Science.gov

Sample records for groundwater quality index

  1. A groundwater quality index map for Namibia

    NASA Astrophysics Data System (ADS)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  2. Index of ground-water quality data for Florida

    USGS Publications Warehouse

    Seaber, P.R.; Williams, O.O.

    1985-01-01

    The Master Water Data Index of the U.S. Geological Survey contains records and information for 13,925 ground-water quality collection sites in Florida as follows: 2,180 active and 11,559 inactive well sites, and 39 active and 147 inactive spring sites. Ground-water quality data have been and are being collected at more sites in Florida than are other types of ground- and surface-water hydrologic data. Information available from the Master Water Data Index includes location (county, hydrologic unit, and latitude-longitude); reporting agency; agency identifying number; period and frequency of record; types of data (parameter sampled); and for wells, the principal aquifer sampled and well depth. This information may be retrieved, upon request, in a variety of formats. This report contains an index of the information available, not the actual water-quality data itself. The actual data may be obtained from the reporting agency that collected and stored the data. (USGS)

  3. The vulnerability index calculation for determination of groundwater quality

    SciTech Connect

    Kurtz, D.A.; Parizek, R.R.

    1995-12-01

    Non-point source pollutants, such as pesticides, enter groundwater systems in a variety of means at wide-ranging concentrations. Risks in using groundwater in human consumption vary depending on the amounts of contaminants, the type of groundwater aquifer, and various use factors. We have devised a method of determining the vulnerability of an aquifer towards contamination with the Vulnerability Index. The Index can be used either as a comparative or an absolute index (comparative with a pure water source or aquifer spring or without comparison, assuming no peaks in the compared sample). Data for the calculation is obtained by extraction of a given water sample followed by analysis with a nitrogen/phosphorus detector on gas chromatography. The calculation uses the sum of peak heights as its determination. An additional peak number factor is added to emphasize higher numbers of compounds found in a given sample. Karst aquifers are considered to be highly vulnerable due to the large solution openings in its structure. Examples will be given of Vulnerability Indices taken from springs emanating from karst, intermediate, and diffuse flow aquifers taken at various times of the 1992 sampling year and compared with rainfall during that time. Comparisons will be made of the Index vs. rainfall events and vs. pesticide application data. The risk of using contaminated drinking water sources can be evaluated with the use of this index.

  4. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India.

    PubMed

    Vasanthavigar, M; Srinivasamoorthy, K; Vijayaragavan, K; Ganthi, R Rajiv; Chidambaram, S; Anandhan, P; Manivannan, R; Vasudevan, S

    2010-12-01

    An attempt has been made to understand the hydrogeochemical parameters to develop water quality index in Thirumanimuttar sub-basin. A total of 148 groundwater samples were collected and analyzed for major cations and anions. The domination of cations and anions was in the order of Na>Mg>Ca>K for cations and Cl>HCO(3) >SO(4) in anions. The hydrogeochemical facies indicate alkalis (Na and K) exceed alkaline earths (Ca and Mg) and strong acids (Cl and SO(4)) exceed weak acid (HCO(3)). Water quality index rating was calculated to quantify overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to effective leaching of ions, over exploitation of groundwater, direct discharge of effluents and agricultural impact. The overlay of WQI with chloride and EC correspond to the same locations indicating the poor quality of groundwater in the study area. SAR, Na%, and TH were noted higher during both the seasons indicating most of the groundwater locations not suitable for irrigation purposes. PMID:20091344

  5. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    PubMed

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period. PMID:26163496

  6. Determination of groundwater quality index of a highland village of Kerala (India) using Geographical Information System.

    PubMed

    Rejith, P G; Jeeva, S P; Vijith, H; Sowmya, M; Hatha, A A Mohamed

    2009-06-01

    In this study, the authors' goal was to understand the groundwater quality of Nedumkandam panchayat by an integrated approach of traditional water quality analysis and Geographical Information Systems (GIS). Fourteen wells were identified from the study area and samples were collected and analyzed using standard protocols (American Public Health Association, 1998). Parameters analyzed include pH, hardness, nitrate, chloride, sulfate, phosphate, trace metals (cadmium, zinc, copper, and lead), and fecal coliforms. All parameters except pH, cadmium, and fecal coliforms were within the limit of drinking water quality standards prescribed by the Bureau of Indian Standards (BIS) (BIS, 1983). The spatial distribution of physico-chemical and biological parameters was analyzed using the Inverse Distance Weighted (IDW) approach and the maps thus obtained were integrated using the raster calculator option of spatial analyst in ArcGIS 8.3 software, and a water quality index (WQI) was calculated. Based on the WQI values, the study area was divided into poor, moderate, and good water quality zones. PMID:19537647

  7. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    PubMed

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater. PMID:27155859

  8. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    PubMed

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  9. A New Evaluation Method for Groundwater Quality Applied in Guangzhou Region, China: Using Fuzzy Method Combining Toxicity Index.

    PubMed

    Liu, Fan; Huang, Guanxing; Sun, Jichao; Jing, Jihong; Zhang, Ying

    2016-02-01

    Groundwater quality assessment is essential for drinking from a security point of view. In this paper, a new evaluation method called toxicity combined fuzzy evaluation (TCFE) has been put forward, which is based on the fuzzy synthetic evaluation (FSE) method and the toxicity data from Agency for Toxic Substances and Disease Registry. The comparison of TCFE and FSE in the groundwater quality assessment of Guangzhou region also has been done. The assessment results are divided into 5 water quality levels; level I is the best while level V is the worst. Results indicate that the proportion of level I, level II, and level III used by the FSE method was 69.33% in total. By contrast, this proportion rose to 81.33% after applying the TCFE method. In addition, 66.7% of level IV samples in the FSE method became level I (50%), level II (25%), and level III (25%) in the TCFE method and 29.41% of level V samples became level I (50%) and level III (50%). This trend was caused by the weight change after the combination of toxicity index. By analyzing the changes of different indicators' weight, it could be concluded that the better-changed samples mainly exceeded the corresponding standards of regular indicators and the deteriorated samples mainly exceeded the corresponding standards of toxic indicators. The comparison between the two results revealed that the TCFE method could represent the health implications of toxic indicators reasonably. As a result, the TCFE method is more scientific in view of drinking safety. PMID:26803098

  10. Development of an operational index of water quality (PoS) as a versatile tool to assist groundwater resources management and strategic planning

    NASA Astrophysics Data System (ADS)

    Tziritis, Evangelos; Panagopoulos, Andreas; Arampatzis, George

    2014-09-01

    Groundwater quality assessment and evaluation is of paramount importance in strategic planning and management at river basin scale or even larger. Depending on the available infrastructure data upon which such assessments are carried out, significant variations in terms of measured parameters and time span covered occur frequently and pose objective difficulties to environmental assessments. Still, there is a need for evaluation across such basins at regional, national or even continental scales under a common reference base. Existing methods so far focus on the comparative evaluation of a single parameter or a common set of parameters that needs to be available throughout all examined basins. Moreover, existing approaches and practices are assessing groundwater in comparison to the quality standards set for a specific use despite the fact that often these resources are covering a multitude of functions. This paper presents an index that attempts to perform a comparative assessment of groundwater quality across basins controlled by the same or different factors, subject to the same or different pressures and characterized by different availability of water quality measurements spread over the same or different time periods. It serves as an easy to implement and unbiased approach to identify water quality controlling factors. The proposed method offers on the spot assessment of groundwater quality characteristics visualized in a way that is easily conceived and comprehended.

  11. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…

  12. Trends in groundwater quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.

    1996-02-01

    The term trend takes on a variety of meanings for groundwater quality in both a temporal and spatial context. Most commonly, trends are thought of as changes over time at either a regional or localized spatial scale. Generally water quality managers are most interested in changes associated with some form of human activity. Carefully defining what is meant by trend is a critical step in trend analysis and may be accomplished by formulating a statistical model which includes a trend component. Although there are a great many regional groundwater studies which provide a snapshot description of water quality conditions over an area at one point in time, there are relatively few which consider changes over time and fewer still which include a statistical analysis of long-term trend. This review covers both regional and localized studies of groundwater quality around the world, including a few snapshots, but focusing primarily on those studies which include an evaluation of temporal changes in groundwater quality. The studies include national assessments, agricultural case studies (the largest group, mostly regional in scope), urban case studies, and point source and hazardous waste case studies.

  13. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.

    2015-12-01

    In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.

  14. Evaluation of groundwater dynamic regime with groundwater depth evaluation indexes.

    PubMed

    Genxu, Wang; Jian, Zhou; Kubota, Jumpei; Jianping, Su

    2008-06-01

    An accurate quantitative evaluation of anthropogenic effects on regional groundwater dynamics is critical to the rational planning, management, and use of such resources and in maintaining the sustainability of groundwater-dependent ecosystems. Based on groundwater dynamics, a series of groundwater depth evaluation indexes were created to quantitatively evaluate the effects of anthropogenic activities on the groundwater system. These indexes were based on mathematical relationships relating groundwater depth to surface runoff (gammat), precipitation (rhot), and extraction (deltat). The anthropogenic effects on these relationships were evaluated statistically, with respect to both temporal and spatial variation. The anthropogenic effects on groundwater dynamics within the arid Zhangye Basin, located in the middle reaches of northwest China's Heihe River, were investigated. River valley plains in the western portion of the basin excepted, anthropogenic activities have, since 1995, dramatically altered the basin's groundwater dynamics; in particular, in the mid-upper and lower portions of alluvial-diluvial fans and in localized northerly fine-soil plains regions, the relationship of groundwater to surface runoff and atmospheric precipitation has shifted. This and other changes indicate that anthropogenic effects on groundwater systems in this region show clear spatiotemporal variation. PMID:18686930

  15. Groundwater environmental capacity and its evaluation index.

    PubMed

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity. PMID:19763854

  16. Arkansas Groundwater-Quality Network

    USGS Publications Warehouse

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  17. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  18. Groundwater quality in the San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.

  19. Integrated groundwater quality management in urban areas

    NASA Astrophysics Data System (ADS)

    Swartjes, F. A.; Otte, P. F.

    2012-04-01

    Traditionally, groundwater assessments and remediations are approached at the scale of individual groundwater plumes. In urban areas, however, this management of individual groundwater plumes is often problematic for technical, practical or financial reasons, since the groundwater quality is often affected by a combination of sources, including (former) industrial activities, spills and leachate from uncontrolled landfills and building materials. As a result, often a whole series of intermingling contamination plumes is found in large volumes of groundwater. In several countries in the world, this led to stagnation of groundwater remediation in urban areas. Therefore, in the Netherlands there is a tendency managing groundwater in urban areas from an integrated perspective and on a larger scale. This so-called integrated groundwater quality management is often more efficient and hence, cheaper, since the organisation of the management of a cluster of groundwater plumes is much easier than it would be if all individual groundwater plumes were managed at different points in time. Integrated groundwater quality management should follow a tailor-made approach. However, to facilitate practical guidance was developed. This guidance relates to the delineation of the domain, the management of sources for groundwater contamination, procedures for monitoring, and (risk-based) assessment of the groundwater quality. Function-specific risk-based groundwater quality criteria were derived to support the assessment of the groundwater quality.

  20. Environmental Quality Index - Overview Report

    EPA Science Inventory

    A better estimate of overall environmental quality is needed to improve our understanding of the relationship between environmental conditions and humanhealth. Described in this report is the effort to construct an environmental quality index representing multiple domains of the ...

  1. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  2. Sixth Environmental Quality Index

    ERIC Educational Resources Information Center

    National Wildlife, 1975

    1975-01-01

    This study, measuring the nation's clean-up efforts, shows an overall decline in environmental quality in the U.S. over the past year. In 1974, called "the year of the trade off," the federal government relaxed environmental quality standards to relieve economic problems and to solve the energy crisis temporarily. (MA)

  3. Assessment of groundwater vulnerability by combining drastic and susceptibility index: Application to Annaba superficial aquifer (Algeria)

    NASA Astrophysics Data System (ADS)

    Sedrati, Nassima; Djabri, Larbi; Chaffai, Hicham; Bougherira, Nabil

    2016-07-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The aim of this work is to propose a new integrated methodology to assess actual and forecasted groundwater vulnerability by combining Drastic and susceptibility index. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability DRASTIC index (VI) and the quality index (QI): SI=VI x QI. The superficial aquifer of Annaba plain was the study case proposed for the application of this methodology. The study revealed that the area with Very High vulnerability would increase 73 % in this superficial layer. This result can be explained by the susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is occupies the majority of the study area. The validity of the DRASTIC and the susceptibility index methods, verified by comparing the distribution of some pollutants (Daouad, 2013) in the groundwater and the different vulnerability classes, shows a high contamination that affect the water quality in study areas.

  4. Trend Analysis for Groundwater Quality at Different Depths for National Groundwater Quality Monitoring Network of Korea

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook; Hyun, Yunjung; Lee, Soo Jae; Yoon, Heesung; Kim, Rak-Hyeon

    2015-04-01

    Continuous groundwater monitoring is necessary to investigate the changes of groundwater quality with time, and trend analysis using a statistical method can be used to evaluate if the changes are significant. While groundwater quality is typically monitored and evaluated at one depth, in many cases groundwater quality can be different with depths; thus it is required that monitoring and assessment of trends of groundwater quality should be performed at different depths. In this study, we carried out trend analysis for groundwater quality data of National Groundwater Quality Monitoring Network of Korea to investigate the changes of groundwater quality between 2007 and 2013. The monitoring network has wells with different depths at each site, of which screens are located at about 10 m, 30 m, and 80 m. We analyzed three of the groundwater quality parameters that have sufficient time series data: pH, nitrate-nitrogen, and chloride ion. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of groundwater quality data. The trend analyses were conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99 % confidence levels). The results of groundwater monitoring and trend analysis at each location were compared with groundwater quality management standards and were classified to establish a new groundwater quality management framework of Korea. The results were further plotted in a regional scale to identify whether the trends, if any, can be grouped regionally. The results showed that wells with significant increasing or decreasing trends are far less than wells with no trends, and chloride ion has more wells with significant trends compared to pH and nitrate-nitrogen. The trends were more or less affected by local characteristics rather than reflecting a regional trend. The number of wells with trends decreased as the confidence level increased as expected, indicating that it is necessary to set an

  5. GROUNDWATER QUALITY PROTECTION: THE ISSUE IN PERSPECTIVE

    EPA Science Inventory

    The importance of protecting groundwater resources cannot be overstated, and many people throughout the world seem anxious to physically and financially support a rational program to this end. Public complacency regarding the quality of groundwater was destroyed with headline-gra...

  6. Foveated wavelet image quality index

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Bovik, Alan C.; Lu, Ligang; Kouloheris, Jack L.

    2001-12-01

    The human visual system (HVS) is highly non-uniform in sampling, coding, processing and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. Currently, most image quality measurement methods are designed for uniform resolution images. These methods do not correlate well with the perceived foveated image quality. Wavelet analysis delivers a convenient way to simultaneously examine localized spatial as well as frequency information. We developed a new image quality metric called foveated wavelet image quality index (FWQI) in the wavelet transform domain. FWQI considers multiple factors of the HVS, including the spatial variance of the contrast sensitivity function, the spatial variance of the local visual cut-off frequency, the variance of human visual sensitivity in different wavelet subbands, and the influence of the viewing distance on the display resolution and the HVS features. FWQI can be employed for foveated region of interest (ROI) image coding and quality enhancement. We show its effectiveness by using it as a guide for optimal bit assignment of an embedded foveated image coding system. The coding system demonstrates very good coding performance and scalability in terms of foveated objective as well as subjective quality measurement.

  7. Quality indexing with computer-aided lexicography

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1992-01-01

    Indexing with computers is a far cry from indexing with the first indexing tool, the manual card sorter. With the aid of computer-aided lexicography, both indexing and indexing tools can provide standardization, consistency, and accuracy, resulting in greater quality control than ever before. A brief survey of computer activity in indexing is presented with detailed illustrations from NASA activity. Applications from techniques mentioned, such as Retrospective Indexing (RI), can be made to many indexing systems. In addition to improving the quality of indexing with computers, the improved efficiency with which certain tasks can be done is demonstrated.

  8. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    PubMed

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes. PMID:25004765

  9. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2016-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  10. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  11. Groundwater Quality in Mura Valley (Slovenia)

    NASA Astrophysics Data System (ADS)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  12. Groundwater quality in the San Fernando--San Gabriel groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Fernando and San Gabriel groundwater basins constitute one of the study units being evaluated.

  13. Cross comparison of five popular groundwater pollution vulnerability index approaches

    NASA Astrophysics Data System (ADS)

    Brindha, K.; Elango, L.

    2015-05-01

    Identification of a suitable overlay and index method to map vulnerable zones for pollution in weathered rock aquifers was carried out in this study. DRASTIC and four models derived from it, namely Pesticide DRASTIC, modified DRASTIC, modified Pesticide DRASTIC and Susceptibility Index (SI) were compared by applying them to a weathered rock aquifer in southern India. The results were validated with the measured geochemical data. This study also introduces the use of temporal variation in the groundwater level and nitrate concentration in groundwater as input and for validation respectively to obtain more reliable and meaningful results. Sensitivity analysis of the vulnerability index maps highlight the importance of one parameter over another for a given hydrogeological setting, which will help to plan the field investigations based on the most or the least influential parameter. It is recommended to use modified Pesticide DRASTIC for weathered rock regions with irrigation practises and shallow aquifers (<20 m bgl). The crucial input due to land use should not be neglected and to be considered in any hydrogeological setting. It is better to estimate the specific vulnerability wherever possible rather than the intrinsic vulnerability as overlay and index methods are more suited for this purpose. It is also necessary to consider the maximum and minimum values of input parameters measured during a normal year in the models used for decision making.

  14. RESEARCH FOR GROUNDWATER QUALITY MANAGEMENT

    EPA Science Inventory

    Ground water is an excellent resource due to its quality and availability. In the United States it is available at almost any location in quantities large enough to provide for domestic needs and over one-third of the Country is underlain by aquifers capable of yielding 100,000 g...

  15. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  16. Assessment of Groundwater Quality by Chemometrics.

    PubMed

    Papaioannou, Agelos; Rigas, George; Kella, Sotiria; Lokkas, Filotheos; Dinouli, Dimitra; Papakonstantinou, Argiris; Spiliotis, Xenofon; Plageras, Panagiotis

    2016-07-01

    Chemometric methods were used to analyze large data sets of groundwater quality from 18 wells supplying the central drinking water system of Larissa city (Greece) during the period 2001 to 2007 (8.064 observations) to determine temporal and spatial variations in groundwater quality and to identify pollution sources. Cluster analysis grouped each year into three temporal periods (January-April (first), May-August (second) and September-December (third). Furthermore, spatial cluster analysis was conducted for each period and for all samples, and grouped the 28 monitoring Units HJI (HJI=represent the observations of the monitoring site H, the J-year and the period I) into three groups (A, B and C). Discriminant Analysis used only 16 from the 24 parameters to correctly assign 97.3% of the cases. In addition, Factor Analysis identified 7, 9 and 8 latent factors for groups A, B and C, respectively. PMID:27329059

  17. 7 CFR 61.103 - Determination of quality index.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Determination of quality index. 61.103 Section 61.103... quality index. The quality index of cottonseed shall be an index of purity and soundness, and shall be... index of 100. (b) Below prime quality cottonseed. The quality index of cottonseed that, by...

  18. 7 CFR 61.103 - Determination of quality index.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Determination of quality index. 61.103 Section 61.103... quality index. The quality index of cottonseed shall be an index of purity and soundness, and shall be... index of 100. (b) Below prime quality cottonseed. The quality index of cottonseed that, by...

  19. 7 CFR 61.103 - Determination of quality index.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Determination of quality index. 61.103 Section 61.103... quality index. The quality index of cottonseed shall be an index of purity and soundness, and shall be... index of 100. (b) Below prime quality cottonseed. The quality index of cottonseed that, by...

  20. 7 CFR 61.103 - Determination of quality index.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Determination of quality index. 61.103 Section 61.103... quality index. The quality index of cottonseed shall be an index of purity and soundness, and shall be... index of 100. (b) Below prime quality cottonseed. The quality index of cottonseed that, by...

  1. 7 CFR 61.103 - Determination of quality index.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Determination of quality index. 61.103 Section 61.103... quality index. The quality index of cottonseed shall be an index of purity and soundness, and shall be... index of 100. (b) Below prime quality cottonseed. The quality index of cottonseed that, by...

  2. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  3. Developing an Index of School Quality.

    ERIC Educational Resources Information Center

    Ashworth, John; Papps, Ivy

    1993-01-01

    Discusses ways to involve parents in a system to measure school quality. Develops a school quality index based on a characteristics approach, rather than market segmentation. The method emphasizes how the "best" school may not be the most popular, since school quality must be isolated from the "price" of attending. A hypothetical comparison shows…

  4. Illinois Quality Schools Index: Manual and Instruments.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Program Planning and Development Section.

    The Illinois Quality School Index (IQSI) is a school survey designed to assist local school personnel in planning for more effective schools. The IQSI provides a structure to determine the existing quality and the expected quality of the school as viewed by administration, staff, parents, and community. This manual is a detailed guide for using…

  5. Groundwater quality in the North San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2010-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The basins north of San Francisco constitute one of the study units being evaluated.

  6. Groundwater quality in the South Coast Interior Basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.

  7. Effects of variations in recharge on groundwater quality

    USGS Publications Warehouse

    Whittemore, D.O.; McGregor, K.M.; Marotz, G.A.

    1989-01-01

    The predominant regional effect of recharge on municipal groundwater quality in Kansas is the dilution of mineralized water in aquifers with relatively shallow water tables. The individual dissolved constituents contributing most to the water-quality variations are sulfate and chloride, and the calcium and sodium accompanying them, which are derived from the dissolution of evaporite minerals within the aquifer or from saline formation water in bedrock underlying the aquifer. The relationship between recharge and groundwater-quality variation can be quantified by associating certain climatic indices, especially the Palmer Drought Index, with quality observations. The response time of the maximum water-quality change relative to the occurrence of drought or substantial recharge ranges from a month to 3 years depending on the aquifer characteristics, and is generally proportional to the saturated thickness and specific yield. The response time is also affected by discharge to and recharge from nearby streams and by the well construction, particularly the placement of the screened interval, and pumping stress. ?? 1989.

  8. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  9. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    PubMed

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped. PMID:27105417

  10. Effects Of Leaky Sewers On Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  11. Groundwater Quality Modeling with a Small Data Set.

    PubMed

    Sakizadeh, Mohamad; Malian, Abbass; Ahmadpour, Eisa

    2016-01-01

    Seventeen groundwater quality variables collected during an 8-year period (2006 to 2013) in Andimeshk, Iran, were used to implement an artificial neural network (NN) with the purpose of constructing a water quality index (WQI). The method leading to the WQI avoids instabilities and overparameterization, two problems common when working with relatively small data sets. The groundwater quality variables used to construct the WQI were selected based on principal component analysis (PCA) by which the number of variables were decreased to six. To fulfill the goals of this study, the performance of three methods (1) bootstrap aggregation with early stopping; (2) noise injection; and (3) ensemble averaging with early stopping was compared. The criteria used for performance analysis was based on mean squared error (MSE) and coefficient of determination (R(2) ) of the test data set and the correlation coefficients between WQI targets and NN predictions. This study confirmed the importance of PCA for variable selection and dimensionality reduction to reduce the risk of overfitting. Ensemble averaging with early stopping proved to be the best performed method. Owing to its high coefficient of determination (R(2)  = 0.80) and correlation coefficient (r=0.91), we recommended ensemble averaging with early stopping as an accurate NN modeling procedure for water quality prediction in similar studies. PMID:25572437

  12. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-01-01

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  13. Using a fuzzy expert system to generate a holistic quantitative index of groundwater sustainability

    NASA Astrophysics Data System (ADS)

    Fleming, S. W.; Wong, C.; Graham, G.

    2011-12-01

    Indicators and indices can be an effective method for tracking environmental conditions over time, and thus for assessing the effectiveness of policy measures or remediation activities. Relative to surface water resources, however, groundwater has received little attention in this regard. This is problematic: about 30% and 44% of the Canadian and American populations depend on groundwater resources, with localized reliance of up to 100%. Aquifers can also serve key functions in watershed hydrology by attenuating peak flows, providing baseflow and associated aquatic habitat, moderating water temperature, and providing transport pathways for contaminants from the land surface to the open freshwater environment. Here, we introduce a prototype groundwater sustainability index. It is holistic in the sense that it incorporates both quantity and quality indicators. The former is based on the signal-to-noise ratio of long-term water level trends as estimated via robust (rank-based) regression, whereas the latter is based on concentration of the chief contaminant of concern. A fuzzy inference system is employed to integrate these unlike metrics, and has the additional advantages of explicitly encoding expert knowledge and directly acknowledging subjectivity in environmental condition "grading" through the use of linguistic rules and fuzzy sets, respectively. The rule base is constructed such that poor environmental conditions captured by one measure would not be hidden by good environmental performance in another. A standard Mamdani (max-min) inference engine is used in conjunction with centroid defuzzification. The outcome is a fuzzy logic-based groundwater sustainability index (FGWSI) ranging from 0 to 100. The index is demonstrated using both synthetic and observational datasets, including examples from the Abbotsford-Sumas aquifer, an important and managerially challenging transboundary (Canada-US) water resource.

  14. Spatial assessment of groundwater quality based on minor ions

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Elango, L.

    2011-12-01

    Use of water for domestic, agricultural and industrial purpose depends on the desirable range of concentration of various ions. As the suitability of groundwater for different use depends on concentration of several ions, delineation of a region having groundwater of suitable quality relies on integrating the quality of groundwater with respect to each ion. This can be brought out with the aid of advanced tools such as GIS (geographical information system). This study was carried out with the objective of assessing the groundwater quality based on EC (electrical conductivity), fluoride, bromide and nitrate using GIS techniques and the regions requiring attention for groundwater treatment was identified in a part of Nalgonda district, Andhra Pradesh, southern India. Forty five groundwater samples were collected and their EC, fluoride, nitrate and bromide concentration was analysed. Groundwater was not suitable for consumption in 6.6% of the samples based on EC. Fluoride, nitrate and bromide concentration in groundwater was not permissible as per BIS and WHO standards in 57%, 22% and 11% of the groundwater samples respectively. The areas having groundwater suitable or unsuitable for domestic use was delineated using GIS. The groundwater samples collected from 69% of the locations exceeded the desirable limit for drinking for atleast one parameter. The groundwater was unsuitable for domestic use in the northeastern and southeastern parts of this area. The source for the concentration of these parameters exceeding the limit is different for each parameter. Hence it is important to take a suitable collective measure in improving the groundwater quality. Considering the various options available for redeeming the groundwater quality, artificial recharge of groundwater by rainwater harvesting will be suitable to reduce the concentration of all ions in this area.

  15. Calculation of an interaction index between extractive activity and groundwater resources

    NASA Astrophysics Data System (ADS)

    Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo

    2015-04-01

    There are two underground resources intensively exploited in Wallonia (the southern Region of Belgium): groundwater and rock. Groundwater production rate is about 380*106 cubic meter per year from which 80 % is used for drinking water (SPW-DGO3, 2014). Annual rock extraction is about 73*106 tons per year and 80.6% of the materials are carbonate rocks (Collier and Hallet, 2013) corresponding to the most important aquifer formations. Given the high population density and environmental pressures, lateral quarry extensions are limited and the only solution for the operators is to excavate deeper. In this context, the aquifer level of the exploited formation is often reached and dewatering systems have to be installed to depress the water table below the quarry pit bottom. This affects the regional hydrogeology and, in some cases, the productivity of the water catchments is threatened. Using simple geological and hydrogeological parameters, an interaction index was developed to assess the interaction between extractive activity and groundwater resources and, in consequence, to define how far the feasibility study should go into detailed hydrogeological investigations. The interaction index is based on the equation used in the assessment of natural hazards (Dauphiné, 2003), which gives: Interaction = F (Quarry, Aquifer). The interaction is the risk, which is equal to a function where the hazard is defined from parameters corresponding to the quarry and vulnerability from parameters related to groundwater resources. Six parameters have been determined. The parameters chosen to represent the hazard of a quarry are: the geological, the hydrogeological and the piezometric contexts. The parameters chosen to represent the vulnerability of the water resources are: the relative position between the quarry and the water catchment (well, spring, gallery, etc.) sites, the productivity of the catchment and the quality of the groundwater. Each parameter was classified into four

  16. Groundwater quality in western New York, 2011

    USGS Publications Warehouse

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  17. Urbanization effect on groundwater quality (Paleohydrogeological study)

    NASA Astrophysics Data System (ADS)

    Sabri, Raghid; Merkel, Broder; Tichomirowa, Marion

    2015-04-01

    Speleothem growing in caves usually contain hydrological information. Carbonates precipitation growing in tunnels under cities contain information about anthropological influence on water system. Carbonate samples were taken from Roman tunnels in rural and urban area in Nablus district- Palestine. These laminated samples were analyzed for rare earth elements (REE), 13C and 18O. For REE, five samples were examined, each lamination was extracted and diluted with 0.1 ml 65% HNO3 and measured using ICP-MS. Yet, limited number of lamination was used for isotope analysis using Isotope ratio mass spectrometry. Total concentration of rare earth elements were calculated for each of the five samples. In all examined samples, the newer laminations show higher peaks than the older one of each sample. On the other hand, one sample (8 measurements) of 13C show values between -31.6° and -36°. These values mean that the carbonate is from organic origin. In an urban area, wastewater infiltration into groundwater system can be the source of organic matter. 18O measurements show continues enrichments within the growth of the carbonate. This increase of the 18O values reflects drier weather. Our results can be explained by the increase of water consumption in the household in the recent 100 years, rather than the increase of using detergents and cleaning products which have influenced groundwater quality as appeared in the carbonate samples. On the other hand, 18O results could be linked with the expansion of the building up area in the city and subsequently reduction of groundwater recharge

  18. Assessment of the Hydrogeochemistry and Groundwater Quality of the Tarim River Basin in an Extreme Arid Region, NW China

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca2+-HCO3 - water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na+-Cl- water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B3+, F-, and SO4 2- and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  19. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    PubMed

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future. PMID:24221557

  20. Groundwater quality in central New York, 2012

    USGS Publications Warehouse

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  1. Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993-2012)

    NASA Astrophysics Data System (ADS)

    Niu, Beibei; Loáiciga, Hugo A.; Wang, Zhen; Zhan, F. Benjamin; Hong, Song

    2014-11-01

    A bibliometric analysis was conducted to evaluate groundwater research from different perspectives in the period 1993-2012 based on the Science Citation Index-Expanded (SCIE) database. The bibliometric analysis summarizes output, categorical, geographical, and institutional patterns, as well as research hotspots in global groundwater studies. Groundwater research experienced notable growth in the past two decades. “Environmental sciences”, “water resources” and “multidisciplinary geosciences” were the three major subject categories. The Journal of Hydrology published the largest number of groundwater-related publications in the surveyed period. Major author clusters and research regions are located in the United States, Western Europe, Eastern and Southern Asia, and Eastern Australia. The United States was a leading contributor to global groundwater research with the largest number of independent and collaborative papers, its dominance affirmed by housing 12 of the top 20 most active institutions reporting groundwater-related research. The US Geological Survey, the Chinese Academy of Sciences, and the USDA Agricultural Research Service were the three institutions with the largest number of groundwater-related publications. A keywords analysis revealed that groundwater quality and contamination, effective research technologies, and treatment technologies for water-quality improvement were the main research areas in the study period. Several keywords such as “arsenic”, “climate change”, “fluoride”, “groundwater management”, “hydrogeochemistry”, “uncertainty”, “numerical modeling”, “seawater intrusion”, “adsorption”, “remote sensing”, “land use”, “USA”(as study site), and “water supply” received dramatically increased attention during the study period, possibly signaling future research trends.

  2. Groundwater Quality in Central New York, 2007

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  3. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    PubMed

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6-0.7), permissible (0.7-0.8), good (0.8-0.9), and excellent (0.9-1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area. PMID:27034240

  4. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    PubMed

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6–0.7), permissible (0.7–0.8), good (0.8–0.9), and excellent (0.9–1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area. PMID:27359000

  5. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran.

    PubMed

    Nematollahi, M J; Ebrahimi, P; Razmara, M; Ghasemi, A

    2016-01-01

    Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na(+) > Mg(2+) > Ca(2+) > K(+), and Cl(-) > [Formula: see text] > [Formula: see text] > [Formula: see text]. As a result, alkaline element (Na(+)) exceeds alkaline earth elements (Mg(2+) and Ca(2+)), and strong acids (Cl(-) and [Formula: see text]) dominate weak acids ([Formula: see text] and [Formula: see text]) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na(+), Mg(2+), Ca(2+), Cl(-) and [Formula: see text]. The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality. PMID:26627207

  6. Groundwater monitoring: Guidelines and methodology for developing and implementing a ground-water quality monitoring program

    SciTech Connect

    Everett, L.G.

    1984-01-01

    The handbook attempts to structure a cost-effective, generic groundwater pollution monitoring methodology that can be applied either on a regional basis or to site-specific, alternative approaches to monitoring the quality of groundwater at a considerable saving of time and money. Extensive detail is given to the relation of groundwater quality to the geohydrologic framework, constituents in the polluted groundwater, sources and causes of pollution, and use of water. Information is also given about groundwater monitoring techniques used in top soil, the vadose zone, ad the saturated zone. The costs of these techniques are described in figures and tables. Groundwater databases and their applicability to water resources information systems are also covered. Comprehensive site-specific examples are given of how to use the material in the handbook to monitoring major sources of groundwater pollution. Included are in-depth models of hazardous waste disposal, brine disposal, landfill leachate control, oxidation ponds and percolation ponds, septic fields, and agricultural return flow, as well as descriptions of cases of multiple-source municipal and agricultural pollution.

  7. Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia.

    PubMed

    Toumi, Naji; Hussein, Belal H M; Rafrafi, Sarra; El Kassas, Neama

    2015-03-01

    Groundwater quality monitoring is one of the most important aspects in groundwater studies in arid environments particularly in developing countries, like Saudi Arabia, due to the fast population growth and the expansion of irrigated agriculture and industrial uses. Groundwater samples have been collected from eight locations in Al-Ula in Saudi Arabia during June 2012 and January 2013 in order to investigate the hydrochemical characteristics and the groundwater quality and to understand the sources of dissolved ions. Physicochemical parameters of groundwater such as electrical conductivity, pH, total dissolved solid, and major cations and anions were determined. Chloride was found to be the dominant anion followed by HCO(-) 3 and SO4 (2-). Groundwater of the study area is characterized by the dominance of alkaline earths (Ca(2+) + Mg(2+)) over alkali metals (Na(+) + K(+)). The analytical results show that the groundwater is generally moderately hard and slightly alkaline in nature. The binary relationships of the major ions reveal that water quality of the Al-Ula region is mainly controlled by rock weathering, evaporation, and ion exchange reactions. Piper diagram was constructed to identify hydrochemical facies, and it was found that majority of the samples belong to Ca-Cl and mixed Ca-Mg-Cl facies. Chemical indices like chloro-alkali indices, sodium adsorption ratio, percentage of sodium, residual sodium carbonate, and permeability index were calculated. Also, the results show that the chemical composition of groundwater sources of Al-Ula is strongly influenced by lithology of country rocks rather than anthropogenic activities. PMID:25655124

  8. Impacts of swine manure pits on groundwater quality

    USGS Publications Warehouse

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites

  9. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  10. Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator

    NASA Astrophysics Data System (ADS)

    Kumar, Rohini; Musuuza, Jude L.; Van Loon, Anne F.; Teuling, Adriaan J.; Barthel, Roland; Ten Broek, Jurriaan; Mai, Juliane; Samaniego, Luis; Attinger, Sabine

    2016-03-01

    The lack of comprehensive groundwater observations at regional and global scales has promoted the use of alternative proxies and indices to quantify and predict groundwater droughts. Among them, the Standardized Precipitation Index (SPI) is commonly used to characterize droughts in different compartments of the hydro-meteorological system. In this study, we explore the suitability of the SPI to characterize local- and regional-scale groundwater droughts using observations at more than 2000 groundwater wells in geologically different areas in Germany and the Netherlands. A multiscale evaluation of the SPI is performed using the station data and their corresponding 0.5° gridded estimates to analyze the local and regional behavior of groundwater droughts, respectively. The standardized anomalies in the groundwater heads (SGI) were correlated against SPIs obtained using different accumulation periods. The accumulation periods to achieve maximum correlation exhibited high spatial variability (ranges 3-36 months) at both scales, leading to the conclusion that an a priori selection of the accumulation period (for computing the SPI) would result in inadequate characterization of groundwater droughts. The application of the uniform accumulation periods over the entire domain significantly reduced the correlation between the SPI and SGI (≈ 21-66 %), indicating the limited applicability of the SPI as a proxy for groundwater droughts even at long accumulation times. Furthermore, the low scores of the hit rate (0.3-0.6) and a high false alarm ratio (0.4-0.7) at the majority of the wells and grid cells demonstrated the low reliability of groundwater drought predictions using the SPI. The findings of this study highlight the pitfalls of using the SPI as a groundwater drought indicator at both local and regional scales, and stress the need for more groundwater observations and accounting for regional hydrogeological characteristics in groundwater drought monitoring.

  11. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. PMID:25687808

  12. Groundwater Quality Assessment for Waste Management Area U: First Determination

    SciTech Connect

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  13. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    SciTech Connect

    Kumar, Prashant; Bansod, Baban K.S.; Debnath, Sanjit K.; Thakur, Praveen Kumar; Ghanshyam, C.

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  14. GROUNDWATER QUALITY MONITORING RECOMMENDATIONS FOR IN SITU OIL SHALE DEVELOPMENT

    EPA Science Inventory

    This study addresses the two primary groups of uncertainties regarding the implementation of a groundwater quality monitoring program for MIS oil shale development such as proposed for Federal Prototype Lease Tracts C-a and C-b. Hydrogeologic characterization, an essential elemen...

  15. Creating an Overall Environmental Quality Index - Technical Report

    EPA Science Inventory

    A better estimate of overall environmental quality is needed to improve our understanding of the relationship between environmental conditions and humanhealth. Described in this report is the effort to construct an environmental quality index representing multiple domains of the ...

  16. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    NASA Astrophysics Data System (ADS)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  17. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  18. Deterioration of coastal groundwater quality in Island and mainland regions of Ramanathapuram District, Southern India.

    PubMed

    Sivasankar, Venkataramann; Ramachandramoorthy, Thiagarajan; Chandramohan, A

    2013-01-01

    A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8% of the mainland aquifers and 42% of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO(3)(2-) + HCO(3) and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged. PMID:22527453

  19. Groundwater Quality Assessment for Waste Management Area U: First Determination

    SciTech Connect

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  20. An innovative index for evaluating water quality in streams.

    PubMed

    Said, Ahmend; Stevens, David K; Sehlke, Gerald

    2004-09-01

    A water quality index expressed as a single number is developed to describe overall water quality conditions using multiple water quality variables. The index consists of water quality variables: dissolved oxygen, specific conductivity, turbidity, total phosphorus, and fecal coliform. The objectives of this study were to describe the preexisting indices and to define a new water quality index that has advantages over these indices. The new index was applied to the Big Lost River Watershed in Idaho, and the results gave a quantitative picture for the water quality situation. If the new water quality index for the impaired water is less than a certain number, remediation-likely in the form of total maximum daily loads or changing the management practices-may be needed. The index can be used to assess water quality for general beneficial uses. Nevertheless, the index cannot be used in making regulatory decisions, indicate water quality for specific beneficial uses, or indicate contamination from trace metals, organic contaminants, and toxic substances. PMID:15520897

  1. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    USGS Publications Warehouse

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or

  2. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2016-06-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  3. Groundwater quality in West Virginia, 1993-2008

    USGS Publications Warehouse

    Chambers, Douglas B.; Kozar, Mark D.; White, Jeremy S.; Paybins, Katherine S.

    2012-01-01

    Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL

  4. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain.

    PubMed

    Wu, Ming; Wu, Jianfeng; Liu, Jie; Wu, Jichun; Zheng, Chunmiao

    2015-08-01

    The North China Plain (NCP) is one of the most severe water shortage areas in China. Due to the scarcity of surface water in the NCP, groundwater system is seriously over-exploited and use of nitrogen fertilizers is greatly increasing year by year to improve soil fertility and crop production, causing a variety of environmental issues in the processes of abstracting groundwater. Considering that previous research was limited on approaches to assess sustainability of groundwater through flow modeling and water level decline, this study focuses on addressing the implications of groundwater contaminant for water resource sustainability in the central part of NCP. Based on the previously developed groundwater flow model, a reaction modular code for the reactive transport in three-dimensional aquifers (RT3D) is developed for simulating the reactive process of nitrogen species transport in groundwater system. The management optimization model coupled with the nitrogen reactive transport model under consideration of water quality constraints is then conducted to quantify and improve the sustainability of groundwater utilization in the study area. Thus, the optimal pumping well locations and pumping rates that lead to the maximum total yield or the minimum total management costs subjecting to a series of groundwater level constraints are obtained from the optimization models. Compared with the optimization model without water quality constraints, this study could provide a more useful tool for developing cost-effective strategies for sustainable management of groundwater resource in the NCP, and greatly improve groundwater management level and water quality. PMID:26102477

  5. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.

    2012-08-01

    SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land

  6. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  7. Motivation of synthesis, with an example on groundwater quality sustainability

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Labolle, Eric M.

    2006-03-01

    Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. The best motivation for broad, effective synthesis is the "big idea" that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Groundwater quality sustainability is posed as an example of one such idea that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.

  8. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  9. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  10. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  11. Assessing groundwater quality for irrigation using indicator kriging method

    NASA Astrophysics Data System (ADS)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2014-09-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  12. A Geographically Variable Water Quality Index Used in Oregon.

    ERIC Educational Resources Information Center

    Dunnette, D. A.

    1979-01-01

    Discusses the procedure developed in Oregon to formulate a valid water quality index which accounts for the specific conditions in the water body of interest. Parameters selected include oxygen depletion, BOD, eutrophication, dissolved substances, health hazards, and physical characteristics. (CS)

  13. National Wildlife's Eleventh Annual Environmental Quality Index 1980.

    ERIC Educational Resources Information Center

    National Wildlife, 1980

    1980-01-01

    Presented is the Eleventh Annual Environmental Quality Index, a subjective analysis of the state of the nation's natural resources. Resource trends are detailed for wildlife, minerals, air, water, soil living space, and forests. (BT)

  14. Retinal image quality assessment through a visual similarity index

    NASA Astrophysics Data System (ADS)

    Pérez, Jorge; Espinosa, Julián; Vázquez, Carmen; Mas, David

    2013-04-01

    Retinal image quality is commonly analyzed through parameters inherited from instrumental optics. These parameters are defined for 'good optics' so they are hard to translate into visual quality metrics. Instead of using point or artificial functions, we propose a quality index that takes into account properties of natural images. These images usually show strong local correlations that help to interpret the image. Our aim is to derive an objective index that quantifies the quality of vision by taking into account the local structure of the scene, instead of focusing on a particular aberration. As we show, this index highly correlates with visual acuity and allows inter-comparison of natural images around the retina. The usefulness of the index is proven through the analysis of real eyes before and after undergoing corneal surgery, which usually are hard to analyze with standard metrics.

  15. Quality of Life in Hong Kong: The CUHK Hong Kong Quality of Life Index

    ERIC Educational Resources Information Center

    Chan, Ying Keung; Kwan, Cheuk Chiu Andy; Shek, Tan Lei Daniel

    2005-01-01

    The CUHK Hong Kong Quality of Life Index, which aims to assess and monitor the quality of life in Hong Kong, is a composite index incorporating both objective and subjective measures. This index, developed by the Faculty of Social Science of The Chinese University of Hong Kong, employs data collected in representative sample surveys and official…

  16. Using the conceptual site model approach to characterize groundwater quality

    SciTech Connect

    Shephard, E.; Glucksberg, N.; Walter, N.

    2007-07-01

    To understand groundwater quality, the first step is to develop a conceptual site model (CSM) that describes the site history, describes the geology and the hydrogeology of the site, identifies potential release areas or sources, and evaluates the fate and transport of site related compounds. After the physical site setting is understood and potential release areas are identified, appropriate and representative groundwater monitoring wells may be used to evaluate groundwater quality at a site and provide a network to assess impacts from potential future releases. To develop the CSM, the first step to understand the different requirements from each of the regulatory stakeholders. Each regulatory agency may have different approaches to site characterization and closure (i.e., different groundwater and soil remediation criteria). For example, the United States Environmental Protection Agency (EPA) and state governments have published guidance documents that proscribe the required steps and information needed to develop a CSM. The Nuclear Regulatory Commission (NRC) has a proscriptive model for the Historical Site Assessment under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), and contains requirements for developing a conceptual site model in NUREG 1757. Federal and state agencies may also have different closure criteria for potential contaminants of concern. Understanding these differences before starting a groundwater monitoring program is important because the minimum detectable activity (MDA), lowest limit detection (LLD), and sample quantitation limit (SQL) must be low enough so that data may be evaluated under each of the programs. After a Historical Site Assessment is completed a work plan is developed and executed to not only collect physical data that describes the geology and hydrogeology, but to also characterize the soil, groundwater, sediments, and surface water quality of each potentially impacted areas. Although the primary

  17. Environmental Quality: Outline for a National Index for Canada

    ERIC Educational Resources Information Center

    Inhaber, H.

    1974-01-01

    Describes an approach to constructing an Environmental Quality Index for Canada. The index is divided into air, water, land and miscellaneous sections. By looking at individual subindices, it is possible to see how environmental conditions vary across the country. By combining subindices, a crude gauge of the broad state of the environment may be…

  18. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  19. Groundwater Quality in the Shallow Aquifers of the Hadauti Plateau of the District of Baran, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Lokesh; Rakshit, Amitava

    2014-07-01

    With the rapid pace of agricultural development, industrialization and urbanization, the commonly observed geogenic contaminants in groundwater are fluoride and nitrate, whereas nitrate is the dominant anthropogenic contaminant in the south-eastern plains of Rajasthan, India. Samples obtained using a tube well and hand pump in November, 2012, demonstrate that Na-Cl is the dominant salt in the groundwater, and the total salinity of the water is between 211-1056 mg L-1. Moreover, the observed sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) values ranged between 0.87 to 26.22 meq L-1 and -12.5 to 30.5 meq L-1 respectively. The study further shows that 6% of the total samples contain high amounts of nitrate, and 49% contain fluoride. A water quality index (WQI) rating was carried out using nine parameters to quantify the overall groundwater quality status of the area.

  20. Methods of Statistical Control for Groundwater Quality Indicators

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Nevidimova, O.; Yankovich, K.

    2016-06-01

    The article describes the results of conducted groundwater quality control. Controlled quality indicators included the following microelements - barium, manganese, iron, mercury, iodine, chromium, strontium, etc. Quality control charts - X-bar chart and R chart - were built. For the upper and the lower threshold limits, maximum permissible concentration of components in water and the lower limit of their biologically significant concentration, respectively, were selected. The charts analysis has shown that the levels of microelements content in water at the area of study are stable. Most elements in the underground water are contained in concentrations, significant for human organisms consuming the water. For example, such elements as Ba, Mn, Fe have concentrations that exceed maximum permissible levels for drinking water.

  1. Construction of an environmental quality index for public health research

    EPA Science Inventory

    A more comprehensive estimate of environmental quality would improve our understanding of the relationship between environmental conditions and human health. An environmental quality index (EQI) for all counties in the U.S. was developed. The EQI was developed in four parts: doma...

  2. Salinization process and coastal groundwater quality in Chaouia, Morocco

    NASA Astrophysics Data System (ADS)

    Najib, Saliha; Fadili, Ahmed; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi; Guessir, Hakima

    2016-03-01

    The coastal aquifer system of Chaouia is recognized as one of the most important aquifers in Morocco that is affected by salinization in the coastal fringe. The purpose of this study is to highlight the origin of salinization by sampling and analyzing groundwater from 44 wells for major elements. This study was carried out in May 2011. The results indicate that, in the central and downstream parts, the dominant facies are Mg2+, Na+ and Cl-, while Ca2+ and HCO3- dominate in the upstream zones. Ion exchange processes, under seawater intrusion, control the concentration of ions such as calcium, magnesium and sodium. Moreover, groundwater is oversaturated with respect to carbonate minerals (calcite and dolomite), and under-saturated with respect to evaporate minerals (gypsum, halite). The contribution of dissolved halite and gypsum in the groundwater mineralization is revealed by their positive correlation between (Na + Cl) and (Ca + SO4), respectively. Furthermore, the comparison of the hydrochemical results to drinking water quality standards by World Health Organization (2008) shows that more than a half of the water sampled is not suitable for drinking purposes, especially with respect to high levels of EC, TDS, Cl- and NO3-. In addition, high mineralization is found to be a consequence of seawater intrusion and anthropogenic activities.

  3. The quality/safety medical index: implementation and analysis.

    PubMed

    Reiner, Bruce I

    2015-02-01

    Medical analytics relating to quality and safety measures have become particularly timely and of high importance in contemporary medical practice. In medical imaging, the dynamic relationship between medical imaging quality and radiation safety creates challenges in quantifying quality or safety independently. By creating a standardized measurement which simultaneously accounts for quality and safety measures (i.e., quality safety index), one can in theory create a standardized method for combined quality and safety analysis, which in turn can be analyzed in the context of individual patient, exam, and clinical profiles. The derived index measures can be entered into a centralized database, which in turn can be used for comparative performance of individual and institutional service providers. In addition, data analytics can be used to create customizable educational resources for providers and patients, clinical decision support tools, technology performance analysis, and clinical/economic outcomes research. PMID:25416467

  4. Groundwater Quality in the North San Francisco Bay Groundwater Basins, CA

    NASA Astrophysics Data System (ADS)

    Kulongoski, J. T.; Belitz, K.

    2010-12-01

    Groundwater quality in the ~2,600 km2 North San Francisco Bay groundwater basins was investigated as part of the Priority Basin Project of the GAMA Program, a collaboration of the California State Water Resources Control Board, U.S. Geological Survey and Lawrence Livermore National Laboratory. Samples from 96 wells and 1 hydrothermal spring were analyzed for water chemistry, isotopic abundances, and dissolved gases. The study, designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems, was based on water-quality and ancillary data from 84 of the wells sampled and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the CDPH database. Inorganic constituents with human-health benchmarks were present at high concentrations in 14%, moderate in 35.8%, and low in 50.2% of the primary aquifers. Arsenic, boron, and lead were the trace elements that most frequently occurred at high concentrations. Fluoride is a minor element, and nitrate, a nutrient were present at high concentrations in ~1% of the primary aquifers. In contrast, organic constituents (one or more) with human-health benchmarks were present at high concentrations in 1.4%, moderate in 4.9%, and low in 93.7% (not detected in 64.8%) of the primary aquifers. The high proportion of organic constituents primarily reflected high concentrations of PCE (1.3%), TCE (0.1%), and 1,1-dichloroethene (0.1%). Of the 255 organic constituents analyzed for, 26 constituents were detected. Two organic constituents were frequently detected (detected in 10% or more of samples): the trihalomethane chloroform and the herbicide simazine, but both were detected at low concentrations. In this study, arsenic is the constituent which most frequently exists at high concentrations (about 10%) in the primary aquifers. Natural sources

  5. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala

    NASA Astrophysics Data System (ADS)

    Satish Kumar, V.; Amarender, B.; Dhakate, Ratnakar; Sankaran, S.; Raj Kumar, K.

    2014-06-01

    Groundwater samples were collected for pre-monsoon and post-monsoon seasons based on the variation in the geomorphological, geological, and hydrogeological factors for assessment of groundwater quality for drinking and irrigation use in a shallow hard rock aquifer of Pudunagaram area, Palakkad district, Kerala. The samples were analyzed for various physico-chemical parameters and major ion chemistry. Based on analytical results, Gibbs diagram and Wilcox plots were plotted and groundwater quality has been distinguished for drinking and irrigation use. Gibbs diagram shows that the samples are rock dominance and controlling the mechanism for groundwater chemistry in the study area, while Wilcox plot suggest that most of the samples are within the permissible limit of drinking and irrigation use. Further, the suitability of water for irrigation was determined by analyzing sodium adsorption ratio, residual sodium carbonate, sodium percent (%Na), Kelly's ratio, residual sodium carbonate, soluble sodium percentage, permeability index, and water quality index. It has been concluded that, the water from the study area is good for drinking and irrigation use, apart few samples which are exceeding the limits due to anthropogenic activities and those samples were indisposed for irrigation.

  6. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala

    NASA Astrophysics Data System (ADS)

    Satish Kumar, V.; Amarender, B.; Dhakate, Ratnakar; Sankaran, S.; Raj Kumar, K.

    2016-06-01

    Groundwater samples were collected for pre-monsoon and post-monsoon seasons based on the variation in the geomorphological, geological, and hydrogeological factors for assessment of groundwater quality for drinking and irrigation use in a shallow hard rock aquifer of Pudunagaram area, Palakkad district, Kerala. The samples were analyzed for various physico-chemical parameters and major ion chemistry. Based on analytical results, Gibbs diagram and Wilcox plots were plotted and groundwater quality has been distinguished for drinking and irrigation use. Gibbs diagram shows that the samples are rock dominance and controlling the mechanism for groundwater chemistry in the study area, while Wilcox plot suggest that most of the samples are within the permissible limit of drinking and irrigation use. Further, the suitability of water for irrigation was determined by analyzing sodium adsorption ratio, residual sodium carbonate, sodium percent (%Na), Kelly's ratio, residual sodium carbonate, soluble sodium percentage, permeability index, and water quality index. It has been concluded that, the water from the study area is good for drinking and irrigation use, apart few samples which are exceeding the limits due to anthropogenic activities and those samples were indisposed for irrigation.

  7. Analysis of Climate Change Effects on Baseflow Index and Groundwater Dependent Ecosystems

    NASA Astrophysics Data System (ADS)

    Kang, H.

    2015-12-01

    Severe water shortages have been observed globally and the damage from climate change is predicted to increase consistently. Especially, groundwater which accounts for 95% of water resources that ecosystems rely on is very important. In order to protect the health of ecosystems from groundwater, research on climate change adaptation is necessary. This research aims at analyzing the effects of baseflow on Groundwater Dependent Ecosystems(GDEs) through Baseflow Index(BFI) utilizing run-off discharge according to the climate change. In order to analyze the effects on GDEs, Nakdong basin was selected for demonstration. So as to compute the baseflow in the basin, Soil and Water Assessment Tool(SWAT) was employed. This research compared and analyzed distribution of BFI over the past 30 years and expected BFI in connection with climate change. RCP 8.5 provided by IPCC was utilized and the result showed that changes of BFI in four periods, P1(1980-2009), F1(2010-2039), F2(2040-2069) and F3(2070-2099), varied according to weather conditions. So as to analyze the correlation between baseflow each period and GDEs, this research employed ecosystems health index and carried out correlation analysis according to each GDEs. Analysis showed that correlation between baseflow and Benthic Macro-invertebrate(BMI) was over R2 0.7 and correlation to the rest was low. This means BMI prove to be sensitive in BFI. The purpose of this research is to figure out the characteristics of baseflow about the impact of climate change and analyze the impact of baseflow on GDEs through the correlation analysis between baseflow and ecosystems health index. BMI has high correlation to baseflow and the rest do not. Generally, however, GDEs are hugely inter-related to water so that baseflow which accounts for over 40 percent cannot be excluded. Therefore, based on this research, management system on baseflow ought to be established with more endeavors to protect and preserve ecosystems.

  8. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  9. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-01-01

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  10. Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y- 12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The GWQR for the Chestnut Ridge Regime is completed in two-parts: Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference containing the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY). Part 2 of the annual groundwater report, to be issued mid-year, will contain a regime-wide evaluation of groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis activities.

  11. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    ERIC Educational Resources Information Center

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  12. Groundwater Quality Assessment in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  13. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  14. Groundwater quality in the Genesee River Basin, New York, 2010

    USGS Publications Warehouse

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  15. Recreational stream assessment using Malaysia water quality index

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hanisah; Kutty, Ahmad Abas

    2013-11-01

    River water quality assessment is crucial in order to quantify and monitor spatial and temporally. Malaysia is producing WQI and NWQS indices to evaluate river water quality. However, the study on recreational river water quality is still scarce. A study was conducted to determine selected recreational river water quality area and to determine impact of recreation on recreational stream. Three recreational streams namely Sungai Benus, Sungai Cemperuh and Sungai Luruh in Janda Baik, Pahang were selected. Five sampling stations were chosen from each river with a 200-400 m interval. Six water quality parameters which are BOD5, COD, TSS, pH, ammoniacal-nitrogen and dissolved oxygen were measured. Sampling and analysis was conducted following standard method prepared by USEPA. These parameters were used to calculate the water quality subindex and finally an indicative WQI value using Malaysia water quality index formula. Results indicate that all recreational streams have excellent water quality with WQI values ranging from 89 to 94. Most of water quality parameter was homogenous between sampling sites and between streams. An one-way ANOVA test indicates that no significant difference was observed between each sub index values (p> 0.05, α=0.05). Only BOD and COD exhibit slightly variation between stations that would be due to organic domestic wastes done by visitors. The study demonstrated that visitors impact on recreational is minimum and recreation streams are applicable for direct contact recreational.

  16. Hydrogeochemistry of the shallow dutch groundwater: Interpretation of the National Groundwater Quality Monitoring Network

    NASA Astrophysics Data System (ADS)

    Frapporti, G.; Vriend, P.; Van Gaans, P. F. M.

    1993-09-01

    Since 1979 the Dutch National Institute of Public Health and Environmental Protection (RIVM) has been developing the Dutch Groundwater Quality Monitoring Network (LMG). This network presently consists of about 350 monitoring sites. At each site, well screens are placed at two depths: 10 and 25 m below surface level. Samples are collected every year and are analyzed for all macrochemical parameters and some trace elements. Tritium contents were measured in the first sampling round. The geochemistry of Dutch groundwater is complex, due to the different sources (seawater, surface water and rainwater), complicated hydrogeology, and human impact on flow systems and pollution. Structuring or data analysis is required for the interpretation of the large number of hydrogeochemical data from such a monitoring network. An exploratory approach is to look within the data set for homogeneous groups, each with a typical (macro)chemistry. The selection criteria for the location of the monitoring sites of the LMG are mainly based on soil type and land use, and to some extent on the hydrogeological situation. However, a classification based on the two most reliable criteria, soil type and land use, does not result in chemically distinguishable homogeneous groups or water types. Fuzzy c means clustering was successfully used to discern structure and natural groups in the LMG data for 1 year. A seven-cluster model was adopted. The number of clusters was decided heuristically with the aid of nonlinear mapping, on the basis of the geographic distribution, the hydrogeochemical interpretability, and the unimodality of the distribution of the parameters per cluster. The consistency of the model is illustrated by the reproducibility of the clusters in different years. The clusters are related to geochemical processes, natural sources, and anthropogenic input and are designated as follows: (1) "seawater" in coastal areas, (2) "desalinization" in organic-rich Holocene marine and peat

  17. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Rajmohan, Natarajan; Al-Yaroubi, Saif

    2008-12-01

    A study was carried out to develop a vulnerability map for Barka region in the North Batina of Oman using DRASTIC vulnerability index method in GIS environment. DRASTIC layers were created using data from published reports and the seven DRASTIC layers were processed by the ArcGIS geographic information system. Finally, DRASTIC maps were created for 1995 and 2004 to understand the long-term changes in the vulnerability index. DRASTIC vulnerability maps were evaluated using groundwater quality data such as chemical and biological parameters. DRASTIC vulnerability maps of 1995 and 2004 indicate that the northern part of Barka is more vulnerable to pollution than southern part and the central part of Barka also shows high relative vulnerability which is mostly related to the high conductivity values. Moreover, the changes in water level due to high abstraction rate of groundwater reflect in the vulnerability maps and low vulnerability area is increased in the southern part during 2004 compared to 1995. Moreover, regional distribution maps of nitrate, chloride and total and fecal coliforms are well correlated with DRASTIC vulnerability maps. In contrast to this, even though DRASTIC method predicted the central part of the study region is highly vulnerable, both chemical and biological parameters show lower concentrations in this region compared to coastal belt, which is mainly due to agricultural and urban development. In Barka, urban development and agricultural activities are very high in coastal region compared to southern and central part of the study area. Hence, this study concluded that DRASTIC method is also applicable in coastal region having ubiquitous contamination sources. PMID:18095181

  18. Regional monitoring of temporal changes in groundwater quality

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; van der Grift, Bas

    2004-08-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult. This study aims to improve the detection and understanding of groundwater quality changes with time, combining time series information, concentration-depth profiles, age dating and concentration-depth prognoses based on the historical inputs of solutes. For trend detection, a combination of trend analysis on time series at specific depths and time-averaged concentration-depth profiles was used. To reveal trends that have become obscured by chemical reactions, additional conditionally conservative indicators were introduced that are insensitive to those reactions under specific conditions. Detected trends were matched with prognoses of conservative and reactive transport to aid the understanding of trends. Data of the regional networks in 2 area-types with intensive livestock farming in the Dutch province of Noord-Brabant were used to illustrate the approach. The downward movement of the agricultural pollution front was demonstrated for the 2 area-types. However, many targeted contaminants have become retarded or delayed and quality changes were hard to detect for many reactive solutes, including nitrate. Pollution fronts of these targeted chemical components are still limited to the first 15 m of the subsoil. At deeper level, about 20-25 m, the effects of agricultural pollution and acidification were indicated by chemical indicators that have not been considered by others: oxidation capacity, the sum of cations and chloride. Increasing trends of the conditionally conservative indicators 'oxidation capacity' and 'sum of cations' were found at a depth of 18-25 m below surface. Increasing trends for potassium were found at shallower depth (7-13 m), which is explained by

  19. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  20. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  1. Building Partnerships: Developing a Quality of Life Index

    ERIC Educational Resources Information Center

    Carreira, Robert; Nicodemus, Karen A.; Sanger, Carol

    2008-01-01

    Cochise College, Cochise County, and the Cochise Community Foundation partnered to create the Cochise County Quality of Life Index--the first to be developed in Arizona. The project brought together stakeholders to address shared problems in new ways, based on non-traditional partnerships. The college's Center for Economic Research provided…

  2. Identification of Dysfunctional Cooperative Learning Teams Using Taguchi Quality Indexes

    ERIC Educational Resources Information Center

    Hsiung, Chin-Min

    2011-01-01

    In this study, dysfunctional cooperative learning teams are identified by comparing the Taguchi "larger-the-better" quality index for the academic achievement of students in a cooperative learning condition with that of students in an individualistic learning condition. In performing the experiments, 42 sophomore mechanical engineering students…

  3. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  4. Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities.

    PubMed

    Vijay, Ritesh; Khobragade, Puja; Mohapatra, P K

    2011-06-01

    Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. PMID:20714928

  5. Motivation of synthesis, with an example on groundwater quality sustainability

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.; Labolle, E. M.

    2007-12-01

    Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. Such integration happens neither via edict nor via lofty declarations of what is needed or what is best. It happens mainly through two mechanisms: limited scope collaborations (e.g., ~2-3 investigators) in which the researchers believe deeply in their need for each other's expertise and much larger scope collaborations driven by the 'big idea.' Perhaps the strongest motivation for broad, effective synthesis is the 'big idea' that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Examples include the Manhattan Project, the quest for cancer cures, predicting effects of climate change, and groundwater quality sustainability. The latter is posed as an example of a 'big idea' that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.

  6. Influence of animal waste disposal pits on groundwater quality

    NASA Astrophysics Data System (ADS)

    Lee, Seongwon; Hosaka, Akiko; Tase, Norio

    Since the implementation of the Law on Promoting Proper Management and Use of Livestock Excreta in 1999, the number of the farmers that do not meet the management criteria is on the decline. However, there is a possibility that many of the animal waste disposal pits that have been either abandoned or refilled according to the law have been the potential contamination source. In this study, we discussed the impacts of the abandoned disposal pits to groundwater quality. The results showed that high concentrations of nitrate (above 100mg/L) were observed in the downstream of the disposal pits. It suggests that the abandoned animal waste disposal pits have been the potential pollution source even after the period of 15 years since the termination of use. Implementation of immediate countermeasure is necessary because the animal waste disposal pits are the long-term-sources of high levels of nitrate.

  7. Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu, India

    NASA Astrophysics Data System (ADS)

    Selvam, S.; Manimaran, G.; Sivasubramanian, P.

    2013-03-01

    Tuticorin corporation stretches geographically from 8°43'-8°51'N latitude and 78°5'-78°10'E longitude, positioned in the East-West International sea routes on the South-East coast of India. The rapid urban developments in the past two decades of Tuticorin have caused depletion of groundwater quantity, and deterioration of quality through excessive consumption and influx of pollutants from natural and anthropogenic activities. The water samples collected in the field were analyzed for electrical conductivity, pH, total dissolved solids, major cations like calcium, magnesium, sodium, potassium, and anions SUCH AS bicarbonate, carbonate, chloride, nitrate and sulfate, in the laboratory using the standard methods given by the American Public Health Association. In order to assess the groundwater quality, 36 groundwater samples had been collected in year 2011. The geographic information system-based spatial distribution map of different major elements has been prepared using ArcGIS 9.2. The Piper plot shows that most of the groundwater samples fall in the field of Ca2+-Mg2+-Cl--SO4 2- and Na+-K+-Cl--HCO3 - by projecting the position on the plots in the triangular field. The cation concentration indicate that 83, 39 and 22 % of the K+, Na+, Ca2+ concentrations exceed the WHO limit. As per Wilcox's diagram and US Salinity laboratory classification, most of the groundwater samples are not suitable for irrigation due to the presence of high salinity and medium sodium hazard. Irrigation waters classified based on sodium absorption ratio, have revealed that 52 % groundwater are in general safe for irrigation, which needs treatment before use. permeability index also indicates that the groundwater samples are suitable for irrigation purpose.

  8. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. PMID:26745299

  9. Groundwater quality in the Chemung River Basin, New York, 2008

    USGS Publications Warehouse

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  10. Influence of Sungun copper mine on groundwater quality, NW Iran

    NASA Astrophysics Data System (ADS)

    Nasrabadi, T.; Nabi Bidhendi, G. R.; Karbassi, A. R.; Hoveidi, H.; Nasrabadi, I.; Pezeshk, H.; Rashidinejad, F.

    2009-08-01

    Sungun mine is the largest open-cast copper mine in northwest of Iran and is in the primary stages of extraction. The influence of mining activity on the quality of regional groundwater has been taken in to consideration in this study. Accordingly, sampling was done from 22 springs in the study area. The concentrations of major anions and cations as well as Al, Cu, Cd, Cr, Fe, Mn, and Zn were determined for all 22 spring samples in mid-August 2005. The results showed that the concentrations of most of these elements were below the USA Environmental Protection Agency (EPA) limits; however, Al and Fe concentrations are considered to be more than limits in a couple of samples. Despite the fact that geological formations are highly weathered and fractured, the dissolution of minerals within the study area is low. This may be justified by the relatively high alkalinity of local underground water which keeps metals in solid phase and does not let them enter dissolved phase. Additionally, this may be attributed to the high velocity of groundwater flows, which do not give enough time for minerals to dissolve. Correlation coefficients among water chemistry components were determined and the weighted-pair group method was chosen for cluster analysis. Accordingly, high correlation among Al, Fe and Cr, Cd ,and Cu, sodium absorption ratio (SAR) and Na as well as total hardness (TH), Ca, and Mg were observed. The chemical characteristics of water compositions on the basis of major ion concentrations were evaluated on a Schoeller and Piper diagram. Accordingly, the dominant type of water in the region is considered to be Ca-HCO3 (calcium-bicarbonate type). However, this type of water is also rich in Na, K, and especially Mg. Regarding Schoeller diagram, the current status of local underground water is good for drinking purposes. By commencing mining excavation with designed capacity in near future, the minerals will come into contact with air and water resulting in dissolution

  11. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region.

    PubMed

    Al-Abadi, Alaa M; Shahid, Shamsuddin

    2015-09-01

    In this study, index of entropy and catastrophe theory methods were used for demarcating groundwater potential in an arid region using weighted linear combination techniques in geographical information system (GIS) environment. A case study from Badra area in the eastern part of central of Iraq was analyzed and discussed. Six factors believed to have influence on groundwater occurrence namely elevation, slope, aquifer transmissivity and storativity, soil, and distance to fault were prepared as raster thematic layers to facility integration into GIS environment. The factors were chosen based on the availability of data and local conditions of the study area. Both techniques were used for computing weights and assigning ranks vital for applying weighted linear combination approach. The results of application of both modes indicated that the most influential groundwater occurrence factors were slope and elevation. The other factors have relatively smaller values of weights implying that these factors have a minor role in groundwater occurrence conditions. The groundwater potential index (GPI) values for both models were classified using natural break classification scheme into five categories: very low, low, moderate, high, and very high. For validation of generated GPI, the relative operating characteristic (ROC) curves were used. According to the obtained area under the curve, the catastrophe model with 78 % prediction accuracy was found to perform better than entropy model with 77 % prediction accuracy. The overall results indicated that both models have good capability for predicting groundwater potential zones. PMID:26287730

  12. Impacts of afforestation on groundwater resources and quality

    NASA Astrophysics Data System (ADS)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  13. Hydrogeochemical assessment of groundwater quality in a river delta using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Botsou, Fotini; Dassenakis, Manolis; Lazogiannis, Konstantinos; Ghionis, George; Poulos, Serafim

    2016-04-01

    The knowledge of the factors controlling the regional groundwater quality regime is important for planning and management of the groundwater resources. This work applies conventional hydrogeochemical and multivariate statistical techniques to identify the main factors and mechanisms controlling the hydrogeochemistry of groundwater in the deltaic environment of River Pinios (Thessaly) as well as possible areas of interactions between groundwater and surface water bodies. Hierarchical Cluster Analysis (HCA) and Principal Components Analysis (PCA) are performed using a data set of physical-chemical parameters from surface water and groundwater sites. Through HCA the paper's objective is to group together surface water and groundwater monitoring sites based on similarities in hydrochemistry in order to indicate areas of groundwater-surface water interaction. On the other hand, PCA aims at indicating factors responsible for the hydrogeochemical characteristics of the water bodies in the river delta (e.g., water-rock interaction, seawater intrusion, anthropogenic activities).

  14. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  15. Soil moisture and strength index for earthwork construction quality control

    NASA Astrophysics Data System (ADS)

    Sawangsuriya, A.; Wachiraporn, S.; Sramoon, W.

    2015-09-01

    This paper presents the implementation of soil moisture and strength index measurements for earthwork construction quality control as well as a link between the in situ testing and structural property of earthen materials. Use of the convenient Dynamic Cone Penetrometer (DCP) in conjunction with conventional moisture-density measurements enhances quality control by achieving acceptable level of compaction, more uniform structural properties, and aids developing a controlled design parameter during the earthwork construction. Soil strength in term of DCP index normalized by the deviation of compaction moisture content from the optimum moisture content is proposed as performance criteria for a variety of engineered earth fills and special engineering assessment, prevention, and mitigation of geohazards e.g. earthen flood defense embankments.

  16. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    NASA Astrophysics Data System (ADS)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  17. Evaluation of water quality index for River Sabarmati, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Shah, Kosha A.; Joshi, Geeta S.

    2015-07-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  18. Assessment of Groundwater Quality Using Multivariate Statistical Techniques and Kriging Method

    NASA Astrophysics Data System (ADS)

    Kim, T.; Chung, S.; Kim, B.; Kang, D.

    2008-12-01

    The study area is located at the southern part of Korean Peninsula, and adjacent to the South Sea. 20 chemical components in 64 groundwater samples were used for the assessment of groundwater quality. The groundwater was classified into Ca(HCO3)2 type, NaCl type, NaHCO3 type and CaCl2 type by Piper's trilinear diagram. Cluster analysis divided the groundwater samples into three groups: Group 1 for fresh groundwater, Group 2 for groundwater contaminated by Cl, NO3, and Fe, and Group 3 for groundwater contaminated by NaCl. Discriminant analysis showed that the correctness of cluster analysis was 92%. Ca, Mg, HCO3, Cl, and pH were important factor for the discrimination of cluster analysis. In factor analysis, 3 factors determined the groundwater quality with 80 % in total variance: Factor 1 for the characteristics of fresh water and saline water, Factor 2 for the characteristics of contamination by nitrate, and Factor 3 for the characteristics of contamination by iron (Fe). Factor analysis showed that the groundwater was influenced by seawater intrusion, human activity and geological origin, because the study area was located near the sea and had the urban and rural functions. The contamination of anthropogenic origin was derived from fertilizer, sewage, exhaust gas of vehicles and excrement of livestocks. The geology of the study area was composed of shale, sandstone, andesite, andesitic tuff, biotite granite and amphibole granite. Using ordinary kriging, the distribution maps of 3 factor scores were compared to those of 3 contamination components, i.e., Cl, NO3, and Fe. The distributions of 3 factor scores coincide well with those of 3 contamination components. Cluster analysis and discriminant analysis were very useful for the classification of groundwater samples by groundwater quality. Factor analysis provided valuable aids for the determinations of contamination components and contamination origins. Kriging was very helpful for the assessment of the spatial

  19. A water quality index for recreation in Brazilian freshwaters.

    PubMed

    Azevedo Lopes, F W; Davies-Colley, R J; Von Sperling, E; Magalhães, A P

    2016-04-01

    Use of water for leisure activities has long been prevalent in human societies, especially where the climate is favorable. Water resources with appealing conditions for primary contact recreational activities include rivers, waterfall plunge pools, dams and lakes, as well as sea coasts. Recreational use has specific demands for water quality, particularly as regards risks to human health such as exposure to pathogenic organisms, toxic substances, and submerged hazards. In Brazil, there is insufficient monitoring of bathing water conditions and currently used methodology has some limitations particularly the lack of guidance on interpretation of variables other than faecal bacterial indicators. The objectives of this study were: (1) to establish variables contributing to assessment of freshwater bathing conditions in Brazil; (2) to develop an integrated index of suitability-for-use for bathing in Brazil; and (3) to improve the methodology for assessing bathing water quality in Brazil. Based on a metadata analysis and consultation with Brazilian water professionals, a water quality index was developed incorporating the variables: Escherichia coli, cyanobacterial density, turbidity (visual clarity) and pH. This index should advance the management of recreational waters in Brazil, by improving the evaluation of freshwater bathing conditions and protecting the health of frequent users. PMID:27105410

  20. Indexes associated with information theory in water quality

    USGS Publications Warehouse

    Zand, S.M.

    1976-01-01

    In many biological studies of water quality, a diversity index is calculated in 'bits per individual' by using Shannon's Approximation to Brillouin's Formula. Difficulties associated with such use of Shannon's Formula and its associated parameters are discussed. Recent research has indicated that diversity indexes can be improved if (a) biological sample collection and analysis are standardized prior to use for among various aquatic systems diversity indexes and their associated parameters, (b) the diversity index is measured in 'sits per individual' rather than the presently used unit of 'bits per individual,' and (c) the equation e=(H - H(min)/(H(max) - H(min)) is used to evaluate the uniformity of distribution of individuals among species in a sample where e equals relative evenness. Relative evenness, a ratio, is an expression in which Brillouin's and Shannon's Equations are not arbitrarily mixed. Values of diversity indexes using Brillouin and Shannon Formulas, both in bits and sits per individual, and relative evenness are given for 16 hypothetical samples.

  1. Optimizing the monitoring scheme for groundwater quality in the Lusatian mining region

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Hildmann, Christian; Haubold-Rosar, Michael

    2014-05-01

    Opencast lignite mining always requires the lowering of the groundwater table. In Lusatia, strong mining activities during the GDR era were associated with low groundwater levels in huge parts of the region. Pyrite (iron sulfide) oxidation in the aerated sediments is the cause for a continuous regional groundwater pollution with sulfates, acids, iron and other metals. The contaminated groundwater poses danger to surface water bodies and may also affect soil quality. Due to the decline of mining activities after the German reunification, groundwater levels have begun to recover towards the pre-mining stage, which aggravates the environmental risks. Given the relevance of the problem and the need for effective remediation measures, it is mandatory to know the temporal and spatial distribution of potential pollutants. The reliability of these space-time models, in turn, relies on a well-designed groundwater monitoring scheme. So far, the groundwater monitoring network in the Lusatian mining region represents a purposive sample in space and time with great variations in the density of monitoring wells. Moreover, groundwater quality in some of the areas that face pronounced increases in groundwater levels is currently not monitored at all. We therefore aim to optimize the monitoring network based on the existing information, taking into account practical aspects such as the land-use dependent need for remedial action. This contribution will discuss the usefulness of approaches for optimizing spatio-temporal mapping with regard to groundwater pollution by iron and aluminum in the Lusatian mining region.

  2. Empirical estimation of groundwater quality changes using remote sensing

    NASA Astrophysics Data System (ADS)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recent groundwater availability studies estimate large-scale aquifer depletion rates and aquifer stress using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. To further evaluate available groundwater resources, assessing potability of groundwater is necessary. Statistical relationships are initially developed at individual well locations to discern our ability to predict groundwater geochemistry as a function of groundwater levels. Next, up-scaled multivariate relationships to estimate total dissolved solid (TDS) concentrations as a function of GRACE-derived subsurface storage anomalies, dominant land use, and other physical parameters are developed in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. A goodness of fit test was performed to evaluate model strength. Results demonstrate the potential to characterize global groundwater potability variations using remote sensing.

  3. Groundwater quality in the Mohawk River Basin, New York, 2011

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  4. Field-scale relationships among soil properties and shallow groundwater quality.

    PubMed

    Derby, Nathan E; Korom, Scott F; Casey, Francis X M

    2013-01-01

    It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near-water-table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100-m grid on a 64-ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product-moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa ) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca- and Mg-HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short-term depression-focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High-resolution topography and EC(a) measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field-scale and to delineate areas where the shallow groundwater is most susceptible to contamination. PMID:22913586

  5. Groundwater quality suitable zones identification: application of GIS, Chittoor area, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Yammani, Srinivasarao

    2007-09-01

    Due to uneven spatial and temporal distribution of rainfall and lack of sufficient water management technologies, the development activities of the society are totally depending on groundwater resources. In addition to the prevailing drought-prone conditions, the improperly treated and unplanned release of effluents of industry, municipal and domestic into the nearby streams and ponds and the majority usage of groundwater for irrigation are increasing the ionic concentration of the groundwater and making it more saline. The analytical results of the collected groundwater samples show that the groundwater is alkaline, and sodium and bicarbonate are the dominant cation and anion, respectively. Gibbs variation diagram shows that the control of the chemistry of groundwater in the study area is the weathering of granitic gneisses and also the leaching of evaporated and crystallized ions from the topsoil of the irrigated areas and improperly treated industrial effluent ponds. GIS, a potential tool for facilitating the generation and use of thematic information, has been applied and analyzed for identification of groundwater quality suitable zones for domestic and irrigation purposes. 30.06% of the area is with suitable, 67.45% of the area is with moderately suitable and 2.45% of the area is with unsuitable quality of groundwater for domestic purpose. 46% of the area is with suitable, 53.36% of the area is with moderately suitable and 0.64% of the area is with unsuitable quality of groundwater for irrigation purpose.

  6. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India.

    PubMed

    Janardhana Raju, Nandimandalam; Shukla, U K; Ram, Prahlad

    2011-02-01

    The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na>Ca>Mg>K and HCO3>Cl>SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium-bicarbonate type. The HCO3/(HCO3+SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45 mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields. PMID:20221794

  7. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India.

    PubMed

    Kumar, S Krishna; Rammohan, V; Sahayam, J Dajkumar; Jeevanandam, M

    2009-12-01

    Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca-HCO(3), Na-Cl, Mixed CaNaHCO(3), and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process. PMID:19089596

  8. Assessment of groundwater quality for irrigation: a case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sunil Kumar, K.; Thejaswi, A.

    2014-12-01

    Quality of water resources in the Bandalamottu area of Guntur District of Andhra Pradesh in South India is facing a serious challenge due to Pb mining. Therefore, 40 groundwater samples were collected from this area to assess their hydrogeochemistry and suitability for irrigation purposes. The groundwater samples were analyzed for distribution of chemical elements Ca2+, Mg2+, Na+, K+, HCO3 -, CO3 2-, F-, Cl-, and SO4 2-. It also includes pH, electrical conductivity, total hardness, non-carbonate hardness and total alkalinity. The parameters, such as sodium absorption ratio (SAR), adjusted SAR, sodium percentage, potential salinity, residual sodium carbonate, non-carbonate hardness, Kelly's ratio, magnesium ratio, permeability index, indices of base exchange (IBE) and Gibbs ratio were also calculated. The major hydrochemical facieses were Ca-HCO3, Ca-Na-HCO3 and Ca-Mg-Cl types. The result of saturation index calculated by Visual MINTEQ software combined with Gibbs diagram and IBE findings indicate that, dolomite and calcite dissolution and reverse ion exchange can be a major process controlling the water chemistry in the study area. The results also showed that the salinity (85 %, C3 class) and alkalinity due to high concentration of HCO3 - and CO3 - and low Ca:Mg molar ratio (97.5 %, <1), are the major problems with water for irrigation usage. As a result, the quality of the groundwater is not suitable for sustainable crop production and soil health without appropriate remediation.

  9. Hydrochemical Assessment of Surfacewater and Groundwater Quality at Bank Infiltration Site

    NASA Astrophysics Data System (ADS)

    Shamsuddin, M. K. N.; Suratman, S.; Ramli, M. F.; Sulaiman, W. N. A.; Sefie, A.

    2016-07-01

    Groundwater and surface water quantity and quality are an important factor that contribute for drinking water demand and agriculture use. The water quality analysis was assessed using multivariate statistical analyses based on analytical quantitative data that include Discriminant Analysis (DA) and Principal Component Analysis (PCA), based on 36 water quality parameters from the rivers, lakes, and groundwater sites at Jenderam Hilir, which were collected from 2013 to 2014 (56 observations). The DA identified six significant parameters (pH, NO2-, NO3-, F, Fe2+, and Mn2+) from 36 variables to distinguish between the river, lake, and groundwater groups (classification accuracy = 98%). The PCA had confirmed 10 possible causes of variation in the groundwater quality with an eigenvalue greater than 1, which explained 82.931% of the total variance in the water quality data set.

  10. Impacts of Sewer Leaks on Surrounding Groundwater and Surface Water Quality in Singapore

    NASA Astrophysics Data System (ADS)

    Ly, D.; Chui, T. M.

    2011-12-01

    Underground sewers deteriorate over time resulting in cracks and joint defects. Sewage thus leaks out of the sewers and contaminates the surrounding groundwater. Singapore does not directly use groundwater as a water supply. However, contaminated groundwater flows into the drains nearby through weep holes, and subsequently enters water supply reservoirs. This study examines the impacts of sewage leaks on surrounding groundwater and surface water quality by modeling the interactions between leaky sewers, groundwater and drains. It first explores the representations of important yet challenging boundary conditions, namely weep holes and leaky sewers, so that their fluxes vary realistically with water pressure throughout a simulation. It then simulates groundwater flow and contaminant transport from leaky sewers to nearby drains over a period of ten years. It further rehabilitates the sewers and models the attenuation of contamination plume for another ten years. The results of this project contribute to the modeling and understanding of the potential impacts of sewer leaks on surrounding groundwater and surface water quality. For example, groundwater quality changes with hydrologic conditions, and it is highest during heavy rainfall and times of high water table because of the low leakage and high dilution rates. Water quality fluctuates daily or even hourly in the vicinity of the sewers, but is more stable in the flow through the weep holes into the drains. Overall, this study benefits the sewer leak monitoring and sewer rehabilitation in many urban areas worldwide.

  11. Risk Communication of Groundwater Quality in Northern Malawi, Africa

    NASA Astrophysics Data System (ADS)

    Holm, R.

    2011-12-01

    Malawi lies in Africa's Great Rift Valley. Its western border is defined by Lake Malawi, the third largest lake in Africa. Over 80% of Malawians live in rural areas and 90% of the labor force is associated with agriculture. More than half of the population lives below the poverty line. Area characteristics indicate a high likelihood of nitrate and total coliform in community drinking water. Infants exposed to high nitrate are at risk of developing methemoglobinemia. In addition, diarrheal diseases from unsafe drinking water are one of the top causes of mortality in children under five. Without sufficient and sustainable supplies of clean water, these challenges will continue to threaten Malawi's ability to overcome the devastating impact of diarrheal diseases on its population. Therefore, Malawi remains highly dependent on outside assistance and influence to reduce or eliminate the threat posed by unsafe drinking water. This research presents a literature review of nitrate and total coliform groundwater quality and a proposed risk communication plan for drinking water in northern Malawi.

  12. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  13. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  14. Developing a risk-based air quality health index

    NASA Astrophysics Data System (ADS)

    Wong, Tze Wai; Tam, Wilson Wai San; Yu, Ignatius Tak Sun; Lau, Alexis Kai Hon; Pang, Sik Wing; Wong, Andromeda H. S.

    2013-09-01

    We developed a risk-based, multi-pollutant air quality health index (AQHI) reporting system in Hong Kong, based on the Canadian approach. We performed time series studies to obtain the relative risks of hospital admissions for respiratory and cardiovascular diseases associated with four air pollutants: sulphur dioxide, nitrogen dioxide, ozone, and particulate matter with an aerodynamic diameter less than 10 μm (PM10). We then calculated the sum of excess risks of the hospital admissions associated with these air pollutants. The cut-off points of the summed excess risk, for the issuance of different health warnings, were based on the concentrations of these pollutants recommended as short-term Air Quality Guidelines by the World Health Organization. The excess risks were adjusted downwards for young children and the elderly. Health risk was grouped into five categories and sub-divided into eleven bands, with equal increments in excess risk from band 1 up to band 10 (the 11th band is 'band 10+'). We developed health warning messages for the general public, including at-risk groups: young children, the elderly, and people with pre-existing cardiac or respiratory diseases. The new system addressed two major shortcomings of the current standard-based system; namely, the time lag between a sudden rise in air pollutant concentrations and the issue of a health warning, and the reliance on one dominant pollutant to calculate the index. Hence, the AQHI represents an improvement over Hong Kong's existing air pollution index.

  15. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  16. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  17. The environmentally sensitive index patch applied to MEDALUS climate quality index

    NASA Astrophysics Data System (ADS)

    Duro, A.; Piccione, V.; Ragusa, M. A.; Veneziano, V.

    2016-06-01

    The authors continue testing the Environmentally Sensitive Index Patch - ESPI -to the whole region of Sicily for a comprehensive interpretation of the sensitivity of the areas to desertification under the Protocol MEDALUS (MEditerranean Desertification Areas and Land USe). They apply the index ESPI to three scenarios - to the first half of the twentieth century, the second half of the twentieth, the twenty-first century and to their three respective indices of Quality Climate. From the application of ESPI the authors deduce that the improvement of sensitivity to desertification in Sicily, between the first and second half of the last century, is not due to the climate constant deteriorates between the three periods analyzed.

  18. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain. PMID:27343131

  19. Soil quality index for evaluation of reclaimed coal mine spoil.

    PubMed

    Mukhopadhyay, S; Masto, R E; Yadav, A; George, J; Ram, L C; Shukla, S P

    2016-01-15

    Success in the remediation of mine spoil depends largely on the selection of appropriate tree species. The impacts of remediation on mine soil quality cannot be sufficiently assessed by individual soil properties. However, combination of soil properties into an integrated soil quality index provides a more holistic status of reclamation potentials of tree species. Remediation potentials of four tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo, and Leucaena leucocephala) were studied on reclaimed coal mine overburden dumps of Jharia coalfield, Dhanbad, India. Soil samples were collected under the canopies of the tree species. Comparative studies on the properties of soils in the reclaimed and the reference sites showed improvements in soil quality parameters of the reclaimed site: coarse fraction (-20.4%), bulk density (-12.8%), water holding capacity (+0.92%), pH (+25.4%), EC (+2.9%), cation exchange capacity (+46.6%), organic carbon (+91.5%), N (+60.6%), P (+113%), K (+19.9%), Ca (+49.6%), Mg (+12.2%), Na (+19.6%), S (+46.7%), total polycyclic aromatic hydrocarbons (-71.4%), dehydrogenase activity (+197%), and microbial biomass carbon (+115%). Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Selected indicators include: coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity. The indicator values were converted into a unitless score (0-1.00) and integrated into SQI. The calculated SQI was significantly (P<0.001) correlated with tree biomass and canopy cover. Reclaimed site has 52-93% higher SQI compared to the reference site. Higher SQI values were obtained for sites reclaimed with D.sissoo (+93.1%) and C.siamea (+86.4%). PMID:26524272

  20. Waste deposit influences on groundwater quality as a tool for waste type and site selection for final storage quality

    NASA Astrophysics Data System (ADS)

    Arneth, Jan-Dirk; Milde, Gerald; Kerndorff, Helmut; Schleyer, Ruprecht

    Leachates from deposits of wastes may, in the long run, adversely influence groundwater quality. Since tipping still constitutes the most important form of waste disposal, strategies must be developed which are capable of protecting groundwater against contamination from leachates. In the first instance such protective measures must provide for a minimization of contamination by setting up optimal barriers. Since it would seem difficult to reach this goal in a forseeable future, the avoidance of substances with a high potential for groundwater hazards has to be attributed much importance. In former times, little attention was given to impermeability or avoidance of substances with a high potential for groundwater hazards contained in wastes. Therefore, results of the investigation of groundwater near abandoned sites can be used to optimize groundwater protection on future tipping sites. In the present study, the results of chemical investigation of groundwater from the vicinity of 92 waste disposal sites in the Federal Republic of Germany are presented and the changes in groundwater quality owing to the penetration of leachates are discussed separately for inorganic and organic contaminants.

  1. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    PubMed

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. PMID:23178886

  2. Estimating impacts of land use on groundwater quality using trilinear analysis.

    PubMed

    Ouyang, Ying; Zhang, Jia En; Cui, Lihua

    2014-09-01

    Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NO(x)), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NO(x) had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO4(3-)) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F(-), Cl(-), and SO4(2-)), F(-) accounted for <1% of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality. PMID:24802588

  3. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  4. Prediction of ground water quality index to assess suitability for drinking purposes using fuzzy rule-based approach

    NASA Astrophysics Data System (ADS)

    Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed

    2014-11-01

    Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.

  5. Communicating Environmental Information to the Public: A New Water Quality Index

    ERIC Educational Resources Information Center

    Schaeffer, David J.; Janardan, Konanur G.

    1977-01-01

    A water quality index developed by the authors and used by the Illinois Environmental Protection Agency is described. It compares biological and chemical assessments of water quality. Sampling procedures and use of the index are described. (BT)

  6. Groundwater quality and its suitability for drinking and agricultural use in the Yanqi Basin of Xinjiang Province, Northwest China.

    PubMed

    Wang, Shuixian

    2013-09-01

    The Yanqi Basin in Xinjiang Province is an important agricultural area with a high population density. The extensive agricultural activities in the Yanqi Basin started in the 1950s with flood irrigation techniques. Since then, the groundwater table was raised because of the absence of an efficient drainage system. This obstacle is a crucial factor that restricts sustainable socioeconomic development. Hydrochemical investigations were conducted in the Yanqi Basin, Northwestern China, to determine the chemical composition of groundwater. Sixty groundwater samples were collected from different wells to monitor the water chemistry of various ions. The results of the chemical analysis indicate that the groundwater in the area is generally neutral to slightly alkaline and predominantly contains Na(+) and Ca(2+) cations as well as HCO3(-) and SO4 (2+) anions. High positive correlations between HCO3 (-)-Mg(2+) + Ca(2+), SO 4 (2-)-Mg(2+), SO4 (2-)-Na(+) + K(+), and Cl(-)-Na(+) + K(+) were obtained. The total dissolved solids (TDS) mainly depend on the concentration of major ions such as HCO3(-), SO4 (2-), Cl(-), Ca(2+), Mg(2+), and Na(+) + K(+). The dominant hydrochemical facies for groundwater are Ca(2+)-Mg(2+)-HCO3(-), Mg(2+)-Ca(2+)-SO4 (2-)-Cl(-), Na(+)-K(+)-Cl(-)-SO4 (2-), and Na(+)-K(+)-Mg(2+)-Cl(-)-HCO3(-) types. The hydrochemical processes are the main factors that determine the water quality of the groundwater system. These processes include silicate mineral weathering, dissolution, ion exchange, and, to a lesser extent, evaporation, which seem to be more pronounced downgradient of the flow system. The saturation index (SI), which is calculated according to the ionic ratio plot, indicates that the gypsum-halite dissolution reactions occur during a certain degree of rock weathering. SI also indicates that evaporation is the dominant factor that determines the major ionic composition in the study area. The assessment results of the water samples using various methods

  7. The Assessment of Mangrove Sediment Quality in Mengkabong Lagoon: An Index Analysis Approach

    ERIC Educational Resources Information Center

    Praveena, Sarva M.; Radojevic, Miroslav; Abdullah, Mohd H.

    2007-01-01

    The objectives of this study are to use different types of indexes to assess the current pollution status in Mengkabong lagoon and select the best index to describe the Mengkabong sediment quality. The indexes used in this study were Enrichment Factor (EF), Geo-accumulation Index (Igeo), Pollution Load Index (PLI) and Marine Sediment Pollution…

  8. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2015-09-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - } . The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  9. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran.

    PubMed

    Esmaeili-Vardanjani, Mostafa; Rasa, Iraj; Amiri, Vahab; Yazdi, Mohammad; Pazand, Kaveh

    2015-02-01

    The chemical analysis of 129 groundwater samples in the Kadkan area, Khorasan-e-Razavi Province, NE of Iran was evaluated to determine the hydrochemical processes, assessment of groundwater quality for irrigation purposes, corrosiveness, and scaling potential of the groundwater. Accordingly, the suitability of groundwater for irrigation was evaluated based on the sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard, and US Salinity Laboratory hazard diagram. Based on the electrical conductivity and sodium adsorption ratio, the dominant classes are C3-S1, C3-S2, C2-S1, and C4-S2. According to the Wilcox plot, about 50 % of the samples fall in the "Excellent to Good" and "Good to Permissible" classes. Besides, the Langelier saturation index, Ryznar stability index (RSI), Larson-Skold index, and Puckorius scaling index were evaluated for assessing the corrosiveness and scaling potential of the groundwater. Corrosiveness and scaling indices stated that the majority of samples are classified into "Aggressive" and "Very Aggressive" category. In addition, chloride and sulfate interfere in 90 % of the samples. Assessment of hydrochemical characteristics indicates Na-Mg-Cl as the predominant hydrochemical type. Spatial distribution of hydrochemical parameters indicates that hydrochemical processes are influenced by geology and hydrogeology of Kadkan aquifer. The Gibbs plots gave an indication that groundwater chemistry in this area may have acquired the chemistry mainly from evaporation and mineral precipitation. Grouping the samples based on Q-mode hierarchical cluster analysis helped to more separation of similar samples. The R-mode HCA grouped analyzed parameters into two groups based on similarity of hydrochemical characteristics. As a result, the samples collected in northern and southern parts of the study area show the best quality (i.e., lowest salinity) for some purposes such as irrigation and drinking. PMID:25638056

  10. Environmental quality indexing of large industrial development alternatives using AHP

    SciTech Connect

    Solnes, Julius

    2003-05-01

    Two industrial development alternatives have been proposed for the East Coast of Iceland in order to strengthen its socio-economic basis. The favoured option is to build a large aluminium smelter, which requires massive hydropower development in the nearby highlands. Another viable option is the construction of a 6-million-ton oil refinery, following the planned exploitation of the Timan Pechora oil reserves in the Russian Arctic. A third 'fictitious' alternative could be general development of existing regional industry and new knowledge-based industries, development of ecotourism, establishment of national parks, accompanied by infrastructure improvement (roads, tunnels, communications, schools, etc.). The three alternatives will have different environmental consequences. The controversial hydropower plant for the smelter requires a large water reservoir as well as considerable land disturbance in this unique mountain territory, considered to be the largest uninhabited wilderness in Western Europe. The aluminium smelter and the oil refinery will give rise to substantial increase of the greenhouse gas (GHG) emissions of the country (about 20%). Then there is potential environmental risk associated with the refinery regarding oil spills at sea, which could have disastrous impact on the fisheries industry. However, the oil refinery does not require any hydropower development, which is a positive factor. Finally, the third alternative could be defined as a ''green'' solution whereby the detrimental environmental consequences of the two industrial solutions are mostly avoided. In order to compare the three alternatives in an orderly manner, the analytic hierarchy process methodology of Saaty was applied to calculate the environmental quality index of each alternative, which is defined as a weighted sum of selected environmental and socio-economic factors. These factors are evaluated on a comparison basis, applying the AHP methodology, and the weights in the quality

  11. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Karmegam, U.; Sasidhar, P.; Prasanna, M. V.; Manivannan, R.; Arunachalam, S.; Manikandan, S.; Anandhan, P.

    2011-10-01

    The saturation index of clay minerals like Gibbsite, Kaolinite, Illite, Montmorillonite and Chlorite in groundwater were studied in detail by collecting 29 groundwater samples from the shallow coastal aquifers in and around Kalpakkam. The samples collected were analysed for major cations, anions and trace elements by using standard procedures. The study reveals that pH has a significant role in the saturation index (SI) of minerals. It also shows that the relationship of electrical conductivity to the SI of these minerals is not significant than that of the ionic strength, log pCO2 values, and alumina silica ratio have significant relation to the SI of these clay minerals. The SI of these clay minerals was spatially distributed to identify the areas of higher SI. Silica has good correlation to SI of Kaolinite, Gibbsite and Montmorillonite and Al has good correlation to SI of all the minerals except to that of Chlorite.

  12. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards

  13. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system. Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant. Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts. (USGS)

  14. Soil Quality Index Determination Models for Restinga Forest

    NASA Astrophysics Data System (ADS)

    Bonilha, R. M.; Casagrande, J. C.; Soares, R. M.

    2012-04-01

    The Restinga Forest is a set of plant communities in mosaic, determined by the characteristics of their substrates as a result of depositional processes and ages. In this complex mosaic are the physiognomies of restinga forests of high-stage regeneration (high restinga) and middle stage of regeneration (low restinga), each with its plant characteristics that differentiate them. Located on the coastal plains of the Brazilian coast, suffering internal influences both the continental slopes, as well as from the sea. Its soils come from the Quaternary and are subject to constant deposition of sediments. The climate in the coastal type is tropical (Köppen). This work was conducted in four locations: (1) Anchieta Island, Ubatuba, (2) Juréia-Itatins Ecological Station, Iguape, (3) Vila das Pedrinhas, Comprida Island; and (4) Cardoso Island, Cananeia. The soil samples were collect at a depths of 0 to 5, 0-10, 0-20, 20-40 and 40 to 60cm for the chemical and physical analysis. Were studied the additive and pondering additive models to evaluate soil quality. It was concluded: a) the comparative additive model produces quantitative results and the pondering additive model quantitative results; b) as the pondering additive model, the values of Soil Quality Index (SQI) for soils under forest of restinga are low and realistic, demonstrating the small plant biomass production potential of these soils, as well as their low resilience; c) the values of SQI similar to areas with and without restinga forest give quantitative demonstration of the restinga be considered as soil phase; d) restinga forest, probably, is maintained solely by the cycling of nutrients in a closed nutrient cycling; e) for the determination of IQS for soils under restinga vegetation the use of routine chemical analysis is adequate. Keywords: Model, restinga forest, Soil Quality Index (SQI).

  15. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2016-07-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  16. Hydrochemistry of urban groundwater, Seoul, Korea: the impact of subway tunnels on groundwater quality.

    PubMed

    Chae, Gi-Tak; Yun, Seong-Taek; Choi, Byoung-Young; Yu, Soon-Young; Jo, Ho-Young; Mayer, Bernhard; Kim, Yun-Jong; Lee, Jin-Yong

    2008-10-23

    Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3(-), turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L(-1), max. 5.58 mg L(-1)), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels. PMID:18725171

  17. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking

  18. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey

    NASA Astrophysics Data System (ADS)

    Yesilnacar, M. Irfan; Gulluoglu, M. Said

    2008-03-01

    Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca HCO3 and Ca SO4 are the dominant hydrochemical facies in the study area.

  19. Construction of an environmental quality index for public health research

    PubMed Central

    2014-01-01

    Background A more comprehensive estimate of environmental quality would improve our understanding of the relationship between environmental conditions and human health. An environmental quality index (EQI) for all counties in the U.S. was developed. Methods The EQI was developed in four parts: domain identification; data source acquisition; variable construction; and data reduction. Five environmental domains (air, water, land, built and sociodemographic) were recognized. Within each domain, data sources were identified; each was temporally (years 2000–2005) and geographically (county) restricted. Variables were constructed for each domain and assessed for missingness, collinearity, and normality. Domain-specific data reduction was accomplished using principal components analysis (PCA), resulting in domain-specific indices. Domain-specific indices were then combined into an overall EQI using PCA. In each PCA procedure, the first principal component was retained. Both domain-specific indices and overall EQI were stratified by four rural–urban continuum codes (RUCC). Higher values for each index were set to correspond to areas with poorer environmental quality. Results Concentrations of included variables differed across rural–urban strata, as did within-domain variable loadings, and domain index loadings for the EQI. In general, higher values of the air and sociodemographic indices were found in the more metropolitan areas and the most thinly populated areas have the lowest values of each of the domain indices. The less-urbanized counties (RUCC 3) demonstrated the greatest heterogeneity and range of EQI scores (−4.76, 3.57) while the thinly populated strata (RUCC 4) contained counties with the most positive scores (EQI score ranges from −5.86, 2.52). Conclusion The EQI holds promise for improving our characterization of the overall environment for public health. The EQI describes the non-residential ambient county-level conditions to which residents are

  20. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Zaidi, Faisal K.; Mogren, Saad; Mukhopadhyay, Manoj; Ibrahim, Elkhedr

    2016-08-01

    The present study deals with the assessment of groundwater with respect to the main hydrological processes controlling its chemistry and its subsequent impact on groundwater quality for drinking and irrigation purposes in the eastern part of the Central Arabian graben and trough system. Groundwater samples were collected from 73 bore wells tapping the Cretaceous Biyadh and Wasia sandstone aquifers. The main groundwater facies in the area belong to the mixed Casbnd Mgsbnd SO4/Cl type and the SO4sbnd Cl type. Prolonged rock water interaction has resulted in high TDS (average of 2131 mg/l) and high EC (average of 2725 μS/cm) of the groundwater. The average nitrate (56.38 mg/l) value in the area is higher than the WHO prescribed limits of 50 mg/l in drinking water and is attributed to agricultural activities. The Drinking Water Quality Index (DWQI) shows that 33% of the water samples fall within the excellent to good category whereas the remaining samples fall in the poor to unsuitable for drinking category. In terms of Sodium Adsorption Ratio (SAR), Sodium percentage (Na %) and Residual Sodium Carbonate (RSC) the groundwater is suitable for irrigation however the high salinity values can adversely affect the plant physiology.

  1. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  2. Chemical substance transport in soils and its effect on groundwater quality.

    PubMed Central

    Khublarian, M G

    1989-01-01

    The problems of chemical substance applications in different spheres of industry and agriculture and their effects on groundwater quality and human health are described. Sources of groundwater contamination from industrial and municipal wastes, agricultural pollutants, etc., are listed. The experience in the application of chemical fertilizers and pesticides in the USSR is described. A brief estimation of groundwater salinity is given for various regions of the USSR where irrigation is practiced, as well as the experience in environmental protection. Special attention is given to methods of simulating water seepage and chemical substance transport in soils. Boundary problems for free-surface seepage and dissolved solids transport in porous media are stated, and methods of solution are described in the example of the hydrodynamic theory of seepage and dispersion. Some results of calculations with this method are presented. The influence of groundwater quality on the morbidity of the population is given and the main diseases and associated medical problems are listed. PMID:2559843

  3. Quality of groundwater in the Agbabu oil sands area of the Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Ajayi, Owolabi

    1998-08-01

    The Agbabu area is currently the focus of geological investigations for oil sands by several multinational companies. Mining and associated activities will require substantial quantities of water, hence the aim of this study is to evaluate the groundwater quality in the area. Total dissolved solids in the range 1260-1460 mg I -1 exceed the upper limit of 1000 mg I -1 for fresh water, and indicate brackish, non-potable water. Using relevant indices, the groundwater is found to be not suitable for irrigated agriculture and most industrial uses without further treatment. On the basis of dominant cations and anions, the groundwater is classified as a sodium chloride (NaCl) type. Detailed and systematic hydrogeological study of the entire oil sands area is recommended to provide information on the nature, origin, occurrence and quality characteristics of the groundwater found in this area.

  4. Quality of groundwater in the Coastal Plain Sands aquifer of the Akwa Ibom State, Nigeria

    NASA Astrophysics Data System (ADS)

    Ajayi, Owolabi; Umoh, Obot A.

    1998-08-01

    The Coastal Plain Sands Formation is exploited by most of the population of the Akwa Ibom State in southeastern Nigeria. The aquifer is mostly coarse-grained, pebbly and poorly sorted sands with minor clay intercalations. It is up to 1500 m thick near the coast, but only a few metres thick along the northeastern boundary. Groundwater occurs principally under unconfined conditions. Boreholes penetrating less than 130 m yield over 300 m 3 hr -1. The main groundwater flow direction is seaward from north to south. The probable location of the fresh water-sea water interface is seaward. Forty-two groundwater and two surface water samples were analysed. Groundwater quality meets the WHO standards for potability and is dominated by bicarbonates of Na, Ca and Mg. The Sodium Adsorption Ratio lies between 0.2 and 2.0, indicating that the water is suitable for irrigation. The area has very high annual rainfall exceeding 2000 mm annually. Groundwater recharge should be high, although it is recommended that groundwater levels and quality near the coast be monitored regularly, especially in urban areas with high groundwater abstraction, to detect the onset of sea water intrusion which remains a potential hazard in this area.

  5. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  6. Ground-Water Quality in Western New York, 2006

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  7. Water quality index calculated from biological, physical and chemical attributes.

    PubMed

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality. PMID:25492707

  8. A standardized soil quality index for diverse field conditions.

    PubMed

    de Paul Obade, Vincent; Lal, Rattan

    2016-01-15

    Understanding the nexus between soil quality and productivity is constrained by data artifacts, compounded by limitations of the existing models. Here, we explore the potential of 4 regression methods (i.e., Reduced Regression (RR), SIMPLS, Principal Component Regression (PCR), and Partial Least Squares Regression (PLSR)), to synthesize 10 soil physical and chemical properties acquired from 3 major management practices and different soil layers, into an unbiased soil quality index (SQI) capable of evaluating soil functions (e.g., biomass production). The data was acquired from privately owned fields within the state of Ohio, USA, at the following land use and management sites: natural vegetation (NV) or woodlands, conventional till (CT), and no-till (NT). The soils were sampled at similar landscape positions (i.e., summit) at depth intervals of 0-10, 10-20, 20-40 and 40-60 cm, and analyzed for bulk density (ρb), carbon/nitrogen (C/N) ratio, soil organic C (SOC), total N (TN), available water capacity (AWC), pH and electrical conductivity (EC). Preliminary analyses revealed the PLSR method as the most robust. The PLSR Variable Importance of Projection (VIP) was calculated, transformed into the SQI score and compared with yield data. SOC, ρb, C/N and EC were identified as the major variables influencing soil quality status. The data shows that the quality of Pewamo silty clay loam (Pw) soil was higher than Crosby Celina loams (CtA), Kibbie fine sandy loam (kbA), Glynwood silt loam (GWA) and Crosby silt loam (CrA), respectively. In 2012, the mean SQI was 42.9%, with corn and soybean yields of 7 and 2Mg/ha. The R(2) of SQI versus yield was 0.74 for corn (Zea mays L.), and 0.89 for soybean (Glycine max (L.) Merr.). Future studies will investigate techniques for mapping this SQI. PMID:26410717

  9. Groundwater quality of porous aquifers in Greece: a synoptic review

    NASA Astrophysics Data System (ADS)

    Daskalaki, P.; Voudouris, K.

    2008-04-01

    Greece is dependent on groundwater resources for its water supply. The main aquifers are within carbonate rocks (karstic aquifers) and coarse grained Neogene and Quaternary deposits (porous aquifers). The use of groundwater resources has become particularly intensive in coastal areas during the last decades with the intense urbanization, tourist development and irrigated land expansion. Sources of groundwater pollution are the seawater intrusion due to over-exploitation of coastal aquifers, the fertilizers from agricultural activities and the disposal of untreated wastewater in torrents or in old pumping wells. In the last decades the total abstractions from coastal aquifers exceed the natural recharge; so the aquifer systems are not used safely. Over-exploitation causes a negative water balance, triggering seawater intrusion. Seawater intrusion phenomena are recorded in coastal aquifer systems. Nitrate pollution is the second major source of groundwater degradation in many areas in Greece. The high levels of nitrate are probably the result of over-fertilization and the lack of sewage systems in some urban areas.

  10. Protecting groundwater quality with high frequency subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  11. Assessment of groundwater quality data for the Turtle Mountain Indian Reservation, Rolette County, North Dakota

    USGS Publications Warehouse

    Lundgren, Robert F.; Vining, Kevin C.

    2013-01-01

    The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.

  12. Estimation of impacts on groundwater quality in an urban area of Ljubljana

    NASA Astrophysics Data System (ADS)

    Janža, Mitja; Prestor, Joerg; Pestotnik, Simona; Jamnik, Brigita

    2016-04-01

    Groundwater is a major source of drinking water supply in many cities worldwide. It is relatively stable and better-protected water resource compared to surface water and will have a vital role in assuring water-supply security in the future. In urbanized catchments numerous human activities (e.g. settling, industry, traffic, agriculture) take place which pose a threat to groundwater quality. For sustainable management of urban groundwater resources an integrated and adaptive approach based on continuous monitoring supported by modeling is needed. The aim of presented study was to develop a model of environmental pressures and impacts on Ljubljansko polje aquifer which is the main source exploited for the public drinking water supply of the city of Ljubljana. It is based on estimation of contaminants emissions from different sources, coupled with numerical transport modelling which is used to assess the impact on groundwater quality. The model was built up on detailed analysis of nitrogen mass balance and validated with monitoring data - concentration measurements of relevant chemical parameters. Based on the model simulations impacts of different sources of pollution on groundwater quality was estimated and priority of measures for improvement of chemical status of groundwater was defined.

  13. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  14. Groundwater quality assessment and its correlation with gastroenteritis using GIS: a case study of Rawal Town, Rawalpindi, Pakistan.

    PubMed

    Shahid, Syed Umair; Iqbal, Javed; Hasnain, Ghalib

    2014-11-01

    Majority of the people of Pakistan get drinking water from groundwater source. Nearly 40 % of the total ailments reported in Pakistan are the result of dirty drinking water. Every summer, thousands of patients suffer from acute gastroenteritis in the Rawal Town. Therefore, a study was designed to generate a water quality index map of the Rawal Town and identify the relationship between bacteriological water quality and socio-economic indicators with gastroenteritis in the study area. Water quality and gastroenteritis patient data were collected by surveying the 262 tubewells and the major hospitals in the Rawal Town. The collected spatial data was analyzed by using ArcGIS spatial analyst (Moran's I spatial autocorrelation) and geostatistical analysis tools (inverse distance weighted, radial basis function, kriging, and cokriging). The water quality index (WQI) for the study area was computed using pH, turbidity, total dissolved solids, calcium, hardness, alkalinity, and chloride values of the 262 tubewells. The results of Moran's I spatial autocorrelation showed that the groundwater physicochemical parameters were clustered. Among IDW, radial basis function, and kriging and cokriging interpolation techniques, cokriging showed the lowest root mean square error. Cokriging was used to make the spatial distribution maps of water quality parameters. The WQI results showed that more than half of the tubewells in the Rawal Town were providing "poor" to "unfit" drinking water. The Pearson's coefficient of correlation for gastroenteritis with fecal coliform was found significant (P < 0.05) in Water and Sanitation Agency (WASA) zone 2, and with shortage of toilets, it was significant (P < 0.05) in WASA zones 1 and 3. However, it was significantly (P < 0.01) inversely related with literacy rate in WASA zones 1, 2, and 3. PMID:25119694

  15. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  16. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  17. Groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.

  18. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Anku, Yvonne S.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.; Yidana, Sandow M.

    2009-09-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194 mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4 mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the ‘Excellent to good’ category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  19. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons. PMID:26886427

  20. Groundwater quality in the Northern Coast Ranges Basins, California

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Recharge to the groundwater system is primarily from mixture of ambient sources, including direct percolation of precipitation and irrigation waters, infiltration of runoff from surrounding hills/areas, seepage from rivers and creeks, and subsurface inflow (from non-alluvial geologic units that bound the alluvial basins). The primary sources of discharge are evaporation, discharge to streams, and water pumped for municipal supply and irrigation.

  1. Quality of our groundwater resources: arsenic and fluoride

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  2. Influences on water quality in a groundwater dependent wetland system

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Rigosi, A.; Wood, C.; White, N.; Liu, Y.; Brookes, J. D.; Cook, P. G.

    2014-12-01

    Ewens Ponds is a unique series of connected wetlands situated within the Gambier Limestone formation in the Gambier Basin on the southeastern coast in South Australia. The system is composed of three consecutive ponds, each with a total depth of 9 to 13 m deep. Groundwater is the sole water source for the ponds, and the clear water, lush flora, and rare indigenous fish that characterize these wetlands typically lure thousands of divers to the Ponds each year. Over the past century, agricultural practices in the area have changed the hydrology of this system in many ways; first with an extensive system of drains on both sides of the Ponds to make the surrounding area viable for agricultural use, subsequently with the dredging of the outflow of the Ponds and addition of synthetic fertilizers, and most recently with heavy aquifer pumping for widespread use of center pivot irrigation systems. Beginning in the 1970s, diebacks in the Ponds' flora were documented, concurrent with spikes in nutrient concentrations. In nearby waters, reductions in key wetland species have been observed during periods of high alkalinity (pH>10). Following these concerns, the current study aims to quantify the water budget within the ponds, identify sources of nutrients, and estimate the age of groundwaters entering the wetlands for correlation with longterm agricultural trends. Groundwater ages were sampled in May 2014 and analysed for Carbon 14 and SF6, in addition to the installation of salinity and water level sensors and flow gaging. Preliminary results show that approximately 70 percent of the water enters the system through groundwater inflow in the first pond, with the remaining water entering within the third pond. A slight increase in the electrical conductivity of the ponds (average 750 μS in the first pond, up to 800 μS in the third pond) also differentiates the water.

  3. Groundwater quality assessment/corrective action feasibility plan

    SciTech Connect

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  4. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  5. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    PubMed

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality. PMID:22899457

  6. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin

    USGS Publications Warehouse

    Saad, D.A.

    2008-01-01

    Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Askri, Brahim

    2015-06-01

    The Al Batinah coastal aquifer is the principal source of water in northwestern Oman. The rainfall in the Jabal Al Akhdar mountain region recharges the plain with freshwater that allowed agricultural and industrial activities to develop. The over-exploitation of this aquifer since the 1970s for municipal, agricultural and industrial purposes, excessive use of fertilizers in agriculture and leakage from septic tanks led to the deterioration of groundwater quality. The objective of this study was to investigate the hydrochemical processes regulating the groundwater quality in the southwestern section of Al Batinah. From available data collected during the spring of 2010 from 58 wells located in Al Musanaah wilayat, it was determined that the groundwater salinity increased in the direction from the south to the north following the regional flow direction. In addition to salinisation, the groundwater in the upstream and intermediate regions was contaminated with nitrate, while groundwater in the downstream region was affected by fluoride. Calculations of ionic ratios and seawater fraction indicated that seawater intrusion was not dominant in the study area. The primary factors controlling the groundwater chemistry in Al Musanaah appear to be halite dissolution, reverse ion exchange with clay material and anthropogenic pollutants.

  8. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed Central

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-01-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844

  9. Regional assessment of groundwater for drinking purpose subject to water-quality parameters

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin

    2010-05-01

    Owing to limited surface water during a long term drought, this work attempted to locate safe groundwater for drinking in aquifers of the Choushui River alluvial fan, Taiwan subject to its water-quality parameters. Because the aquifers contained multiple pollutions, such as the salinity pollution, the organic pollution, the nitrogen pollution and the heavy metal pollution, multiple-variable indicator kriging (MVIK) was adopted to estimate integration of several pollutions in groundwater based on water-quality standards for drinking and to characterize spatial uncertainty. According to probabilities estimated by MVIK, safe scopes were determined for four treatment conditions - no treatment, ammonium-N removal, manganese removal, and ammonium-N and manganese removals. The analyzed results reveal that, because of exceeding the standards of manganese and/or ammonium-N, groundwater in proximal-fan aquifers (a natural recharging zone) has to be treated appropriately, such as dilution and removals with some treatment approaches, before being drunk. The proximal-fan, southeastern and central regions are the best locations to pump clean and safe groundwater for drinking when devices of ammonium-N and manganese removals are available. Deep aquifers of exceeding 200 m depth have wider safe regions to obtain excellent groundwater for drinking than shallow aquifers do. Keywords: Multiple-variable indicator kriging; groundwater; pollution; drinking

  10. Comparison of Soil Quality Index Using Three Methods

    PubMed Central

    Mukherjee, Atanu; Lal, Rattan

    2014-01-01

    Assessment of management-induced changes in soil quality is important to sustaining high crop yield. A large diversity of cultivated soils necessitate identification development of an appropriate soil quality index (SQI) based on relative soil properties and crop yield. Whereas numerous attempts have been made to estimate SQI for major soils across the World, there is no standard method established and thus, a strong need exists for developing a user-friendly and credible SQI through comparison of various available methods. Therefore, the objective of this article is to compare three widely used methods to estimate SQI using the data collected from 72 soil samples from three on-farm study sites in Ohio. Additionally, challenge lies in establishing a correlation between crop yield versus SQI calculated either depth wise or in combination of soil layers as standard methodology is not yet available and was not given much attention to date. Predominant soils of the study included one organic (Mc), and two mineral (CrB, Ko) soils. Three methods used to estimate SQI were: (i) simple additive SQI (SQI-1), (ii) weighted additive SQI (SQI-2), and (iii) statistically modeled SQI (SQI-3) based on principal component analysis (PCA). The SQI varied between treatments and soil types and ranged between 0–0.9 (1 being the maximum SQI). In general, SQIs did not significantly differ at depths under any method suggesting that soil quality did not significantly differ for different depths at the studied sites. Additionally, data indicate that SQI-3 was most strongly correlated with crop yield, the correlation coefficient ranged between 0.74–0.78. All three SQIs were significantly correlated (r = 0.92–0.97) to each other and with crop yield (r = 0.65–0.79). Separate analyses by crop variety revealed that correlation was low indicating that some key aspects of soil quality related to crop response are important requirements for estimating SQI. PMID:25148036

  11. Tradeoffs between Price and Quality: How a Value Index Affects Preference Formation.

    ERIC Educational Resources Information Center

    Creyer, Elizabeth H.; Ross, William T., Jr.

    1997-01-01

    Some of a group of 143 consumers were given a choice between higher-priced, higher-quality items and items with lower price and quality but higher value index (benefit/cost tradeoff); others were given price and quality information only. Consumers were more likely to choose lower-priced, higher-value options when the index information was…

  12. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation

  13. Hydrogeochemistry and groundwater quality assessment along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alhumidan, S. M.; Alfaifi, H. J.; Ibrahim, E. K. E.; Abdel Rahman, K.

    2015-12-01

    In the present study, the hydrochemistry and geologic characteristics of the shallow groundwater aquifer along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia was evaluated and assessed. Along this wadi the fractured/weathered basement rocks house significant quantity of groundwater that usually used by local people for agricultural and domestic purposes. Assessing and evaluation of the quality of the groundwater in such shallow aquifers is very important; especially the groundwater is generally occurred within the fractured basement rocks at shallow depths, thus exposing the groundwater to surface or near-surface contaminants is expected. For this purpose hydrochemical and biological analysis was conducted for 25 water samples collected from the available shallow dug wells along the studied wadi. The study reveals that the groundwater quality changed due to the agriculture and urbanization practices along the wadi. The effect of domestic waste water and septic tanks was obvious. In addition, the field investigation indicates that the basement rocks in the area is dissected by two main sets of fractures that oriented in the west-northwest and east-west directions. In some places, the basement rocks is intruded by coarse-grained, quartz-rich quartzite grained monzogranite, and pegmatite veins that have a coarse-grained weathering product, therefore, they tend to develop and preserve open joint systems between the granitic blocks. These fracturing system are important from the hydrogeological point of view, as they facilitate the storage, water flow movement through them and also facilitate the vertical infiltration of the surface pollutants. These results led to a better understanding of the groundwater characteristics that is important in groundwater management in the study area.

  14. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    PubMed

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  15. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2015-11-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3^{ - } , Cl-, SO4^{2 - } , Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > HCO3^{ - } > SO4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  16. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  17. Statistical comparisons of ground-water quality underlying different land uses in central Florida

    SciTech Connect

    Rutledge, A.T.; German, E.R. Geological Survey, Altamonte Springs, FL )

    1988-09-01

    Human activities at land surface can affect the quality of water recharging groundwater systems. Because ground water is the principal source of drinking water in many areas, it is necessary to know the relation between land use and ground-water quality. This study is 1 of 7 being made throughout the US as part of the Toxic Waste - Ground-Water Contamination Program of the US Geological Survey. This report documents statistical comparisons of ground-water quality for three test areas in central Florida: (1) a control area where land use is minimal, (2) a citrus-growing area where effects of agriculture may be expected, and (3) a phosphate-mining area where effects of mining activities may be expected. This study addresses water-quality conditions in the surficial aquifer, which consists of sand and shell beds of Pleistocene and Holocene age. The two developed areas are representative of land uses that characterize large areas of Florida, and the control area is representative of near-pristine conditions that exist over a large area, so results of this study may be transferable. The water-quality variables of interest include physical properties, major ions, nutrients, and trace elements.

  18. [Assessment of groundwater quality of different aquifers in Tongzhou area in Beijing Plain and its chemical characteristics analysis].

    PubMed

    Guo, Gao-Xuan; Ju, Yi-Wen; Zhai, Hang; Xu, Liang; Shen, Yuan-Yuan; Ji, Yi-Qun

    2014-06-01

    In order to evaluate the groundwater quality of Tongzhou area in Beijing Plain and to discuss the characteristics of its distribution by the view of hydrochemistry, a total of 151 groundwater samples, collected within study area in the dry period of 2008 according to the geological and hydrogeololgical condition of Tongzhou area, were classified as shallow, middle and deep groundwater, respectively. Based on the data, the groundwater quality was evaluated by the method of F value. The mean and variance of main chemical constituents of groundwater samples were presented. Almost all the quaternary groundwater of Chaobai river pluvial fan belonged to the alkaline water type. The evaluation results based on the analysis results showed that from shallow to deep, the quality of groundwater in Beijing became better. The total areas of groundwater belonging to class IV and V area were 884 km2, 599 km2 and 94 km2 respectively for shallow, middle and deep groundwater. The evaluation results showed that the main exceeding chemical constituents were TDS, hardness, NH4(+), F(-) and total Fe. Most exceeding samples belonged to middle and deep aquifers. The main types of shallow groundwater were HCO2-Ca x Mg- and HCO3 x Cl-Ca x Na x Mg, while the chemical types of mid-deep groundwater were mostly HCO3-Na x Ca- and HCO3 x SO4(2-) -Na x Ca type due to the increased Na(+), SO4(2-) and Cl(-) concentration. Study results showed that the quality of shallow groundwater became worse mainly due to human activities. The deterioration of groundwater quality in mid-deep aquifers was due to both human activities and natural occurrence of poor-quality water. PMID:25158485

  19. Calendar year 1995 groundwater quality report for the Bear Creek Hydrogeologic Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the Groundwater Protection Program (GWPP) is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  20. Ground-water quality and data on wells and springs in Pennsylvania; Volume I, Ohio and St. Lawrence River basins

    USGS Publications Warehouse

    Koester, Harry E.; Miller, Denise R.

    1980-01-01

    Volume I of the Groundwater Quality and Data on Wells and Springs in Pennsylvania presents groundwater quality and physical data on about 1,200 well and spring sites in the Ohio and St. Lawrence River basins. Locations are shown on site-location maps derived from the hydrologic unit map. Codes showing the geologic age and aquifer are provided. (USGS)

  1. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  2. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins

    USGS Publications Warehouse

    Fischer, D.; Charles, E.G.; Baehr, A.L.

    2003-01-01

    Infiltration of storm water through detention and retention basins may increase the risk of groundwater contamination, especially in areas where the soil is sandy and the water table shallow, and contaminants may not have a chance to degrade or sorb onto soil particles before reaching the saturated zone. Groundwater from 16 monitoring wells installed in basins in southern New Jersey was compared to the quality of shallow groundwater from 30 wells in areas of new-urban land use. Basin groundwater contained much lower levels of dissolved oxygen, which affected concentrations of major ions. Patterns of volatile organic compound and pesticide occurrence in basin groundwater reflected the land use in the drainage areas served by the basins, and differed from patterns in background samples, exhibiting a greater occurrence of petroleum hydrocarbons and certain pesticides. Dilution effects and volatilization likely decrease the concentration and detection frequency of certain compounds commonly found in background groundwater. High recharge rates in storm water basins may cause loading factors to be substantial even when constituent concentrations in infiltrating storm water are relatively low.

  3. Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Elango, L.

    2013-04-01

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern India to determine the geochemical processes controlling the groundwater quality. Thirty-nine groundwater samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3, CO3, Cl and SO4. The analysed parameters of the groundwater in the study area were found to be well within the safe range in general with respect to the Bureau of Indian Standards for drinking water except for few locations. The results of these analyses were used to identify the geochemical processes that are taking place in this region. Cation exchange and silicate weathering are the important processes controlling the major ion distribution of the study area. Mass balance reaction model NETPATH was used to assess the ion exchange processes. High concentration of Ca in groundwater of the study area is due to the release of Ca by aquifer material and adsorption of Na due to ion exchange processes. Groundwater of the study area is suitable for drinking and irrigation purposes except for few locations.

  4. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    NASA Astrophysics Data System (ADS)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  5. MONITORING GROUNDWATER QUALITY: THE IMPACT OF IN-SITU OIL SHALE RETORTING

    EPA Science Inventory

    This report presents the initial phase of a research program which will develop a planning methodology for the design and implementation of cost-effective groundwater quality monitoring programs for modified in-situ (MIS) oil shale retorting. This initial phase includes (1) a rev...

  6. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: IDENTIFICATION AND PRIORITY RANKING OF POTENTIAL POLLUTION SOURCES

    EPA Science Inventory

    This report presents the development of a preliminary priority ranking of potential pollution sources with respect to groundwater quality and the associated pollutants for oil shale operations such as proposed for Federal Prototype Leases U-a and U-b in Eastern Utah. The methodol...

  7. Effects of Stormwater Infiltration on Quality of Groundwater Beneath Retention and Detention Basins

    EPA Science Inventory

    Use of stormwater retention and detention basins has become a popular method for managing urban and suburban stormwater runoff. Infiltration of stormwater through these basins may increase the risk to ground-water quality, especially in areas where the soil is sandy and the wate...

  8. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: MONITORING PROGRAM DEVELOPMENT

    EPA Science Inventory

    This report presents the development of a preliminary design of a groundwater quality monitoring program for oil shale operations, such as proposed for Federal Prototype Lease Tracts U-a and U-b in eastern Utah. A preliminary decision framework for monitoring design for this type...

  9. Validation of Student Generated Data for Assessment of Groundwater Quality

    ERIC Educational Resources Information Center

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  10. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  11. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    NASA Astrophysics Data System (ADS)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  12. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia

    SciTech Connect

    Benes, V.; Pekny, V.; Skorepa, J.; Vrba, J. )

    1989-11-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making.

  13. Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.

    2008-12-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  14. Assessment of human activities impact on groundwater quality discharging into a reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.

    2010-03-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  15. Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data.

    PubMed

    Singh, Elangbam J K; Gupta, Abhik; Singh, N R

    2013-04-01

    The aim of this paper was to analyze the groundwater quality of Imphal West district, Manipur, India, and assess its suitability for drinking, domestic, and agricultural use. Eighteen physico-chemical variables were analyzed in groundwater from 30 different hand-operated tube wells in urban, suburban, and rural areas in two seasons. The data were subjected to uni-, bi-, and multivariate statistical analysis, the latter comprising cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA). Arsenic concentrations exceed the Indian standard in 23.3% and the WHO limit in 73.3% of the groundwater sources with only 26.7% in the acceptable range. Several variables like iron, chloride, sodium, sulfate, total dissolved solids, and turbidity are also beyond their desirable limits for drinking water in a number of sites. Sodium concentrations and sodium absorption ratio (SAR) are both high to render the water from the majority of the sources unsuitable for agricultural use. Multivariate statistical techniques, especially varimax rotation of PCA data helped to bring to focus the hidden yet important variables and understand their roles in influencing groundwater quality. Widespread arsenic contamination and high sodium concentration of groundwater pose formidable constraints towards its exploitation for drinking and other domestic and agricultural use in the study area, although urban anthropogenic impacts are not yet pronounced. PMID:22935861

  16. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  17. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  18. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    USGS Publications Warehouse

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  19. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  20. Subscribing to Databases: How Important Is Depth and Quality of Indexing?

    ERIC Educational Resources Information Center

    Delong, Linwood

    2007-01-01

    This paper compares the subject indexing on articles pertaining to Immanuel Kant, agriculture, and aging that are found simultaneously in Humanities Index, Academic Search Elite (EBSCO) and Periodicals Research II (Micromedia ProQuest), in order to show that there are substantial variations in the depth and quality of indexing in these databases.…

  1. Evaluating Journal Quality: Is the H-Index a Better Measure than Impact Factors?

    ERIC Educational Resources Information Center

    Hodge, David R.; Lacasse, Jeffrey R.

    2011-01-01

    Objectives: This study evaluates the utility of a new measure--the h-index--that may provide a more valid approach to evaluating journal quality in the social work profession. Method: H-index values are compared with Thomson ISI 5-year impact factors and expert opinion. Results: As hypothesized, the h-index correlates highly with ISI 5-year impact…

  2. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  3. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  4. Data Sources for an Environmental Quality Index: Availability, Quality, and Utility

    PubMed Central

    Rappazzo, Kristen; Messer, Lynne C.

    2011-01-01

    Objectives. An environmental quality index (EQI) for all counties in the United States is under development to explore the relationship between environmental insults and human health. The EQI is potentially useful for investigators researching health disparities to account for other concurrent environmental conditions. This article focused on the identification and assessment of data sources used in developing the EQI. Data source strengths, limitations, and utility were addressed. Methods. Five domains were identified that contribute to environmental quality: air, water, land, built, and sociodemographic environments. An inventory of possible data sources was created. Data sources were evaluated for appropriate spatial and temporal coverage and data quality. Results. The overall data inventory identified multiple data sources for each domain. From the inventory (187 sources, 617 records), the air, water, land, built environment, and sociodemographic domains retained 2, 9, 7, 4, and 2 data sources for inclusion in the EQI, respectively. However, differences in data quality, geographic coverage, and data availability existed between the domains. Conclusions. The data sources identified for use in the EQI may be useful to researchers, advocates, and communities to explore specific environmental quality questions. PMID:21836111

  5. Assessing the potential risks of burial practices on groundwater quality in rural north-central Nigeria.

    PubMed

    Zume, Joseph T

    2011-09-01

    Several cultures of north-central Nigeria do not use community cemeteries. Instead, human remains are buried in and around family compounds, often in shallow and sometimes unmarked graves. At several locations, graves and drinking water wells end up too close to be presumed environmentally safe. This paper reports findings of a pilot study that explored the potential for groundwater contamination from gravesites in some rural settlements of north-central Nigeria. Preliminary results suggest that the long-standing burial practices among some cultures of rural north-central Nigeria may potentially compromise groundwater quality, which is, by far, their most important source of drinking water. PMID:21976208

  6. The Biotic Indexing of Water Quality and Its Application to Field Work in Schools and Colleges.

    ERIC Educational Resources Information Center

    Dale, C. R.

    1980-01-01

    Discussed is the biotic indexing of water quality and its application to A-level field work with reference to the Trent Biotic Index and Chandler Score system. These indices are related to the classification of water quality used by the Department of the Environment. Interpretations and limitations of the indices are discussed. (Author/DS)

  7. Development of Water Quality Index for the United States: A Sensitivity Analysis

    EPA Science Inventory

    Background: Water quality is quantified using several measures, available from various data sources, which can be combined to create a single index of overall water quality. It is necessary to identify appropriate variables to include in an index which could be used for health re...

  8. A New Malaysian Quality of Life Index Based on Fuzzy Sets and Hierarchical Needs

    ERIC Educational Resources Information Center

    Lazim, M. Abdullah; Abu Osman, M. Tap

    2009-01-01

    The Malaysian Quality of Life Index (MQLI) released by the Economic Planning Unit (EPU), has led authors to search for alternative method of expressing this index. One of the limitations in MQLI computations is the failure to recognise unequal weights for each accounted component. This paper offers a new way of expressing the quality of life index…

  9. Wellbore-wall compression effects on monitored groundwater levels and qualities.

    PubMed

    Eguchi, S; Sawamoto, M; Shiba, M; Iiyama, I; Hasegawa, S

    2013-01-01

    The effects of wellbore-wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6-m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15-month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore-wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering-derived wellbores. Our results suggest that the wellbore-wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore-wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions. PMID:22924593

  10. Importance of mineralogical data for groundwater quality affectedby CO2 leakage

    SciTech Connect

    Xu, Tianfu

    2006-02-13

    Recently, geological storage of CO{sub 2} has been extensively investigated. The impact of leakage from CO{sub 2} storage reservoirs on groundwater quality is one of the concerns. Dissolution of CO{sub 2} in groundwater results in a decrease in pH. Such acidic condition can affect the dissolution and sorption mechanisms of many minerals (Jaffe and Wang, 2004). Some heavy-metal-bearing minerals dissolve under acidic conditions. For example, galena (PbS) can dissolve and increase significantly Pb concentrations and diminish groundwater quality. If calcite is present in the rock, it can buffer the pH and decrease galena dissolution. Therefore, mineralogical composition and distribution in caprock, overlying aquifers, and along the leakage paths are important data that should be obtained from site characterization. Insight into which minerals and compounds are most important for groundwater quality can be obtained from reactive geochemical transport simulations. Here we present results of simulations using the code TOUGHREACT, whose physical and chemical process capabilities have been discussed by Xu et al. (2006). The simulator can be applied to one-, two-, or three-dimensional porous and fractured media with physical and chemical heterogeneity, and can accommodate any number of chemical species present in liquid, gas and solid phases.