Science.gov

Sample records for growing actin networks

  1. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  2. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  3. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions. PMID:26898468

  4. Dynamics of active actin networks

    NASA Astrophysics Data System (ADS)

    Koehler, Simone

    2014-03-01

    Local mechanical and structural properties of a eukaryotic cell are determined by its cytoskeleton. To adapt to their environment, cells rely on constant self-organized rearrangement processes of their actin cytoskeleton. To shed light on the principles underlying these dynamic self-organization processes we investigate a minimal reconstituted active system consisting of actin filaments, crosslinking molecules and molecular motor filaments. Using quantitative fluorescence microscopy and image analysis, we show, that these minimal model systems exhibit a generic structure formation mechanism. The competition between force generation by molecular motors and the stabilization of the network by crosslinking proteins results in a highly dynamic reorganization process which is characterized by anomalous transport dynamics with a superdiffusive behavior also found in intracellular dynamics. In vitro, these dynamics are governed by chemical and physical parameters that alter the balance of motor and crosslinking proteins, such as pH. These findings can be expected to have broad implications in our understanding of cytoskeletal regulation in vivo.

  5. Actin filaments growing against a barrier with fluctuating shape

    NASA Astrophysics Data System (ADS)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2016-06-01

    We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.

  6. Tau co-organizes dynamic microtubule and actin networks

    PubMed Central

    Elie, Auréliane; Prezel, Elea; Guérin, Christophe; Denarier, Eric; Ramirez-Rios, Sacnicte; Serre, Laurence; Andrieux, Annie; Fourest-Lieuvin, Anne; Blanchoin, Laurent; Arnal, Isabelle

    2015-01-01

    The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts. PMID:25944224

  7. Encoding Mechano-Memories in Actin Networks

    NASA Astrophysics Data System (ADS)

    Foucard, Louis; Majumdar, Sayantan; Levine, Alex; Gardel, Margaret

    The ability of cells to sense and adapt to external mechanical stimuli is vital to many of its biological functions. A critical question is therefore to understand how mechanosensory mechanisms arise in living matter, with implications in both cell biology and smart materials design. Experimental work has demonstrated that the mechanical properties of semiflexible actin networks in Eukaryotic cells can be modulated (either transiently or irreversibly) via the application of external forces. Previous work has also shown with a combination of numerical simulations and analytic calculations shows that the broken rotational symmetry of the filament orientational distribution in semiflexible networks leads to dramatic changes in the mechanical response. Here we demonstrate with a combination of numerical and analytic calculations that the observed long-lived mechano-memory in the actin networks arise from changes in the nematic order of the constituent filaments. These stress-induced changes in network topology relax slowly under zero stress and can be observed through changes in the nonlinear mechanics. Our results provide a strategy for designing a novel class of materials and demonstrate a new putative mechanism of mechanical sensing in eukaryotic cells.

  8. Comparative analysis of tools for live cell imaging of actin network architecture

    PubMed Central

    Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche

    2014-01-01

    Abstract Fluorescent derivatives of actin and actin-binding domains are powerful tools for studying actin filament architecture and dynamics in live cells. Growing evidence, however, indicates that these probes are biased, and their cellular distribution does not accurately reflect that of the cytoskeleton. To understand the strengths and weaknesses of commonly used live-cell probes—fluorescent protein fusions of actin, Lifeact, F-tractin, and actin-binding domains from utrophin—we compared their distributions in cells derived from various model organisms. We focused on five actin networks: the peripheral cortex, lamellipodial and lamellar networks, filopodial bundles, and stress fibers. Using phalloidin as a standard, we identified consistent biases in the distribution of each probe. The localization of F-tractin is the most similar to that of phalloidin but induces organism-specific changes in cell morphology. Both Lifeact and GFP-actin concentrate in lamellipodial actin networks but are excluded from lamellar networks and filopodia. In contrast, the full utrophin actin-binding domain (Utr261) binds filaments of the lamellum but only weakly localizes to lamellipodia, while a shorter variant (Utr230) is restricted to the most stable subpopulations of actin filaments: cortical networks and stress fibers. In some cells, Utr230 also detects Golgi-associated filaments, previously detected by immunofluorescence but not visible by phalloidin staining. Consistent with its localization, Utr230 exhibits slow rates of fluorescence recovery after photobleaching (FRAP) compared to F-tractin, Utr261 and Lifeact, suggesting that it may be more useful for FRAP- and photo-activation-based studies of actin network dynamics. PMID:26317264

  9. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS

    PubMed Central

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-01-01

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain “SOAC segments”. These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  10. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS.

    PubMed

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-03-30

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain "SOAC segments". These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  11. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  12. Actin network disassembly powers dissemination of Listeria monocytogenes.

    PubMed

    Talman, Arthur M; Chong, Ryan; Chia, Jonathan; Svitkina, Tatyana; Agaisse, Hervé

    2014-01-01

    Several bacterial pathogens hijack the actin assembly machinery and display intracellular motility in the cytosol of infected cells. At the cell cortex, intracellular motility leads to bacterial dissemination through formation of plasma membrane protrusions that resolve into vacuoles in adjacent cells. Here, we uncover a crucial role for actin network disassembly in dissemination of Listeria monocytogenes. We found that defects in the disassembly machinery decreased the rate of actin tail turnover but did not affect the velocity of the bacteria in the cytosol. By contrast, defects in the disassembly machinery had a dramatic impact on bacterial dissemination. Our results suggest a model of L. monocytogenes dissemination in which the disassembly machinery, through local recycling of the actin network in protrusions, fuels continuous actin assembly at the bacterial pole and concurrently exhausts cytoskeleton components from the network distal to the bacterium, which enables membrane apposition and resolution of protrusions into vacuoles. PMID:24155331

  13. Spontaneous polarization in an interfacial growth model for actin filament networks with a rigorous mechanochemical coupling.

    PubMed

    John, Karin; Caillerie, Denis; Misbah, Chaouqi

    2014-11-01

    Many processes in eukaryotic cells, including cell motility, rely on the growth of branched actin networks from surfaces. Despite its central role the mechanochemical coupling mechanisms that guide the growth process are poorly understood, and a general continuum description combining growth and mechanics is lacking. We develop a theory that bridges the gap between mesoscale and continuum limit and propose a general framework providing the evolution law of actin networks growing under stress. This formulation opens an area for the systematic study of actin dynamics in arbitrary geometries. Our framework predicts a morphological instability of actin growth on a rigid sphere, leading to a spontaneous polarization of the network with a mode selection corresponding to a comet, as reported experimentally. We show that the mechanics of the contact between the network and the surface plays a crucial role, in that it determines directly the existence of the instability. We extract scaling laws relating growth dynamics and network properties offering basic perspectives for new experiments on growing actin networks. PMID:25493815

  14. Organization of growing random networks

    SciTech Connect

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  15. Characterization of actin filament deformation in response to actively driven microspheres propagated through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2014-03-01

    The semi-flexible biopolymer actin is a ubiquitous component of nearly all biological organisms, playing an important role in many biological processes such as cell structure and motility, cancer invasion and metastasis, muscle contraction, and cell signaling. Concentrated actin networks possess unique viscoelastic properties that have been the subject of much theoretical and experimental work. However, much is still unknown regarding the correlation of the applied stress on the network to the induced filament strain at the molecular level. Here, we use dual optical traps alongside fluorescence microscopy to carry out active microrheology measurements that link mechanical stress to structural response at the micron scale. Specifically, we actively drive microspheres through entangled actin networks while simultaneously measuring the force the surrounding filaments exert on the sphere and visualizing the deformation and subsequent relaxation of fluorescent labeled filaments within the network. These measurements, which provide much needed insight into the link between stress and strain in actin networks, are critical for clarifying our theoretical understanding of the complex viscoelastic behavior exhibited in actin networks.

  16. Branching and capping determine the force-velocity relationships of branching actin networks.

    PubMed

    Smith, Daniel B; Liu, Jian

    2013-02-01

    A branching actin network is the major engine that drives cell motility. A measure of the effectiveness of an engine is the velocity the engine is able to produce at a given resistance-the force-velocity relationship. Concave force-velocity relationships consist of a force-insensitive region, indicative of an adaptive response. In contrast, convex force-velocity relationships would reflect a passive response. Even in in vitro experiments, branching actin networks can exhibit both concave and convex force-velocity curves. However, the exact mechanism that can explain both force-velocity curves is not yet known. We carried out an agent-based stochastic simulation to explore such a mechanism. We discovered an emergent behavior of a branching actin network: Upon resistance, it remodels itself by increasing the number of filaments growing in contact with the load. The remodeling is favored by branching events and limited by capping. The force-velocity relationship hinges on the relative time-scale between the intrinsic kinetics of the branching actin network and the loading. Shortly after encountering resistance (∼seconds), the force-velocity relationship of the actin network is always convex, as it does not have enough time to remodel itself. A concave force-velocity relationship requires network remodeling at longer time-scales (∼tens of seconds to minutes) and the faster branching event relative to capping. Furthermore, our model explains the observed hysteresis in the force-velocity relationship of actin networks. Our model thus establishes a unified mechanism that can account for both convex and concave force-velocity relationships observed in branching actin networks. PMID:23358606

  17. Formation of actin networks in microfluidic concentration gradients

    NASA Astrophysics Data System (ADS)

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  18. Capping complex formation at the slow-growing end of the actin filament.

    PubMed

    Kostyukova, A S

    2008-12-01

    Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells. PMID:19216712

  19. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  20. Microstructure and Mechanical Properties of Composite Actin Networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul; Weitz, D. A.

    2003-03-01

    There exits a family of actin-binding proteins (ABPs) and each protein has a distinct function for bundling, networking, gelating, capping, or simply binding to actin. Whether actin serves as a structural or motile component, its mechanical properties are determined by its degree and kinds of association with different ABPs and these properties are often closely related to its functional needs. For instance, in a cell actin is highly crosslinked with multiple ABPs (fimbrin, alpha-actinin, etc.) to generate thrust and strength for locomotion. In the acrosomal reaction of horseshoe crab sperm, actin exists as a bundle of preassembled filaments crosslinked with scruin to form a rigid structure to penetrate into an egg without yielding. We study the effects three different ABPs (scruin,fimbrin and alpha-actinin) have on the rheology and microstructure of actin networks using multiparticle tracking, imaging, and bulk rheology. From these experiments we can deduce how an evolving microstructure affects the bulk rheological properties and the role different concentrations and kinds of ABPs have in these changes.

  1. The role of actin networks in cellular mechanosensing

    NASA Astrophysics Data System (ADS)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  2. Mechanism of Actin Network Attachment to Moving Membranes

    PubMed Central

    Co, Carl; Wong, Derek T.; Gierke, Sarah; Chang, Vicky; Taunton, Jack

    2007-01-01

    Summary Actin filament networks exert protrusive and attachment forces on membranes and thereby drive membrane deformation and movement. Here, we show that N-WASP WH2 domains play a previously unanticipated role in vesicle movement by transiently attaching actin filament barbed ends to the membrane. To dissect the attachment mechanism, we reconstituted the propulsive motility of lipid-coated glass beads using purified soluble proteins. N-WASP WH2 mutants assembled actin comet tails and initiated movement, but the comet tails catastrophically detached from the membrane. When presented on the surface of a lipid-coated bead, WH2 domains were sufficient to maintain comet tail attachment. In v-Src-transformed fibroblasts, N-WASP WH2 mutants were severely defective in the formation of circular podosome arrays. In addition to creating an attachment force, interactions between WH2 domains and barbed ends may locally amplify signals for dendritic actin nucleation. PMID:17350575

  3. Talin can crosslink actin filaments into both networks and bundles.

    PubMed

    Zhang, J; Robson, R M; Schmidt, J M; Stromer, M H

    1996-01-17

    The talin-actin interaction was examined by using negative staining and cosedimentation assays. At pH 6.4 and low ionic strength, talin extensively crosslinked actin filaments into both networks and bundles. The bundles consist of parallel actin filaments with a center-to-center distance of 13 nm, and talin crossbridges spaced at 36-nm intervals along the bundles. As pH was increased stepwise from 6.4 to 7.3, talin's bundling activity was decreased first, then its networking activity. Qualitatively similar results were obtained at pH 6.4 by increasing ionic strength. Chemical crosslinking indicated talin was present as a dimer from pH 6.4 to 7.3, with or without added KC1. The results show that talin can interact directly with actin filaments by formation of actin filament networks and bundles, with the bundles more sensitive to dissolution by increase in pH or ionic strength. PMID:8561791

  4. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  5. Membrane related dynamics and the formation of actin in cells growing on micro-topographies: a spatial computational model

    PubMed Central

    2014-01-01

    Background Intra-cellular processes of cells at the interface to an implant surface are influenced significantly by their extra-cellular surrounding. Specifically, when growing osteoblasts on titanium surfaces with regular micro-ranged geometry, filaments are shorter, less aligned and they concentrate at the top of the geometric structures. Changes to the cytoskeleton network, i. e., its localization, alignment, orientation, and lengths of the filaments, as well as the overall concentration and distribution of key-actors are induced. For example, integrin is distributed homogeneously, whereas integrin in activated state and vinculin, both components of focal adhesions, have been found clustered on the micro-ranged geometries. Also, the concentration of Rho, an intracellular signaling protein related to focal adhesion regulation, was significantly lower. Results To explore whether regulations associated with the focal adhesion complex can be responsible for the changed actin filament patterns, a spatial computational model has been developed using ML-Space, a rule-based model description language, and its associated Brownian-motion-based simulator. The focus has been on the deactivation of cofilin in the vicinity of the focal adhesion complex. The results underline the importance of sensing mechanisms to support a clustering of actin filament nucleations on the micro-ranged geometries, and of intracellular diffusion processes, which lead to spatially heterogeneous distributions of active (dephosphorylated) cofilin, which in turn influences the organization of the actin network. We find, for example, that the spatial heterogeneity of key molecular actors can explain the difference in filament lengths in cells on different micro-geometries partly, but to explain the full extent, further model assumptions need to be added and experimentally validated. In particular, our findings and hypothesis referring to the role, distribution, and amount of active cofilin have still

  6. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  7. Growing Networks with Positive and Negative Links

    NASA Astrophysics Data System (ADS)

    Dech, Corynne; Antwi, Shadrack; Shaw, Leah

    Scale-free networks grown via preferential attachment have been used to model real-world networks such as the Internet, citation networks, and social networks. Here we investigate signed scale-free networks where an edge represents a positive or negative connection. We present analytic results and simulation for a growing signed network model. We compare the signed network to an unsigned scale-free network. We discuss several options for preferential attachment in a signed network that could be further adapted to model the accumulation of links over time in real-world signed networks.

  8. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing.

    PubMed

    Miyoshi, Takushi; Tsuji, Takahiro; Higashida, Chiharu; Hertzog, Maud; Fujita, Akiko; Narumiya, Shuh; Scita, Giorgio; Watanabe, Naoki

    2006-12-18

    Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays. PMID:17178911

  9. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  10. Aluminum Induces Rigor within the Actin Network of Soybean Cells.

    PubMed Central

    Grabski, S.; Schindler, M.

    1995-01-01

    Aluminum is toxic to both plants and animals. Root growth and pollen-tube extension are inhibited after aluminum stress in acidic environments. Incubation of cultured neurons with aluminum results in the formation of neurofibrillar tangles reminiscent of the neural pathology observed in Alzheimer's disease. The present communication demonstrates that aluminum induces a rapid and dramatic increase in the rigidity of the actin network in soybean (Glycine max) root cells. This rigidity can be prevented by either co-incubation with sodium fluoride or magnesium, or pretreatment with cytochalasin D. It is proposed that the growth-inhibitory activity and cytotoxicity of aluminum in plants may be a consequence of a global rigor that is induced within the actin network. This rigor may result from the formation of nonhydrolyzable [Al3+-ADP] or [Al3+-ATP] complexes whose binding to actin/myosin can modify contraction. Additionally, Al3+-mediated interference with the normal kinetics of F-actin filament assembly/disassembly could precipitate subsequent disorganization of associated cytoskeletal structures and promote altered expression of cytoskeletal proteins. PMID:12228515

  11. Arp2/3 complex-dependent actin networks constrain myosin II function in driving retrograde actin flow.

    PubMed

    Yang, Qing; Zhang, Xiao-Feng; Pollard, Thomas D; Forscher, Paul

    2012-06-25

    The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility. PMID:22711700

  12. Coupled actin-lamin biopolymer networks and protecting DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  13. Growing local likelihood network: Emergence of communities

    NASA Astrophysics Data System (ADS)

    Chen, S.; Small, M.

    2015-10-01

    In many real situations, networks grow only via local interactions. New nodes are added to the growing network with information only pertaining to a small subset of existing nodes. Multilevel marketing, social networks, and disease models can all be depicted as growing networks based on local (network path-length) distance information. In these examples, all nodes whose distance from a chosen center is less than d form a subgraph. Hence, we grow networks with information only from these subgraphs. Moreover, we use a likelihood-based method, where at each step we modify the networks by changing their likelihood to be closer to the expected degree distribution. Combining the local information and the likelihood method, we grow networks that exhibit novel features. We discover that the likelihood method, over certain parameter ranges, can generate networks with highly modulated communities, even when global information is not available. Communities and clusters are abundant in real-life networks, and the method proposed here provides a natural mechanism for the emergence of communities in scale-free networks. In addition, the algorithmic implementation of network growth via local information is substantially faster than global methods and allows for the exploration of much larger networks.

  14. Branching influences force-velocity curves and length fluctuations in actin networks

    NASA Astrophysics Data System (ADS)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  15. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  16. Actin Filament Elongation in Arp2/3-derived Networks is Controlled by Three Distinct Mechanisms

    PubMed Central

    Michelot, Alphée; Grassart, Alexandre; Okreglak, Voytek; Costanzo, Michael; Boone, Charles; Drubin, David G.

    2012-01-01

    Summary Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin, and together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production. PMID:23333351

  17. Actin filament elongation in Arp2/3-derived networks is controlled by three distinct mechanisms.

    PubMed

    Michelot, Alphée; Grassart, Alexandre; Okreglak, Voytek; Costanzo, Michael; Boone, Charles; Drubin, David G

    2013-01-28

    Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin and, together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production. PMID:23333351

  18. Polymorphism of Cross-Linked Actin Networks in Giant Vesicles

    NASA Astrophysics Data System (ADS)

    Limozin, Laurent; Sackmann, Erich

    2002-09-01

    Actin networks cross-linked by natural linkers α-actinin and filamin are generated in giant vesicles by polymerization through ionophore-mediated influx of Mg2+. α-actinin induces the formation of randomly linked networks at 25 °C which transform at <15 °C into spiderweblike gels or ringlike bundles depending on the vesicle size. Muscle filamin forms ringlike structures under all experimental conditions which can supercoil by subsequent Mg2+ addition. The polymorphism is rationalized in terms of recent models of bivalent ion coupled semiflexible polyelectrolytes and by considering the topology of the linkers.

  19. Explosive percolation transitions in growing networks

    NASA Astrophysics Data System (ADS)

    Oh, S. M.; Son, S.-W.; Kahng, B.

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m =2 , this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥3 , the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m , whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms.

  20. Explosive percolation transitions in growing networks.

    PubMed

    Oh, S M; Son, S-W; Kahng, B

    2016-03-01

    Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m = 2, this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥ 3, the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m, whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms. PMID:27078375

  1. Post-polymerization crosstalk between the actin cytoskeleton and microtubule network.

    PubMed

    Joo, E Emily; Yamada, Kenneth M

    2016-05-01

    Cellular cytoskeletal systems play many pivotal roles in living organisms by controlling cell shape, division, and migration, which ultimately govern morphology, physiology, and functions of animals. Although the cytoskeletal systems are distinct and play different roles, there is growing evidence that these diverse cytoskeletal systems coordinate their functions with each other. This coordination between cytoskeletal systems, often termed cytoskeletal crosstalk, has been identified when the dynamic state of one individual system affects the other system. In this review, we briefly describe some well-established examples of crosstalk between cytoskeletal systems and then introduce a newly discovered form of crosstalk between the actin cytoskeleton and microtubule network that does not appear to directly alter polymerization or depolymerization of either system. The biological impact and possible significance of this post-polymerization crosstalk between actin and microtubules will be discussed in detail. PMID:27058810

  2. Invadosomes - shaping actin networks to follow mechanical cues.

    PubMed

    Kedziora, Katarzyna M; Isogai, Tadamoto; Jalink, Kees; Innocenti, Metello

    2016-01-01

    Invadosomes are actin-based protrusions formed by cells in response to obstacles in their microenvironment, especially basement membranes and dense interstitial matrices. A versatile set of proteins controls assembly and dynamics of the actin networks at invadosomes and adhesive molecules link them with the extracellular matrix. Furthermore, polarized delivery of proteases makes invadosomes degradative. Therefore, invadosomes have been classically viewed as specialized protrusions involved in cell migration and remodeling of the microenvironment. Recent discoveries have considerably broadened this picture by showing that invadosomes respond to traction forces and can self-organize into dynamic arrays capable of following the topography of the substrate. Although these findings suggest that invadosomes may function as mechanosensors, this possibility has not been critically evaluated. In this review, we first summarize the organization and dynamics of actin in invadosomes and their superstructures with emphasis on force-production mechanisms. Next, we outline our current understanding of how mechanical cues impinge on invadosomes and modify their behavior. From this perspective, we provide an outlook of the outstanding open questions and the main challenges in the field. PMID:27100494

  3. Mechanical Detection of a Long-Range Actin Network Emanating from a Biomimetic Cortex

    PubMed Central

    Bussonnier, Matthias; Carvalho, Kevin; Lemière, Joël; Joanny, Jean-François; Sykes, Cécile; Betz, Timo

    2014-01-01

    Actin is ubiquitous globular protein that polymerizes into filaments and forms networks that participate in the force generation of eukaryotic cells. Such forces are used for cell motility, cytokinesis, and tissue remodeling. Among those actin networks, we focus on the actin cortex, a dense branched network beneath the plasma membrane that is of particular importance for the mechanical properties of the cell. Here we reproduce the cellular cortex by activating actin filament growth on a solid surface. We unveil the existence of a sparse actin network that emanates from the surface and extends over a distance that is at least 10 times larger than the cortex itself. We call this sparse actin network the “actin cloud” and characterize its mechanical properties with optical tweezers. We show, both experimentally and theoretically, that the actin cloud is mechanically relevant and that it should be taken into account because it can sustain forces as high as several picoNewtons (pN). In particular, it is known that in plant cells, actin networks similar to the actin cloud have a role in positioning the nucleus; in large oocytes, they play a role in driving chromosome movement. Recent evidence shows that such networks even prevent granule condensation in large cells. PMID:25140420

  4. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.

    PubMed

    Lappalainen, Pekka

    2016-08-15

    The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades. PMID:27528696

  5. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  6. Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks.

    PubMed

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A; Mullins, R Dyche

    2016-01-14

    Branched actin networks--created by the Arp2/3 complex, capping protein, and a nucleation promoting factor--generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  7. Actin-myosin network is required for proper assembly of influenza virus particles

    SciTech Connect

    Kumakura, Michiko; Kawaguchi, Atsushi Nagata, Kyosuke

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  8. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization

    PubMed Central

    Lomakin, Alexis J.; Lee, Kun-Chun; Han, Sangyoon J.; Bui, D A.; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-01-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient. PMID:26414403

  9. Features and heterogeneities in growing network models

    NASA Astrophysics Data System (ADS)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  10. A variational approach to the growth dynamics of pre-stressed actin filament networks

    NASA Astrophysics Data System (ADS)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247–59, Plastino et al 2004 Eur. Biophys. J. 33 310–20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  11. A variational approach to the growth dynamics of pre-stressed actin filament networks.

    PubMed

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-21

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited 'rubber-band-model' (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells. PMID:27420637

  12. Hierarchical Cross-linked F-actin Networks: Understanding Structure and Assembly

    NASA Astrophysics Data System (ADS)

    Hirst, Linda; Nguyen, Lam

    2009-11-01

    The protein, F-actin provides us with an interesting system in which to investigate the assembly properties of semi-flexible filaments in the presence of cross-linkers. Recently it was observed that F-actin, in the presence of the cross-linker alpha-actinin at high molar ratios will generate a novel hierarchical network of filament bundles. We investigate this system using coarse-grained molecular dynamics (MD) simulation, confocal microscopy and x-ray scattering. We have studied the F-actin/alpha-actinin system in detail with different actin conc. (C) and alpha-actinin/actin molar ratios (gamma). Confocal microscopy and analysis shows that the assembled systems fall into one of 3 phases depending on C and gamma: (1) loosely connected network of F-actin and bundles, (2) loosely connected network of dense domains and (3) uniform network of bundles. This can be explained and replicated using MD simulation. We have also examined different types of cross-linkers to represent the proteins, fascin and filamin. Results show that phase formation is related to the flexibility in binding between F-actin and cross-linkers. This degree of freedom, possible with longer cross-linkers allows the formation of branch points and thus bundle networks.

  13. Continuum modeling of forces in growing viscoelastic cytoskeletal networks.

    PubMed

    Kim, Jin Seob; Sun, Sean X

    2009-02-21

    Mechanical properties of the living cell are important in cell movement, cell division, cancer development and cell signaling. There is considerable interest in measuring local mechanical properties of living materials and the living cytoskeleton using micromechanical techniques. However, living materials are constantly undergoing internal dynamics such as growth and remodeling. A modeling framework that combines mechanical deformations with cytoskeletal growth dynamics is necessary to describe cellular shape changes. The present paper develops a general finite deformation modeling approach that can treat the viscoelastic cytoskeleton. Given the growth dynamics in the cytoskeletal network and the relationship between deformation and stress, the shape of the network is computed in an incremental fashion. The growth dynamics of the cytoskeleton can be modeled as stress dependent. The result is a consistent treatment of overall cell deformation. The framework is applied to a growing 1-d bundle of actin filaments against an elastic cantilever, and a 2-d cell undergoing wave-like protrusion dynamics. In the latter example, mechanical forces on the cell adhesion are examined as a function of the protrusion dynamics. PMID:19041329

  14. Continuum Modeling of Forces in Growing Viscoelastic Cytoskeletal Networks

    PubMed Central

    Kim, Jin Seob; Sun, Sean X.

    2013-01-01

    Mechanical properties of the living cell are important in cell movement, cell division, cancer development and cell signaling. There is considerable interest in measuring local mechanical properties of living materials and the living cytoskeleton using micromechanical techniques. However, living materials are constantly undergoing internal dynamics such as growth and remodeling. A modeling framework that combines mechanical deformations with cytoskeletal growth dynamics is necessary to describe cellular shape changes. The present paper develops a general finite deformation modeling approach that can treat the viscoelastic cytoskeleton. Given the growth dynamics in the cytoskeletal network and the relationship between deformation and stress, the shape of the network is computed in an incremental fashion. The growth dynamics of the cytoskeleton can be modeled as stress dependent. The result is a consistent treatment of overall cell deformation. The framework is applied to a growing 1-d bundle of actin filaments against an elastic cantilever, and a 2-d cell undergoing wave-like protrusion dynamics. In the latter example, mechanical forces on the cell adhesion are examined as a function the protrusion dynamics. PMID:19041329

  15. Passive and active microrheology for cross-linked F-actin networks in vitro.

    PubMed

    Lee, Hyungsuk; Ferrer, Jorge M; Nakamura, Fumihiko; Lang, Matthew J; Kamm, Roger D

    2010-04-01

    Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensively studied, the underlying mechanisms for network elasticity are not fully understood, in part because different measurements probe different length and force scales. Here, we developed both passive and active microrheology techniques using optical tweezers to estimate the mechanical properties of F-actin networks at a length scale comparable to cells. For the passive approach we tracked the motion of a thermally fluctuating colloidal sphere to estimate the frequency-dependent complex shear modulus of the network. In the active approach, we used an optical trap to oscillate an embedded microsphere and monitored the response in order to obtain network viscoelasticity over a physiologically relevant force range. While both active and passive measurements exhibit similar results at low strain, the F-actin network subject to high strain exhibits non-linear behavior which is analogous to the strain-hardening observed in macroscale measurements. Using confocal and total internal reflection fluorescent microscopy, we also characterize the microstructure of reconstituted F-actin networks in terms of filament length, mesh size and degree of bundling. Finally, we propose a model of network connectivity by investigating the effect of filament length on the mechanical properties and structure. PMID:19883801

  16. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

    PubMed Central

    Vincent, Philippe FY; Bouleau, Yohan; Petit, Christine; Dulon, Didier

    2015-01-01

    We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca2+ channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure. DOI: http://dx.doi.org/10.7554/eLife.10988.001 PMID:26568308

  17. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells.

    PubMed

    Vincent, Philippe Fy; Bouleau, Yohan; Petit, Christine; Dulon, Didier

    2015-01-01

    We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca(2+) channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure. PMID:26568308

  18. Real-Time Dynamics of Emerging Actin Networks in Cell-Mimicking Compartments

    PubMed Central

    Deshpande, Siddharth; Pfohl, Thomas

    2015-01-01

    Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli. PMID:25785606

  19. Nonequilibrium-Driven Motion in Actin Networks: Comet Tails and Moving Beads

    NASA Astrophysics Data System (ADS)

    Burroughs, N. J.; Marenduzzo, D.

    2007-06-01

    We present 3D dynamic Monte-Carlo simulations of the growth of an actin network close to an obstacle coated with Wiskott-Aldrich syndrome protein (WASP), an inducer of actin branching. Our simulations incorporate both elasticity and relaxation of the actin tail, thus allowing for local network compression. Whilst steady state motility derives mainly from polymerization at the leading edge, nonthermal stored elastic energy and retrograde flow are observed in a thin slab of material close to the obstacle. We observe a crossover from steady to hopping bead motion as the branching rate is decreased.

  20. Mesoscopic model of actin-based propulsion.

    PubMed

    Zhu, Jie; Mogilner, Alex

    2012-01-01

    Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation. PMID:23133366

  1. Actin kinetics shapes cortical network structure and mechanics

    PubMed Central

    Fritzsche, Marco; Erlenkämper, Christoph; Moeendarbary, Emad; Charras, Guillaume; Kruse, Karsten

    2016-01-01

    The actin cortex of animal cells is the main determinant of cellular mechanics. The continuous turnover of cortical actin filaments enables cells to quickly respond to stimuli. Recent work has shown that most of the cortical actin is generated by only two actin nucleators, the Arp2/3 complex and the formin Diaph1. However, our understanding of their interplay, their kinetics, and the length distribution of the filaments that they nucleate within living cells is poor. Such knowledge is necessary for a thorough comprehension of cellular processes and cell mechanics from basic polymer physics principles. We determined cortical assembly rates in living cells by using single-molecule fluorescence imaging in combination with stochastic simulations. We find that formin-nucleated filaments are, on average, 10 times longer than Arp2/3-nucleated filaments. Although formin-generated filaments represent less than 10% of all actin filaments, mechanical measurements indicate that they are important determinants of cortical elasticity. Tuning the activity of actin nucleators to alter filament length distribution may thus be a mechanism allowing cells to adjust their macroscopic mechanical properties to their physiological needs. PMID:27152338

  2. Analysis of the local organization and dynamics of cellular actin networks.

    PubMed

    Luo, Weiwei; Yu, Cheng-han; Lieu, Zi Zhao; Allard, Jun; Mogilner, Alex; Sheetz, Michael P; Bershadsky, Alexander D

    2013-09-30

    Actin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm. PMID:24081490

  3. Orientational order of the lamellipodial actin network as demonstrated in living motile cells.

    PubMed

    Verkhovsky, Alexander B; Chaga, Oleg Y; Schaub, Sébastien; Svitkina, Tatyana M; Meister, Jean-Jacques; Borisy, Gary G

    2003-11-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and put into a kinetic context by establishing correspondence with structural features observable at the light microscopic level in living cells. Here, we use an enhanced phase contrast microscopy technique to visualize an apparent long-range diagonal actin meshwork in the advancing lamellipodia of living cells. Visualization of this meshwork permitted a correlative light and electron microscopic approach that validated the underlying organization of lamellipodia. The linear features in the light microscopic meshwork corresponded to regions of greater actin filament density. Orientation of features was analyzed quantitatively and compared with the orientation of actin filaments at the EM level. We infer that the light microscopic meshwork reflects the orientational order of actin filaments which, in turn, is related to their branching angle. PMID:13679520

  4. Orientational Order of the Lamellipodial Actin Network as Demonstrated in Living Motile CellsV⃞

    PubMed Central

    Verkhovsky, Alexander B.; Chaga, Oleg Y.; Schaub, Sébastien; Svitkina, Tatyana M.; Meister, Jean-Jacques; Borisy, Gary G.

    2003-01-01

    Lamellipodia of crawling cells represent both the motor for cell advance and the primary building site for the actin cytoskeleton. The organization of actin in the lamellipodium reflects actin dynamics and is of critical importance for the mechanism of cell motility. In previous structural studies, the lamellipodial actin network was analyzed primarily by electron microscopy (EM). An understanding of lamellipodial organization would benefit significantly if the EM data were complemented and put into a kinetic context by establishing correspondence with structural features observable at the light microscopic level in living cells. Here, we use an enhanced phase contrast microscopy technique to visualize an apparent long-range diagonal actin meshwork in the advancing lamellipodia of living cells. Visualization of this meshwork permitted a correlative light and electron microscopic approach that validated the underlying organization of lamellipodia. The linear features in the light microscopic meshwork corresponded to regions of greater actin filament density. Orientation of features was analyzed quantitatively and compared with the orientation of actin filaments at the EM level. We infer that the light microscopic meshwork reflects the orientational order of actin filaments which, in turn, is related to their branching angle. PMID:13679520

  5. Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Pavel I.; Hu, Longhua; Papoian, Garegin A.

    In eukaryotic cells, cell motility is largely driven by self-assembly and growth of filamentous networks comprised of actin. Numerous proteins regulate actin network dynamics either biochemically, or through mechanical interactions. This regulation is rather complex, intricately coordinated both spatially and temporally. Although experiments in vivo and in vitro have provided a trove of structural and biochemical information about actin-based cell motility processes, experimental data is not always easy to interpret unambiguously, sometimes various interpretations being in contradiction with each other. Hence, mathematical modeling approaches are necessary for providing a physical foundation for interpreting and guiding experiments. In particular, computer simulations based on physicochemical interactions provide a systems-level description of protrusion dynamics. In this contribution, we review recent progress in modeling actin-based cell motility using detailed computer simulations. We elaborate on the way actin network dynamics is determined by the interplay between chemical reactions, mechanical feedbacks, and transport bottlenecks. We also discuss the role of inherent randomness of elementary chemical reactions in determining the dynamical behavior of the mechano-chemical network controlling actin polymerization and growth.

  6. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  7. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics. PMID:26004635

  8. A microstructurally informed model for the mechanical response of three-dimensional actin networks

    PubMed Central

    KWON, R.Y.; LEW, A.J.; JACOBS, C.R.

    2008-01-01

    We propose a class of microstructurally informed models for the linear elastic mechanical behavior of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behavior resulting from anisotropic filament distributions, and a power-law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modeled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behavior of the networks over a wide range of filament densities and degrees of anisotropy. PMID:18568835

  9. Analysis of the local organization and dynamics of cellular actin networks

    PubMed Central

    Luo, Weiwei; Yu, Cheng-han; Lieu, Zi Zhao; Allard, Jun; Mogilner, Alex; Sheetz, Michael P.

    2013-01-01

    A ctin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm. PMID:24081490

  10. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  11. Mechanics of actin networks crosslinked with mutant human α-actinin-4

    NASA Astrophysics Data System (ADS)

    Volkmer, Sabine; Blair, Daniel; Kasza, Karen; Weitz, David

    2007-03-01

    Globular actin can be polymerized in vitro to form F-actin in the presence of various binding proteins. These networks often exhibit dramatic nonlinear rheological response to imposed strains. We study the rheological properties of F-actin networks crosslinked with human α-actinin-4. A single genetic mutation of the α-actinin-4 protein is associated with focal and segmented glomerulosclerosis (FSGS), a genetic disorder which leads to renal failure. Mechanically, the mutant crosslinker has an increased binding strength compared to the wild type. We will show that human α-actinin-4, displays a unique stiffening response. Moreover, we also demonstrate that a single point mutation dramatically effects the inherent relaxation time of the crosslinked network.

  12. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Strehle, Dan; Schnauß, Jörg; Käs, Josef

    2015-04-01

    Biopolymer networks contribute mechanical integrity as well as functional organization to living cells. One of their major constituents, the protein actin, is present in a large variety of different network architectures, ranging from extensive networks to densely packed bundles. The shape of the network is directly linked to its mechanical properties and essential physiological functions. However, a profound understanding of architecture-determining mechanisms and their physical constraints remains elusive. We use experimental bottom-up systems to study the formation of confined actin networks by entropic forces. Experiments based on molecular crowding as well as counterion condensation reveal a generic tendency of homogeneous filament solutions to aggregate into regular actin bundle networks connected by aster-like centers. The network architecture is found to critically rely on network formation history. Starting from identical biochemical compositions, we observe drastic changes in network architecture as a consequence of initially biased filament orientation or mixing-induced perturbations. Our experiments suggest that the tendency to form regularly spaced bundle networks is a rather general feature of isotropic, homogeneous filament solutions subject to uniform attractive interactions. Due to the fundamental nature of the considered interactions, we expect that the investigated type of network formation further implies severe physical constraints for cytoskeleton self-organization on the more complex level of living cells.

  13. Natural Gas Pipeline Network: Changing and Growing

    EIA Publications

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  14. Algorithm For A Self-Growing Neural Network

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1996-01-01

    CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.

  15. How do online social networks grow?

    PubMed

    Zhu, Konglin; Li, Wenzhong; Fu, Xiaoming; Nagler, Jan

    2014-01-01

    Online social networks such as Facebook, Twitter and Gowalla allow people to communicate and interact across borders. In past years online social networks have become increasingly important for studying the behavior of individuals, group formation, and the emergence of online societies. Here we focus on the characterization of the average growth of online social networks and try to understand which are possible processes behind seemingly long-range temporal correlated collective behavior. In agreement with recent findings, but in contrast to Gibrat's law of proportionate growth, we find scaling in the average growth rate and its standard deviation. In contrast, Renren and Twitter deviate, however, in certain important aspects significantly from those found in many social and economic systems. Whereas independent methods suggest no significance for temporally long-range correlated behavior for Renren and Twitter, a scaling analysis of the standard deviation does suggest long-range temporal correlated growth in Gowalla. However, we demonstrate that seemingly long-range temporal correlations in the growth of online social networks, such as in Gowalla, can be explained by a decomposition into temporally and spatially independent growth processes with a large variety of entry rates. Our analysis thus suggests that temporally or spatially correlated behavior does not play a major role in the growth of online social networks. PMID:24940744

  16. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  17. Complex growing networks with intrinsic vertex fitness

    SciTech Connect

    Bedogne, C.; Rodgers, G. J.

    2006-10-15

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.

  18. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  19. On the organization of self-assembled actin networks in giant vesicles

    NASA Astrophysics Data System (ADS)

    Limozin, L.; Bärmann, M.; Sackmann, E.

    2003-04-01

    We studied the formation of actin scaffolds in giant vesicles of dimyristoylphosphatidylcholine (DMPC). Polymerization of actin was induced at low ionic strength through ionophore-mediated influx of Mg^{2+} (2 mM). The spatial organization of the filamentous actin was visualized by confocal and epifluorescence microscopy as a function of the filaments length and membrane composition, by including various amounts of cholesterol or lipids with neutral and positively charged polyethyleneglycol headgroups (PEG lipopolymers). In vesicles of pure DMPC, the newly polymerized actin adsorbs to the membrane and forms a thin shell. In the presence of 2.5 mol% lipopolymers or of cholesterol at a molar fraction x=0.37, formation of a thin adsorbed film is impeded. A fuzzy cortex is predominantly formed in vesicles of diameter d smaller than the filament persistence length (dleq 15 μm) while for larger vesicles a homogeneous network formation is favoured in the bulk of the vesicle. The fuzzy-cortex formation is interpreted as a consequence of the reduction of the bending energy if the actin filaments accumulate close to the vesicle wall.

  20. Growing multiplex networks with arbitrary number of layers

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2015-12-01

    This paper focuses on the problem of growing multiplex networks. Currently, the results on the joint degree distribution of growing multiplex networks present in the literature pertain to the case of two layers and are confined to the special case of homogeneous growth and are limited to the state state (that is, the limit of infinite size). In the present paper, we first obtain closed-form solutions for the joint degree distribution of heterogeneously growing multiplex networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We consider both uniform and preferential growth. We then extend the analysis of the uniform growth mechanism to arbitrary times. We obtain a closed-form solution for the time-dependent joint degree distribution of a growing multiplex network with arbitrary initial conditions. Throughout, theoretical findings are corroborated with Monte Carlo simulations. The results shed light on the effects of the initial network on the transient dynamics of growing multiplex networks and takes a step towards characterizing the temporal variations of the connectivity of growing multiplex networks, as well as predicting their future structural properties.

  1. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  2. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  3. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  4. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    PubMed

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient. PMID:26414403

  5. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption.

    PubMed

    Whiting, Jennifer L; Ogier, Leah; Forbush, Katherine A; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K; Scott, John D

    2016-07-26

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  6. Elasticity, adhesion and actin based propulsion

    NASA Astrophysics Data System (ADS)

    Gopinathan, Ajay

    2006-03-01

    When a cells crawls, its shape re-organizes via polymerization and depolymerization of actin filaments. The growing ends of the filaments are oriented towards the outside of the cell, and their polymerization pushes the cell membrane forwards. The same mechanism comes into play when the bacterial pathogen Listeria monocytogenes infects a cell. The bacterium hijacks the host cell's actin machinery to create an actin network (the actin comet tail) that propels the bacterium through cells and into neighboring cells. We propose a mechanism for how polymerization gives rise to motility that incorporates the effects of inhomogeneous polymerization. We treat the actin comet tail as an elastic continuum tethered to the rear of the bacterium. The interplay of polymerization and tethering gives rise to inhomogeneous stresses calculated with a finite element analysis. We quantitatively reproduce many distinctive features of actin propulsion that have been observed experimentally, including stepped motion, hopping, tail shape and the propulsion of flat surfaces.

  7. Nuclear actin polymerization from faster growing ends in the initial activation of Hox gene transcription are nuclear speckles involved?

    PubMed

    Naum-Onganía, Gabriela; Díaz, Víctor M; Blasi, Francesco; Rivera-Pomar, Rolando

    2013-01-01

    The HoxB cluster expression is activated by retinoic acid and transcribed in a collinear manner. The DNA-binding Pknox1-Pbx1 complex modulates Hox protein activity. Here, NT2-D1 teratocarcinoma cells -a model of Hox gene expression- were used to show that upon retinoic acid induction, Pknox1 co-localizes with polymeric nuclear actin. We have found that globular actin aggregates, polymeric actin, the elongating RNA polymerase II and THOC match euchromatic regions corresponding to nuclear speckles. Moreover, RNA polymerase II, N-WASP, and transcription/splicing factors p54(nrb) and PSF were validated as Pknox1 interactors by tandem affinity purification. PSF pulled down with THOC and nuclear actin, both of which co-localize in nuclear speckles. Although latrunculin A slightly decreases the general level of HoxB gene expression, inhibition of nuclear actin polymerization by cytochalasin D blocks the expression of HoxB transcripts in a collinear manner. Thus, our results support the hypothesis that nuclear actin polymerization is involved in the activation of HoxB gene expression by means of nuclear speckles. PMID:24406343

  8. Temporal dynamics of connectivity and epidemic properties of growing networks

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Shirkoohi, Mehrdad Khani

    2016-01-01

    Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies.

  9. Temporal dynamics of connectivity and epidemic properties of growing networks.

    PubMed

    Fotouhi, Babak; Shirkoohi, Mehrdad Khani

    2016-01-01

    Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: Online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown, mainly due to the predominant focus of the network growth literature on the so-called steady state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary network that is subject to growth. We use the theoretical findings to predict the epidemic properties of the network as a function of time. We observe that the introduction of new individuals into the network can enhance or diminish its resilience against endemic outbreaks and investigate how this regime shift depends upon the connectivity of newcomers and on how they establish connections to existing nodes. Throughout, theoretical findings are corroborated with Monte Carlo simulations over synthetic and real networks. The results shed light on the effects of network growth on the future epidemic properties of networks and offers insights for devising a priori immunization strategies. PMID:26871086

  10. Arp2/3 complex ATP hydrolysis promotes lamellipodial actin network disassembly but is dispensable for assembly

    PubMed Central

    Ingerman, Elena; Hsiao, Jennifer Ying

    2013-01-01

    We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly. PMID:23439681

  11. Stress Enhanced Gelation in α-Actinin-4 Cross-linked Actin Networks

    NASA Astrophysics Data System (ADS)

    Yao, Norman; Broedersz, Chase; Depken, Martin; Becker, Daniel; Pollak, Martin; Mackintosh, Frederick; Weitz, David

    2012-02-01

    A hallmark of biopolymer networks is their exquisite sensitivity to stress, demonstrated for example, by pronounced nonlinear elastic stiffening. Typically, they also yield under increased static load, providing a mechanism to achieve fluid-like behavior. In this talk, I will demonstrate an unexpected dynamical behavior in biopolymer networks consisting of F-actin cross-linked by a physiological actin binding protein, α-Actinin-4. Applied stress actually enhances gelation of these networks by delaying the onset of structural relaxation and network flow, thereby extending the regime of solid-like behavior to much lower frequencies. By using human kidney disease-associated mutant cross-linkers with varying binding affinities, we propose a molecular origin for this stress-enhanced gelation: It arises from the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. This property may have important biological implications for intracellular mechanics, representing as it does a qualitatively new class of material behavior.

  12. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  13. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  14. Linking Data and Learning - The Grow Network Study: Summary Report

    ERIC Educational Resources Information Center

    Light, Daniel; Honey, Margaret; Heinze, Juliet; Brunner, Cornelia; Wexler, Dara; Mandinach, Ellen; Fasca, Chad

    2005-01-01

    With funding from the Carnegie Corporation, in the spring of 2002, EDC's Center for Children and Technology began a two-year exploratory study that examined how educators and administrators within the New York City public school system are using data?made available to them through the print and web-based reporting system of the Grow Network to…

  15. Mixing properties of growing networks and Simpson's paradox.

    PubMed

    Capocci, Andrea; Colaiori, Francesca

    2006-08-01

    The mixing properties of networks are usually inferred by comparing the degree of a node with the average degree of its neighbors. This kind of analysis often leads to incorrect conclusions: Assortative patterns may appear reversed by a mechanism known as Simpson's paradox. We prove this fact by analytical calculations and simulations on three classes of growing networks based on preferential attachment and fitness, where the disassortative behavior observed is a spurious effect. Our results give a crucial contribution to the debate about the origin of disassortative mixing, since networks previously classified as disassortative reveal instead assortative behavior to a careful analysis. PMID:17025518

  16. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  17. Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    PubMed Central

    Bar-Sinai, Yohai; Julien, Jean-Daniel; Sharon, Eran; Armon, Shahaf; Nakayama, Naomi; Adda-Bedia, Mokhtar; Boudaoud, Arezki

    2016-01-01

    Differentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascular networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous, resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally, our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types. PMID:27074136

  18. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy. PMID:27104747

  19. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins.

    PubMed

    Holzapfel, Gerhard A; Unterberger, Michael J; Ogden, Ray W

    2014-10-01

    Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks. The model is based on the elastic properties of single filaments embedded in an isotropic matrix such that the overall properties of the composite are described by a free-energy function. In particular, we are able to obtain the experimentally determined shear and normal stress responses of cross-linked actin networks typically observed in rheometer tests. In the present study an extensive analysis is performed by applying the proposed model network to a simple shear deformation. The single filament model is then extended by incorporating the compliance of cross-linker proteins and further extended by including viscoelasticity. All that is needed for the finite element implementation is the constitutive model for the filaments, the linkers and the matrix, and the associated elasticity tensor in either the Lagrangian or Eulerian formulation. The model facilitates parameter studies of experimental setups such as micropipette aspiration experiments and we present such studies to illustrate the efficacy of this modeling approach. PMID:25043658

  20. Two distinct actin networks mediate traction oscillations to confer mechanosensitivity of focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Zhanghan; Plotnikov, Sergey; Waterman, Clare; Liu, Jian

    Cells sense the mechanical stiffness of their extracellular matrix (ECM) by exerting traction force through focal adhesions (FAs), which are integrin-based protein assemblies. Strikingly, FA-mediated traction forces oscillate in time and space and govern durotaxis - the tendency of most cell types to migrate toward stiffer ECM. The underlying mechanism of this intriguing oscillation of FA traction force is unknown. Combing theory and experiment, we develop a model of FA growth, which integrates coordinated contributions of a branched actin network and stress fibers in the process. We show that retrograde flux of branched actin network contributes to a traction peak near the FA distal tip and that stress fiber-mediated actomyosin Contractility generates a second traction peak near the FA center. Formin-mediated stress fiber elongation negatively feeds back with actomyosin Contractility, resulting in the central traction peak oscillation. This underpins observed spatio-temporal patterns of the FA traction, and broadens the ECM stiffness range, over which FAs could accurately adapt with traction force generation. Our findings shed light on the fundamental mechanism of FA mechanosensing and hence durotaxis.

  1. Two approaches to glassy dynamics and diffusion on actin filament networks

    NASA Astrophysics Data System (ADS)

    Snider, Joseph

    In spite of mass effort to understand glasses, basic features are still not completely known. Even whether or not glasses, as in windows, bottles, etc., are solids or liquids is not settled, let alone their thermodynamics. To make some headway in understanding glasses, this dissertation will take two distinct approaches. First, a direct simulation of a glassy system will be performed and compared to experiments, and from this the thermodynamics will be found. Second, rather than looking directly at a specific system, a general energy landscape appropriate for glass will be considered, and a new numeric technique to exactly calculate thermodynamic quantities will be presented and applied. The second part of this thesis will study diffusion on actin filament networks. Intracellular molecular motor-driven transport is essential for such diverse processes as mitosis, neuronal function, and mitochondrial transport. In vitro studies clarify these motors' function at the single molecule level but fail to elucidate how effective transport emerges from the collective behavior of multiple motors on a filamentary network. We investigate how the combined system of Myosin-V (MV) motors plus actin filaments is used to transport pigment granules in Xenopus melanophores. By analyzing single particle tracking data, we construct simulations and test a hypothesis that cells regulate transport by controlling how often granules switch from one filament to another, rather than, for example, altering motor activity at the single molecule level.

  2. Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks

    PubMed Central

    Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928

  3. Self-Organized Gels in DNA/F-Actin Mixtures without Crosslinkers: Networks of Induced Nematic Domains with Tunable Density

    NASA Astrophysics Data System (ADS)

    Lai, Ghee Hwee; Butler, John C.; Zribi, Olena V.; Smalyukh, Ivan I.; Angelini, Thomas E.; Purdy, Kirstin R.; Golestanian, Ramin; Wong, Gerard C. L.

    2008-11-01

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as dactin∝ρDNA-1/2. Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  4. Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis.

    PubMed

    Wollert, Torsten; Weiss, Dieter G; Gerdes, Hans-Hermann; Kuznetsov, Sergei A

    2002-11-25

    It is widely believed that microtubule- and F-actin-based transport of cytoplasmic organelles and membrane fusion is down-regulated during mitosis. Here we show that during the transition of Xenopus egg extracts from interphase to metaphase myosin V-driven movement of small globular vesicles along F-actin is strongly inhibited. In contrast, the movement of ER and ER network formation on F-actin is up-regulated in metaphase extracts. Our data demonstrate that myosin V-driven motility of distinct organelles is differently controlled during the cell cycle and suggest an active role of F-actin in partitioning, positioning, and membrane fusion of the ER during cell division. PMID:12438410

  5. Detection of systolic ejection click using time growing neural network.

    PubMed

    Gharehbaghi, Arash; Dutoit, Thierry; Ask, Per; Sörnmo, Leif

    2014-04-01

    In this paper, we present a novel neural network for classification of short-duration heart sounds: the time growing neural network (TGNN). The input to the network is the spectral power in adjacent frequency bands as computed in time windows of growing length. Children with heart systolic ejection click (SEC) and normal children are the two groups subjected to analysis. The performance of the TGNN is compared to that of a time delay neural network (TDNN) and a multi-layer perceptron (MLP), using training and test datasets of similar sizes with a total of 614 normal and abnormal cardiac cycles. From the test dataset, the classification rate/sensitivity is found to be 97.0%/98.1% for the TGNN, 85.1%/76.4% for the TDNN, and 92.7%/85.7% for the MLP. The results show that the TGNN performs better than do TDNN and MLP when frequency band power is used as classifier input. The performance of TGNN is also found to exhibit better immunity to noise. PMID:24613501

  6. Statistical validation of high-dimensional models of growing networks

    NASA Astrophysics Data System (ADS)

    Medo, Matúš

    2014-03-01

    The abundance of models of complex networks and the current insufficient validation standards make it difficult to judge which models are strongly supported by data and which are not. We focus here on likelihood maximization methods for models of growing networks with many parameters and compare their performance on artificial and real datasets. While high dimensionality of the parameter space harms the performance of direct likelihood maximization on artificial data, this can be improved by introducing a suitable penalization term. Likelihood maximization on real data shows that the presented approach is able to discriminate among available network models. To make large-scale datasets accessible to this kind of analysis, we propose a subset sampling technique and show that it yields substantial model evidence in a fraction of time necessary for the analysis of the complete data.

  7. Ranking nodes in growing networks: When PageRank fails

    NASA Astrophysics Data System (ADS)

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-11-01

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

  8. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  9. Cytoarchitecture of Kirsten sarcoma virus-transformed rat kidney fibroblasts: butyrate-induced reorganization within the actin microfilament network.

    PubMed

    Ryan, M P; Higgins, P J

    1988-10-01

    Murine sarcoma virus-transformed rat fibroblasts (KNRK cells) undergo marked cytoarchitectural reorganization during in vitro exposure to sodium-n-butyrate (NaB) resulting in restoration of (1) a more typical fibroblastoid morphology, (2) proper cell-to-cell orientation, and (3) substratum adherence. Augmented cell spreading, involving greater than 90% of the population, was a function of culture density and time of exposure to NaB (2 mM final concentration). Induced cell spreading reflected a 2.5- to 3.0-fold increase in both total cellular actin content and deposition of actin into the detergent-resistant cytoskeleton. Cytoskeletal actin deposition in response to NaB was accompanied by the formation of occasionally dense, parallel alignments of F-actin-containing microfilaments and by a dramatic increase in the size and incidence of actin-enriched membrane ruffles. Long-term NaB-treated cells exhibited parallel orientations of microfilaments similar to those found in untransformed fibroblasts. Increased cytoskeletal actin occurred within 24 hr of NaB exposure, correlating with the initial reorganization of actin-containing microfilaments detected microscopically, and reflected concomitant 3-fold increases in cellular alpha-actinin and fibronectin content. In contrast, the amount of vimentin, tropomyosin, and tubulin in NaB-treated cells was significantly decreased. NaB-induced morphologic restructuring of sarcoma virus-transformed fibroblasts, thus, impacts on all three basic cytoskeletal systems. Selective increases, however, were evident in particular cytoskeletal proteins (actin, alpha-actinin, fibronectin) implicated in microfilament networking and cell spreading. PMID:2844835

  10. Growing network model for community with group structure

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong; Jeong, Hyeong-Chai; Ahn, Yong-Yeol; Jeong, Hawoong

    2005-03-01

    We propose a growing network model for a community with a group structure. The community consists of individual members and groups, gatherings of members. The community grows as a new member is introduced by an existing member at each time step. The new member then creates a new group or joins one of the groups of the introducer. We investigate the emerging community structure analytically and numerically. The group size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution follows an exponential or a power law depending on the details of the growth rule. We also present an analysis of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://www.daum.net, which show a power-law distribution for a wide range of group sizes.

  11. Growing network model for community with group structure.

    PubMed

    Noh, Jae Dong; Jeong, Hyeong-Chai; Ahn, Yong-Yeol; Jeong, Hawoong

    2005-03-01

    We propose a growing network model for a community with a group structure. The community consists of individual members and groups, gatherings of members. The community grows as a new member is introduced by an existing member at each time step. The new member then creates a new group or joins one of the groups of the introducer. We investigate the emerging community structure analytically and numerically. The group size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution follows an exponential or a power law depending on the details of the growth rule. We also present an analysis of empirical data from online communities the "Groups" in http://www.yahoo.com and the "Cafe" in http://www.daum.net, which show a power-law distribution for a wide range of group sizes. PMID:15903517

  12. A network of spectrin and plectin surrounds the actin cuffs of apical tubulobulbar complexes in the rat.

    PubMed

    Aristaeus de Asis, Marc; Pires, Manuel; Lyon, Kevin; Vogl, A Wayne

    2013-07-01

    Tubulobulbar complexes (TBCs) are actin-related endocytic structures that internalize intercellular junctions in the seminiferous epithelium. The structures consist of elongate tubular projections of the attached plasma membranes of two adjacent cells that project into Sertoli cells. This double membrane core is cuffed by a dentritic actin network and is capped at its end by a clathrin-coated pit. Here we explore the possibility that elements of the spectrin cytoskeleton are associated with clusters of tubulobulbar complexes that develop at adhesion junctions between late spermatids and Sertoli cells at the apex of the epithelium, and extend what is known about the distribution of plectin at the sites. Cryo-sections of perfusion-fixed testes and apical processes of Sertoli cells mechanically dissociated from perfusion-fixed testes were probed for spectrin, EPB41, and actin and analyzed using conventional fluorescence microscopy and confocal microscopy. Data sets from confocal microscopy were analyzed further in three-dimensional reconstructions using computer software. Additional apical Sertoli cell processes were probed for plectin and analyzed using conventional fluorescence microscopy. Antibodies generated against elements of the spectrin cytoskeleton react with material around and between the actin cuffs of tubulobulbar complexes, but appear excluded from the actin cuffs themselves. A similar staining pattern occurs with a probe for plectin. Immunoelectron microscopy confirmed the staining patterns observed by fluourescence microscopy. Based on our results, we suggest that a network of spectrin and plectin forms a scaffold around tubulobulbar complexes that may provide support for the actin network that cuffs each complex and also link adjacent complexes together. PMID:24381803

  13. A network of spectrin and plectin surrounds the actin cuffs of apical tubulobulbar complexes in the rat

    PubMed Central

    Aristaeus de Asis, Marc; Pires, Manuel; Lyon, Kevin; Vogl, A Wayne

    2013-01-01

    Tubulobulbar complexes (TBCs) are actin-related endocytic structures that internalize intercellular junctions in the seminiferous epithelium. The structures consist of elongate tubular projections of the attached plasma membranes of two adjacent cells that project into Sertoli cells. This double membrane core is cuffed by a dentritic actin network and is capped at its end by a clathrin-coated pit. Here we explore the possibility that elements of the spectrin cytoskeleton are associated with clusters of tubulobulbar complexes that develop at adhesion junctions between late spermatids and Sertoli cells at the apex of the epithelium, and extend what is known about the distribution of plectin at the sites. Cryo-sections of perfusion-fixed testes and apical processes of Sertoli cells mechanically dissociated from perfusion-fixed testes were probed for spectrin, EPB41, and actin and analyzed using conventional fluorescence microscopy and confocal microscopy. Data sets from confocal microscopy were analyzed further in three-dimensional reconstructions using computer software. Additional apical Sertoli cell processes were probed for plectin and analyzed using conventional fluorescence microscopy. Antibodies generated against elements of the spectrin cytoskeleton react with material around and between the actin cuffs of tubulobulbar complexes, but appear excluded from the actin cuffs themselves. A similar staining pattern occurs with a probe for plectin. Immunoelectron microscopy confirmed the staining patterns observed by fluourescence microscopy. Based on our results, we suggest that a network of spectrin and plectin forms a scaffold around tubulobulbar complexes that may provide support for the actin network that cuffs each complex and also link adjacent complexes together. PMID:24381803

  14. Actin-Regulator Feedback Interactions during Endocytosis.

    PubMed

    Wang, Xinxin; Galletta, Brian J; Cooper, John A; Carlsson, Anders E

    2016-03-29

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  15. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators

    PubMed Central

    Dopie, Joseph; Rajakylä, Eeva K.; Joensuu, Merja S.; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K.

    2015-01-01

    ABSTRACT Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  16. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    PubMed

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes. PMID:26021350

  17. Dynamic light-scattering study on changes in mobility of chromaffin granules in actin network with its assembly and Ca2+-dependent disassembly by gelsolin

    NASA Astrophysics Data System (ADS)

    Fujime, Satoru; Miyamoto, Shigeaki; Funatsu, Takashi; Ishiwata, S.

    1993-06-01

    As a final stage of cell signal transduction, secretory cells release hormones by exocytosis. Before secretory granules contact with the cell membrane for fusion, an actin network barrier must dissociate as a prelude. In order to elucidate dynamical behaviors of secretory granules in actin network, in vitro assembly and disassembly processes of actin networks were examined by means of dynamic light-scattering spectroscopy. We studied actin polymerization in the presence of chromaffin granules isolated from bovine adrenal medullae, and found that the entanglement of actin filaments rapidly formed cages which confined granules in them. We also studied the effect of gelsolin, one of the actin-severing proteins, on the network of actin filaments performed in the presence of chromaffin granules. It turned out that the cages which confined granules rapidly disappeared when gelsolin was added in the presence of free Ca2+ ions. Semiquantitative analyses of dynamic light-scattering spectra permitted us to estimate the changes in the mobility (or translational diffusion coefficient) of chromaffin granules in the actin network with its assembly and Ca2+-dependent disassembly by gelsolin. Based on the present results and some pieces of evidence in literature, a model is proposed for biophysical situations before, during, and after an exocytotic event.

  18. Growing Brazilian demand to spur gas network in South America

    SciTech Connect

    Deffarges, E.H. ); Maurer, L.I.A. )

    1993-01-18

    A recent combination in South America of economic and geopolitical factors is prompting development of a new integrated gas-pipeline network in the continent's Southern Cone. The crucial factors include privatization, regional integration, economic growth, and environmental concerns. The area, Latin America's largest regional entity, includes Brazil (population 150 million and a 1990 GNP of about $375 billion, 9th largest in the world), Argentina (population 32 million and the third largest Latin American economy after Brazil and Mexico), Bolivia, Chile, Paraguay, and Uruguay. Argentina, Brazil, Paraguay, and Uruguay are members of the MercoSur economic bloc whose objective is to develop free trade in the region. There are very few integrated pipeline networks in the world. Besides the giant North American system, with hundreds of producers and pipelines, there is only one other large integrated network. It connects continental European countries to their outside suppliers such as Norway, the C.I.S., and Algeria. The emergence of a new pipeline system is therefore important for the natural-gas industry worldwide and even more so if it occurs in a region now growing rapidly after a decade of economic difficulties.

  19. Ranking nodes in growing networks: When PageRank fails

    PubMed Central

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-01-01

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes. PMID:26553630

  20. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components

    PubMed Central

    Jelenska, Joanna; Kang, Yongsung; Greenberg, Jean T

    2014-01-01

    Cells of infected organisms transport disease defense-related molecules along actin filaments to deliver them to their sites of action to combat the pathogen. To accommodate higher demand for intracellular traffic, plant F-actin density increases transiently during infection or treatment of Arabidopsis with pathogen-associated molecules. Many animal and plant pathogens interfere with actin polymerization and depolymerization to avoid immune responses. Pseudomonas syringae, a plant extracellular pathogen, injects HopW1 effector into host cells to disrupt the actin cytoskeleton and reduce vesicle movement in order to elude defense responses. In some Arabidopsis accessions, however, HopW1 is recognized and causes resistance via an actin-independent mechanism. HopW1 targets isoform 7 of vegetative actin (ACT7) that is regulated by phytohormones and environmental factors. We hypothesize that dynamic changes of ACT7 filaments are involved in plant immunity. PMID:25551177

  1. Bregman divergences for growing hierarchical self-organizing networks.

    PubMed

    López-Rubio, Ezequiel; Palomo, Esteban José; Domínguez, Enrique

    2014-06-01

    Growing hierarchical self-organizing models are characterized by the flexibility of their structure, which can easily accommodate for complex input datasets. However, most proposals use the Euclidean distance as the only error measure. Here we propose a way to introduce Bregman divergences in these models, which is based on stochastic approximation principles, so that more general distortion measures can be employed. A procedure is derived to compare the performance of networks using different divergences. Moreover, a probabilistic interpretation of the model is provided, which enables its use as a Bayesian classifier. Experimental results are presented for classification and data visualization applications, which show the advantages of these divergences with respect to the classical Euclidean distance. PMID:24694171

  2. Signaling Network Triggers and Membrane Physical Properties Control the Actin Cytoskeleton-Driven Isotropic Phase of Cell Spreading

    PubMed Central

    Rangamani, Padmini; Fardin, Marc-Antoine; Xiong, Yuguang; Lipshtat, Azi; Rossier, Olivier; Sheetz, Michael P.; Iyengar, Ravi

    2011-01-01

    Cell spreading is regulated by signaling from the integrin receptors that activate intracellular signaling pathways to control actin filament regulatory proteins. We developed a hybrid model of whole-cell spreading in which we modeled the integrin signaling network as ordinary differential equations in multiple compartments, and cell spreading as a three-dimensional stochastic model. The computed activity of the signaling network, represented as time-dependent activity levels of the actin filament regulatory proteins, is used to drive the filament dynamics. We analyzed the hybrid model to understand the role of signaling during the isotropic phase of fibroblasts spreading on fibronectin-coated surfaces. Simulations showed that the isotropic phase of spreading depends on integrin signaling to initiate spreading but not to maintain the spreading dynamics. Simulations predicted that signal flow in the absence of Cdc42 or WASP would reduce the spreading rate but would not affect the shape evolution of the spreading cell. These predictions were verified experimentally. Computational analyses showed that the rate of spreading and the evolution of cell shape are largely controlled by the membrane surface load and membrane bending rigidity, and changing information flow through the integrin signaling network has little effect. Overall, the plasma membrane acts as a damper such that only ∼5% of the actin dynamics capability is needed for isotropic spreading. Thus, the biophysical properties of the plasma membrane can condense varying levels of signaling network activities into a single cohesive macroscopic cellular behavior. PMID:21320428

  3. Actin is required for IFT regulation in Chlamydomonas reinhardtii

    PubMed Central

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C.; Sale, Winfield S.; Shoichet, Brian; Pringle, John R.; Marshall, Wallace F.

    2014-01-01

    Summary Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Since actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here, we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation, and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor suggesting actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length. PMID:25155506

  4. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length. PMID:25155506

  5. Reversible mechano-memory in sheared cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Gardel, Margaret L.

    2015-03-01

    Is it possible to control the shear modulus of a material mechanically? We reconstitute a network of actin filaments cross-linked with Filamin A and show that the system has remarkable property to respond under shear in a deformation history dependent manner. When a large shear stress pulse is applied to the system, the system remembers the direction of deformation long after the stress pulse is removed. For the next loading cycle, shear response of the system becomes anisotropic; if the applied pulse direction is same as the previous one, the system behaves like a viscoelastic solid but a transient liquefaction is observed if the pulse direction is reversed. Imaging and normal force measurements under shear suggest that this anisotropic response comes from stretching and bending dominated deformation directions induced by the large shear deformation giving rise to a direction dependent mechano-memory. The long time scale over which the memory effect persists has relevance in various deformations in cellular and multicellular systems. S.M. acknowledges support from a Kadanoff-Rice Post Doctoral fellowship from MRSEC, University of Chicago.

  6. Actinic Keratosis

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Actinic Keratosis (Solar Keratosis) Information for adults A A A Actinic ... the touch. Overview Actinic keratoses, also known as solar keratoses, are small rough or scaly areas of ...

  7. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    PubMed Central

    2013-01-01

    Background In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. PMID:23937664

  8. Src64 controls a novel actin network required for proper ring canal formation in the Drosophila male germline.

    PubMed

    Eikenes, Åsmund Husabø; Malerød, Lene; Lie-Jensen, Anette; Sem Wegner, Catherine; Brech, Andreas; Liestøl, Knut; Stenmark, Harald; Haglund, Kaisa

    2015-12-01

    In many organisms, germ cells develop as cysts in which cells are interconnected via ring canals (RCs) as a result of incomplete cytokinesis. However, the molecular mechanisms of incomplete cytokinesis remain poorly understood. Here, we address the role of tyrosine phosphorylation of RCs in the Drosophila male germline. We uncover a hierarchy of tyrosine phosphorylation within germline cysts that positively correlates with RC age. The kinase Src64 is responsible for mediating RC tyrosine phosphorylation, and loss of Src64 causes a reduction in RC diameter within germline cysts. Mechanistically, we show that Src64 controls an actin network around the RCs that depends on Abl and the Rac/SCAR/Arp2/3 pathway. The actin network around RCs is required for correct RC diameter in cysts of developing germ cells. We also identify that Src64 is required for proper germ cell differentiation in the Drosophila male germline independent of its role in RC regulation. In summary, we report that Src64 controls actin dynamics to mediate proper RC formation during incomplete cytokinesis during germline cyst development in vivo. PMID:26628094

  9. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways

    PubMed Central

    Chevalier, Benoît; Adamiok, Anna; Mercey, Olivier; Revinski, Diego R.; Zaragosi, Laure-Emmanuelle; Pasini, Andrea; Kodjabachian, Laurent; Barbry, Pascal; Marcet, Brice

    2015-01-01

    Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the assembly of an apical actin network, required for proper basal bodies anchoring. Identification of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a key regulator of this process. Protection of RRAS messenger RNA against miR-34/449 binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A, a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role played by miR-34/449 in coordinating several steps of a complex differentiation programme by regulating distinct signalling pathways. PMID:26381333

  10. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways.

    PubMed

    Chevalier, Benoît; Adamiok, Anna; Mercey, Olivier; Revinski, Diego R; Zaragosi, Laure-Emmanuelle; Pasini, Andrea; Kodjabachian, Laurent; Barbry, Pascal; Marcet, Brice

    2015-01-01

    Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the assembly of an apical actin network, required for proper basal bodies anchoring. Identification of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a key regulator of this process. Protection of RRAS messenger RNA against miR-34/449 binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A, a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role played by miR-34/449 in coordinating several steps of a complex differentiation programme by regulating distinct signalling pathways. PMID:26381333

  11. The Role of Temporal Trends in Growing Networks.

    PubMed

    Mokryn, Osnat; Wagner, Allon; Blattner, Marcel; Ruppin, Eytan; Shavitt, Yuval

    2016-01-01

    The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network's tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment. PMID:27486847

  12. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment

    PubMed Central

    Abdelzaher, Ahmed F.; Al-Musawi, Ahmad F.; Ghosh, Preetam; Mayo, Michael L.; Perkins, Edward J.

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent “building blocks” of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties. PMID:26528473

  13. Growing Homophilic Networks Are Natural Navigable Small Worlds

    PubMed Central

    Malkov, Yury A.; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable. PMID:27348120

  14. The Role of Temporal Trends in Growing Networks

    PubMed Central

    Ruppin, Eytan; Shavitt, Yuval

    2016-01-01

    The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network’s tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment. PMID:27486847

  15. Modulation of cargo release from dense core granules by size and actin network.

    PubMed

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection. PMID:17506863

  16. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    PubMed

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-01

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons. PMID:26997484

  17. Actinic keratosis

    MedlinePlus

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... Some actinic keratoses become squamous cell skin cancer . Have your health care provider look at all skin growths as soon as you find them. Your provider will ...

  18. Statistical properties and attack tolerance of growing networks with algebraic preferential attachment

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Lai, Ying-Cheng; Ye, Nong

    2002-09-01

    We consider growing networks with algebraic preferential attachment and address two questions: (1) what is the effect of temporal fluctuations in the number of new links acquired by the network? and (2) what is the network tolerance against random failures and intentional attacks? We find that the fluctuations generally have little effect on the network properties, although they lead to a plateau behavior for small degrees in the connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity, which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that networks constructed under algebraic preferential attachment are more robust than scale-free networks.

  19. Growing up with Social Networks and Online Communities

    ERIC Educational Resources Information Center

    Strom, Paris; Strom, Robert

    2012-01-01

    This presentation examines child and adolescent social networking with an emphasis on how this unprecedented form of communication can be used to contribute to healthy growth and development. Most literature about child and adolescent relationships reflects yesterday's world, a time when face-to-face encounters were the only concern. Students saw…

  20. Emergence of disassortative mixing from pruning nodes in growing scale-free networks

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Jun; Wang, Zhen; Jin, Tao; Boccaletti, Stefano

    2014-12-01

    Disassortative mixing is ubiquitously found in technological and biological networks, while the corresponding interpretation of its origin remains almost virgin. We here give evidence that pruning the largest-degree nodes of a growing scale-free network has the effect of decreasing the degree correlation coefficient in a controllable and tunable way, while keeping both the trait of a power-law degree distribution and the main properties of network's resilience and robustness under failures or attacks. The essence of these observations can be attributed to the fact the deletion of large-degree nodes affects the delicate balance of positive and negative contributions to degree correlation in growing scale-free networks, eventually leading to the emergence of disassortativity. Moreover, these theoretical prediction will get further validation in the empirical networks. We support our claims via numerical results and mathematical analysis, and we propose a generative model for disassortative growing scale-free networks.

  1. VASP is a processive actin polymerase that requires monomeric actin for barbed end association

    PubMed Central

    Hansen, Scott D.

    2010-01-01

    Ena/VASP proteins regulate the actin cytoskeleton during cell migration and morphogenesis and promote assembly of both filopodial and lamellipodial actin networks. To understand the molecular mechanisms underlying their cellular functions we used total internal reflection fluorescence microscopy to visualize VASP tetramers interacting with static and growing actin filaments in vitro. We observed multiple filament binding modes: (1) static side binding, (2) side binding with one-dimensional diffusion, and (3) processive barbed end tracking. Actin monomers antagonize side binding but promote high affinity (Kd = 9 nM) barbed end attachment. In low ionic strength buffers, VASP tetramers are weakly processive (Koff = 0.69 s−1) polymerases that deliver multiple actin monomers per barbed end–binding event and effectively antagonize filament capping. In higher ionic strength buffers, VASP requires profilin for effective polymerase and anti-capping activity. Based on our observations, we propose a mechanism that accounts for all three binding modes and provides a model for how VASP promotes actin filament assembly. PMID:21041447

  2. Actin Mechanics and Fragmentation*

    PubMed Central

    De La Cruz, Enrique M.; Gardel, Margaret L.

    2015-01-01

    Cell physiological processes require the regulation and coordination of both mechanical and dynamical properties of the actin cytoskeleton. Here we review recent advances in understanding the mechanical properties and stability of actin filaments and how these properties are manifested at larger (network) length scales. We discuss how forces can influence local biochemical interactions, resulting in the formation of mechanically sensitive dynamic steady states. Understanding the regulation of such force-activated chemistries and dynamic steady states reflects an important challenge for future work that will provide valuable insights as to how the actin cytoskeleton engenders mechanoresponsiveness of living cells. PMID:25957404

  3. High-Performance Tools: Nevada's Experiences Growing Network Capability

    NASA Astrophysics Data System (ADS)

    Biasi, G.; Smith, K. D.; Slater, D.; Preston, L.; Tibuleac, I.

    2007-05-01

    Like most regional seismic networks, the Nevada Seismic Network relies on a combination of software components to perform its mission. Core components for automatic network operation are from Antelope, a real- time environmental monitoring software system from Boulder Real-Time Technologies (BRTT). We configured the detector for multiple filtering bands, generally to distinguish local, regional, and teleseismic phases. The associator can use all or a subset of detections for each location grid. Presently we use detailed grids in the Reno-Carson City, Las Vegas, and Yucca Mountain areas, a large regional grid and a teleseismic grid, with a configurable order of precedence among solutions. Incorporating USArray stations into the network was straight- forward. Locations for local events are available in 30-60 seconds, and relocations are computed every 20 seconds. Testing indicates that relocations could be computed every few seconds or less if desired on a modest Sun server. Successive locations may be kept in the database, or criteria applied to select a single preferred location. New code developed by BRTT partially in response to an NSL request automatically launches a gradient-based relocator to refine locations and depths. Locations are forwarded to QDDS and other notification mechanisms. We also use Antelope tools for earthquake picking and analysis and for database viewing and maintenance. We have found the programming interfaces supplied with Antelope instrumental as we work toward ANSS system performance requirements. For example, the Perl language interface to the real-time Object Ring Buffer (ORB) was used to reduce the time to produce ShakeMaps to the present value of ~3 minutes. Hypoinverse was incorporated into a real-time system with Perl ORB access tools. Using the Antelope PHP interface, we now have off-site review capabilities for events and ShakeMaps from hand-held internet devices. PHP and Perl tools were used to develop a remote capability, now

  4. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments

    PubMed Central

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly. DOI: http://dx.doi.org/10.7554/eLife.06585.001 PMID:26295568

  5. Growing up wired: social networking sites and adolescent psychosocial development.

    PubMed

    Spies Shapiro, Lauren A; Margolin, Gayla

    2014-03-01

    Since the advent of social networking site (SNS) technologies, adolescents' use of these technologies has expanded and is now a primary way of communicating with and acquiring information about others in their social network. Overall, adolescents and young adults' stated motivations for using SNSs are quite similar to more traditional forms of communication-to stay in touch with friends, make plans, get to know people better, and present oneself to others. We begin with a summary of theories that describe the role of SNSs in adolescents' interpersonal relationships, as well as common methodologies used in this field of research thus far. Then, with the social changes that occur throughout adolescence as a backdrop, we address the ways in which SNSs intersect with key tasks of adolescent psychosocial development, specifically peer affiliation and friendship quality, as well as identity development. Evidence suggests that SNSs differentially relate to adolescents' social connectivity and identity development, with sociability, self-esteem, and nature of SNS feedback as important potential moderators. We synthesize current findings, highlight unanswered questions, and recommend both methodological and theoretical directions for future research. PMID:23645343

  6. Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action.

    PubMed Central

    Tsakiridis, T; Vranic, M; Klip, A

    1995-01-01

    In L6 myotubes insulin stimulates glucose transport through the translocation of glucose transporters GLUT1, GLUT3 and GLUT4 from intracellular stores to the plasma membrane. An intact actin network and phosphatidylinositol 3-kinase activity are required for this process. Glucose transport is also stimulated by the mitochondrial ATP-production uncoupler dinitrophenol. We show here that, in serum-depleted myotubes, dinitrophenol induced translocation of GLUT1 and GLUT4, but not GLUT3. This response was not affected by inhibiting phosphatidylinositol 3-kinase or disassembling the actin network. Insulin, but not dinitrophenol, caused tyrosine phosphorylation of several polypeptides, including the insulin-receptor substrate-1 and mitogen-activated protein kinase. Similarly, insulin, but not dinitrophenol, caused actin reorganization, which was inhibited by wortmannin. We conclude that insulin and dinitrophenol stimulate glucose transport by different mechanisms. Images Figure 2 Figure 3 Figure 4 PMID:7619042

  7. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  8. Regulation of water flow by actin-binding protein-induced actin gelatin.

    PubMed Central

    Ito, T; Suzuki, A; Stossel, T P

    1992-01-01

    Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by actin filaments corresponds to the gel point measured viscometrically and because gelsolin, which noncovalently severs actin filaments, solates actin gels and restores water flow in a solution of actin cross-linked by ABP. Since ABP gels actin filaments in the periphery of many eukaryotic cells, such actin networks may contribute to physiological cell volume regulation. PMID:1318095

  9. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks

    PubMed Central

    Osmanagic-Myers, Selma; Rus, Stefanie; Wolfram, Michael; Brunner, Daniela; Goldmann, Wolfgang H.; Bonakdar, Navid; Fischer, Irmgard; Reipert, Siegfried; Zuzuarregui, Aurora; Walko, Gernot; Wiche, Gerhard

    2015-01-01

    ABSTRACT Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility ‘in-check’ and maintains AJ homeostasis. PMID:26519478

  10. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks.

    PubMed

    Osmanagic-Myers, Selma; Rus, Stefanie; Wolfram, Michael; Brunner, Daniela; Goldmann, Wolfgang H; Bonakdar, Navid; Fischer, Irmgard; Reipert, Siegfried; Zuzuarregui, Aurora; Walko, Gernot; Wiche, Gerhard

    2015-11-15

    Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility 'in-check' and maintains AJ homeostasis. PMID:26519478

  11. Responses to Cell Loss Become Restricted as the Supporting Cells in Mammalian Vestibular Organs Grow Thick Junctional Actin Bands That Develop High Stability

    PubMed Central

    Burns, Joseph C.

    2014-01-01

    Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin–GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin–GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia. PMID:24478379

  12. Growing Up Wired: Social Networking Sites and Adolescent Psychosocial Development

    PubMed Central

    Shapiro, Lauren A. Spies; Margolin, Gayla

    2013-01-01

    Since the advent of SNS technologies, adolescents' use of these technologies has expanded and is now a primary way of communicating with and acquiring information about others in their social network. Overall, adolescents and young adults’ stated motivations for using SNSs are quite similar to more traditional forms of communication—to stay in touch with friends, make plans, get to know people better, and present oneself to others. We begin with a summary of theories that describe the role of SNSs in adolescents’ interpersonal relationships, as well as common methodologies used in this field of research thus far. Then, with the social changes that occur throughout adolescence as a backdrop, we address the ways in which SNSs intersect with key tasks of adolescent psychosocial development, specifically peer affiliation and friendship quality, as well as identity development. Evidence suggests that SNSs differentially relate to adolescents’ social connectivity and identity development, with sociability, self-esteem, and nature of SNS feedback as important potential moderators. We synthesize current findings, highlight unanswered questions, and recommend both methodological and theoretical directions for future research. PMID:23645343

  13. Actin Dynamics in Growth Cone Motility and Navigation

    PubMed Central

    Gomez, Timothy M.; Letourneau, Paul C.

    2014-01-01

    Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin (peripheral (P-) domain). Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path towards its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides and [Ca++] fluxes. These signals regulate actin binding proteins to locally modulate actin polymerization, interactions and force transduction to steer the growth cone leading margin towards the sources of attractive cues and away from repellent guidance cues. PMID:24164353

  14. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network

    PubMed Central

    Mok, Ka-Wai; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    In the mammalian testis, coexisting tight junctions (TJs), basal ectoplasmic specializations, and gap junctions (GJs), together with desmosomes near the basement membrane, constitute the blood-testis barrier (BTB). The most notable feature of the BTB, however, is the extensive network of actin filament bundles, which makes it one of the tightest blood-tissue barriers. The BTB undergoes restructuring to facilitate the transit of preleptotene spermatocytes at stage VIII-IX of the epithelial cycle. Thus, the F-actin network at the BTB undergoes cyclic reorganization via a yet-to-be explored mechanism. Rictor, the key component of mTORC2 that is known to regulate actin cytoskeleton, was shown to express stage-specifically at the BTB in the seminiferous epithelium. Its expression was down-regulated at the BTB in stage VIII-IX tubules, coinciding with BTB restructuring at these stages. Using an in vivo model, a down-regulation of rictor at the BTB was also detected during adjudin-induced BTB disruption, illustrating rictor expression is positively correlated with the status of the BTB integrity. Indeed, the knockdown of rictor by RNAi was found to perturb the Sertoli cell TJ-barrier function in vitro and the BTB integrity in vivo. This loss of barrier function was accompanied by changes in F-actin organization at the Sertoli cell BTB in vitro and in vivo, associated with a loss of interaction between actin and α-catenin or ZO-1. Rictor knockdown by RNAi was also found to impede Sertoli cell-cell GJ communication, disrupting protein distribution (e.g., occludin, ZO-1) at the BTB, illustrating that rictor is a crucial BTB regulator.—Mok, K., Mruk, D. D., Lee, W. M., Cheng, C. Y. Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. PMID:23288930

  15. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking.

    PubMed

    Carvalho, Kevin; Lemière, Joël; Faqir, Fahima; Manzi, John; Blanchoin, Laurent; Plastino, Julie; Betz, Timo; Sykes, Cécile

    2013-01-01

    Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an 'outside geometry'. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin-streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications. PMID:24062578

  16. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models.

    PubMed

    Hale, Christopher M; Shrestha, Arun L; Khatau, Shyam B; Stewart-Hutchinson, P J; Hernandez, Lidia; Stewart, Colin L; Hodzic, Didier; Wirtz, Denis

    2008-12-01

    Laminopathies encompass a wide array of human diseases associated to scattered mutations along LMNA, a single gene encoding A-type lamins. How such genetic alterations translate to cellular defects and generate such diverse disease phenotypes remains enigmatic. Recent work has identified nuclear envelope proteins--emerin and the linker of the nucleoskeleton and cytoskeleton (LINC) complex--which connect the nuclear lamina to the cytoskeleton. Here we quantitatively examine the composition of the nuclear envelope, as well as the architecture and functions of the cytoskeleton in cells derived from two laminopathic mouse models, including Hutchinson-Gilford progeria syndrome (Lmna(L530P/L530P)) and Emery-Dreifuss muscular dystrophy (Lmna(-/-)). Cells derived from the overtly aphenotypical model of X-linked Emery-Dreifuss muscular dystrophy (Emd(-/y)) were also included. We find that the centrosome is detached from the nucleus, preventing centrosome polarization in cells under flow--defects that are mediated by the loss of emerin from the nuclear envelope. Moreover, while basal actin and focal adhesion structure are mildly affected, RhoA activation, cell-substratum adhesion, and cytoplasmic elasticity are greatly lowered, exclusively in laminopathic models in which the LINC complex is disrupted. These results indicate a new function for emerin in cell polarization and suggest that laminopathies are not directly associated with cells' inability to polarize, but rather with cytoplasmic softening and weakened adhesion mediated by the disruption of the LINC complex across the nuclear envelope. PMID:18790843

  17. Myosins, Actin and Autophagy.

    PubMed

    Kruppa, Antonina J; Kendrick-Jones, John; Buss, Folma

    2016-08-01

    Myosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy - the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome. Actin networks have also been implicated in structurally supporting the expanding phagophore, moving autophagosomes and enabling efficient fusion with the lysosome. Only a few myosins have so far been shown to play a role in autophagy. Non-muscle myosin IIA functions in the early stages delivering membrane for the initial formation of the autophagosome, whereas myosin IC and myosin VI are involved in the final stages providing specific membranes for autophagosome maturation and its fusion with the lysosome. PMID:27146966

  18. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    PubMed Central

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  19. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches.

    PubMed

    Byrne, Kate M; Monsefi, Naser; Dawson, John C; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R; Tsyganov, Mikhail A; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J; Carragher, Neil O; Kolch, Walter; Nguyen, Lan K; von Kriegsheim, Alex; Kholodenko, Boris N

    2016-01-27

    Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  20. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  1. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration.

    PubMed

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J; Wu, Lani F; Fletcher, Daniel A; Weiner, Orion D

    2016-06-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility-the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  2. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation

    PubMed Central

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  3. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  4. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.

  5. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  6. Actinic keratosis

    MedlinePlus

    ... example, if you work outdoors) Had many severe sunburns early in life Are older Symptoms Actinic keratosis ... and tanning salons. Other things to know about sun exposure: Sun exposure is stronger in or near surfaces ...

  7. Actinic Cheilitis

    MedlinePlus

    ... is a precancerous condition related to cumulative lifetime sun exposure. The lower lip is most often affected. Individuals ... Wearing barrier clothing (eg, wide-brimmed hats) and sunscreen-containing lip balms can aid in preventing actinic ...

  8. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  9. A chemo-mechanical constitutive model for transiently cross-linked actin networks and a theoretical assessment of their viscoelastic behaviour.

    PubMed

    Fallqvist, B; Kroon, M

    2013-04-01

    Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin. PMID:22623110

  10. Steady-state nuclear actin levels are determined by export competent actin pool.

    PubMed

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. PMID:23749625

  11. Finite-size effects in Barabási-Albert growing networks.

    PubMed

    Waclaw, B; Sokolov, I M

    2007-05-01

    We investigate the influence of the network's size on the degree distribution pi k in Barabási-Albert model of growing network with initial attractiveness. Our approach based on moments of pi k allows us to treat analytically several variants of the model and to calculate the cutoff function, giving finite-size corrections to pi k. We study the effect of initial configuration as well as of addition of more than one link per time step. The results indicate that asymptotic properties of the cutoff depend only on the exponent gamma in the power-law describing the tail of the degree distribution. The method presented in this paper is very general and can be applied to other growing networks. PMID:17677140

  12. Actinic reticuloid

    SciTech Connect

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  13. β1 and β3 Integrins Cooperate to Induce Syndecan-4-Containing Cross-linked Actin Networks in Human Trabecular Meshwork Cells

    PubMed Central

    Filla, Mark S.; Woods, Anne; Kaufman, Paul L.; Peters, Donna M.

    2006-01-01

    Purpose To characterize the molecular composition of cross-linked actin networks (CLANs) and the regulation of their formation by integrins in normal human trabecular meshwork (TM) cells. CLANs have been observed in steroid-treated and glaucomatous TM cells and have been suggested to contribute to decreased outflow facility by altering the contractility of the TM. Methods Immunofluorescence microscopy was used to identify molecular components of CLANs and quantitate CLAN formation in HTM cells plated on coverslips coated with various extracellular matrix (ECM) proteins (fibronectin, types I and IV collagen, and vitronectin), vascular cell adhesion molecule (VCAM)-1, or activating antibodies against β1, β3, or α2β1 integrins. These integrin antibodies were also used as soluble ligands. Results CLAN vertices contained the actin-binding proteins α-actinin and filamin and the signaling molecules syndecan-4 and PIP2. CLANs lacked Arp3 and cortactin. CLAN formation was dependent on the ECM substrate and was significantly higher on fibronectin and VCAM-1 compared with vitronectin, types I or IV collagen. Adsorbed β1 integrin antibodies also induced CLANs, whereas adsorbed β3 or α2β1 integrin antibodies did not. Soluble β3 integrin antibodies, however, induced CLANs and actually enhanced CLAN formation in cells spread on fibronectin, VCAM-1, type I or type IV collagen, or β1 integrin antibodies. Conclusions CLANs are unique actin-branched networks whose formation can be regulated by β1 and β3 integrin signaling pathways. Thus, integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in TM cells and hence could participate in regulating cytoskeletal events previously demonstrated to be involved in controlling outflow facility. PMID:16639003

  14. Hard competitive growing neural network for the diagnosis of small bearing faults

    NASA Astrophysics Data System (ADS)

    Barakat, M.; El Badaoui, M.; Guillet, F.

    2013-05-01

    A hard competitive growing neural network (HC-GNN) with shrinkage learning is put forward to detect and diagnose small bearing faults. Structure determination based on supervised learning is an important issue in pattern classification. For that reason, the proposed approach introduces new hidden units whenever necessary and adjusts their shapes to minimize the risk of misclassification. This leads to smaller networks compared to classical radial basis functions or probabilistic neural networks and therefore enables the use of large data sets with satisfactory classification accuracy. This technique is based on the following concepts: (1) growing architecture, (2) dynamic adaptive learning, (3), convergence by means of several criteria, (4) embedded weighted feature selection, and (5) optimized network structure. HC-GNN consists of two main stages and runs in an iterative way. The first stage learns weighted selected parameters to well-known classes while the second stage associates the testing parameters of unknown samples to the learned classes. This approach is applied on a machinery system with different small bearing faults at various speeds and loads. The challenge is to detect and diagnose these faults regardless of the motor's shaft speed. Obtained results are analyzed, explained and compared with various techniques that have been widely investigated in diagnosis area.

  15. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells

    PubMed Central

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A.; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B.; Lienkamp, Soeren S.

    2015-01-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  16. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells.

    PubMed

    Yasunaga, Takayuki; Hoff, Sylvia; Schell, Christoph; Helmstädter, Martin; Kretz, Oliver; Kuechlin, Sebastian; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Bensch, Robert; Ronneberger, Olaf; Huber, Tobias B; Lienkamp, Soeren S; Walz, Gerd

    2015-12-01

    Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton. PMID:26644512

  17. Actin dynamics: from nanoscale to microscale.

    PubMed

    Carlsson, Anders E

    2010-01-01

    The dynamic nature of actin in cells manifests itself constantly. Polymerization near the cell edge is balanced by depolymerization in the interior, externally induced actin polymerization is followed by depolymerization, and spontaneous oscillations of actin at the cell periphery are frequently seen. I discuss how mathematical modeling relates quantitative measures of actin dynamics to the rates of underlying molecular level processes. The dynamic properties addressed include the rate of actin assembly at the leading edge of a moving cell, the disassembly rates of intracellular actin networks, the polymerization time course in externally stimulated cells, and spontaneous spatiotemporal patterns formed by actin. Although several aspects of actin assembly have been clarified by increasingly sophisticated models, our understanding of rapid actin disassembly is limited, and the origins of nonmonotonic features in externally stimulated actin polymerization remain unclear. Theory has generated several concrete, testable hypotheses for the origins of spontaneous actin waves and cell-edge oscillations. The development and use of more biomimetic systems applicable to the geometry of a cell will be key to obtaining a quantitative understanding of actin dynamics in cells. PMID:20462375

  18. Modeling the Effect of Fluid Flow on a Growing Network of Fractures in a Porous Medium

    NASA Astrophysics Data System (ADS)

    Alhashim, Mohammed; Koch, Donald

    2015-11-01

    The injection of a viscous fluid at high pressure in a geological formation induces the fracturing of pre-existing joints. Assuming a constant solid-matrix stress field, a weak joint saturated with fluid is fractured when the fluid pressure exceeds a critical value that depends on the joint's orientation. In this work, the formation of a network of fractures in a porous medium is modeled. When the average length of the fractures is much smaller than the radius of a cluster of fractured joints, the fluid flow within the network can be described as Darcy flow in a permeable medium consisting of the fracture network. The permeability and porosity of the medium are functions of the number density of activated joints and consequently depend on the fluid pressure. We demonstrate conditions under which these relationships can be derived from percolation theory. Fluid may also be lost from the fracture network by flowing into the permeable rock matrix. The solution of the model shows that the cluster radius grows as a power law with time in two regimes: (1) an intermediate time regime when the network contains many fractures but fluid loss is negligible; and (2) a long time regime when fluid loss dominates. In both regimes, the power law exponent depends on the Euclidean dimension and the injection rate dependence on time.

  19. A geometric graph model for citation networks of exponentially growing scientific papers

    NASA Astrophysics Data System (ADS)

    Xie, Zheng; Ouyang, Zhenzheng; Liu, Qi; Li, Jianping

    2016-08-01

    In citation networks, the content relativity of papers is a precondition of engendering citations, which is hard to model by a topological graph. A geometric graph is proposed to predict some features of the citation networks with exponentially growing papers, which addresses the precondition by using coordinates of nodes to model the research contents of papers, and geometric distances between nodes to diversities of research contents between papers. Citations between modeled papers are drawn according to a geometric rule, which addresses the precondition as well as some other factors engendering citations, namely academic influences of papers, aging of those influences, and incomplete copying of references. Instead of cumulative advantage of degree, the model illustrates that the scale-free property of modeled networks arises from the inhomogeneous academic influences of modeled papers. The model can also reproduce some other statistical features of citation networks, e.g. in- and out-assortativities, which show the model provides a suitable tool to understand some aspects of citation networks by geometry.

  20. A finite-element mesh generator based on growing neural networks.

    PubMed

    Triantafyllidis, D G; Labridis, D P

    2002-01-01

    A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance. PMID:18244543

  1. Visualization of prosomes (MCP-proteasomes), intermediate filament and actin networks by "instantaneous fixation" preserving the cytoskeleton.

    PubMed

    Arcangeletti, C; Sütterlin, R; Aebi, U; De Conto, F; Missorini, S; Chezzi, C; Scherrer, K

    1997-06-01

    A new "instantaneous" fixation/extraction procedure, yielding good preservation of intermediate filaments (IFs) and actin filaments when applied at 37 degrees C, has been explored to reexamine the relationships of the prosomes to the cytoskeleton. Prosomes are protein complexes of variable subunit composition, including occasionally a small RNA, which were originally observed as trans-acting factors in untranslated mRNPs. Constituting also the proteolytic core of the 26S proteasomes, they are also called "multicatalytic proteinase (MCP) complexes" or "20S-Proteasomes." In Triton X-100-extracted epithelial, fibroblastic, and muscle cells, prosome particles were found associated primarily with the IFs (Olink-Coux et al., 1994). Application of "instantaneous fixation" has now led to the new observation that a major fraction of prosome particles, composed of specific sets of subunits, is distributed in variable proportions between the IFs and the microfilament/ stress fiber system in PtK1 epithelial cells and human fibroblasts. Electron microscopy using gold-labeled antibodies confirms this dual localization on classical whole mounts and on cells exposed to instantaneous fixation. In contrast to the resistance of the prosome-IF association, a variable fraction of the prosome particles is released from the actin cytoskeleton by Triton X-100 when applied prior to fixation. Moreover, in vitro copolymerization of prosomes with G-actin made it possible to observe "ladder-like" filamentous structures in the electron microscope, in which the prosome particles, like the "rungs of a ladder," laterally crosslink two or more actin filaments in a regular pattern. These results demonstrate that prosomes are bound in the cell not only to IFs but also to the actin cytoskeleton and, furthermore, not only within large M(r) complexes (possibly mRNPs and/or 26S proteasomes), but also directly, as individual prosome particles. PMID:9216087

  2. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis.

    PubMed

    Tang, Elizabeth I; Lee, Will M; Cheng, C Yan

    2016-04-01

    Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr(407), known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons. PMID:26894662

  3. Actinic Prurigo.

    PubMed

    Rodríguez-Carreón, Alma Angélica; Rodríguez-Lobato, Erika; Rodríguez-Gutiérrez, Georgina; Cuevas-González, Juan Carlos; Mancheno-Valencia, Alexandra; Solís-Arias, Martha Patricia; Vega-Memije, María Elisa; Hojyo-Tomoka, María Teresa; Domínguez-Soto, Luciano

    2015-01-01

    Actinic prurigo is an idiopathic photodermatosis that affects the skin, as well as the labial and conjunctival mucosa in indigenous and mestizo populations of Latin America. It starts predominantly in childhood, has a chronic course, and is exacerbated with solar exposure. Little is known of its pathophysiology, including the known mechanisms of the participation of HLA-DR4 and an abnormal immunologic response with increase of T CD4+ lymphocytes. The presence of IgE, eosinophils, and mast cells suggests that it is a hypersensitivity reaction (likely type IVa or b). The diagnosis is clinical, and the presence of lymphoid follicles in the mucosal histopathologic study of mucosa is pathognomonic. The best available treatment to date is thalidomide, despite its secondary effects. PMID:26861426

  4. [Actinic Keratosis].

    PubMed

    Dejaco, D; Hauser, U; Zelger, B; Riechelmann, H

    2015-07-01

    Actinic keratosis is a cutaneous lesion characterized by proliferation of atypical epidermal keratinocytes due to prolonged exposure to exogenous factors such as ultraviolet radiation. AKs are in-situ-squamous cell carcinomas (PEC) of the skin. AK typically presents as erythematous, scaly patch or papule (classic AK), occasionally as thick, adherent scale on an erythematous base. Mostly fair-skinned adults are affected. AKs typically occur in areas of frequent sun exposure (balding scalp, face, "H-region", lateral neck, décolleté, dorsum of the hand and lower extremities). Actinic Cheilitis is the term used for AKs appearing on the lips. The diagnosis of AK is based on clinical examination including inspection and palpation. The typical palpable rough surface of AK often precedes a visible lesion. Dermoscopy may provide additional information. If diagnosis is uncertain and invasion suspected, biopsy and histopathologic evaluation should be performed. The potential for progression to invasive PECs mandates therapeutic intervention. Treatment options include topical and systemic therapies. Topical therapies are classified into physical, medical and combined physical-chemical approaches and a sequential combination of treatment modalities is possible. Topical-physical cryotherapy is the treatment of choice for isolated, non-hypertrophic AK. Topical-medical treatment, e. g. 5-fluoruracil (5FU) cream or Imiquomod or Ingenolmebutat application is used for multiple, non-hypertrophic AKs. For hypertrophic AKs, a dehorning pretreatment with salicinated vaseline is recommended. Isolated hypertrophic AKs often need cryotherapy with prolonged freezing time or several consecutive applications. Sequentially combined approaches are recommended for multiple, hypertrophic AKs. Photodynamic therapy (PDT) as example for a combined physical-chemical approach is an established treatment for multiple, non-hypertrophic and hypertrophic AKs. Prevention includes avoidance of sun and

  5. Automatic landmark extraction from image data using modified growing neural gas network.

    PubMed

    Fatemizadeh, Emad; Lucas, Caro; Soltanian-Zadeh, Hamid

    2003-06-01

    A new method for automatic landmark extraction from MR brain images is presented. In this method, landmark extraction is accomplished by modifying growing neural gas (GNG), which is a neural-network-based cluster-seeking algorithm. Using modified GNG (MGNG) corresponding dominant points of contours extracted from two corresponding images are found. These contours are borders of segmented anatomical regions from brain images. The presented method is compared to: 1) the node splitting-merging Kohonen model and 2) the Teh-Chin algorithm (a well-known approach for dominant points extraction of ordered curves). It is shown that the proposed algorithm has lower distortion error, ability of extracting landmarks from two corresponding curves simultaneously, and also generates the best match according to five medical experts. PMID:12834162

  6. The interaction of vinculin with actin.

    PubMed

    Golji, Javad; Mofrad, Mohammad R K

    2013-04-01

    Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion. PMID:23633939

  7. Actin-Depolymerizing Factor2-Mediated Actin Dynamics Are Essential for Root-Knot Nematode Infection of Arabidopsis[C][W

    PubMed Central

    Clément, Mathilde; Ketelaar, Tijs; Rodiuc, Natalia; Banora, Mohamed Youssef; Smertenko, Andrei; Engler, Gilbert; Abad, Pierre; Hussey, Patrick J.; de Almeida Engler, Janice

    2009-01-01

    Reorganization of the actin and microtubule networks is known to occur in targeted vascular parenchymal root cells upon infection with the nematode Meloidogyne incognita. Here, we show that actin-depolymerizing factor (ADF) is upregulated in the giant feeding cells of Arabidopsis thaliana that develop upon nematode infection and that knockdown of a specific ADF isotype inhibits nematode proliferation. Analysis of the levels of transcript and the localization of seven ADF genes shows that five are upregulated in galls that result from the infection and that ADF2 expression is particularly increased between 14 and 21 d after nematode inoculation. Further analysis of ADF2 function in inducible RNA interference lines designed to knock down ADF2 expression reveals that this protein is required for normal cell growth and plant development. The net effect of decreased levels of ADF2 is F-actin stabilization in cells, resulting from decreased F-actin turnover. In nematode-infected plants with reduced levels of ADF2, the galls containing the giant feeding cells and growing nematodes do not develop due to the arrest in growth of the giant multinucleate feeding cells, which in turn is due to an aberrant actin network. PMID:19794115

  8. Actin age orchestrates myosin-5 and myosin-6 run lengths.

    PubMed

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R; Rock, Ronald S

    2015-08-01

    Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies in which motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1-3]. Myosin-5 walks toward the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks toward the pointed end of F-actin [5], traveling toward the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3- to 1.5-fold longer runs on ADP•Pi (young) F-actin, whereas myosin-6 takes 1.7- to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  9. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks. PMID:26915738

  10. Pushing with actin: from cells to pathogens.

    PubMed

    Small, J Victor

    2015-02-01

    Actin polymerization is harnessed by cells to generate lamellipodia for movement and by a subclass of pathogens to facilitate invasion of their infected hosts. Using electron tomography (ET), we have shown that lamellipodia are formed via the generation of subsets of actin filaments joined by branch junctions. Image averaging produced a 2.9 nm resolution model of branch junctions in situ and revealed a close fit to the electron density map of the actin-related protein 2/3 (Arp2/3)-actin complex in vitro. Correlated live-cell imaging and ET was also used to determine how actin networks are created and remodelled during the initiation and inhibition of protrusion in lamellipodia. Listeria, Rickettsia and viruses, such as vaccinia virus and baculovirus, exploit the actin machinery of host cells to generate propulsive actin comet tails to disseminate their infection. By applying ET, we have shown that baculovirus generates at its rear a fishbone-like array of subsets of branched actin filaments, with an average of only four filaments engaged in pushing at any one time. In both of these studies, the application of ET of negatively stained cytoskeletons for higher filament resolution and cryo-ET for preserving overall 3D morphology was crucial for obtaining a complete structure-function analysis of actin-driven propulsion. PMID:25619250

  11. Developmental word grounding through a growing neural network with a humanoid robot.

    PubMed

    He, Xiaoyuan; Kojima, Ryo; Hasegawa, Osamu

    2007-04-01

    This paper presents an unsupervised approach of integrating speech and visual information without using any prepared data. The approach enables a humanoid robot, Incremental Knowledge Robot 1 (IKR1), to learn word meanings. The approach is different from most existing approaches in that the robot learns online from audio-visual input, rather than from stationary data provided in advance. In addition, the robot is capable of learning incrementally, which is considered to be indispensable to lifelong learning. A noise-robust self-organized growing neural network is developed to represent the topological structure of unsupervised online data. We are also developing an active-learning mechanism, called "desire for knowledge," to let the robot select the object for which it possesses the least information for subsequent learning. Experimental results show that the approach raises the efficiency of the learning process. Based on audio and visual data, they construct a mental model for the robot, which forms a basis for constructing IKRI's inner world and builds a bridge connecting the learned concepts with current and past scenes. PMID:17416171

  12. A new adaptive merging and growing algorithm for designing artificial neural networks.

    PubMed

    Islam, Md Monirul; Sattar, Md Abdus; Amin, Md Faijul; Yao, Xin; Murase, Kazuyuki

    2009-06-01

    This paper presents a new algorithm, called adaptive merging and growing algorithm (AMGA), in designing artificial neural networks (ANNs). This algorithm merges and adds hidden neurons during the training process of ANNs. The merge operation introduced in AMGA is a kind of a mixed mode operation, which is equivalent to pruning two neurons and adding one neuron. Unlike most previous studies, AMGA puts emphasis on autonomous functioning in the design process of ANNs. This is the main reason why AMGA uses an adaptive not a predefined fixed strategy in designing ANNs. The adaptive strategy merges or adds hidden neurons based on the learning ability of hidden neurons or the training progress of ANNs. In order to reduce the amount of retraining after modifying ANN architectures, AMGA prunes hidden neurons by merging correlated hidden neurons and adds hidden neurons by splitting existing hidden neurons. The proposed AMGA has been tested on a number of benchmark problems in machine learning and ANNs, including breast cancer, Australian credit card assessment, and diabetes, gene, glass, heart, iris, and thyroid problems. The experimental results show that AMGA can design compact ANN architectures with good generalization ability compared to other algorithms. PMID:19203888

  13. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  14. Grow Your Personal Learning Network: New Technologies Can Keep You Connected and Help You Manage Information Overload

    ERIC Educational Resources Information Center

    Warlick, David

    2009-01-01

    Personal learning networks (PLNs) are not new. People have long relied on their families, friends, colleagues, and acquaintances to supplement their knowledge about the world. But the times are changing. Information and communication technologies (ICT), including an ever-growing repertoire of open source applications, have freed content from the…

  15. Guiding Principles for Designing and Growing a Campus Network for the Future.

    ERIC Educational Resources Information Center

    Long, Philip E.

    2000-01-01

    Offers guidelines to help colleges and universities ensure a course of telecommunications network growth and renewal, provide continuous network upgrades, and maintain a position of flexibility. Discusses focuses on principles that guide network planning and design; how to apply principles to standard building blocks and network design; voice,…

  16. Orthogonal (transverse) arrangements of actin in endothelia and fibroblasts

    PubMed Central

    Curtis, Adam; Aitchison, Gregor; Tsapikouni, Theodora

    2006-01-01

    Though actin filaments running across the cell (transverse actin) have been occasionally reported for epithelial cells in groups and for cells growing on fibres, there has been no report heretofore of transverse actin in cells grown on planar substrata. This paper describes evidence in support of this possibility derived from actin staining, polarization microscopy and force measurements. The paper introduces two new methods for detecting the orientation and activity of contractile elements in cells. The orthogonal actin is most obvious in cells grown on groove ridge structures, but can be detected in cells grown on flat surfaces. PMID:17015307

  17. Actin-curcumin interaction: insights into the mechanism of actin polymerization inhibition.

    PubMed

    Dhar, Gopa; Chakravarty, Devlina; Hazra, Joyita; Dhar, Jesmita; Poddar, Asim; Pal, Mahadeb; Chakrabarti, Pinak; Surolia, Avadhesha; Bhattacharyya, Bhabatarak

    2015-02-01

    Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the "barbed end" of actin is transmitted to the "pointed end", where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors. PMID:25564154

  18. Dynamic reorganization of the actin cytoskeleton

    PubMed Central

    Gressin, Laurène; Théry, Manuel; Blanchoin, Laurent

    2015-01-01

    Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations. PMID:26989473

  19. Facile formation of branched titanate nanotubes to grow a three-dimensional nanotubular network directly on a solid substrate.

    PubMed

    Zhang, Haimin; Liu, Porun; Wang, Hongjuan; Yu, Hua; Zhang, Shanqing; Zhu, Huaiyong; Peng, Feng; Zhao, Huijun

    2010-02-01

    The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 A interlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. However, in terms of how nanotubes are arranged in the film, the all-dimensional uniform nanotubular network structure obtained here is distinctively different from those of previously reported structures. The 3D nanotubular network structure was formed by the jointing of branched nanotubes. In contrast, the previously reported nanotubes tend to grow vertically on the substrate, and the resultant tubular films are formed by interwoven nonbranched nanotubes. The branched titanate nanotubes can be readily formed on titanium substrates but not in solution suspension forms. A continuous seed formation-oriented crystal growth mechanism was proposed for the branched titanate nanotubular network formation. Such a network structure could be useful for applications such as photocatalysis, membrane separation, field emission, and photovoltaic devices. PMID:20039654

  20. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads. PMID:9175265

  1. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    IB at the leading edge of E. histolytica. ABP-120 organizes F-actin in a network and myosin IB participates in the pseudopod formation. Similar approaches using T. vaginalis resulted in the discovery of an actin-binding protein that participate in the F-actin reorganization during adhesion of parasites to target cells. This protein is homologous to alpha-actinin from other eukaryotic cells. Finally, by using cell biology approaches, F-actin was observed in the cytoplasm as well as in the nucleus of Dinoflagellates. The recent developments in the molecular genetics of protozoa will provide new insights to understand the roles of actin-binding proteins during cytoskeleton activities. PMID:9754306

  2. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  3. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    PubMed

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-01

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin. PMID:23332077

  4. mDia1 and formins: screw cap of the actin filament

    PubMed Central

    Mizuno, Hiroaki; Watanabe, Naoki

    2012-01-01

    Formin homology proteins (formins) are actin nucleation factors which remain bound to the growing barbed end and processively elongate actin filament (F-actin). Recently, we have demonstrated that a mammalian formin mDia1 rotates along the long-pitch helix of F-actin during processive elongation (helical rotation) by single-molecule fluorescence polarization. We have also shown processive depolymerization of mDia1-bound F-actin during which helical rotation was visualized. In the cell where F-actins are highly cross-linked, formins should rotate during filament elongation. Therefore, when formins are tightly anchored to cellular structures, formins may not elongate F-actin. Adversely, helical rotation of formins might affect the twist of F-actin. Formins could thus control actin elongation and regulate stability of cellular actin filaments through helical rotation. On the other hand, ADP-actin elongation at the mDia1-bound barbed end turned out to become decelerated by profilin, in marked contrast to its remarkably positive effect on mDia1-mediated ATP-actin elongation. This deceleration is caused by enhancement of the off-rate of ADP-actin. While mDia1 and profilin enhance the ADP-actin off-rate, they do not apparently increase the ADP-actin on-rate at the barbed end. These results imply that G-actin-bound ATP and its hydrolysis may be part of the acceleration mechanism of formin-mediated actin elongation.

  5. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  6. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator

    NASA Astrophysics Data System (ADS)

    Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier

    2015-02-01

    MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues

  7. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein

    PubMed Central

    Umeki, Nobuhisa; Hirose, Keiko; Uyeda, Taro Q. P.

    2016-01-01

    To investigate cooperative conformational changes of actin filaments induced by cofilin binding, we engineered a fusion protein made of Dictyostelium cofilin and actin. The filaments of the fusion protein were functionally similar to actin filaments bound with cofilin in that they did not bind rhodamine-phalloidin, had quenched fluorescence of pyrene attached to Cys374 and showed enhanced susceptibility of the DNase loop to cleavage by subtilisin. Quantitative analyses of copolymers made of different ratios of the fusion protein and control actin further demonstrated that the fusion protein affects the structure of multiple neighboring actin subunits in copolymers. Based on these and other recent related studies, we propose a mechanism by which conformational changes induced by cofilin binding is propagated unidirectionally to the pointed ends of the filaments, and cofilin clusters grow unidirectionally to the pointed ends following this path. Interestingly, the fusion protein was unable to copolymerize with control actin at pH 6.5 and low ionic strength, suggesting that the structural difference between the actin moiety in the fusion protein and control actin is pH-sensitive. PMID:26842224

  8. Regulation of cellular actin architecture by S100A10.

    PubMed

    Jung, M Juliane; Murzik, Ulrike; Wehder, Liane; Hemmerich, Peter; Melle, Christian

    2010-04-15

    Actin structures are involved in several biological processes and the disruption of actin polymerisation induces impaired motility of eukaryotic cells. Different factors are involved in regulation and maintenance of the cytoskeletal actin architecture. Here we show that S100A10 participates in the particular organisation of actin filaments. Down-regulation of S100A10 by specific siRNA triggered a disorganisation of filamentous actin structures without a reduction of the total cellular actin concentration. In contrast, the formation of cytoskeleton structures containing tubulin was unhindered in S100A10 depleted cells. Interestingly, the cellular distribution of annexin A2, an interaction partner of S100A10, was unaffected in S100A10 depleted cells. Cells lacking S100A10 showed an impaired migration activity and were unable to close a scratched wound. Our data provide first insights of S100A10 function as a regulator of the filamentous actin network. PMID:20100475

  9. Bundling actin filaments from membranes: some novel players

    PubMed Central

    Thomas, Clément

    2012-01-01

    Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling. PMID:22936939

  10. Actin in Herpesvirus Infection

    PubMed Central

    Roberts, Kari L.; Baines, Joel D.

    2011-01-01

    Actin is important for a variety of cellular processes, including uptake of extracellular material and intracellular transport. Several emerging lines of evidence indicate that herpesviruses exploit actin and actin-associated myosin motors for viral entry, intranuclear transport of capsids, and virion egress. The goal of this review is to explore these processes and to highlight potential future directions for this area of research. PMID:21994736

  11. Actin from Saccharomyces cerevisiae.

    PubMed Central

    Greer, C; Schekman, R

    1982-01-01

    Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth. Images PMID:6217414

  12. Actin Rings of Power.

    PubMed

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles. PMID:27326928

  13. Arabidopsis CROLIN1, a Novel Plant Actin-binding Protein, Functions in Cross-linking and Stabilizing Actin Filaments*

    PubMed Central

    Jia, Honglei; Li, Jisheng; Zhu, Jingen; Fan, Tingting; Qian, Dong; Zhou, Yuelong; Wang, Jiaojiao; Ren, Haiyun; Xiang, Yun; An, Lizhe

    2013-01-01

    Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments. PMID:24072702

  14. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  15. Demonstration of prominent actin filaments in the root columella

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Zsuppan, G.; Allen, N. S.; Blancaflor, E. B.; Brown, C. S. (Principal Investigator)

    2001-01-01

    The distribution of actin filaments within the gravity-sensing columella cells of plant roots remains poorly understood, with studies over numerous years providing inconsistent descriptions of actin organization in these cells. This uncertainty in actin organization, and thus in actin's role in graviperception and gravisignaling, has led us to investigate actin arrangements in the columella cells of Zea mays L., Medicago truncatula Gaertn., Linum usitatissiilium L. and Nicotianla benthamiana Domin. Actin organization was examined using a combination of optimized immunofluorescence techniques, and an improved fluorochrome-conjugated phalloidin labeling method reliant on 3-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS) cross-linking combined with glycerol permeabilization. Confocal microscopy of root sections labeled with anti-actin antibodies revealed patterns suggestive of actin throughout the columella region. These patterns included short and fragmented actin bundles, fluorescent rings around amyloplasts and intense fluorescence originating from the nucleus. Additionally, confocal microscopy of MBS-stabilized and Alexa Fluor-phalloidin-labeled root sections revealed a previously undetected state of actin organization in the columella. Discrete actin structures surrounded the amyloplasts and prominent actin cables radiated from the nuclear surface toward the cell periphery. Furthermore, the cortex of the columella cells contained fine actin bundles (or single filaments) that had a predominant transverse orientation. We also used confocal microscopy of plant roots expressing endoplasmic reticulum (ER)-targeted green fluorescent protein to demonstrate rapid ER movements within the columella cells, suggesting that the imaged actin network is functional. The successful identification of discrete actin structures in the root columella cells forms the perception and signaling.

  16. Stochastic Dynamical Model of a Growing Citation Network Based on a Self-Exciting Point Process

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-01

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40 195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  17. Data-driven modelling of a gene regulatory network for cell fate decisions in the growing limb bud.

    PubMed

    Uzkudun, Manu; Marcon, Luciano; Sharpe, James

    2015-07-01

    Parameter optimization coupled with model selection is a convenient approach to infer gene regulatory networks from experimental gene expression data, but so far it has been limited to single cells or static tissues where growth is not significant. Here, we present a computational study in which we determine an optimal gene regulatory network from the spatiotemporal dynamics of gene expression patterns in a complex 2D growing tissue (non-isotropic and heterogeneous growth rates). We use this method to predict the regulatory mechanisms that underlie proximodistal (PD) patterning of the developing limb bud. First, we map the expression patterns of the PD markers Meis1, Hoxa11 and Hoxa13 into a dynamic description of the tissue movements that drive limb morphogenesis. Secondly, we use reverse-engineering to test how different gene regulatory networks can interpret the opposing gradients of fibroblast growth factors (FGF) and retinoic acid (RA) to pattern the PD markers. Finally, we validate and extend the best model against various previously published manipulative experiments, including exogenous application of RA, surgical removal of the FGF source and genetic ectopic expression of Meis1. Our approach identifies the most parsimonious gene regulatory network that can correctly pattern the PD markers downstream of FGF and RA. This network reveals a new model of PD regulation which we call the "crossover model", because the proximal morphogen (RA) controls the distal boundary of Hoxa11, while conversely the distal morphogens (FGFs) control the proximal boundary. PMID:26174932

  18. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  19. Nuclear F-actin formation and reorganization upon cell spreading.

    PubMed

    Plessner, Matthias; Melak, Michael; Chinchilla, Pilar; Baarlink, Christian; Grosse, Robert

    2015-05-01

    We recently discovered signal-regulated nuclear actin network assembly. However, in contrast to cytoplasmic actin regulation, polymeric nuclear actin structures and functions remain only poorly understood. Here we describe a novel molecular tool to visualize real-time nuclear actin dynamics by targeting the Actin-Chromobody-TagGFP to the nucleus, thus establishing a nuclear Actin-Chromobody. Interestingly, we observe nuclear actin polymerization into dynamic filaments upon cell spreading and fibronectin stimulation, both of which appear to be triggered by integrin signaling. Furthermore, we show that nucleoskeletal proteins such as the LINC (linker of nucleoskeleton and cytoskeleton) complex and components of the nuclear lamina couple cell spreading or integrin activation by fibronectin to nuclear actin polymerization. Spreading-induced nuclear actin polymerization results in serum response factor (SRF)-mediated transcription through nuclear retention of myocardin-related transcription factor A (MRTF-A). Our results reveal a signaling pathway, which links integrin activation by extracellular matrix interaction to nuclear actin polymerization through the LINC complex, and therefore suggest a role for nuclear actin polymerization in the context of cellular adhesion and mechanosensing. PMID:25759381

  20. ROP Gtpase–Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes

    PubMed Central

    Fu, Ying; Wu, Guang; Yang, Zhenbiao

    2001-01-01

    Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein–tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized F-actin in tobacco pollen tubes, termed short actin bundles (SABs). The dynamics of SABs during polar growth in pollen tubes is regulated by Rop1At, a Rop GTPase belonging to the Rho family. When overexpressed, Rop1At transformed SAB into a network of fine filaments and induced a transverse actin band behind the tip, leading to depolarized growth. These changes were due to ectopic Rop1At localization to the apical region of the plasma membrane and were suppressed by guanine dissociation inhibitor overexpression, which removed ectopically localized Rop1At. Rop GTPase–activating protein (RopGAP1) overexpression, or Latrunculin B treatments, also recovered normal actin organization and tip growth in Rop1At-overexpressing tubes. Moreover, overexpression of RopGAP1 alone disrupted SABs and inhibited growth. Finally, SAB oscillates and appears at the tip before growth. Together, these results indicate that the dynamics of tip actin are essential for tip growth and provide the first direct evidence to link Rho GTPase to actin organization in controlling cell polarity and polar growth in plants. PMID:11238457

  1. Going to Scale: As KIPP Network Grows, Positive Impacts Are Sustained. In Focus Brief

    ERIC Educational Resources Information Center

    Tuttle, Christina Clark; Gleason, Philip; Knechtel, Virginia; Nichols-Barrer, Ira; Booker, Kevin; Chojnacki, Gregory; Coen, Thomas; Goble, Lisbeth

    2015-01-01

    KIPP (Knowledge is Power Program) is a national network of public charter schools whose stated mission is to help underserved students enroll in and graduate from college. Prior studies (see Tuttle et al. 2013) have consistently found that attending a KIPP middle school positively affects student achievement, but few have addressed longer-term…

  2. Joint estimation of preferential attachment and node fitness in growing complex networks

    PubMed Central

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-01-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314

  3. Joint estimation of preferential attachment and node fitness in growing complex networks.

    PubMed

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-01-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314

  4. Harnessing Electrostatic Forces to Grow Bio-inspired Hierarchical Vascular Networks

    NASA Astrophysics Data System (ADS)

    Behler, Kristopher; Melrose, Zachary; Schott, Andrew; Wetzel, Eric

    2012-02-01

    Vascular networks provide a system for fluid distribution. Artificial vascular materials with enhanced properties are currently being developed that could ultimately be integrated into systems reliant upon fluid transport while retaining their structural properties. An uninterrupted and controllable supply of liquid is optimal for many applications such as continual self-healing materials, in-situ delivery of index matched fluids, thermal management and drug delivery systems could benefit from a bio-inspired vascular approach that combines complex network geometries with minimal processing parameters. Two such approaches to induce vascular networks are electrohydrodynamic viscous fingering (EHVF) and electrical treeing (ET). EHVF is a phenomenon that occurs when a low viscosity liquid is forced through a high viscosity fluid or matrix, resulting in branches due to capillary and viscous forces in the high viscosity material. By applying voltages of 0 -- 60 kV, finger diameter is reduced. ET is the result of partial discharges in a dielectric material. In the vicinity of a small diameter electrode, the local electric field is greater than the global dielectric strength, causing a localized, step-wise, breakdown to occur forming a highly branched interconnected structure. ET is a viable method to produce networks on a smaller, micron, scale than the products of the EHVF method.

  5. The City in the Country: Growing Alternative Food Networks in Metropolitan Areas

    ERIC Educational Resources Information Center

    Jarosz, Lucy

    2008-01-01

    Alternative food networks (AFNs) are commonly defined by attributes such as the spatial proximity between farmers and consumers, the existence of retail venues such as farmers markets, community supported agriculture (CSA) and a commitment to sustainable food production and consumption. Focusing upon processes rather than attributes, this paper…

  6. Building an artificial actin cortex on microscopic pillar arrays.

    PubMed

    Ayadi, R; Roos, W H

    2015-01-01

    Eukaryotic cells obtain their morphology and mechanical strength from the cytoskeleton and in particular from the cross-linked actin network that branches throughout the whole cell. This actin cortex lies like a quasi-two-dimensional (2D) biopolymer network just below the cell membrane, to which it is attached. In the quest for building an artificial cell, one needs to make a biomimetic model of the actin cortex and combine this in a bottom-up approach with other "synthetic" components. Here, we describe a reconstitution method for such an artificial actin cortex, which is freely suspended on top of a regular array of pillars. By this immobilization method, the actin network is only attached to a surface at discrete points and can fluctuate freely in between. By discussing the method to make the micropillars and the way to reconstitute a quasi-2D actin network on top, we show how one can study an isolated, reconstituted part of a cell. This allows the study of fundamental interaction mechanisms of actin networks, providing handles to design a functional actin cortex in an artificial cell. PMID:25997345

  7. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  8. Temporal evolution of the macropore network and saturated hydraulic conductivity in an arable, clayey topsoil during one growing season

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Köstel, Johannes; Jarvis, Nicholas; Larsbo, Mats

    2015-04-01

    Soil macropore networks and thus hydraulic properties at and close to saturation vary considerably with time, as a result of the dynamic nature of a diverse range of interacting soil structure-forming and degrading factors such as tillage and traffic events, faunal and plant root activity, swell/shrink arising from wetting and drying cycles, freeze-thaw etc. These properties are nevertheless treated as constants in most hydrological modelling studies. This is mostly justified by a lack of understanding of the processes driving these changes. Temporal variations of saturated and near-saturated hydraulic conductivity have been studied in the field (e.g. by tension disc infiltrometer), but these measurements only indirectly reflect the characteristics of the macropore network. In this study, we used non-destructive X-ray tomography to investigate the temporal changes in the macropore network characteristics occurring in the harrowed layer of a conventionally-tilled agricultural field over one growing season. Undisturbed soil cores (60-70 mm height, 68 mm diameter) were sampled on five different occasions. Changes in the geometric and topological properties of the X-ray imaged macropore system (voxel resolution = 120 µm) were compared with variations in saturated hydraulic conductivity measured on the same samples. Image analysis showed that total porosity, specific surface area, average pore diameter and the connectivity of the pore system in the uppermost 60-70 mm of ploughed and harrowed soil decreased from the first sampling occasion shortly after seedbed preparation and sowing until the middle of the growing season after which it slightly increased again. Separate analysis of the total porosity of the top 5 mm showed a marked decrease between the first two sampling occasions, followed by a gradual increase. Despite these structural changes in the macropore system, saturated hydraulic conductivity was only weakly correlated with macropore network characteristics.

  9. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  10. Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells.

    PubMed

    Meindl, U; Zhang, D; Hepler, P K

    1994-07-01

    Rhodamine-phalloidin or FITC-phalloidin has been injected in small amounts into living, developing cells of Micrasterias denticulata and the stained microfilaments visualized by confocal laser scanning microscopy. The results reveal that two different actin filament systems are present in a growing cell: a cortical actin network that covers the inner surface of the cell and is extended far into the tips of the lobes in both the growing and the nongrowing semicell; it is also associated with the surface of the chloroplast. The second actin system ensheathes the nucleus at the isthmus-facing side during nuclear migration. Its arrangement corresponds to that of the microtubule system that has been described in earlier electron microscopic investigations. The spatial correspondence between the distribution of actin filaments and microtubules suggests a cooperation between both cytoskeleton elements in generating the motive force for nuclear migration. The function of the cortical actin network is not yet clear. It may be involved in processes like transport and fusion of secretory vesicles and may also function in shaping and anchoring the chloroplast. PMID:7983159

  11. Glutamyl Phosphate Is an Activated Intermediate in Actin Crosslinking by Actin Crosslinking Domain (ACD) Toxin

    PubMed Central

    Kudryashova, Elena; Kalda, Caitlin; Kudryashov, Dmitri S.

    2012-01-01

    Actin Crosslinking Domain (ACD) is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K0.5 = 30 µM) reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg2+-GTP to support crosslinking, but the kinetic parameters (KM = 8 µM and 50 µM for ATP and GTP, respectively) suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0–9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions. PMID:23029200

  12. Actin-based spindle positioning: new insights from female gametes.

    PubMed

    Almonacid, Maria; Terret, Marie-Émilie; Verlhac, Marie-Hélène

    2014-02-01

    Asymmetric divisions are essential in metazoan development, where they promote the emergence of cell lineages. The mitotic spindle has astral microtubules that contact the cortex, which act as a sensor of cell geometry and as an integrator to orient cell division. Recent advances in live imaging revealed novel pools and roles of F-actin in somatic cells and in oocytes. In somatic cells, cytoplasmic F-actin is involved in spindle architecture and positioning. In starfish and mouse oocytes, newly discovered meshes of F-actin control chromosome gathering and spindle positioning. Because oocytes lack centrosomes and astral microtubules, F-actin networks are key players in the positioning of spindles by transmitting forces over long distances. Oocytes also achieve highly asymmetric divisions, and thus are excellent models to study the roles of these newly discovered F-actin networks in spindle positioning. Moreover, recent studies in mammalian oocytes provide a further understanding of the organisation of F-actin networks and their biophysical properties. In this Commentary, we present examples of the role of F-actin in spindle positioning and asymmetric divisions, with an emphasis on the most up-to-date studies from mammalian oocytes. We also address specific technical issues in the field, namely live imaging of F-actin networks and stress the need for interdisciplinary approaches. PMID:24413163

  13. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  14. Percolation transition at growing spatiotemporal fractal patterns in models of mesoscopic neural networks.

    PubMed

    Franović, Igor; Miljković, Vladimir

    2009-06-01

    Spike packet propagation is modeled in mesoscopic-scale networks, composed of locally and recurrently coupled neural pools, and embedded in a two-dimensional lattice. Site dynamics is governed by three key parameters--pool connectedness probability, synaptic strength (following the steady-state distribution of some realizations of spike-timing-dependent plasticity learning rule), and the neuron refractoriness. Formation of spatiotemporal patterns in our model, synfire chains, exhibits critical behavior, with the emerging percolation phase transition controlled by the probability for nonzero synaptic strength value. Applying the finite-size scaling method, we infer the critical probability dependence on synaptic strength and refractoriness and determine the effects of connection topology on the pertaining percolation clusters fractal dimensions. We find that the directed percolation and the pair contact process with diffusion constitute the relevant universality classes of phase transitions observed in a class of mesoscopic-scale network models, which may be related to recently reported data on in vitro cultures. PMID:19658540

  15. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Clark, Ross; Peters, Donna M

    2014-10-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  16. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells

    PubMed Central

    Filla, Mark S.; Clark, Ross; Peters, Donna M.

    2014-01-01

    In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Go 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure. PMID:25128150

  17. Excitable actin dynamics in lamellipodial protrusion and retraction.

    PubMed

    Ryan, Gillian L; Petroccia, Heather M; Watanabe, Naoki; Vavylonis, Dimitrios

    2012-04-01

    Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture. PMID:22500749

  18. Local-world and cluster-growing weighted networks with controllable clustering

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Xia; Tang, Min-Xuan; Tang, Hai-Qiang; Deng, Qiang-Qiang

    2014-12-01

    We constructed an improved weighted network model by introducing local-world selection mechanism and triangle coupling mechanism based on the traditional BBV model. The model gives power-law distributions of degree, strength and edge weight and presents the linear relationship both between the degree and strength and between the degree and the clustering coefficient. Particularly, the model is equipped with an ability to accelerate the speed increase of strength exceeding that of degree. Besides, the model is more sound and efficient in tuning clustering coefficient than the original BBV model. Finally, based on our improved model, we analyze the virus spread process and find that reducing the size of local-world has a great inhibited effect on virus spread.

  19. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  20. VASP Governs Actin Dynamics by Modulating Filament Anchoring

    PubMed Central

    Trichet, Léa; Campàs, Otger; Sykes, Cécile; Plastino, Julie

    2007-01-01

    Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell. PMID:17098798

  1. A Network Meta-Analysis of the Relative Efficacy of Treatments for Actinic Keratosis of the Face or Scalp in Europe

    PubMed Central

    Vegter, Stefan; Tolley, Keith

    2014-01-01

    Background Several treatments are available for actinic keratosis (AK) on the face and scalp. Most treatment modalities were compared to placebo and therefore little is known on their relative efficacy. Objectives To compare the different treatments for mild to moderate AK on the face and scalp available in clinical practice in Europe. Methods A network meta-analysis (NMA) was performed on the outcome “complete patient clearance”. Ten treatment modalities were included: two 5-aminolaevulinic acid photodynamic therapies (ALA-PDT), applied as gel (BF-200 ALA) or patch; methyl-aminolevulinate photodynamic therapy (MAL-PDT); three modalities with imiquimod (IMI), applied as a 4-week or 16-week course with 5% imiquimod, or a 2–3 week course with 3.75% imiquimod; cryotherapy; diclofenac 3% in 2.5% hyaluronic acid; 0.5% 5-fluorouracil (5-FU); and ingenol mebutate (IMB). The only data available for 5% 5-FU was from one small study and was determined to be too limited to be reliably included in the analysis. For BF-200 ALA and MAL-PDT, data from illumination with narrow-band lights were selected as these are typically used in clinical practice. The NMA was performed with a random-effects Bayesian model. Results 25 trials on 5,562 patients were included in the NMA. All active treatments were significantly better than placebo. BF-200 ALA showed the highest efficacy compared to placebo to achieve total patient clearance. BF-200 ALA had the highest probability to be the best treatment and the highest SUCRA score (64.8% and 92.1%), followed by IMI 5% 4 weeks (10.1% and 74.2%) and 5-FU 0.5% (7.2% and 66.8%). Conclusions This NMA showed that BF-200 ALA, using narrow-band lights, was the most efficacious treatment for mild to moderate AK on the face and scalp. This analysis is relevant for clinical decision making and health technology assessment, assisting the improved management of AK. PMID:24892649

  2. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  3. Concentration profiles of actin-binding molecules in lamellipodia

    NASA Astrophysics Data System (ADS)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  4. Actin Automata with Memory

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Adamatzky, Andy

    Actin is a globular protein which forms long polar filaments in eukaryotic. The actin filaments play the roles of cytoskeleton, motility units, information processing and learning. We model actin filament as a double chain of finite state machines, nodes, which take states “0” and “1”. The states are abstractions of absence and presence of a subthreshold charge on actin units corresponding to the nodes. All nodes update their state in parallel to discrete time. A node updates its current state depending on states of two closest neighbors in the node chain and two closest neighbors in the complementary chain. Previous models of actin automata consider momentary state transitions of nodes. We enrich the actin automata model by assuming that states of nodes depend not only on the current states of neighboring node but also on their past states. Thus, we assess the effect of memory of past states on the dynamics of acting automata. We demonstrate in computational experiments that memory slows down propagation of perturbations, decrease entropy of space-time patterns generated, transforms traveling localizations to stationary oscillators, and stationary oscillations to still patterns.

  5. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  6. F-Actin Organization and Pollen Tube Tip Growth in Arabidopsis Are Dependent on the Gametophyte-Specific Armadillo Repeat Protein ARO1[W

    PubMed Central

    Gebert, Marina; Dresselhaus, Thomas; Sprunck, Stefanie

    2008-01-01

    The signal-mediated and spatially controlled assembly and dynamics of actin are crucial for maintaining shape, motility, and tip growth of eukaryotic cells. We report that a novel Armadillo repeat protein in Arabidopsis thaliana, ARMADILLO REPEAT ONLY1 (ARO1), is of fundamental importance for polar growth and F-actin organization in tip-growing pollen tubes. ARO1 is specifically expressed in the vegetative cell of pollen as well as in the egg cell. ARO1-GFP (for green fluorescent protein) fusion proteins accumulate most notably in pollen tube tips and partially colocalize with F-actin in the shank of pollen tubes. ARO1 knockout results in a highly disorganized actin cytoskeleton, growth depolarization, and ultimately tube growth arrest. Tip-localized ARO1-GFP is spatially shifted toward the future site of tip growth, indicating a role of ARO1 in the signaling network controlling tip growth and regulating actin organization. After the pollen tube discharges its contents into the receptive synergid, ARO1-GFP colocalizes with emerging F-actin structures near the site of sperm cell fusion, suggesting additional participation in the mechanism of sperm cell tracking toward the female gametes. The variable localization of ARO1 in the cytoplasm, the nucleus, and at the plasma membrane, however, indicates a multifunctional role like that of β-catenin/Armadillo and the p120 catenins. PMID:18931021

  7. Nuclear and cytoplasmic actin in dinoflagellates.

    PubMed

    Soyer-Gobillard, M O; Ausseil, J; Géraud, M L

    1996-01-01

    Experiments using monoclonal and polyclonal anti-actin antibodies allowed us to demonstrate the presence of F- or G-actin in original protists, dinoflagellates, either by biochemistry, immunofluorescence and in TEM. SDS-PAGE electrophoresis and immunoblottings made either from total or nuclear protein extracts revealed the presence of a 44-kDa band reacting with monoclonal anti-actin antibody in two species, Prorocentrum micans and Crypthecodinium cohnii, and thus demonstrated the presence of actin in nuclear and cytoplasmic fractions. After squash preparation of P micans cells, actin was identified within the nucleus and in some regions of the cytoplasm by immunofluorescence microscopy. Labelling of both the nucleolus and the centrosome region was evident together with amorphous nucleoplasmic material surrounding the chromosomes. The use of cryosections of intact P micans and C cohnii cells for immunofluorescence along with staining with DAPI to delineate the chromosomes themselves, yielded finer resolution of the intranuclear network labelling pattern and allowed us to complete our observations, in particular on the cytoplasmic labelling. In P micans, in addition to the centrosome region, the cytoplasmic channels passing through the nucleus in dividing cells are labelled. In C cohnii, the cortex, the centrosome region, the cytoplasmic channels, the region surrounding the nucleus, the filaments linking it to the cortex and the cleavage furrow are also labelled. In the nucleus of the two species, there is a prominent "weft' of fine actin filaments in the nucleoplasm forming a matrix of varying density around the persistent chromosomes. This actin matrix, of unknown function, is most conspicuous at the end of the S-phase of the cell cycle. Fluorescent derivatives of phalloidin, used as diagnostic cytochemical probes for polymeric actin (F-actin), gave similar results. Positive TEM immunolabelling of intranuclear actin confirms its presence in the nucleoplasm, in the

  8. Force Generation by Endocytic Actin Patches in Budding Yeast

    PubMed Central

    Carlsson, Anders E.; Bayly, Philip V.

    2014-01-01

    Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value. PMID:24739159

  9. Intranuclear Actin Regulates Osteogenesis

    PubMed Central

    Sen, Buer; Xie, Zhihui; Uzer, Gunes; Thompson, William R.; Styner, Maya; Wu, Xin; Rubin, Janet

    2016-01-01

    Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for clinical objectives of forming bone. PMID:26140478

  10. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane--a minimally invasive investigation by STED-FCS.

    PubMed

    Andrade, Débora M; Clausen, Mathias P; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E; Hell, Stefan W; Lagerholm, B Christoffer; Eggeling, Christian

    2015-01-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385

  11. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    NASA Astrophysics Data System (ADS)

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  12. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS

    PubMed Central

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-01-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes. PMID:26118385

  13. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  14. How capping protein enhances actin filament growth and nucleation on biomimetic beads

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe; Carlsson, Anders E.

    2015-12-01

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  15. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.

    PubMed

    Mendoza, Michelle C; Besson, Sebastien; Danuser, Gaudenz

    2012-10-01

    Quantitative fluorescent speckle microscopy (QFSM) is a live-cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meiotic/mitotic spindle. Here, focus is on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with the microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently labeled to endogenously unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (two to eight actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  16. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  17. Ratiometric Imaging of the T-Cell Actin Cytoskeleton Reveals the Nature of Receptor-Induced Cytoskeletal Enrichment

    PubMed Central

    Smoligovets, Alexander A.; Smith, Adam W.; Groves, Jay T.

    2013-01-01

    The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network. PMID:23931330

  18. Reconstitution of Actin-based Motility by Vasodilator-stimulated Phosphoprotein (VASP) Depends on the Recruitment of F-actin Seeds from the Solution Produced by Cofilin*

    PubMed Central

    Siton, Orit; Bernheim-Groswasser, Anne

    2014-01-01

    Vasodilator-stimulated phosphoprotein (VASP) is active in many filopodium-based and cytoskeleton reorganization processes. It is not fully understood how VASP directly functions in actin-based motility and how regulatory proteins affect its function. Here, we combine bead motility assay and single filament experiments. In the presence of a bundling component, actin bundles that grow from the surface of WT-VASP-coated beads induced movement of the beads. VASP promotes actin-based movement alone, in the absence of other actin nucleators. We propose that at physiological salt conditions VASP nucleation activity is too weak to promote motility and bundle formation. Rather, VASP recruits F-actin seeds from the solution and promotes their elongation. Cofilin has a crucial role in the nucleation of these F-actin seeds, notably under conditions of unfavorable spontaneous actin nucleation. We explored the role of multiple VASP variants. We found that the VASP-F-actin binding domain is required for the recruitment of F-actin seeds from the solution. We also found that the interaction of profilin-actin complexes with the VASP-proline-rich domain and the binding of the VASP-F-actin binding domain to the side of growing filaments is critical for transforming actin polymerization into motion. At the single filament level, profilin mediates both filament elongation rate and VASP anti-capping activity. Binding of profilin-actin complexes increases the polymerization efficiency by VASP but decreases its efficiency as an anti-capper; binding of free profilin creates the opposite effect. Finally, we found that an additional component such as methylcellulose or fascin is required for actin bundle formation and motility mediated by VASP. PMID:25246528

  19. A new link between the retrograde actin flow and focal adhesions.

    PubMed

    Yamashiro, Sawako; Watanabe, Naoki

    2014-11-01

    The retrograde actin flow, continuous centripetal movement of the cell peripheral actin networks, is widely observed in adherent cells. The retrograde flow is believed to facilitate cell migration when linked to cell adhesion molecules. In this review, we summarize our current knowledge regarding the functional relationship between the retrograde actin flow and focal adhesions (FAs). We also introduce our recent study in which single-molecule speckle (SiMS) microscopy dissected the complex interactions between FAs and the local actin flow. FAs do not simply impede the actin flow, but actively attract and remodel the local actin network. Our findings provide a new insight into the mechanisms for protrusion and traction force generation at the cell leading edge. Furthermore, we discuss possible roles of the actin flow-FA interaction based on the accumulated knowledge and our SiMS study. PMID:25190817

  20. Actin dynamics and the evolution of the memory trace.

    PubMed

    Rudy, Jerry W

    2015-09-24

    The goal of this essay is to link the regulation of actin dynamics to the idea that the synaptic changes that support long-term potentiation and memory evolve in temporally overlapping stages-generation, stabilization, and consolidation. Different cellular/molecular processes operate at each stage to change the spine cytoarchitecture and, in doing so, alter its function. Calcium-dependent processes that degrade the actin cytoskeleton network promote a rapid insertion of AMPA receptors into the post synaptic density, which increases a spine's capacity to express a potentiated response to glutamate. Other post-translation events then begin to stabilize and expand the actin cytoskeleton by increasing the filament actin content of the spine and reorganizing it to be resistant to depolymerizing events. Disrupting actin polymerization during this stabilization period is a terminal event-the actin cytoskeleton shrinks and potentiated synapses de-potentiate and memories are lost. Late-arriving, new proteins may consolidate changes in the actin cytoskeleton. However, to do so requires a stabilized actin cytoskeleton. The now enlarged spine has properties that enable it to capture other newly transcribed mRNAs or their protein products and thus enable the synaptic changes that support LTP and memory to be consolidated and maintained. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25498985

  1. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  2. Simulation of the effect of confinement in actin ring formation

    NASA Astrophysics Data System (ADS)

    Adeli Koudehi, Maral; Vavylonis, Dimitrios; Haosu Tang Team; Dimitrios Vavylonis Team

    Actin filaments are vital for different network structures in living cells. During cytokinesis, they form a contractile ring containing myosin motor proteins and actin filament cross-linkers to separate one cell into two cells. Recent experimental studies have quantified the bundle, ring, and network structures that form when actin filaments polymerize in confined environments in vitro, in the presence of varying concentrations of cross-linkers. In this study, we performed numerical simulations to investigate the effect of actin spherical confinement and cross-linking in ring formation. We used a spring-bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. Applying the model for different size of the confining spheres shows that the probability of ring formation decreases by increasing the radius (at fixed initial monomer concentration), in agreement with prior experimental data. We describe the effect of persistence length, orientation-dependent cross-linking, and initial actin monomer concentration. Simulations show that equilibrium configurations can be reached through zipping and unzipping of actin filaments in bundles and transient ring formation.

  3. IFT88 influences chondrocyte actin organization and biomechanics

    PubMed Central

    Wang, Z.; Wann, A.K.T.; Thompson, C.L.; Hassen, A.; Wang, W.; Knight, M.M.

    2016-01-01

    Summary Objectives Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. Methods The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88orpk). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. Results IFT88orpk cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88orpk cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88orpk cells. Following membrane blebbing, IFT88orpk cells exhibited slower reformation of the actin cortex. IFT88orpk cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. Conclusions This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. PMID:26493329

  4. Viruses that ride on the coat-tails of actin nucleation.

    PubMed

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport. PMID:26459972

  5. Symmetry breaking in reconstituted actin cortices.

    PubMed

    Abu Shah, Enas; Keren, Kinneret

    2014-01-01

    The actin cortex plays a pivotal role in cell division, in generating and maintaining cell polarity and in motility. In all these contexts, the cortical network has to break symmetry to generate polar cytoskeletal dynamics. Despite extensive research, the mechanisms responsible for regulating cortical dynamics in vivo and inducing symmetry breaking are still unclear. Here we introduce a reconstituted system that self-organizes into dynamic actin cortices at the inner interface of water-in-oil emulsions. This artificial system undergoes spontaneous symmetry breaking, driven by myosin-induced cortical actin flows, which appears remarkably similar to the initial polarization of the embryo in many species. Our in vitro model system recapitulates the rich dynamics of actin cortices in vivo, revealing the basic biophysical and biochemical requirements for cortex formation and symmetry breaking. Moreover, this synthetic system paves the way for further exploration of artificial cells towards the realization of minimal model systems that can move and divide.DOI: http://dx.doi.org/10.7554/eLife.01433.001. PMID:24843007

  6. Symmetry breaking in reconstituted actin cortices

    PubMed Central

    Abu Shah, Enas; Keren, Kinneret

    2014-01-01

    The actin cortex plays a pivotal role in cell division, in generating and maintaining cell polarity and in motility. In all these contexts, the cortical network has to break symmetry to generate polar cytoskeletal dynamics. Despite extensive research, the mechanisms responsible for regulating cortical dynamics in vivo and inducing symmetry breaking are still unclear. Here we introduce a reconstituted system that self-organizes into dynamic actin cortices at the inner interface of water-in-oil emulsions. This artificial system undergoes spontaneous symmetry breaking, driven by myosin-induced cortical actin flows, which appears remarkably similar to the initial polarization of the embryo in many species. Our in vitro model system recapitulates the rich dynamics of actin cortices in vivo, revealing the basic biophysical and biochemical requirements for cortex formation and symmetry breaking. Moreover, this synthetic system paves the way for further exploration of artificial cells towards the realization of minimal model systems that can move and divide. DOI: http://dx.doi.org/10.7554/eLife.01433.001 PMID:24843007

  7. Coronin 1B antagonizes Cortactin and remodels Arp2/3-containing actin branches in lamellipodia

    PubMed Central

    Cai, Liang; Makhov, Alexander M.; Schafer, Dorothy A.; Bear, James E.

    2008-01-01

    Summary The dendritic actin network generated by Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks. PMID:18775315

  8. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    SciTech Connect

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  9. Regulation of actin nucleation and autophagosome formation.

    PubMed

    Coutts, Amanda S; La Thangue, Nicholas B

    2016-09-01

    Autophagy is a process of self-eating, whereby cytosolic constituents are enclosed by a double-membrane vesicle before delivery to the lysosome for degradation. This is an important process which allows for recycling of nutrients and cellular components and thus plays a critical role in normal cellular homeostasis as well as cell survival during stresses such as starvation or hypoxia. A large number of proteins regulate various stages of autophagy in a complex and still incompletely understood series of events. In this review, we will discuss recent studies which provide a growing body of evidence that actin dynamics and proteins that influence actin nucleation play an important role in the regulation of autophagosome formation and maturation. PMID:27147468

  10. Verification of Satellite Radar Remote Sensing Based Estimates of Boreal and Subalpine Growing Seasons Using an Ecosystem Process Model and Surface Biophysical Measurement Network Information

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; McDonald, K. C.; Running, S. W.; Zimmermann, R.

    2002-12-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001. We compare these results with estimates of growing season length derived from a network of surface stations, utilizing BIOME-BGC stand-level ecosystem process model simulations, site sap flow and tower eddy flux net CO2 exchange measurements for a network of mature evergreen coniferous forest stands. Remote sensing based estimates of spatial patterns in the timing of seasonal freeze-thaw vary by more than 8 weeks, while associated estimates of growing season length span more than 14 weeks across the region. Inter-annual variability between 2000 and 2001 is found to be on the order of 1-4 weeks. Remote sensing estimates of growing season initiation and length are found to be well correlated with both site measurements and model simulations. Remote sensing measurements of the end of the seasonal non-frozen period are also found to be consistent with site based temperature measurements, but not with site based estimates of growing season termination. These findings are attributed to a relatively strong dependence of the onset of the growing season to snowmelt and associated soil thaw in spring and the relative importance of additional factors such as light availability and day length in controlling growing season termination. This work was performed at the University of Montana, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  11. Steric Effects Induce Geometric Remodeling of Actin Bundles in Filopodia.

    PubMed

    Dobramysl, Ulrich; Papoian, Garegin A; Erban, Radek

    2016-05-10

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and then full collapse of central filaments in the bundle, leading to a hollowed-out structure. The latter may further collapse radially due to the activity of cross-linking proteins, hence producing conical-shaped filament bundles. Interestingly, electron microscopy experiments on mature filopodia indeed frequently reveal actin bundles that are narrow at the tip and wider at the base. Overall, our work demonstrates that excluded volume effects in the context of reaction-diffusion processes in porous networks may lead to unexpected geometric growth patterns and complicated, history-dependent dynamics of intermediate metastable configurations. PMID:27166814

  12. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span

    PubMed Central

    Lejskova, Renata; Malcova, Ivana

    2015-01-01

    Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. PMID:26351139

  13. Rapid non-equilibrium turnover fluidizes entangled F-actin solutions

    NASA Astrophysics Data System (ADS)

    McCall, Patrick M.; Kovar, David R.; Gardel, Margaret L.

    The actin cytoskeleton of living cells is a semiflexible polymer network which regulates cell division, motility, and morphogenesis by controlling cell shape. These complex shape-changing processes require both mechanical deformation and remodeling of the actin cytoskeleton. Molecular motors generate internal forces to drive deformation, while cytoskeletal remodeling is regulated by non-equilibrium polymer turnover. Although the mechanical properties of equilibrium actin filament (F-actin) networks are well-described by theories of semiflexible polymers, these theories do not incorporate the effects of non-equilibrium turnover. To address this experimentally, we developed a model system in which both the turnover rate and the length distribution of purified F-actin can be tuned independently at steady-state through the combined action of actin regulatory proteins. Specifically we tune the concentrations of cofilin, profilin, and formin to regulate F-actin severing, recycling, and nucleation, respectively. We find that the actin turnover rate can be tuned by cofilin up to 25-fold (31 +/- 2 subunits/sec/filament). Surprisingly, changes in turnover rate have no effect on the steady-state F-actin length distribution, which is instead set by formin concentration. Passive microrheology measurements show that increased turnover leads to striking fluidization in both entangled and crosslinked networks. Non-equilibrium turnover thus enables modulation of network mechanics, which impacts force transmission and material deformation.

  14. Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network

    PubMed Central

    Roybal, Kole T.; Mace, Emily M.; Mantell, Judith M.; Verkade, Paul; Orange, Jordan S.; Wülfing, Christoph

    2015-01-01

    Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches. PMID:26237050

  15. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  16. Actin Skeletons at the Membrane as Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dalhaimer, Paul; Levine, Alex; Lubensky, Tom

    2002-03-01

    Actin filaments crosslinked by proteins such as spectrin form plasma membrane networks in a number of cell-types, including the red blood cell and the outer hair cell of the inner ear. Actin filaments are stiff compared to spectrin and can be considered hard rods. We statistically simulate network phase behavior at finite temperature by Monte Carlo methods, and explore the effects of spectrin and actin length as well as isotropic and shear stresses. Relative lengths required for a zero pressure nematic phase are determined, for exmaple, and indicate structural requirements for obtaining a 2D anisotropic elastomer. Emerging studies of network elasticity examine the anisotropic state and begin to probe the relevance of hyper-soft modes to hearing.

  17. Interactions between plant endomembrane systems and the actin cytoskeleton

    PubMed Central

    Wang, Pengwei; Hussey, Patrick J.

    2015-01-01

    Membrane trafficking, organelle movement, and morphogenesis in plant cells are mainly controlled by the actin cytoskeleton. Not all proteins that regulate the cytoskeleton and membrane dynamics in animal systems have functional homologs in plants, especially for those proteins that form the bridge between the cytoskeleton and membrane; the membrane-actin adaptors. Their nature and function is only just beginning to be elucidated and this field has been greatly enhanced by the recent identification of the NETWORKED (NET) proteins, which act as membrane-actin adaptors. In this review, we will summarize the role of the actin cytoskeleton and its regulatory proteins in their interaction with endomembrane compartments and where they potentially act as platforms for cell signaling and the coordination of other subcellular events. PMID:26106403

  18. Bidirectional actin transport is influenced by microtubule and actin stability.

    PubMed

    Chetta, Joshua; Love, James M; Bober, Brian G; Shah, Sameer B

    2015-11-01

    Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons. Our data revealed that filamentous actin densities arise along the length of the axon and move short but significant distances bidirectionally, with a net anterograde bias. We directly tested the role of actin and microtubules in this movement. We also confirmed a role for actin densities in extension of axonal filopodia, and demonstrated intermittent correlation of actin and mitochondrial movement. Our results support a novel mechanism underlying slow component axonal transport, in which the stability of both microtubule and actin cytoskeletal components influence the mobility of filamentous actin. PMID:26043972

  19. Nuclear F-actin Formation and Reorganization upon Cell Spreading*♦

    PubMed Central

    Plessner, Matthias; Melak, Michael; Chinchilla, Pilar; Baarlink, Christian; Grosse, Robert

    2015-01-01

    We recently discovered signal-regulated nuclear actin network assembly. However, in contrast to cytoplasmic actin regulation, polymeric nuclear actin structures and functions remain only poorly understood. Here we describe a novel molecular tool to visualize real-time nuclear actin dynamics by targeting the Actin-Chromobody-TagGFP to the nucleus, thus establishing a nuclear Actin-Chromobody. Interestingly, we observe nuclear actin polymerization into dynamic filaments upon cell spreading and fibronectin stimulation, both of which appear to be triggered by integrin signaling. Furthermore, we show that nucleoskeletal proteins such as the LINC (linker of nucleoskeleton and cytoskeleton) complex and components of the nuclear lamina couple cell spreading or integrin activation by fibronectin to nuclear actin polymerization. Spreading-induced nuclear actin polymerization results in serum response factor (SRF)-mediated transcription through nuclear retention of myocardin-related transcription factor A (MRTF-A). Our results reveal a signaling pathway, which links integrin activation by extracellular matrix interaction to nuclear actin polymerization through the LINC complex, and therefore suggest a role for nuclear actin polymerization in the context of cellular adhesion and mechanosensing. PMID:25759381

  20. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    PubMed

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  1. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  2. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  3. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  4. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  5. Single Filaments to Reveal the Multiple Flavors of Actin.

    PubMed

    Jégou, Antoine; Romet-Lemonne, Guillaume

    2016-05-24

    A number of key cell processes rely on specific assemblies of actin filaments, which are all constructed from nearly identical building blocks: the abundant and extremely conserved actin protein. A central question in the field is to understand how different filament networks can coexist and be regulated. Discoveries in science are often related to technical advances. Here, we focus on the ongoing single filament revolution and discuss how these techniques have greatly contributed to our understanding of actin assembly. In particular, we highlight how they have refined our understanding of the many protein-based regulatory mechanisms that modulate actin assembly. It is now becoming apparent that other factors give filaments a specific identity that determines which proteins will bind to them. We argue that single filament techniques will play an essential role in the coming years as we try to understand the many ways actin filaments can take different flavors and unveil how these flavors modulate the action of regulatory proteins. We discuss different factors known to make actin filaments distinguishable by regulatory proteins and speculate on their possible consequences. PMID:27224479

  6. Actin–microtubule coordination at growing microtubule ends

    PubMed Central

    López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen

    2014-01-01

    To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196

  7. Actin-based phagosome motility.

    PubMed

    Zhang, Fangliang; Southwick, Frederick S; Purich, Daniel L

    2002-10-01

    Despite abundant evidence of actin's involvement at the particle internalization stage of phagocytosis, little is known about whether phagosomes undergo the same type of actin-based motility as observed with endocytic vesicles or such intracellular pathogens as Listeria and Shigella. By employing video microscopy to follow the fate of latex bead-containing phagosomes within the cytoplasm of bone marrow macrophages, we have made the novel observation of actin-based phagosome motility. Immunofluorescence microscopy confirmed that phagosomes containing IgG-opsonized, bovine serum albumin (or BSA) -coated or uncoated latex beads all formed actin-rich rocket tails that persisted only during a brief, 1-2 min period of actin-based motility. Average speeds of actin-based phagosome motility were 0.13 +/- 0.06 microm/s for IgG-coated beads, 0.14 +/- 0.04 microm/s for BSA-coated beads, and 0.11+/- 0.03 microm/s for uncoated beads. Moreover, the speeds and motile-phase duration of each type of phagosome were comparable to the behavior of pinosomes [Merrifield et al., 1999: Nat. Cell Biol. 1:72-74.]. Determination of optimal conditions for observing and analyzing actin-based phagosome motility should facilitate future investigations of phagocytosis and phagosome maturation. PMID:12211106

  8. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.

    PubMed

    Shimizu, T

    1997-08-01

    Tubifex eggs undergo a drastic reorganization of the cortical actin cytoskeleton during metaphase of the second meiosis. At the end of the first meiosis, the egg cortex displays only scattered actin filaments and tiny dots of F-actin; during the following 90 min, cortical F-actin gradually increases in amount, becomes organized into foci that are interlinked by actin bundles, and generates a geodesic dome-like organization. In this study, we have characterized this reorganization of the cortical actin cytoskeleton. In living eggs injected with rhodamine-phalloidin at the beginning of the second meiosis, cortical actin assembly (i.e., formation of actin foci and bundles) proceeds normally, but labeled F-actin is not found to be included significantly in the formed cortical actin network, suggesting that the increase in cortical F-actin is not simply ascribable to the recruitment of preexisting actin filaments. Cortical actin assembly can be induced precociously not only by calcium ionophore A23187 but also by a phorbol ester PMA, an agonist of protein kinase C (PKC). Conversely, the formation of actin foci and bundles is inhibited by PKC antagonists, although cortical F-actin increases to some extent in the presence of these inhibitors. Similar inhibition of the cortical reorganization is elicited in eggs whose intracellular free calcium level ([Ca2+]i) has been clamped low by microinjection of a calcium chelator BAPTA. The treatment of BAPTA-injected eggs with PMA results in the formation of actin foci and bundles. An experiment with eggs injected with fluo-3 shows that [Ca2+]i increases during metaphase of the second meiosis. These results suggest that the reorganization of cortical actin during metaphase of the second meiosis requires activation of PKC, which depends on increases in [Ca2+]i. PMID:9245516

  9. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex

    PubMed Central

    Murrell, Michael P.; Gardel, Margaret L.

    2012-01-01

    Here we develop a minimal model of the cell actomyosin cortex by forming a quasi-2D cross-linked filamentous actin (F-actin) network adhered to a model cell membrane and contracted by myosin thick filaments. Myosin motors generate both compressive and tensile stresses on F-actin and consequently induce large bending fluctuations, which reduces their effective persistence length to <1 μm. Over a large range of conditions, we show the extent of network contraction corresponds exactly to the extent of individual F-actin shortening via buckling. This demonstrates an essential role of buckling in breaking the symmetry between tensile and compressive stresses to facilitate mesoscale network contraction of up to 80% strain. Portions of buckled F-actin with a radius of curvature ∼300 nm are prone to severing and thus compressive stresses mechanically coordinate contractility with F-actin severing, the initial step of F-actin turnover. Finally, the F-actin curvature acquired by myosin-induced stresses can be further constrained by adhesion of the network to a membrane, accelerating filament severing but inhibiting the long-range transmission of the stresses necessary for network contractility. Thus, the extent of membrane adhesion can regulate the coupling between network contraction and F-actin severing. These data demonstrate the essential role of the nonlinear response of F-actin to compressive stresses in potentiating both myosin-mediated contractility and filament severing. This may serve as a general mechanism to mechanically coordinate contractility and cortical dynamics across diverse actomyosin assemblies in smooth muscle and nonmuscle cells. PMID:23213249

  10. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner. PMID:24637338

  11. Bacterial actins and their diversity

    PubMed Central

    Ozyamak, Ertan; Kollman, Justin M.; Komeili, Arash

    2015-01-01

    For many years bacteria were considered rather simple organisms, but the dogmatic notion that subcellular organization is a eukaryotic trait has been overthrown for more than a decade. The discovery of homologs of the eukaryotic cytoskeletal proteins actin, tubulin, and intermediate filaments in bacteria has been instrumental in changing this view. Over the recent years we gained an incredible level of insight into the diverse family of bacterial actins and their molecular workings. Here we review the functional, biochemical and structural features of the most well-studied bacterial actins. PMID:24015924

  12. Mechanical properties of branched actin filaments.

    PubMed

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length. PMID:26040560

  13. Mechanical properties of branched actin filaments

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Falcke, Martin; Benetatos, Panayotis; Zippelius, Annette

    2015-07-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.

  14. Actin Filaments Regulate Exocytosis at the Hair Cell Ribbon Synapse.

    PubMed

    Guillet, Marie; Sendin, Gaston; Bourien, Jérôme; Puel, Jean-Luc; Nouvian, Régis

    2016-01-20

    Exocytosis at the inner hair cell ribbon synapse is achieved through the functional coupling between calcium channels and glutamate-filled synaptic vesicles. Using membrane capacitance measurements, we investigated whether the actin network regulates the exocytosis of synaptic vesicles at the mouse auditory hair cell. Our results suggest that actin network disruption increases exocytosis and that actin filaments may spatially organize a subfraction of synaptic vesicles with respect to the calcium channels. Significance statement: Inner hair cells (IHCs), the auditory sensory cells of the cochlea, release glutamate onto the afferent auditory nerve fibers to encode sound stimulation. To achieve this task, the IHC relies on the recruitment of glutamate-filled vesicles that can be located in close vicinity to the calcium channels or more remotely from them. The molecular determinants responsible for organizing these vesicle pools are not fully identified. Using pharmacological tools in combination with membrane capacitance measurements, we show that actin filament disruption increases exocytosis in IHCs and that actin filaments most likely position a fraction of vesicles away from the calcium channels. PMID:26791198

  15. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  16. Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments

    NASA Astrophysics Data System (ADS)

    A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci

    2011-12-01

    This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.

  17. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization

    PubMed Central

    Heisler, David B.; Kudryashova, Elena; Grinevich, Dmitry O.; Suarez, Cristian; Winkelman, Jonathan D.; Birukov, Konstantin G.; Kotha, Sainath R.; Parinandi, Narasimham L.; Vavylonis, Dimitrios; Kovar, David R.; Kudryashov, Dmitri S.

    2015-01-01

    The actin crosslinking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin crosslinking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently “poisoned” the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by employing actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses. PMID:26228148

  18. Epidemiology of actinic keratoses.

    PubMed

    Green, Adèle C

    2015-01-01

    The epidemiology of actinic keratoses (AKs) reflects their causation by cumulative sun exposure, with the highest prevalence seen in pale-skinned people living at low latitudes and on the most sun-exposed body sites, namely the hands, forearms and face. AKs are markers of increased risk of basal cell carcinoma, squamous cell carcinoma and melanoma, especially when they are numerous and have coalesced into an area of 'field cancerisation'. The major risk factors are male sex, advanced age, sun-sensitive complexion, high lifetime sun exposure and prolonged immunosuppression. Clinical counts of AKs enable the assessment and monitoring of AK burden, but accurate counting is notoriously difficult, especially when skin is severely sun damaged. AK counting has been repeatedly shown to be unreliable, even among expert dermatologists. Notwithstanding these challenges, qualitative assessment of the natural history of AKs shows a high turnover, with new lesions developing and with other lesions regressing. A very small proportion of AKs undergo malignant transformation, but the precise rate of transformation is unknown due to the inaccuracies in monitoring AK lesions over time. Primary prevention of AKs is achieved by limiting intense sun exposure through sun-protective behaviour, including seeking deep shade, wearing sun-protective clothing and applying sunscreen regularly to exposed skin, from an early age. PMID:25561199

  19. Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium

    PubMed Central

    Kronlage, Cornelius; Schäfer-Herte, Marco; Böning, Daniel; Oberleithner, Hans; Fels, Johannes

    2015-01-01

    Contact-mode atomic force microscopy (AFM) has been shown to reveal cortical actin structures. Using live endothelial cells, we visualized cortical actin dynamics simultaneously by AFM and confocal fluorescence microscopy. We present a method that quantifies dynamic changes in the mechanical ultrastructure of the cortical actin web. We argue that the commonly used, so-called error signal imaging in AFM allows a qualitative, but not quantitative, analysis of cortical actin dynamics. The approach we used comprises fast force-curve-based topography imaging and subsequent image processing that enhances local height differences. Dynamic changes in the organization of the cytoskeleton network can be observed and quantified by surface roughness calculations and automated morphometrics. Upon treatment with low concentrations of the actin-destabilizing agent cytochalasin D, the cortical cytoskeleton network is thinned out and the average mesh size increases. In contrast, jasplakinolide, a drug that enhances actin polymerization, consolidates the cytoskeleton network and reduces the average mesh area. In conclusion, cortical actin dynamics can be quantified in live cells. To our knowledge, this opens a new pathway for conducting quantitative structure-function analyses of the endothelial actin web just beneath the apical plasma membrane. PMID:26287621

  20. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    PubMed

    Lu, Huan; Zhao, Qun; Jiang, Hao; Zhu, Tongge; Xia, Peng; Seffens, William; Aikhionbare, Felix; Wang, Dongmei; Dou, Zhen; Yao, Xuebiao

    2014-01-01

    Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin. PMID:25299690

  1. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B; Ryan, Gillian L; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-04-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network. PMID:24501425

  2. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  3. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  4. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  5. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep.

    PubMed

    Feric, Marina; Broedersz, Chase P; Brangwynne, Clifford P

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin's mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  6. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility.

    PubMed

    Bear, James E; Svitkina, Tatyana M; Krause, Matthias; Schafer, Dorothy A; Loureiro, Joseph J; Strasser, Geraldine A; Maly, Ivan V; Chaga, Oleg Y; Cooper, John A; Borisy, Gary G; Gertler, Frank B

    2002-05-17

    Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia. PMID:12086607

  7. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-01

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed. PMID:25468341

  8. HopW1 from Pseudomonas syringae Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis

    PubMed Central

    Cecchini, Nicolas M.; Li, Yujie; Lee, Min Woo; Kovar, David R.; Greenberg, Jean T.

    2014-01-01

    A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis. PMID:24968323

  9. Actin-based propulsion of functionalized hard versus fluid spherical objects

    NASA Astrophysics Data System (ADS)

    Delatour, Vincent; Shekhar, Shashank; Reymann, Anne-Cécile; Didry, Dominique; Diêp Lê, Kim Hô; Romet-Lemonne, Guillaume; Helfer, Emmanuèle; Carlier, Marie-France

    2008-02-01

    The directed polymerization of a branched actin network against a functionalized surface drives cell protrusions and organelle propulsion in living cells. Solid microspheres or giant unilamellar vesicles, functionalized with neural Wiskott Aldrich syndrome protein (N-WASP), initiate the formation of a branched actin array using actin-related protein 2/3 (Arp2/3) complex, when placed in a motility assay reconstituted with pure proteins. These systems are useful biomimetic models of actin-based propulsion that allow to address how the interplay between the physical properties of the functionalized surface and the dynamics of the actin cytoskeleton determines motile behavior. Both solid beads and deformable vesicles display either continuous or saltatory propulsive motions, which are analyzed comparatively; we show that the deformability of liposomes and the mobility of N-WASP at the lipid surface affect the dynamic and structural parameters of the actin meshwork. Our results indicate that beads and vesicles use different mechanisms to translate insertional polymerization of actin at their surface into directed movement: stress relaxation within the actin gel prevents the accumulation of filaments at the front of moving beads, while segregation of nucleators reduces actin polymerization at the front of moving vesicles.

  10. Atomic Force Microscopy and Light Scattering of Small Unilamellar Actin-Containing Liposomes

    PubMed Central

    Palmer, Andre F.; Wingert, Philip; Nickels, Jonathan

    2003-01-01

    Three-dimensional networks of filamentous actin (F-actin) encapsulated inside phosphatidylcholine liposomes are currently being used in an effort to model the cytoskeleton and plasma membrane of eukaryotic cells. In this article, unilamellar lipid vesicles consisting of egg yolk-derived phosphatidylcholine encapsulating monomeric actin (G-actin) were made via extrusion in low ionic strength buffer (G-buffer). Vesicle shape and structure in these dispersions was studied using a combination of fluid-tapping atomic force microscopy, and multiangle static light scattering. After subjecting the liposome dispersion to high ionic strength polymerization buffer (F-buffer) containing K+ ions, atomic force microscopy imaging and light scattering of these liposomes indicated the formation of specialized structures, including an overall liposome structure transformation from spherical to torus, disk-shaped geometries and tubular assemblies. Several atomic force microscopy control measurements were made to ascertain that the specialized structures formed were not due to free G-actin and F-actin self-assembling on the sample surface, plain liposomes exposed to G- and F-buffer, or liposomes encapsulating G-actin. Liposomes encapsulating G-actin assumed mostly thin disk shapes and some large irregularly shaped aggregates. In contrast, liposomes encapsulating polymerized actin assumed mostly torus or disk shapes along with some high aspect ratio tubular structures. PMID:12885667

  11. Immunofluorescent localization of actin in relation to transcription sites in mouse pronuclei.

    PubMed

    Nguyen, E; Besombes, D; Debey, P

    1998-07-01

    Previous biochemical and morphological studies have shown the presence of actin in the nucleus of different cell types where its role remains unclear. In this work, through fluorescence microscopy we studied the localization of actin in the nuclei of early mouse embryos with particular attention to its possible involvement in the onset of transcription occurring at the late one-cell stage. Fluorescent labelling of embryo sections showed that nuclear actin in abundant, in a non-filamentous state, in the whole nucleoplasm excluding the nucleolar precursor bodies. Immunofluorescence on permeabilized embryos revealed that insoluble nuclear actin accumulates in a few large aggregates in transcriptionally inert early one-cell embryos and progressively redistributes into many small aggregates in transcriptionally active late one-cell embryos. Interestingly, these actin aggregates clearly colocalize with transcription sites. Treatment of late one-cell embryos with cytochalasin D induces the formation of actin bundles network in the nucleoplasm but has no apparent effect on the transcriptional activity. In addition, the inhibition of transcription by alpha-amanitin does not modify the nuclear actin distribution. Hence, there does not appear to be a direct causal relationship between transcriptional activity and nuclear actin organization at the one-cell stage although nuclear actin aggregates appear associated with transcription sites. PMID:9621302

  12. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  13. A Robust Actin Filaments Image Analysis Framework.

    PubMed

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  14. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  15. Bacterial Actins? An Evolutionary Perspective

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  16. Actin engine in immunological synapse.

    PubMed

    Piragyte, Indre; Jun, Chang-Duk

    2012-06-01

    T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse. PMID:22916042

  17. Growing a Professional Network to Over 3000 Members in Less Than 4 Years: Evaluation of InspireNet, British Columbia’s Virtual Nursing Health Services Research Network

    PubMed Central

    Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes

    2014-01-01

    Background Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals’ use of a network designed to increase nurses’ interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. Objective “InspireNet”, a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Methods Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Results Network growth exceeded all expectations. Members engaged with varying aspects of the network’s virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members’ database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times

  18. Actin polymerization is stimulated by actin cross-linking protein palladin.

    PubMed

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G; Orlova, Albina; Egelman, Edward H; Beck, Moriah R

    2016-02-15

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes. PMID:26607837

  19. Force Transmission in the Actin Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret

    2012-02-01

    The ability of cells to sense and generate mechanical forces is essential to numerous aspects of their physiology, including adhesion, migration, division and differentiation. To a large degree, cellular tension is regulated by the transmission of myosin II-generated forces through the filamentous actin (F-actin) cytoskeleton. While transmission of myosin-generated stresses from the molecular to cellular length scale is well understood in the context of highly organized sarcomeres found in striated muscle, non-muscle and smooth muscle cells contain a wide variety of bundles and networks lacking sarcomeric organization. I will describe the in vitro and in vivo approaches we use to study force transmission in such disordered actomyosin assemblies. Our in vivo results are showing that highly organized stress fibers contribute surprisingly little to the overall extent of cellular tension as compared to disordered actomyosin meshworks. Our in vitro results are demonstrating the mechanisms of symmetry breaking in disordered actomyosin bundles that facilitate the formation of contractile bundles with well-defined ``contractile elements.'' These results provide insight into the self-organization of actomyosin cytoskeleton in non-muscle cells that regulate and maintain cellular tension.

  20. Polymer dynamics and fluid flow in actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Theriot, Julie

    2005-03-01

    In living cells, nonequilibrium protein polymerization reactions are frequently used to convert chemical energy into mechanical energy and thereby generate useful force for cellular movements. We have examined the polymer and fluid dynamics in two biological cases where the assembly of branched actin filament networks generates force: the intracellular movement of the bacterial pathogen Listeria monocytogenes, and the extension of the leading edge of skin epithelial cells during wound-healing. In both cases, net actin filament assembly occurs at the front of the network structure and net disassembly occurs at the rear. Actin protein subunits and other network components must be recycled through the fluid phase to the front of the polymerizing network in order for forward movement to continue at steady state. For actin-based movement of Listeria monocytogenes, we have found that actin recycling is not rate-limiting; instead, the speed of movement is governed by the cooperative dissociation of groups of noncovalent protein-protein bonds attaching the filamentous network to the bacterial surface. In contrast, rapid actin-based extension at the leading edge of moving epithelial cells is associated with unusual perturbations in intracellular fluid flow.

  1. The Actin Nucleator Cobl Is Controlled by Calcium and Calmodulin

    PubMed Central

    Haag, Natja; Kessels, Michael M.; Qualmann, Britta

    2015-01-01

    Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation. PMID

  2. Self-organized Gels in DNA/F-Actin mixtures without Crosslinkers

    NASA Astrophysics Data System (ADS)

    Butler, John; Hwee Lai, Ghee; Zribi, Olena; Smalyukh, Ivan; Angelini, Thomas; Purdy, Kirstin; Golestanian, Ramin; Wong, Gerard C. L.

    2009-03-01

    Interactions between flexible chains and rigid rods govern a broad range of soft matter systems. As a model system of like-charged rigid rods and flexible chains, we examine mixtures of DNA and filamentous actin (F-actin). Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron small-angle x-ray scattering (SAXS) indicates that the DNA mesh squeezes the F-actin domains into a nematic state with an inter-actin spacing that decreases with increasing DNA concentration. Salt strongly influences the domain sizes and transitions the system from a counterion-controlled regime to a depletion-controlled regime, both mechanisms of which are entropic in origin.

  3. Association of actin with alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Boyle, D.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The alpha crystallins are cytosolic proteins that co-localize and co-purify with actin-containing microfilaments. Affinity column chromatography employing both covalently-coupled actin or alpha crystallin was used to demonstrate specific and saturable binding of actin with alpha crystallin. This conclusion was confirmed by direct visualization of alpha aggregates bound to actin polymerized in vitro. The significance of this interaction in relation to the functional properties of these two polypeptides will be discussed.

  4. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  5. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-01

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning. PMID:25065759

  6. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  7. The catalytic domain of inositol-1,4,5-trisphosphate 3-kinase-a contributes to ITPKA-induced modulation of F-actin.

    PubMed

    Ashour, Dina Julia; Pelka, Benjamin; Jaaks, Patricia; Wundenberg, Torsten; Blechner, Christine; Zobiak, Bernd; Failla, Antonio Virgilio; Windhorst, Sabine

    2015-02-01

    Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) has been considered as an actin bundling protein because its N-terminal actin binding domain (ABD) induces formation of linear actin bundles. Since in many cancer cell lines ITPKA is essential for formation of lamellipodia, which consist of cross-linked actin filaments, here we analyzed if full length-ITPKA may induce formation of more complex actin structures. Indeed, we found that incubation of F-actin with ITPKA resulted in formation of dense, branched actin networks. Based on our result that ITPKA does not exhibit an additional C-terminal ABD, we exclude that ITPKA cross-links actin filaments by simultaneous F-actin binding with two different ABDs. Instead, stimulated-emission-depletion-microscopy and measurement of InsP3 Kinase activity give evidence that that N-terminal ABD-homodimers of ITPKA bind to F-actin while the monomeric C-termini insert between adjacent actin filaments. Thereby, they prevent formation of thick actin bundles but induce formation of thin branched actin structures. Interestingly, when embedded in this dense actin network, InsP3 Kinase activity is doubled and the product of InsP3 Kinase activity, Ins(1,3,4,5)P4 , inhibits spontaneous actin polymerization which may reflect a local negative feedback regulation of InsP3 Kinase activity. In conclusion, we demonstrate that not only the ABD of ITPKA modulates actin dynamics but reveal that the InsP3 Kinase domain substantially contributes to this process. PMID:25620569

  8. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells.

    PubMed

    Yamanaka, Daisuke; Akama, Takeshi; Chida, Kazuhiro; Minami, Shiro; Ito, Koichi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays

  9. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells

    PubMed Central

    Yamanaka, Daisuke; Akama, Takeshi; Chida, Kazuhiro; Minami, Shiro; Ito, Koichi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2016-01-01

    Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830–840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250–1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and

  10. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis.

    PubMed Central

    Szymanski, D B; Marks, M D; Wick, S M

    1999-01-01

    Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern. PMID:10590162

  11. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  12. The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

    PubMed Central

    Azatov, Mikheil; Goicoechea, Silvia M.; Otey, Carol A.; Upadhyaya, Arpita

    2016-01-01

    Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. PMID:27353427

  13. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    PubMed

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo. PMID:21949650

  14. Non-Lytic, Actin-Based Exit of Intracellular Parasites from C. elegans Intestinal Cells

    PubMed Central

    Estes, Kathleen A.; Szumowski, Suzannah C.; Troemel, Emily R.

    2011-01-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo. PMID:21949650

  15. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  16. Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell.

    PubMed

    George, Uduak Z; Stéphanou, Angélique; Madzvamuse, Anotida

    2013-02-01

    The aim of this article is to study cell deformation and cell movement by considering both the mechanical and biochemical properties of the cortical network of actin filaments and its concentration. Actin is a polymer that can exist either in filamentous form (F-actin) or in monometric form (G-actin) (Chen et al. in Trends Biochem Sci 25:19-23, 2000) and the filamentous form is arranged in a paired helix of two protofilaments (Ananthakrishnan et al. in Recent Res Devel Biophys 5:39-69, 2006). By assuming that cell deformations are a result of the cortical actin dynamics in the cell cytoskeleton, we consider a continuum mathematical model that couples the mechanics of the network of actin filaments with its bio-chemical dynamics. Numerical treatment of the model is carried out using the moving grid finite element method (Madzvamuse et al. in J Comput Phys 190:478-500, 2003). Furthermore, by assuming slow deformations of the cell, we use linear stability theory to validate the numerical simulation results close to bifurcation points. Far from bifurcation points, we show that the mathematical model is able to describe the complex cell deformations typically observed in experimental results. Our numerical results illustrate cell expansion, cell contraction, cell translation and cell relocation as well as cell protrusions. In all these results, the contractile tonicity formed by the association of actin filaments to the myosin II motor proteins is identified as a key bifurcation parameter. PMID:22434394

  17. A lipid bound actin meshwork organizes liquid phase separation in model membranes

    PubMed Central

    Honigmann, Alf; Sadeghi, Sina; Keller, Jan; Hell, Stefan W; Eggeling, Christian; Vink, Richard

    2014-01-01

    The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition. DOI: http://dx.doi.org/10.7554/eLife.01671.001 PMID:24642407

  18. Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables

    PubMed Central

    Xu, Li; Bretscher, Anthony

    2014-01-01

    Summary Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables. PMID:25308080

  19. Lamellipodial actin mechanically links myosin activity with adhesion-site formation.

    PubMed

    Giannone, Grégory; Dubin-Thaler, Benjamin J; Rossier, Olivier; Cai, Yunfei; Chaga, Oleg; Jiang, Guoying; Beaver, William; Döbereiner, Hans-Günther; Freund, Yoav; Borisy, Gary; Sheetz, Michael P

    2007-02-01

    Cell motility proceeds by cycles of edge protrusion, adhesion, and retraction. Whether these functions are coordinated by biochemical or biomechanical processes is unknown. We find that myosin II pulls the rear of the lamellipodial actin network, causing upward bending, edge retraction, and initiation of new adhesion sites. The network then separates from the edge and condenses over the myosin. Protrusion resumes as lamellipodial actin regenerates from the front and extends rearward until it reaches newly assembled myosin, initiating the next cycle. Upward bending, observed by evanescence and electron microscopy, results in ruffle formation when adhesion strength is low. Correlative fluorescence and electron microscopy shows that the regenerating lamellipodium forms a cohesive, separable layer of actin above the lamellum. Thus, actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process. PMID:17289574

  20. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep

    PubMed Central

    Feric, Marina; Broedersz, Chase P.; Brangwynne, Clifford P.

    2015-01-01

    The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin’s mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales. PMID:26577186

  1. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    NASA Astrophysics Data System (ADS)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret; Mogilner, Alex

    2015-05-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction.

  2. Quantifying actin wave modulation on periodic topography

    NASA Astrophysics Data System (ADS)

    Guven, Can; Driscoll, Meghan; Sun, Xiaoyu; Parker, Joshua; Fourkas, John; Carlsson, Anders; Losert, Wolfgang

    2014-03-01

    Actin is the essential builder of the cell cytoskeleton, whose dynamics are responsible for generating the necessary forces for the formation of protrusions. By exposing amoeboid cells to periodic topographical cues, we show that actin can be directionally guided via inducing preferential polymerization waves. To quantify the dynamics of these actin waves and their interaction with the substrate, we modify a technique from computer vision called ``optical flow.'' We obtain vectors that represent the apparent actin flow and cluster these vectors to obtain patches of newly polymerized actin, which represent actin waves. Using this technique, we compare experimental results, including speed distribution of waves and distance from the wave centroid to the closest ridge, with actin polymerization simulations. We hypothesize the modulation of the activity of nucleation promotion factors on ridges (elevated regions of the surface) as a potential mechanism for the wave-substrate coupling. Funded by NIH grant R01GM085574.

  3. Percolation mechanism drives actin gels to the critically connected state

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  4. Role of gelsolin in actin depolymerization of adherent human neutrophils.

    PubMed Central

    Wang, J S; Coburn, J P; Tauber, A I; Zaner, K S

    1997-01-01

    Human neutrophils generally function adherent to an extracellular matrix. We have previously reported that upon adhesion to laminin- or fibronectin-coated, but not uncoated, plastic there is a depolymerization of actin in neutrophils. This phenomenon was not affected by inhibitors of the more well-studied components of the signal transduction pathway, specifically, pertussis toxin, an inhibitor of G-proteins, H-7 or staurosporine, inhibitors of protein kinase C, or herbimycin A, an inhibitor of nonreceptor tyrosine kinase. We therefore focused our attention on actin-binding proteins and measured the changes in the partitioning of gelsolin between the Triton X-100-soluble and -insoluble cellular fractions which occur upon neutrophil adhesion by means of quantitating anti-gelsolin antibody binding to aliquots of these fractions. It was found that approximately 90% of the total cellular gelsolin was found in the Triton X-100-soluble fraction in suspended cells, but that upon adherence to either fibronectin- or laminin-coated plastic about 40% of the soluble gelsolin could be detected in the insoluble fraction. This effect was not observed in cells adherent to uncoated plastic, wherein more than 90% of the gelsolin was found in the soluble fraction. Results of immunofluorescence microscopy of these cell preparations was consistent with this data. A gelsolin translocation to the insoluble cellular actin network may account for a part of the observed actin depolymerization. Images PMID:9017600

  5. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    PubMed Central

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  6. Neural networks combined with region growing techniques for tumor detection in [18F]-fluorothymidine dynamic positron emission tomography breast cancer studies

    NASA Astrophysics Data System (ADS)

    Cseh, Zoltan; Kenny, Laura; Swingland, James; Bose, Subrata; Turheimer, Federico E.

    2013-03-01

    Early detection and precise localization of malignant tumors has been a primary challenge in medical imaging in recent years. Functional modalities play a continuously increasing role in these efforts. Image segmentation algorithms which enable automatic, accurate tumor visualization and quantification on noisy positron emission tomography (PET) images would significantly improve the quality of treatment planning processes and in turn, the success of treatments. In this work a novel multistep method has been applied in order to identify tumor regions in 4D dynamic [18F] fluorothymidine (FLT) PET studies of patients with locally advanced breast cancer. In order to eliminate the effect of inherently detectable high inhomogeneity inside tumors, specific voxel-kinetic classes were initially introduced by finding characteristic FLT-uptake curves with K-means algorithm on a set of voxels collected from each tumor. Image voxel sets were then split based on voxel time-activity curve (TAC) similarities, and models were generated separately on each voxel set. At first, artificial neural networks, in comparison with linear classification algorithms were applied to distinguish tumor and healthy regions relying on the characteristics of TACs of the individual voxels. The outputs of the best model with very high specificity were then used as input seeds for region shrinking and growing techniques, the application of which considerably enhanced the sensitivity and specificity (78.65% +/- 0.65% and 98.98% +/- 0.03%, respectively) of the final image segmentation model.

  7. A Role for Nuclear Actin in HDAC 1 and 2 Regulation

    PubMed Central

    Serebryannyy, Leonid A.; Cruz, Christina M.; de Lanerolle, Primal

    2016-01-01

    Class I histone deacetylases (HDACs) are known to remove acetyl groups from histone tails. This liberates positive charges on the histone tail and allows for tighter winding of DNA, preventing transcription factor binding and gene activation. Although the functions of HDAC proteins are becoming apparent both biochemically and clinically, how this class of proteins is regulated remains poorly understood. We identified a novel interaction between nuclear actin and HDAC 1 and HDAC 2. Nuclear actin has been previously shown to interact with a growing list of nuclear proteins including chromatin remodeling complexes, transcription factors and RNA polymerases. We find that monomeric actin is able to bind the class I HDAC complex. Furthermore, increasing the concentration of actin in HeLa nuclear extracts was able to suppress overall HDAC function. Conversely, polymerizing nuclear actin increased HDAC activity and decreased histone acetylation. Moreover, the interaction between class I HDACs and nuclear actin was found to be activity dependent. Together, our data suggest nuclear actin is able to regulate HDAC 1 and 2 activity. PMID:27345839

  8. Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis

    PubMed Central

    Korobova, Farida

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility. PMID:19889835

  9. The Design of MACs (Minimal Actin Cortices)

    PubMed Central

    Vogel, Sven K; Heinemann, Fabian; Chwastek, Grzegorz; Schwille, Petra

    2013-01-01

    The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes. © 2013 Wiley Periodicals, Inc. PMID:24039068

  10. Affinity chromatography of immobilized actin and myosin.

    PubMed Central

    Bottomley, R C; Trayer, I P

    1975-01-01

    Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. PMID:241335

  11. Mechanosensitive kinetic preference of actin-binding protein to actin filament

    NASA Astrophysics Data System (ADS)

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  12. WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly

    PubMed Central

    Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie

    2015-01-01

    The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly. PMID:25355952

  13. A role for actin arcs in the leading edge advance of migrating cells

    PubMed Central

    Burnette, Dylan T.; Manley, Suliana; Sengupta, Prabuddha; Sougrat, Rachid; Davidson, Michael W.; Kachar, Bechara; Lippincott-Schwartz, Jennifer

    2013-01-01

    The migration of epithelial cells requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using a combination of live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion when myosin II redistributes to the cell edge and condenses the lamellipodial-actin into an arc-like bundle (i.e., actin arc) parallel to the edge. The newly formed actin arc moves rearward and couples to focal adhesions as it enters the lamella. We propose net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thus serves as a structural element underlying the temporal and spatial connection between the lamellipodium and lamella to drive directed cell motion. PMID:21423177

  14. Quantifying morphological features of actin cytoskeletal filaments in plant cells based on mathematical morphology.

    PubMed

    Kimori, Yoshitaka; Hikino, Kazumi; Nishimura, Mikio; Mano, Shoji

    2016-01-21

    By quantifying the morphological properties of biological structures, we can better evaluate complex shapes and detect subtle morphological changes in organisms. In this paper, we propose a shape analysis method based on morphological image processing, and apply it to image analysis of actin cytoskeletal filaments in root hair cells of Arabidopsis thaliana. In plant cells, the actin cytoskeletal filaments have critical roles in various cellular processes such as vesicle trafficking and organelle motility. The dynamics of vesicles and organelles in plant cells depend on actin cytoskeletal filaments, regulating cell division and cell enlargement. To better understand the actin-dependent organelle motility, we attempted to quantify the organization of actin filaments in the root hair cells of the root hair defective 3 (rhd3) mutant. RHD3 is involved in actin organization, and its defect has been reported to affect the dynamics of various vesicles and organelles. We measured three shape features of the actin filaments in wild-type and mutant plants. One feature (thickness) was depicted on a grayscale; the others (describing the complexity of the filament network patterns in two-dimensional space) were depicted as binary features. The morphological phenotypes of the cytoskeletal filaments clearly differed between wild-type and mutant. Subtle variations of filament morphology among the mutants were detected and statistically quantified. PMID:26551157

  15. Functional interdependence between septin and actin cytoskeleton

    PubMed Central

    Schmidt, Katja; Nichols, Benjamin J

    2004-01-01

    Background Septin2 is a member of a highly conserved GTPase family found in fungi and animals. Septins have been implicated in a diversity of cellular processes including cytokinesis, formation of diffusion barriers and vesicle trafficking. Septin2 partially co-localises with actin bundles in mammalian interphase cells and Septin2-filamentmorphology depends upon an intact actin cytoskeleton. How this interaction is regulated is not known. Moreover, evidence that Septin2 is remodelled or redistributed in response to other changes in actin organisation is lacking. Results Septin2 filaments are associated with actin fibres, but Septin2 is not associated with actin at the leading edge of moving cells or in ruffles where actin is highly dynamic. Rather, Septin2 is spatially segregated from these active areas and forms O- and C-shaped structures, similar to those previously observed after latrunculin treatment. FRAP experiments showed that all assemblies formed by Septin2 are highly dynamic with a constant exchange of Septin2 in and out of these structures, and that this property is independent of actin. A combination of RNAi experiments and expression of truncated forms of Septin2 showed that Septin2 plays a significant role in stabilising or maintaining actin bundles. Conclusion We show that Septin2 can form dynamic structures with differing morphologies in living cells, and that these morphologies are dependent on the functional state of the actin cytoskeleton. Our data provide a link between the different morphological states of Septin2 and functions of Septin2 in actin-dynamics, and are consistent with the model proposed by Kinoshita and colleagues, that Septin2 filaments play a role in stabilisation of actin stress fibres thus preventing actin turnover. PMID:15541171

  16. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  17. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    PubMed

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  18. A phenomenological density-scaling approach to lamellipodial actin dynamics†

    PubMed Central

    Lewalle, Alexandre; Fritzsche, Marco; Wilson, Kerry; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2014-01-01

    The integration of protein function studied in vitro in a dynamic system like the cell lamellipodium remains a significant challenge. One reason is the apparent contradictory effect that perturbations of some proteins can have on the overall lamellipodium dynamics, depending on exact conditions. Theoretical modelling offers one approach for understanding the balance between the mechanisms that drive and regulate actin network growth and decay. Most models use a ‘bottom-up’ approach, involving explicitly assembling biochemical components to simulate observable behaviour. Their correctness therefore relies on both the accurate characterization of all the components and the completeness of the relevant processes involved. To avoid potential pitfalls due to this uncertainty, we used an alternative ‘top-down’ approach, in which measurable features of lamellipodium behaviour, here observed in two different cell types (HL60 and B16-F1), directly inform the development of a simple phenomenological model of lamellipodium dynamics. We show that the kinetics of F-actin association and dissociation scales with the local F-actin density, with no explicit location dependence. This justifies the use of a simplified kinetic model of lamellipodium dynamics that yields predictions testable by pharmacological or genetic intervention. A length-scale parameter (the lamellipodium width) emerges from this analysis as an experimentally accessible probe of network regulatory processes. PMID:25485077

  19. Calcium control of Saccharomyces cerevisiae actin assembly.

    PubMed Central

    Greer, C; Schekman, R

    1982-01-01

    Low levels of Ca2+ dramatically influence the polymerization of Saccharomyces cerevisiae actin in KCl. The apparent critical concentration for polymerization (C infinity) increases eightfold in the presence of 0.1 mM Ca2+. This effect is rapidly reversed by the addition of ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid or of 0.1 mM Mg2+. Furthermore, the addition of Ca2+ to polymerized actin causes a reversible increase in the apparent C infinity. In the presence of Ca2+, at actin concentrations below the apparent C infinity, particles of 15 to 50 nm in diameter are seen instead of filaments. These particles are separated from soluble actin when Ca2+-treated filamentous actin is sedimented at high speed; both the soluble and particulate fractions retain Ca2+-sensitive polymerization. The Ca2+ effect is S. cerevisiae actin-specific: the C infinity for rabbit muscle actin is not affected by the presence of Ca2+ and S. cerevisiae actin. Ca2+ may act directly on S. cerevisiae actin to control the assembly state in vivo. Images PMID:6757718

  20. Dynamic actin gene family evolution in primates.

    PubMed

    Zhu, Liucun; Zhang, Ying; Hu, Yijun; Wen, Tieqiao; Wang, Qiang

    2013-01-01

    Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through "birth and death" model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves. PMID:23841080

  1. Stochastic model of profilin-actin polymerization

    NASA Astrophysics Data System (ADS)

    Horan, Brandon; Vavylonis, Dimitrios

    A driving factor in cell motility and other processes that involve changes of cell shape is the rapid polymerization of actin subunits into long filaments. This process is regulated by profilin, a protein which binds to actin subunits and regulates elongation of actin filaments. Whether profilin stimulates polymerization by coupling to hydrolysis of ATP-bound actin is debated. Previous studies have proposed indirect coupling to ATP hydrolysis using rate equations, but did not include the effects of fluctuations that are important near the critical concentration. We developed stochastic simulations using the Gillespie algorithm to study single filament elongation at the barbed end in the presence of profilin. We used recently measured rate constants and estimated the rate of profilin binding to the barbed end such that detailed balance is satisfied. Fast phosphate release at the tip of the filament was accounted for. The elongation rate and length diffusivity as functions of profilin and actin concentration were calculated and used to extract the critical concentrations of free actin and of total actin. We show under what conditions profilin leads to an increase in the critical concentration of total actin but a decrease in the critical concentration of free actin.

  2. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kazuyoshi; Kiss, John Z.

    2002-01-01

    The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.

  3. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    PubMed

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes. PMID:20038822

  4. Actin microfilaments in presumptive statocytes of root caps and coleoptiles

    NASA Technical Reports Server (NTRS)

    White, R. G.; Sack, F. D.

    1990-01-01

    Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.

  5. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  6. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions.

    PubMed

    Wen, Fu-Lai; Leung, Kwan-Tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads. PMID:27575158

  7. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin

    PubMed Central

    Tomatis, Vanesa M.; Papadopulos, Andreas; Malintan, Nancy T.; Martin, Sally; Wallis, Tristan; Gormal, Rachel S.; Kendrick-Jones, John; Buss, Folma

    2013-01-01

    Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca2+-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI–specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane. PMID:23382463

  8. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.

    PubMed

    Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P; Gould, Christopher J; Gelles, Jeff; Goode, Bruce L

    2012-06-01

    Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament. PMID:22654058

  9. Reversible membrane pearling in live cells upon destruction of the actin cortex.

    PubMed

    Heinrich, Doris; Ecke, Mary; Jasnin, Marion; Engel, Ulrike; Gerisch, Günther

    2014-03-01

    Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ~40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration. PMID:24606932

  10. Structural, Mechanical, and Dynamical Variability of the Actin Cortex in Living Cells

    PubMed Central

    Eghiaian, Frédéric; Rigato, Annafrancesca; Scheuring, Simon

    2015-01-01

    In eukaryotic cells, an actin-based cortex lines the inner leaflet of the plasma membrane, endowing the cells with crucial mechanical and functional properties. Unfortunately, it has not been possible to study the structural dynamics of the actin cortex at high lateral resolution in living cells. Here, we performed atomic force microscopy time-lapse imaging and mechanical mapping of actin in the cortex of living cells at high lateral and temporal resolution. Cortical actin filaments adopted discernible arrangements, ranging from large parallel bundles with low connectivity to a tight meshwork of short filaments. Mixing of these architectures resulted in attuned cortex networks with specific connectivity, mechanical responses, and marked differences in their dynamic behavior. PMID:25809247

  11. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    PubMed Central

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  12. Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells.

    PubMed

    Matova, N; Mahajan-Miklos, S; Mooseker, M S; Cooley, L

    1999-12-01

    Drosophila Quail protein is required for the completion of fast cytoplasm transport from nurse cells to the oocyte, an event critical for the production of viable oocytes. The abundant network of cytoplasmic filamentous actin, established at the onset of fast transport, is absent in quail mutant egg chambers. Previously, we showed that Quail is a germline-specific protein with sequence homology to villin, a vertebrate actin-regulating protein. In this study, we combined biochemical experiments with observations in egg chambers to define more precisely the function of this protein in the regulation of actin-bundle assembly in nurse cells. We report that recombinant Quail can bind and bundle filamentous actin in vitro in a manner similar to villin at a physiological calcium concentration. In contrast to villin, Quail is unable to sever or cap filamentous actin, or to promote nucleation of new actin filaments at a high calcium concentration. Instead, Quail bundles the filaments regardless of the calcium concentration. In vivo, the assembly of nurse-cell actin bundles is accompanied by extensive perforation of the nurse-cell nuclear envelopes, and both of these phenomena are manifestations of nurse-cell apoptosis. To investigate whether free calcium levels are affected during apoptosis, we loaded egg chambers with the calcium indicator Indo-1. Our observations indicate a rise in free calcium in the nurse-cell cytoplasm coincident with the permeabilization of the nuclear envelopes. We also show that human villin expressed in the Drosophila germline could sense elevated cytoplasmic calcium; in nurse cells with reduced levels of Quail protein, villin interfered with actin-bundle stability. We conclude that Quail efficiently assembles actin filaments into bundles in nurse cells and maintains their stability under fluctuating free calcium levels. We also propose a developmental model for the fast phase of cytoplasm transport incorporating findings presented in this study

  13. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells.

    PubMed

    Hélène, Roumes; Julie, Brossaud; Aloïs, Lemelletier; Marie-Pierre, Moisan; Véronique, Pallet; Anabelle, Redonnet; Jean-Benoît, Corcuff

    2016-02-01

    A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity. PMID:26748244

  14. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    PubMed Central

    2010-01-01

    Background Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton. Results Here, we in addition to toxins use conditional expression of the major actin regulatory protein LIM kinase-1 (LIMK1), and shRNA knock-down of cofilin to modulate the cellular F/G-actin ratio in the Ra2 microglia cell line, and we use Fluorescence Recovery after Photobleaching (FRAP) in β-actin-YFP-transduced cells to obtain a dynamic measure of actin recovery rates (actin turn-over rates) in different F/G-actin states of the actin cytoskeleton. Our data demonstrate that stimulated NADPH oxidase function was severely impaired only at extreme actin recovery rates and F/G-actin ratios, and surprisingly, that any moderate changes of these parameters of the actin cytoskeleton invariably resulted in an increased NADPH oxidase activity. Conclusion moderate actin polymerization and depolymerization both increase the FMLP and PMA-stimulated NADPH oxidase activity of microglia, which is directly correlated with neither actin recovery rate nor F/G- actin ratio. Our results indicate that NADPH oxidase functions in an enhanced state of activity in stimulated phagocytes despite widely different states of the actin cytoskeleton. PMID:20825680

  15. Force of an actin spring

    NASA Astrophysics Data System (ADS)

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  16. Demonstration in vivo of the role of Arabidopsis PLIM2 actin-binding proteins during pollination.

    PubMed

    Sudo, Keisuke; Park, Jong-In; Sakazono, Satomi; Masuko-Suzuki, Hiromi; Osaka, Masaaki; Kawagishi, Mizuho; Fujita, Kotomi; Maruoka, Mayumi; Nanjo, Hikaru; Suzuki, Go; Suwabe, Keita; Watanabe, Masao

    2013-01-01

    In plant reproduction, pollination is the initial key process in bringing together the male and female gametophytes. When a pollen grain lands on the surface of the stigma, information is exchanged between the pollen and stigmatic cell to determine whether the pollen grain will be accepted or rejected. If it is accepted, the stigmatic papilla cell supplies water and other resources to the pollen for germination and pollen tube elongation. Cellular processes involving actin are essential for pollen germination and tube growth, and actin-binding proteins regulate these processes by interacting with actin filaments to assemble cytoskeletal structures and actin networks. LIM proteins, which belong to a subfamily of cysteine-rich proteins, are a family of actin-binding proteins in plants, and are considered to be important for formation of the actin cytoskeleton and maintenance of its dynamics. Although the physiological and biochemical characteristics of LIMs have been elucidated in vitro in a variety of cell types, their exact role in pollen germination and pollen tube growth during pollination remained unclear. In this manuscript, we focus on the pollen-specific LIM proteins, AtPLIM2a and AtPLIM2c, and define their biological function during pollination in Arabidopsis thaliana. The atplim2a/atplim2c double knockdown RNAi plants showed a reduced pollen germination, approximately one-fifth of wild type, and slower pollen tube growth in the pistil, that is 80.4 μm/hr compared to 140.8 μm/hr in wild type. These defects led to an occasional unfertilized ovule at the bottom of the silique in RNAi plants. Our data provide direct evidence of the biological function of LIM proteins during pollination as actin-binding proteins, modulating cytoskeletal structures and actin networks, and their consequent importance in seed production. PMID:24694391

  17. Effect of alpha-actinin on actin structure. Actin ATPase activity.

    PubMed

    Singh, I; Goll, D E; Robson, R M

    1981-08-28

    Alpha-Actinin increases the ATPase activity of actin by up to 84%, depending un pH, divalent cations present and the added Mg2+: ATP ratio. Dithiothreitol decreases actin ATPase activity approx. 20% but does not reduce the ability of alpha-actinin to increase actin ATP activity. Increasing amounts of added alpha-actinin up to 1 mos alpha-actinin to 49 mol actin cause in increasing increment in actin ATPase activity, but adding alpha-actinin beyond 1 mol alpha-actinin to 49 mol actin elicits only small additional increments in activity. Actin ATPase activity ranges from approx 100 nmol Pi/mg actin per h (4.3 mol Pi/mol actin per h) at high levels (10 mM) of ATP in the presence of lower amounts (1 mM) of added mg2+ to approx. 12.5 nmol Pi/mg actin per h (0.52 mol Pi/mol actin per h) at high pH (8.5) or at low levels (0.5-1.0 mM) of ATP in the presence of higher amounts (10 mM) of added Mg2+ ATp uncomplexed with Mg2+ inhibits the ability of alpha-actinin to increase F-actin ATPase activity. Activities with different divalent cations showed that the actin ATPase in these studies, which was 1/100 as great as Mg2+-modified actomyosin ATPase activity, was not due to trace amounts of myosin contaminating the actin preparations. The results are consistent with the concept that alpha-actinin can alter the structure of actin monomers. PMID:6456018

  18. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    DOEpatents

    Sederoff, Heike; Huber, Steven C; Larabell, Carolyn A

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  19. Extracellular signaling cues for nuclear actin polymerization.

    PubMed

    Plessner, Matthias; Grosse, Robert

    2015-01-01

    Contrary to cytoplasmic actin structures, the biological functions of nuclear actin filaments remain largely enigmatic. Recent progress in the field, however, has determined nuclear actin structures in somatic cells either under steady state conditions or in response to extracellular signaling cues. These actin structures differ in size and shape as well as in their temporal appearance and dynamics. Thus, a picture emerges that suggests that mammalian cells may have different pathways and mechanisms to assemble nuclear actin filaments. Apart from serum- or LPA-triggered nuclear actin polymerization, integrin activation by extracellular matrix interaction was recently implicated in nuclear actin polymerization through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Some of these extracellular cues known so far appear to converge at the level of nuclear formin activity and subsequent regulation of myocardin-related transcription factors. Nevertheless, as the precise signaling events are as yet unknown, the regulation of nuclear actin polymerization may be of significant importance for different cellular functions as well as disease conditions caused by altered nuclear dynamics and architecture. PMID:26059398

  20. Profilin connects actin assembly with microtubule dynamics.

    PubMed

    Nejedla, Michaela; Sadi, Sara; Sulimenko, Vadym; de Almeida, Francisca Nunes; Blom, Hans; Draber, Pavel; Aspenström, Pontus; Karlsson, Roger

    2016-08-01

    Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro-tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element. PMID:27307590

  1. Actin cytoskeleton redox proteome oxidation by cadmium

    PubMed Central

    Go, Young-Mi; Orr, Michael

    2013-01-01

    Epidemiological studies associate environmental cadmium (Cd) exposure with the risk of lung diseases. Although mechanisms are not fully elucidated, several studies demonstrate Cd effects on actin and actin-associated proteins. In a recent study of Cd at concentrations similar to environmental exposures, we found that redox-dependent inflammatory signaling by NF-κB was sensitive to the actin-disrupting agent, cytochalasin D. The goal of the present study was to use mass spectrometry-based redox proteomics to investigate Cd effects on the actin cytoskeleton proteome and related functional pathways in lung cells at low environmental concentrations. The results showed that Cd under conditions that did not alter total protein thiols or glutathione redox state caused significant oxidation of peptidyl Cys of proteins regulating actin cytoskeleton. Immunofluorescence microscopy of lung fibroblasts and pulmonary artery endothelial cells showed that low-dose Cd exposure stimulated filamentous actin formation and nuclear localization of destrin, an actin-depolymerizing factor. Taken together, the results show that redox states of peptidyl Cys in proteins associated with actin cytoskeleton pathways are selectively oxidized in lung by Cd at levels thought to occur from environmental exposure. PMID:24077948

  2. Actin motility: formin a SCAry tail.

    PubMed

    Alberts, Art; Way, Michael

    2011-01-11

    A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins. PMID:21215933

  3. Effect of ATP on actin filament stiffness.

    PubMed

    Janmey, P A; Hvidt, S; Oster, G F; Lamb, J; Stossel, T P; Hartwig, J H

    1990-09-01

    Actin is an adenine nucleotide-binding protein and an ATPase. The bound adenine nucleotide stabilizes the protein against denaturation and the ATPase activity, although not required for actin polymerization, affects the kinetics of this assembly Here we provide evidence for another effect of adenine nucleotides. We find that actin filaments made from ATP-containing monomers, the ATPase activity of which hydrolyses ATP to ADP following polymerization, are stiff rods, whereas filaments prepared from ADP-monomers are flexible. ATP exchanges with ADP in such filaments and stiffens them. Because both kinds of actin filaments contain mainly ADP, we suggest the alignment of actin monomers in filaments that have bound and hydrolysed ATP traps them conformationally and stores elastic energy. This energy would be available for release by actin-binding proteins that transduce force or sever actin filaments. These data support earlier proposals that actin is not merely a passive cable, but has an active mechanochemical role in cell function. PMID:2168523

  4. Myelination: actin disassembly leads the way

    PubMed Central

    Samanta, Jayshree; Salzer, James L.

    2016-01-01

    The mechanisms that drive the spiral wrapping of the myelin sheath around axons are poorly understood. Two papers in this issue of Developmental Cell demonstrate that actin disassembly, rather than actin assembly, predominates during oligodendrocyte maturation and is critical for the genesis of the central myelin sheath. PMID:26218317

  5. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  6. Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy.

    PubMed

    Silván, Unai; Hyotyla, Janne; Mannherz, Hans-Georg; Ringler, Philippe; Müller, Shirley A; Aebi, Ueli; Maier, Timm; Schoenenberger, Cora-Ann

    2016-08-01

    Two distinct dimers are formed during the initial steps of actin polymerization. The first one, referred to as the 'lower dimer' (LD) was discovered many years ago by means of chemical crosslinking. Owing to its transient nature, a biological relevance had long been precluded when, using LD-specific antibodies, we detected LD-like contacts in actin assemblies that are associated with the endolysosomal compartment in a number of different cell lines. Moreover, immunofluorescence showed the presence of LD-related structures at the cell periphery of migrating fibroblasts, in the nucleus, and in association with the centrosome of interphase cells. Here, we explore contributions of the LD to the assembly of supramolecular actin structures in real time by total internal reflection fluorescence (TIRF) microscopy. Our data shows that while LD on its own cannot polymerize under filament forming conditions, it is able to incorporate into growing F-actin filaments. This incorporation of LD triggers the formation of X-shaped filament assemblies with barbed ends that are pointing in the same direction in the majority of cases. Similarly, an increased frequency of junction sites was observed when filaments were assembled in the presence of oxidized actin. This data suggests that a disulfide bridge between Cys374 residues might stabilize LD-contacts. Based on our findings, we propose two possible models for the molecular mechanism underlying the supramolecular actin patterning in LD-related structures. PMID:27189866

  7. Diffusion Rate Limitations in Actin-Based Propulsion of Hard and Deformable Particles

    PubMed Central

    Dickinson, Richard B.; Purich, Daniel L.

    2006-01-01

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism. PMID:16731556

  8. Integration of linear and dendritic actin nucleation in Nck-induced actin comets

    PubMed Central

    Borinskaya, Sofya; Velle, Katrina B.; Campellone, Kenneth G.; Talman, Arthur; Alvarez, Diego; Agaisse, Hervé; Wu, Yi I.; Loew, Leslie M.; Mayer, Bruce J.

    2016-01-01

    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens. PMID:26609071

  9. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. PMID:24630119

  10. Actin dynamics shape microglia effector functions.

    PubMed

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion. PMID:25989853

  11. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.

    PubMed

    Gimsa, Ulrike; Iglic, Ales; Fiedler, Stefan; Zwanzig, Michael; Kralj-Iglic, Veronika; Jonas, Ludwig; Gimsa, Jan

    2007-01-01

    We used sub-micron metal rod decorated surfaces, 'nano-lawn' structures, as a substrate to study cell-to-cell and cell-to-surface interactions of primary murine astrocytes. These cells form thin membranous tubes with diameters of less than 100 nm and a length of several microns, which make contact to neighboring cells and the substrate during differentiation. While membrane protrusions grow on top of the nano-lawn pillars, nuclei sink to the bottom of the substrate. We observed gondola-like structures along those tubes, suggestive of their function as transport vehicles. Elements of the cytoskeleton such as actin fibers are commonly believed to be essential for triggering the onset and growth of tubular membrane protrusions. A rope-pulling mechanism along actin fibers has recently been proposed to account for the transport or exchange of cellular material between cells. We present evidence for a complementary mechanism that promotes growth and stabilization of the observed tubular protrusions of cell membranes. This mechanism does not require active involvement of actin fibers as the formation of membrane protrusions could not be prevented by suppressing polymerization of actin by latrunculin B. Also theoretically, actin fibers are not essential for the growing and stability of nanotubes since curvature-driven self-assembly of interacting anisotropic raft elements is sufficient for the spontaneous formation of thin nano-tubular membrane protrusions. PMID:17520481

  12. Probing actin incorporation into myofibrils using Asp11 and His73 actin mutants.

    PubMed

    Xia, D; Peng, B; Sesok, D A; Peng, I

    1993-01-01

    We used a cell free system Bouché et al.: J. Cell Biol. 107:587-596, 1988] to study the incorporation of actin into myofibrils. We used alpha-skeletal muscle actin and actins with substitutions of either His73 [Solomon and Rubenstein: J. Biol.Chem. 262:11382, 1987], or Asp11 [Solomon et al.: J. Biol. Chem. 263:19662, 1988]. Actins were translated in reticulocyte lysate and incubated with myofibrils. The incorporated wild type actin could be cross-linked into dimers using N,N'-1,4-phenylenebismaleimide (PBM), indicating that the incorporated actin is actually inserted into the thin filaments of the myofibril. The His73 mutants incorporated to the same extent as wild type actin and was also cross-linked with PBM. Although some of the Asp11 mutants co-assembled with carrier actin, only 1-3% of the Asp11 mutant actins incorporated after 2 min and did not increase after 2 hr. Roughly 17% of wild type actin incorporated after 2 min and 31% after 2 hr. ATP increased the release of wild type actin from myofibrils, but did not increase the release of Asp11 mutants. We suggest that (1) the incorporation of wild type and His73 mutant actins was due to a physiological process whereas association of Asp11 mutants with myofibrils was non-specific, (2) the incorporation of wild type actin involved a rapid initial phase, followed by a slower phase, and (3) since some of the Asp11 mutants can co-assemble with wild type actin, the ability to self-assemble was not sufficient for incorporation into myofibrils. Thus, incorporation probably includes interaction between actin and a thin filament associated protein. We also showed that incorporation occurred at actin concentrations which would cause disassembly of F-actin. Since the myofibrils did not show large scale disassembly but incorporated actin, filament stability and monomer incorporation are likely to be mediated by actin associated proteins of the myofibril. PMID:8287497

  13. Quantitation of liquid-crystalline ordering in F-actin solutions.

    PubMed

    Coppin, C M; Leavis, P C

    1992-09-01

    Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed. PMID:1330036

  14. Profilin Binding to Poly-l-Proline and Actin Monomers along with Ability to Catalyze Actin Nucleotide Exchange Is Required for Viability of Fission Yeast

    PubMed Central

    Lu, Jia; Pollard, Thomas D.

    2001-01-01

    We tested the ability of 87 profilin point mutations to complement temperature-sensitive and null mutations of the single profilin gene of the fission yeast Schizosaccharomyces pombe. We compared the biochemical properties of 13 stable noncomplementing profilins with an equal number of complementing profilin mutants. A large quantitative database revealed the following: 1) in a profilin null background fission yeast grow normally with profilin mutations having >10% of wild-type affinity for actin or poly-l-proline, but lower affinity for either ligand is incompatible with life; 2) in the cdc3-124 profilin ts background, fission yeast function with profilin having only 2–5% wild-type affinity for actin or poly-l-proline; and 3) special mutations show that the ability of profilin to catalyze nucleotide exchange by actin is an essential function. Thus, poly-l-proline binding, actin binding, and actin nucleotide exchange are each independent requirements for profilin function in fission yeast. PMID:11294914

  15. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  16. Dynamics of an actin spring

    NASA Astrophysics Data System (ADS)

    Riera, Christophe; Mahadevan, L.; Shin, Jennifer; Matsudaira, Paul

    2003-03-01

    The acrosome of the sperm of the horseshoe crab (Limulus Polyphemus) is an unusual actin based system that shows a spectacular dynamical transition in the presence of Ca++ that is present in abundance in the neighborhood of the egg. During this process, the bundle, which is initially bent and twisted uncoils and becomes straight in a matter of a few seconds. Based on microstructural data, we propose a model for the dynamics of uncoiling that is best represented by a triple-well potential corresponding to the different structural arrangements of the supertwisted filaments. Each of the false, true and coiled states corresponds to a local minimum of the energy, with the true state being the one with the lowest energy. Using an evolution equation derived by balancing torques, we investigate the nucleation and propagation of the phase transition and compare the results with those of experiments. Our model quantifies the hypothesis that the acrosomal bundle behaves like a mechano-chemical spring.

  17. The evolution of the actin binding NET superfamily.

    PubMed

    Hawkins, Timothy J; Deeks, Michael J; Wang, Pengwei; Hussey, Patrick J

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  18. The evolution of the actin binding NET superfamily

    PubMed Central

    Hawkins, Timothy J.; Deeks, Michael J.; Wang, Pengwei; Hussey, Patrick J.

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  19. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis

    PubMed Central

    Jia, Honglei; Hu, Yanfeng; Fan, Tingting; Li, Jisheng

    2015-01-01

    Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis. PMID:25652660

  20. F-actin polymerization and retrograde flow drive sustained PLCγ1 signaling during T cell activation

    PubMed Central

    Babich, Alexander; Li, Shuixing; O'Connor, Roddy S.; Milone, Michael C.; Freedman, Bruce D.

    2012-01-01

    Activation of T cells by antigen-presenting cells involves assembly of signaling molecules into dynamic microclusters (MCs) within a specialized membrane domain termed the immunological synapse (IS). Actin and myosin IIA localize to the IS, and depletion of F-actin abrogates MC movement and T cell activation. However, the mechanisms that coordinate actomyosin dynamics and T cell receptor signaling are poorly understood. Using pharmacological inhibitors that perturb individual aspects of actomyosin dynamics without disassembling the network, we demonstrate that F-actin polymerization is the primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity of the IS. Disruption of F-actin retrograde flow, but not myosin IIA contraction, arrested MC centralization and inhibited sustained Ca2+ signaling at the level of endoplasmic reticulum store release. Furthermore, perturbation of retrograde flow inhibited PLCγ1 phosphorylation within MCs but left Zap70 activity intact. These studies highlight the importance of ongoing actin polymerization as a central driver of actomyosin retrograde flow, MC centralization, and sustained Ca2+ signaling. PMID:22665519

  1. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system

    PubMed Central

    Schmitt, Sebastian; Snaidero, Nicolas; Mitkovski, Mišo; Velte, Caroline; Brückner, Bastian R.; Alexopoulos, Ioannis; Czopka, Tim; Jung, Sang Y.; Rhee, Jeong S.; Janshoff, Andreas; Witke, Walter; Schaap, Iwan A.T.; Lyons, David A.; Simons, Mikael

    2016-01-01

    Summary During central nervous system development, oligodendrocytes wrap their plasma membrane around axons to generate multi-lamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/Cofilin1, which mediates high F-actin turnover rates, as essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading. PMID:26166299

  2. Actin distribution patterns in HL-60 leukemia cells treated with etoposide.

    PubMed

    Grzanka, A

    2001-10-01

    Localization of actin was studied in HL-60 leukemia cells after treatment with the anticancer agent etoposide for 3 days in a range of concentrations (0.02-200 microM). Significant changes in morphology of the cells and F-actin distribution patterns labelled with TRITC-phalloidin occurred only after treatment with 100 and 200 microM etoposide. In comparison with control cells, the number of cells decreased, cells were larger and almost all treated cells had irregular surfaces with lamellipodia. F-actin was distributed in a punctate pattern throughout the cytoplasm after treatment. In some treated cells, fluorescence appeared as a bright haze, whereas in other cells it formed a network. Treated cells also showed bright fluorescence at their periphery. Immunogold labelling of actin was observed in cells whether or not treated with etoposide. Labelling was found in the nucleus and also in the cytoplasm. At the ultrastructural level, cells treated with 100 and 200 microM etoposide showed increased positivity for actin in relation with blebbing, margination of nuclear chromatin and bodies containing recognizable nuclear fragments. These findings indicate that alterations in expression of actin in HL-60 cells after treatment with etoposide is dose-dependent and related with apoptosis. PMID:11700950

  3. Astral microtubules physically redistribute cortical actin filaments to the incipient contractile ring.

    PubMed

    Tseng, Kuo-Fu; Foss, Margit; Zhang, Dahong

    2012-11-01

    Prior to cell cleavage, cytokinetic proteins are recruited into the nascent actomyosin contractile ring, paving the way for formation of a functional cleavage furrow. Interactions between spindle microtubules and the cell cortex may play a critical role in this recruitment, since microtubules have been shown to affect distribution and activation of cytokinetic proteins within the cortex. However, direct evidence for physical interaction between microtubules and the cortex has been lacking. Here, we probed the physical connection between astral microtubules and cortical actin filaments, by micromanipulating the fluorescently tagged cytoskeleton in living spermatocytes of the grasshopper Melanoplus femurrubrum. When microtubules were tugged with a microneedle, they in turn pulled on cortical actin filaments, interrupting the filaments' journey toward the equator. Further displacement of the actin dragged the cell membrane inward, demonstrating that the cortical actin network physically linked spindle microtubules to the cell membrane. Regional disruption of the connection by breaking spindle microtubules prevented actin accumulation in a segment of the ring, which locally inhibited furrowing. We propose a model in which dynamic astral microtubules physically redistribute cortical actin into the incipient contractile ring. PMID:23027710

  4. Anillin Regulates Neuronal Migration and Neurite Growth by Linking RhoG to the Actin Cytoskeleton.

    PubMed

    Tian, Dong; Diao, Min; Jiang, Yuxiang; Sun, Lingfei; Zhang, Yan; Chen, Zhucheng; Huang, Shanjin; Ou, Guangshuo

    2015-05-01

    Neuronal migration and neurite growth are essential events in neural development, but it remains unclear how guidance cues are transduced through receptors to the actin cytoskeleton, which powers these processes. We report that a cytokinetic scaffold protein, Anillin, is redistributed to the leading edge of the C. elegans Q neuroblast during cell migration and neurite growth. To bypass the requirement for Anillin in cytokinesis, we used the somatic CRISPR-Cas9 technique to generate conditional mutations in Anillin. We demonstrate that Anillin regulates cell migration and growth cone extension by stabilizing the F-actin network at the leading edge. Our biochemical analysis shows that the actin-binding domain of Anillin is sufficient to stabilize F-actin by antagonizing the F-actin severing activity of Cofilin. We further uncover that the active form of RhoG/MIG-2 directly binds to Anillin and recruits it to the leading edge. Our results reveal a novel pathway in which Anillin transduces the RhoG signal to the actin cytoskeleton during neuronal migration and neurite growth. PMID:25843030

  5. High Speed Depolymerization at Actin Filament Ends Jointly Catalyzed by Twinfilin and Srv2/CAP

    PubMed Central

    Johnston, Adam B.; Collins, Agnieszka; Goode, Bruce L.

    2015-01-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favor actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete 1,2. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks. PMID:26458246

  6. Fluorescence single-molecule imaging of actin turnover and regulatory mechanisms.

    PubMed

    Watanabe, Naoki

    2012-01-01

    Cells must rapidly remodel the actin filament network to achieve various cellular functions. Actin filament turnover is a dynamic process that plays crucial roles in cell adhesion, locomotion, cytokinesis, endocytosis, phagocytosis, tissue remodeling, etc., and is regulated by cell signaling cascades. Success in elucidating dynamic biological processes such as actin-based motility relies on the means enabling real time monitoring of the process. The invention of live-cell fluorescence single-molecule imaging has opened a window for direct viewing of various actin remodeling processes. In general, assembly and dissociation of actin and its regulators turned out to occur at the faster rates than previously estimated by biochemical and structural analyses. Cells undergo such fast continuous exchange of the components perhaps not only to drive actin remodeling but also to facilitate rapid response in many other cell mechanics and signaling cascades. This chapter describes how epifluorescence single-molecule imaging which visualizes deeper area than the TIRF microscopy is achieved in XTC cells, the currently best platform for this approach. PMID:22289456

  7. The Deficiency of PIP2 5-Phosphatase in Lowe Syndrome Affects Actin Polymerization

    PubMed Central

    Suchy, Sharon F.; Nussbaum, Robert L.

    2002-01-01

    Lowe syndrome is a rare X-linked disorder characterized by bilateral congenital cataracts, renal Fanconi syndrome, and mental retardation. Lowe syndrome results from mutations in the OCRL1 gene, which encodes a phosphatidylinositol 4,5 bisphosphate 5-phosphatase located in the trans-Golgi network. As a first step in identifying the link between ocrl1 deficiency and the clinical disorder, we have identified a reproducible cellular abnormality of the actin cytoskeleton in fibroblasts from patients with Lowe syndrome. The cellular abnormality is characterized by a decrease in long actin stress fibers, enhanced sensitivity to actin depolymerizing agents, and an increase in punctate F-actin staining in a distinctly anomalous distribution in the center of the cell. We also demonstrate an abnormal distribution of two actin-binding proteins, gelsolin and α-actinin, proteins regulated by both PIP2 and Ca+2 that would be expected to be altered in Lowe cells. Actin polymerization plays a key role in the formation, maintenance, and proper function of tight junctions and adherens junctions, which have been demonstrated to be critical in renal proximal tubule function, and in the differentiation of the lens. These findings point to a general mechanism to explain how this PIP2 5-phosphatase deficiency might produce the Lowe syndrome phenotype. PMID:12428211

  8. Binding of WIP to Actin Is Essential for T Cell Actin Cytoskeleton Integrity and Tissue Homing

    PubMed Central

    Massaad, Michel J.; Oyoshi, Michiko K.; Kane, Jennifer; Koduru, Suresh; Alcaide, Pilar; Nakamura, Fumihiko; Ramesh, Narayanaswamy; Luscinskas, Francis W.; Hartwig, John

    2014-01-01

    The Wiskott-Aldrich syndrome protein (WASp) is important for actin polymerization in T cells and for their migration. WASp-interacting protein (WIP) binds to and stabilizes WASp and also interacts with actin. Cytoskeletal and functional defects are more severe in WIP−/− T cells, which lack WASp, than in WASp−/− T cells, suggesting that WIP interaction with actin may be important for T cell cytoskeletal integrity and function. We constructed mice that lack the actin-binding domain of WIP (WIPΔABD mice). WIPΔABD associated normally with WASp but not F-actin. T cells from WIPΔABD mice had normal WASp levels but decreased cellular F-actin content, a disorganized actin cytoskeleton, impaired chemotaxis, and defective homing to lymph nodes. WIPΔABD mice exhibited a T cell intrinsic defect in contact hypersensitivity and impaired responses to cutaneous challenge with protein antigen. Adoptively transferred antigen-specific CD4+ T cells from WIPΔABD mice had decreased homing to antigen-challenged skin of wild-type recipients. These findings show that WIP binding to actin, independently of its binding to WASp, is critical for the integrity of the actin cytoskeleton in T cells and for their migration into tissues. Disruption of WIP binding to actin could be of therapeutic value in T cell-driven inflammatory diseases. PMID:25246631

  9. Nuclear actin and myosins in adenovirus infection.

    PubMed

    Fuchsova, Beata; Serebryannyy, Leonid A; de Lanerolle, Primal

    2015-11-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host's transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  10. Erbium laser resurfacing for actinic cheilitis.

    PubMed

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA). PMID:24196339

  11. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  12. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    PubMed Central

    Phasukthaworn, Ruedee; Chanprapaph, Kumutnart; Vachiramon, Vasanop

    2016-01-01

    Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies. PMID:27293392

  13. Binding of actin to lens alpha crystallins

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Actin has been coupled to a cyanogen bromide-activated Sepharose 4B column, then tested for binding to alpha, beta, and gamma crystallin preparations from the bovine lens. Alpha, but not beta or gamma, crystallins bound to the actin affinity column in a time dependent and saturable manner. Subfractionation of the alpha crystallin preparation into the alpha-A and alpha-B species, followed by incubation with the affinity column, demonstrated that both species bound approximately the same. Together, these studies demonstrate a specific and saturable binding of lens alpha-A and alpha-B with actin.

  14. Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin

    PubMed Central

    Perisic, Ljubica; Rodriguez, Patricia Q.; Hultenby, Kjell; Sun, Ying; Lal, Mark; Betsholtz, Christer; Uhlén, Mathias; Wernerson, Annika; Hedin, Ulf; Pikkarainen, Timo; Tryggvason, Karl; Patrakka, Jaakko

    2015-01-01

    Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGFβ signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated. PMID:25807495

  15. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  16. Growing an Emerging Research University

    ERIC Educational Resources Information Center

    Birx, Donald L.; Anderson-Fletcher, Elizabeth; Whitney, Elizabeth

    2013-01-01

    The emerging research college or university is one of the most formidable resources a region has to reinvent and grow its economy. This paper is the first of two that outlines a process of building research universities that enhance regional technology development and facilitate flexible networks of collaboration and resource sharing. Although the…

  17. Active microrheology of entangled blends of DNA and Actin link polymer flexibility to induced molecular deformations and stress propagation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Robert; Robertson-Anderson, Rae; Anderson Research Team

    Actin is a ubiquitous structural protein in the cytoskeleton that gives cells shape and rigidity, and plays important roles in mechanical processes such as cell motility and division. Actin's diverse roles stem from its ability to polymerize into semiflexible filaments that are less than one persistence length (17 µm) in length, and form entangled networks that display unique viscoelastic properties. We previously found that entangled actin networks propagate microscale forces over several persistence lengths (>60 m) and takes minutes to relax. DNA, oppositely, has thousands of persistence lengths (50 nm) per chain, exhibits minimal force propagation, and takes only seconds to re-equilibrate. To directly determine the role of flexibility in mechanical response and force propagation of entangled networks, we use optical tweezers and fluorescence microscopy to investigate blends of actin and DNA. We use optically driven microspheres to perturb the network far from equilibrium and measure the force the network creates in response to the induced force. We simultaneously track partially labeled actin filaments during the perturbation and subsequent relaxation period. We characterize filament deformation and show explicitly how induced microscale forces propagate through the network.

  18. Study of the influence of actin-binding proteins using linear analyses of cell deformability.

    PubMed

    Plaza, Gustavo R; Uyeda, Taro Q P; Mirzaei, Zahra; Simmons, Craig A

    2015-07-21

    The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing. PMID:26059185

  19. Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development

    PubMed Central

    Schiele, Nathan R.; von Flotow, Friedrich; Tochka, Zachary L.; Hockaday, Laura A.; Marturano, Joseph E.; Thibodeau, Jeffrey J.; Kuo, Catherine K.

    2016-01-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. PMID:25721681

  20. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.

    PubMed

    Sui, Zhenhua; Nowak, Roberta B; Sanada, Chad; Halene, Stephanie; Krause, Diane S; Fowler, Velia M

    2015-07-23

    The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing. PMID:25964668

  1. Nuclear actin levels as an important transcriptional switch

    PubMed Central

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin. PMID:22771994

  2. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  3. Genetics Home Reference: actin-accumulation myopathy

    MedlinePlus

    ... 7(3):160-8. Citation on PubMed Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier ... Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG. Mutations in the skeletal muscle alpha-actin gene ...

  4. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea).

    PubMed

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-08-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  5. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea)

    PubMed Central

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-01-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  6. [Actin in the wound healing process].

    PubMed

    Nowak, Dorota; Popow-Woźniak, Agnieszka; Raźnikiewicz, Linda; Malicka-Błaszkiewicz, Maria

    2009-01-01

    Wound healing is an important biological process of crucial value for organisms survival and retention of its proper functions. The recognition of molecular mechanisms of these phenomenon is still under investigation. The transition of mesenchymal fibroblasts to myofibroblasts is a key point in wound healing. The contraction ability of myofibroblast enables the shrinkage of a wound and closes its edges. Alpha smooth muscle actin (alpha-SMA), one of six actin isoforms, is a marker of compeletely differentiated myofibroblast. The regulation of differentiation process depends on many growth factors (especially TGF beta 1), the level of active thymosin beta 4, extracellular matrix proteins--including fibronectin, and also on specificity of microenvironment. Thymosin beta 4 is responsible for maintenance of pool of monomeric actin and actin filaments depolymerization. It can also act as a transcription factor, migration stimulator and immunomodulator, so this protein deserves for more attention in wound healing research field. PMID:19824469

  7. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  8. Structural dynamics of an actin spring.

    PubMed

    Mahadevan, L; Riera, C S; Shin, Jennifer H

    2011-02-16

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca(2+). This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  9. Actinic review of EUV masks

    NASA Astrophysics Data System (ADS)

    Feldmann, Heiko; Ruoff, Johannes; Harnisch, Wolfgang; Kaiser, Winfried

    2010-04-01

    Management of mask defects is a major challenge for the introduction of EUV for HVM production. Once a defect has been detected, its printing impact needs to be predicted. Potentially the defect requires some repair, the success of which needs to be proven. This defect review has to be done with an actinic inspection system that matches the imaging conditions of an EUV scanner. During recent years, several concepts for such an aerial image metrology system (AIMS™) have been proposed. However, until now no commercial solution exists for EUV. Today, advances in EUV optics technology allow envisioning a solution that has been discarded before as unrealistic. We present this concept and its technical cornerstones.While the power requirement for the EUV source is less demanding than for HVM lithography tools, radiance, floor space, and stability are the main criteria for source selection. The requirement to emulate several generations of EUV scanners demands a large flexibility for the ilumination and imaging systems. New critical specifications to the EUV mirrors in the projection microscope can be satisfied using our expertise from lithographic mirrors. In summary, an EUV AIMS™ meeting production requirements seems to be feasible.

  10. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  11. The actin cytoskeleton in presynaptic assembly.

    PubMed

    Nelson, Jessica C; Stavoe, Andrea K H; Colón-Ramos, Daniel A

    2013-01-01

    Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly. PMID:23628914

  12. Mechanism of Actin Filament Bundling by Fascin

    SciTech Connect

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  13. Coupling actin dynamics to phase-field in modeling neural growth.

    PubMed

    Najem, Sara; Grant, Martin

    2015-06-14

    In this paper we model the growth of a neural cell together with the actin dynamics taking place at its growing region by constructing a phase-field model. This is done by assigning auxiliary fields to different constituents of the cell in order to differentiate them. Specifically, the inner and outer regions of the neural cell are described by ϕ = 1 and ϕ = 0 respectively, whereas the inside and outside of its leading edge are portrayed by ψ = 1 and ψ = 0. This formulation inherently locates the boundary, which is required to determine the evolution of the underlying actin dynamics. Therefore, it provides an alternative to boundary tracking algorithms. Then the equations governing the molecular workings of the cell specifically those of actin are modified in order to satisfy their corresponding boundary conditions. PMID:25943025

  14. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  15. The Bacterial Actin-Like Cytoskeleton

    PubMed Central

    Carballido-López, Rut

    2006-01-01

    Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed. PMID:17158703

  16. Isoforms of α-Actinin from Cardiac, Smooth, and Skeletal Muscle Form Polar Arrays of Actin Filaments

    PubMed Central

    Taylor, Kenneth A.; Taylor, Dianne W.; Schachat, Fred

    2000-01-01

    We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by α-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using α-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4–0.7 μm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that α-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by α-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of α-actinin. PMID:10791977

  17. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration

    PubMed Central

    Xavier, Charles-Peter; Rastetter, Raphael H.; Blömacher, Margit; Stumpf, Maria; Himmel, Mirko; Morgan, Reginald O.; Fernandez, Maria-Pilar; Wang, Conan; Osman, Asiah; Miyata, Yoshihiko; Gjerset, Ruth A.; Eichinger, Ludwig; Hofmann, Andreas; Linder, Stefan; Noegel, Angelika A.; Clemen, Christoph S.

    2012-01-01

    CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration. PMID:22355754

  18. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  19. FHOD proteins in actin dynamics—a formin’ class of its own

    PubMed Central

    Bechtold, Meike; Schultz, Jörg; Bogdan, Sven

    2014-01-01

    Eukaryotic cells have evolved a variety of actin-binding proteins to regulate the architecture and the dynamics of the actin cytoskeleton in time and space. The Diaphanous-related formins (DRF) represent a diverse group of Rho-GTPase-regulated actin regulators that control a range of actin structures composed of tightly-bundled, unbranched actin filaments as found in stress fibers and in filopodia. Under resting conditions, DRFs are auto-inhibited by an intra-molecular interaction between the C-terminal and the N-terminal domains. The auto-inhibition is thought to be released by binding of an activated RhoGTPase to the N-terminal GTPase-binding domain (GBD). However, there is growing evidence for more sophisticated variations from this simplified linear activation model. In this review we focus on the formin homology domain-containing proteins (FHOD), an unconventional group of DRFs. Recent findings on the molecular control and cellular functions of FHOD proteins in vivo are discussed in the light of the phylogeny of FHOD proteins. PMID:25483300

  20. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

    PubMed

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas; Houdusse, Anne; Kerkhoff, Eugen

    2016-01-01

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes. PMID:27623148

  1. A Multimodular Tensegrity Model of an Actin Stress Fiber

    PubMed Central

    Luo, Yaozhi; Xu, Xian; Lele, Tanmay; Kumar, Sanjay; Ingber, Donald E.

    2008-01-01

    Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model also can explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors, and represent a new handle on multi-scale modeling of living materials. PMID:18632107

  2. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  3. The Three-Dimensional Dynamics of Actin Waves, a Model of Cytoskeletal Self-Organization

    PubMed Central

    Bretschneider, Till; Anderson, Kurt; Ecke, Mary; Müller-Taubenberger, Annette; Schroth-Diez, Britta; Ishikawa-Ankerhold, Hellen C.; Gerisch, Günther

    2009-01-01

    Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force. Three proteins are shown to form distinct three-dimensional patterns in the actin waves. Myosin-IB is enriched at the wave front and close to the plasma membrane, the Arp2/3 complex is distributed throughout the waves, and coronin forms a sloping layer on top of them. CARMIL, a protein that links myosin-IB to the Arp2/3 complex, is also recruited to the waves. Wave formation does not depend on signals transmitted by heterotrimeric G-proteins, nor does their propagation require SCAR, a regulator upstream of the Arp2/3 complex. Propagation of the waves is based on an actin treadmilling mechanism, indicating a program that couples actin assembly to disassembly in a three-dimensional pattern. When waves impinge on the cell perimeter, they push the edge forward; when they reverse direction, the cell border is paralyzed. These data show that force-generating, highly organized supramolecular networks are autonomously formed in live cells from molecular motors and proteins controlling actin polymerization and depolymerization. PMID:19348770

  4. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    NASA Astrophysics Data System (ADS)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  5. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  6. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    SciTech Connect

    Hirano, Hidemi; Matsuura, Yoshiyuki

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  7. The natural product cucurbitacin E inhibits depolymerization of actin filaments

    PubMed Central

    Sörensen, Pia M.; Iacob, Roxana E.; Fritzsche, Marco; Engen, John R.; Brieher, William M.; Charras, Guillaume; Eggert, Ulrike S.

    2012-01-01

    Although small molecule actin modulators have been widely used as research tools, only one cell permeable small molecule inhibitor of actin depolymerization (jasplakinolide) is commercially available. We report that the natural product cucurbitacin E inhibits actin depolymerization and show that its mechanism of action is different from jasplakinolide. In assays using pure fluorescently labeled actin, cucurbitacin E specifically affected depolymerization without affecting polymerization. It inhibited actin depolymerization at sub-stoichiometric concentrations up to 1:6 cucurbitacin:actin E. Cucurbitacin E specifically binds to filamentous actin (F-actin) forming a covalent bond at residue Cys257, but not to monomeric actin (G-actin). Based on its compatibility with phalloidin staining, we show that cucurbitacin E occupies a different binding site on actin filaments. Using loss of fluorescence after localized photoactivation, we found that cucurbitacin E inhibited actin depolymerization in live cells. Cucurbitacin E is a widely available plant-derived natural product, making it a useful tool to study actin dynamics in cells and actin-based processes such as cytokinesis. PMID:22724897

  8. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    PubMed Central

    Paves, Heiti; Truve, Erkki

    2004-01-01

    Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area. PMID:15102327

  9. Actin-dependent mechanisms in AMPA receptor trafficking

    PubMed Central

    Hanley, Jonathan G.

    2014-01-01

    The precise regulation of AMPA receptor (AMPAR) number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits for learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signaling pathways that modulate actin polymerization and depolymerization. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine. PMID:25429259

  10. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  11. Supercoiling of f-actin filaments.

    PubMed

    Lednev, V V; Popp, D

    1990-05-01

    In the X-ray diffraction pattern from oriented gels of actin-containing filaments sampling of layer lines indicating the development of a well-ordered pseudo-hexagonal lattice within the gels at interfilament spacings as large as 13 nm is observed. This value exceeds by 3 nm the largest estimate of an external diameter of pure f-actin. The development of layer line sampling is always accompanied by: (i) the appearance of strong forbidden meridional reflections on the 5.9- and 5.1-nm layer lines; (ii) a drastic intensification of the first (expected) 2.75-nm meridional reflection by a factor of about 4; (iii) the appearance of streaks, connecting near-meridional reflections on the 5.9-, 5.1-, and 37-nm layer lines; and (iv) a slight decrease in the number of subunits per turn of the basic f-actin helix. All these features strongly indicate that f-actin filaments are supercoiled and make regular local contacts between themselves, which may lead to periodic distortions of the mobile external domain in the actin subunits. PMID:2261308

  12. Impact of Carbon Nanomaterials on Actin Polymerization.

    PubMed

    Dong, Ying; Sun, Haiyan; Li, Xu; Li, Xin; Zhao, Lina

    2016-03-01

    Many nanomaterials have entered people's daily lives and impact the normal process of biological entities consequently. As one kind of the important nanomaterials, carbon based nanomaterials have invoked a lot of concerns from scientific researches because of their unique physicochemical properties. In eukaryotes, actin is the most abundantly distributed protein in both cytoplasm and cell nucleus, and closely controls the cell proliferation and mobility. Recently, many investigations have found some carbon based nanomaterials can affect actin cytoskeleton remarkably, including fullerenes derivatives, carbon nanotubes, graphene and its derivatives. However, these interaction processes are complicated and the underlying mechanism is far from being understood clearly. In this review, we discussed the different mechanisms of carbon nanomaterials impact on actin polymerization into three pathways, as triggering the signaling pathways from carbon nanomaterials outside of cells, increasing the production of reactive oxygen species from carbon nanomaterials inside of cells and direct interaction from carbon nanomaterials inside of cells. As a result, the dimension and size of carbon nanomaterials play a key role in regulation of actin cytoskeleton. Furthermore, we forecasted the possible investigation strategy for meeting the challenges of the future study on this topic. We hope the findings are helpful in understanding the molecular mechanism in carbon nanomaterials regulating actin polymerization, and provide new insight in novel nanomedicine development for inhibition tumor cell migration. PMID:27455649

  13. FMNL2 drives actin-based protrusion and migration downstream of Cdc42.

    PubMed

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja; Winterhoff, Moritz; Kage, Frieda; Geffers, Robert; Duwe, Patrick; Rohn, Jennifer L; Baum, Buzz; Brakebusch, Cord; Geyer, Matthias; Stradal, Theresia E B; Faix, Jan; Rottner, Klemens

    2012-06-01

    Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2, accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia. PMID:22608513

  14. Liquid-like bundles of crosslinked actin filaments contract without motors

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  15. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  16. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    NASA Astrophysics Data System (ADS)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  17. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response

    NASA Technical Reports Server (NTRS)

    Tseng, Yiider; Kole, Thomas P.; Lee, Jerry S H.; Fedorov, Elena; Almo, Steven C.; Schafer, Benjamin W.; Wirtz, Denis

    2005-01-01

    Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.

  18. Actin branches out to link pathogen perception and host gene regulation

    PubMed Central

    Porter, Katie; Day, Brad

    2013-01-01

    Cellular functions of actin, and associated actin binding proteins (ABPs), have been well characterized with respect to their dynamic cytosolic role as components of the complex cytoskeletal network. In this regard, the collective research in this field has vastly expanded our knowledge of the role of actin to more recently identify a key role within the nucleus as an integral part gene organization and expression. Herein, we describe the requirement of the ABP actin depolymerizing factor-4 (ADF4) as a regulator of resistance to Pseudomonas syringae DC3000 expressing the effector AvrPphB via ADF4’s cytosolic and nuclear functions. In total, our work has identified significant alterations in the expression of the resistance protein RPS5 in an ADF4 phosphorylation dependent manner. In this mini-review, we provide compelling evidence in support of both a nuclear function for ADF4, as well as potential targeting of the actin cytoskeleton bythe bacterial effector AvrPphB. PMID:23333960

  19. Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow.

    PubMed

    Baik, Andrew D; Qiu, Jun; Hillman, Elizabeth M C; Dong, Cheng; Guo, X Edward

    2013-02-22

    Osteocytes in vivo experience complex fluid shear flow patterns to activate mechanotransduction pathways. The actin and microtubule (MT) cytoskeletons have been shown to play an important role in the osteocyte's biochemical response to fluid shear loading. The dynamic nature of physiologically relevant fluid flow profiles (i.e., 1Hz oscillatory flow) impedes the ability to image and study both actin and MT cytoskeletons simultaneously in the same cell with high spatiotemporal resolution. To overcome these limitations, a multi-channel quasi-3D microscopy technique was developed to track the actin and MT networks simultaneously under steady and oscillatory flow. Cells displayed high intercellular variability and intracellular cytoskeletal variability in strain profiles. Shear Exz was the predominant strain in both steady and oscillatory flows in the form of viscoelastic creep and elastic oscillations, respectively. Dramatic differences were seen in oscillatory flow, however. The actin strains displayed an oscillatory strain profile more often than the MT networks in all the strains tested and had a higher peak-to-trough strain magnitude. Taken together, the actin networks are the more responsive cytoskeletal networks in osteocytes under oscillatory flow and may play a bigger role in mechanotransduction pathway activation and regulation. PMID:23352617

  20. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    PubMed Central

    2011-01-01

    Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori) infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS) and the effector protein cytotoxin-associated gene A (CagA) of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells. PMID:22044652

  1. Structural Transitions of F-Actin:Espin Bundles

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Bartles, James; Wong, Gerard

    2006-03-01

    Espin is an actin bundling protein involved in the formation of the parallel bundles of filamentous actin in hair cell stereocilia. Mutations in espin are implicated in deafness phenotypes in mice and humans. We present measurements of the F-actin structures induced by wild type and by mutated espin obtained via small angle x-ray scattering and fluorescence microscopy. We found that wild type espin induced a paracrystalline hexagonal array of twisted F-actin, whereas the mutated espin only condensed the F-actin into a nematic-like phase. The possibility of coexisting nematic and bundled actin in mixtures containing both mutant and wild type espins was also investigated.

  2. Actin Filament Segmentation Using Dynamic Programming

    PubMed Central

    Li, Hongsheng; Shen, Tian; Huang, Xiaolei

    2011-01-01

    We introduce a novel algorithm for actin filament segmentation in 2D TIRFM image sequences. This problem is difficult because actin filaments dynamically change shapes during their growth, and the TIRFM images are usually noisy. We ask a user to specify the two tips of a filament of interest in the first frame. We then model the segmentation problem in an image sequence as a temporal chain, where its states are tip locations; given candidate tip locations, actin filaments' body points are inferred by a dynamic programming method, which adaptively generates candidate solutions. Combining candidate tip locations and their inferred body points, the temporal chain model is efficiently optimized using another dynamic programming method. Evaluation on noisy TIRFM image sequences demonstrates the accuracy and robustness of this approach. PMID:21761674

  3. Ionic wave propagation along actin filaments.

    PubMed

    Tuszyński, J A; Portet, S; Dixon, J M; Luxford, C; Cantiello, H F

    2004-04-01

    We investigate the conditions enabling actin filaments to act as electrical transmission lines for ion flows along their lengths. We propose a model in which each actin monomer is an electric element with a capacitive, inductive, and resistive property due to the molecular structure of the actin filament and viscosity of the solution. Based on Kirchhoff's laws taken in the continuum limit, a nonlinear partial differential equation is derived for the propagation of ionic waves. We solve this equation in two different regimes. In the first, the maximum propagation velocity wave is found in terms of Jacobi elliptic functions. In the general case, we analyze the equation in terms of Fisher-Kolmogoroff modes with both localized and extended wave characteristics. We propose a new signaling mechanism in the cell, especially in neurons. PMID:15041636

  4. The actin binding protein adseverin regulates osteoclastogenesis.

    PubMed

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  5. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    PubMed Central

    Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  6. F-actin Severing Facilitates Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoon; Jung, Wonyeong; Murrell, Michael

    Rheological behaviors of actin cytoskeleton play an important role in physiological processes including cell migration and division. The actin cytoskeleton shows a wide variety of viscoelastic responses to external mechanical cues, such as strain-stiffening and stress relaxation. It has been hypothesized that the stress relaxation originates mainly from transient nature of cross-linkers that connect pairs of F-actins. By contrast, potential impacts of rich F-actin dynamics to the stress relaxation have been neglected in most previous studies. Here, using a computational model, we demonstrated that severing of F-actins induced by buckling during strain-stiffening can facilitate a very distinct mode of stress relaxation in the actin cytoskeleton from that induced by the transient cross-linkers. We also explored conditions where the severing-induced stress relaxation becomes prominent. This finding provides a more complete understanding of rheological behaviors of the actin cytoskeleton. We gratefully acknowledge the support of the National Science Foundation (1434013-CMMI and 1434095-CMMI).

  7. Effects of preference for attachment to low-degree nodes on the degree distributions of a growing directed network and a simple food-web model

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    2006-05-01

    We study the growth of a directed network, in which the growth is constrained by the cost of adding links to the existing nodes. We propose a preferential-attachment scheme, in which a new node attaches to an existing node i with probability Π(ki)∝ki-1 , where ki is the number of outgoing links at i . We calculate the degree distribution for the outgoing links in the asymptotic regime (t→∞) , nk* , both analytically and by Monte Carlo simulations. The distribution decays like kμk/Γ(k) for large k , where μ is a constant. We investigate the effect of this preferential-attachment scheme, by comparing the results to an equivalent growth model with a degree-independent probability of attachment, which gives an exponential outdegree distribution. Also, we relate this mechanism to simple food-web models by implementing it in the cascade model. We show that the low-degree preferential-attachment mechanism breaks the symmetry between in- and outdegree distributions in the cascade model. It also causes a faster decay in the tails of the outdegree distributions for both our network growth model and the cascade model.

  8. Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts.

    PubMed Central

    Stoflet, E S; Schmidt, L J; Elder, P K; Korf, G M; Foster, D N; Strauch, A R; Getz, M J

    1992-01-01

    Treatment of AKR-2B mouse fibroblasts with serum growth factors or inhibitors of protein synthesis, such as cycloheximide, results in a stimulation of cytoskeletal beta-actin transcription but has no effect on transcription of muscle-specific isotypes, such as the vascular smooth muscle (VSM) alpha-actin gene. Deletion mapping and site-specific mutagenesis studies demonstrated that a single "CArG" element of the general form CC(A/T)6GG was necessary and possibly sufficient to impart serum and cycloheximide-inducibility to the beta-actin promoter. Although the VSM alpha-actin promoter exhibits at least three similar sequence elements, it remained refractory to serum and cycloheximide induction. However, deletion of a 33 base pair sequence between -191 and -224 relative to the transcription start site resulted in the transcriptional activation of this muscle-specific promoter in rapidly growing or serum-stimulated fibroblasts. Although the activity of this truncated promoter was potentiated by cycloheximide in a manner indistinguishable from that of the beta-actin promoter, this was dependent on a more complex array of interacting elements. These included at least one CArG box and a putative upstream activating element closely associated with the -191 to -224 inhibitory sequences. These results demonstrate that the expression of a muscle-specific actin gene in fibroblasts is suppressed by a cis-acting negative control element and that in the absence of this element, the promoter is responsive to growth factor-induced signal transduction pathways. Images PMID:1421567

  9. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.

    PubMed

    Rynkiewicz, Michael J; Schott, Veronika; Orzechowski, Marek; Lehman, William; Fischer, Stefan

    2015-12-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima-one corresponding to the "blocked-state" as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin. PMID:26286845

  10. Drosophila Homologues of Adenomatous Polyposis Coli (APC) and the Formin Diaphanous Collaborate by a Conserved Mechanism to Stimulate Actin Filament Assembly*

    PubMed Central

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L.; McCartney, Brooke M.

    2013-01-01

    Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla. PMID:23558679

  11. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis.

    PubMed

    Goldblum, S E; Ding, X; Brann, T W; Campbell-Washington, J

    1993-10-01

    Bacterial lipopolysaccharide (LPS) influences pulmonary vascular endothelial barrier function in vitro. We studied whether LPS regulates endothelial barrier function through actin reorganization. Postconfluent bovine pulmonary artery endothelial cell monolayers were exposed to Escherichia coli 0111:B4 LPS 10 ng/ml or media for up to 6 h and evaluated for: 1) transendothelial 14C-albumin flux, 2) F-actin organization with fluorescence microscopy, 3) F-actin quantitation by spectrofluorometry, and 4) monomeric G-actin levels by the DNAse 1 inhibition assay. LPS induced increments in 14C-albumin flux (P < 0.001) and intercellular gap formation at > or = 2-6 h. During this same time period the endothelial F-actin pool was not significantly changed compared to simultaneous media controls. Mean (+/- SE) G-actin (micrograms/mg total protein) was significantly (P < 0.002) increased compared to simultaneous media controls at 2, 4, and 6 h but not at 0.5 or 1 h. Prior F-actin stabilization with phallicidin protected against the LPS-induced increments in G-actin (P = 0.040) as well as changes in barrier function (P < 0.0001). Prior protein synthesis inhibition unmasked an LPS-induced decrement in F-actin (P = 0.0044), blunted the G-actin increment (P = 0.010), and increased LPS-induced changes in endothelial barrier function (P < 0.0001). Therefore, LPS induces pulmonary vascular endothelial F-actin depolymerization, intercellular gap formation, and barrier dysfunction. Over the same time period, LPS increased total actin (P < 0.0001) and new actin synthesis (P = 0.0063) which may be a compensatory endothelial cell response to LPS-induced F-actin depolymerization. PMID:8408232

  12. Model of cellular mechanotransduction via actin stress fibers.

    PubMed

    Gouget, Cecile L M; Hwang, Yongyun; Barakat, Abdul I

    2016-04-01

    Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid ([Formula: see text]100 ms) and long-distance ([Formula: see text]10 [Formula: see text]m) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain. PMID:26081725

  13. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets.

    PubMed

    Cerecedo, Doris; Cisneros, Bulmaro; Suárez-Sánchez, Rocío; Hernández-González, Enrique; Galván, Iván

    2008-05-01

    To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function. PMID:18341635

  14. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility. PMID:26166300

  15. The Interaction of Caldesmon with the COOH Terminus of Actin*

    PubMed Central

    Crosbie, Rachelle; Adams, Susan; Chalovich, Joseph M.; Reisler, Emil

    2005-01-01

    Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin. PMID:1939062

  16. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts.

    PubMed

    Fallqvist, Björn; Fielden, Matthew L; Pettersson, Torbjörn; Nordgren, Niklas; Kroon, Martin; Gad, Annica K B

    2016-06-01

    In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework