms. The decrease was most prominent and substantial in PKC ɛ, less obvious in PKC δ and almost marginal and insignificant in PKC α . Downregulation of PKC isoforms δ and ɛ was proven at the mRNA level by RT-PCR and at protein level by Western blot. We had also demonstrated that MMG selectively affects not only the expression but also the cell distribution of different PKC isoforms that may contribute to the impairment of signal transduction in MG. MMG inhibits programmed cell death (PCD) in lymphocytes. Inhibition was observed in two experimental models (PCD induced by gamma-radiation in PBMC and activation-induced PCD in activated T cells after restimulation with PHA-M or PMA+ionomycin.). Comparative DNA chip analysis has demonstrated a significant difference in gene expression profiles between static and MG analog cultures of activated T cells. (Supported by NRA OLMSA-02 and NSCORT NAG5-4072 grants).

  7. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1

    PubMed Central

    2014-01-01

    Background Multicellular tumor spheroids (MCTS) formed scaffold-free under microgravity are of high interest for research and medicine. Their formation mechanism can be studied in space in real microgravity or on Earth using ground-based facilities (GBF), which simulate microgravity. On Earth, these experiments are more cost-efficient and easily performable. However, each GBF might exert device-specific and altered superimposingly gravity-dependent effects on the cells. Results FTC-133 human thyroid cancer cells were cultivated on a 2D clinostat (CN) and a random positioning machine (RPM) and compared with corresponding 1 g control cells. Harvested cell samples were investigated by microscopy, quantitative realtime-PCR and Multi-Analyte Profiling. Spheroid formation and growth occurred during 72 h of cultivation on both devices. Cytokine secretion and gene activation patterns frequently altered in different ways, when the cells were cultured either on the RPM or the CN. A decreased expression of CAV1 and CTGF in MCTS compared to adherent cells was observed after cultivation on both machines. Conclusion The development of MCTS proceeds similarly on the RPM and the CN resembling the situation observed under real microgravity conditions, while no MCTS formation was observed at 1 g under identical experimental conditions. Simultaneously, changes in the regulation of CTGF and CAV1 appeared in a comparable manner on both machines. A relationship between these molecules and MCTS formation is discussed. PMID:24885050

  8. Ground-Based Studies of Thermocapillary Flows in Levitated Laser-Heated Drops

    NASA Technical Reports Server (NTRS)

    Sadhai, S. S.; Zhao, H.; Trinh, Eugene H.

    1999-01-01

    The fluid flow phenomena are studied together with the thermal effects on drops levitated in acoustic and/or electrostatic fields. While the study is concerned primarily with particles in strong acoustic fields to overcome gravity, some results for microgravity have also been obtained. The study also includes an analysis and an experimental investigation of the thermocapillary flow in a spot-heated drop. Results of a Glovebox experiment on the MSL-1 mission, one of whose objectives was to evaluate the acoustic stability criteria in microgravity, are also discussed.

  9. Microgravity: Teacher's Guide with Activities for Physical Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Wargo, Michael J.

    This teacher's guide to microgravity contains 16 student science activities with full background information to facilitate an understanding of the concepts of microgravity for teachers and students. Topics covered in the background sections include the definitions of gravity and microgravity, creating microgravity, the fluid state, combustion…

  10. Specific ventilation distribution in microgravity.

    PubMed

    Verbanck, S; Linnarsson, D; Prisk, G K; Paiva, M

    1996-05-01

    We studied the contribution of inter- and intraregional inhomogeneities of specific ventilation (delta V/Vo) from the rebreathing inert gas trace in microgravity and on Earth. The rebreathing tests were carried out by four astronauts before, during, and after the 10-day Spacelab D-2 mission. Starting from functional residual capacity, the rebreathing maneuver consisted of eight reinspirations from a bag filled with 1.8-2.2 liters of test gas mixtures containing approximately 5% argon. The rate of argon equilibration in the rebreathing bag, termed RBeq, was quantified by determining the logarithm of the actual minus the equilibrated argon concentrations normalized to the inspired minus the equilibrated argon concentrations. A compartmental model of the lung (S. Verbanck and M. Paiva. J. Appl. Physiol. 76: 445-454, 1994) was used to validate the method for determining RBeq and to simulate the influence of intra- and interregional delta V/Vo inhomogeneities on the RBeq curve. The comparison between the experimental Earth-based and microgravity RBeq curves and model simulations shows that gravity-independent delta V/Vo inhomogeneity is at least as large as gravity-dependent delta V/Vo inhomogeneity. PMID:8727527

  11. A Microgravity Helium Dilution Cooler

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Sperans, Joel (Technical Monitor)

    1994-01-01

    We are developing a He-3-He-4 dilution cooler to operate in microgravity. It uses charcoal adsorption pumps and heaters for its operation; it has no moving parts. It currently operates cyclically to well below 0.1 K and we have designed a version to operate continuously. We expect that the continuous version will be able to provide the long-duration cooling that many experiments need at temperatures down to 0.040 K. More importantly, such a dilution cooler could provide the precooling that enables the use of adiabatic demagnetization techniques that can reach temperatures below 0.001 K. At temperatures below 0.002 K many fascinating microgravity experiments on superfluid He-3 become possible. Among the possibilities are: research into a superfluid He-3 gyroscope, study of the nucleation of the B-phase of superfluid He-3 when the sample is floating out of contact with walls, study of the anisotropy of the surface tension of the B-phase, and NMR experiments on tiny free-floating clusters of superfluid He-3 atoms that should model the shell structure of nuclei.

  12. Melting processes under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Glicksman, M.; Lupulescu, A.; Koss, M.

    The Rensselaer Isothermal Dendritic Growth Experiment (RIDGE) uses the large data archive amassed through a series of three NASA-supported microgravity experiments (IDGE/USMP-2, -3, and -4), all of which flew aboard the space shuttle Columbia. The IDGE instruments aboard USMP-2 and -3 provided in-flight CCD images, and 35-mm films (postflight). USMP-4 also allowed streaming of near-real-time video. Using 30 fps video data, it became possible for the first time to study both freezing and melting sequences for high-purity pivalic acid (PVA). We report on the melting process observed for PVA crystal fragments, observed under nearly ideal convection-free conditions. Conduction-limited melting processes are of importance in orbital melting of materials, meteoritic genesis, mushy-zone evolution, and in fusion weld pools where length scales for thermal buoyancy are restricted. Microgravity video show clearly that PVA dendrites melt into fragments that shrink at accelerating rates to extinction. The melting paths of individual fragments follow characteristic time dependences derived from theory. The theoretical melting kinetics against which the experimental observations are carefully compared is based on conduction-limited quasi-static melting under shape-preserving conditions. Good agreement between theory and experiment is found for the stable melting of needle-shaped prolate spheroidal PVA crystal fragments with aspect ratios near C /A = 12.

  13. Is there resetting of central venous pressure in microgravity?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Ludwig, D. A.; Elliott, J. J.; Wade, C. E.

    2001-01-01

    In the early phase of the Space Shuttle program, NASA flight surgeons implemented a fluid-loading countermeasure in which astronauts were instructed to ingest eight 1-g salt tablets with 960 ml of water approximately 2 hours prior to reentry from space. This fluid loading regimen was intended to enhance orthostatic tolerance by replacing circulating plasma volume reduced during the space mission. Unfortunately, fluid loading failed to replace plasma volume in groundbased experiments and has proven minimally effective as a countermeasure against post-spaceflight orthostatic intolerance. In addition to the reduction of plasma volume, central venous pressure (CVP) is reduced during exposure to actual and groundbased analogs of microgravity. In the present study, we hypothesized that the reduction in CVP due to exposure to microgravity represents a resetting of the CVP operating point to a lower threshold. A lower CVP 'setpoint' might explain the failure of fluid loading to restore plasma volume. In order to test this hypothesis, we conducted an investigation in which we administered an acute volume load (stimulus) and measured responses in CVP, plasma volume and renal functions. If our hypothesis is true, we would expect the elevation in CVP induced by saline infusion to return to its pre-infusion levels in both HDT and upright control conditions despite lower vascular volume during HDT. In contrast to previous experiments, our approach is novel in that it provides information on alterations in CVP and vascular volume during HDT that are necessary for interpretation of the proposed CVP operating point resetting hypothesis.

  14. Formation and Combustion of Unconfined Drop Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Liu, S.; Craig, G.; Zhang, Y.; Ruff, G. A.

    1997-01-01

    Single-drop and droplet array studies have become common methods to isolate and investigate the effects of any of the complexities that enter into the drop combustion process. Microgravity environments are required to allow larger drops to be studied while minimizing or eliminating the confounding effects of buoyancy. Based on the results from current isolated drop, drop array, and spray studies funded through the Microgravity Science and Applications Division, it has become clear that even with the effects of buoyancy removed, the extrapolation of results from droplet array studies to spray flames is difficult. The problem occurs because even the simplest spray systems introduce complexities of multi-disperse drop sizes and drop-drop interactions, coupled with more complicated fluid dynamics. Not only do these features make the interpretation of experimental data difficult, they also make the problem very difficult to analyze computationally. Group combustion models, in which the interaction between droplets is treated on a statistical manner, have become a popular method to investigate the behavior of large numbers of interacting droplets, particularly through the work of Ryan et al. and Bellan and co-workers. While these models idealize the actual spray systems to a point where they can be treated computationally, the experimental analogy to these models is difficult to achieve because it requires the formation and Combustion of drop clusters without the effects of buoyancy. Therefore, even though these models have provided useful and insightful information, the verification of the results by direct comparison with experimental data is still lacking.

  15. Electron precipitation zones around major ground-based VLF signal sources

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Chang, H. C.; Helliwell, R. A.

    1984-01-01

    The spatial distribution of electron precipitation induced by VLF signals from ground-based transmitters is determined by using a test particle computer model of the gyroresonant wave-particle interaction (Inan et al., 1982). The results are presented as contours of energy flux on a map of the region around each transmitter. It is shown that the size of the precipitation zones is a strong function of the geographic location of the transmitter, as well as its radiated power and operating frequency. In general, the precipitation zones are much wider in longitude than in latitude and are oriented along lines of constant geomagnetic latitude. Assuming backscatter and/or wave echoing, precipitation zones around the points that are magnetically conjugate to the sources are also estimated. The results presented can be used to interpret satellite- or ground-based measurements of the precipitation induced by ground-based VLF transmitters.

  16. BigBOSS: The Ground-Based Stage IV BAO Experiment

    SciTech Connect

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  17. Extragalactic Science with the Next Generation of Ground Based TeV {gamma}-Ray Telescopes

    SciTech Connect

    Krawczynski, Henric

    2008-12-24

    The ground based Cherenkov telescope experiments H.E.S.S., MAGIC, and VERITAS, and the space borne Fermi Gamma-Ray Space Telescope are currently exploring the galactic and extragalactic Universe in {gamma}-rays. At the time of writing this article, a large number of Active Galactic Nuclei have been studied in great detail and the {gamma}-ray observations have had a major impact on our understanding of the structure of jets from these objects. In this contribution, the status of ground based {gamma}-ray observations of AGN and other extragalactic source classes is reviewed as of October, 2008. After discussing source classes that could be detected with next generation ground based experiments like AGIS, CTA, and HAWC, the potential impact of the observations on the fields of high energy astrophysics, structure formation, observational cosmology, and fundamental physics is reviewed. We close with a discussion of the technical requirements that arise from the science drivers.

  18. Terrestrial stress analogs for spaceflight associated immune system dysregulation.

    PubMed

    Crucian, Brian; Simpson, Richard J; Mehta, Satish; Stowe, Raymond; Chouker, Alexander; Hwang, Shen-An; Actor, Jeffrey K; Salam, Alex P; Pierson, Duane; Sams, Clarence

    2014-07-01

    Recent data indicates that dysregulation of the immune system occurs and persists during spaceflight. Impairment of immunity, especially in conjunction with elevated radiation exposure and limited clinical care, may increase certain health risks during exploration-class deep space missions (i.e. to an asteroid or Mars). Research must thoroughly characterize immune dysregulation in astronauts to enable development of a monitoring strategy and validate any necessary countermeasures. Although the International Space Station affords an excellent platform for on-orbit research, access may be constrained by technical, logistical vehicle or funding limitations. Therefore, terrestrial spaceflight analogs will continue to serve as lower cost, easier access platforms to enable basic human physiology studies. Analog work can triage potential in-flight experiments and thus result in more focused on-orbit studies, enhancing overall research efficiency. Terrestrial space analogs generally replicate some of the physiological or psychological stress responses associated with spaceflight. These include the use of human test subjects in a laboratory setting (i.e. exercise, bed rest, confinement, circadian misalignment) and human remote deployment analogs (Antarctica winterover, undersea, etc.) that incorporate confinement, isolation, extreme environment, physiological mission stress and disrupted circadian rhythms. While bed rest has been used to examine the effects of physical deconditioning, radiation and microgravity may only be simulated in animal or microgravity cell culture (clinorotation) analogs. This article will characterize the array of terrestrial analogs for spaceflight immune dysregulation, the current evidence base for each, and interpret the analog catalog in the context of acute and chronic stress. PMID:24462949

  19. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  20. Microgravity science requirements and the need for data compression

    NASA Technical Reports Server (NTRS)

    Hartz, William G.

    1991-01-01

    The Microgravity Science and Applications Div. (MSAD) of the NASA Office of Space Science and Applications (OSSA) is responsible for encouraging and directing the research of a wide range of physical phenomena in reduced gravity. Under MSAD's direction, NASA-Lewis is presently developing the concept of a multiuser facility which will perform combustion science experiments in space. This facility, the Combustion Experiment Module (CEM), will be located in either the Shuttle Spacelab or the Space Station Freedom lab and will be operational by mid-1997. In addition to standard instrumentation to measure temperature, pressure, and acceleration, CEM shall use a variety of imaging and optical diagnostic techniques. Images shall be the primary source of experimental data. These images create an enormous amount of data which must be archived on orbit for later analysis. Also, ground based investigators will require enough data from the orbiting facility to determine if the experimental parameters need to be changed before proceeding with the next run. The storage and transmission of this data present a major challenge to the CEM design. Data compression will play a major role in the design of the CEM diagnostics system.

  1. Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2002-01-01

    The development of orthostatic hypotension and instability immediately after return from spaceflight has been a significant operational problem to astronauts for more than four decades. Significant reductions in stroke volume and peripheral vascular resistance contribute to ineffective maintenance of systemic arterial blood pressure during standing after spaceflight despite compensatory elevations in heart rate. The primary mechanism underlying reduced stroke volume appears to be a reduction in preload associated with reduced circulating blood volume, although cardiac atrophy might also contribute. Space flight and ground based experiments have demonstrated that an inability to provide adequate peripheral vasoconstriction in astronauts that become presyncopal may be associated with several mechanisms including reduced sympathetic nerve activity, arterial smooth muscle atrophy and/or hyporeactivity, hypersensitivity of beta-adrenergic receptors, etc. In addition, an inability to provide adequate tachycardia in presyncopal subjects may be associated with reduced carotid-cardiac baroreflex sensitivity. Based on the current knowledge and understanding of cardiovascular mechanisms that are altered during exposure to microgravity, a major focus of future research should be directed to the systematic evaluation of potential countermeasures that specifically target and restore the function of these mechanisms. Based on a preliminary systematic evaluation presented in this review, acute physical exercise designed to elicit maximal effort, G-suit inflation, artificial gravity, and specific pharmacological interventions, alone or in combination, have shown promise as successful countermeasures that provide protection against post-flight orthostatic intolerance.

  2. Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)

    1996-01-01

    The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.

  3. Consistent interpretation of ground based and GOME BrO slant column data

    NASA Astrophysics Data System (ADS)

    Mueller, R. W.; Bovensmann, H.; Kaiser, J. W.; Richter, A.; Rozanov, A.; Wittrock, F.; Burrows, J. P.

    Model computations of slant column densities (SCD) enable the comparison between ground based and satellite based absorption measurements of scattered light and are therefore a good basis to investigate the presence of tropospheric BrO amounts. In this study ground based zenith sky and GOME nadir measurements of BrO SCD are compared with simulations for the 19-21 March 1997 at Ny-Ålesund. The vertical columns of tropospheric BrO amounts are estimated to be in the range 4 ±0.8 ∗ 10 13 [molecules/cm 2] for the investigated period and location.

  4. Status of advanced ground-based laser interferometers for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Dooley, K. L.; Akutsu, T.; Dwyer, S.; Puppo, P.

    2015-05-01

    Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years’ worth of science data at initial design sensitivities was completed. Upgrades to the initial detectors together with construction of brand new detectors are ongoing and feature advanced technologies to improve the sensitivity to GWs. This conference proceeding provides an overview of the common design features of ground-based laser interferometric GW detectors and establishes the context for the status updates of each of the four gravitational-wave detectors around the world: Advanced LIGO, Advanced Virgo, GEO 600 and KAGRA.

  5. Jumping in simulated and true microgravity: response to maximal efforts with three landing types

    NASA Technical Reports Server (NTRS)

    D'Andrea, Susan E.; Perusek, Gail P.; Rajulu, Sudhakar; Perry, Julie; Davis, Brian L.

    2005-01-01

    BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.

  6. Vitamin K status in spaceflight and ground-based models of spaceflight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a ...

  7. Microgravity protein crystallisation aboard the photon satellite

    NASA Astrophysics Data System (ADS)

    Chayen, Naomi E.

    1995-08-01

    Human immunodeficiency virus (HIV) reverse transcriptase was used as a sample protein to determine whether the optimum conditions for crystallisation in microgravity were identical to those on Earth. The degree of reproducibility of the results in microgravity was also tested. The results showed that, comparing experiments performed in identical apparatus, the conditions for obtaining the largest crystals in microgravity were different from the optimal conditions on Earth. Crystal form, size, visual quality and the reproducibility of the results were no different from those on Earth. Crystallisation took place in the vapour diffusion set-up of the Russian Kashtan apparatus which flew on a Photon satellite (4-20 October 1991).

  8. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  9. Ground-Based VIS/NIR Reflectance Spectra of 25143 Itokawa: What Hayabusa will See and How Ground-Based Data can Augment Analyses

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Abell, P. A.; Jarvis, K. S.

    2004-01-01

    Planning for the arrival of the Hayabusa spacecraft at asteroid 25143 Itokawa includes consideration of the expected spectral information to be obtained using the AMICA and NIRS instruments. The rotationally-resolved spatial coverage the asteroid we have obtained with ground-based telescopic spectrophotometry in the visible and near-infrared can be utilized here to address expected spacecraft data. We use spectrophotometry to simulate the types of data that Hayabusa will receive with the NIRS and AMICA instruments, and will demonstrate them here. The NIRS will cover a wavelength range from 0.85 m, and have a dispersion per element of 250 Angstroms. Thus, we are limited in coverage of the 1.0 micrometer and 2.0 micrometer mafic silicate absorption features. The ground-based reflectance spectra of Itokawa show a large component of olivine in its surface material, and the 2.0 micrometer feature is shallow. Determining the olivine to pyroxene abundance ratio is critically dependent on the attributes of the 1.0- and 2.0 micrometer features. With a cut-off near 2,1 micrometer the longer edge of the 2.0- feature will not be obtained by NIRS. Reflectance spectra obtained using ground-based telescopes can be used to determine the regional composition around space-based spectral observations, and possibly augment the longer wavelength spectral attributes. Similarly, the shorter wavelength end of the 1.0 micrometer absorption feature will be partially lost to the NIRS. The AMICA filters mimic the ECAS filters, and have wavelength coverage overlapping with the NIRS spectral range. We demonstrate how merging photometry from AMICA will extend the spectral coverage of the NIRS. Lessons learned from earlier spacecraft to asteroids should be considered.

  10. Data Processing in Microgravity Surveys

    NASA Astrophysics Data System (ADS)

    Blecha, V.

    2013-05-01

    The current land gravity meters have a sensitivity of 1 μGal and gravity method has become common part of near-surface geophysical surveys. Mean square error of measurements is usually less than 5 μGal and anomalies with amplitude of about 10 μGal can often be regarded as credible and it is possible to link them to specific sources. Gravity survey can be divided into three phases: data acquisition, processing and interpretation. In microgravity surveys each of these phases has its own specifics, because increasing the accuracy and reliability of data by each μGal is important. This contribution focuses on the processing of microgravity data. In most cases, the measured data in microgravity surveys are processed into the relative Bouguer anomalies. Calculation of the relative Bouguer anomaly means that the value of gravity on the base station is arbitrary, instead of altitudes of gravity stations only their elevation are measured and instead of computing of theoretical gravity only latitude correction is calculated. When local surveys are performed on relatively small areas topographic corrections are calculated only in limited distance and gravity curvature (Bullard B) correction is omitted. The gravity effects of topographic features outside the survey area generally have spatial wavelengths larger than that of the target anomaly. Therefore, the topographic features outside the survey area can be often treated as components of the local regional field variation and corrected in a single regional-residual field separation step. An important part of microgravity data processing is correction for diurnal temporal variations of gravity. Diurnal temporal variations consist of tidal effect of the Moon and Sun and drift of gravity meter. A substantial part of the tidal effects and long-term linear drift is removed automatically by gravity meter software. Residual parts of temporal changes are registered by reoccupation of base station in a time interval of ca. 1 hour

  11. Microgravity investigations of foundation conditions

    SciTech Connect

    Yule, D.E.; Sharp, M.K.; Butler, D.K.

    1998-01-01

    A microgravity investigation was conducted in the upstream and downstream switchyards of the Wilson Dam powerplant, Florence, Alabama. The objective of the survey was the detection in the switchyard foundations of subsurface cavities or other anomalous conditions that could threaten the stability of the switchyard structures. The survey consisted of 288 gravity stations in the downstream switchyard and 347 stations in the upstream switchyard. Significant anomalous areas in the switchyards were selected on the basis of residual gravity anomaly maps. These results were prioritized and used to guide an exploratory drilling program to investigate the cause of the anomalies. Highest-priority boring location recommendations were in negative gravity anomaly areas, since negative anomalies could be caused by actual cavities or low-density zones that might represent incipient cavity formation. Remaining boring locations were in positive anomaly areas for verification purposes. The results of the borings confirm the presence of cavities and soft zones indicative of cavity formation.

  12. Microgravity Outreach with Math Teachers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Don Gillies, a materials scientist at NASA/Marshall Space Flight Center (MSFC), demonstrates the greater bounce to the ounce of metal made from a supercooled bulk metallic glass alloy that NASA is studying in space experiments. The metal plates at the bottom of the plexiglass tubes are made of three different types of metal. Bulk metallic glass is more resilient and, as a result, the dropped ball bearing bounces higher. Fundamental properties of this bulk metallic glass were measured in a space flight in 1997 Microgravity Science Laboratory-1 (MSL-1) mission. These properties could not have been measured on Earth and have been incorporated into recent design. This demonstration was at the April 2000 conference of the National Council of Teachers of Mathematics (NCTM) in Chicago. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Modeling of microgravity combustion experiments

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1993-01-01

    Modeling plays a vital role in providing physical insights into behavior revealed by experiment. The program at the University of Illinois is designed to improve our understanding of basic combustion phenomena through the analytical and numerical modeling of a variety of configurations undergoing experimental study in NASA's microgravity combustion program. Significant progress has been made in two areas: (1) flame-balls, studied experimentally by Ronney and his co-workers; (2) particle-cloud flames studied by Berlad and his collaborators. Additional work is mentioned below. NASA funding for the U. of Illinois program commenced in February 1991 but work was initiated prior to that date and the program can only be understood with this foundation exposed. Accordingly, we start with a brief description of some key results obtained in the pre - 2/91 work.

  14. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  15. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused

  16. Microgravity research in Japanese industry

    NASA Astrophysics Data System (ADS)

    Kudo, Isao

    1993-07-01

    Japanese industry will have many opportunities to perform microgravity tests in the 1990s. The world's longest dropshaft was completed in Hokkaido last year. SJAC has many programs, including GAS, MASER, CASIMIR, COSIMA, and MIR. In fact, 12 electronic and 4 biomaterial experiments using GAS canisters which have been waiting since 1986 will be finished by early 1993. STC will carry out 4 experiments on D-2 in 1993. USEF has two high-quality experiment programs on SFU and EXPRESS. SFU is an unmanned platform for multiple uses and the first flight is expected in 1994 or 95. Ground tests of 8 material experiments are now in progress. EXPRESS is a reusable reentry capsule. Multireactors in an autoclave which are designed for zeolite and catalyst crystal growth on EXPRESS have been developed.

  17. Airway nitric oxide in microgravity

    NASA Astrophysics Data System (ADS)

    Linnarsson, D.; Gustafsson, L.; Hemmingsson, Tryggve; Frostell, C.; Paiva, M.

    2005-10-01

    Nitric Oxide (NO), a molecule with a wide range of biological effects, is found in exhaled gas. Elevation of expired NO is an early sign of airway inflammation in asthma and dust inhalation. Animal experiments have demonstrated a marked increase of expired NO after venous gas emboli (bubbles, VGE), which may occur after decompression in conjunction with extravehicular activity (EVA). For this MAP project, astronauts will perform a simple inhalation-exhalation procedure weekly during their flights, and before and after EVA. Furthermore, the microgravity environment offers a possibility to gain new insights into how and where NO is formed in the lungs and what local effects NO may have there. The planned experiments have been made possible by recent developments of new techniques by the team's industrial partners; Aerocrine has developed a highly compact and accurate NO analyser, and Linde Gas Theapeutics has developed a highly compact device for NO administration in the inhaled air.

  18. Conditions of possible programs using small and medium size ground-based astrometric instruments

    NASA Astrophysics Data System (ADS)

    Kovalevsky, J.

    The post-HIPPARCOS era has brought some uncertainty on the future of ground-based astrometry. However, the discussions that were initiated by the IAU Working Group on future development of ground-based astrometry, showed that there are a number of fields that will not be satisfactorily covered by space astrometry. The instruments that could be used are shortly described. Then the complementarity of ground-based and space astrometry is discussed. The papers presented at this very session confirm the point of view that, with minor modifications and improvement of existing instruments, many sound scientific programs can be undertaken. The principal domains in which major scientific inputs are expected from ground-based astrometry concern the dynamics of minor planets and satellites, the shape of the Sun, double stars, kinematics within stellar clusters and radiosource optical counterparts. In addition, the use of some small telescopes for monitoring long period irregular variable stars could be a useful reconversion of astrometric activity. Some possible projects in these fields will be presented, but the Working Group cannot manage such programs. Its objective is to help organizing them and to encourage people to join them. An important point concerning these programs is that all the participants should have a reward in their work in terms of publications.

  19. E-beam accelerator cavity development for the ground-based free electron laser

    NASA Astrophysics Data System (ADS)

    Bultman, N. K.; Spalek, G.

    Los Alamos National Laboratory is designing and developing four prototype accelerator cavities for high power testing on the Modular Component Technology Development (MCTD) test stand at Boeing. These cavities provide the basis for the e-beam accelerator hardware that will be used in the Ground Based Free Electron Laser (GBFEL) to be sited at the White Sands Missile Range (WSMR) in New Mexico.

  20. Uncertainties in Instantaneous Rainfall Rate Estimates: Satellite vs. Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Amitai, E.; Huffman, G. J.; Goodrich, D. C.

    2012-12-01

    High-resolution precipitation intensities are significant in many fields. For example, hydrological applications such as flood forecasting, runoff accommodation, erosion prediction, and urban hydrological studies depend on an accurate representation of the rainfall that does not infiltrate the soil, which is controlled by the rain intensities. Changes in the rain rate pdf over long periods are important for climate studies. Are our estimates accurate enough to detect such changes? While most evaluation studies are focusing on the accuracy of rainfall accumulation estimates, evaluation of instantaneous rainfall intensity estimates is relatively rare. Can a speceborne radar help in assessing ground-based radar estimates of precipitation intensities or is it the other way around? In this presentation we will provide some insight on the relative accuracy of instantaneous precipitation intensity fields from satellite and ground-based observations. We will examine satellite products such as those from the TRMM Precipitation Radar and those from several passive microwave imagers and sounders by comparing them with advanced high-resolution ground-based products taken at overpass time (snapshot comparisons). The ground based instantaneous rain rate fields are based on in situ measurements (i.e., the USDA/ARS Walnut Gulch dense rain gauge network), remote sensing observations (i.e., the NOAA/NSSL NMQ/Q2 radar-only national mosaic), and multi-sensor products (i.e., high-resolution gauge adjusted radar national mosaics, which we have developed by applying a gauge correction on the Q2 products).