Science.gov

Sample records for groups hydrogen bonded

  1. Well-defined polymeric materials incorporating strong hydrogen bonding groups

    NASA Astrophysics Data System (ADS)

    Feldman, Kathleen E.

    The field of supramolecular chemistry has drastically grown in recent years, and in particular the development of new strongly hydrogen bonding groups has yielded numerous fundamental and practical advances allowing for the design of materials with unique combinations of macroscopic properties. For polymers whose properties typically are rather insensitive to temperature (other than e.g. when passing through the glass transition), the incorporation of hydrogen bonding groups into their structures can provide a new handle with which to tune their structural, mechanical, and thermal behavior. Limited fundamental studies exist, however, in which the combined effects of the polymer behavior and supramolecular interactions are characterized. In this work new chemistry has been developed to allow the synthesis of well-defined polymers containing quadruple hydrogen bonding groups which bind either through a complementary or self-complementary interaction. The MHB groups can be incorporated either at the chain end or along the backbone, and through simple blending a number of different architectures can be obtained. In the simplest case, two chemically distinct homopolymers with MHB groups attached at a single chain end were mixed to produce supramolecular copolymers analogous to traditional diblocks. The nature of the hydrogen bonding groups was found to be highly influential in determining the bulk microstructure. In analyzing the phase behavior of such blends, a new polymer system was discovered to display lower critical ordering behavior and its temperature dependent Flory-Huggins c parameter was measured. By randomly incorporating strongly self-complementary MHB groups as side chains rather than end groups, a new class of thermoplastic elastomers was developed which are unentangled and contain no glassy or crystalline domains, yet show dynamical properties in some ways typical of polymer networks. The study of ABA triblock copolymer-like architectures in which the MHB

  2. Crystal Engineering with Urea and Thiourea Hydrogen-Bonding Groups

    SciTech Connect

    Custelcean, Radu

    2008-01-01

    The utilization of N,N{prime}-disubstituted ureas and thioureas as design elements in the synthesis of crystalline organic solids is reviewed. These hydrogen-bonding units are versatile yet predictable building blocks that can be rationally employed in both crystal assembly and functionalization.

  3. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  4. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  5. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group.

    PubMed

    Lim, Woon Ki; Rösgen, Jörg; Englander, S Walter

    2009-02-24

    The mechanism by which urea and guanidinium destabilize protein structure is controversial. We tested the possibility that these denaturants form hydrogen bonds with peptide groups by measuring their ability to block acid- and base-catalyzed peptide hydrogen exchange. The peptide hydrogen bonding found appears sufficient to explain the thermodynamic denaturing effect of urea. Results for guanidinium, however, are contrary to the expectation that it might H-bond. Evidently, urea and guanidinium, although structurally similar, denature proteins by different mechanisms. PMID:19196963

  6. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    SciTech Connect

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  7. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups.

    PubMed Central

    Shimoni, L.; Glusker, J. P.

    1995-01-01

    The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2(2)(8), R2(2)(9), and R1(2)(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns R2(2)(8) and R2(2)(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 A or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2(2)(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2(2)(8). These two hydrogen bonding arrangements [R2(2)(9)] and R2(2)(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1(2)(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. PMID:7773178

  8. Role of the Uranyl Oxo Group as a Hydrogen Bond Acceptor

    SciTech Connect

    Watson, Lori A; Hay, Benjamin

    2011-01-01

    Density functional theory calculations have been used to evaluate the geometries and energetics of interactions between a number of uranyl complexes and hydrogen bond donor groups. The results reveal that although traditional hydrogen bond donors are repelled by the oxo group in the [UO{sub 2}(OH{sub 2}){sub 5}]{sup 2+} species, they are attracted to the oxo groups in [UO{sub 2}(OH{sub 2}){sub 2}(NO{sub 3}){sub 2}]{sup 0}, [UO{sub 2}(NO{sub 3}){sub 3}]{sup -}, and [UO{sub 2}Cl{sub 4}]{sup 2-} species. Hydrogen bond strength depends on the equatorial ligation and can exceed 15 kcal mol{sup -1}. The results also reveal the existence of directionality at the uranyl oxo acceptor, with a weak preference for linear U=O---H angles.

  9. Hydrogen Bond Formation between the Carotenoid Canthaxanthin and the Silanol Group on MCM-41 Surface.

    PubMed

    Gao, Yunlong; Xu, Dayong; Kispert, Lowell D

    2015-08-20

    The formation of one or two hydrogen bonds (H-bonds) between canthaxanthin (CAN), a dye, and the silanol group(s) on the MCM-41 surface has been studied by density functional theory (DFT) calculations and calorimetric experiments. It was found that the formation of the H-bond(s) stabilized the CAN molecule more than its radical cation (CAN(•+)). The charge distribution, bond lengths, and the HOMO and LUMO energies of CAN are also affected. The formation of the H-bond(s) explains the lower photoinduced electron transfer efficiency of CAN imbedded in Cu-MCM-41 versus that for β-carotene (CAR) imbedded in Cu-MCM-41 where complex formation with Cu(2+) dominates. These calculations show that to achieve high electron transfer efficiency for a dye-sensitized solar cell, H-bonding between the dye and the host should be avoided. PMID:26230844

  10. Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Brønsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors

    SciTech Connect

    Shokri, Alireza; Wang, Xue B.; Kass, Steven R.

    2013-06-26

    Electron withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl–. Their catalytic behavior in several reactions were also examined and compared to a BrØnsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)3C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.

  11. Anion Binding in Metal-Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups

    SciTech Connect

    Custelcean, Radu; Moyer, Bruce A; Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2006-01-01

    A series of metal-organic frameworks (MOFs) functionalized with urea hydrogen-bonding groups has been synthesized and structurally analyzed by single-crystal X-ray diffraction to evaluate the efficacy of anion coordination by urea within the structural constraints of the MOFs. We found that urea-based functionalities may be used for anion binding within metal-organic frameworks when the tendency for urea{hor_ellipsis}urea self-association is decreased by strengthening the intramolecular CH{hor_ellipsis}O hydrogen bonding of N-phenyl substituents to the carbonyl oxygen atom. Theoretical calculations indicate that N,N'-bis(m-pyridyl)urea (BPU) and N,N'-bis(m-cyanophenyl)urea (BCPU) should have enhanced hydrogen-bonding donor abilities toward anions and decreased tendencies to self-associate into hydrogen-bonded tapes compared to other disubstituted ureas. Accordingly, BPU and BCPU were incorporated in MOFs as linkers through coordination of various Zn, Cu, and Ag transition metal salts, including Zn(ClO{sub 4}){sub 2}, ZnSO{sub 4}, Cu(NO{sub 3}){sub 2}, Cu(CF{sub 3}SO{sub 3}){sub 2}, AgNO{sub 3}, and AgSO{sub 3}CH{sub 3}. Structural analysis by single-crystal X-ray diffraction showed that these linkers are versatile anion binders, capable of chelate hydrogen bonding to all of the oxoanions explored. Anion coordination by the urea functionalities was found to successfully compete with urea self-association in all cases except for that of charge-diffuse perchlorate.

  12. Methyl group dynamics in paracetamol and acetanilide: probing the static properties of intermolecular hydrogen bonds formed by peptide groups

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Prager, M.; Grimm, H.; Neumann, M. A.; Kearley, G. J.; Wilson, C. C.

    1999-06-01

    Measurements of tunnelling and librational excitations for the methyl group in paracetamol and tunnelling excitations for the methyl group in acetanilide are reported. In both cases, results are compared with molecular mechanics calculations, based on the measured low temperature crystal structures, which follow an established recipe. Agreement between calculated and measured methyl group observables is not as good as expected and this is attributed to the presence of comprehensive hydrogen bond networks formed by the peptide groups. Good agreement is obtained with a periodic quantum chemistry calculation which uses density functional methods, these calculations confirming the validity of the one-dimensional rotational model used and the crystal structures. A correction to the Coulomb contribution to the rotational potential in the established recipe using semi-emipircal quantum chemistry methods, which accommodates the modified charge distribution due to the hydrogen bonds, is investigated.

  13. Anion Coordination in Metal-Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups

    SciTech Connect

    Custelcean, Radu; Moyer, Bruce A.; Bryantsev, Vyacheslav; Hay, Benjamin P.

    2005-12-15

    A series of metal-organic frameworks (MOFs) functionalized with urea hydrogen-bonding groups have been designed, synthesized, and structurally analyzed by single crystal X-ray diffraction to evaluate the efficacy of anion binding within the structural constraints of the MOFs. We found that urea-based functionalities may be used for anion binding within metal-organic frameworks when the tendency for urea???urea self-association is decreased by strengthening the intramolelcular CH???O hydrogen bonding of N-phenyl substituents to the carbonyl oxygen atom. Theoretical calculations indicate that N,N?-bis(m-pyridyl)urea (BPU) and N,N?-bis(m-cyanophenyl)urea (BCPU) should have enhanced hydrogen-bonding donor abilities toward anions and decreased tendencies to self-associate into hydrogen-bonded chains compared to other disubstituted ureas. Accordingly, BPU and BCPU were incorporated in MOFs as linkers through coordination of various Zn, Cu, and Ag transition metal salts, including Zn(ClO4)2, ZnSO4, Cu(NO3)2, Cu(CF3SO3)2, AgNO3 and AgSO3CH3. Structural analysis by single-crystal X-ray diffraction showed that these linkers are versatile anion binders, capable of chelate hydrogen bonding to all of the oxoanions explored. Anion binding by the urea functionalities was found to successfully compete with urea self-association in all cases except for that of charge-diffuse perchlorate. This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, under contract number DE-AC05-00OR22725 with Oak Ridge National Laboratory (managed by UT-Battelle, LLC), and performed at Oak Ridge National laboratory and Pacific Northwest National Laboratory (managed by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830). This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences laboratory

  14. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    SciTech Connect

    Mirkin, Noemi G.; Krimm, Samuel

    2014-01-28

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ωB97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  15. A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups

    SciTech Connect

    Custelcean, Radu; Moyer, Bruce A.; Hay, Benjamin P.

    2005-10-14

    A functional coordination polymer decorated with urea hydrogen-bonding donor groups has been designed for optional binding of sulfate; self-assembly of a tripodal tri-urea linker with Ag2SO4 resulted in the formation of a 1D metal-organic framework that encapsulated SO42- anions via twelve complementary hydrogen bonds, which represents the highest coordination number observed for sulfate in a natural or synthetic host.

  16. Hydrogen bonding and electron transfer between dimetal paddlewheel compounds containing pendant 2-pyridone functional groups.

    PubMed

    Wilkinson, Luke A; McNeill, Laura; Scattergood, Paul A; Patmore, Nathan J

    2013-08-19

    The compounds M2(TiPB)3(HDON) (TiPB = 2,4,6-triisopropylbenzoic acid; H2DON = 2,7-dihdroxy-1,8-napthyridine; M = Mo (1a) or W (1b)) and Mo2(TiPB)2(O2CCH2Cl)(HDON) (1c) which contain a pendant 2-pyridone functional group have been prepared. These compounds are capable of forming self-complementary hydrogen bonds, resulting in the formation of "dimers of dimers" ([1a-c]2) in CH2Cl2 solutions. Electrochemical studies reveal two successive one-electron redox processes for [1a-c]2 in CH2Cl2 solutions that correspond to successive oxidations of the dimetal core, indicating stabilization of the mixed-valence state. Only small changes in the value of Kc are observed upon changing the ancillary ligand or metal, implying that proton coupled mixed valency is responsible for the stabilization. Dimethylsulfoxide (DMSO) disrupts the hydrogen bonding interactions in these compounds, and a single oxidation process is observed in DMSO which shifts to lower potential as the number of HDON ligands increases. Further substitution of carboxylate ligands with HDON leads to the formation of Mo2(TiPB)2(HDON)2 (2) and Mo2(HDON)4 (3), which adopt trans-1,1 and cis-2,2 regioisomers in the solid-state. (1)H NMR spectroscopy indicates that there are at least two regioisomers present in solution for both compounds. The lowest energy transition in the electronic absorption spectra of these compounds corresponds to a M2-δ → HDON-π* transition. The electrochemical, spectroscopic and structural results were rationalized with the aid of density functional theory (DFT) calculations. PMID:23927688

  17. Investigation hydrogen-bonding capabilities of modified amide groups using calculated nuclear quadruple coupling constants

    NASA Astrophysics Data System (ADS)

    Elmi, F.; Hadipour, N. L.; Safinezhad, F.

    2003-07-01

    Nuclear quadrupole coupling constants, χs, for 17 chemical species are calculated. These are retroamide, N-hydroxamide, N-amino amide, thioamide, methylamine and complexes which amide generates with retroamide and other modified amides. The charge distributions around quadrupolar nuclei are most affected upon intermolecular hydrogen bond formations. χs of these nuclei are computed using ab initio calculations. Some of our findings for average values of χs of 2H, 14N and 17O in hydrogen bonds are 200.00 kHz, 4.40 MHz and 10.50 MHz, respectively. There is a fairly linear dependency between RO⋯H and the logarithm of 2H χs. This correlation is approximately linear for 17O and 14N nuclei.

  18. Spectroscopy of selected copper group minerals: Chalcophyllite and chenevixite-implications for hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Reddy, B. Jagannadha; Keeffe, Eloise C.

    2010-10-01

    NIR and IR spectroscopy has been applied for detection of chemical species and the nature of hydrogen bonding in arsenate complexes. The structure and spectral properties of copper(II) arsenate minerals: chalcophyllite and chenevixite are compared with copper(II) sulphate minerals: devilline, chalcoalumite and caledonite. Split NIR bands in the electronic spectrum of two ranges 11,700-8500 cm -1 and 8500-7200 m -1 confirm distortion of octahedral symmetry for Cu(II) in the arsenate complexes. The observed bands with maxima at 9860 and 7750 cm -1 are assigned to Cu(II) transitions 2B 1g → 2B 2g and 2B 1g → 2A 1g. Overlapping bands in the NIR region 4500-4000 cm -1 is the effect of multi-anions OH -, (AsO 4) 3- and (SO 4) 2-. The observation of broad and diffuse bands in the range 3700-2900 cm -1 confirms strong hydrogen bonding in chalcophyllite relative to chenevixite. The position of the water bending vibrations indicates the water is strongly hydrogen bonded in the mineral structure. The strong absorption feature centred at 1644 cm -1 in chalcophyllite indicates water is strongly hydrogen bonded in the mineral structure. The H 2O-bending vibrations shift to low wavenumbers in chenevixite and an additional band observed at 1390 cm -1 is related to carbonate impurity. The characterisation of IR spectra by ν3 antisymmetric stretching vibrations of (SO 4) 2- and (AsO 4) 3 ions near 1100 and 800 cm -1 respectively is the result of isomorphic substitution for arsenate by sulphate in both the minerals of chalcophyllite and chenevixite.

  19. Contribution of hydrogen bonds to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Lee Fryar, Katrina; Landua, John; Trevino, Saul R; Schell, David; Thurlkill, Richard L; Imura, Satoshi; Scholtz, J Martin; Gajiwala, Ketan; Sevcik, Jozef; Urbanikova, Lubica; Myers, Jeffery K; Takano, Kazufumi; Hebert, Eric J; Shirley, Bret A; Grimsley, Gerald R

    2014-05-01

    Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein. PMID:24591301

  20. Contribution of hydrogen bonds to protein stability

    PubMed Central

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Schell, David; Thurlkill, Richard L; Imura, Satoshi; Scholtz, J Martin; Gajiwala, Ketan; Sevcik, Jozef; Urbanikova, Lubica; Myers, Jeffery K; Takano, Kazufumi; Hebert, Eric J; Shirley, Bret A; Grimsley, Gerald R

    2014-01-01

    Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein. PMID:24591301

  1. Contribution of Hydrogen Bonds to Protein Stability

    NASA Astrophysics Data System (ADS)

    Pace, Nick

    2014-03-01

    I will discuss the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(Δ G), for a series of hydrogen bonding mutants in four proteins: villin head piece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A (1.1Å), Y51F(1.5Å), and T95A(1.3Å). The structures are very similar to wild type RNase Sa and the hydrogen bonding partners always form intermolecular hydrogen bonds to water in the mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions: 1) Hydrogen bonds contribute favorably to protein stability. 2) The contribution of hydrogen bonds to protein stability is strongly context dependent. 3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. 5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.

  2. Hydrogen-bond-regulated distinct functional-group display at the inner and outer wall of vesicles.

    PubMed

    Sikder, Amrita; Das, Anindita; Ghosh, Suhrit

    2015-06-01

    A unique supramolecular strategy enables the unidirectional assembly of two bola-shaped unsymmetric π-amphiphiles, NDI-1 and NDI-2, which feature a naphthalene-diimide chromophore connected to nonionic and anionic head groups on opposite arms. The amphiphiles differ only in the location of a hydrazide group, which is placed either on the nonionic or on the anionic arm of NDI-1 and NDI-2, respectively. The formation of hydrogen bonds between the hydrazides, which compensates for electrostatic and steric factors, promotes unidirectional alignment and the formation of monolayer vesicles. The zeta potentials and cation-assisted quantitative precipitation reveal negatively charged and nonionic outer surfaces for NDI-1 and NDI-2, respectively, indicating that hydrogen bonding also dictates the directionality of the monolayer curvature, ensuring that in both cases, the hydrazides remain at the inner wall to benefit from stronger hydrogen bonding where they are in closer proximity. This is reflected in their different abilities to inhibit α-chymotrypsin, which possesses a positively charged surface: NDI-1 induced an inhibition of 80% whereas hardly any inhibition was observed with NDI-2. PMID:25900082

  3. Band profile of hydroxyl groups in the infrared spectrum of hydrogen-bonded surface complexes: Ammonia on silicon dioxide

    SciTech Connect

    Pavlov, A.Y.; Tsyganenko, A.A.

    1994-07-01

    Dependences of the band maximum and band half-width of the stretching modes of surface OH and OD groups perturbed by ammonia adsorption on Aerosil were studied as functions of sample temperature, amount of adsorbed ammonia, and thermal treatment in vacuum. The appearance of a low-frequency wing was explained by the formation of polymer chains of OH groups coupled via adsorbed molecules. The latter tend to form a second bond with an oxygen atom of the neighboring OH group in addition to a hydrogen bond with a hydroxyl proton via nitrogen. The wide band at 3250 cm{sup -1} was assigned to NH groups of adsorbed molecules perturbed by H-bonding with oxygen. This band is observed as a shoulder of the coupled-OH group band. The large width of the latter as well as its temperature behavior was explained by differences in the arrangement of OH groups and by anharmonic coupling with the low-frequency vibrational modes of the complex. 14 refs., 4 figs., 4 tabs.

  4. A cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin

    NASA Astrophysics Data System (ADS)

    Gao, Xiuxiang; Liu, Yufeng; Li, Huizhen; Bian, Jiang; Zhao, Ying; Cao, Ye; Mao, Yuezhi; Li, Xin; Xu, Yizhuang; Ozaki, Yukihiro; Wu, Jinguang

    2013-05-01

    We have investigated a cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin by using NMR, UV-Vis spectra together with quantum chemistry calculation. Both pH-dependent NMR experiments and DFT calculation indicate that the intra-molecular Csbnd H⋯O hydrogen bond between an aromatic proton and an oxygen atom from the carboxyl group is formed. Notably, the Csbnd H⋯O hydrogen bond forms a cooperative hydrogen bonding system with a neighboring Osbnd H⋯O hydrogen bond between the carboxyl group and the keto oxygen. The cooperative hydrogen bonding system makes the formation and disruption of the Osbnd H⋯O and Csbnd H⋯O hydrogen bonds in a synergistic manner. Comparison on the pKa value of the carboxylic group in different fluoroquinolones compounds indicates that the Csbnd H⋯O hydrogen bond plays a significant role in stabilizing the Osbnd H⋯O hydrogen bond. In addition, the formation and disruption of the cooperative hydrogen bonding system could regulate the conformation of the carboxyl group, which affects the size of the conjugated system and spectral behavior of π-π transition of ofloxacin.

  5. Microwave and Quantum Chemical Study of the Hydrazino Group as Proton Donor in Intramolecular Hydrogen Bonding of (2-Fluoroethyl)hydrazine (FCH2CH2NHNH2).

    PubMed

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2015-09-01

    The microwave spectrum of (2-fluoroethyl)hydrazine (FCH2CH2NHNH2) was studied in the 11-123 GHz spectral region to investigate the ability of the hydrazino group to form intramolecular hydrogen bonds acting as a proton donor. This group can participate both in five-member and in six-member internal hydrogen bonds with the fluorine atom. The spectra of four conformers were assigned, and the rotational and centrifugal distortion constants of these rotameric forms were determined. Two of these conformers have five-member intramolecular hydrogen bonds, while the two other forms are without this interaction. The internal hydrogen bonds in the two hydrogen-bonded forms are assumed to be mainly electrostatic in origin because the N-H and C-F bonds are nearly parallel and the associated bond moments are antiparallel. This is the first example of a gas-phase study of a hydrazine where the hydrazino functional group acts as a proton donor in weak intramolecular hydrogen bonds. Extensive quantum chemical calculations at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVQZ levels of theory accompanied and guided the experimental work. These calculations predict the existence of no less than 18 conformers, spanning a CCSD internal energy range of 15.4 kJ/mol. Intramolecular hydrogen bonds are predicted to be present in seven of these conformers. Three of these forms have six-member hydrogen bonds, while four have five-member hydrogen bonds. The three lowest-energy conformers have five-member internal hydrogen bonds. The spectrum of the conformer with the lowest energy was not assigned because it has a very small dipole moment. The CCSD relative energies of the two hydrogen-bonded rotamers whose spectra were assigned are 1.04 and 1.62 kJ/mol, respectively, whereas the relative energies of the two conformers with assigned spectra and no hydrogen bonds have relative energies of 6.46 and 4.89 kJ/mol. PMID:26258892

  6. Effect of pressure on methylated glycine derivatives: relative roles of hydrogen bonds and steric repulsion of methyl groups.

    PubMed

    Kapustin, Eugene A; Minkov, Vasily S; Boldyreva, Elena V

    2014-06-01

    Infinite head-to-tail chains of zwitterions present in the crystals of all amino acids are known to be preserved even after structural phase transitions. In order to understand the role of the N-H...O hydrogen bonds linking zwitterions in these chains in structural rearrangements, the crystal structures of the N-methyl derivatives of glycine (N-methylglycine, or sarcosine, with two donors for hydrogen bonding; two polymorphs of N,N-dimethylglycine, DMG-I and DMG-II, with one donor for hydrogen bond; and N,N,N-trimethylglycine, or betaine, with no hydrogen bonds) were studied at different pressures. Methylation has not only excluded the formation of selected hydrogen bonds, but also introduced bulky mobile fragments into the structure. The effects of pressure on the systems of the series were compared with respect to distorting and switching over hydrogen bonds and inducing reorientation of the methylated fragments. Phase transitions with fragmentation of the single crystals into fine powder were observed for partially methylated N-methyl- and N,N-dimethylglycine, whereas the structural changes in betaine were continuous with some peculiar features in the 1.4-2.9 GPa pressure range and accompanied by splitting of the crystals into several large fragments. Structural rearrangements in sarcosine and betaine were strongly dependent on the rate of pressure variation: the higher the rate of increasing pressure, the lower the pressure at which the phase transition occurred. PMID:24892599

  7. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  8. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  9. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  10. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  11. Intramolecular Hydrogen Bonding in Substituted Aminoalcohols.

    PubMed

    Lane, Joseph R; Schrøder, Sidsel D; Saunders, Graham C; Kjaergaard, Henrik G

    2016-08-18

    The qualifying features of a hydrogen bond can be contentious, particularly where the hydrogen bond is due to a constrained intramolecular interaction. Indeed there is disagreement within the literature whether it is even possible for an intramolecular hydrogen bond to form between functional groups on adjacent carbon atoms. This work considers the nature of the intramolecular interaction between the OH (donor) and NH2 (acceptor) groups of 2-aminoethanol, with varying substitution at the OH carbon. Gas-phase vibrational spectra of 1-amino-2-methyl-2-propanol (BMAE) and 1-amino-2,2-bis(trifluoromethyl)-2-ethanol (BFMAE) were recorded using Fourier transform infrared spectroscopy and compared to literature spectra of 2-aminoethanol (AE). Based on the experimental OH-stretching frequencies, the strength of the intramolecular hydrogen bond appears to increase from AE < BMAE ≪ BFMAE. Non-covalent interaction analysis shows evidence of an intramolecular hydrogen bond in all three molecules, with the order of the strength of interaction matching that of experiment. The experimental OH-stretching vibrational frequencies were found to correlate well with the calculated kinetic energy density, suggesting that this approach can be used to estimate the strength of an intramolecular hydrogen bond. PMID:27447952

  12. Hydrogen-bonded polymer blends

    NASA Astrophysics Data System (ADS)

    Guigley, Kevin Scott

    This thesis discusses three topics in the general area of hydrogen bonded polymer blends. The first pertains to the blending of flame retardant polyphosphazenes. Poly[bis(n-alkyoxy)phosphazenes] blends with poly(butyl methacrylate- co-4-vinyl phenol) (BMAVPh) were initially studied. These results were compared to BMAVPh blends of analogous poly (vinyl n-alkyl ethers) and the phase behavior was similar. Next, poly[bis(carboxylatophenoxy)phosphazene] blends with a structural polyurethane foam were prepared via reactive mixing. The combustion behavior of these foams was analyzed qualitatively, by a horizontal flame test, and quantitatively, by oxygen index (OI) measurements. Both of these tests indicated a modest increase in flame resistance at loadings of 20 wt% and above. In the second topic, equilibrium constants determined from low molecular weight mixtures were used to successfully predict the phase behavior of analogous polymer blends. Due consideration was given to intramolecular screening and functional group accessibility, factors that are a direct consequence of chain connectivity. In the third topic, polymer blends involving an alternating 1:1 copolymer of tetrafluoroethylene (TFE) and a hexafluoroisopropanol modified vinyl ether (HFIPVE) were studied. This copolymer is interesting for both experimental and theoretical studies of the phase behavior of polymer blends because (1) it is amorphous and has a relatively low glass transition temperature (12°C); (2) it has a relatively low solubility parameter (≈7 (cal.cm-3)-0.5); (3) it is soluble in moderately polar solvents, and (4) it contains the hexafluoroisopropanol group that is a strong hydrogen bond donor. Experimental infrared and thermal analysis studies of polymer blends with (co)polymers containing acetoxy, methacrylate and aliphatic ether groups were studied and compared to theoretical predictions of miscibility maps.

  13. Complexes of adamantane-based group 13 Lewis acids and superacids: Bonding analysis and thermodynamics of hydrogen splitting.

    PubMed

    El-Hamdi, Majid; Solà, Miquel; Poater, Jordi; Timoshkin, Alexey Y

    2016-06-01

    The electronic structure and chemical bonding in donor-acceptor complexes formed by group 13 element adamantane and perfluorinated adamantane derivatives EC9 R'15 (E = B, Al; R' = H, F) with Lewis bases XR3 and XC9 H15 (X = N, P; R= H, CH3 ) have been studied using energy decomposition analysis at the BP86/TZ2P level of theory. Larger stability of complexes with perfluorinated adamantane derivatives is mainly due to better electrostatic and orbital interactions. Deformation energies of the fragments and Pauli repulsion are of less importance, with exception for the boron-phosphorus complexes. The MO analysis reveals that LUMO energies of EC9 R'15 significantly decrease upon fluorination (by 4.7 and 3.6 eV for E = B and Al, respectively) which results in an increase of orbital interaction energies by 27-38 (B) and 15-26 (Al) kcal mol(-1) . HOMO energies of XR3 increase in order PH3  < NH3  < PMe3  < PC9 H15  < NMe3  < NC9 H15 . For the studied complexes, there is a linear correlation between the dissociation energy of the complex and the energy difference between HOMO of the donor and LUMO of the acceptor. The fluorination of the Lewis acid significantly reduces standard enthalpies of the heterolytic hydrogen splitting H2  + D + A = [HD](+)  + [HA](-) . Analysis of several types of the [HD](+) ···[HA](-) ion pair formation in the gas phase reveals that structures with additional H···F interactions are energetically favorable. Taking into account the ion pair formation, hydrogen splitting is predicted to be highly exothermic in case of the perfluorinated derivatives both in the gas phase and in solution. Thus, fluorinated adamantane-based Lewis superacids are attractive synthetic targets for the construction of the donor-acceptor cryptands. © 2016 Wiley Periodicals, Inc. PMID:26931238

  14. n→π* Interactions Are Competitive with Hydrogen Bonds.

    PubMed

    Newberry, Robert W; Orke, Samuel J; Raines, Ronald T

    2016-08-01

    Because carbonyl groups can participate in both hydrogen bonds and n→π* interactions, these two interactions likely affect one another. Herein, enhancement of an amidic n→π* interaction is shown to reduce the ability of β-keto amides to tautomerize to the enol, indicating decreased hydrogen-bonding capacity of the amide carbonyl group. Thus, an n→π* interaction can have a significant effect on the strength of a hydrogen bond to the same carbonyl group. PMID:27409515

  15. The CH/π hydrogen bond: Implication in chemistry

    NASA Astrophysics Data System (ADS)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  16. Hydrogen bonding nature during ADP crystallization

    NASA Astrophysics Data System (ADS)

    Sun, Congting; Xue, Dongfeng

    2014-02-01

    The hydrogen bonding nature during ADP crystallization is studied on the basis of anisotropic chemical bonding conditions in ADP crystal combined with in situ IR observation. The variations of hydrogen bonding nature of NH4+ and HPO4- groups dominate the transformation from the free hydrated ionic state to crystalline state during ADP crystallization. Anisotropic ADP crystal morphology depends on the anisotropic chemical bonding conditions along [1 0 0] and [1 0 1] directions. ADP crystal morphologies with different HPO4-n (n = 1-8) clusters can be calculated on the basis of hydrogen bonding conditions and HPO4-n cluster structures at the growth interface. Experimentally, in situ IR spectrum can record the breaking of P-O⋯H-O-H and H-N⋯H-O-H, and the formation of P-O⋯H-O-P and H-N⋯H-O-P hydrogen bonding during ADP crystallization. The present work provides a promising strategy to identify the chemical bonding nature during crystallization processes of molecular crystals from aqueous solution.

  17. Hydrogen Bonds in Polymer Folding

    NASA Astrophysics Data System (ADS)

    Borg, Jesper; Jensen, Mogens H.; Sneppen, Kim; Tiana, Guido

    2001-02-01

    We studied the thermodynamics of a homopolymeric chain with both van der Waals and directed hydrogen bond interaction. The effect of hydrogen bonds is to reduce dramatically the entropy of low-lying states and to give rise to long-range order and to conformations displaying secondary structures. For compact polymers a transition is found between helix-rich states and low-entropy sheet-dominated states. The consequences of this transition for protein folding and, in particular, for the problem of prions are discussed.

  18. Hydrogen-bond acidity of OH groups in various molecular environments (phenols, alcohols, steroid derivatives, and amino acids structures): experimental measurements and density functional theory calculations.

    PubMed

    Graton, Jérôme; Besseau, François; Brossard, Anne-Marie; Charpentier, Eloïse; Deroche, Arnaud; Le Questel, Jean-Yves

    2013-12-12

    The hydrogen-bond (H-bond) donating strengths of a series of 36 hydroxylic H-bond donors (HBDs) with N-methylpyrrolidinone have been measured in CCl4 solution by FTIR spectrometry. These data allow the definition of a H-bond acidity scale named pKAHY covering almost three pK units, corresponding to 16 kJ mol(-1). These results are supplemented by equilibrium constants determined in CH2Cl2 for one-third of the data set to study compounds showing a poor solubility in CCl4. A systematic comparison of these experimental results with theoretical data computed in the gas phase using DFT (density functional theory) calculations has also been carried out. Quantum electrostatic parameters appear to accurately describe the H-bond acidity of the hydroxyl group, whereas partial atomic charges according to the Merz-Singh-Kollman and CHelpG schemes are not suitable for this purpose. A substantial decrease of the H-bond acidity of the OH group is pointed out when the hydroxyl moiety is involved in intramolecular H-bond interactions. In such situations, the interactions are further characterized through AIM and NBO analyses, which respectively allow localizing the corresponding bond critical point and the quantification of a significant charge transfer from the available lone pair to the σ*OH antibonding orbital. Eventually, the H-bond ability of the hydroxyl groups of steroid derivatives and of lateral chains of amino acids are evaluated on the basis of experimental and/or theoretical data. PMID:24274054

  19. Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate).

    PubMed

    Li, Guifeng; Ye, Shen; Morita, Shigeaki; Nishida, Takuma; Osawa, Masatoshi

    2004-10-01

    Hydrogen bonding on the interface and in the bulk of a poly(2-methoxyethyl acrylate) (PMEA) thin film has been investigated by sum frequency generation, infrared reflection absorption, and Raman scattering measurements in different kinds of solutions containing hydrogen-bonding donators. These results indicate that the majority of the carbonyl groups on the PMEA surface are hydrogen-bonded with water or ethanol molecules, while the PMEA bulk is still dominated by the free carbonyl group. PMID:15453716

  20. Photochromic supramolecular azopolyimides based on hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Schab-Balcerzak, Ewa; Flakus, Henryk; Jarczyk-Jedryka, Anna; Konieczkowska, Jolanta; Siwy, Mariola; Bijak, Katarzyna; Sobolewska, Anna; Stumpe, Joachim

    2015-09-01

    The approach of deriving new photoresponsive active supramolecular azopolymers based on the hydrogen bonds is described. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for the polymer-dye supramolecular systems. Supramolecular films were built on the basis of the hydrogen bonds between the functional groups of the polymers and various azochromophores, that is, 4-phenylazophenol, 4-[4-(6-hydroxyhexyloxy)phenylazo]benzene, 4-[4-(6-hexadecaneoxy)phenylazo]pyridine and 4-(4-hydroxyphenylazo)pyridine. The hydrogen bonding interaction in azo-systems were studied by Fourier transform infrared spectroscopy and for selected assembles by 1H NMR technique. The obtained polyimide azo-assembles were characterized by X-ray diffraction and DSC measurements. H-bonds allow attaching a chromophore to each repeating unit of the polymer, thereby suppressing the macroscopic phase separation except for the systems based on 4-[4-(6-hydroxyhexyloxy)phenylazo]benzene. H-bonds systems were amorphous and revealed glass transition temperatures lower than for the polyimide matrixes (170-260 °C). The photoresponsive behavior of the azo-assemblies was tasted in holographic recording experiment.

  1. Hydrogen bonds of water and C=O groups long-range structural changes in the L photointermediate of bacteriorhodopsin

    SciTech Connect

    Yamazaki, Yoichi; Kandori, Hideki; Maeda, Akio

    1996-04-02

    Fourier transform infrared spectra of light-adapted bacteriorhodopsin exhibit a band at 1618 cm{sup -1} that shifts to 1625 cm{sup -1} upon formation of the L intermediate. It is assigned to the peptide C=O of Val149 from the fact that it shifts in [1-{sup 13}C]valine-labeled bacteriorhodopsin and appears perturbed in the Val149{r_arrow}Met mutant. The intensity of the BR{yields}L difference band is reduced in the Thr46{r_arrow}Val mutant but restored by the additional mutation of Asp96{r_arrow}Asn. These intensity changes are closely correlated with the H-bonding change of water molecules, suggesting that the peptide C=O of Val49 is hydrated. This could arise in the Thr46{r_arrow}Val mutant because of perturbation of the C=O of Val46, and the carboxylic C=O of Asp96, as well as water molecules proximal to Asp85. Conversely, the water molecule assumed to be in the cavity that arises from the missing two methyl groups in V49A could be affected in the mutant of Asp96{r_arrow}Asn. We propose that the perturbation exerted on Asp85 by the Schiff base in the L intermediate is transmitted to Asp96 through H-bonding of water molecules in the Asp85-Val49 region, the C=O of Val49, H-bonding between Val49 and Thr46, and H-bonding between Thr46 and Asp96. 44 refs., 6 figs.

  2. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  3. Formaldoxime hydrogen bonded complexes with ammonia and hydrogen chloride

    NASA Astrophysics Data System (ADS)

    Golec, Barbara; Mucha, Małgorzata; Sałdyka, Magdalena; Barnes, Austin; Mielke, Zofia

    2015-02-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of hydrogen bonded complexes of formaldoxime with ammonia and hydrogen chloride trapped in solid argon matrices is reported. Both 1:1 and 1:2 complexes between formaldoxime and ammonia, hydrogen chloride have been identified in the CH2NOH/NH3/Ar, CH2NOH/HCl/Ar matrices, respectively, their structures were determined by comparison of the spectra with the results of calculations. In the 1:1 complexes present in the argon matrices the OH group of formaldoxime acts as a proton donor for ammonia and the nitrogen atom acts as a proton acceptor for hydrogen chloride. In the 1:2 complexes ammonia or hydrogen chloride dimers interact both with the OH group and the nitrogen atom of CH2NOH to form seven membered cyclic structures stabilized by three hydrogen bonds. The theoretical spectra generally agree well with the experimental ones, but they seriously underestimate the shift of the OH stretch for the 1:1 CH2NOH⋯NH3 complex.

  4. Hydrogen bonding in phytohormone-auxin (IAA) and its derivatives

    NASA Astrophysics Data System (ADS)

    Kojić-Prodić, Biserka; Kroon, Jan; Puntarec, Vitomir

    1994-06-01

    The significant importance of hydrogen bonds in biological structures and enzymatic reactions has been demonstrated in many examples. As a part of the molecular recognition study of auxins (plant growth hormones) the influence of hydrogen bonding on molecular conformation, particularly of the carboxyl group, which is one of the biologically active ligand sites, has been studied by X-ray diffraction and computational chemistry methods. The survey includes about 40 crystal structures of free auxins such as indol-3-ylacetic acid and its n-alkylated and halogenated derivatives but also bound auxins such as N-(indol-3-ylacetyl)- L-amino acids, and carbohydrate conjugates. The study includes hydrogen bonds of the NH⋯O and OH⋯O types. The classification of hydrogen bond patterns based on the discrimination between the centrosymmetric and non-centrosymmetric space groups and several examples of hydrogen bond systematics on graph set analysis are also shown.

  5. Hydrogen bonded structures in organic amine oxalates

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R.

    2002-05-01

    Oxalates of n-propylamine, n-butylamine, ethylenediamine, 1,4-butanediamine, piperazine, guanidine and 1,4-diazabicyclo[2,2,2]octane (DABCO) have been synthesized and characterized by single crystal X-ray diffraction and other techniques. The amine oxalates show different types of hydrogen bonded networks, linear hydrogen bonded chains characterizing the oxalates of the first five amines. Guanidinium oxalate has a sheet like structure while DABCO oxalate has dimeric hydrogen bonded rings. Hydrogen bonded structures of these oxalates are discussed in detail, besides relating their thermal stability to the strengths of the networks.

  6. Mapping Buried Hydrogen-Bonding Networks.

    PubMed

    Thomas, John C; Goronzy, Dominic P; Dragomiretskiy, Konstantin; Zosso, Dominique; Gilles, Jérôme; Osher, Stanley J; Bertozzi, Andrea L; Weiss, Paul S

    2016-05-24

    We map buried hydrogen-bonding networks within self-assembled monolayers of 3-mercapto-N-nonylpropionamide on Au{111}. The contributing interactions include the buried S-Au bonds at the substrate surface and the buried plane of linear networks of hydrogen bonds. Both are simultaneously mapped with submolecular resolution, in addition to the exposed interface, to determine the orientations of molecular segments and directional bonding. Two-dimensional mode-decomposition techniques are used to elucidate the directionality of these networks. We find that amide-based hydrogen bonds cross molecular domain boundaries and areas of local disorder. PMID:27096290

  7. Challenging Dogmas: Hydrogen Bond Revisited.

    PubMed

    Tafipolsky, Maxim

    2016-07-01

    Hydrogen bond directionality in the water dimer is explained on the basis of symmetry-adapted intermolecular perturbation theory which directly separates the intermolecular interaction energy into four physically interpretable components: electrostatics, exchange-repulsion, dispersion, and induction. Analysis of these four main contributions to the binding energy allows a deeper understanding of the dominant factors ruling the mutual arrangement of the two monomers. A preference for the linear configuration is shown to be due to a subtle interplay of all four energy components. While the first-order terms, electrostatic and exchange-repulsion, almost perfectly cancel each other near the equilibrium geometry of the dimer, the importance of the second- and higher-order terms, induction and dispersion, becomes evident. PMID:27299177

  8. 6-Propyl-2-thiouracil versus 6-methoxymethyl-2-thiouracil: enhancing the hydrogen-bonded synthon motif by replacement of a methylene group with an O atom.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst; Bolte, Michael

    2016-08-01

    The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6-propyl-2-thiouracil (PTU) with 2,4-diaminopyrimidine (DAPY), and of 6-methoxymethyl-2-thiouracil (MOMTU) with DAPY and 2,4,6-triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (-CH2-) with an O atom in the side chain, thus introducing an additional hydrogen-bond acceptor in MOMTU. Both molecules contain an ADA hydrogen-bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N-H...O, N-H...N and N-H...S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4-diaminopyrimidinium 6-propyl-2-thiouracilate-2,4-diaminopyrimidine-N,N-dimethylacetamide-water (1/1/1/1) (the systematic name for 6-propyl-2-thiouracilate is 6-oxo-4-propyl-2-sulfanylidene-1,2,3,6-tetrahydropyrimidin-1-ide), C4H7N4(+)·C7H9N2OS(-)·C4H6N4·C4H9NO·H2O, (I), 6-methoxymethyl-2-thiouracil-N,N-dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6-methoxymethyl-2-thiouracil-N,N-dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6-methoxymethyl-2-thiouracil-dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6-methoxymethyl-2-thiouracil-1-methylpyrrolidin-2-one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4-diaminopyrimidinium 6-methoxymethyl-2-thiouracilate (the systematic name for 6-methoxymethyl-2

  9. HYDROGEN BONDING IN THE METHANOL DIMER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  10. Influence of methoxy- and nitro-substitutions in the aromatic ring on proton donation ability in hydrogen bond and on the amino group parameters of free and H-bonded molecules of 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Borisenko, V. E.; Krekov, S. A.; Fomenko, M. Yu.; Koll, A.; Lipkovski, P.

    2008-06-01

    Amino- and imino- forms of pyrimidine are widely presented as part of antibiotics, corrective medications for heart failures and metabolic stimulators. Hydrogen bonding is one of the fundamental interactions between biologically active molecules. This type of interactions provides flexibility, speed and variety of the biochemical processes. Proton donation properties of aminopyrimidines significantly depend on the position, number and kind of the substituent in its aromatic ring. In present work we studied the influence of the methoxy- and nitro-substitutions in the phenyl radical of pyridine and pyrimidine cycles on the proton donation ability of the amino group in hydrogen bonds as well as on its geometrical, force, electro-optical and thermodynamical characteristics in free and H-bonded (1:1 and 1:2, with various proton acceptors) molecules of primary aromatic amines. Acetonitrile, dioxane, tetrahydrofourane, dimethylformamide, dimethylsulfoxide and hexamethylphosphoramide (whose proton accepting properties vary within a wide range) were used as proton acceptors in our research. In the region of the amino group stretching and deformation vibrations the IR spectra of free and H-bonded (1:1) molecules of 2-amino-4,6-dimethoxy- and 2-amino-5-nitropyrimidine were studied in complexes with proton acceptors in CCl 4 within the temperature range 288-328 K. The spectra of 1:2 complexes were studied in undiluted aprotic solvents. The following spectral characteristics of absorption bands in amino group stretching vibrations were determined: M(0) (zero spectral moment, integrated intensity B); M(1) (first spectral moment, band "centre of gravity"); effective half width, related to the second central moment (Δ ν1/2) eff = 2( M(2)) 1/2, frequencies of the deformation vibrations δ(HNH) of free and H-bonded molecules. It was shown that changes of the absorption band spectral characteristics of the amino group stretching and deformation vibrations in the analyzed

  11. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability. PMID:19155561

  12. Hydrogen-bond kinetics in liquid water

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1996-01-01

    HYDROGEN bonds play a crucial role in the behaviour of water1-4 their spatial patterns and fluctuations characterize the structure and dynamics of the liquid5-7. The processes of breaking and making hydrogen bonds in the condensed phase can be probed indirectly by a variety of experimental techniques8, and more quantitative information can be obtained from computer simulations9. In particular, simulations have revealed that on long timescales the relaxation behaviour of hydrogen bonds in liquid water exhibit non-exponential kinetics7,10-13, suggesting that bond making and breaking are not simple processes characterized by well defined rate constants. Here we show that these kinetics can be understood in terms of an interplay between diffusion and hydrogen-bond dynamics. In our model, which can be extended to other hydrogen-bonded liquids, diffusion governs whether a specific pair of water molecules are near neighbours, and hydrogen bonds between such pairs form and persist at random with average lifetimes determined by rate constants for bond making and breaking.

  13. Charge-Assisted Hydrogen-Bonded Networks

    NASA Astrophysics Data System (ADS)

    Ward, Michael D.

    The importance of hydrogen bonds is widely recognized because of their role in defining the structure and properties of many compounds, including water, proteins, DNA, and polymers. Hydrogen bonding also has emerged as a critical tool in solid-state chemistry, in which the versatility of organic synthesis has been combined with the structure-directing properties of hydrogen-bond donor-acceptor pairs to steer molecular assembly into networks that reflect the symmetries of their molecular constituents. Although these efforts have been largely empirical, the dominance of hydrogen bonding among the multitude of intermolecular forces often leads to predictable control of crystal structure. Although charge-assisted hydrogen bonds (donors and acceptors with ionic character that reinforce the electrostatic character of the hydrogen bond) have been recognized for decades, their use in network design, particularly for “crystal engineering,” has grown substantially in the past decade. The evidence suggests that charge-assisted hydrogen bonds introduce extraordinary robustness to molecular networks that reflects a combination of strong intermolecular forces and structural compliance, thus facilitating design of organic solid-state materials.

  14. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    PubMed

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed. PMID:27285818

  15. Interpretation of Spectroscopic Markers of Hydrogen Bonds.

    PubMed

    Scheiner, Steve

    2016-07-18

    Quantum calculations are used to examine whether an AH⋅⋅⋅D H-bond is unambiguously verified by a downfield shift of the bridging proton's NMR signal or a red (or blue) shift of the AH stretching frequency in the IR spectrum. It is found that such IR band shifts will occur even if the two groups experience weak or no attractive force, or if they are drawn in so close together that their interaction is heavily repulsive. The mere presence of a proton-acceptor molecule can affect the chemical shielding of a position occupied by a protondonor by virtue of its electron density, even if there is no H-bond present. This density-induced shielding is heavily dependent on position around the proton-acceptor atom, and varies from one group to another. Evidence of a hydrogen bond rests on the measurement of a proton deshielding in excess of what is caused purely by the presence of the proton acceptor species. PMID:27043717

  16. Pyranose sulfamates: conformation and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Kubicki, Maciej; Codding, Penelope W.; Litster, Stephen A.; Szkaradziñska, Maria B.; Bassyouni, Hanan A. R.

    1999-01-01

    The crystal structure of a new anticonvulsant drug, topiramate — 2,3:4,5-bis- O-(1-methylethylidene)- β-D-fructopyranose sulfamate ( 1), together with those of three similar but biologically almost inactive sugar sulfamates: 4,5- O-cyclohexylidene-2,3- O-(1-methyl-ethylidene)- β-D-fructopyranose sulfamate ( 2), 2,3:- O-(1-methylethylidene)- β-D-fructo-pyranose sulfamate ( 3), and 1,2:3,4-bis- O-(1-methylethylidene)- α-D-galactopyranose sulfamate ( 4), have been determined by X-rays. The pyranose rings adopt distorted twist-boat 2S O conformations as a result of flattening of the chair conformation, observed in free pyranoses, by the fused five-membered ring(s). In 3 an unfavourable gauche-trans conformation about C1-C2 bond is observed. The active compound, topiramate ( 1), shows, in comparison with the other three compounds, a different disposition of nitrogen and oxygen atoms from the sulfamate group with respect to the O1-S1 bond. As a result, the nitrogen atom in 1 is ca. 1 Å farther from the O6 pyranose ring oxygen atom than in the other three compounds. This difference describes the mutual disposition of the hydrophilic and hydrophobic parts of the molecule, and can be related to the difference in biological activity. In all compounds, hydrogen bonds connect molecules into three-dimensional networks; simple chains and more complicated rings are found and described using the graph set notation.

  17. Hydrogen-Bonded Liquid Crystal Nanocomposites.

    PubMed

    Roohnikan, Mahdi; Toader, Violeta; Rey, Alejandro; Reven, Linda

    2016-08-23

    Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration. PMID:27466705

  18. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

    SciTech Connect

    Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

    2013-11-27

    We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

  19. Exploring the Potential of Diarylacetylenediols as Hydrogen Bonding Catalysts

    PubMed Central

    Türkmen, Yunus E.; Rawal, Viresh H.

    2014-01-01

    In the course of a search for new classes of hydrogen bonding catalysts, we have examined diarylacetylenediols as potential catalysts for the Diels-Alder reaction. General and efficient methods have been developed for the preparation of these diols. Their structures were systematically modified and increased activity was observed for those possessing an electron-withdrawing group on the aryl groups. The electron-deficient diarylacetylenediol catalysts, while more active, undergo spontaneous cyclization to the corresponding benzo[b]furans. A mechanism is postulated to explain this facile transformation. Computational studies performed on 2-ethynylphenol help to explain the effect of the alkyne on the conformation and hydrogen bond donating ability of the adjacent OH group. Finally, the crystal structure of one of the diols is reported, and it displays an intricate network of intermolecular hydrogen bonds. PMID:23869597

  20. Energetics of hydrogen bonding in proteins: a model compound study.

    PubMed Central

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-amide hydrogen bond is about twice that of the amide-hydroxyl. Additionally, the interaction of the hydroxyl group with water is seen most readily in its contributions to entropy and heat capacity changes. Surprisingly, the hydroxyl group shows weakly hydrophobic behavior in terms of these contributions. These results can be used to understand the effects of mutations on the stability of globular proteins. PMID:8819156

  1. Sharing in covalent and hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Perhacs, Pablo

    1998-11-01

    The sharing of a single electron between two spatial and spin coordinates ζ and ζsp/prime in a many electron system is discussed in terms of the single particle sharing amplitude, bonding is distinguished from non-bonding and anti- bonding. Molecules studied are the diatomics of seven of the first nine elements and the hydrides of the first row of eight elements. Analysis is extended to the complex of methane and hydrogen fluoride and to pairs of hydrogen fluoride, water, and ammonia. The behavior of hydrogen bonded complexes, is shown to have all the characteristics of covalent bonding. The ammonia dimer is shown not to be hydrogen bonded.

  2. Hydrogen-bond symmetrization and molecular dissociation in hydrogen halids

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Katoh, E.; Yamawaki, H.; Sakashita, M.; Fujihisa, H.

    1999-04-01

    Hydrogen chloride is a simple diatomic molecule forming a planar zig-zag chain of molecules connected by hydrogen bonds in the solid phase. Raman spectra were measured for solid HCl to 60 GPa at room temperature. The molecular stretching frequency falls toward zero at about 51 GPa, where the molecular vibrational peaks disappear and the lattice peaks remain. The spectral changes are very similar to those observed for HBr at about 42 GPa and interpreted as hydrogen bond symmetrization. Molecular dissociation into diatomic halogen molecules, which has been observed for HBr, does not occur in HCl.

  3. Hydrogen bonding in bulk heterojunction solar cells: A case study

    PubMed Central

    Xiao, Zeyun; Sun, Kuan; Subbiah, Jegadesan; Ji, Shaomin; Jones, David J.; Wong, Wallace W. H.

    2014-01-01

    Small molecules with dithieno[3,2-b;2′,3′-d]thiophene as central building block and octyl cyanoacetate and octyl cyanoacetamide as different terminal building blocks have been designed and synthesized. The amide containing small molecule can form intermolecular hydrogen bonding between N-H…O = C of the amide group. The photovoltaic properties and active layer morphologies of the two molecules in bulk heterojunction solar cells are compared to study the influence of hydrogen bonding on the active layer morphology. New methanofullerene compound containing amide group has also been synthesized and compared with conventional fullerene electron acceptors. PMID:25027678

  4. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-01

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds. PMID:20136161

  5. Anthrone and related hydroxyarenes: tautomerization and hydrogen bonding.

    PubMed

    Korth, Hans-Gert; Mulder, Peter

    2013-08-01

    The keto-enolization of hydroxyl-substituted naphthols and 9-anthrols has been investigated by means of CBS-QB3 calculations. An excellent agreement between experiment and theory is found for the energetics for the anthrone (5) ⇌ anthrol (6) equilibrium, with an enthalpy of tautomerization, Δ(t)H, of 3.8 kcal mol(-1). In contrast, 1-naphthol is the preferred tautomer with a Δ(t)H = -9.0 kcal mol(-1). Substitution of the hydrogens at the adjacent carbons by hydroxyl groups leads to the formation of strong intramolecular hydrogen bonds within a six-membered ring in the enones and the enols. Due to the difference in the intramolecular hydrogen bond enthalpy, Δ(HB)H(intra), the equilibrium shifts further to the enone. Thus, for 1,8-dihydroxy-anthrone (anthralin, dithranol) Δ(t)H increases to 12.7 kcal mol(-1) with an enol/enone ratio of 10(-10). The solvent effect on the 5 ⇌ 6 equilibrium has been quantified by considering the formation of intermolecular hydrogen bond(s), leading to an acidity parameter α₂(H) for anthrol of 0.42. It is shown that the hydrogen bond donating ability of bulk methanol is greatly attenuated through the formation of cyclic oligomers. The benzylic and phenolic bond dissociation enthalpies for anthrone up to anthralin suggest some antioxidant potency but the precise (radical) mechanism of action remains uncertain. PMID:23815684

  6. Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes.

    PubMed Central

    Ross, P D; Rekharsky, M V

    1996-01-01

    Values of K, delta G(o), delta H(o), delta S(o) and delta C(po) for the binding reaction of small organic ligands forming 1:1 complexes with either alpha- or beta-cyclodextrin were obtained by titration calorimetry from 15 degrees C to 45 degrees C. A hydrogen bond or hydrophobic interaction was introduced by adding a single functional group to the ligand. The thermodynamics of binding with and without the added group are compared to estimate the contribution of the hydrogen bond or hydrophobic interaction. A change in the environment of a functional group is required to influence the binding thermodynamics, but molecular size-dependent solute-solvent interactions have no effect. For phenolic O-H-O hydrogen bond formation, delta H(o) varies from -2 to -1.4 kcal mol(-1) from 15 degrees C to 45 degrees C, and delta C(p) is increased by 18 cal K(-1) mol(-1). The hydrophobic interaction has an opposite effect: in alpha-cyclodextrin, delta C(po) = -13.3 cal K(-1) mol(-1) per ligand -CH(2)-, identical to values found for the transfer of a -CH(2)-group from water to a nonpolar environment. At room temperature, the hydrogen bond and the -CH(2)-interaction each contribute about -600 cal mol(-1) to the stability (delta G(o)) of the complex. With increased temperature, the hydrogen bond stability decreases (i.e., hydrogen bonds "melt"), but the stability of the hydrophobic interaction remains essentially constant. PMID:8889190

  7. Probing the Hydrogen Bond Strength at Single Bond Limit

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Lü, Jing-Tao; Chen, Ji; Peng, Jinbo; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, Enge; Jiang, Ying

    2015-03-01

    Many extraordinary physical, chemical and biological properties of water are determined by hydrogen-bonding interaction between the water molecules. So far, the routine way to determine the hydrogen-bonding strength of water is probing the frequency shift of O-H stretching mode using various spectroscopic techniques, which all suffer from the difficulty of spectral assignment and the broadening of vibrational signals due to the lack of spatial resolution. In this talk, we show the ability to probe the hydrogen-bonding strength of interfacial water at single bond limit using resonantly enhanced inelastic electron tunneling spectroscopy (IETS) with a scanning tunneling microscope (STM). The conventional IET signals of water molecules are extremely weak and far beyond the experimental detection limit due to the negligible molecular density of states (DOS) around the Fermi level. This difficulty can be surmounted by turning on the tip-water coupling, which shifts and broadens the frontier molecular orbitals of water to the proximity of Fermi level, resulting in a resonantly enhanced IET process. International Center for Quantum Materials, School of Physics, Peking University.

  8. AMHB: (Anti)aromaticity-Modulated Hydrogen Bonding.

    PubMed

    Kakeshpour, Tayeb; Wu, Judy I; Jackson, James E

    2016-03-16

    This in silico survey shows that changes in the (anti)aromatic character of π-conjugated heterocycles can be used to fine-tune their hydrogen (H-)bond strengths. Upon H-bonding dimerization, the π-electrons of these rings can be polarized to reinforce or disrupt their (anti)aromatic π-conjugated circuits (πCCs) and stabilize or destabilize the resulting H-bonded complexes. H-bonding interactions that enhance aromaticity or relieve antiaromaticity are fortified, whereas those that intensify antiaromaticity or disrupt aromaticity are weakened, relative to analogues lacking full π-circuits. Computed dissected nucleus-independent chemical shifts, NICS(1)(zz), reveal a uniform pattern and document changes in the magnetic (anti)aromatic character of the heterocycles considered. Recognition of this (anti)aromaticity-modulated H-bonding (AMHB) phenomenon offers insights into a range of fields from organocatalysis and self-assembly to pharmaceutical chemistry and molecular biology. PMID:26860619

  9. Do Hydrogen Bonds Influence Excitonic Splittings?

    PubMed

    Balmer, Franziska A; Ottiger, Philipp; Leutwyler, Samuel

    2016-01-01

    The excitonic splitting and vibronic quenching of the inversion-symmetric homodimers of benzonitrile, (BN)2, and meta-cyanophenol, (mCP)2, are investigated by two-color resonant two-photon ionization spectroscopy. These systems have very different hydrogen bond strengths: the OH···N≡C bonds in (mCP)2 are ∼10 times stronger than the CH···N≡C hydrogen bonds in (BN)2. In (BN)2 the S0((1)Ag) → S1((1)Ag) transition is electric-dipole forbidden, while the S0((1)Ag) → S2((1)Bu) transition is allowed. The opposite holds for (mCP)2 due to the different transition dipole moment vector alignment. The S0 → S1S2 spectra of the dimers are compared and their excitonic splittings and vibronic quenchings are investigated by measuring the (13)C-substituted heterodimer isotopomers, for which the centrosymmetry is broken and both transitions are allowed. The excitonic splittings are determined as Δexc = 2.1 cm(-1) for (BN)2 and Δexc = 7.3 cm(-1) for (mCP)2. The latter exhibits a much stronger vibronic quenching, as the purely electronic splitting resulting from ab initio calculations is determined to be Δcalc = 179 cm-1, while in (BN)2 the calculated splitting is Δcalc = 10 cm(-1). The monomer site-shifts upon dimerization and comparing certain vibrations that deform the hydrogen bonds confirm that the OH···N≡C hydrogen bond is much stronger than the CH···N≡C bond. We show that the H-bonds have large effects on the spectral shifts, but little or no influence on the excitonic splitting. PMID:27131115

  10. A statistical model of hydrogen bond networks in liquid alcohols

    NASA Astrophysics Data System (ADS)

    Sillrén, Per; Bielecki, Johan; Mattsson, Johan; Börjesson, Lars; Matic, Aleksandar

    2012-03-01

    We here present a statistical model of hydrogen bond induced network structures in liquid alcohols. The model generalises the Andersson-Schulz-Flory chain model to allow also for branched structures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the probability of a lone pair accepting an H-bond and the second is the probability that given this bond also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution, and the number of branches and leaves in the tree-like network clusters are directly determined from these probabilities. The applicability of the model is tested by comparison to cluster size distributions and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol, propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the structure of network forming hydrogen bonded liquids. The model can be applied to experimental data, allowing the topology of the clusters to be determined from such studies.

  11. A statistical model of hydrogen bond networks in liquid alcohols.

    PubMed

    Sillrén, Per; Bielecki, Johan; Mattsson, Johan; Börjesson, Lars; Matic, Aleksandar

    2012-03-01

    We here present a statistical model of hydrogen bond induced network structures in liquid alcohols. The model generalises the Andersson-Schulz-Flory chain model to allow also for branched structures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the probability of a lone pair accepting an H-bond and the second is the probability that given this bond also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution, and the number of branches and leaves in the tree-like network clusters are directly determined from these probabilities. The applicability of the model is tested by comparison to cluster size distributions and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol, propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the structure of network forming hydrogen bonded liquids. The model can be applied to experimental data, allowing the topology of the clusters to be determined from such studies. PMID:22401459

  12. Hydrogen-bonding patterns in pyrimethaminium pyridine-3-sulfonate

    PubMed Central

    Nirmalram, Jeyaraman Selvaraj; Thomas Muthiah, Packianathan

    2010-01-01

    In the asymmetric unit of the title salt [systematic name: 2,4-diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium pyri­dine-3-sulfonate], C12H14N4Cl+·C5H4NSO3 −, there are two independent pyrimethaminium cations and two 3-pyridine sulfonate anions. Each sulfonate group inter­acts with the corresponding protonated pyrimidine ring through two N—H⋯O hydrogen bonds, forming a cyclic hydrogen-bonded bimolecular R 2 2(8) motif. Even though the primary mode of association is the same, the next higher level of supra­molecular architectures are different due to different hydrogen-bonded networks. In one of the independent molecules in the asymmetric unit, the pyrimethamine cation is paired centrosymmetrically through N—H⋯N hydrogen bonds, generating an R 2 2(8) ring motif. In the other molecule, the pyrimethamine cation does not form any base pairs; instead it forms hydrogen bonds with the 3-pyridine sulfonate anion. The structure is further stabilized by C—H⋯O, C—H⋯N and π–π stacking [centroid–centroid distance = 3.9465 (13) Å] inter­actions. PMID:21588411

  13. Disentangling the Puzzle of Hydrogen Bonding in Vitamin C.

    PubMed

    Peña, Isabel; Daly, Adam M; Cabezas, Carlos; Mata, Santiago; Bermúdez, Celina; Niño, Amaya; López, Juan C; Grabow, Jens-Uwe; Alonso, José L

    2013-01-01

    Fast-passage Fourier transform microwave spectroscopy in combination with a laser ablation source has been successfully applied to probe vitamin C (l-ascorbic acid) in the gas phase. Its ethyldiol side chain and two hydroxyl groups around the γ-lactone ring provide five internal rotation axes, enabling vitamin C to assume a wide variety of nonplanar 3D cooperative hydrogen bond networks that can also include the keto and ether functions. The rotational constants extracted from the analysis of the spectrum unequivocally identify the existence of three dominant conformers stabilized by different intramolecular hydrogen bonding motifs forming five-, six-, or seven-membered rings. PMID:26291213

  14. New supramolecular architectures using hydrogen bonding

    SciTech Connect

    Zimmerman, S.C.; Baloga, M.H.; Fenlon, E.E.; Murray, T.J.

    1993-12-31

    Heterocyclic compounds containing two and three adjacent hydrogen bond donor and acceptor sites in all possible arrangements have been synthesized. The strength and selectivity with which each compounds binds its complement has been determined. The incorporation of these heterocyclic subunits into large structures that form supramolecular assemblies will be described.

  15. Hydrogen bonds in methane-water clusters.

    PubMed

    Salazar-Cano, Juan-Ramón; Guevara-García, Alfredo; Vargas, Rubicelia; Restrepo, Albeiro; Garza, Jorge

    2016-08-24

    Characterization of hydrogen bonds in CH4-(H2O)12 clusters was carried out by using several quantum chemistry tools. An initial stochastic search provided around 2 500 000 candidate structures, then, using a convex-hull polygon criterion followed by gradient based optimization under the Kohn-Sham scheme, a total of 54 well defined local minima were located in the Potential Energy Surface. These structures were further analyzed through second-order many-body perturbation theory with an extended basis set at the MP2/6-311++G(d,p) level. Our analysis of Gibbs energies at several temperatures clearly suggests a structural preference toward compact water clusters interacting with the external methane molecule, instead of the more commonly known clathrate-like structures. This study shows that CH4-(H2O)12 clusters may be detected at temperatures up to 179 K, this finding provides strong support to a recently postulated hypothesis that suggests that methane-water clusters could be present in Mars at these conditions. Interestingly, we found that water to water hydrogen bonding is strengthened in the mixed clusters when compared to the isolated water dimer, which in turn leads to a weakening of the methane to water hydrogen bonding when compared to the CH4-(H2O) dimer. Finally, our evidence places a stern warning about the abilities of popular geometrical criteria to determine the existence of hydrogen bonds. PMID:27492605

  16. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  17. Recodable surfaces based on switchable hydrogen bonds.

    PubMed

    Wedler-Jasinski, Nils; Delbosc, Nicolas; Virolleaud, Marie-Alice; Montarnal, Damien; Welle, Alexander; Barner, Leonie; Walther, Andreas; Bernard, Julien; Barner-Kowollik, Christopher

    2016-07-01

    We introduce recodable surfaces solely based on reversible artificial hydrogen bonding interactions. We show that a symmetrical oligoamide (SOA) attached to poly(methyl methacrylate) (PMMA) can be repeatedly immobilized and cleaved off spatially defined surface domains photochemically functionalized with asymmetric oligoamides (AOAs). The spatially resolved recodability is imaged and quantified via ToF-SIMS. PMID:27339101

  18. Crystalline hydrogen-bonded nanocolumns of cyclic thiourea octamers

    SciTech Connect

    Custelcean, Radu; Engle, Nancy L; Bonnesen, Peter V

    2007-01-01

    A bis(thiourea) containing the 1,3-dimethyl-adamantane linker and t-Bu end groups self-assembles in the solid state into crystalline columnar aggregates made of hydrogen-bonded cyclic thiourea octamers with 2 nm diameters.

  19. Hydrogen-Bonding Surfaces for Ice Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  20. Far-Infrared Signatures of Hydrogen Bonding in Phenol Derivatives.

    PubMed

    Bakker, Daniël J; Peters, Atze; Yatsyna, Vasyl; Zhaunerchyk, Vitali; Rijs, Anouk M

    2016-04-01

    One of the most direct ways to study the intrinsic properties of the hydrogen-bond interaction is by gas-phase far-infrared (far-IR) spectroscopy because the modes involving hydrogen-bond deformation are excited in this spectral region; however, the far-IR regime is often ignored in molecular structure identification due to the absence of strong far-IR light sources and difficulty in assigning the observed modes by quantum chemical calculations. Far-IR/UV ion-dip spectroscopy using the free electron laser FELIX was applied to directly probe the intramolecular hydrogen-bond interaction in a family of phenol derivatives. Three vibrational modes have been identified, which are expected to be diagnostic for the hydrogen-bond strength: hydrogen-bond stretching and hydrogen-bond-donating and -accepting OH torsion vibrations. Their position is evaluated with respect to the hydrogen bond strength, that is, the length of the hydrogen-bonded OH length. This shows that the hydrogen bond stretching frequency is diagnostic for the size of the ring that is closed by the hydrogen bond, while the strength of the hydrogen bond can be determined from the hydrogen-bond-donating OH torsion frequency. The combination of these two normal modes allows the direct probing of intramolecular hydrogen-bond characteristics using conformation-selective far-IR vibrational spectroscopy. PMID:26982390

  1. Effective Binding of Methane Using a Weak Hydrogen Bond.

    PubMed

    Henley, Alice; Bound, Michelle; Besley, Elena

    2016-05-26

    The weak hydrogen bond is an important type of noncovalent interaction, which has been shown to contribute to stability and conformation of proteins and large biochemical membranes, stereoselectivity, crystal packing, and effective gas storage in porous materials. In this work, we systematically explore the interaction of methane with a series of functionalized organic molecules specifically selected to exhibit a weak hydrogen bond with methane molecules. To enhance the strength of hydrogen bond interactions, the functional groups include electron-enriched sites to allow sufficient polarization of the C-H bond of methane. The binding between nine functionalized benzene molecules and methane has been studied using the second order Møller-Plesset perturbation theory to reveal that benzenesulfonic acid (C6H5-SO3H) and phenylphosphonic acid (C6H5-PO3H2) have the greatest potential for efficient methane capture through hydrogen bonding interactions. Both acids exhibit efficient binding potential with up to three methane molecules. For additional insight, the atomic charge distribution associated with each binding site is presented. PMID:27148999

  2. Dynamics of Hydrogen-Bonded Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Buhler, Eric; Candau, Jean; Kolomiets, Elena; Lehn, Jean-Marie

    2010-03-01

    Supramolecular polymers formed from molecular recognition directed association between monomers bearing complementary hydrogen bonding groups were studied by rheology, small-angle neutron and light scattering experiments. The semiflexible fibers consist of few aggregated monomolecular wires. At T= 25 C the formation of branched aggregates occurs around the crossover concentration, C^*, between the dilute and semi-dilute regimes, whereas the classical behaviour of equilibrium polymers is observed at T=65 C. For semi-dilute solutions the steady-state flow curves showed a shear banding type instability, namely the occurrence of a stress plateau σp above a critical shear rate γ̂c. The values of σp and γ̂c were found to be of the same order of magnitude as those of the elastic plateau modulus and the inverse stress relaxation time, respectively. The above features are in agreement with the theoretical predictions based on the reptation model. Dynamic light scattering experiments showed the presence in the autocorrelation function of the concentration fluctuations of a slow viscoelastic relaxation process that is likely to be of Rouse type.

  3. Low-barrier hydrogen bonds and enzymatic catalysis.

    PubMed

    Cleland, W W

    2000-10-01

    Short, strong (low barrier) hydrogen bonds occur when the pK values of the atoms sharing the proton are similar. The overall distance is 2.5 A or less, the deuterium fractionation factor is less than 0.5, the proton NMR chemical shift can approach 20 ppm, and deuterium or tritium substitution causes an up-field change in the chemical shift. Such bonds can have deltaH values of 25 kcal/mol in the gas phase, and at least half that in water or other high-dielectric medium. The strength of the hydrogen bond in an active site drops by approximately 1 kcal/mol for each pH unit mismatch in pKs. When a weak hydrogen bond in the initial enzyme-substrate complex is converted into a low-barrier one by alteration of the pK of the substrate or catalytic group so that the pKs match, the increase in hydrogen bond strength can be used to help catalyze the reaction. A well-established example of this is the reaction catalyzed by serine proteases. The pK of neutral histidine is 14, while that of aspartate is approximately 6. Proton transfer from serine to permit attack on bound substrate produces protonated histidine, with a pK now matching that of aspartate. Studies with trifluoromethyl ketone inhibitors that form tetrahedral adducts show up to five orders of magnitude in binding strength as the result of formation of a low-barrier hydrogen bond between aspartate and histidine. Other enzymes whose mechanisms appear to involve low-barrier hydrogen bonds include liver alcohol dehydrogenase, steroid isomerase, triose-P isomerase, aconitase, citrate synthase, and zinc proteases. It is likely that low-barrier hydrogen bonds form at the transition state of any reaction involving general-acid or general-base catalysis, as at that point the pKs of the catalytic group and reactant will be equal. PMID:11051090

  4. Femtosecond dynamics in hydrogen-bonded solvents

    SciTech Connect

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  5. Anesthesia cutoff phenomenon: Interfacial hydrogen bonding

    SciTech Connect

    Chiou, J.S.; Ma, S.M.; Kamaya, H.; Ueda, I. )

    1990-05-04

    Anesthesia cutoff refers to the phenomenon of loss of anesthetic potency in a homologous series of alkanes and their derivatives when their sizes become too large. In this study, hydrogen bonding of 1-alkanol series (ethanol to eicosanol) to dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) was studied by Fourier transform infrared spectroscopy (FTIR) in DPPC-D2O-in-CCl4 reversed micelles. The alkanols formed hydrogen bonds with the phosphate moiety of DPPC and released the DPPC-bound deuterated water, evidenced by increases in the bound O-H stretching signal of the alkanol-DPPC complex and also in the free O-D stretching band of unbound D2O. These effects increased according to the elongation of the carbon chain of 1-alkanols from ethanol (C2) to 1-decanol (C10), but suddenly almost disappeared at 1-tetradecanol (C14). Anesthetic potencies of these alkanols, estimated by the activity of brine shrimps, were linearly related to hydrogen bond-breaking activities below C10 and agreed with the FTIR data in the cutoff at C10.

  6. Electrostatic model for hydrogen bonds in alcohols

    SciTech Connect

    Giguere, P.A.; Pigeon-Gosselin, M.

    1988-11-01

    The authors have measured the Raman spectra of liquid methanol at temperatures between 50/sup 0/ and -77/sup 0/C. The weak O-H stretching bands appear, under amplification, more and more asymmetric as the temperature is lowered. They can be decomposed into three Gaussian components centered at about 3220, 3310, and 3400 cm/sup -1/. The former, predominant at low temperature, corresponds to single, linear hydrogen bonds (LHB) between two molecules. The other two are assigned to branched hydrogen bonds, respectively bifurcated (BHB), between three molecules, and trifurcated (THB), between four molecules. They conclude that the molecular structure of liquid alcohols is not chain-like, as presumed so far, but a three-dimensional network featuring a mixture of single (LBH), and multiple hydrogen bonds (BHB, and THB). They are mainly electrostatic in nature, their relative proportions and geometry governed by the packing conditions for minimum energy. They form distinct trimers and tetramers in dilute solutions of alcohols in inert solvents and frozen matrices, and the latter even in the vapor.

  7. Rheology of miscible polymer blends with hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyi

    Poly(4-vinylphenol) (PVPh) was blended with four different polymers: poly(vinyl methyl ether) (PVME), poly(vinyl acetate) (PVAc), poly(2-vinylpyridine) (P2VP), and poly(4-vinylpyridine) (P4VP) by solvent casting. The miscibility of these four PVPh-based blend systems was investigated using differential scanning calorimetry (DSC) and the composition-dependent glass transition temperature (Tg) was predicted by a thermodynamic theory. The hydrogen bonds between phenolic group in PVPh and ether group, carbonyl group or pyridine group was confirmed by Fourier transform infrared (FTIR) spectroscopy. The fraction of hydrogen bonds was calculated by the Coleman-Graf-Painter association model. Linear dynamic viscoelasticity of four PVPh-based miscible polymer blends with hydrogen bonding was investigated. Emphasis was placed on investigating how the linear dynamic viscoelasticity of miscible polymer blends with specific interaction might be different from that of miscible polymer blends without specific interaction. We have found that an application of time-temperature superposition (TTS) to the PVPh-based miscible blends with intermolecular hydrogen bonding is warranted even when the difference in the component glass transition temperatures is as large as about 200°C, while TTS fails for miscible polymer blends without specific interactions. On the basis of such an observation, we have concluded that hydrogen bonding suppressed concentration fluctuations in PVPh-based miscible blends. It has been found that both the intra-association (self-association) of the phenoxy hydroxyl groups in PVPh and inter-association (intermolecular interactions) between the constituent components have a profound influence on the frequency dependence of dynamic moduli in the terminal region of the PVPh-based miscible blend systems investigated. Hydrogenated functional polynorbornenes (HFPNBs) were synthesized and they were used to investigate the miscibility and rheology of HFPNB

  8. Shape of the proton potential in an intramolecular hydrogen-bonded system

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Grzegorz; Brzezinski, Bogumil

    2001-09-01

    5,5'-dibromo-3-diethylaminomethyl-2,2'-biphenol N-oxide was studied by IR and NMR spectroscopy in chloroform and acetonitrile solutions. Two intramolecular hydrogen bonds are present in these molecules. The NO⋯H +⋯O - bond formed between the OH and the N-oxide groups is very strong. The proton potential is flat and broad and has probably no barrier. This hydrogen bond shows only slight proton polarizability. The other hydrogen bond formed between two hydroxyl groups OH⋯O -⇌ -O⋯HO is weaker and show large proton polarizability. The proton motions in both hydrogen bonds are not coupled and therefore these hydrogen bonds are not cooperative.

  9. Introduction of a hydrogen bond between phylloquinone PhQ(A) and a threonine side-chain OH group in photosystem I.

    PubMed

    Mula, Sam; McConnell, Michael D; Ching, Amy; Zhao, Nan; Gordon, Heather L; Hastings, Gary; Redding, Kevin E; van der Est, Art

    2012-12-01

    The phylloquinone acceptor PhQ(A) in photosystem I binds to the protein through a single H-bond to the backbone nitrogen of PsaA-L722. Here, we investigate the effect of this H-bond on the electron transfer (ET) kinetics by substituting threonine for PsaA-L722. Room temperature spin-polarized transient EPR measurements show that in the PsaA-L722T mutant, the rate of PhQ(A)(-) to F(X) ET increases and the hyperfine coupling to the 2-methyl group of PhQ(A) is much larger than in the wild type. Molecular dynamics simulations and ONIOM type electronic structure calculations indicate that it is possible for the OH group of the Thr side chain to form an H-bond to the carbonyl oxygen atom, O(4) of the phylloquinone, and that this results in an increase in the 2-methyl hyperfine couplings as observed in the transient EPR data. The Arrhenius plot of the PhQ(A)(-) to F(X) ET in the PsaA-L722T mutant suggests that the increased rate is probably the result of a slight change in the electronic coupling between PhQ(A)(-) and F(X). The strong deviation from Arrhenius behavior observed at ∼200 K can be reproduced using a semiclassical model, which takes the zero-point energy of the mode coupled to the ET into account. However, since the change in slope of the Arrhenius plot occurs at the protein glass transition temperature, it is argued that it could be the result of a change in the protein relaxation dynamics at this temperature rather than quantum mechanical effects. PMID:23137346

  10. Hydrogen bonded and stacked geometries of the temozolomide dimer.

    PubMed

    Kasende, Okuma Emile; Muya, Jules Tshishimbi; de Paul N Nziko, Vincent; Scheiner, Steve

    2016-04-01

    Dispersion-corrected density functional theory (DFT) and MP2 quantum chemical methods are used to examine homodimers of temozolomide (TMZ). Of the 12 dimer configurations found to be minima, the antarafacial stacked dimer is the most favored, it is lower in energy than coplanar dimers which are stabilized by H-bonds. The comparison between B3LYP and B3LYP-D binding energies points to dispersion as a primary factor in stabilizing the stacked geometries. CO(π) → CO(π*) charge transfers between amide groups in the global minimum are identified by NBO, as well as a pair of weak CH∙∙N H-bonds. AIM analysis of the electron density provides an alternative description which includes N∙∙O, N∙∙N, and C∙∙C noncovalent bonds. Graphical Abstract Hydrogen bonded and stacked geometries of the temozolomide dimerᅟ. PMID:26971506

  11. Structure and hydrogen bonding in ortho-hydroxy Ketimines

    NASA Astrophysics Data System (ADS)

    Filarowski, A.; Koll, A.; Głowiak, T.

    2003-01-01

    Two ortho-hydroxy Ketimines (2,2'-dihydroxybenzophenone- N-methyl-imine ( 1) and 2,2'-dihydroxy-4-methoxy-benzophenone- N-methyl-imine ( 2)) were synthesized with the hydrogen atom replaced in the azomethine group by the ortho-hydroxyphenyl substituent. The crystal structures were determined, which contain two types of hydrogen bonds; the intra-molecular O⋯N ( d(ON)=2.540 Å, d(ON)=2.502 Å for compound 1, d(ON)=2.559 Å for compound 2, and intermolecular O⋯O ( d(OO)=2.632 Å, d(OO)=2.582 Å for compound 1 and d(OO)=2.581 Å for compound 2. FT-IR spectra of compounds 1 and 2 in solid state as function of temperature were recorded. Relation between the intra-molecular and intermolecular hydrogen bonds was discussed. Influence of methoxy group substituted in phenol ring on the hydrogen bond properties has been investigated.

  12. Electron collisions with hydrogen-bonded complexes

    SciTech Connect

    Freitas, T. C.; Sanchez, S. d'A.; Bettega, M. H. F.; Varella, M. T. do N.

    2011-12-15

    We investigated elastic collisions of low-energy electrons with the hydrogen-bonded formic-acid dimer, formamide dimer, and formic-acid-formamide complex. We focused on how the {pi}{sup *} shape resonances of the isolated monomers are affected when bonded to another molecule. The scattering cross sections were computed with the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange-plus-polarization approximations, for energies ranging from 1 to 6 eV. The present results support the existence of two low-lying {pi}{sup *} shape resonances for the formic-acid dimer, as suggested in previous theoretical and experimental studies. We also found low-lying {pi}{sup *} shape resonances for the formamide dimer and for the formic-acid-formamide complex. For the dimers, the presence of a center of inversion is key to understanding how these resonances arise from linear combinations of the {pi}{sup *} anion states of the respective monomers. For the formic-acid-formamide complex, the resonances are more localized on each unit, lying at lower energies with respect to the isolated monomers. The present results suggest that if there is no delocalization of the {pi}{sup *} resonances over the pair for hydrogen-bonded molecules, then their positions would lie below those of the units.

  13. Water templated hydrogen-bonded network of pyridine amide appended carbamate in solid state

    NASA Astrophysics Data System (ADS)

    Ghosh, Kumaresh; Adhikari, Suman; Fröhlich, Roland

    2006-03-01

    The pyridine amide appended carbamates 1 and 2 have been synthesized and their hydrogen-bonded self-assemblies in solid state have been described. The self-association pattern is dependent on the nature the anchored group of the carbamate moiety and influenced by water inclusion. Inclusion of water molecule gives a ladder type hydrogen bonded assemblies with cavities.

  14. Hydrogen Bonding in Aqueous Solutions of PEO: Theoretical Insights

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena E.

    2004-03-01

    Polyethylene oxide (PEO) is one of the polymers for which solubility in water and biocompatibility is primarily based on hydrogen bonding. To understand the hierarchy of multiple interactions taking place in aqueous solutions of PEO we apply a statistical mean-field-like approach. In particular, we consider the competition of polymer-water, water-water and polymer-polymer (if end-groups allow) hydrogen bonding. We found that the overall degree of association between polymer and solvent (polymer hydration) considerably decreases with an increase of temperature or polymer content. For hydroxyl-terminated PEO the contribution of hydration via end-groups becomes noticeable especially for short chains in poor hydration conditions (high temperature, low water content). We also considered the possibility of physical crosslinking of PEO either via direct PEO-PEO hydrogen bonds or via a single water molecule acting as a crosslinking agent. We found that the degree of crosslinking considerably increases with chain length and is enhanced for hydroxyl terminated chains. With a temperature increase the re-arrangements of donor (acceptor) groups from intra-species to inter-species hydrogen bonding occurs leading to a decrease in polymer solubility (increase in the second virial coefficient, A_2). The predicted phase diagram for aqueous solutions of PEO features closed-loop phase-coexistence regions in good agreement with experimental observations. Comparing the critical points (UCST and LCST) for polymer chains terminated by different end-groups we found that while all curves merge in the long chain limit, for shorter chain lengths curves deviate from each other considerably, reaching double critical points (where the UCST merges with the LCST) at different N.

  15. Rotational Spectra of Hydrogen Bonded Networks of Amino Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zwier, Timothy S.

    2014-06-01

    The rotational spectra of several different amino alcohols including D/L-allo-threoninol, 2-amino-1,3-propanediol and 1,3-diamino-2-propanol over the 6.5-18.5 GHz range have been investigated under jet-cooled conditions using chirped-pulsed Fourier transform microwave spectroscopy. Despite the small size of these molecules, a great variety of conformations have been observed in the molecular expansion. While the NH2 group is typically thought of as a H-bond acceptor, it often acts both as acceptor and donor in forming H-bonded networks. With three adjacent H-bonding substituents (a combination of OH and NH2 groups), many different hydrogen bonding patterns are possible, including H-bonded chains and H-bonded cycles. Since many of these structures differ primarily by the relative orientation of the H-atoms, the analysis of these rotational spectra are challenging. Only through an exhaustive conformational search and the comparison with the experimental rotational constants, nuclear quadrupolar splittings, and line strengths are we able to understand the complex nature of these interactions. The ways in which the presence and number of NH2 groups affects the relative energies, and distorts the structures will be explored.

  16. NMR properties of hydrogen-bonded glycine cluster in gas phase

    NASA Astrophysics Data System (ADS)

    Carvalho, Jorge R.; da Silva, Arnaldo Machado; Ghosh, Angsula; Chaudhuri, Puspitapallab

    2016-11-01

    Density Functional Theory (DFT) calculations have been performed to study the effect of the hydrogen bond formation on the Nuclear Magnetic Resonance (NMR) parameters of hydrogen-bonded clusters of glycine molecules in gas-phase. DFT predicted isotropic chemical shifts of H, C, N and O of the isolated glycine with respect to standard reference materials are in reasonable agreement with available experimental data. The variations of isotropic and anisotropic chemical shifts for all atoms constituting these clusters containing up to four glycine molecules have been investigated systematically employing gradient corrected hybrid B3LYP functional with three different types of extended basis sets. The clusters are mainly stabilized by a network of strong hydrogen bonds among the carboxylic (COOH) groups of glycine monomers. The formation of hydrogen bond influences the molecular structure of the clusters significantly which, on the other hand, gets reflected in the variations of NMR properties. The carbon (C) atom of the sbnd COOH group, the bridging hydrogen (H) and the proton-donor oxygen (O) atom of the Osbnd H bond suffer downfield shift due to the formation of hydrogen bond. The hydrogen bond lengths and the structural complexity of the clusters are found to vary with the number of participating monomers. A direct correlation between the hydrogen bond length and isotropic chemical shift of the bridging hydrogen is observed in all cases. The individual variations of the principal axis elements in chemical shift tensor provide additional insight about the different nature of the monomers within the cluster.

  17. Hydrogen bonding at the aerosol interface

    SciTech Connect

    Zhang, J.X.; Aiello, D.; Aker, P.M. )

    1995-01-12

    Morphology-dependent stimulated Raman scattering (MDSRS) has been used to monitor the degree of hydrogen bonding in water aerosols generated by a vibrating orifice aerosol generator (VOAG). The results show that aerosols created by a VOAG suffer extensive structural disruption and that the disruption is most pronounced at the aerosol surface. Laboratory aerosols prepared in this way do not appropriately mimic those found in the atmosphere, and the mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations. 25 refs., 10 figs.

  18. An optimal hydrogen-bond surrogate for α-helices.

    PubMed

    Joy, Stephen T; Arora, Paramjit S

    2016-04-14

    Substitution of a main chain i → i + 4 hydrogen bond with a covalent bond can nucleate and stabilize the α-helical conformation in peptides. Herein we describe the potential of different alkene isosteres to mimic intramolecular hydrogen bonds and stabilize α-helices in diverse peptide sequences. PMID:27046675

  19. Tetrahedrality and hydrogen bonds in water

    NASA Astrophysics Data System (ADS)

    Székely, Eszter; Varga, Imre K.; Baranyai, András

    2016-06-01

    We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.

  20. Molecular and ionic hydrogen bond formation in fluorous solvents.

    PubMed

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-01

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied. PMID:19195102

  1. A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water.

    PubMed

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui

    2016-04-01

    Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin-H2O, chrysin-CH3CH2OH, galangin-H2O and galangin-CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/M062X level of theory with the 6-31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin-H2O/CH3CH2OH and galangin-H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin-H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C-O2···H in structures labeled E and C-O5···H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites. PMID:27029620

  2. Water's dual nature and its continuously changing hydrogen bonds.

    PubMed

    Henchman, Richard H

    2016-09-28

    A model is proposed for liquid water that is a continuum between the ordered state with predominantly tetrahedral coordination, linear hydrogen bonds and activated dynamics and a disordered state with a continuous distribution of multiple coordinations, multiple types of hydrogen bond, and diffusive dynamics, similar to that of normal liquids. Central to water's heterogeneous structure is the ability of hydrogen to donate to either one acceptor in a conventional linear hydrogen bond or to multiple acceptors as a furcated hydrogen. Linear hydrogen bonds are marked by slow, activated kinetics for hydrogen-bond switching to more crowded acceptors and sharp first peaks in the hydrogen-oxygen radial distribution function. Furcated hydrogens, equivalent to free, broken, dangling or distorted hydrogens, have barrierless, rapid kinetics and poorly defined first peaks in their hydrogen-oxygen radial distribution function. They involve the weakest donor in a local excess of donors, such that barrierless whole-molecule vibration rapidly swaps them between the linear and furcated forms. Despite the low number of furcated hydrogens and their transient existence, they are readily created in a single hydrogen-bond switch and free up the dynamics of numerous surrounding molecules, bringing about the disordered state. Hydrogens in the ordered state switch with activated dynamics to make the non-tetrahedral coordinations of the disordered state, which can also combine to make the ordered state. Consequently, the ordered and disordered states are both connected by diffusive dynamics and differentiated by activated dynamics, bringing about water's continuous heterogeneity. PMID:27447299

  3. Substituent effects on hydrogen bonding of aromatic amide-carboxylate.

    PubMed

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın

    2016-10-01

    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using (1)H NMR, (13)C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in a centrosymmetric R2(2)(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic OH⋯O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8kcal/mol with the B3LYP/6-31+G*, B3LYP/6-31++G*, B3LYP/6-31++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4kcal/mol. PMID:27239947

  4. Hydrophobicity and hydrogen-bonded network in liquid water

    NASA Astrophysics Data System (ADS)

    Li, Je-Luen; Wingreen, Ned; Tang, Chao; Car, Roberto

    2004-03-01

    Hydrophobicity is the main driving force behind numerous important biological processes at molecular level, including protein folding and the formation of biological membranes. Yet few experimental probes can measure the local water structure around a hydrophobic solute, and our understanding of the detailed structure of hydrophobic hydration has to rely on molecular dynamics simulation. As a model system, several groups studied two methane molecules in liquid water and obtained the potential of mean force using Lennard-Jones potential and various water models. However, hydrophobic effect critically depends on the description of hydrogen-bonded network, and classical simulations may not be sufficient to descirbe the forming and breaking of hydrogen bonds. In this work, we apply ab initio molecular dynamics simulations to study this model system. Besides the potential of mean force between 2 methanes in water, the role of the local water structure will be highlighted.

  5. Hydrogen Bond Basicity Prediction for Medicinal Chemistry Design.

    PubMed

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M; Ribeiro, Jean F R; Sartori, Geraldo Rodrigues

    2016-05-12

    Hydrogen bonding is discussed in the context of medicinal chemistry design. Minimized molecular electrostatic potential (Vmin) is shown to be an effective predictor of hydrogen bond basicity (pKBHX), and predictive models are presented for a number of hydrogen bond acceptor types relevant to medicinal chemistry. The problems posed by the presence of nonequivalent hydrogen bond acceptor sites in molecular structures are addressed by using nonlinear regression to fit measured pKBHX to calculated Vmin. Predictions are made for hydrogen bond basicity of fluorine in situations where relevant experimental measurements are not available. It is shown how predicted pKBHX can be used to provide insight into the nature of bioisosterism and to profile heterocycles. Examples of pKBHX prediction for molecular structures with multiple, nonequivalent hydrogen bond acceptors are presented. PMID:26872049

  6. Negligible Isotopic Effect on Dissociation of Hydrogen Bonds.

    PubMed

    Ge, Chuanqi; Shen, Yuneng; Deng, Gang-Hua; Tian, Yuhuan; Yu, Dongqi; Yang, Xueming; Yuan, Kaijun; Zheng, Junrong

    2016-03-31

    Isotopic effects on the formation and dissociation kinetics of hydrogen bonds are studied in real time with ultrafast chemical exchange spectroscopy. The dissociation time of hydrogen bond between phenol-OH and p-xylene (or mesitylene) is found to be identical to that between phenol-OD and p-xylene (or mesitylene) in the same solvents. The experimental results demonstrate that the isotope substitution (D for H) has negligible effects on the hydrogen bond kinetics. DFT calculations show that the isotope substitution does not significantly change the frequencies of vibrational modes that may be along the hydrogen bond formation and dissociation coordinate. The zero point energy differences of these modes between hydrogen bonds with OH and OD are too small to affect the activation energy of the hydrogen bond dissociation in a detectible way at room temperature. PMID:26967376

  7. Hydrogen Bond Nanoscale Networks Showing Switchable Transport Performance

    NASA Astrophysics Data System (ADS)

    Long, Yong; Hui, Jun-Feng; Wang, Peng-Peng; Xiang, Guo-Lei; Xu, Biao; Hu, Shi; Zhu, Wan-Cheng; Lü, Xing-Qiang; Zhuang, Jing; Wang, Xun

    2012-08-01

    Hydrogen bond is a typical noncovalent bond with its strength only one-tenth of a general covalent bond. Because of its easiness to fracture and re-formation, materials based on hydrogen bonds can enable a reversible behavior in their assembly and other properties, which supplies advantages in fabrication and recyclability. In this paper, hydrogen bond nanoscale networks have been utilized to separate water and oil in macroscale. This is realized upon using nanowire macro-membranes with pore sizes ~tens of nanometers, which can form hydrogen bonds with the water molecules on the surfaces. It is also found that the gradual replacement of the water by ethanol molecules can endow this film tunable transport properties. It is proposed that a hydrogen bond network in the membrane is responsible for this switching effect. Significant application potential is demonstrated by the successful separation of oil and water, especially in the emulsion forms.

  8. Oligo(p-phenylene-ethynylene)s with backbone conformation controlled by competitive intramolecular hydrogen bonds.

    PubMed

    Hu, Wei; Yan, Qifan; Zhao, Dahui

    2011-06-14

    A series of conjugated oligo(p-phenylene-ethynylene) (OPE) molecules with backbone conformations (that is, the relative orientations of the contained phenylene units) controlled by competitive intramolecular hydrogen bonds to be either co-planar or random were synthesised and studied. In these oligomers, carboxylate and amido substituents were attached to alternate phenylene units in the OPE backbone. These functional groups were able to form intramolecular hydrogen bonds between neighbouring phenylene units. Thereby, all phenylene units in the backbone were confined in a co-planar conformation. This planarised structure featured a more extended effective conjugation length than that of regular OPEs with phenylene units adopting random orientation due to a low rotational-energy barrier. However, if a tri(ethylene glycol) (Tg) side chain was appended to the amido group, it enabled another type of intramolecular hydrogen bond, formed by the Tg chain folding back and the contained ether oxygen atom competing with the ester carbonyl group as the hydrogen-bond acceptor. The outcome of this competition was proven to depend on the length of the alkylene linker joining the ether oxygen atom to the amido group. Specifically, if the Tg chain folded back to form a five-membered cyclic structure, this hydrogen-bonding motif was sufficiently robust to overrule the hydrogen bonds between adjacent phenylene units. Consequently, the oligomers assumed non-planar conformations. However, if the side chain formed a six-membered ring by hydrogen bonding with the amido NH group, such a motif was much less stable and yielded in the competition with the ester carbonyl group from the adjacent phenylene unit. Thus, the hydrogen bonds between the phenylene units remained, and the co-planar conformation was manifested. In our system, the hydrogen bonds formed by the back-folded Tg chain and amido NH group relied on a single oxygen atom as the hydrogen-bond acceptor. The additional oxygen

  9. Hydrogen-bonds structure in poly(2-hydroxyethyl methacrylate) studied by temperature-dependent infrared spectroscopy

    PubMed Central

    Morita, Shigeaki

    2014-01-01

    Hydrogen-bonds structure in poly(2-hydroxyethyl methacrylate) (PHEMA) were investigated by means of temperature-dependent infrared (IR) spectroscopy. Spectral variations involved with the OH…OH and C=O…HO types of hydrogen-bonds were found around the glass transition temperature of 80°C. Hydrogen-bonds among the hydroxyl groups gradually dissociate with increasing temperature. In contrast, discontinuous variation in the carbonyl bands was observed around the glass transition temperature. An association of the C=O…HO type of hydrogen-bond with increasing temperature above the glass transition temperature was revealed. These were concluded from the present study that hydrogen-bonds among the hydroxyl groups in each side chain terminal suppress the main chain mobility in the polymer matrix below the glass transition temperature, while the dissociation of the OH…OH type of hydrogen-bonds induces the association of the C=O…HO type of hydrogen-bond. As a result, the mobility of the main chain is induced by the change in hydrogen-bonds structure at the glass transition temperature. PMID:24790979

  10. Hydrogen-Bonds Structure in Poly(2-Hydroxyethyl Methacrylate) Studied by Temperature-Dependent Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morita, Shigeaki

    2014-03-01

    Hydrogen-bonds structure in poly(2-hydroxyethyl methacrylate) (PHEMA) were investigated by means of temperature-dependent infrared (IR) spectroscopy. Spectral variations involved with the OH•••OH and C=O•••HO types of hydrogen-bonds were found around the glass transition temperature of 80 °C. Hydrogen-bonds among the hydroxyl groups gradually dissociate with increasing temperature. In contrast, discontinuous variation in the carbonyl bands was observed around the glass transition temperature. An association of the C=O•••HO type of hydrogen-bond with increasing temperature above the glass transition temperature was revealed. These were concluded from the present study that hydrogen-bonds among the hydroxyl groups in each side chain terminal suppress the main chain mobility in the polymer matrix below the glass transition temperature, while the dissociation of the OH•••OH type of hydrogen-bonds induces the association of the C=O•••HO type of hydrogen-bond. As a result, the mobility of the main chain is induced by the change in hydrogen-bonds structure at the glass transition temperature.

  11. FTIR studies of hydrogen bonding between α,β-unsaturated esters and alcohols

    NASA Astrophysics Data System (ADS)

    Tonge, P. J.; Fausto, R.; Carey, P. R.

    1996-06-01

    The enthalpy (and entropy) of hydrogen bond formation has been measured between the ester carbonyl groups of the two α,β-unsaturated esters thienylacryloyl (TAOMe) and 5-methylthienylacryloyl (5MeTAOMe) methyl ester and the hydrogen bond donors ethanol, phenol and 3,5-dichlorophenol in CCl 4. For the esters, the hydrogen bonding strengths were measured by quantitating the amount of bound and unbound donor, using the OH stretching region, as a function of temperature and applying the van't Hoff equation. The decrease in νCO of the ester carbonyl group upon hydrogen bond formation ΔνCO has also been measured and correlated with the enthalpy of hydrogen bond formation. A linear correlation is observed between the enthalpy of hydrogen bond formation - ΔH and ΔνCO, with - ΔH = 1.36 ΔνCO - 16.1, where ΔH is measured in kJ mol -1 and Δν in cm -1. Comparison with data for other carbonyl acceptor compounds indicates that the carbonyl group of the above α,β-unsaturated esters is more readily polarized than the carbonyl group of saturated esters or ketones. The quantitative relationship between - ΔH and ΔνCO derived here has been used to determine the change in the enthalpy of hydrogen bond formation between substrate and enzyme groups in a series of acylserine proteases.

  12. Hydrogen-bonding-supported self-healing antifogging thin films.

    PubMed

    Zhang, Xiaojie; He, Junhui

    2015-01-01

    Inspired by the repair of DNA through efficient reformation of hydrogen bonds (H-bonds), herein we report a facile one-step approach to construction of self-healing antifogging thin films on the basis of partly cross-linked poly(vinyl alcohol)(PVA) and poly(acrylic acid)(PAA). By designing the molar ratio of hydroxyl groups to carboxyl groups, the cross-linked polymer thin films maintain abundant free hydroxyl groups to present excellent antifogging property, which is derived from the hydrophilicity and hygroscopicity of the thin films. The thin films showed smart intrinsic self-healing characteristics towards wounds caused by external forces, which is attributed to sufficient free hydroxyl groups at the scratched interfaces to reform H-bonds across the interfaces and a sufficient chain mobility that is indispensable for chain diffusion across the interfaces and hydroxyl groups association to form H-bonds. No synthetic surfaces reported so far possess all the unique characteristics of the polymer thin films: intrinsic self-healing, long-term antifogging, excellent mechanical property, high transmittance and large-scale feasibility. PMID:25784188

  13. Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojie; He, Junhui

    2015-03-01

    Inspired by the repair of DNA through efficient reformation of hydrogen bonds (H-bonds), herein we report a facile one-step approach to construction of self-healing antifogging thin films on the basis of partly cross-linked poly(vinyl alcohol)(PVA) and poly(acrylic acid)(PAA). By designing the molar ratio of hydroxyl groups to carboxyl groups, the cross-linked polymer thin films maintain abundant free hydroxyl groups to present excellent antifogging property, which is derived from the hydrophilicity and hygroscopicity of the thin films. The thin films showed smart intrinsic self-healing characteristics towards wounds caused by external forces, which is attributed to sufficient free hydroxyl groups at the scratched interfaces to reform H-bonds across the interfaces and a sufficient chain mobility that is indispensable for chain diffusion across the interfaces and hydroxyl groups association to form H-bonds. No synthetic surfaces reported so far possess all the unique characteristics of the polymer thin films: intrinsic self-healing, long-term antifogging, excellent mechanical property, high transmittance and large-scale feasibility.

  14. Hydrogen bonds of anti-HIV active aminophenols

    NASA Astrophysics Data System (ADS)

    Belkov, M. V.; Ksendzova, G. A.; Skornyakov, I. V.; Sorokin, V. L.; Tolstorozhev, G. B.; Shadyro, O. I.

    2011-05-01

    Analysis of IR-Fourier spectra from solutions and crystals of antiviral sulfo-containing aminophenols has shown that various types of intramolecular and intermolecular interactions can occur in molecules of these compounds. Three types of intramolecular hydrogen bonds (O-HṡṡṡN, O-HṡṡṡO=S=O, and N-HṡṡṡO=S=O) are formed in CCl4 solutions of the sulfo-containing aminophenols. The formation of intermolecular H-bonds involving the NH- and OH-groups and the preservation of the intramolecular O-HṡṡṡO=S=O H-bond are characteristic of the anti-HIV active aminophenol crystals. Spectral attributes are determined in order to distinguish between the anti-HIV active and inactive sulfo-containing aminophenols.

  15. Modelling OH⋯O hydrogen bonds in carbohydrates

    NASA Astrophysics Data System (ADS)

    Jeffrey, G. A.

    1990-09-01

    Hydrogen-bonding is particularly significant in the molecular modelling of the molecules of glycobiology because of the large number of OH⋯O functional groups for each carbohydrate monomer in these oligo- and macromolecules. This requires appropriate parameterization of the electrostatic interactions, which is considered to be the least well-developed component of molecular mechanics and dynamics formulations. Oligo- and polysaccharides are more difficult to model, in this respect, than oligo- and polypeptides and nucleotides because of the orientational freedom of the hydroxyl groups. The extension of present methods to carbohydrates is discussed.

  16. 4-Oxocyclohexanecarboxylic acid: hydrogen bonding in the monohydrate of a delta-keto acid.

    PubMed

    Barcon, Alan; Brunskill, Andrew P J; Thompson, Hugh W; Lalancette, Roger A

    2004-02-01

    The title monohydrate, C(7)H(10)O(3).H(2)O, aggregates as a complex hydrogen-bonding network, in which the water molecule accepts a hydrogen bond from the carboxyl group of one molecule and donates hydrogen bonds to ketone and carboxyl C=O functions in two additional molecules, yielding a sheet-like structure of parallel ribbons. The keto acid adopts a chiral conformation through rotation of the carboxyl group by 62.50 (15) degrees relative to the plane defined by its point of attachment and the ketone C and O atoms. Two C-H.O close contacts exist in the structure. PMID:14767139

  17. Sulfates of organic diamines: hydrogen-bonded structures and properties

    NASA Astrophysics Data System (ADS)

    Jayaraman, K.; Choudhury, A.; Rao, C. N. R.

    2002-03-01

    In order to investigate the supramolecular hydrogen-bonded networks and other structural features exhibited by compounds containing an organic cation and an inorganic anion, sulfates of the organic diamines, ethylenediamine ( I), 1,3-diaminopropane ( II), piperazine ( III), and 1,4-diazabicyclo[2.2.2]octane (DABCO) ( IV) have been prepared investigated by X-ray crystallography. While II, III, and IV crystallize in the centrosymmetric space group, Pbca, P2 1/n, Pbcn, respectively, I crystallizes in the non-centrosymmetric space group, P4 1 exhibiting chirality and weak NLO properties. I- IV exhibit different types of supramolecular H-bonded networks involving the organic cation and the SO 2-4 anion. The nature and strength of the H-bonding network vary from one compound to another, with the strongest network found in piperazinium sulfate, III, and the weakest in II. While in III, water molecules form part of the H-bonded network, they are present as guest molecules in the channels of IV. Thermal stability of the compounds as well as the infrared spectra reflect the stabilities of these H-bonded solids.

  18. Hydrogen bonds in concreto and in computro

    NASA Astrophysics Data System (ADS)

    Stouten, Pieter F. W.; Kroon, Jan

    1988-07-01

    Molecular dynamics simulations of liquid water and liquid methanol have been carried out. For both liquids an effective pair potential was used. The models were fitted to the heat of vaporization, pressure and various radial distribution functions resulting from diffraction experiments on liquids. In both simulations 216 molecules were put in a cubic periodical ☐. The system was loosely coupled to a temperature bath and to a pressure bath. Following an initial equilibration period relevant data were sampled during 15 ps. The distributions of oxygen—oxygen distances in hydrogen bonds obtained from the two simulations are essentially the same. The distribution obtained from crystal data is somewhat different: the maximum has about the same position, but the curve is much narrower, which can be expected merely from the fact that diffraction experiments only supply average atomic positions and hence average interatomic distances. When thermal motion is taken into account a closer likeness is observed.

  19. Infrared Spectroscopy of Hydrogen-Bonded Clusters of Protonated Histidine

    NASA Astrophysics Data System (ADS)

    Kondo, Makoto; Kasahara, Yasutoshi; Ishikawa, Haruki

    2015-06-01

    Histidine(His), one of the essential amino acids, is involved in active sites in many enzyme proteins, and known to play fundamental roles in human body. Thus, to gain detailed information about intermolecular interactions of His as well as its structure is very important. In the present study, we have recorded IR spectra of hydrogen-bonded clusters of protonated His (HisH^+) in the gas phase to discuss the relation between the molecular structure and intermolecular interaction of HisH^+. Clusters of HisH^+-(MeOH)_n (n = 1, 2) were generated by an electrospray ionization of the MeOH solution of L-His hydrochloride monohydrate. IR photodissociation spectra of HisH^+-(MeOH)1,2 were recorded. By comparing with the results of the DFT calculations, we determined the structures of these clusters. In the case of n = 1 cluster, MeOH is bonded to the imidazole ring as a proton acceptor. The most of vibrational bands observed were well explained by this isomer. However, a free NH stretch band of the imidazole ring was also observed in the spectrum. This indicates an existence of an isomer in which MeOH is bounded to the carboxyl group of HisH^+. Furthermore, it is found that a protonated position of His is influenced by a hydrogen bonding position of MeOH. In the case of n = 2 cluster, one MeOH molecule is bonded to the amino group, while the other MeOH molecule is separately bonded to the carboxyl group in the most stable isomer. However, there is a possibility that other conformers also exist in our experimental condition. The details of the experimental and theoretical results will be presented in the paper.

  20. Hydrogen bonds and a hydrogen-bonded chain in mannich bases of 5,5'-dinitro-2,2'-biphenol-FT-IR and 1H NMR studies

    NASA Astrophysics Data System (ADS)

    Brzezinski, Bogumil; Urjasz, Hanna; Bartl, Franz; Zundel, Georg

    1997-11-01

    5,5'-Dinitro-3-diethylaminomethyl-2,2'-biphenol ( 1) and 5,5'-dinitro-3,3' bis(diethylaminomethyl)-2,2'-biphenol ( 2) as well as 5,5'-dinitro-2,2'-biphenol ( 3) were synthesized and studied by FT-IR and 1H NMR spectroscopy in acetonitrile or acetonitrile-d 3 solutions, respectively. With compound 1 a hydrogen-bonded system with large proton polarizability is found. In the hydrogen bonds in compound 2 the protons are localized at the N atoms. These hydrogen bonds show no proton polarizability. In the protonated compound 2 a very strong homoconjugated -O⋯H +⋯O - hydrogen bond with large proton polarizability is found, whereas two other protons are localized at the N atoms. The deviation of the results obtained with other derivatives of 2,2'-biphenols are caused by the larger acidity of the nitro groups.

  1. Shape of the proton potential in an intramolecular hydrogen-bonded system. Part II

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Grzegorz; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil

    2002-06-01

    The crystals of 5,5'-dibromo-3-diethylaminomethyl-2,2'-biphenol N-oxide were studied by X-ray and FT-IR spectroscopy. Within this molecule two short OHO intramolecular hydrogen bonds are formed. The NO⋯H +⋯O - bond between the OH and the N-oxide groups is very strong, of 2.419(7) Å between the oxygen atoms. The proton potential of this hydrogen bond is flat, broad and has probably no barrier—consequently it could not be located from X-ray diffraction data. The other hydrogen bond formed between two hydroxyl groups appears asymmetrical from FT-IR spectra, and shows also relatively limited proton polarizability. The molecular conformation is non-planar, due to strong overcrowding effect between the oxygen atoms involved in the hydrogen bonds.

  2. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  3. Hydrogen bonding of water-ethanol in alcoholic beverages.

    PubMed

    Nose, Akira; Hojo, Masashi

    2006-10-01

    An alcoholic beverage is a type of water-ethanol solution with flavor and taste. The properties of the hydrogen bonding of water-ethanol in alcoholic beverages have not been clarified sufficiently. We investigated factors that could affect the hydrogen-bonding structure of water-ethanol on the basis of proton nuclear magnetic resonance (1H NMR) chemical shifts of the OH of water-ethanol and Raman OH stretching spectra. Not only acids (H+ and HA: undissociated acids) but also bases (OH- and A-: conjugate-base anions from weak acids) strengthened the hydrogen-bonding structure of water-ethanol. It was also demonstrated that the hydrogen bonding is strengthened by chemical components in alcoholic beverages (whiskey, Japanese sake, shochu). It can be suggested that hydrogen-bonding donors as well as acceptors in alcohol beverages, which exist as the initial components or are gained later on, should cause the tight association between water and ethanol molecules. PMID:17116572

  4. New Phases of Hydrogen-Bonded Systems at Extreme Conditions

    SciTech Connect

    Manaa, M R; Goldman, N; Fried, L E

    2006-10-23

    We study the behavior of hydrogen-bonded systems under high-pressure and temperature. First principle calculations of formic acid under isotropic pressure up to 70 GPa reveal the existence of a polymerization phase at around 20 GPa, in support of recent IR, Raman, and XRD experiments. In this phase, covalent bonding develops between molecules of the same chain through symmetrization of hydrogen bonds. We also performed molecular dynamics simulations of water at pressures up to 115 GPa and 2000 K. Along this isotherm, we are able to define three different phases. We observe a molecular fluid phase with superionic diffusion of the hydrogens for pressure 34 GPa to 58 GPa. We report a transformation to a phase dominated by transient networks of symmetric O-H hydrogen bonds at 95-115 GPa. As in formic acid, the network can be attributed to the symmetrization of the hydrogen bond, similar to the ice VII to ice X transition.

  5. Universal prediction of intramolecular hydrogen bonds in organic crystals.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2010-04-01

    A complete exploration of intramolecular hydrogen bonds (IHBs) has been undertaken using a combination of statistical analyses of the Cambridge Structural Database and computation of ab initio interaction energies for prototypical hydrogen-bonded fragments. Notable correlations have been revealed between computed energies, hydrogen-bond geometries, donor and acceptor chemistry, and frequencies of occurrence. Significantly, we find that 95% of all observed IHBs correspond to the five-, six- or seven-membered rings. Our method to predict a propensity for hydrogen-bond occurrence in a crystal has been adapted for such IHBs, applying topological and chemical descriptors derived from our findings. In contrast to intermolecular hydrogen bonding, it is found that IHBs can be predicted across the complete chemical landscape from a single optimized probability model, which is presented. Predictivity of 85% has been obtained for generic organic structures, which can exceed 90% for discrete classes of IHB. PMID:20305358

  6. Molecular orbital analysis of the hydrogen bonded water dimer

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems.

  7. Molecular orbital analysis of the hydrogen bonded water dimer

    PubMed Central

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-01-01

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems. PMID:26905305

  8. Effect of the intramolecular hydrogen bond on the spectral and optical properties in chitosan oligosaccharide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yang, Mengshi; Shi, Xiao; Chu, Xiuxiang; Chen, Liang; Wu, Qiang; Wang, Yueyue

    2015-05-01

    The geometric structures, hydrogen bond types, IR spectra and nonlinear optical properties of chitosan oligosaccharide (degree of polymerization 2-5) are studied by density-functional theory (DFT) at B3LYP/6-31+G(d) level. We have analyzed the statistics of relationship between IR spectra and bond lengths, and angles of amino, hydroxyl. The results show that: (1) the active groups C3-OH, C6-OH and -NH2 can form intramolecular hydrogen bond in chitosan oligosaccharide; (2) the IR spectra of three active groups have size effect in growth process, however, its IR intensity increases significantly and IR frequencies are red shifted obviously when the active hydroxyl form hydrogen bonds, because the bond length of active hydroxyl becomes longer; (3) the effect of hydrogen bond on intensity and frequency of the three vibration mode of amino is the main factor and complication. The paper also provides the nonlinear optical properties of chitosan oligosaccharide. The reason why hydrogen bond can make an appreciable difference to IR spectra, and the nonlinear optical properties of chitosan oligosaccharide are discussed. This research has important significance in the characterization of chitosan oligosaccharide, the properties of chitosan material and hydrogen bond by infrared spectroscopy.

  9. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes. PMID:27074500

  10. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1993-05-01

    We have used two different force field models to study concentrated dimethyl sulfoxide (DMSO)-water solutions by molecular dynamics. The results of these simulations are shown to compare well with recent neutron diffraction experiments using H/D isotope substitution [A. K. Soper and A. Luzar, J. Chem. Phys. 97, 1320 (1992)]. Even for the highly concentrated 1 DMSO : 2 H2O solution, the water hydrogen-hydrogen radial distribution function, gHH(r), exhibits the characteristic tetrahedral ordering of water-water hydrogen bonds. Structural information is further obtained from various partial atom-atom distribution functions, not accessible experimentally. The behavior of water radial distribution functions, gOO(r) and gOH(r) indicate that the nearest neighbor correlations among remaining water molecules in the mixture increase with increasing DMSO concentration. No preferential association of methyl groups on DMSO is detected. The pattern of hydrogen bonding and the distribution of hydrogen bond lifetimes in the simulated mixtures is further investigated. Molecular dynamics results show that DMSO typically forms two hydrogen bonds with water molecules. Hydrogen bonds between DMSO and water molecules are longer lived than water-water hydrogen bonds. The hydrogen bond lifetimes determined by reactive flux correlation function approach are about 5 and 3 ps for water-DMSO and water-water pairs, respectively, in 1 DMSO : 2 H2O mixture. In contrast, for pure water, the hydrogen bond lifetime is about 1 ps. We discuss these times in light of experimentally determined rotational relaxation times. The relative values of the hydrogen bond lifetimes are consistent with a statistical (i.e., transition state theory) interpretation.

  11. Intramolecular Hydrogen Bonds in Low-Molecular-Weight Polyethylene Glycol.

    PubMed

    Kozlowska, Mariana; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-18

    We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low-molecular-weight polyethylene glycol (PEG) with two to five repeat subunits. Both red-shifted O-H⋅⋅⋅O and blue-shifting C-H⋅⋅⋅O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used. Car-Parrinello molecular dynamics simulations were used to mimic the structural rearrangements and hydrogen-bond breaking/formation in the PEG molecule at 300 K. The time evolution of the H⋅⋅⋅O bond length and valence angles of the formed hydrogen bonds were fully analyzed. The characteristic hydrogen-bonding patterns of low-molecular-weight PEG were described with an estimation of their lifetime. The theoretical results obtained, in particular the presence of weak C-H⋅⋅⋅O hydrogen bonds, could serve as an explanation of the PEG structural stability in the experimental investigation. PMID:26864943

  12. Are aromatic carbon donor hydrogen bonds linear in proteins?

    PubMed

    Nanda, Vikas; Schmiedekamp, Ann

    2008-02-01

    Proteins fold and maintain structure through the collective contributions of a large number of weak, noncovalent interactions. The hydrogen bond is one important category of forces that acts on very short distances. As our knowledge of protein structure continues to expand, we are beginning to appreciate the role that weak carbon-donor hydrogen bonds play in structure and function. One property that differentiates hydrogen bonds from other packing forces is propensity for forming a linear donor-hydrogen-acceptor orientation. To ascertain if carbon-donor hydrogen bonds are able to direct acceptor linearity, we surveyed the geometry of interactions specifically involving aromatic sidechain ring carbons in a data set of high resolution protein structures. We found that while donor-acceptor distances for most carbon donor hydrogen bonds were tighter than expected for van der Waals packing, only the carbons of histidine showed a significant bias for linear geometry. By categorizing histidines in the data set into charged and neutral sidechains, we found only the charged subset of histidines participated in linear interactions. B3LYP/6-31G**++ level optimizations of imidazole and indole-water interactions at various fixed angles demonstrates a clear orientation dependence of hydrogen bonding capacity for both charged and neutral sidechains. We suggest that while all aromatic carbons can participate in hydrogen bonding, only charged histidines are able to overcome protein packing forces and enforce linear interactions. The implications for protein modeling and design are discussed. PMID:17705268

  13. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  14. The influence of boron doped nanodiamonds on hydrogen bonds in suspensions of protic solvents

    NASA Astrophysics Data System (ADS)

    Vervald, Alexey M.; Ekimov, Evgeny A.; Kudryavtsev, Oleg S.; Vlasov, Igor I.; Dolenko, Tatiana A.

    2016-04-01

    This work presents the results of study of the influence of BDND on hydrogen bonds of protonic solvents. In addition, the comparative analysis of the interactions of BDND and DND-COOH with solvents molecules was carried out. The analysis of temperature dependences of the quantitative characteristics of the stretching bands of OH groups of the solvents and the suspensions of NDs has shown that the BDND and DND differently weaken the hydrogen bonds in water and in water-ethanol solution with 70 vol. % ethanol content. In water-ethanol solution with 20 vol. % of ethanol the both NDs practically does not change the network of hydrogen bonds.

  15. Characteristics of hydrogen bond revealed from water clusters

    NASA Astrophysics Data System (ADS)

    Song, Yan; Chen, Hongshan; Zhang, Cairong; Zhang, Yan; Yin, Yuehong

    2014-09-01

    The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n ( n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.

  16. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  17. Intramolecular hydrogen bonds in sulfur-containing aminophenols

    NASA Astrophysics Data System (ADS)

    Belkov, M. V.; Harbachova, A. N.; Ksendzova, G. A.; Polozov, G. I.; Skornyakov, I. V.; Sorokin, V. L.; Tolstorozhev, G. B.; Shadyro, O. I.

    2010-07-01

    IR Fourier spectroscopy methods have been adopted to study intramolecular interactions that occur in CCl4 solutions of antiviral derivatives of aminophenol. Analysis of the IR spectra showed that intramolecular bonds O-H···N, O-H···O=C, N-H···O=S=O, and O-H···O=S=O can occur in these compounds depending on the substituent on the amino group. Not only the presence of intramolecular O-H···N, O-H···O=S=O, and N- H···O=S=O hydrogen bonds in 2-amino-4,6-di-tert-butylphenol derivatives containing a sulfonamide fragment but also conformational equilibrium among these types of intramolecular interactions are essential for the manifestation of high efficiency in suppressing HIV-infection in cell culture.

  18. Molecular Dynamics Study of Hsp90 and ADP: Hydrogen Bond Analysis for ADP Dissociation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    The contacts between the N-terminal domain of heat shock protein 90 (N-Hsp90) and ADP involve both direct and water-mediated hydrogen bonds in X-ray crystallographic structure. We perform all-atom molecular dynamics (MD) simulations of N-Hsp90 and ADP to investigate the changes of the hydrogen bond lengths during ADP dissociation. We show the difference between the hydrogen bonds in the crystal structure and MD simulations. Moreover, the N6 group of ADP does not contact with the Cγ group of Asp93, and the hydrogen bonds between Asn51 side chain and ADP are stable in the early step of ADP dissociation.

  19. (+)-Gibberellin C: hydrogen-bonding pattern of the monohydrate of a non-racemic pentacyclic diterpenoid.

    PubMed

    Thompson, H W; Brunskill, A P; Lalancette, R A

    2000-12-01

    In the monohydrate of the title compound, (+)-2beta, 4aalpha-dihydroxy-1,7-dimethyl-8-oxo-4bbeta,7alpha- gibbane-1alpha, 10beta-dicarboxylic acid-1,4a-lactone, C(19)H(24)O(6).H(2)O, intermolecular hydrogen bonding progresses helically along b from carboxyl to ketone [O...O = 2.694 (5) A]. The carboxyl and lactone carbonyl groups in translationally related molecules within a helix both accept hydrogen bonds from the same water of hydration. The oxygen of this water in turn accepts a hydrogen bond from the hydroxyl group of a third screw-related molecule in an adjacent counterdirectionally oriented helix, yielding a complex three-dimensional hydrogen-bonding array. Intermolecular O...H-C close contacts were found to the carboxyl and lactone carbonyls, the hydroxyl, and the water. PMID:11119009

  20. The role of hydrogen bonding in tethered polymer layers

    PubMed Central

    Ren, C.; Nap, R. J.; Szleifer, I.

    2009-01-01

    A molecular theory to study the properties of end tethered polymer layers, in which the polymers have the ability to form hydrogen bonds with water is presented. The approach combines the ideas of the single-chain mean-field theory to treat tethered layers with the approach of Dormidontova (Macromolecules, 2002 35,987) to include hydrogen bonds. The generalization includes the consideration of position dependent polymer-water and water-water hydrogen bonds. The theory is applied to model poly ethylene oxide (PEO) and the predictions are compared with equivalent polymer layers that do not form hydrogen bonds. It is found that increasing the temperature lowers the solubility of the PEO and results in a collapse of the layer at high enough temperatures. The properties of the layer and their temperature dependence are shown to be the result of the coupling between the conformational entropy of the chains, the ability of the polymer to form hydrogen bonds, and the intermolecular interactions. The structural and thermodynamic properties of the PEO layers, such as the lateral pressure-area isotherms and polymer chemical potentials, are studied as a function of temperature and type of tethering surface. The possibility of phase separation of the PEO layer at high enough temperature is predicted, due to the reduced solubility induced by breaking of polymer-water hydrogen bonds. A discussion of the advantages and limitations of the theory, together with how to apply the approach to different hydrogen bonding polymers is presented. PMID:19367906

  1. Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures.

    PubMed

    Taylor, L S; Zografi, G

    1998-12-01

    The objective of this work was to investigate hydrogen bonding interactions between a variety of glass-forming sugars and a model polymer, poly(vinylpyrrolidone) (PVP), in binary amorphous solid solutions, produced by lyophilization. The glass transition temperatures of the sugars and sugar-PVP colyophilized mixtures were assessed using differential scanning calorimetry. The hydrogen bonding interactions between each sugar and PVP were monitored using FT-Raman spectroscopy. Sucrose was found to hydrogen bond to a greater extent with PVP at a particular sugar:polymer ratio than the other disaccharides studied including trehalose and the trisaccharide raffinose. Maltodextrins showed a decreased tendency to hydrogen bond with the polymer compared to the lower molecular weight sugars. The extent of hydrogen bonding was found to correlate inversely with the glass transition temperature of the sugar, with the tendency to hydrogen bond decreasing as the Tg increased. The importance of hydrogen bonding interactions to the thermodynamics of mixing in amorphous solids is discussed. PMID:10189276

  2. Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Qingzhong; Zhu, Hongjie; Zhuo, Hongying; Yang, Xin; Li, Wenzuo; Cheng, Jianbo

    2014-11-01

    The complexes of HOBr:PH2Y (Y = H, F, Cl, Br, CH3, NH2, OH, and NO2), HOCl:PH2F, and HOI:PH2F have been investigated with ab initio calculations at the MP2/aug-cc-pVTZ level. Four types of structures (1, 2, 3a, and 3b) were observed for these complexes. 1 is stabilized by an O⋯P pnicogen bond, 2 by a P⋯X halogen bond, 3a by a H⋯P hydrogen bond and a P⋯X pnicogen bond, and 3b by H⋯P and H⋯Br hydrogen bonds. Their relative stability is related to the halogen X of HOX and the substituent Y of PH2Y. These structures can compete with interaction energy of -10.22 ∼ -29.40 kJ/mol. The Hsbnd O stretch vibration shows a small red shift in 1, a small irregular shift in 2, but a prominent red shift in 3a and 3b. The Xsbnd O stretch vibration exhibits a smaller red shift in 1, a larger red shift in 2, but an insignificant blue shift in 3a and 3b. The Psbnd Y stretch vibration displays a red shift in 1 but a blue shift in 2, 3a, and 3b. The formation mechanism, stability, and properties of these structures have been analyzed with molecular electrostatic potentials, orbital interactions, and non-covalent interaction index.

  3. Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives.

    PubMed

    Saluja, Hardeep; Mehanna, Ahmed; Panicucci, Riccardo; Atef, Eman

    2016-01-01

    The purpose of this study is to confirm the impact of polar functional groups on inter and intra-molecular hydrogen bonding in haloperidol (HP) and droperidol (DP) and, hence, their effects on dissolution using a new approach. To confirm our theory, a new molecule: deshydroxy-haloperidol (DHP) was designed and its synthesis was requested from a contract laboratory. The molecule was then studied and compared to DP and HP. Unlike DHP, both the HP and DP molecules have hydrogen donor groups, therefore, DHP was used to confirm the relative effects of the hydrogen donor group on solubility and crystal packing. The solid dispersions of the three structurally related molecules: HP, DP, and DHP were prepared using PVPK30, and characterized using XRPD and IR. A comparative dissolution study was carried out in aqueous medium. The absence of a hydrogen bonding donor group in DHP resulted in an unexpected increase in its aqueous solubility and dissolution rate from solid dispersion, which is attributed to weaker crystal pack. The increased dissolution rate of HP and DP from solid dispersions is attributed to drug-polymer hydrogen bonding that interferes with the drug-drug intermolecular hydrogen bonding and provides thermodynamic stability of the dispersed drug molecules. The drug-drug intermolecular hydrogen bond is the driving force for precipitation and crystal packing. PMID:27258248

  4. Experimental evidence of O-H—S hydrogen bonding in supersonic jet

    NASA Astrophysics Data System (ADS)

    Biswal, Himansu S.; Chakraborty, Shamik; Wategaonkar, Sanjay

    2008-11-01

    Experimental evidence is presented for the O-H—S hydrogen bonding in the complexes of simple model compounds of methionine (dimethyl sulphide) and tyrosine (phenol, p-cresol, and 2-naphthol). The complexes were formed in the supersonic jet and were detected using resonantly enhanced multiphoton ionization spectroscopy. In all the complexes, the band origins for the S1-S0 electronic transition were redshifted relative to that of their respective monomers. The resonant ion depletion IR spectra of all the complexes show redshifts of 123-140 cm-1 in the O-H stretching frequency, indicating that the OH group acts as the hydrogen bond donor and sulfur as an acceptor. The density functional theory calculations also predict the stable structures in support of this and predict the redshifted O-H stretching frequency in the complex. The atoms-in-molecules and natural bond orbital calculations confirm the O-H—S hydrogen bonding interaction. The significant finding of this study is that the magnitudes of redshifts in the O-H stretch in the O-H—S hydrogen bonded complexes reported here are comparable to those reported for the O-H—O hydrogen bonded complexes where H2O acts as the H-bond acceptor, which suggests that the OH-S interaction is perhaps as strong as the OH-O interaction. To the best of our knowledge, this is the first such report on the O-H—S hydrogen bonded complexes.

  5. A Preorganized Hydrogen Bond Network and Its Effect on Anion Stability

    SciTech Connect

    Samet, Masoud; Wang, Xue B.; Kass, Steven R.

    2014-08-07

    Rigid tricyclic locked in all axial 1,3,5-cyclohexanetriol derivatives with 0–3 trifluoromethyl groups were synthesized and photoelectron spectra of their conjugate bases and chloride anion clusters are reported along with density functional computations. The resulting vertical and adiabatic detachment energies provide measures of the anion stabilization due to the hydrogen bond network and inductive effects. The latter mechanism is found to be transmitted through space via hydrogen bonds

  6. Hydrogen bonding tunes the early stage of hydrogen-atom abstracting reaction.

    PubMed

    Yang, Yang; Liu, Lei; Chen, Junsheng; Han, Keli

    2014-09-01

    The spontaneous and collision-assisted hydrogen-atom abstracting reaction (HA) dynamics of triplet benzil are investigated through the combination of transient absorption spectroscopy with TD-DFT calculations. HA dynamics exhibit a remarkable dependence on the hydrogen donor properties. The effects of the triplet-state hydrogen bonding on the reaction dynamics are illustrated. In particular, it is experimentally observed that strengthened triplet-state hydrogen bonding could accelerate the HA, whereas weakened triplet-state hydrogen bonding would postpone the HA. The triplet-state hydrogen bonding has great influences on the early stage of the HA reaction, while the bond dissociation energy of the hydrogen donors determines the subsequent reaction pathways. Protic solvents could sustain longer lifetimes of the excited-state intermediate formed after HA than non-protic solvents by 10 μs. This investigation provides insights into the HA dynamics and guidance to improve the product efficiency of photochemical reactions. PMID:25036436

  7. Quantum effects in a simple ring with hydrogen bonds.

    PubMed

    Kariev, Alisher M; Green, Michael E

    2015-05-14

    Complexes containing multiple arginines are common in proteins. The arginines are typically salt-bridged or hydrogen-bonded, so that their charges do not repel. Here we present a quantum calculation of a ring in which the components of a salt bridge composed of a guanidinium, the arginine side chain, and a carboxylic acid are separated by water molecules. When one water molecule is displaced from the ring, atomic charges of the other water molecule, as well as other properties, are significantly affected. The exchange and correlation energy differences between optimized and displaced rings are larger than thermal energy at room temperature, and larger than the sum of other energy differences. This suggests that calculations on proteins and other systems where such a ring may occur must take quantum effects into account; charges on certain atoms shift as substituents are added to the system: another water molecule, an -OH, or -CN bonded to either moiety. Also, charge shifts accompany proton shifts from the acid to guanidinium to ionize the salt bridge. The consequences of moving one water out of the ring give evidence for electron delocalization. Bond order and atomic charges are determined using natural bond orbital calculations. The geometry of the complex changes with ionization as well as the -OH and -CN additions but not in a simple manner. These results help in understanding the role of groups of arginines in salt-bridged clusters in proteins. PMID:25906287

  8. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  9. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  10. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  11. Competing intramolecular vs. intermolecular hydrogen bonds in solution.

    PubMed

    Nagy, Peter I

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  12. How Alcohol Chain-Length and Concentration Modulate Hydrogen Bond Formation in a Lipid Bilayer

    PubMed Central

    Dickey, Allison N.; Faller, Roland

    2007-01-01

    Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration. PMID:17218462

  13. Interplay of olefin metathesis and multiple hydrogen bonding interactions: covalently cross-linked zippers.

    PubMed

    Zeng, Jisen; Wang, Wei; Deng, Pengchi; Feng, Wen; Zhou, Jingjing; Yang, Yuanyou; Yuan, Lihua; Yamato, Kazuhiro; Gong, Bing

    2011-08-01

    Hydrogen-bonded zippers bearing terminal alkene groups were treated with Grubbs' catalyst, leading to covalently cross-linked zippers without violating H-bonding sequence specificity. The yield of a cross-linked zipper depended on the stability of its H-bonded precursor, with a weakly associating pair giving reasonable yields only at high concentrations while strongly associating pairs showed nearly quantitative yields. The integration of thermodynamic (H-bonding) and kinetic (irreversible C═C bond formation) processes suggests the possibility of developing many different covalent association units for constructing molecular structures based on a self-assembling way. PMID:21699249

  14. Bioorganometallic Chemistry, Part 15. A novel molecular recognition process of host, trans-[Cp*Rh({eta}{sup 1}(N3)-1-methylcytosine)({mu}-OH)]{sub 2} (OTf){sub 2}, with l-aromatic amino acid guests: selective hydrogen bonding to the {mu}-OH groups and the 1-methylcytosine ligands

    SciTech Connect

    Elduque, Anabel; Carmona, Daniel; Oro, Luis; Eisenstein, Miriam; Fish, Richard H.

    2002-11-01

    The {sup 1}H-NMR and computer docking experiments have elucidated a novel molecular recognition process of host, trans-[Cp*Rh({eta}{sup 1}(Ne)-1-methylcytosine)({mu}-OH)]{sub 2}(OTf){sub 2} (1), with L-aromatic amino acids, which is predicated on a selective hydrogen bonding regime of the NH{sub 3}{sup +} of the amino acid to one of the Rh-{mu}-OH groups, as well as to a C{double_bond}O group of one of the other 1-methycytosine ligands, while the COO{sup -} H-bonds to an NH{sub 2} of the other 1-methycytosine ligand.

  15. Effect of Hydrogen-Bonding Junctions on Microphase Separation in Block Copolymers

    NASA Astrophysics Data System (ADS)

    Stone, Greg; Hedrick, Jim; Nederberg, Fredrik; Balsara, Nitash

    2008-03-01

    The morphology of poly(styrene-block- trimethylene carbonate) (PS-PTMC) copolymers with and without thiourea groups at the junction between the blocks was studied by a combination of small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The thiourea groups are known to exhibit inter-molecular hydrogen bonding. We demonstrate that the presence of thiourea groups results in increased segregation between PS and PTMC blocks. We focus on symmetric systems with total molecular weights in the 5 kg/mol range. In conventional block copolymers without hydrogen bonding groups it is difficult to obtain strong segregation in low molecular weight systems because the product chi*N controls segregation (chi is the Flory-Huggins interaction parameter and N is the number of monomers per chain). The incorporation of hydrogen bonding groups may provide a route for the generation of patterns with small, sharply defined features using block copolymers.

  16. Hydrogen bonding in liquid methanol, methylamine, and methanethiol studied by molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kosztolányi, T.; Bakó, I.; Pálinkás, G.

    2003-03-01

    Molecular-dynamics computer simulations have been carried out on liquid methanol, methylamine, and methanethiol. The local structure of the liquids was studied based on radial distribution functions and the density projections of the neighboring molecules obtained on the basis of simulated molecular configurations. The extent of hydrogen bonding was investigated by direct analysis of the connectivity of molecules forming hydrogen-bonded clusters in these liquids. By this analysis, the methanol molecules were found to form linear chainlike structures. The local structure of hydrogen-bonded molecules of methylamine proved to be rather space filling due to the great extent of chain branching. Methanethiol molecules also proved to form hydrogen bonds forming small compact clusters. No evidence was found, however, for the clustering of hydrophobic methyl groups in any of the liquids. The quality of simulations was checked by derivation of neutron total and composite radial distribution functions and by comparison of those with available experimental data.

  17. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    SciTech Connect

    Hermann, Andreas Nelmes, Richard J.; Loveday, John S.; Guthrie, Malcolm

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  18. Pressure-induced localisation of the hydrogen-bond network in KOH-VI.

    PubMed

    Hermann, Andreas; Guthrie, Malcolm; Nelmes, Richard J; Loveday, John S

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure. PMID:26723701

  19. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Guthrie, Malcolm; Nelmes, Richard J.; Loveday, John S.

    2015-12-01

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  20. Dynamics of the chemical bond: inter- and intra-molecular hydrogen bond.

    PubMed

    Arunan, Elangannan; Mani, Devendra

    2015-01-01

    In this discussion, we show that a static definition of a 'bond' is not viable by looking at a few examples for both inter- and intra-molecular hydrogen bonding. This follows from our earlier work (Goswami and Arunan, Phys. Chem. Chem. Phys. 2009, 11, 8974) which showed a practical way to differentiate 'hydrogen bonding' from 'van der Waals interaction'. We report results from ab initio and atoms in molecules theoretical calculations for a series of Rg∙∙∙HX complexes (Rg=He/Ne/Ar and X=F/Cl/Br) and ethane-1,2-diol. Results for the Rg∙∙∙HX/DX complexes show that Rg∙∙∙DX could have a 'deuterium bond' even when Rg∙∙∙HX is not 'hydrogen bonded', according to the practical criterion given by Goswami and Arunan. Results for ethane-1,2-diol show that an 'intra-molecular hydrogen bond' can appear during a normal mode vibration which is dominated by the OO stretching, though a 'bond' is not found in the equilibrium structure. This dynamical 'bond' formation may nevertheless be important in ensuring the continuity of electron density across a molecule. In the former case, a vibration 'breaks' an existing bond and in the later case, a vibration leads to 'bond' formation. In both cases, the molecule/complex stays bound irrespective of what happens to this 'hydrogen bond'. Both these cases push the borders on the recent IUPAC recommendation on hydrogen bonding (Arunan et al. Pure. Appl. Chem. 2011, 83 1637) and justify the inclusive nature of the definition. PMID:25627627

  1. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    SciTech Connect

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  2. The effect of intermolecular hydrogen bonding on the planarity of amides.

    PubMed

    Platts, James A; Maarof, Hasmerya; Harris, Kenneth D M; Lim, Gin Keat; Willock, David J

    2012-09-14

    Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induce non-planarity in formamide, with OCNH dihedral angles deviating by up to ca. 20° from planarity. Ab initio energy calculations demonstrate that the energy required to deform an amide molecule from the preferred geometry of the isolated molecule is more than compensated by the stabilisation due to hydrogen bonding. Similarly, the NH(2) group in urea can be made effectively planar by the presence of appropriately positioned hydrogen-bond acceptors, whereas hydrogen-bond donors increase the non-planarity of the NH(2) group. Small clusters (a dimer, two trimers and a pentamer) extracted from the crystal structure of urea indicate that the crystal field acts to force planarity of the urea molecule; however, the interaction with nearest neighbours alone is insufficient to induce the molecule to become completely planar, and longer-range effects are required. Finally, the potential for intermolecular hydrogen bonding to induce non-planarity in a model of a peptide is explored. Inter alia, the insights obtained in the present work on the extent to which the geometry of amide groups may be deformed under the influence of intermolecular hydrogen bonding provide structural guidelines that can assist the interpretation of the geometries of such groups in structure determination from powder X-ray diffraction data. PMID:22847473

  3. Direct observation of intermolecular interactions mediated by hydrogen bonding

    NASA Astrophysics Data System (ADS)

    De Marco, Luigi; Thämer, Martin; Reppert, Mike; Tokmakoff, Andrei

    2014-07-01

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N-H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  4. Direct observation of intermolecular interactions mediated by hydrogen bonding

    SciTech Connect

    De Marco, Luigi; Reppert, Mike; Thämer, Martin; Tokmakoff, Andrei

    2014-07-21

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N–H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  5. Sum frequency generation of hydrogen-bonding liquid surfaces

    NASA Astrophysics Data System (ADS)

    Baldelli, Steve

    The surface-specific vibrational spectroscopy sum frequency generation (SFG) is used to examine the physical/chemical environment of molecules at the liquid/air interface. In glycerol/water mixtures, glycerol is found to partition to the surface in excess compared to the bulk concentration. Further, it is discovered that the free OH peak of water (an OH group projecting out of the liquid into the vapor) can be used as an indicator of the surface coverage of water at the surface. Solutions of alkali sulfate salts also affect the surface structure of water. These ions increase the ordered structure of water at the interface by increasing the oriented hydrogen-bond network. This order-increasing effect is found to occur to a greater extent for sulfuric acid solutions. A model based on ion association and a sub-surface electric double-layer is used to describe these results. A correlation between the surface coverage of water and the extent of dissociation of the acid is discovered; i.e., increasing acid association decreases the surface coverage of water. Finally, solutions of HCl/water are investigated. In these systems, the electrolytic nature of HCl is found to increase the hydrogen-bonded order of the interfacial water molecules. Further, despite the polar nature of HCl, no molecular HCl is detected on any surface despite surface tension measurements indicating an excess of HCl at the surface. The neat HCl liquid surface is the only system where molecular HCl is observed.

  6. Hydrogen bond competition in the ethanol-methanol dimer.

    PubMed

    Finneran, Ian A; Carroll, P Brandon; Mead, Griffin J; Blake, Geoffrey A

    2016-08-10

    Previous theoretical work on the ethanol-methanol dimer has been inconclusive in predicting the preferred hydrogen bond donor/acceptor configuration. Here, we report the microwave spectrum of the dimer using a chirped pulse Fourier transform microwave spectrometer from 8-18 GHz. In an argon-backed expansion, 50 transitions have been assigned to a trans-ethanol-acceptor/methanol-donor structure that is likely stabilized by a secondary weak C-HO hydrogen bond. A higher energy conformer was observed in a helium-backed expansion and tentatively assigned to a gauche-ethanol-acceptor/methanol-donor structure. No ethanol-donor/methanol-acceptor dimers have been found, suggesting such interactions are energetically disfavored. A preliminary analysis of the A-E splitting due to the internal rotation of the methanol methyl group in the ground state species is also presented. We find evidence of the Ubbelohde effect in the measured A-E splittings of three deuterated isotopologues and the normal species of this conformer. PMID:27472828

  7. Tunnelling readout of hydrogen-bonding-based recognition.

    PubMed

    Chang, Shuai; He, Jin; Kibel, Ashley; Lee, Myeong; Sankey, Otto; Zhang, Peiming; Lindsay, Stuart

    2009-05-01

    Hydrogen bonding has a ubiquitous role in electron transport and in molecular recognition, with DNA base pairing being the best-known example. Scanning tunnelling microscope images and measurements of the decay of tunnel current as a molecular junction is pulled apart by the scanning tunnelling microscope tip are sensitive to hydrogen-bonded interactions. Here, we show that these tunnel-decay signals can be used to measure the strength of hydrogen bonding in DNA base pairs. Junctions that are held together by three hydrogen bonds per base pair (for example, guanine-cytosine interactions) are stiffer than junctions held together by two hydrogen bonds per base pair (for example, adenine-thymine interactions). Similar, but less pronounced effects are observed on the approach of the tunnelling probe, implying that attractive forces that depend on hydrogen bonds also have a role in determining the rise of current. These effects provide new mechanisms for making sensors that transduce a molecular recognition event into an electronic signal. PMID:19421214

  8. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    PubMed

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. PMID:25890437

  9. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  10. Impact of a carboxyl group on a cyclometalated ligand: hydrogen-bond- and coordination-driven self-assembly of a luminescent platinum(II) complex.

    PubMed

    Ebina, Masanori; Kobayashi, Atsushi; Ogawa, Tomohiro; Yoshida, Masaki; Kato, Masako

    2015-09-21

    A new luminescent cyclometalated platinum(II) complex containing a carboxyl group, trans-[Pt(pcppy)(pic)][1-COOH; Hpcppy = 2-(p-carboxyphenyl)pyridine and Hpic = picolinic acid] has been synthesized and characterized. The luminescence behavior of 1-COOH in the solid and solution states is completely different despite the similarity of the luminescence in both states for the nonsubstituted complex, [Pt(ppy)(pic)] (1-H; Hppy = 2-phenylpyridine). Interestingly, 1-COOH exhibits concentration-dependent absorption and emission behavior based on its aggregation in a basic aqueous solution despite the absence of amphiphilic character. PMID:26327429

  11. Thermochromism and structural change in polydiacetylenes including carboxy and 4-carboxyphenyl groups as the intermolecular hydrogen bond linkages in the side chain.

    PubMed

    Tanioku, Chiaki; Matsukawa, Kimihiro; Matsumoto, Akikazu

    2013-02-01

    We investigated the thermochromic behavior of polydiacetylenes including the carboxy and 4-carboxyphenyl groups as the side-chain substituents adjacent to the conjugated main chain, and then, the thermal stability and the thermochromism reversibility of the polymers were related to changes in the polymer conformations monitored by IR and Raman spectroscopies and powder X-ray diffractions. The polydiacetylenes with no or a phenylene spacer between the main chain and the carboxylic acid moiety were revealed to exhibit a thermal resistance for maintaining reversible thermochromism in a high temperature range, rather than polydiacetylenes with a conventional structure with a flexible alkylene spacer. The molecular stacking structures of the diacetylenes and the corresponding polymers in the crystals were discussed based on the results of an X-ray single-crystal structure analysis as well as the powder X-ray diffraction measurements. PMID:23276165

  12. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function

    PubMed Central

    Horowitz, Scott; Trievel, Raymond C.

    2012-01-01

    Carbon-oxygen (CH···O) hydrogen bonding represents an unusual category of molecular interactions first documented in biological structures over 4 decades ago. Although CH···O hydrogen bonding has remained generally underappreciated in the biochemical literature, studies over the last 15 years have begun to yield direct evidence of these interactions in biological systems. In this minireview, we provide a historical context of biological CH···O hydrogen bonding and summarize some major advancements from experimental studies over the past several years that have elucidated the importance, prevalence, and functions of these interactions. In particular, we examine the impact of CH···O bonds on protein and nucleic acid structure, molecular recognition, and enzyme catalysis and conclude by exploring overarching themes and unresolved questions regarding unconventional interactions in biomolecular structure. PMID:23048026

  13. Self-assembled multiwalled carbon nanotube films assisted by ureidopyrimidinone-based multiple hydrogen bonds.

    PubMed

    Wang, Sumin; Guo, Hao; Wang, Xiaomin; Wang, Qiguan; Li, Jinhua; Wang, Xinhai

    2014-11-01

    Self-assembled functionalized multiwalled carbon nanotube (MWNT) films were successfully constructed, linked by a kind of strong binding strength from the self-complementary hydrogen-bonding array of ureidopyrimidinone-based modules (UPM) attached. Employing the feasible reaction of isocyanate containing ureidopyrimidinone with amine modified MWNTs, the UPMs composed of ureidopyrimidinone and ureido were attached to MWNTs with the content as low as 0.6 mmol/g MWNTs. Upon multiple hydrogen-bonding interactions from incorporation of the AADD (A, hydrogen-bonding acceptor; D, hydrogen-bonding donor) quadruple hydrogen bonds of ureidopyrimidinone and the double hydrogen bonds of ureido group, UPM functionalized MWNTs (MWNT-UPM) can be well dispersed in the polar solvent of N,N-dimethylformamide (DMF), while they tend to self-assemble to give a self-supported film in the apolar solvent of CHCl3. In addition, by using the multiple hydrogen-bonding interactions as the driving force, the layer-by-layer (LBL) MWNT-UPM films with high coverage on solid slides can be processed. Because of the self-association of MWNT-UPM in apolar solvent, it was found that the LBL assembly of MWNT-UPM was more favorable in the polar solvent of DMF than in the apolar solvent of CHCl3. Moreover, the hydrogen-bonding linked MWNT-UPM films showed good stability upon soaking in different solvents. Furthermore, the as-prepared LBL films showed electrochemical active behaviors, exhibiting a remarkable catalytic effect on the reduction of nifedipine. PMID:25296167

  14. A rheo-optic study of hydrogen-bonded polymers

    SciTech Connect

    Van Buskirk, C.S.

    1988-01-01

    The influence of hydrogen bonds on polymer mechanical properties was examined using rheo-optic techniques. To isolate the hydrogen bond effect, poly(vinyl alcohol) (PVOH), which has a high hydrogen bond density, was studied during stress relaxation, a process dominated by intermolecular hydrogen bonds. To vary the degree and strength of hydrogen bonding, copolymers containing 2.7, 5.7, and 12.8% poly (vinyl acetate) were prepared by reacetylation of PVOH. Samples were also annealed. IR spectroscopy was used to measure samples' molecular response during stress relaxation. Samples were subjected to deuterium exchange reaction before testing, amorphous regions undergo this exchange process preferentially to crystalline regions. Because IR vibration is a function of mass, deuteration resulted in separation of crystalline and amorphous response to stress in the spectra: OH stretching frequency represented crystalline response, OD the amorphous. Prior to rheo-optic testing, polymers were characterized by differential scanning calorimetry. Analysis of these data lead to the identification of a previously improperly assigned endotherm near 410 K. Three types of stress relaxation tests were performed: high strain level, low strain level, and strain and recovery sequences. Correlations between stress and IR peak position and band distribution were found during the application of large strain, though during subsequent relaxation these correlations were not as pronounced. Results indicate that stress relaxation occurs by a redistribution of hydrogen bond strengths, and that stress is borne differently in crystalline and amorphous regions. Strain and recovery test results emphasized the correlation between stress and hydrogen bond strengths. These data indicated crystalline response to stress is stiff, whereas amorphous response is viscous.

  15. Hydrogen bonds in PC{sub 61}BM solids

    SciTech Connect

    Sheng, Chun-Qi; Li, Wen-Jie; Du, Ying-Ying; Chen, Guang-Hua; Chen, Zheng; Li, Hai-Yang; Li, Hong-Nian

    2015-09-15

    We have studied the hydrogen bonds in PC{sub 61}BM solids. Inter-molecular interaction is analyzed theoretically for the well-defined monoclinic (P2{sub 1}/n) structure. The results indicate that PC{sub 61}BM combines into C–H⋯O{sub d} bonded molecular chains, where O{sub d} denotes the doubly-bonded O atom of PC{sub 61}BM. The molecular chains are linked together by C–H⋯O{sub s} bonds, where O{sub s} denotes the singly-bonded O atom of PC{sub 61}BM. To reveal the consequences of hydrogen bond formation on the structural properties of PC{sub 61}BM solids (not limited to the monoclinic structure), we design and perform some experiments for annealed samples with the monoclinic (P2{sub 1}/n) PC{sub 61}BM as starting material. The experiments include differential scanning calorimetry, X-ray diffraction and infrared absorption measurements. Structural phase transitions are observed below the melting point. The C–H⋯O{sub d} bonds seem persisting in the altered structures. The inter-molecular hydrogen bonds can help to understand the phase separation in polymer/PC{sub 61}BM blends and may be responsible for the existence of liquid PC{sub 61}BM.

  16. New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure.

    PubMed

    Boobbyer, D N; Goodford, P J; McWhinnie, P M; Wade, R C

    1989-05-01

    An empirical energy function designed to calculate the interaction energy of a chemical probe group, such as a carbonyl oxygen or an amine nitrogen atom, with a target molecule has been developed. This function is used to determine the sites where ligands, such as drugs, may bind to a chosen target molecule which may be a protein, a nucleic acid, a polysaccharide, or a small organic molecule. The energy function is composed of a Lennard-Jones, an electrostatic and a hydrogen-bonding term. The latter is dependent on the length and orientation of the hydrogen bond and also on the chemical nature of the hydrogen-bonding atoms. These terms have been formulated by fitting to experimental observations of hydrogen bonds in crystal structures. In the calculations, thermal motion of the hydrogen-bonding hydrogen atoms and lone-pair electrons may be taken into account. For example, in a alcoholic hydroxyl group, the hydrogen may rotate around the C-O bond at the observed tetrahedral angle. In a histidine residue, a hydrogen atom may be bonded to either of the two imidazole nitrogens and movement of this hydrogen will cause a redistribution of charge which is dependent on the nature of the probe group and the surrounding environment. The shape of some of the energy functions is demonstrated on molecules of pharmacological interest. PMID:2709375

  17. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.

    PubMed

    Fodor, Krisztián; Harmat, Veronika; Neutze, Richard; Szilágyi, László; Gráf, László; Katona, Gergely

    2006-02-21

    Atomic resolution (hydrogen bonds between the enzyme and the substrate changed during catalysis. The well-conserved hydrogen bonds of antiparallel beta-sheet between the enzyme and the substrate become significantly shorter in the transition from a Michaelis complex analogue (Pontastacus leptodactylus (narrow-fingered crayfish) trypsin (CFT) in complex with Schistocerca gregaria (desert locust) trypsin inhibitor (SGTI) at 1.2 A resolution) to an acyl-enzyme intermediate (N-acetyl-Asn-Pro-Ile acyl-enzyme intermediate of porcine pancreatic elastase at 0.95 A resolution) presumably synchronously with the nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. This is interpreted as an active mechanism that utilizes the energy released from the stronger hydrogen bonds to overcome the energetic barrier of the nucleophilic attack by the hydroxyl group of the catalytic serine. In the CFT:SGTI complex this hydrogen bond shortening may be hindered by the 27I-32I disulfide bridge and Asn-15I of SGTI. The position of the catalytic histidine changes slightly as it adapts to the different nucleophilic attacker during the transition from the Michaelis complex to the acyl-enzyme state, and simultaneously its interaction with Asp-102 and Ser-214 becomes stronger. The oxyanion hole hydrogen bonds provide additional stabilization for acyl-ester bond in the acyl-enzyme than for scissile peptide bond of the Michaelis complex. Significant deviation from planarity is not observed in the reactive bonds of either the Michaelis complex or the acyl-enzyme. In the Michaelis complex the electron distribution of the carbonyl bond is distorted toward the oxygen atom compared to other peptide bonds in the structure, which indicates the polarization effect of the oxyanion hole. PMID:16475800

  18. Frequent Side Chain Methyl Carbon-Oxygen Hydrogen Bonding in Proteins Revealed by Computational and Stereochemical Analysis of Neutron Structures

    PubMed Central

    Brooks, Charles L.; Trievel, Raymond C.

    2016-01-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH···O) hydrogen bonding is well-appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. PMID:25401519

  19. Non-conventional hydrogen bonds: pterins-metal anions.

    PubMed

    Vargas, Rubicelia; Martínez, Ana

    2011-07-28

    In this paper, we present an analysis of the interaction of metal ions (Cu, Ag and Au) with three different pterins (pterin, isoxanthopterin and sepiapterin) to provide insights concerning the formation of conventional and non-conventional H bonds. Density functional theory calculations were performed in order to reveal the optimized structures of pterin molecules, dimers and tetramers compounds, both with and without metal anions (M). The interaction with small metal clusters (M(3)) is also considered. The formation of different systems is characterized in terms of the structural parameters and hydrogen binding energies (HBE). The HBE values for pterin-M systems presented in this study lie between 22 and 60 kcal mol(-1) and can therefore be classified as strong conventional and strong non-conventional hydrogen bonds. The HBE with small metal clusters (pterin-M(3)) are smaller than the HBE with metal atoms. Vertical electron detachment energies (VEDEs) are also reported in order to analyze the influence of the hydrogen bond on electronic properties. A direct correlation between VEDEs and HBE was found for pterin-M and pterin-M(3) complexes; i.e. as the VEDEs increase, the HBE also augment. The only exception is with Ag(3). The main conclusion derived from this study is that the strong non-conventional hydrogen bonds formed between pterins, dimers and tetramers do not affect the formation of conventional hydrogen bonds between pterins but they do influence the VEDEs. PMID:21695329

  20. How Cellulose Stretches: Synergism between Covalent and Hydrogen Bonding

    PubMed Central

    2014-01-01

    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C–O–C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk. PMID:24568640

  1. Influencing factors of hydrogen bonding intensity in beer.

    PubMed

    Liu, Chunfeng; Dong, Jianjun; Yin, Xiangsheng; Li, Qi; Gu, Guoxian

    2014-11-01

    The hydrogen bonding was prone to be formed by many components in beer. Different sorts of flavor substances can affect the Chemical Shift due to their different concentrations in beer. Several key factors including 4 alcohols, 2 esters, 6 ions, 9 acids, 7 polyphenols, and 2 gravity indexes (OG and RG) were determined in this research. They could be used to investigate the relationship between hydrogen bonding intensity and the flavor components in bottled larger beers through the Correlation Analysis, Principal Component Analysis and Multiple Regression Analysis. Results showed that ethanol content was the primary influencing factor, and its correlation coefficient was 0.629 for Correlation Analysis. Some factors had a positive correlation with hydrogen bonding intensity, including the content of original gravity, ethanol, isobutanol, Cl(-), K(+), pyruvic acid, lactic acid, gallic acid, vanillic acid, and Catechin in beer. A mathematic model of hydrogen bonding Chemical Shift and the content of ethanol, pyruvic acid, K(+), and gallic acid was obtained through the Principal Component Analysis and Multiple Regression Analysis , with the adjusted R(2) being 0.779 (P = 0.001). Ethanol content was proved to be the most important factor which could impact on hydrogen bonding association in beer by Principal Component Analysis. And then, a multiple non-linearity model could be obtained as follows: [Formula: see text]. The average error was 1.23 % in the validated experiment. PMID:26396290

  2. Mapping the force field of a hydrogen-bonded assembly

    PubMed Central

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N.R.; Kantorovich, L.; Moriarty, P.

    2014-01-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism. PMID:24875276

  3. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  4. Neutron diffraction of alpha, beta and gamma cyclodextrins: Hydrogen bonding patterns

    SciTech Connect

    Hingerty, B.; Klar, B.; Hardgrove, G.L.; Betzel, C.; Saenger, W. )

    1984-08-01

    Cyclodextrins (CD's) have proved useful as model systems for the study of hydrogen bonding. They are torus-shaped molecules composed of six(alpha), seven(beta) or eight(gamma) (1----4) linked glucoses. Because of their particular geometry, they are able to act as a host to form inclusion complexes with guest molecules very much like enzymes. Cyclodextrins have been shown to exert catalytic activity on suitable included-substrate molecules; they catalyze the hydrolysis of phenylacetates, of organic pyrophosphates and of penicillin derivatives. They also accelerate aromatic chlorinations and diazo coupling by means of their primary and/or secondary hydroxyl groups, so that the rates of hydrolysis are enhanced by up to a factor of 400. In order to understand the hydrogen bonding in these enzyme models, neutron diffraction data were collected to unambiguously determine the hydrogen atom positions, which could not be done from the x-ray diffraction data. alpha-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for alpha-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for alpha-CD due to the energetically favored cooperative effect. beta-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H...H-O representing an equilibrium between two states: O-H...O in equilibrium O...H-O. gamma-CD with a disordered water structure similar to beta-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state. 33 references.

  5. Intramolecular Hydrogen-Bonding Effects on the Fluorescence of PRODAN Derivatives.

    PubMed

    Alty, Isaac G; Cheek, Douglas W; Chen, Tao; Smith, David B; Walhout, Emma Q; Abelt, Christopher J

    2016-05-26

    The effects of intramolecular hydrogen-bonding on the fluorescence behavior of three derivatives of 6-propionyl-2-dimethylaminonaphthalene are reported. The H-bonding effects are revealed through comparisons with corresponding reference compounds in which the H-bond-donating hydroxyl groups are replaced with methoxy groups. In toluene, intramolecular H bonding gives rise to a dramatic increase in the fluorescence intensity but only a slight red shift in the position. This behavior is attributed to decreased efficiency in intersystem crossing due to an increase in the energy of the n → π* triplet state. The intramolecular H bond does not induce quenching in acetonitrile; however, in the presence of a very small concentration of methanol, a dual intramolecular, intermolecular H-bonding arrangement does lead to partial quenching as revealed by preferential solvation studies. PMID:27127907

  6. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion

    PubMed Central

    Knorr, Anne; Ludwig, Ralf

    2015-01-01

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures. PMID:26626928

  7. Universality in hydrogen-bond networks

    NASA Astrophysics Data System (ADS)

    Nadler, Walter; Krausche, Thomas

    1991-12-01

    We present several lattice models for water that belong to the universality class of Angell's independent bond model. The relevance for real water, the relationship to percolation models for water, and the possible use of these models in simulations of protein-sovlent systems is discussed.

  8. Hydrogen bonding and solution state structure of salicylaldehyde-4-phenylthiosemicarbazone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Novak, Predrag; Pičuljan, Katarina; Hrenar, Tomica; Biljan, Tomislav; Meić, Zlatko

    2009-02-01

    Hydrogen bonding in salicylaldehyde-4-phenylthiosemicarbazone ( 1) has been studied by using experimental (NMR, Raman and UV spectroscopies) and quantum chemical (DFT) methods. It has been demonstrated that 1 adopted the hydroxy-thione tautomeric form in solution as found also in the solid state and previously indicated by secondary deuterium isotope effects. Apart from the intra-molecular hydrogen bonds new interactions between 1 and solvent molecules were formed as well. Changes in NMR chemical shifts and calculations have pointed towards a formation of inter-molecular three-centered hydrogen bonds in each of the studied complexes involving OH and NH groups of 1 and associated solvent molecules. Stabilization energies of intra-molecular hydrogen bonds were found to decrease with the increase of the solvent polarity. Two-dimensional NOESY spectra indicated conformational changes in solution with respect to the structure observed in the solid state. These were accounted for by a relatively low barrier of the rotation of the N sbnd N single bond thus enabling a molecule to posses a higher conformational flexibility in solution with portions of skewed conformations. The results presented here can help in a better understanding of the role hydrogen bonds can play in bioactivity of related thiosemicarbazone derivatives and their metal complexes.

  9. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  10. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  11. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy. PMID:16375338

  12. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    PubMed

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  13. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation.

    PubMed

    Bower, John F; Krische, Michael J

    2011-01-01

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds. PMID:21822399

  14. Formation of C-C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Bower, John F.; Krische, Michael J.

    The formation of C-C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C-C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile-nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C-H bonds.

  15. The Delicate Balance of Hydrogen Bond Forces in D-Threoninol

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Vara, Vanesa Vaquero; Dian, Brian C.; Zwier, Timothy S.; Pratt, David W.

    2013-06-01

    The molecule of D-threoninol has been studied using CP-FTMW spectroscopy. Despite the small size of this molecule, a great variety of conformations have been observed in the molecular expansion. With 2 OH groups and one NH_2 group, many possibilities for hydrogen bonding are anticipated. The multiple ways they can interact with each other make the analysis of its rotational spectrum challenging and only through an exhaustive conformational search and the comparison with the experimental rotational parameters and line strengths are we able to understand the complex nature of these interactions. In the 7 conformations already assigned, evidences for hydrogen bonded cycles and chains are revealed with dipole moment very sensitive to the configuration of the hydrogen bond.

  16. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  17. (+/-)-3-Oxocyclohexanecarboxylic and -acetic acids: contrasting hydrogen-bonding patterns in two homologous keto acids.

    PubMed

    Barcon, Alan; Brunskill, Andrew P J; Lalancette, Roger A; Thompson, Hugh W

    2002-03-01

    The crystal structures for the title compounds reveal fundamentally different hydrogen-bonding patterns. (+/-)-3-Oxocyclohexanecarboxylic acid, C(7)H(10)O(3), displays acid-to-ketone catemers having a glide relationship for successive components of the hydrogen-bonding chains which advance simultaneously by two cells in a and one in c [O...O = 2.683 (3) A and O-H...O = 166]. A pair of intermolecular close contacts exists involving the acid carbonyl group. The asymmetric unit in (+/-)-3-oxocyclohexaneacetic acid, C(8)H(12)O(3), utilizes only one of two available isoenthalpic conformers and its aggregation involves mutual hydrogen bonding by centrosymmetric carboxyl dimerization [O.O = 2.648 (3) A and O-H...O = 171]. Intermolecular close contacts exist for both the ketone and the acid carbonyl group. PMID:11870311

  18. Conservation and Functional Importance of Carbon-Oxygen Hydrogen Bonding in AdoMet-Dependent Methyltransferases

    SciTech Connect

    Horowitz, Scott; Dirk, Lynnette M.A.; Yesselman, Joseph D.; Nimtz, Jennifer S.; Adhikari, Upendra; Mehl, Ryan A.; Scheiner, Steve; Houtz, Robert L.; Al-Hashimi, Hashim M.; Trievel, Raymond C.

    2013-09-06

    S-Adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon–oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.

  19. Estimating the energy of intramolecular hydrogen bonds in chitosan oligomers

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.; Lazarev, V. V.

    2016-07-01

    The effect the number of chitosan monomer units CTS n ( n = 1-5), the protonation of chitosan dimers, and the interaction between CTS n ( n = 1-3) and acetate ions have on the energy of intramolecular hydrogen bonds is investigated by means of QTAIM analysis and solving the vibrational problem within the cluster-continuum model. It is established that the number of H-bonds in CTS n is 2 n - 1 and the total energy of H-bonds grows by ~20 kJ/mol. It is concluded that the hydrogen bonds between CTS and acetate ions play a major role in the stabilization of polyelectrolyte complexes in dilute acetic acid solutions of CTS.

  20. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    SciTech Connect

    Kumar, Nitin; Neogi, Sanghamitra; Kent, Paul R; Bandura, Andrei V.; Wesolowski, David J; Cole, David R; Sofo, Jorge O.

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  1. Aqueous hydrogen bonding probed with polarization and matrix isolation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane; Bisson, Patrick; Buch, Victoria; Groenzin, Henning; Li, Irene

    2010-05-01

    A major challenge in hydrogen-bond research is interpreting the vibrational spectrum of water, arguably the most fundamental hydrogen bonding system. This challenge remains despite over a half century of progress in vibrational spectroscopy, largely due to a combination of the huge oscillator strength and the enormous width of the hydrogen-bond region. Lack of assignment of the resonances in the hydrogen-bond region hinders investigation of interactions between water and solutes. This lack-of-interpretation issue is an even more significant problem for studies of the aqueous interface. Numerous solutes are known to have an effect, some very dramatic, on the shape of the surface spectrum. These effects, however, are but tantalizing teasers because lack of interpretation means that the changes cannot be used to diagnose the effect of solutes or impinging gas-phase molecules on the surface. In the reported work two techniques are used to probe the origin of vibrational resonances in the H-bonded region: the surface sensitive technique sum frequency generation (SFG) and room-temperature matrix isolation spectroscopy (RT-MIS). A polarization technique called polarization angle null (PAN) has been developed that extends SFG and enables identification of resonances. The result of applying PAN-SFG to single crystal, I h ice is identification of at least nine underlying resonances and assignment of two of these. One resonance is correlated with the crystal temperature and is a sensitive probe for interactions that disrupt long range order on the surface - it is a morphology reporter. The second is associated with weakly bonded, double-donor water molecules. This resonance is sensitive to interaction of hydrogen bond donors, i.e. acids, with the surface. Both modes are more correctly pictured as collective modes. These two assignments are the first definitive assignments in the hydrogen-bond region for the aqueous surface. The effect of salts on the vibrational spectrum of

  2. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate.

    PubMed

    Fortes, A Dominic; Wood, Ian G; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J; Sparkes, Hazel A

    2014-12-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å(3) [ρcalc = 1281.8 (7) kg m(-3)] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (EHB ≃ 30-40 kJ mol(-1)), on the basis of H...O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol(-1). The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  3. Structure, hydrogen bonding and thermal expansion of ammonium carbonate monohydrate

    PubMed Central

    Fortes, A. Dominic; Wood, Ian G.; Alfè, Dario; Hernández, Eduardo R.; Gutmann, Matthias J.; Sparkes, Hazel A.

    2014-01-01

    We have determined the crystal structure of ammonium carbonate monohydrate, (NH4)2CO3·H2O, using Laue single-crystal diffraction methods with pulsed neutron radiation. The crystal is orthorhombic, space group Pnma (Z = 4), with unit-cell dimensions a = 12.047 (3), b = 4.453 (1), c = 11.023 (3) Å and V = 591.3 (3) Å3 [ρcalc = 1281.8 (7) kg m−3] at 10 K. The single-crystal data collected at 10 and 100 K are complemented by X-ray powder diffraction data measured from 245 to 273 K, Raman spectra measured from 80 to 263 K and an athermal zero-pressure calculation of the electronic structure and phonon spectrum carried out using density functional theory (DFT). We find no evidence of a phase transition between 10 and 273 K; above 273 K, however, the title compound transforms first to ammonium sesquicarbonate monohydrate and subsequently to ammonium bicarbonate. The crystallographic and spectroscopic data and the calculations reveal a quite strongly hydrogen-bonded structure (E HB ≃ 30–40 kJ mol−1), on the basis of H⋯O bond lengths and the topology of the electron density at the bond critical points, in which there is no free rotation of the ammonium cation at any temperature. The barrier to free rotation of the ammonium ions is estimated from the observed librational frequency to be ∼ 36 kJ mol−1. The c-axis exhibits negative thermal expansion, but the thermal expansion behaviour of the a and b axes is ormal. PMID:25449618

  4. Simulating hydrogen-bond clustering and phase behaviour of imidazole oligomers

    NASA Astrophysics Data System (ADS)

    Harvey, Jacob A.; Basak, Dipankar; Venkataraman, Dhandapani; Auerbach, Scott M.

    2012-05-01

    We have modelled structures and dynamics of hydrogen bond networks that form from imidazoles tethered to oligomeric aliphatic backbones in crystalline and glassy phases. We have studied the behaviour of oligomers containing 5 or 10 imidazole groups. These systems have been simulated over the range 100-900 K with constant-pressure molecular dynamics using the AMBER 94 forcefield, which was found to show good agreement with ab initio calculations on hydrogen bond strengths and imidazole rotational barriers. Hypothetical crystalline solids formed from packed 5-mers and 10-mers melt above 600 K, then form glassy solids upon cooling. Viewing hydrogen bond networks as clusters, we gathered statistics on cluster sizes and percolating pathways as a function of temperature, for comparison with the same quantities extracted from neat imidazole liquid. We have found that, at a given temperature, the glass composed of imidazole 5-mers shows the same hydrogen bond mean cluster size as that from the 10-mer glass, and that this size is consistently larger than that in liquid imidazole. Hydrogen bond clusters were found to percolate across the simulation cell for all glassy and crystalline solids, but not for any imidazole liquid. The apparent activation energy associated with hydrogen bond lifetimes in these glasses (9.3 kJ mol-1) is close to that for the liquid (8.7 kJ mol-1), but is substantially less than that in the crystalline solid (13.3 kJ mol-1). These results indicate that glassy oligomeric solids show a promising mixture of extended hydrogen bond clusters and liquid-like dynamics.

  5. Hydrogen bonds in Zif268 proteins - a theoretical perspective.

    PubMed

    Palanivel, Umadevi; Lakshmipathi, Senthilkumar

    2016-08-01

    The aim of the work was to elucidate the presence of different hydrogen bond (H-bond) in five Zif268 proteins (1A1F, 1A1G, 1A1H, 1A1I and 1A1K). For this purpose, we have performed the QM/MM and molecular dynamics (MD) studies, the results of which reveal that H-bonds depend on the amino acid sequence and orientation of the H-bond donor atoms. Further, high specificity of Arg and Asn is observed for guanine and adenine, respectively. Furthermore, both conventional and non-conventional hydrogen bond also exists in the proteins, among them N-H⋯O H-bonds are the strongest. Besides, the non-conventional bonds play a role in the protein folding and DNA stacking. From the QSAR properties, amino acids such as asparagine and aspartic acids are the major reactive sites in the Zif268 protein. The electron affinities of Zif268 proteins are high, so the charge transfer occurs from the DNA to the protein molecules. NBO analysis indicates the majority of charge transfer occurs from DNA to the corresponding anti-bonding orbital of the peptides. Root mean square deviation and Rg (radius of gyration) show that 1A1F is more compact and in native state during MD simulation. The minimum Rg leads to the large number of hydrogen bonds formation in 1A1F. Higher solvent accessible surface area in 1A1I indicates that the cavity inside the protein is large. PMID:26300286

  6. Ether complexes of tungsten with two different binding modes: An O-bound ether and an {eta}{sup 2}-(C=C) vinyl ether. Evidence for C-H...O hydrogen bonding of vinylic C-H groups

    SciTech Connect

    Song, J.S.; Szalda, D.J.; Bullock, R.M.

    1996-11-13

    The reaction of PhCH(OCH{sup 3}){sup 2} with Cp(CO){sup 3}WH and HOTf gives [Cp(CO){sup 3}W(PhCH{sup 2}OCH{sup 3})]{sup +}OTf{sup -}. The structure of this benzyl methyl ether complex was determined by single crystal X-ray diffraction and was shown to have the ether bonded to tungsten through the oxygen. This compound was isolated as a kinetic product of the reaction; it decomposes in solution by releasing free PhCH{sup 2}OCH{sup 3} and forming Cp(CO){sup 3}WOTf. An analog with the BAr`{sup 4}{sup -} counterion [Ar` = 3, 5-bis(trifluoromethyl)phenyl] is more stable. The reaction of the vinyl acetal CH{sup 2}=CHCH(OEt){sup 2} with Cp(CO){sup 3}WH and HOTf produces [Cp(CO){sup 3}W({eta}{sup 2}-EtOCH=CHCH{sup 3})]{sup +} OTf{sup -}, in which the ether is bonded to tungsten through the C=C bond of the vinyl ether. The crystal structure of this compound shows that the W-C(OEt) distance (2.69(3) A) is significantly longer than the W-C(CH{sup 3}) distance (2.37(3) A). There are weak C-H...O hydrogen bonds between both vinyl CH`s and oxygens of the triflate counterions. Evidence is presented that some of these weak hydrogen bonds are maintained in CD{sup 2}Cl{sup 2} solution but not in CD{sup 3}CN. 44 refs., 4 figs., 3 tabs.

  7. Hydrogen bonding and aqueous base dissolution behavior of hexafluoroisopropanol-bearing polymers

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Hinsberg, William D.; Rhodes, Larry F.; Chang, Chun

    2003-06-01

    The aqueous base dissolution behavior and hydrogen bonding interaction of polymers bearing hexafluoroisopropanol (HFA) as an acid group have been investigated. While pKa of HFA is similar to that of phenol, the dissolution rate of HFA polymers in aqueous base varies from one structure to another. Poly(norbornene hexafluoroisopropanol) (PNBHFA) dissolves in 0.26 tetramethylammonium hydroxide (TMAH) aqueous solution at a rate of 1,500-8,000 A/sec, which is not correlated to the number-average or weight-average molecular weight. Furthermore, PNGHFA exhibits a complex multi-stage dissolution kinetics in 0.21 N TMAH, depending on the molecular weight and molecular weight distribution. Hydrogen bonding of HFA polymers has been investigated using FTIR. Polynorbornene and polystyrene bearing HFA (PNBHFA and PSTHFA) are much less hydrogen-bonded than poly(4-hydroxystyrene)(PHOST). HFA-ester copolymers tend to have more free OH groups than a HOST/t-butyl acrylate copolymer. The carbonyl bond in 2-trifluoromethylacrylic units is less polarized and therefore less prone to hydrogen bonding with OH than C=O in (meth)acrylate units. The interaction of acid generators with the HFA group can be studied by 19F NMR. Both ionic iodonium and nonionic imidesulfonate acid generators interact strongly with HFA and inhibit the dissolution of HFA polymers in aqueous base while ionic acid generators are better dissolution inhibitors of phenolic resins.

  8. Interaction of hydrogen with impurities in group IVB metals

    NASA Astrophysics Data System (ADS)

    Spiridonova, T. I.; Bakulin, A. V.; Kulkova, S. E.

    2015-10-01

    The energetics of hydrogen bonding with Group IVB metals and the interaction of hydrogen with impurities of 3 d-transition and simple metals (Al, Ga, Si, Ge) have been investigated using the projector-augmented-wave (PAW) method within the framework of the density functional theory (DFT). It has been found that the solubility of hydrogen in Ti, Zr, and Hf increases upon their alloying with metals located in the middle of the 3 d period. The relationship between the interaction energy of hydrogen with impurities, the lattice distortions, and the electronic structure of the studied systems has been analyzed. It has been shown that impurities do not affect the preferred hydrogen sorption positions in titanium but can change these positions in zirconium and hafnium. The influence of impurities and hydrogen on the electronic structure of metals has been examined. The obtained results have demonstrated that, in the studied metals, the interactions of hydrogen with impurities of 3 d-transition and simple metals are determined by different mechanisms: the attraction of hydrogen by transition metal impurities is caused by the size effect, whereas the repulsion of hydrogen by simple metals can be associated with the electronic factors.

  9. Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase

    PubMed Central

    Langkilde, Annette; Kristensen, Søren M.; Lo Leggio, Leila; Mølgaard, Anne; Jensen, Jan H.; Houk, Andrew R.; Navarro Poulsen, Jens-Christian; Kauppinen, Sakari; Larsen, Sine

    2008-01-01

    An extremely low-field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild-type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theor­etical calculations of chemical shift values were used in the interpretation of the experimental 1H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high-resolution (1.12 Å) structure of the wild-type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen-bond inter­actions found in RGAE have equivalents in small-molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pK a values and solvent-accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen-bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology-reduced set of high-quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are all located close to the active site and short interactions between Ser and Thr side-chain OH groups and backbone carbonyl O atoms seem to play an important role in the stability of the protein structure. These results illustrate the significance of short strong hydrogen bonds in proteins. PMID:18645234

  10. Superprotonics—crystals with rearranging hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Makarova, I. P.

    2015-03-01

    Interest in superprotonic crystals M m H n ( XO4)( m + n)/2 ( M = K, Rb, Cs, NH4; X = S, Se, P, As) is associated with the solution of the fundamental problem of modern condensed state physics, i.e., with the determination of the effect of the hydrogen subsystem on physicochemical properties of materials, including phase transitions. From the viewpoint of practical applications, these crystals are promising materials for developing various electrochemical devices, including fuel cell, and are actively studied for the purpose of stabilizing superprotonic phases. Based on experimental data, conclusions are drawn about structural mechanisms of variations in physical properties of a number of crystals of this family.

  11. Hydrogen Bonds in Crystalline Imidazoles Studied by 15N NMR and ab initio MO Calculations

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Nagatomo, Shigenori; Masui, Hirotsugu; Nakamura, Nobuo; Hayashi, Shigenobu

    1999-07-01

    Intermolecular hydrogen bonds of the type N-H...N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives were studied by 15N CP/MAS NMR and an ab initio molecular orbital (MO) calculation. In the 15N CP/MAS NMR spectrum of each of the imidazole derivatives, two peaks due to the two different functional groups, >NH and =N-, were observed. The value of the 15N isotropic chemical shift for each nitrogen atom depends on both the length of the intermolecular hydrogen bond and the kind of the substituent or substituents. It was found that the difference between the experimen-tal chemical shifts of >NH and =N-varies predominantly with the hydrogen bond length but does not show any systematic dependence on the kind of substituent. The ab initio MO calculations suggest that the hydrogen bond formation influences the 15N isotropic chemical shift predominantly, and that the difference between the 15N isotropic chemical shift of >NH and =N-varies linearly with the hydrogen bond length.

  12. (-)-Dioxosantadienic acid: hydrogen-bonding patterns in a bicyclic sesquiterpenoid keto acid and its monohydrate.

    PubMed

    Brunskill, A P; Lalancette, R A; Thompson, H W

    2001-09-01

    The anhydrous form, (I), of the title compound, (-)-2-(1,2,3,4,4a,7-hexahydro-4a,8-dimethyl-1,7-dioxo-2-naphthyl)propionic acid, C(15)H(18)O(4), derived from a naturally occurring sesquiterpenoid, has two molecules in the asymmetric unit, (I) and (I'), differing in the conformations of the saturated ring and the carboxyl group. The compound aggregates as carboxyl-to-ketone hydrogen-bonding catemers [O.O = 2.776 (3) and 2.775 (3) A]. Two crystallographically independent sets of single-strand hydrogen-bonding helices with opposite end-to-end orientation pass through the cell in the b direction, one consisting exclusively of molecules of (I) and the other entirely of (I'). Three C-H.O=C close contacts are found in (I). The monohydrate, C(15)H(18)O(4).H(2)O, (II), with two molecules of (I) plus two water molecules in its asymmetric unit, forms a complex three-dimensional hydrogen-bonding network including acid-to-water, water-to-acid, water-to-ketone, water-to-water and acid-to-acid hydrogen bonds, plus three C-H.O=C close contacts. In both (I) and (II), only the ketone remote from the acid is involved in hydrogen bonding. PMID:11588376

  13. A computational study on the enhanced stabilization of aminophenol derivatives by internal hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Gomes, José R. B.; Ribeiro da Silva, Manuel A. V.

    2006-05-01

    The stabilization of aminophenol derivatives and their radicals due to internal hydrogen bonding has been analyzed by means of density functional theory and by topological electron density analysis. The calculations have been carried out at the B3LYP level of theory, using several basis sets, and by means of the CBS-4M composite approach. A strong O-H⋯NH 2 hydrogen bond is found to stabilize the aminophenol with the lone-pair of the nitrogen atom co-planar with the aromatic ring, contrasting with the optimized structure found for aniline. The effect of electron donors and electron acceptors on the strength of the internal hydrogen bond is also analyzed. For one of the species studied, 2,6-diaminophenol, the computed O-H bond dissociation enthalpy is only 300 kJ/mol, the lowest value found so far for phenol and other compounds containing the O-H bond, almost 25 kJ/mol lower than those found experimentally for pyrogallol and for vitamin E. The explanation for such a small value comes from the enhanced stabilization of the corresponding radical species by internal hydrogen bonding, combined with a decrease of the steric effects caused by rotation of the amino groups.

  14. Adhesion between silica surfaces due to hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bowen, James; Rossetto, Hebert L.; Kendall, Kevin

    2016-09-01

    The adhesion between surfaces can be enhanced significantly by the presence of hydrogen bonding. Confined water at the nanoscale can display behaviour remarkably different to bulk water due to the formation of hydrogen bonds between two surfaces. In this work we investigate the role of confined water on the interaction between hydrophilic surfaces, specifically the effect of organic contaminants in the aqueous phase, by measuring the peak adhesive force and the work of adhesion. Atomic force microscope cantilevers presenting hemispherical silica tips were interacted with planar single crystals of silica in the presence of dimethylformamide, ethanol, and formamide; solution compositions in the range 0–100 mol% water were investigated for each molecule. Each molecule was chosen for its ability to hydrogen bond with water molecules, with increasing concentrations likely to disrupt the structure of surface-bound water layers. With the exception of aqueous solutions containing low concentrations of ethanol, all molecules decreased the ability of confined water to enhance the adhesion between the silica surfaces in excess of the predicted theoretical adhesion due to van der Waals forces. The conclusion was that adhesion depends strongly on the formation of a hydrogen-bonding network within the water layers confined between the silica surfaces.

  15. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses.

    PubMed

    Chen, Yinshan; Zhang, Wei; Yu, Lian

    2016-08-18

    Surface-grating decay has been measured for three organic glasses with extensive hydrogen bonding: sorbitol, maltitol, and maltose. For 1000 nm wavelength gratings, the decay occurs by viscous flow in the entire range of temperature studied, covering the viscosity range 10(5)-10(11) Pa s, whereas under the same conditions, the decay mechanism transitions from viscous flow to surface diffusion for organic glasses of similar molecular sizes but with no or limited hydrogen bonding. These results indicate that extensive hydrogen bonding slows down surface diffusion in organic glasses. This effect arises because molecules can preserve hydrogen bonding even near the surface so that the loss of nearest neighbors does not translate into a proportional decrease of the kinetic barrier for diffusion. This explanation is consistent with a strong correlation between liquid fragility and the surface enhancement of diffusion, both reporting resistance of a liquid to dynamic excitation. Slow surface diffusion is expected to hinder any processes that rely on surface transport, for example, surface crystal growth and formation of stable glasses by vapor deposition. PMID:27404465

  16. Monitoring the pH Triggered Collapse of Liposomes in the Far IR Hydrogen Bonding Continuum.

    PubMed

    Srour, Batoul; Erhard, Birgit; Süss, Regine; Hellwig, Petra

    2016-05-01

    Far infrared spectra of complex molecular structures like lipid membranes or proteins show large and broad continuum modes that include contributions of the internal hydrogen bonding of the assembled structures. Here we corroborate the pH triggered structural rearrangement in pH-sensitive liposomes with a clear shift of the far-infrared mode from 170 to 159 cm(-1). This spectral change was accompanied by the broadening of the hydrogen bonding signature by about 25 cm(-1) and correlates with the well-known hydrogen bonding dependent shifts of the ν(PO2(-))(as) vibration of the lipid headgroup in the mid infrared and with further shifts of functional group vibrations. Far infrared spectroscopy is thus a useful tool for the investigation of conformational changes in large molecular structures. PMID:27092567

  17. IR spectroscopy of monohydrated tryptamine cation: Rearrangement of the intermolecular hydrogen bond induced by photoionization

    NASA Astrophysics Data System (ADS)

    Sakota, Kenji; Kouno, Yuuki; Harada, Satoshi; Miyazaki, Mitsuhiko; Fujii, Masaaki; Sekiya, Hiroshi

    2012-12-01

    Rearrangement of intermolecular hydrogen bond in a monohydrated tryptamine cation, [TRA(H2O)1]+, has been investigated in the gas phase by IR spectroscopy and quantum chemical calculations. In the S0 state of TRA(H2O)1, a water molecule is hydrogen-bonded to the N atom of the amino group of a flexible ethylamine side chain [T. S. Zwier, J. Phys. Chem. A 105, 8827 (2001), 10.1021/jp011659+]. A remarkable change in the hydrogen-bonding motif of [TRA(H2O)]+ occurs upon photoionization. In the D0 state of [TRA(H2O)1]+, the water molecule is hydrogen-bonded to the NH group of the indole ring of TRA+, indicating that the water molecule transfers from the amino group to NH group. Quantum chemical calculations are performed to investigate the pathway of the water transfer. Two potential energy barriers emerge in [TRA(H2O)1]+ along the intrinsic reaction coordinate of the water transfer. The water transfer event observed in [TRA(H2O)1]+ is not an elementary but a complex process.

  18. Hydrogen-bond basicity of push-pull α,β-unsaturated enaminoketones

    NASA Astrophysics Data System (ADS)

    Vdovenko, Sergey I.; Gerus, Igor I.; Fedorenko, Elena A.; Kukhar, Valery P.

    2010-08-01

    A method is proposed for evaluating the hydrogen-bond basicity of certain conformers of two push-pull enaminoketones with the general formula R sbnd C(O) sbnd CH dbnd CH sbnd N(CH 3) 2, where R=CH 3 (DMBN); R=CF 3 (DMTBN). It has been shown, for both enaminoketones, that the ( EE) conformer has a higher basicity than the ( EZ) conformer. Moreover, the (DMBN) has one of the highest general p KHB values in the hydrogen-bond basicity scale of ketones. Substitution of the CH 3-group in (DMBN) with the CF 3-group in (DMTBN) reduces general p KHB sharply as a consequence of electron withdrawal of CF 3-group. Hydrogen bond sites are also discussed; it is shown that, in both enaminoketones, carbonyl oxygen possesses the maximal basicity, whereas nitrogen of the dimethylamino group has less basicity, and the vinyl moiety is the least basic site. Enthalpies of hydrogen bond formation (-Δ H) in absolute values, as well as the respective p KHB values, are greater for the ( EE) conformer than for the ( EZ) as a consequence of greater contribution of resonance structure in the ( EE) form. ?

  19. Hydrogen bonds in concreto and in computro: the sequel

    NASA Astrophysics Data System (ADS)

    Stouten, Pieter F. W.; Van Eijck, Bouke P.; Kroon, Jan

    1991-02-01

    In the framework of our comparative research concerning hydrogen bonding in the crystalline and liquid phases we have carried out molecular dynamics (MD) simulations of liquid methanol. Six different rigid three site models are compared. Five of them had been reported in the literature and one (OM2) we developed by a fit to the experimental molar volume, heat of vaporization and neutron weighted radial distribution function. In general the agreement with experiment is satisfactory for the different models. None of the models has an explicit hydrogen bond potential, but five of the six models show a degree of hydrogen bonding comparable to experiments on liquid methanol. The analysis of the simulation hydrogen bonds indicates that there is a distinct preference of the O⋯O axis to lie in the acceptor lone pairs plane, but hardly any for the lone pair directions. Ab initio calculations and crystal structure statistics of OH⋯O hydrogen bonds agree with this observation. The O⋯O hydrogen bond length distributions are similar for most models. The crystal structures show a sharper O⋯O distribution. Explicit introduction of harmonic motion with a quite realistic root mean square amplitude of 0.08 Å to the thermally averaged crystal distribution results in a distribution comparable to OM2 although the maximum of the former is found at shorter distance. On the basis of the analysis of the static properties of all models we conclude that our OM2, Jorgenson's OPLS and Haughney, Ferrario and McDonald's HFM1 models are good candidates for simulations of liquid methanol under isothermal, isochoric conditions. Partly flexible and completely rigid OM2 are simulated at constant pressure and with fixed volume. The flexible simulations give essentially the same (correct) results under both conditions, which is not surprising because the flexible form was fitted under both conditions. Rigid OM2 has a similar potential energy but larger pressure in the

  20. Hydrogen-bond acidity of ionic liquids: an extended scale†

    PubMed Central

    Kurnia, Kiki A.; Lima, Filipa; Cláudio, Ana Filipa M.; Coutinho, João A. P.; Freire, Mara G.

    2015-01-01

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet–Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2]−)-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation–anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation–anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  1. Hydrogen-bond acidity of ionic liquids: an extended scale.

    PubMed

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  2. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    PubMed Central

    Aakeröy, Christer B.; Spartz, Christine L.; Dembowski, Sean; Dwyre, Savannah; Desper, John

    2015-01-01

    As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately. PMID:26306192

  3. Preorganized Hydrogen Bond Donor Catalysts: Acidities and Reactivities.

    PubMed

    Samet, Masoud; Kass, Steven R

    2015-08-01

    Measured DMSO pKa values for a series of rigid tricyclic adamantane-like triols containing 0-3 trifluoromethyl groups (i.e., 3(0)-3(3)) are reported. The three compounds with CF3 substituents are similar or more acidic than acetic acid (pKa = 13.5 (3(1)), 9.5 (3(2)), 7.3 (3(3)) vs 12.6 (HOAc)), and the resulting hydrogen bond network enables a remote γ-trifluoromethyl group to enhance the acidity as well as one located at the α-position. Catalytic abilities of 3(0)-3(3) were also examined. In a nonpolar environment a rate enhancement of up to 100-fold over flexible acyclic analogs was observed presumably due to an entropic advantage of the locked-in structure. Gas-phase acidities are found to correlate with the catalytic activity better than DMSO pKa values and appear to be a better measure of acidities in low dielectric constant media. These trends are reduced or reversed in polar solvents highlighting the importance of the reaction environment. PMID:26140305

  4. Ab initio SCF calculations on hydrogen bonded cresol isomers

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Kleinermanns, K.

    1988-12-01

    Ab initio GAUSSIAN 80 calculations with two different basis sets (STO-3G and 4 31 G*) were performed on hydrogen bonded cresol isomers for comparison with experimental data from free jet fluorescence excitation spectroscopy. For m-cresol, the calculated barriers for hindered internal rotation of the OH-group and the CH3-group are in good agreement with experiment. The calculations show the trans-linear configuration of p-cresol· B-clusters ( B = H2O, CH3OH) to be more stable than the all-planar configuration. This agrees with CI calculations and microwave spectroscopic investigations of the water dimer. Calculations of both the intermolecular stretch and bend frequencies of p-cresol· B-clusters show little dependence on the all-planar or trans-linear configuration but a strong dependence on the choice of the basis set. With the minimal basis set STO-3G, the vibrational energies are generally too high. The agreement between the calculated vibrational frequencies from the 4 31 G* basis set and the experimental values is fair.

  5. Liquid state of hydrogen bond network in ice

    NASA Astrophysics Data System (ADS)

    Ryzhkin, M. I.; Klyuev, A. V.; Sinitsyn, V. V.; Ryzhkin, I. A.

    2016-08-01

    Here we theoretically show that the Coulomb interaction between violations of the Bernal-Fowler rules leads to a temperature induced step-wise increase in their concentration by 6-7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.

  6. a Theoretical Investigation on 10-12 Potential of Hydrogen-Hydrogen Covalent Bond

    NASA Astrophysics Data System (ADS)

    Taneri, Sencer

    2013-05-01

    This is an analytical investigation of well-known 10-12 potential of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are illustrated in many text books and literature, an analytical analysis for these potentials is missing almost everywhere. The power laws are valid for small radial distances, which are calculated to some extent. The internuclear separation as well as the binding energy of the hydrogen molecule are evaluated with success.

  7. Strengthening of N-H...Co hydrogen bonds upon increasing the basicity of the hydrogen bond acceptor (Co)

    SciTech Connect

    Zhao, D.; Ladipo, F.T.; Braddock-Wilking, J.; Brammer, L.

    1996-03-05

    Low temperature crystal structures of (DABCO)H{sup +}Co(CO){sub 4}{sup -} (1) and (DABCO)H{sup +}Co(CO){sub 3}PPh{sub 3}{sup -} (2) (DABCO = 1,4-diazabicyclooctane) indicate that both salts exhibit N-H...Co hydrogen bonding. IR and NMR data indicate that these hydrogen bonded species persist in nonpolar solvents such as toluene, but exist as solvent separated ions in more polar solvents. Replacement of the axial CO ligand by PPh{sub 3} leads to a shortening of the N...Co separation in the solid state from 3.437(3) to 3.294(6) A. This change is accompanied by an increase in the angle between the equatorial carbonyl ligands. Thus, the crystallographic results suggest a strengthening of the N-H...Co hydrogen bond upon increasing the basicity of the metal center, the first observation of this type in the solid state. This assertion is supported by variable-temperature {sup 1}H and {sup 13}C NMR data in toluene-d{sub 8} solution which, discussed in the light of ab initio calculations, indicate that the barrier to a fluxional process involving cleavage of the N-H...Co hydrogen bond is greater in 2 than in 1. The crystal structures of 1 and 2 have been determined by X-ray diffraction at 135(5) and 123(5) K, respectively. 19 refs., 2 figs., 5 tabs.

  8. Herringbone array of hydrogen-bonded ribbons in 2-ethoxybenzamide from high-resolution X-ray powder diffraction.

    PubMed

    Pagola, Silvina; Stephens, Peter W

    2009-11-01

    In 2-ethoxybenzamide, C(9)H(11)NO(2), the amide substituents are linked into centrosymmetric head-to-head hydrogen-bonded dimers. Additional hydrogen bonds between adjacent dimers give rise to ribbon-like packing motifs, which extend along the c axis and possess a third dimension caused by twisting of the 2-ethoxyphenyl substituent with respect to the hydrogen-bonded amide groups. The ribbons are arranged in a T-shaped herringbone pattern and cohesion between them is achieved by van der Waals forces. PMID:19893241

  9. Displacement of the proton in hydrogen-bonded complexes of hydrogen fluoride by beryllium and magnesium ions

    SciTech Connect

    McDowell, Sean A. C.

    2009-05-14

    The displacement of the proton by a beryllium ion and by a magnesium ion from hydrogen-bonded complexes of hydrogen fluoride, of varying hydrogen bond strengths, was investigated theoretically using ab initio methods. Stable metal-containing species were obtained from all of the hydrogen-bonded complexes regardless of the strength of the hydrogen bond. It was found that the beryllium ion was energetically very effective in displacing the proton from hydrogen bonds, whereas the magnesium ion was unable to do so. The high stability of the beryllium-containing complexes is mainly due to the strong electrostatic bonding between the beryllium and fluoride atoms. This work supports the recent finding from a multidisciplinary bioinorganic study that beryllium displaces the proton in many strong hydrogen bonds.

  10. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial

  11. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal.

    PubMed

    Ueda, Akira; Yamada, Shota; Isono, Takayuki; Kamo, Hiromichi; Nakao, Akiko; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi; Yamamoto, Kaoru; Nishio, Yutaka; Mori, Hatsumi

    2014-08-27

    A hydrogen bond (H-bond) is one of the most fundamental and important noncovalent interactions in chemistry, biology, physics, and all other molecular sciences. Especially, the dynamics of a proton or a hydrogen atom in the H-bond has attracted increasing attention, because it plays a crucial role in (bio)chemical reactions and some physical properties, such as dielectricity and proton conductivity. Here we report unprecedented H-bond-dynamics-based switching of electrical conductivity and magnetism in a H-bonded purely organic conductor crystal, κ-D3(Cat-EDT-TTF)2 (abbreviated as κ-D). This novel crystal κ-D, a deuterated analogue of κ-H3(Cat-EDT-TTF)2 (abbreviated as κ-H), is composed only of a H-bonded molecular unit, in which two crystallographically equivalent catechol-fused ethylenedithiotetrathiafulvalene (Cat-EDT-TTF) skeletons with a +0.5 charge are linked by a symmetric anionic [O···D···O](-1)-type strong H-bond. Although the deuterated and parent hydrogen systems, κ-D and κ-H, are isostructural paramagnetic semiconductors with a dimer-Mott-type electronic structure at room temperature (space group: C2/c), only κ-D undergoes a phase transition at 185 K, to change to a nonmagnetic insulator with a charge-ordered electronic structure (space group: P1). The X-ray crystal structure analysis demonstrates that this dramatic switching of the electronic structure and physical properties originates from deuterium transfer or displacement within the H-bond accompanied by electron transfer between the Cat-EDT-TTF π-systems, proving that the H-bonded deuterium dynamics and the conducting TTF π-electron are cooperatively coupled. Furthermore, the reason why this unique phase transition occurs only in κ-D is qualitatively discussed in terms of the H/D isotope effect on the H-bond geometry and potential energy curve. PMID:25127315

  12. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon–Hydrogen Bonds

    PubMed Central

    Daugulis, Olafs; Roane, James; Tran, Ly Dieu

    2015-01-01

    CONSPECTUS In recent years, carbon–hydrogen bond functionalization has evolved from an organometallic curiosity to mainstream applications in the synthesis of complex natural products and drugs. The use of C–H bonds as a transformable functional group is advantageous because these bonds are the most abundant functionality in organic molecules. One-step conversion of these bonds to the desired functionality shortens synthetic pathways, saving reagents, solvents, and labor. Less chemical waste is generated as well, showing that this chemistry is environmentally beneficial. This Account describes the development and use of bidentate, monoanionic auxiliaries for transition-metal-catalyzed C–H bond functionalization reactions. The chemistry was initially developed to overcome the limitations with palladium-catalyzed C–H bond functionalization assisted by monodentate directing groups. By the use of electron-rich bidentate directing groups, functionalization of unactivated sp3 C–H bonds under palladium catalysis has been developed. Furthermore, a number of abundant base-metal complexes catalyze functionalization of sp2 C–H bonds. At this point, aminoquinoline, picolinic acid, and related compounds are among the most used and versatile directing moieties in C–H bond functionalization chemistry. These groups facilitate catalytic functionalization of sp2 and sp3 C–H bonds by iron, cobalt, nickel, copper, ruthenium, rhodium, and palladium complexes. Exceptionally general reactivity is observed, enabling, among other transformations, direct arylation, alkylation, fluorination, sulfenylation, amination, etherification, carbonylation, and alkenylation of carbon–hydrogen bonds. The versatility of these auxilaries can be attributed to the following factors. First, they are capable of stabilizing high oxidation states of transition metals, thereby facilitating the C–H bond functionalization step. Second, the directing groups can be removed, enabling their use in

  13. Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.

    PubMed

    Daugulis, Olafs; Roane, James; Tran, Ly Dieu

    2015-04-21

    In recent years, carbon-hydrogen bond functionalization has evolved from an organometallic curiosity to a tool used in mainstream applications in the synthesis of complex natural products and drugs. The use of C-H bonds as a transformable functional group is advantageous because these bonds are the most abundant functionality in organic molecules. One-step conversion of these bonds to the desired functionality shortens synthetic pathways, saving reagents, solvents, and labor. Less chemical waste is generated as well, showing that this chemistry is environmentally beneficial. This Account describes the development and use of bidentate, monoanionic auxiliaries for transition-metal-catalyzed C-H bond functionalization reactions. The chemistry was initially developed to overcome the limitations with palladium-catalyzed C-H bond functionalization assisted by monodentate directing groups. By the use of electron-rich bidentate directing groups, functionalization of unactivated sp(3) C-H bonds under palladium catalysis has been developed. Furthermore, a number of abundant base-metal complexes catalyze functionalization of sp(2) C-H bonds. At this point, aminoquinoline, picolinic acid, and related compounds are among the most used and versatile directing moieties in C-H bond functionalization chemistry. These groups facilitate catalytic functionalization of sp(2) and sp(3) C-H bonds by iron, cobalt, nickel, copper, ruthenium, rhodium, and palladium complexes. Exceptionally general reactivity is observed, enabling, among other transformations, direct arylation, alkylation, fluorination, sulfenylation, amination, etherification, carbonylation, and alkenylation of carbon-hydrogen bonds. The versatility of these auxilaries can be attributed to the following factors. First, they are capable of stabilizing high oxidation states of transition metals, thereby facilitating the C-H bond functionalization step. Second, the directing groups can be removed, enabling their use in

  14. Alternative strategy for adjusting the association specificity of hydrogen-bonded duplexes.

    PubMed

    Zhang, Penghui; Chu, Hongzhu; Li, Xianghui; Feng, Wen; Deng, Pengchi; Yuan, Lihua; Gong, Bing

    2011-01-01

    A strategy for creating new association specificity of hydrogen-bonded duplexes by varying the spacings between neighboring hydrogen bonds is described. Incorporation of naphthalene-based residues has provided oligoamide strands that pair into duplexes sharing the same H-bonding sequences (e.g., DDAA) but differing in the spacings between their intermolecular hydrogen bonds, leading to homo- or heteroduplexes. The ability to manipulate association-specificity as demonstrated by this work may be extended to other multiple hydrogen bonded systems, thereby further enhancing the diversity of multiple hydrogen-bonded association units for constructing supramolecular structures. PMID:21133401

  15. Effect of quantum nuclear motion on hydrogen bonding

    SciTech Connect

    McKenzie, Ross H. Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-07

    This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  16. Unexpectedly lengthened N--H{hor_ellipsis}Co hydrogen bonds?

    SciTech Connect

    Brammer, L.; Mareque Rivas, J.C.; Zhao, D.

    1998-10-19

    Low-temperature crystal structures of QuinH{sup +}Co(CO){sub 4}{sup {minus}}, 1 (QuinH{sup +} = quinuclidinium), (DABCO)H{sup +}Co(CO){sub 3}P-(p-tolyl){sub 3}{sup {minus}}, 2, and (DABCO)H{sup +}Co(CO){sub 3}PPh{sub 2}(p-tolyl){sup {minus}}, 3 (DABCO = 1,4-diazabicyclooctane), 2 and 3 as their acetonitrile solvates, demonstrate that these salts exhibit intermolecular N--H{hor_ellipsis}Co hydrogen bonding between the cation and anion components. NMR and IR data demonstrate the persistence of these interactions in toluene solution. Such solution-state data, which examine solvated ion pairs, suggest little difference between these salts and the corresponding previously reported salts (DABCO)H{sup +}Co(CO){sub 3}L{sup {minus}} (4, L = CO; 5, L = PPh{sub 3}). However, in the solid state, the N--H{hor_ellipsis}Co hydrogen bonds in 1--3 are some 0.1--0.15 {angstrom} longer than would be predicted from consideration of the structures of 4 and 5 and the aforementioned similarity to 4 and 5 in solution. In previous reports the authors have shown that major steric or electronic changes to the anion or cation have resulted in substantial changes (0.15--0.3 {angstrom}) in the N{hor_ellipsis}Co [H{hor_ellipsis}] separation for N--H{hor_ellipsis}Co hydrogen bonds in related R{sub 3}NH{sup +}Co(CO){sub 3}L{sup {minus}} (L = CO, PR{sub 3}) salts. In this report, the authors present examples in which small changes are made to the anion or cation remote from the N--H{hor_ellipsis}Co hydrogen bond. In the solid state, the effect of these small changes on this hydrogen bond is subsumed by the effect of changes in the supramolecular structure. This clearly indicates the sensitivity of the geometry of these hydrogen bonds to the overall balance of intermolecular interactions in the solid state and as such is pertinent to current interest in weak (intermolecular) interactions for which characterization by X-ray crystallography is important.

  17. Using equilibrium isotope effects to detect intramolecular OH/OH hydrogen bonds: structural and solvent effects.

    PubMed

    Vasquez, Thomas E; Bergset, Jon M; Fierman, Matthew B; Nelson, Alshakim; Roth, Joshua; Khan, Saeed I; O'Leary, Daniel J

    2002-03-27

    A comparative (1)H NMR study of partially deuterated 1,3- and 1,4-diols has demonstrated that intramolecular hydrogen bonds of different geometry can give rise to equilibrium isotope shifts of opposite sign in hydrogen-bond-accepting solvents such as DMSO-d(6), acetone-d(6), and THF-d(8). The sign inversion is interpreted in terms of the ability of solvent molecules to form competitive intermolecular hydrogen bonds with the diol and in terms of the limiting chemical shifts for the interior and exterior hydroxyl groups. Deuterium is shown to prefer the intermolecular solvent hydrogen bond by 10.9 +/- 0.5 cal/mol for 1,4-diol 3 dissolved in DMSO-d(6) at room temperature. Pyridine-d(5) is shown to be capable of amplifying positive (downfield) isotope shifts measured in DMSO-d(6), in some cases by as much as a factor of 3. Its use is demonstrated for the assignment of the syn or anti relative configuration of 2,4-pentanediol and for the amplification of isotope shifts used to detect intramolecular hydrogen bonds in alpha- and beta-cyclodextrin. Studies in apolar solvents such as CD(2)Cl(2) and benzene-d(6) reveal that the isotope shift is negative (upfield) for all hydrogen bond geometries studied. Larger isotope shifts are measured in benzene-d(6), and a rationale for this amplification is presented. The use of apolar solvents is particularly useful for assigning the syn or anti configuration of 2,4-pentanediol. PMID:11902884

  18. Dynamic Ordering and Phase Segregation in Hydrogen-Bonded Polymers.

    PubMed

    Chen, Senbin; Binder, Wolfgang H

    2016-07-19

    Hydrogen bonds (H-bonds) constitute highly relevant structural units of molecular self-assembly. They bridge biological and synthetic sciences, implementing dynamic properties into materials and molecules, not achieved via purely covalent bonds. Phase segregation on the other hand represents another important assembly principle, responsible for, e.g., cell compartimentation, membrane-formation, and microphase segregation in polymers. Yet, despite the expanding elegant synthetic strategies of supramolecular polymers, the investigation of phase behavior of macromolecules driven by H-bonding forces still remains in its infancy. Compared to phase segregation arising from covalently linked block copolymers, the generation of phase segregated nanostructures via supramolecular polymers facilitates the design of novel functional materials, such as those with stimuli-responsive, self-healing, and erasable-material properties. We here discuss the phase segregation of H-bonding polymers in both the solution and solid state, wherein the molecular recognition elements are based on multiple H-bonding moieties, such as thymine/2,6-diamino-pyridine (THY/DAP), thymine/diamino triazine (THY/DAT), and barbiturate/Hamilton wedge (Ba/HW) elements. The specific aggregation of a series of different H-bonding polymers in solution, both linear and dendritic polymers, bearing heterocomplementary H-bonding moieties are described, in particular focusing on the issue of phase segregation. The exploitation of H-bonded supramolecular dendrons with segregating polymer chains leads to the formation of three-phase segregated hierarchical micelles in solution, purely linking the components via H-bonds, in turn displaying a versatile spectrum of segregated morphologies. We also focus on segregation effects of H-bonded amorphous and crystalline polymers: thus the formation of nanostructures, such as disordered micelles and well-ordered body centered cubic (BCC) packed spheres from telechelic polymers

  19. Movement Synchrony Forges Social Bonds across Group Divides

    PubMed Central

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  20. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  1. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    PubMed

    Lam, Royce K; Smith, Jacob W; Saykally, Richard J

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility. PMID:27208929

  2. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    SciTech Connect

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-03-31

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  3. Vibronic spectroscopy of jet-cooled hydrogen-bonded clusters

    NASA Astrophysics Data System (ADS)

    Gerhards, M.; Kimpfel, B.; Pohl, M.; Schmitt, M.; Kleinermanns, K.

    1992-07-01

    Mass-selected, two-photon resonant ionisation spectra of supersonically cooled p-cresol · (H 2O) n and phenol · (H 2O) n are reported. Cluster spectra with one, two and three water molecules attached can be unambiguously assigned. A monotonic shift of the electronic spectra with increasing cluster size is not observed here. The spectrum of p-cresol · (H 2O) 1, is red-shifted relative to the free p-cresol spectrum, while the p-cresol · (H 2O) 2,3 electronic origins are blue-shifted relative to p-cresol · (H 2O) 1 but still lie on the red side of the monomer. Simple, highest occupied molecular orbital—lowest unoccupied molecular orbital (HOMO—LUMO) considerations based on an initio calculations show that this can be explained by the inductive effect exerted on the O-atom of p-cresol, which acts as proton donor and acceptor in the H-bonding. The blue shift of n-π* transitions of H-bonded chromophores with carbonyl groups like CH 2O · (H 2O) 1 can be explained similarly. Vibrational spectra of supersonically cooled complexes of p-cresol with H 2O and CH 3OH were further analysed by dispersed fluorescence and stimulated emission, detected by two-colour ionisation dip. In p-cresol · (H 2O) 1, progressions of the intermolecular cluster stretch vibration and its combination bands with intramolecular cluster vibrations were observed with similar frequencies in the S 0 and S 1 states. In p-cresol · (H 2O) 3, further intense intermolecular bands arise, namely the hydrogen-bridge bending and torsion vibrations. This can be attributed to the lower symmetry of these clusters. Ab initio quantum chemical calculations show p-cresol · (H 2O) 3 to have a higher H-bond stretch frequency than p-cresol · (H 2O) 1, because its (unsymmetric) cyclic structure is more rigid. A characteristic pattern of CH 3 torsional bands in p-cresol is observed with complex structures due the CH 3 torsion—overall rotation interaction. Although their appearance is similar, the spacing of

  4. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.

    2011-02-01

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  5. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate

    NASA Astrophysics Data System (ADS)

    Pirc, Gordana; Stare, Jernej; Mavri, Janez

    2010-06-01

    We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrödinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm-1 and a half width of about 700 cm-1, which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm-1, respectively. The hydrogen probability densities obtained by solving the vibrational Schrödinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

  6. Hydrogen Bond, Tautomerism, and Structure of 2-Nitroresorcinol: A Microwave Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Caminati, W.; Velino, B.; Danieli, R.

    1993-09-01

    The microwave spectra of 2-nitroresorcinol and of its O-D mono- and dideuterated species have been investigated in the frequency range 28-40 GHz. The assigned spectra belong to a planar tautomer with C2v symmetry and two internal hydrogen bonds between the two hydroxyl groups and the two nitro group oxygens. The rotational spectra of four vibrational satellites of two low energy vibrations have also been assigned for the normal isotopomer.

  7. Singlet Halophenylcarbenes as Strong Hydrogen-Bond Acceptors.

    PubMed

    Richter, Geneviève; Mendez-Vega, Enrique; Sander, Wolfram

    2016-05-26

    Chlorophenylcarbene and fluorophenylcarbene were generated in water-doped argon matrices at cryogenic temperatures by photolysis of the corresponding matrix-isolated diazirines. When diffusion of H2O in solid argon was induced by annealing of the matrices at temperatures above 20 K, hydrogen-bonded complexes between the carbenes and water were formed. UV photolysis of these complexes resulted in the formation of benzaldehyde and hydrogen halides HX. The same products were obtained after photolysis of the diazirines in amorphous water ice. Obviously, the primary insertion product of the carbenes into H-OH is unstable under these conditions, and benzaldehyde is formed via secondary photolysis. The stable primary photochemical insertion product of chlorophenylcarbene into an O-H bond was observed in the reaction of the carbene with methanol. PMID:27120093

  8. Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds

    SciTech Connect

    Liu, Yuzhou; Hu, Chunhua; Comotti, Angiolina; Ward, Michael D.

    2011-12-09

    Self-assembly of multiple components into well-defined and predictable structures remains one of the foremost challenges in chemistry. Here, we report on the rational design of a supramolecular cage assembled from 20 ions of three distinct species through 72 hydrogen bonds. The cage is constructed from two kinds of hexagonal molecular tiles, a tris(guanidinium)nitrate cluster and a hexa(4-sulfonatophenyl)benzene, joined at their edges through complementary and metrically matched N-H {hor_ellipsis} O-S hydrogen bonds to form a truncated octahedron, one of the Archimedean polyhedra. The truncated octahedron, with an interior volume of 2200 cubic angstroms, serves as the composite building unit of a body-centered cubic zeolite-like framework, which exhibits an ability to encapsulate a wide range of differently charged species, including organic molecules, transition metal complexes, and 'ship-in-a-bottle' nanoclusters not observed otherwise.

  9. On Dipole Moments and Hydrogen Bond Identification in Water Clusters.

    PubMed

    Bakó, Imre; Mayer, István

    2016-06-30

    It is demonstrated that the localized orbitals calculated for a water cluster have small delocalization tails along the hydrogen bonds, that are crucial in determining the resulting dipole moments of the system. (By cutting them, one gets much smaller dipole moments for the individual monomers-close to the values one obtains by using a Bader-type analysis.) This means that the individual water monomers can be delimited only in a quite fuzzy manner, and the electronic charge density in a given point cannot be assigned completely to that or another molecule. Thus, one arrives to the brink of breaking the concept of a water cluster consisting of individual molecules. The analysis of the tails of the localized orbitals can also be used to identify the pairs of water molecules actually forming hydrogen bonds. PMID:27280888

  10. Contribution of Hydrogen Bonds to Paper Strength Properties.

    PubMed

    Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila

    2016-01-01

    The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172