Sample records for growing skull fracture

  1. Usefulness of color Doppler sonography in a growing skull fracture: case report.

    PubMed

    Yoshioka, H; Sakoda, K; Kohno, H; Hada, H; Kurisu, K

    1997-01-01

    A case of an 11-month-old infant with a growing skull fracture is described. The patient was admitted with disturbance of consciousness and left hemiparesis after a severe head injury. A pulsating protrusion appeared over the fracture line 1 month later. Color Doppler sonography revealed cerebral herniation and cystic lesion via the bony defect, together with an intracranial arterial flow pattern detected in the extracranial space. Color Doppler sonography was very useful in the diagnosis of growing skull fracture and in the evaluation of the intracranial state, including hemodynamics in this case. Successful surgical treatment was performed on the basis of sonographic data and the patient was discharged 3 months later without motor deficits.

  2. Skull fracture

    MedlinePlus

    Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...

  3. A Review of Techniques Used in the Management of Growing Skull Fractures.

    PubMed

    Vezina, Noemie; Al-Halabi, Becher; Shash, Hani; Dudley, Roy R; Gilardino, Mirko S

    2017-05-01

    Growing skull fractures (GSFs) are rare complications of pediatric head trauma that comprise skull fractures associated with an underlying dural tear and an intact arachnoid membrane. They are often misdiagnosed, and delay in management can lead to progression of the disease along with its neurological sequelae. Multiple clinical reports and qualitative reviews on this entity exist. To our knowledge, this represents the largest clinical review reporting on established techniques in the management of these fractures. A literature search was performed on the databases Embase, Medline, Cochrane, and PubMed from their inception until February 2015 using the terms "Growing," "Skull," "Fracture," and their equivalent terms. Studies included were case series with 5 or more patients describing GSFs and their management. Twenty-two articles reporting 440 patients were included in the analysis. The mean age at trauma was 8.8 months, with the mean at presentation of 21.9 months and 57.8% of the patients being males. Most commonly, a combined dura-cranioplasty was done in 61.6% of the patients. A range of autoplastic and alloplastic materials were used in both of these techniques. Improvement from preoperative clinical status in seizures and neurological deficits was noted in 18 (12.7%) and 11 (7.05%) of the patients, respectively, following operative repair and medical management. Early recognition is crucial in the management and treatment of GSF. Children at risk for developing GSF should be monitored clinically for up to 3 months following the initial insult. The surgical treatment depends on the size of the fracture and the age of the patient. A summary of the presentation, management, associated outcomes, complications, and recommendations discussed in the literature are reported within.

  4. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  5. Infant skull fracture (image)

    MedlinePlus

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  6. Growing skull fracture of the posterior cranial fossa and of the orbital roof.

    PubMed

    Caffo, M; Germanò, A; Caruso, G; Meli, F; Calisto, A; Tomasello, F

    2003-03-01

    Growing Skull Fractures (GSF) are rare complications of head trauma, primarily reported in infancy and early childhood. GSF are commonly located on calvaria, and rarely in other locations, including the skull base. In this study, we report two cases of GSF occurring in unusual locations. The first, a 8-month old girl, with a GSF of the suboccipital posterior fossa region, and the second, a 4-year old boy with a GSF of the right orbital roof. Both cases underwent operative treatment of the GSF, with microsurgical dissection and excision of the protruding gliotic brain tissue, watertight duraplasty and autologous bone cranial repair. The authors conducted a Medline search of the relevant English literature from 1966 to 2002. From the search, three cases of suboccipital posterior fossa region GSF and twelve series of orbital GSF, describing a total of 22 cases, have been found. A survey of the pathogenic mechanisms underlying this entity in these locations is reported. A review of suboccipital posterior fossa and orbital roof GSF cases, of nosological, ophthalmological and neurological data, neuroradiological and operative findings, and results of different treatment strategies are described.

  7. Intracerebral haematoma without skull fracture by golf ball

    PubMed Central

    Etgen, Thorleif; Sander, Kerstin

    2008-01-01

    Serious head injury is very uncommon in golf and consists mostly of depressed skull fractures. A case of severe intracerebral haematoma without skull fracture caused by a stray golf ball is described and a review of head injuries in golf is provided. PMID:21716812

  8. Reappraisal of Pediatric Diastatic Skull Fractures in the 3-Dimensional CT Era: Clinical Characteristics and Comparison of Diagnostic Accuracy of Simple Skull X-Ray, 2-Dimensional CT, and 3-Dimensional CT.

    PubMed

    Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun

    2017-12-01

    Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P < 0.001). 3D CT was found to be markedly superior to skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Surveillance for work-related skull fractures in Michigan.

    PubMed

    Kica, Joanna; Rosenman, Kenneth D

    2014-12-01

    The objective was to develop a multisource surveillance system for work-related skull fractures. Records on work-related skull fractures were obtained from Michigan's 134 hospitals, Michigan's Workers' Compensation Agency and death certificates. Cases from the three sources were matched to eliminate duplicates from more than one source. Workplaces where the most severe injuries occurred were referred to OSHA for an enforcement inspection. There were 318 work related skull fractures, not including facial fractures, between 2010 and 2012. In 2012, after the inclusion of facial fractures, 316 fractures were identified of which 218 (69%) were facial fractures. The Bureau of Labor Statistic's (BLS) 2012 estimate of skull fractures in Michigan, which includes facial fractures, was 170, which was 53.8% of those identified from our review of medical records. The inclusion of facial fractures in the surveillance system increased the percentage of women identified from 15.4% to 31.2%, decreased severity (hospitalization went from 48.7% to 10.6% and loss of consciousness went from 56.5% to 17.8%), decreased falls from 48.2% to 27.6%, and increased assaults from 5.0% to 20.2%, shifted the most common industry from construction (13.3%) to health care and social assistance (15.0%) and the highest incidence rate from males 65+ (6.8 per 100,000) to young men, 20-24 years (9.6 per 100,000). Workplace inspections resulted in 45 violations and $62,750 in penalties. The Michigan multisource surveillance system of workplace injuries had two major advantages over the existing national system: (a) workplace investigations were initiated hazards identified and safety changes implemented at the facilities where the injuries occurred; and (b) a more accurate count was derived, with 86% more work-related skull fractures identified than BLS's employer based estimate. A more comprehensive system to identify and target interventions for workplace injuries was implemented using hospital and

  10. Keyhole Fracture of the Skull

    DTIC Science & Technology

    2008-12-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keyhole Fracture of the Skull irrigation and drainage of the penetrating...skull injury without craniotomy , and repair of the laceration via advancement flap Fig. 3. Diagram of forces involved in creation of keyhole...midline shift was noted. Helical CT scan performed the following day after debridement, irrigation, drainage , and closure of the gunshot wound showed

  11. A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.

    PubMed

    Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E

    2016-06-01

    Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.

  12. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    PubMed

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  13. Transfer of children with isolated linear skull fractures: is it worth the cost?

    PubMed

    White, Ian K; Pestereva, Ecaterina; Shaikh, Kashif A; Fulkerson, Daniel H

    2016-05-01

    OBJECTIVE Children with skull fractures are often transferred to hospitals with pediatric neurosurgical capabilities. Historical data suggest that a small percentage of patients with an isolated skull fracture will clinically decline. However, recent papers have suggested that the risk of decline in certain patients is low. There are few data regarding the financial costs associated with transporting patients at low risk for requiring specialty care. In this study, the clinical outcomes and financial costs of transferring of a population of children with isolated skull fractures to a Level 1 pediatric trauma center over a 9-year period were analyzed. METHODS A retrospective review of all children treated for head injury at Riley Hospital for Children (Indianapolis, Indiana) between 2005 and 2013 was performed. Patients with a skull fracture were identified based on ICD-9 codes. Patients with intracranial hematoma, brain parenchymal injury, or multisystem trauma were excluded. Children transferred to Riley Hospital from an outside facility were identified. The clinical and radiographic outcomes were recorded. A cost analysis was performed on patients who were transferred with an isolated, linear, nondisplaced skull fracture. RESULTS Between 2005 and 2013, a total of 619 pediatric patients with isolated skull fractures were transferred. Of these, 438 (70.8%) patients had a linear, nondisplaced skull fracture. Of these 438 patients, 399 (91.1%) were transferred by ambulance and 39 (8.9%) by helicopter. Based on the current ambulance and helicopter fees, a total of $1,834,727 (an average of $4188.90 per patient) was spent on transfer fees alone. No patient required neurosurgical intervention. All patients recovered with symptomatic treatment; no patient suffered late decline or epilepsy. CONCLUSIONS This study found that nearly $2 million was spent solely on transfer fees for 438 pediatric patients with isolated linear skull fractures over a 9-year period. All patients

  14. Outcome of surgically treated non-missile traumatic depressed skull fracture.

    PubMed

    Nnadi, M O N; Bankole, O B; Arigbabu, S O

    2014-12-01

    To determine the functional outcome and infection rate in patients who were surgically treated for non-missile traumatic depressed skull fractures. It is a prospective cross-sectional descriptive study carried out on computerised tomography scanned depressed skull fractures surgically treated in Lagos University Teaching Hospital, Lagos from October 2008 to September 2009. Data were collected using structured proforma in accident and emergency, theatre, wards, and in outpatient clinic. Data collected included age, gender, occupation, type of depressed fracture, aetiology, clinicaland radiological findings, type of surgery done, complications, and outcome of treatment. Data was analysed using EPI info 2002 software. A total of 17 patients were studied. There were 12males and 5females. Fifteen (88.2%) of the patients were0- 40years. The aetiology was road traffic accident in 82.4% of cases. Fourteen (82.4%) of the patients had open depressed skull fractures, while 17.6% had closed depressed skull fractures. Five (29.4%) of the patients had wound infection. Two (22.2%) of thepatients operated within 48hours had wound infection, while 37.5% of those operated after 48hours had wound infection. There was no infection among patients who had primary bone fragments replaced. Fifteen (88.2%) of the patients had good functional outcome. The functional outcome in this study is good but the infection rate is high. Primary bone fragments should be replaced whenever possible as it prevents the need for cranioplasty and there is no relative risk of increased infection rate.

  15. The Comprehensive AOCMF Classification: Skull Base and Cranial Vault Fractures – Level 2 and 3 Tutorial

    PubMed Central

    Ieva, Antonio Di; Audigé, Laurent; Kellman, Robert M.; Shumrick, Kevin A.; Ringl, Helmut; Prein, Joachim; Matula, Christian

    2014-01-01

    The AOCMF Classification Group developed a hierarchical three-level craniomaxillofacial classification system with increasing level of complexity and details. The highest level 1 system distinguish four major anatomical units, including the mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). This tutorial presents the level 2 and more detailed level 3 systems for the skull base and cranial vault units. The level 2 system describes fracture location outlining the topographic boundaries of the anatomic regions, considering in particular the endocranial and exocranial skull base surfaces. The endocranial skull base is divided into nine regions; a central skull base adjoining a left and right side are divided into the anterior, middle, and posterior skull base. The exocranial skull base surface and cranial vault are divided in regions defined by the names of the bones involved: frontal, parietal, temporal, sphenoid, and occipital bones. The level 3 system allows assessing fracture morphology described by the presence of fracture fragmentation, displacement, and bone loss. A documentation of associated intracranial diagnostic features is proposed. This tutorial is organized in a sequence of sections dealing with the description of the classification system with illustrations of the topographical skull base and cranial vault regions along with rules for fracture location and coding, a series of case examples with clinical imaging and a general discussion on the design of this classification. PMID:25489394

  16. Intersecting fractures of the skull and gunshot wounds. Case report and literature review.

    PubMed

    Viel, Guido; Gehl, Axel; Sperhake, Jan P

    2009-01-01

    When two fracture lines of a solid surface (ice, glass, eggshell, etc.) intersect, it is always possible to tell which one has been made first. Indeed pre-existing damage of the surface arrests all the fracture lines produced by subsequent impacts. This well-known principle (established by Puppe in 1903) has been largely used in glass fracture analysis, but can be applied also to the examination of skull fractures. It can help sequencing blunt force or gunshot injuries determining the direction of fire and differentiating entrance from exit wounds in the absence of specific distinguishing features (i.e., internal/external beveling of the skull or overlying skin indicators). In this context, we report the case of a 76-year-old man who shot himself in the mouth with a Walther PPK 7.65 handgun and highlight the utility of the application of both Puppe's Rule and Multislice Computed Tomography (MSCT) in the examination of gunshot wounds to the skull.

  17. Skull fracture with effacement of the superior sagittal sinus following drone impact: a case report.

    PubMed

    Chung, Lawrance K; Cheung, Yuri; Lagman, Carlito; Au Yong, Nicholas; McBride, Duncan Q; Yang, Isaac

    2017-09-01

    The popularity of unmanned aerial vehicles, or drones, raises safety concerns as they become increasingly common for commercial, personal, and recreational use. Collisions between drones and people may result in serious injuries. A 13-year-old male presented with a comminuted depressed skull fracture causing effacement of the superior sagittal sinus secondary to a racing drone impact. The patient experienced a brief loss of consciousness and reported lower extremity numbness and weakness after the accident. Imaging studies revealed bone fragments crossing the superior sagittal sinus with a short, focal segment of blood flow interruption. Neurosurgical intervention was deferred given the patient's improving neurological deficits, and the patient was treated conservatively. He was discharged home in stable condition. Drones may represent a hazard when operated inappropriately due to their capacity to fly at high speeds and altitudes. Impacts from drones can carry enough force to cause skull fractures and significant head injuries. The rising popularity of drones likely translates to an increased incidence of drone-related injuries. Thus, clinicians should be aware of this growing trend.

  18. Healed Depressed Parasagittal Skull Fractures-A Feature of Archaic Australian Aboriginal Remains.

    PubMed

    Walshe, Keryn; Brophy, Brian; Cornish, Brian; Byard, Roger W

    2016-11-01

    The skeletal remains of eight Australian Aboriginals with healed depressed skull fractures were examined. Male:female ratio 5:3; age range 20-60 yrs. Burial dates by 14 C dating in three cases were 500 years BP (n = 2) and 1300 BP. There were 13 healed depressed skull fractures manifested by shallow indentations of cortical bone and thinning of diploe, with no significant disturbance of the inner skull tables. Nine (69%) were located within 35 mm of the sagittal suture/midline. These lesions represent another acquired feature that might be helpful in suggesting that a skull is from a tribal Aboriginal individual and may be particularly useful if the remains are represented by only fragments of calvarium. While obviously not a finding specific to this population, these healed injuries would be consistent with the possible results of certain types of conflict behavior reported in traditional Aboriginal groups that involved formalized inflicted blunt head trauma. © 2016 American Academy of Forensic Sciences.

  19. Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures.

    PubMed

    Hart, Gina O

    2005-11-01

    There have been several anthropological studies on trauma analysis in recent literature, but few studies have focused on the differences between the three mechanisms of trauma (sharp force trauma, blunt force trauma and ballistics trauma). The hypothesis of this study is that blunt force and ballistics fracture patterns in the skull can be differentiated using concentric fractures. Two-hundred and eleven injuries from skulls exhibiting concentric fractures were examined to determine if the mechanism of trauma could be determined by beveling direction. Fractures occurring in buttressed and non-buttressed regions were examined separately. Contingency tables and Pearson's Chi-Square were used to evaluate the relationship between the two variables (the mechanism of trauma and the direction of beveling), while Pearson's r correlation was used to determine the strength of the relationship. Contingency tables and Chi-square tests among the entire sample, the buttressed areas, and the non-buttressed areas led to the null hypothesis (no relationship) to be rejected. Pearson's r correlation indicated that the relationship between the variables studied is greater than chance allocation.

  20. Posttraumatic Intracranial Tuberculous Subdural Empyema in a Patient with Skull Fracture

    PubMed Central

    Kim, Jiha; Kim, Choonghyo; Ryu, Young-Joon

    2016-01-01

    Intracranial tuberculous subdural empyema (ITSE) is extremely rare. To our knowledge, only four cases of microbiologically confirmed ITSE have been reported in the English literature to date. Most cases have arisen in patients with pulmonary tuberculosis regardless of trauma. A 46-year-old man presented to the emergency department after a fall. On arrival, he complained of pain in his head, face, chest and left arm. He was alert and oriented. An initial neurological examination was normal. Radiologic evaluation revealed multiple fractures of his skull, ribs, left scapula and radius. Though he had suffered extensive skull fractures of his cranium, maxilla, zygoma and orbital wall, the sustained cerebral contusion and hemorrhage were mild. Eighteen days later, he suddenly experienced a general tonic-clonic seizure. Radiologic evaluation revealed a subdural empyema in the left occipital area that was not present on admission. We performed a craniotomy, and the empyema was completely removed. Microbiological examination identified Mycobacterium tuberculosis (M. tuberculosis). After eighteen months of anti-tuberculous treatment, the empyema disappeared completely. This case demonstrates that tuberculosis can induce empyema in patients with skull fractures. Thus, we recommend that M. tuberculosis should be considered as the probable pathogen in cases with posttraumatic empyema. PMID:27226867

  1. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    PubMed

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  2. Skull wounds linked with blunt trauma (hammer example). A report of two depressed skull fractures--elements of biomechanical explanation.

    PubMed

    Delannoy, Yann; Becart, Anne; Colard, Thomas; Delille, Rémi; Tournel, Gilles; Hedouin, Valéry; Gosset, Didier

    2012-09-01

    The lesions of the skull following perforating traumas can create complex fractures. The blunt traumas can, according to the swiftness and the shape of the object used, create a depressed fracture. The authors describe through two clinical cases the lesional characteristic of the blunt traumas, perforating the skull using a hammer. In both cases the cranial lesions were very typical: they were geometrical, square shaped, of the same size than the tool (head and tip of the hammer). On the outer table of the skull, the edges of the wounds were sharp and regular. On the inner table, the edges of the wounds were beveled and irregular. The bony penetration in the depressed fracture results from a rupture of the outer table of the bone under tension, in periphery, by the bend of the bone to the impact (outbending) and then, from the inner table with comminuted bony fragmentation. Breeding on the fractures of the size and the shape of the blunt objects used is inconstant and differs, that it is the objects of flat surface or wide in opposition to those of small surface area. Fractures morphologies depend on one hand on these extrinsic factors and on the other hand, of intrinsic factors (structure of the bone). To identify them, we had previously conducted experimental work on cranial bone samples. The bone was submitted to a device for three-point bending. This work had shown properties of thickness and stiffness of the various areas of the vault. Our cases are consistent with these results and illustrate the variability of bone lesions according to region and mode of use of blunt weapons. Many studies have identified criteria for identification of the weapons and the assistance of digital and biomechanical models will be an invaluable contribution with this aim in the future. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    PubMed

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  4. A novel classification of frontal bone fractures: The prognostic significance of vertical fracture trajectory and skull base extension.

    PubMed

    Garg, Ravi K; Afifi, Ahmed M; Gassner, Jennifer; Hartman, Michael J; Leverson, Glen; King, Timothy W; Bentz, Michael L; Gentry, Lindell R

    2015-05-01

    The broad spectrum of frontal bone fractures, including those with orbital and skull base extension, is poorly understood. We propose a novel classification scheme for frontal bone fractures. Maxillofacial CT scans of trauma patients were reviewed over a five year period, and frontal bone fractures were classified: Type 1: Frontal sinus fracture without vertical extension. Type 2: Vertical fracture through the orbit without frontal sinus involvement. Type 3: Vertical fracture through the frontal sinus without orbit involvement. Type 4: Vertical fracture through the frontal sinus and ipsilateral orbit. Type 5: Vertical fracture through the frontal sinus and contralateral or bilateral orbits. We also identified the depth of skull base extension, and performed a chart review to identify associated complications. 149 frontal bone fractures, including 51 non-vertical frontal sinus (Type 1, 34.2%) and 98 vertical (Types 2-5, 65.8%) fractures were identified. Vertical fractures penetrated the middle or posterior cranial fossa significantly more often than non-vertical fractures (62.2 v. 15.7%, p = 0.0001) and had a significantly higher mortality rate (18.4 v. 0%, p < 0.05). Vertical fractures with frontal sinus and orbital extension, and fractures that penetrated the middle or posterior cranial fossa had the strongest association with intracranial injuries, optic neuropathy, disability, and death (p < 0.05). Vertical frontal bone fractures carry a worse prognosis than frontal bone fractures without a vertical pattern. In addition, vertical fractures with extension into the frontal sinus and orbit, or with extension into the middle or posterior cranial fossa have the highest complication rate and mortality. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Secondary skull fractures in head wounds inflicted by captive bolt guns: autopsy findings and experimental simulation.

    PubMed

    Perdekamp, Markus Grosse; Kneubuehl, Beat P; Ishikawa, Takaki; Nadjem, Hadi; Kromeier, Jan; Pollak, Stefan; Thierauf, Annette

    2010-11-01

    Apart from one article published by Rabl and Sigrist in 1992 (Rechtsmedizin 2:156-158), there are no further reports on secondary skull fractures in shots from captive bolt guns. Up to now, the pertinent literature places particular emphasis on the absence of indirect lesions away from the impact point, when dealing with the wounding capacity of slaughterer's guns. The recent observation of two suicidal head injuries accompanied by skull fractures far away from the bolt's path gave occasion to experimental studies using simulants (glycerin soap, balls from gelatin) and skull–brain models. As far as ballistic soap was concerned, the dimensions of the bolt's channel were assessed by multi-slice computed tomography before cutting the blocks open. The test shots to gelatin balls and to skull-brain models were documented by means of a high-speed motion camera. As expected, the typical temporary cavity effect of bullets fired from conventional guns could not be observed when captive bolt stunners were discharged. Nevertheless, the visualized transfer of kinetic energy justifies the assumption that the secondary fractures seen in thin parts of the skull were caused by a hydraulic burst effect.

  6. Growing skull hemangioma: first and unique description in a patient with Klippel-Trénaunay-Weber syndrome.

    PubMed

    van der Loo, Lars E; Beckervordersandforth, Jan; Colon, Albert J; Schijns, Olaf E M G

    2017-02-01

    We present the first and unique case of a rapid-growing skull hemangioma in a patient with Klippel-Trénaunay-Weber syndrome. This case report provides evidence that not all rapid-growing, osteolytic skull lesions need to have a malignant character but certainly need a histopathological verification. This material offers insight into the list of rare pathological diagnoses in an infrequent syndrome.

  7. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  8. Extensive traumatic anterior skull base fractures with cerebrospinal fluid leak: classification and repair techniques using combined vascularized tissue flaps.

    PubMed

    Archer, Jacob B; Sun, Hai; Bonney, Phillip A; Zhao, Yan Daniel; Hiebert, Jared C; Sanclement, Jose A; Little, Andrew S; Sughrue, Michael E; Theodore, Nicholas; James, Jeffrey; Safavi-Abbasi, Sam

    2016-03-01

    This article introduces a classification scheme for extensive traumatic anterior skull base fracture to help stratify surgical treatment options. The authors describe their multilayer repair technique for cerebrospinal fluid (CSF) leak resulting from extensive anterior skull base fracture using a combination of laterally pediculated temporalis fascial-pericranial, nasoseptal-pericranial, and anterior pericranial flaps. Retrospective chart review identified patients treated surgically between January 2004 and May 2014 for anterior skull base fractures with CSF fistulas. All patients were treated with bifrontal craniotomy and received pedicled tissue flaps. Cases were classified according to the extent of fracture: Class I (frontal bone/sinus involvement only); Class II (extent of involvement to ethmoid cribriform plate); and Class III (extent of involvement to sphenoid bone/sinus). Surgical repair techniques were tailored to the types of fractures. Patients were assessed for CSF leak at follow-up. The Fisher exact test was applied to investigate whether the repair techniques were associated with persistent postoperative CSF leak. Forty-three patients were identified in this series. Thirty-seven (86%) were male. The patients' mean age was 33 years (range 11-79 years). The mean overall length of follow-up was 14 months (range 5-45 months). Six fractures were classified as Class I, 8 as Class II, and 29 as Class III. The anterior pericranial flap alone was used in 33 patients (77%). Multiple flaps were used in 10 patients (3 salvage) (28%)--1 with Class II and 9 with Class III fractures. Five (17%) of the 30 patients with Class II or III fractures who received only a single anterior pericranial flap had persistent CSF leak (p < 0.31). No CSF leak was found in patients who received multiple flaps. Although postoperative CSF leak occurred only in high-grade fractures with single anterior flap repair, this finding was not significant. Extensive anterior skull base

  9. Penetrating skull fracture by a wooden object: Management dilemmas and literature review

    PubMed Central

    Arifin, Muhammad Zafrullah; Gill, Arwinder Singh; Faried, Ahmad

    2012-01-01

    Most penetrating skull injuries are caused by gun shot wounds or missiles. The compound depressed skull fracture represents an acute neurosurgical emergency. Management and diagnosis of such cases have been described, but its occurence following a fall onto a piece of wood is quite unusual. A 75-year-old female fell onto a piece of wood that penetrated her skull on the left frontal region and was treated in our department. The patient had no neurological deficits during presentation. She was managed surgically and removal of the wooden object was performed to prevent early or late infection complications. Wooden foreign bodies often pose a different set of challenges as far as penetrating injuries to the brain are concerned. Radiological difficulties and increased rates of infection due to its porous nature make these types of injuries particularly interesting. Their early diagnosis and appropriate treatment can minimize the risk of complications. PMID:23293668

  10. Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation.

    PubMed

    Weisenbach, Charles A; Logsdon, Katie; Salzar, Robert S; Chancey, Valeta Carol; Brozoski, Fredrick

    2018-03-01

    Military combat helmets protect the wearer from a variety of battlefield threats, including projectiles. Helmet back-face deformation (BFD) is the result of the helmet defeating a projectile and deforming inward. Back-face deformation can result in localized blunt impacts to the head. A method was developed to investigate skull injury due to BFD behind-armor blunt trauma. A representative impactor was designed from the BFD profiles of modern combat helmets subjected to ballistic impacts. Three post-mortem human subject head specimens were each impacted using the representative impactor at three anatomical regions (frontal bone, right/left temporo-parietal regions) using a pneumatic projectile launcher. Thirty-six impacts were conducted at energy levels between 5 J and 25 J. Fractures were detected in two specimens. Two of the specimens experienced temporo-parietal fractures while the third specimen experienced no fractures. Biomechanical metrics, including impactor acceleration, were obtained for all tests. The work presented herein describes initial research utilizing a test method enabling the collection of dynamic exposure and biomechanical response data for the skull at the BFD-head interface.

  11. Depressed Skull Fractures: A Pattern of Abusive Head Injury in Three Older Children

    ERIC Educational Resources Information Center

    Lee, Anselm C. W.; Ou, Yvonne; Fong, Dawson

    2003-01-01

    Objective: To describe a pattern of abusive head injury in a series of children older than 4 years of age. Methods: A hospital chart review of abused children with skull fractures from 1999 to 2001 was carried out. The clinical features, social background, and subsequent outcome and management are described. Results: An 11-year-old girl and a pair…

  12. Does preliminary optimisation of an anatomically correct skull-brain model using simple simulants produce clinically realistic ballistic injury fracture patterns?

    PubMed

    Mahoney, P F; Carr, D J; Delaney, R J; Hunt, N; Harrison, S; Breeze, J; Gibb, I

    2017-07-01

    Ballistic head injury remains a significant threat to military personnel. Studying such injuries requires a model that can be used with a military helmet. This paper describes further work on a skull-brain model using skulls made from three different polyurethane plastics and a series of skull 'fills' to simulate brain (3, 5, 7 and 10% gelatine by mass and PermaGel™). The models were subjected to ballistic impact from 7.62 × 39 mm mild steel core bullets. The first part of the work compares the different polyurethanes (mean bullet muzzle velocity of 708 m/s), and the second part compares the different fills (mean bullet muzzle velocity of 680 m/s). The impact events were filmed using high speed cameras. The resulting fracture patterns in the skulls were reviewed and scored by five clinicians experienced in assessing penetrating head injury. In over half of the models, one or more assessors felt aspects of the fracture pattern were close to real injury. Limitations of the model include the skull being manufactured in two parts and the lack of a realistic skin layer. Further work is ongoing to address these.

  13. Application of computer-aided three-dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture.

    PubMed

    Li, Wei Zhong; Zhang, Mei Chao; Li, Shao Ping; Zhang, Lei Tao; Huang, Yu

    2009-06-01

    With the advent of CAD/CAM and rapid prototyping (RP), a technical revolution in oral and maxillofacial trauma was promoted to benefit treatment, repair of maxillofacial fractures and reconstruction of maxillofacial defects. For a patient with zygomatico-facial collapse deformity resulting from a zygomatico-orbito-maxillary complex (ZOMC) fracture, CT scan data were processed by using Mimics 10.0 for three-dimensional (3D) reconstruction. The reduction design was aided by 3D virtual imaging and the 3D skull model was reproduced using the RP technique. In line with the design by Mimics, presurgery was performed on the 3D skull model and the semi-coronal incision was taken for reduction of ZOMC fracture, based on the outcome from the presurgery. Postoperative CT and images revealed significantly modified zygomatic collapse and zygomatic arch rise and well-modified facial symmetry. The CAD/CAM and RP technique is a relatively useful tool that can assist surgeons with reconstruction of the maxillofacial skeleton, especially in repairs of ZOMC fracture.

  14. Treatise on skull fractures by Berengario da Carpi (1460-1530).

    PubMed

    Mazzola, Riccardo F; Mazzola, Isabella C

    2009-11-01

    Jacopo Berengario was born in Carpi, a medieval city close to Modena (northern Italy), circa 1460. He studied medicine at Bologna University and, in 1489, graduated in philosophy and medicine. He was appointed lecturer in anatomy and surgery at the same university, a position that he maintained for 24 years. Between 1514 and 1523, Berengario published some important anatomic and surgical works, which gave considerable fame to him.Commentaria... supra Anatomiam Mundini (Commentary... on the Anatomy of Mondino), published in 1521, constitutes the first example of an illustrated anatomic textbook ever printed. The anatomic illustrations were intended for explaining the text. Artistically speaking, the plates are typical examples of the Renaissance period and worthy of the greatest consideration.De Fractura Calvae sive Cranei (On Fracture of the Calvaria or Cranium), published in Bologna in 1518, is the first treatise devoted to head injuries ever printed. It is a landmark in the development of cranial surgery that went through numerous editions. The text was prepared in 2 months and dedicated to Lorenzo de' Medici, Duke of Urbino, who experienced a skull injury in the occipital region. Berengario wanted to demonstrate to other physicians his knowledge of anatomy and his expertise on the brain and head traumas. The book includes the illustration of an entire surgical kit or a corpus instrumentorum for performing cranial operations, which appeared for the first time in a printed book. However, Berengario's highly commendable aim was to indicate to the reader the step-by-step procedure of craniotomy for management of skull fractures along with the sequential use of the previously presented instruments.

  15. [The growing skull. Part I. Neurocranium. Statistical considerations (author's transl)].

    PubMed

    Gefferth, K

    1976-01-01

    Measurements were made on the radiographs of the skull of 540 boys and 496 girls obtained in the years 1951-1968. Distances and angles were established with the Tuberculum sellae as the centre. The subjects ranged in age from the first day of life till late puberty. They were divided into 26 groups comprising smaller periods in earlier life, and increasing with age. Results are presented of measurements of 9 distances and 3 angles exclusively concerning the neurocranium. The neurocranium of the girls is smaller than that of the boys from the first day of life and the difference is growing with age. The angles displayed little sex differences. The greater part of the growth of distance takes place in the earliest period of life.

  16. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul

    2017-04-01

    Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dimensional, Geometrical, and Physical Constraints in Skull Growth.

    PubMed

    Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain

    2017-06-16

    After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.

  18. Dimensional, Geometrical, and Physical Constraints in Skull Growth

    NASA Astrophysics Data System (ADS)

    Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain

    2017-06-01

    After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.

  19. The epidemiology of fractures in infants--Which accidents are preventable?

    PubMed

    Wegmann, Helmut; Orendi, Ingrid; Singer, Georg; Eberl, Robert; Castellani, Christoph; Schalamon, Johannes; Till, Holger

    2016-01-01

    In children, fractures have a huge impact on the health care system. In order to develop effective prevention strategies exact knowledge about the epidemiology of fractures is mandatory. This study aims to describe clinical and epidemiological data of fractures diagnosed in infants. A retrospective analysis of all infants (children<1 year of age) presenting with fractures in an 11 years period (2001-2011) was performed. Information was obtained regarding the location of the fractures, sites of the accident, circumstances and mechanisms of injury and post-injury care. 248 infants (54% male, 46% female) with a mean age of 7 months presented with 253 fractures. In more than half of the cases skull fractures were diagnosed (n=151, 61%). Most frequently the accidents causing fractures happened at home (67%). Falls from the changing table, from the arm of the care-giver and out of bed were most commonly encountered (n=92, 37%). While the majority of skull fractures was caused from falls out of different heights, external impacts tended to lead to fractures of the extremities. 6 patients (2%) were victims of maltreatment and sustained 10 fractures (2 skull fractures, 4 proximal humeral fractures, 2 rib fractures, and 2 tibial fractures). Falls from the changing table, the arms of the caregivers and out of bed caused the majority of fractures (especially skull fracture) in infants. Therefore, awareness campaigns and prevention strategies should focus on these mechanisms of accident in order to decrease the rate of fractures in infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.

    PubMed

    Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C

    2017-01-01

    Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.

  1. Subcranial approach in the surgical treatment of anterior skull base trauma.

    PubMed

    Schaller, B

    2005-04-01

    Fractures of the anterior skull base, because of the region's anatomical relationships, are readily complicated by neurological damage to the brain or cranial nerves. This review highlights the use of a subcranial approach in the operative treatment of injuries of the anterior skull base and compares it to the more traditional neurosurgical transcranial approach. The extended anterior subcranial approach takes advantage of the specific features of injuries in this region and allows direct access to the central anterior cranial base in order to repair fractures, close CSF fistulae and relieve of optic nerve compression. It avoids extensive frontal lobe manipulation. The success of the approach in achieving the aims of surgery with low morbidity is reviewed.

  2. Comparative finite element analysis of skull mechanical properties following parietal bone graft harvesting in adults.

    PubMed

    Haen, Pierre; Dubois, Guillaume; Goudot, Patrick; Schouman, Thomas

    2018-02-01

    Parietal bone grafts are commonly used in cranio-maxillo-facial surgery. Both the outer and the internal layer of the calvarium can be harvested. The bone defect created by this harvesting may induce significant weakening of the skull that has not been extensively evaluated. Our aim was to evaluate the consequences of parietal bone graft harvesting on mechanical properties of the skull using a finite element analysis. Finite elements models of the skull of 3 adult patients were created from CT scans. Parietal external and internal layer harvest models were created. Frontal, lateral, and parietal loading were modeled and von Mises stress distributions were compared. The maximal von Mises stress was higher for models of bone harvesting, both on the whole skull and at the harvested site. Maximal von Mises stress was even higher for models with internal layer defect. Harvesting parietal bone modifies the skull's mechanical strength and can increase the risk of skull fracture, mainly on the harvested site. Outer layer parietal graft harvesting is indicated. Graft harvesting located in the upper part of the parietal bone, close to the sagittal suture and with smooth internal edges and corners should limit the risk of fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Modelling human skull growth: a validated computational model

    PubMed Central

    Marghoub, Arsalan; Johnson, David; Khonsari, Roman H.; Fagan, Michael J.; Moazen, Mehran

    2017-01-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. PMID:28566514

  4. Modelling human skull growth: a validated computational model.

    PubMed

    Libby, Joseph; Marghoub, Arsalan; Johnson, David; Khonsari, Roman H; Fagan, Michael J; Moazen, Mehran

    2017-05-01

    During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. © 2017 The Author(s).

  5. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull tongs for traction. 882.5960 Section 882.5960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... cervical spine injury (e.g., fracture or dislocation). The device is caliper shaped with tips that...

  6. Finite element method for analysis of stresses arising in the skull after external loading in cranio-orbital fractures.

    PubMed

    Wanyura, Hubert; Kowalczyk, Piotr; Bossak, Maciej; Samolczyk-Wanyura, Danuta; Stopa, Zygmunt

    2012-01-01

    The craniofacial skeleton remains not fully recognised as far as its mechanical resistance properties are concerned. Heretofore, the only available information on the mechanism of cranial bone fractures came from clinical observations, since the clinical evaluation in a living individual is practically impossible. It seems crucial to implement computer methods of virtual research into clinical practice. Such methods, which have long been used in the technical sciences, may either confirm or disprove previous observations. The aim of the study was to identify the areas of stress concentrations caused by external loads, which can lead to cranio-orbital fractures (COF), by the finite element method (FEM). For numerical analysis, a three-dimensional commercially available geometrical model of the skull was used which was imported into software of FEM. Computations were performed with ANSYS 12.1 Static Structural module. The loads were applied laterally to the frontal squama, the zygomatic process and partly to the upper orbital rim to locate dangerous concentration of stresses potentially resulting in COF. Changes in the area of force application revealed differences in values, quality and the extent of the stress distribution. Depending on the area of force application the following parameters would change: the value and area of stresses characteristic of COF. The distribution of stresses obtained in this study allowed definition of both the locations most vulnerable to fracture and sites from which fractures may originate or propagate.

  7. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more

  8. Predicting Dural Tear in Compound Depressed Skull Fractures: A Prospective Multicenter Correlational Study.

    PubMed

    Salia, Shemsedin Musefa; Mersha, Hagos Biluts; Aklilu, Abenezer Tirsit; Baleh, Abat Sahlu; Lund-Johansen, Morten

    2018-06-01

    Compound depressed skull fracture (DSF) is a neurosurgical emergency. Preoperative knowledge of dural status is indispensable for treatment decision making. This study aimed to determine predictors of dural tear from clinical and imaging characteristics in patients with compound DSF. This prospective, multicenter correlational study in neurosurgical hospitals in Addis Ababa, Ethiopia, included 128 patients operated on from January 1, 2016, to October 31, 2016. Clinical, imaging, and intraoperative findings were evaluated. Univariate and multivariate analyses were used to establish predictors of dural tear. A logistic regression model was developed to predict probability of dural tear. Model validation was done using the receiver operating characteristic curve. Dural tear was seen in 55.5% of 128 patients. Demographics, injury mechanism, clinical presentation, and site of DSF had no significant correlation with dural tear. In univariate and multivariate analyses, depth of fracture depression (odds ratio 1.3, P < 0.001), pneumocephalus (odds ratio 2.8, P = 0.005), and brain contusions/intracerebral hematoma (odds ratio 5.5, P < 0.001) were significantly correlated with dural tear. We developed a logistic regression model (diagnostic test) to calculate probability of dural tear. Using the receiver operating characteristic curve, we determined the cutoff value for a positive test giving the highest accuracy to be 30% with a corresponding sensitivity of 93.0% and specificity of 43.9%. Dural tear in compound DSF can be predicted with 93.0% sensitivity using preoperative findings and may guide treatment decision making in resource-limited settings where risk of extensive cranial surgery outweighs the benefit. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Skull base trauma: diagnosis and management.

    PubMed

    Samii, Madjid; Tatagiba, Marcos

    2002-03-01

    The singular anatomical relationship of the base of the skull is responsible for the particular problems that may arise after injury. Extensive dural laceration and severe neurovascular damage may accompany skull base injuries. Trauma to the anterior skull base is frequently related to the paranasal sinuses, and trauma to the middle and the posterior skull base usually affects the petrous bone. Injury to the anterior fossa including the paranasal sinuses may produce CSF leakage, damage the olfactory nerves, optic nerves, and orbita contents. Fractures may affect the carotid canal, injure the internal carotid artery and result in carotid-cavernous fistula. Trauma to the petrous bone may cause facial palsy and deafness, and CSF leakage with otorrhoea or paradoxal rhinoliquorrhoea. Trauma to the posterior fossa may lacerate the major venous sinuses, and affect the cranio-cervical stability. Each one of these injuries will need a particular strategy. Decision making for management as a whole must consider all aspects, including the fact that these injuries frequently involve polytraumatized patients. Decisions regarding the timing of surgery and the sequence of the surgical procedures must be made with great care. Modern surgical techniques and recent technologies including functional preservation of the olfactory nerves in frontobasal trauma, visual evoked potentials, assisted optic nerve decompression, facial nerve reconstruction, interventional technique for intravascular repair of vascular injuries, and recent developments in cochlea implants and brain stem implants, all contributed significantly to improve outcome and enhance the quality of life of patients. This article reviews basic principles of management of skull base trauma stressing the role of these advanced techniques.

  10. The skull of Chios: trepanation in Hippocratic medicine.

    PubMed

    Tsermoulas, Georgios; Aidonis, Asterios; Flint, Graham

    2014-08-01

    Cranial trepanation is the oldest neurosurgical operation and its roots date back to prehistory. For many centuries, religion and mysticism were strongly linked to the cause of diseases, and trepanation was associated with superstitions such as releasing evil spirits from inside the skull. The Hippocratic treatise "On injuries of the head" was therefore a revolutionary work, as it presented a systematic approach to the management of cranial trauma, one that was devoid of spiritual elements. Unfortunately, there are only a limited number of skeletal findings that confirm that the practice of trepanation was performed as part of Hippocratic medicine. In this historical vignette, the authors present a trepanned skull that was found in Chios, Greece, as evidence of the procedure having been performed in accordance with the Hippocratic teaching. The skull bears a parietal bur hole in association with a linear fracture, and it is clear that the patient survived the procedure. In this analysis, the authors examine the application of the original Hippocratic teaching to the skull of Chios. The rationalization of trepanation was clearly a significant achievement in the evolution of neurosurgery.

  11. Reduction and fixation of cranial cervical fracture/luxations using screws and polymethylmethacrylate (PMMA) cement: a distraction technique applied to the base of the skull in thirteen dogs.

    PubMed

    Pike, Fred S; Kumar, M S A; Boudrieau, Randy J

    2012-02-01

    To (1) describe a surgical distraction technique for C1-2 cervical fractures/luxations or atlantoaxial (AA) subluxations using the base of the skull (basion of the foramen magnum) and either C2-3 or C3-4 for the purchase points of intraoperative axial distraction and (2) report outcome in 13 dogs. Retrospective case series. Dogs (n = 13). Medical records (September 1995-December 2005) of dogs with fracture/luxation of the cervical spine, or AA subluxations, were reviewed. Only dogs that had intraoperative linear distraction using the base of the skull as a purchase point for a self-retaining retractor were included. Signalment, presenting neurologic deficits, fracture location, and concurrent injury were recorded. Both short-term in-hospital follow-up, including healing and any complications, and long-term telephone follow-up were obtained. Realignment of the spinal vertebrae, reestablishing the normal properties of the spinal canal, was achieved after distraction in all dogs. Screws and small pins incorporated into polymethylmethacrylate cement were used to span the fracture ventrally and achieve rigid internal fixation. Eight dogs had a complete neurologic recovery, 2 dogs had slight residual ataxia, 2 dogs died, and 1 dog was lost to follow-up. Healing was good (mean, 7.5 weeks) or excellent (mean, 5.1 months) based on in-hospital follow-up (mean, 5.1 months). On final telephone follow-up (mean, 7.7 years), no dogs were reported to have had any associated problems or additional surgery. This surgical distraction technique was a reliable, relatively simple method to obtain reduction of fracture/luxations of C1-2 to re-align the spinal canal. Mortality in this series appears lower than that previously reported and supports surgical management of these injuries. © Copyright 2011 by The American College of Veterinary Surgeons.

  12. Statistical analysis of biomechanical properties of the adult skull and age-related structural changes by sex in a Japanese forensic sample.

    PubMed

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Koizumi, Yoshinori; Makino, Yohsuke; Yajima, Daisuke; Hayakawa, Mutsumi; Inokuchi, Go; Motomura, Ayumi; Chiba, Fumiko; Otsuka, Katsura; Kobayashi, Kazuhiro; Odo, Yuriko; Iwase, Hirotaro

    2014-01-01

    The purpose of this research was to investigate the biomechanical properties of the adult human skull and the structural changes that occur with age in both sexes. The heads of 94 Japanese cadavers (54 male cadavers, 40 female cadavers) autopsied in our department were used in this research. A total of 376 cranial samples, four from each skull, were collected. Sample fracture load was measured by a bending test. A statistically significant negative correlation between the sample fracture load and cadaver age was found. This indicates that the stiffness of cranial bones in Japanese individuals decreases with age, and the risk of skull fracture thus probably increases with age. Prior to the bending test, the sample mass, the sample thickness, the ratio of the sample thickness to cadaver stature (ST/CS), and the sample density were measured and calculated. Significant negative correlations between cadaver age and sample thickness, ST/CS, and the sample density were observed only among the female samples. Computerized tomographic (CT) images of 358 cranial samples were available. The computed tomography value (CT value) of cancellous bone which refers to a quantitative scale for describing radiodensity, cancellous bone thickness and cortical bone thickness were measured and calculated. Significant negative correlation between cadaver age and the CT value or cortical bone thickness was observed only among the female samples. These findings suggest that the skull is substantially affected by decreased bone metabolism resulting from osteoporosis. Therefore, osteoporosis prevention and treatment may increase cranial stiffness and reinforce the skull structure, leading to a decrease in the risk of skull fractures. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. The oldest anatomical handmade skull of the world c. 1508: 'the ugliness of growing old' attributed to Leonardo da Vinci.

    PubMed

    Missinne, Stefaan J

    2014-06-01

    The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.

  14. Fractures of the growing mandible.

    PubMed

    Kushner, George M; Tiwana, Paul S

    2009-03-01

    Oral and maxillofacial surgeons must constantly weigh the risks of surgical intervention for pediatric mandible fractures against the wonderful healing capacity of children. The majority of pediatric mandibular fractures can be managed with closed techniques using short periods of maxillomandibular fixation or training elastics alone. Generally, the use of plate- and screw-type internal fixation is reserved for difficult fractures. This article details general and special considerations for this surgery including: craniofacial growth & development, surgical anatomy, epidemiology evaluation, various fractures, the role rigid internal fixation and the Risdon cable in pediatric maxillofacial trauma. It concludes with suggestions concerning long-term follow-up care in light of the mobility, insurance obstacles, and family dynamics facing the patient population.

  15. A paediatric case of bilateral mandibular condyle fracture presenting with bloody otorrhoea following trauma.

    PubMed

    Chan, Yat Chun; Au-Yeung, Kwan Leong

    2017-04-22

    A 7-year-old boy presented to the emergency department with bilateral bloody otorrhoea after falling from his scooter. Skull base fracture was suspected. CT showed no evidence of skull base fracture but bilateral mandibular condyle and external acoustic canals fractures. We report this case to illustrate a rare possibility of bilateral external acoustic canal fracture associated with condylar fracture in trauma patients presented with bloody otorrhoea. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Skull Practice.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1988-01-01

    Disguises a lesson about skulls with some fun to cause less fear among students. Outlines strategies, questions, and answers for use. Includes a skull mask which can be photocopied and distributed to students as a learning tool and a fun Halloween treat. Also shown is a picture of skull parts. (RT)

  17. Skull lichens: a curious chapter in the history of phytotherapy.

    PubMed

    Modenesi, P

    2009-04-01

    Lichens growing on skulls were known in late medieval times as usnea or moss of a dead man's skull and were recommended as highly beneficial in various diseases. They were, in addition, the main ingredient of Unguentum armariun, a liniment used in a curious medical practice: the magnetic cure of wounds. We can place this chapter of the history of phytotherapy within the wider cultural context of the period, which saw the definition of nature become increasingly more fluid and open to a variety of novel interpretations.

  18. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  19. Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.

    PubMed

    Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C

    2013-01-01

    The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical

  20. Pediatric craniofacial fractures due to violence: comparing violent and nonviolent mechanisms of injury.

    PubMed

    Mericli, Alexander F; DeCesare, Gary E; Zuckerbraun, Noel S; Kurland, Kristen S; Grunwaldt, Lorelei; Vecchione, Lisa; Losee, Joseph E

    2011-07-01

    This study examines the epidemiologic data of pediatric craniofacial fractures secondary to violence, comparing these data to craniofacial fractures sustained from all other causes. A retrospective review was completed on all patients who presented to the emergency department of a major urban children's hospital from 2000 to 2005 with a craniofacial fracture. Data were compared between patients with fractures due to violent and nonviolent mechanisms. Socioeconomic analysis was performed using Geographic Information System mapping and 2000 US Census data by postal code. One thousand five hundred twenty-eight patients were diagnosed with skull and/or facial fractures. Isolated skull fractures were excluded, leaving 793 patients in the study. Ninety-eight children were injured due to violence, and 695 were injured from a nonviolent cause. Patients with violence-related fractures were more likely to be older, male, and nonwhite and live in a socioeconomically depressed area. A greater number of patients with violence-related injuries sustained nasal and mandible angle fractures, whereas more patients with non-violence-related injuries sustained skull and orbital fractures. Those with violence-related craniofacial fractures had a lower percentage of associated multiorgan system injuries and a lower rate of hospital admissions and intensive care unit admissions. The rate of open reduction and internal fixation for craniofacial fractures was similar in both groups. Patients with violence-related fractures had fewer associated serious injuries and lower morbidity and lived in a more socioeconomically depressed area. The information gained from this descriptive study improves our ability to characterize this population of pediatric patients and to identify the associated constellation of injuries in such fractures.

  1. Helmet use and reduction in skull fractures in skiers and snowboarders admitted to the hospital.

    PubMed

    Rughani, Anand I; Lin, Chih-Ta; Ares, Wiliam J; Cushing, Deborah A; Horgan, Michael A; Tranmer, Bruce I; Jewell, Ryan P; Florman, Jeffrey E

    2011-03-01

    Helmet use has been associated with fewer hospital visits among injured skiers and snowboarders, but there remains no evidence that helmets alter the intracranial injury patterns. The authors hypothesized that helmet use among skiers and snowboarders reduces the incidence of head injury as defined by findings on head CT scans. The authors performed a retrospective review of head-injured skiers and snowboarders at 2 Level I trauma centers in New England over a 6-year period. The primary outcome of interest was intracranial injury evident on CT scans. Secondary outcomes included the following: need for a neurosurgical procedure, presence of spine injury, need for ICU admission, length of stay, discharge location, and death. Of the 57 children identified who sustained a head injury while skiing or snowboarding, 33.3% were wearing a helmet at the time of injury. Of the helmeted patients, 5.3% sustained a calvarial fracture compared with 36.8% of the unhelmeted patients (p = 0.009). Although there was a favorable trend, there was no significant difference in the incidence of epidural hematoma, subdural hematoma, intraparenchymal hemorrhage, subarachnoid hemorrhage, or contusion in helmeted and unhelmeted patients. With regard to secondary outcomes, there were no significant differences between the 2 groups in percentage of patients requiring neurosurgical intervention, percentage requiring admission to an ICU, total length of stay, or percentage discharged home. There was no difference in the incidence of cervical spine injury. There was 1 death in an unhelmeted patient, and there were no deaths among helmeted patients. Among hospitalized children who sustained a head injury while skiing or snowboarding, a significantly lower number of patients suffered a skull fracture if they were wearing helmets at the time of the injury.

  2. Skull (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  3. [A case of pycnodysostosis--observation of the skull by CT scan].

    PubMed

    Anegawa, S; Bekki, Y; Furukawa, Y; Yokota, S; Torigoe, R

    1987-07-01

    A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows--proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtual loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorithm revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinuses and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethmoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfism. Pycnodysostosis is a generalized skeletal disease whose cardinal features are moderate generalized osteosclerosis and dwarfism. However, the detailed observation on the cranium by CT has not been reported. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. CT of Normal Developmental and Variant Anatomy of the Pediatric Skull: Distinguishing Trauma from Normality.

    PubMed

    Idriz, Sanjin; Patel, Jaymin H; Ameli Renani, Seyed; Allan, Rosemary; Vlahos, Ioannis

    2015-01-01

    The use of computed tomography (CT) in clinical practice has been increasing rapidly, with the number of CT examinations performed in adults and children rising by 10% per year in England. Because the radiology community strives to reduce the radiation dose associated with pediatric examinations, external factors, including guidelines for pediatric head injury, are raising expectations for use of cranial CT in the pediatric population. Thus, radiologists are increasingly likely to encounter pediatric head CT examinations in daily practice. The variable appearance of cranial sutures at different ages can be confusing for inexperienced readers of radiologic images. The evolution of multidetector CT with thin-section acquisition increases the clarity of some of these sutures, which may be misinterpreted as fractures. Familiarity with the normal anatomy of the pediatric skull, how it changes with age, and normal variants can assist in translating the increased resolution of multidetector CT into more accurate detection of fractures and confident determination of normality, thereby reducing prolonged hospitalization of children with normal developmental structures that have been misinterpreted as fractures. More important, the potential morbidity and mortality related to false-negative interpretation of fractures as normal sutures may be avoided. The authors describe the normal anatomy of all standard pediatric sutures, common variants, and sutural mimics, thereby providing an accurate and safe framework for CT evaluation of skull trauma in pediatric patients. (©)RSNA, 2015.

  5. The anterior interhemispheric approach: a safe and effective approach to anterior skull base lesions.

    PubMed

    Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit

    2014-04-01

    Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach

  6. [Anatomy of the skull].

    PubMed

    Pásztor, Emil

    2010-01-01

    The anatomy of the human body based on a special teleological system is one of the greatest miracles of the world. The skull's primary function is the defence of the brain, so every alteration or disease of the brain results in some alteration of the skull. This analogy is to be identified even in the human embryo. Proportions of the 22 bones constituting the skull and of sizes of sutures are not only the result of the phylogeny, but those of the ontogeny as well. E.g. the age of the skeletons in archaeological findings could be identified according to these facts. Present paper outlines the ontogeny and development of the tissues of the skull, of the structure of the bone-tissue, of the changes of the size of the skull and of its parts during the different periods of human life, reflecting to the aesthetics of the skull as well. "Only the human scull can give me an impression of beauty. In spite of all genetical colseness, a skull of a chimpanzee cannot impress me aesthetically"--author confesses. In the second part of the treatise those authors are listed, who contributed to the perfection of our knowledge regarding the skull. First of all the great founder of modern anatomy, Andreas Vesalius, then Pierre Paul Broca, Jacob Benignus Winslow are mentioned here. The most important Hungarian contributors were as follow: Sámuel Rácz, Pál Bugát or--the former assistant of Broca--Aurél Török. A widely used tool for measurement of the size of the skull, the craniometer was invented by the latter. The members of the family Lenhossék have had also important results in this field of research, while descriptive anatomy of the skull was completed by microsopical anatomy thanks the activity of Géza Mihálkovits.

  7. Kirschner wire fixation of Salter-Harris type IV fracture of the lateral aspect of the humeral condyle in growing dogs. A retrospective study of 35 fractures.

    PubMed

    Cinti, Filippo; Pisani, Guido; Vezzoni, Luca; Peirone, Bruno; Vezzoni, Aldo

    2017-01-16

    To evaluate the use of Kirschner wires for treatment of fractures of the lateral aspect of the humeral condyle in growing dogs. Retrospective analysis of 35 elbow fractures (33 dogs) of the lateral aspect of the humeral condyle treated by insertion of multiple transcondylar and one anti-rotational Kirschner wires. Radiographic and clinical re-evaluations were carried out immediately after surgery, at four weeks and, when required, at eight weeks postoperatively. Long-term follow-up was planned after a minimum of six months. The relationship between different implant configurations and clinical outcome was analysed statistically. Complete functional recovery was seen in 31 elbows (30 dogs), three elbows (2 dogs) had reduction in the range of motion, and one elbow (1 dog) had persistent grade 1 lameness two months postoperatively. Major complications occurred in eight elbows (8 dogs) and all were resolved by implant removal. Implant configuration did not affect outcome. Long-term evaluation in 12 cases with a mean follow-up of four years showed absence of lameness, normal function and no or mild radiographic evidence of osteoarthritis in 11 cases. Fracture of the lateral aspect of the humeral condyle in growing dogs can be successfully treated by multiple transcondylar convergent or parallel Kirschner wires, resulting in adequate fracture healing.

  8. Development of a skull/brain model for military wound ballistics studies.

    PubMed

    Carr, Debra; Lindstrom, Anne-Christine; Jareborg, Andreas; Champion, Stephen; Waddell, Neil; Miller, David; Teagle, Michael; Horsfall, Ian; Kieser, Jules

    2015-05-01

    Reports on penetrating ballistic head injuries in the literature are dominated by case studies of suicides; the penetrating ammunition usually being .22 rimfire or shotgun. The dominating cause of injuries in modern warfare is fragmentation and hence, this is the primary threat that military helmets protect the brain from. When helmets are perforated, this is usually by bullets. In combat, 20% of penetrating injuries occur to the head and its wounding accounts for 50% of combat deaths. A number of head simulants are described in the academic literature, in ballistic test methods for helmets (including measurement of behind helmet blunt trauma, BHBT) and in the 'open' and 'closed' government literature of several nations. The majority of these models are not anatomically correct and are not assessed with high-velocity rifle ammunition. In this article, an anatomically correct 'skull' (manufactured from polyurethane) and 'brain' (manufactured from 10%, by mass, gelatine) model for use in military wound ballistic studies is described. Filling the cranium completely with gelatine resulted in a similar 'skull' fracture pattern as an anatomically correct 'brain' combined with a representation of cerebrospinal fluid. In particular, posterior cranial fossa and occipital fractures and brain ejection were observed. This pattern of injury compared favourably to reported case studies of actual incidents in the literature.

  9. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  10. Usefulness of an Osteotomy Template for Skull Tumorectomy and Simultaneous Skull Reconstruction.

    PubMed

    Oji, Tomito; Sakamoto, Yoshiaki; Miwa, Tomoru; Nakagawa, Yu; Yoshida, Kazunari; Kishi, Kazuo

    2016-09-01

    Simultaneous tumor resection and cranioplasty with hydroxyapatite osteosynthesis are sometimes necessary in patients of skull neoplasms or skull-invasive tumors. However, the disadvantage of simultaneous surgery is that mismatches often occur between the skull defect and the hydroxyapatite implant. To solve this problem, the authors developed a customized template for designing the craniotomy line. Before each operation, the craniotomy design was discussed with a neurosurgeon. Based on the discussion, 2 hydroxyapatite implants were customized for each patient on the basis of models prepared using computed tomography data. The first implant was an onlay template for the preoperative cranium, which was customized for designing the osteotomy line. The other implant was used for the skull defect. Using the template, the osteotomy line was drawn along the template edge, osteotomy was performed along this line, and the implant was placed in the skull defect. This technique was performed in 3 patients. No implant or defect trimming was required in any patient, good cosmetic outcomes were noted in all patients, and no complications occurred. Use of predesigned hydroxyapatite templates for craniotomy during simultaneous skull tumor resection and cranioplasty has some clinical advantages: the precise craniotomy line can be designed, the implant and skull defect fit better and show effective osteoconduction, trimming of the implant or defect is minimized, and the operation time is shortened.

  11. [Children with minor head injury in the emergency department: Is skull radiography necessary for children under 2 years?].

    PubMed

    Muñoz-Santanach, David; Trenchs Sainz de la Maza, Victoria; González Forster, Elisa; Luaces Cubells, Carles

    2014-01-01

    Current guidelines on the management of mild head trauma (traumatic brain injury/TBI) do not include the presence of a skull fracture in determining the risk of intracranial injury. However, in our setting cranial radiography is still performed frequently to rule out the presence of skull fracture. To estimate the prevalence of clinically-important traumatic brain injuries (ciTBI) in children younger than two years of age with mild TBI. Descriptive observational study. All children attended in emergency department with mild TBI (Glasgow ≥14 points) for a year were included. We defined ciTBI as intracranial injuries that caused death or required neurosurgery, intubation for more than 24 hours, inotropic drugs or mechanical ventilation. The study included 854 children, of which 457 (53.5%) were male. The median patient age was 11.0 months (P25-75: 7.5-17.0 months). In 741 cases (86.8%) the mechanism of TBI was a fall. In 438 cases (51.3%) skull radiography was performed. Eleven children (1.3%) had intracranial injury, but none met the criteria for ciTBI (estimated prevalence of ciTBI was 0%; CI 95%: 0%-0.4%). Children younger than two years of age with mild TBI have low prevalence of ciTBI. Consequently, it is possible to monitor children younger than two years with a TBI without performing skull radiography. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  12. Skull anatomy (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  13. Tolerance of the skull to blunt ballistic temporo-parietal impact.

    PubMed

    Raymond, David; Van Ee, Chris; Crawford, Gregory; Bir, Cynthia

    2009-11-13

    Less-lethal ballistic projectiles are used by police personnel to temporarily incapacitate suspects. While the frequency of these impacts to the head is low, they account for more serious injuries than impacts to any other body region. As a result, there is an urgent need to assess the tolerance of the head to such impacts. The focus of this study was to investigate the tolerance of the temporo-parietal skull to blunt ballistic impact and establish injury criteria for risk assessment. Seven unembalmed isolated cadaver heads were subjected to fourteen impacts. Specimens were instrumented with a nine-accelerometer array as well as strain gages surrounding the impact site. Impacts were performed with a 38 mm instrumented projectile at velocities ranging from 18 to 37 m/s. CT images and autopsies were performed to document resulting fractures. Peak fracture force for the seven resulting fractures was 5633+/-2095 N. Peak deformation for fracture-producing impacts was 7.8+/-3.2 mm. The blunt criterion (BC), peak force and principal strain were determined to be the best predictors of depressed comminuted fractures. Temporo-parietal tolerance levels were consistent with previous studies. An initial force tolerance level of 2346 N is established for the temporo-parietal region for blunt ballistic impact with a 38 mm diameter impactor.

  14. Management of Dropped Skull Flaps.

    PubMed

    Abdelfatah, Mohamed AbdelRahman

    2017-01-01

    Dropping a skull flap on the floor is an uncommon and avoidable mistake in the neurosurgical operating theater. This study retrospectively reviewed all incidents of dropped skull flaps in Ain-Shams University hospitals during a 10-year period to show how to manage this problem and its outcome. Thirty-one incidents of dropped skull flaps occurred from January 2004 to January 2014 out of more than 10,000 craniotomies. Follow-up period varied from 20 to 44 months. The bone flap was dropped while elevating the bone (n = 16), while drilling the bone on the operating table (n = 5), and during insertion of the bone flap (n = 10). Treatment included re-insertion of the skull flap after soaking it in povidone iodine and antibiotic solution (n = 17) or after autoclaving (n = 11), or discarding the skull flap and replacing it with a mesh cranioplasty in the same operation (n = 3). No bone or wound infection was noted during the follow-up period. Management of dropped skull flap is its prevention. Replacement of the skull flap, after decontamination, is an option that avoids the expense and time of cranioplasty.

  15. Cloverleaf skull and thanatophoric dwarfism

    PubMed Central

    Partington, M. W.; Gonzales-Crussi, F.; Khakee, S. G.; Wollin, D. G.

    1971-01-01

    Four cases of the cloverleaf skull syndrome are reported, 3 from Britain and 1 from Canada in a family of German/Irish descent. All cases had generalized chondrodysplastic changes and died at or just after birth. It is suggested that a cloverleaf skull is a previously unrecognized feature of thanatophoric dwarfism. Two affected girls from the same sibship are reported for the first time, suggesting an autosomal recessive type of inheritance. A review of the published material indicates that there may be three distinct syndromes in patients with the cloverleaf skull deformity. (1) The cloverleaf skull is associated with thanatophoric dwarfism and death in the perinatal period. (2) There are localized bony lesions of the skeleton outside the skull. (3) The skeleton outside the skull is normal. In the last two syndromes death may occur at birth, but survival into later childhood is the rule. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8 PMID:5315768

  16. Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Shi, Junfen; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. PMID:22216358

  17. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  18. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates or...

  19. Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

    PubMed

    Curtis, Neil; Jones, Marc E H; Shi, Junfen; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. © 2011 Curtis et al.

  20. Skull Base Anatomy.

    PubMed

    Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W

    2016-02-01

    The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  2. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury

    PubMed Central

    Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.

    2016-01-01

    Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758

  3. A testbed for optimizing electrodes embedded in the skull or in artificial skull replacement pieces used after injury.

    PubMed

    Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M

    2017-02-01

    Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.

  4. Derivation of the mammalian skull vault

    PubMed Central

    MORRISS-KAY, GILLIAN M.

    2001-01-01

    This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816

  5. Skull trepanation in the Bismarck archipelago.

    PubMed

    Watters, David A K

    2007-01-01

    Skull trepanation is an ancient art and has been recognized in many, if not most, primitive societies. Papua New Guinea came into contact with Europeans in the late 1800s and therefore it was possible for the art to be documented at a time when cranial surgery in Europe was still in its infancy. A reviewof published articles and accounts of those who observed skull trepanation or spoke to those who had. Review of a video of trepanation as practised today in Lihir. Richard Parkinson was a trader turned amateur anthropologist who was able to observe the surgical procedure being practised in Blanche Bay (New Britain). Trepanation was also witnessed by Rev. J.A. Crump in the Duke of Yorks. In New Britain the operation was performed for trauma but in New Ireland it was also employed on conscious patients for epilepsy or severe headache, particularly in the first five years of life. There was, however, a tendency to operate on frontal depressed and open fractures, rather than temporoparietal ones. Once the decision to operate was made the wound was irrigated in coconut juice and this was also used to wash the hands of the surgeon. Anaesthesia was not required as the traumatized patient was unconscious. The procedure is described and the tools included local materials such as obsidian, shark's tooth, a sharpened shell, rattan, coconut shell and bamboo. Of particular interest is the observation of brain pulsations and their relationship to a successful outcome. The outcomes were good, in that 70% of patients were thought to survive, contrasting with a 75% mortality for cranial surgery in London in the 1870s. There is supporting evidence in that many trepanned skulls show evidence of healing and life long after the procedure was completed. Other societies have reported similar survival rates. The good outcomes may have been due to wise case selection as well as a high level of surgical skill following sound principles of wound debridement without necessarily being able to

  6. [Endonasal skull base endoscopy].

    PubMed

    Simal-Julián, Juan Antonio; Miranda-Lloret, Pablo; Pancucci, Giovanni; Evangelista-Zamora, Rocío; Pérez-Borredá, Pedro; Sanromán-Álvarez, Pablo; Perez-de-Sanromán, Laila; Botella-Asunción, Carlos

    2013-01-01

    The endoscopic endonasal techniques used in skull base surgery have evolved greatly in recent years. Our study objective was to perform a qualitative systematic review of the likewise systematic reviews in published English language literature, to examine the evidence and conclusions reached in these studies comparing transcranial and endoscopic approaches in skull base surgery. We searched the references on the MEDLINE and EMBASE electronic databases selecting the systematic reviews, meta-analyses and evidence based medicine reviews on skull based pathologies published from January 2000 until January 2013. We focused on endoscopic impact and on microsurgical and endoscopic technique comparisons. Full endoscopic endonasal approaches achieved gross total removal rates of craniopharyngiomas and chordomas higher than those for transcranial approaches. In anterior skull base meningiomas, complete resections were more frequently achieved after transcranial approaches, with a trend in favour of endoscopy with respect to visual prognosis. Endoscopic endonasal approaches minimised the postoperative complications after the treatment of cerebrospinal fluid (CSF) leaks, encephaloceles, meningoceles, craniopharyngiomas and chordomas, with the exception of postoperative CSF leaks. Randomized multicenter studies are necessary to resolve the controversy over endoscopic and microsurgical approaches in skull base surgery. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  7. Imaging of the Posterior Skull Base.

    PubMed

    Job, Joici; Branstetter, Barton F

    2017-01-01

    The posterior skull base can be involved by a variety of pathologic processes. They can be broadly classified as: traumatic, neoplastic, vascular, and inflammatory. Pathology in the posterior skull base usually involves the lower cranial nerves, either as a source of pathology or a secondary source of symptoms. This review will categorize pathology arising in the posterior skull base and describe how it affects the skull base itself and surrounding structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...

  9. Characteristics of bone fractures and usefulness of micro-computed tomography for fracture detection in rabbits: 210 cases (2007-2013).

    PubMed

    Sasai, Hiroshi; Fujita, Daisuke; Tagami, Yukari; Seto, Eiko; Denda, Yuki; Hamakita, Hideaki; Ichihashi, Tomonori; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi; Yamate, Jyoji

    2015-06-15

    To characterize bone fractures and the usefulness of micro-CT for imaging fractures in pet rabbits. Retrospective case series. 210 client-owned rabbits with bone fractures. Medical records of rabbits evaluated for bone fractures from 2007 through 2013 were examined. Information was collected on signalment and nature of fractures, and radiographic and micro-CT images of fractures were reviewed. Almost half (n = 95 [47.7%]) of fractures were in rabbits < 3 years old. Accidental fall was the most common cause. Vertebral fracture was the most common type of fracture with a nonneoplastic cause (n = 46 [23.2%]) and was most common in the L4-L7 region. The tibia was the most common site for limb fracture among all fractures with a nonneoplastic cause (45 [22.7%]). Twelve (5.7%) fractures had a neoplastic cause, and 7 of these were associated with metastatic uterine adenocarcinoma. Females were significantly more likely to have a fracture caused by neoplasia than were males. Compared with radiography, micro-CT provided more detailed fracture information, particularly for complicated fractures or structures (eg, skull, pelvic, vertebral, and comminuted limb fractures). Findings were useful for understanding the nature of fractures in pet rabbits and supported the use of micro-CT versus radiography for fracture detection and evaluation.

  10. Magnetoencephalography signals are influenced by skull defects.

    PubMed

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull punch. 882.4750 Section 882.4750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is...

  12. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  13. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives

    PubMed Central

    Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim

    2014-01-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  14. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    PubMed

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.

  15. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    PubMed Central

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  16. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  17. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.

  18. Traumas of the middle skull base with TMJ involvement. Case report.

    PubMed

    Bottini, D J; Gnoni, G; De Angelis, B; Savo, P; Trimarco, A; Cervelli, G; Cervelli, V

    2006-03-01

    The authors report their experience with temporomandibular joint (TMJ) traumas involving breakage of the roof of the glenoid cavity, an infrequent event that occurs in those cases in which, as a result of the condylar neck not fracturing, the traumatic energy is transmitted to the middle skull base. As the literature contains no valid series for establishing standardized protocols for the treatment of these fractures, we propose our own orthopedic-functional approach. The patient observed by us had suffered a cranio-facial trauma and presented the classical symptoms and signs of TMJ traumas and complete bilateral Bell paralysis. He was subjected to a CAT scan and then to 2-stage treatment consisting of functional rest with liquid diet followed by physiotherapy. An almost total recovery in TMJ function was observed after 1 month. At 1-year follow-up the facial paralysis had resolved completely. On the basis of our experience, breakages of the glenoid cavity can be compared, in terms of treatment procedure, to intracapsular fractures of the TMJ with surgery confined to cases of ankylosis sequelae. To avoid the onset of ankylosis careful control of clinical, functional and radiological follow-up is required.

  19. Dynamic effects of a 9 mm missile on cadaveric skull protected by aramid, polyethylene or aluminum plate: an experimental study.

    PubMed

    Sarron, Jean-Claude; Dannawi, Marwan; Faure, Alexis; Caillou, Jean-Paul; Da Cunha, Joseph; Robert, Roger

    2004-08-01

    Most military helmets are designed to prevent penetration by small firearms using composite materials in their construction. However, the transient deformation of the composite helmet during a non penetrating impact may result in severe head injury. Two experimental designs were undertaken to characterize the extend of injuries imparted by composite panels using in protective helmets. In the first series, 21 dry skulls were protected by polyethylene plates, with gaps between the protective plate and skull ranging from 12 to 15 mm. In another design, using 9 cadavers, heads were protected by aluminum, aramid, or polyethylene plates. Specimens were instrumented with pressure gauges to record the impact response. The ammunition used in these experiments was 9 mm caliber and had a velocity of 400 m/s. A macroscopic analysis of the specimens quantified fractures and injuries, which were then related to the measured pressures. Protective plates influenced both the levels of injury and the intracranial pressure. Injuries were accentuated as the plates was changed from aluminum to composite materials and ranged from skin laceration to extensive skull fractures and brain contusion. Fractures were associated with brain parenchymal pressures in excess of 560 kPa and cerebrospinal fluid pressure of 150 kPa. An air gap of a few millimeters between the plate and the head was sufficient to decrease these internal pressures by half, significantly reducing the level of injury. Ballistic helmets made of composite materials could be optimized to avoid extensive transient deformation and thus reduce the impact and blunt trauma to the head. However, this deformation cannot be completely removed, which is why the gap between the helmet and the head must be maintained at more than 12 mm.

  20. Earliest Directly-Dated Human Skull-Cups

    PubMed Central

    Bello, Silvia M.; Parfitt, Simon A.; Stringer, Chris B.

    2011-01-01

    Background The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP) and skull-cup preparation is an element of this tradition. Principal Findings Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England) and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow), accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also ‘retouched’, possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. Conclusions Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles. PMID:21359211

  1. Paleoneurosurgical aspects of Proto-Bulgarian artificial skull deformations.

    PubMed

    Enchev, Yavor; Nedelkov, Grigoriy; Atanassova-Timeva, Nadezhda; Jordanov, Jordan

    2010-12-01

    Paleoneurosurgery represents a comparatively new developing direction of neurosurgery dealing with archaeological skull and spine finds and studying their neurosurgical aspects. Artificial skull deformation, as a bone artifact, naturally has been one of the main paleoneurosurgical research topics. Traditionally, the relevant neurosurgical literature has analyzed in detail the intentional skull deformations in South America's tribes. However, little is known about the artificial skull deformations of the Proto-Bulgarians, and what information exists is mostly due to anthropological studies. The Proto-Bulgarians originated from Central Asia, and distributed their skull deformation ritual on the Balkan Peninsula by their migration and domination. Proto-Bulgarian artificial skull deformation was an erect or oblique form of the anular type, and was achieved by 1 or 2 pressure bandages that were tightened around a newborn's head for a sufficiently long period. The intentional skull deformation in Proto-Bulgarians was not associated with neurological deficits and/or mental retardation. No indirect signs of chronic elevated intracranial pressure were found on the 3D CT reconstruction of the artificially deformed skulls.

  2. Temporal bone fracture following blunt trauma caused by a flying fish.

    PubMed

    Goldenberg, D; Karam, M; Danino, J; Flax-Goldenberg, R; Joachims, H Z

    1998-10-01

    Blunt trauma to the temporal region can cause fracture of the skull base, loss of hearing, vestibular symptoms and otorrhoea. The most common causes of blunt trauma to the ear and surrounding area are motor vehicle accidents, violent encounters, and sports-related accidents. We present an obscure case of a man who was struck in the ear by a flying fish while wading in the sea with resulting temporal bone fracture, sudden deafness, vertigo, cerebrospinal fluid otorrhoea, and pneumocephalus.

  3. Broadband acoustic properties of a murine skull.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  4. A fast 3D region growing approach for CT angiography applications

    NASA Astrophysics Data System (ADS)

    Ye, Zhen; Lin, Zhongmin; Lu, Cheng-chang

    2004-05-01

    Region growing is one of the most popular methods for low-level image segmentation. Many researches on region growing have focused on the definition of the homogeneity criterion or growing and merging criterion. However, one disadvantage of conventional region growing is redundancy. It requires a large memory usage, and the computation-efficiency is very low especially for 3D images. To overcome this problem, a non-recursive single-pass 3D region growing algorithm named SymRG is implemented and successfully applied to 3D CT angiography (CTA) applications for vessel segmentation and bone removal. The method consists of three steps: segmenting one-dimensional regions of each row; doing region merging to adjacent rows to obtain the region segmentation of each slice; and doing region merging to adjacent slices to obtain the final region segmentation of 3D images. To improve the segmentation speed for very large volume 3D CTA images, this algorithm is applied repeatedly to newly updated local cubes. The next new cube can be estimated by checking isolated segmented regions on all 6 faces of the current local cube. This local non-recursive 3D region-growing algorithm is memory-efficient and computation-efficient. Clinical testings of this algorithm on Brain CTA show this technique could effectively remove whole skull, most of the bones on the skull base, and reveal the cerebral vascular structures clearly.

  5. A case of bilateral lower cranial nerve palsies after base of skull trauma with complex management issues: case report and review of the literature.

    PubMed

    Lehn, Alexander Christoph; Lettieri, Jennie; Grimley, Rohan

    2012-05-01

    Fractures of the skull base can cause lower cranial nerve palsies because of involvement of the nerves as they traverse the skull. A variety of syndromes have been described, often involving multiple nerves. These are most commonly unilateral, and only a handful of cases of bilateral cranial nerve involvement have been reported. We describe a 64-year-old man with occipital condylar fracture complicated by bilateral palsies of IX and X nerves associated with dramatic physiological derangement causing severe management challenges. Apart from debilitating postural hypotension, he developed dysphagia, severe gastrointestinal dysmotility, issues with airway protection as well as airway obstruction, increased oropharyngeal secretions and variable respiratory control. This is the first report of a patient with traumatic bilateral cranial nerve IX and X nerve palsies. This detailed report and the summary of all 6 previous case reports of traumatic bilateral lower cranial nerve palsies illustrate clinical features, treatment strategies, and outcomes of these rare events.

  6. [Giant epidermoid cyst of the skull with extra and intracranial extension. A case report].

    PubMed

    Akhaddar, A; Gazzaz, M; El Mostarchid, B; Kadiri, B; Lrhezzioui, J; Boucetta, M

    2002-09-01

    Intradiploic epidermoid cyst of the skull is a rare clinical entity that can exceptionally grow to a large size with intracranial extension. The authors report the case of a 38-year-old man with a giant epidermoid cyst of the parietal bone with extra and intracranial extension, presenting with focal neurological symptoms. The diagnosis was suggested at imaging (skull radiographs, CT and MRI), and confirmed at histology. Complete removal of the cyst and its capsule was performed followed by cranioplasty. Postoperatively, the patient was discharged free of symptoms. CT scan provides good evaluation of the bony lesion and may suggest intracranial extension. MRI is superior for evaluation of cerebral compression. The pathogenesis, clinical presentation, diagnostic evaluation and therapeutic management of these rare lesions are reviewed.

  7. Blunt forehead trauma and optic canal involvement: finite element analysis of anterior skull base and orbit on causes of vision impairment.

    PubMed

    Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas

    2015-10-01

    Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Fractures from trampolines: results from a national database, 2002 to 2011.

    PubMed

    Loder, Randall T; Schultz, William; Sabatino, Meagan

    2014-01-01

    No study specifically analyzes trampoline fracture patterns across a large population. The purpose of this study was to determine such patterns. We queried the National Electronic Injury Surveillance System database for trampoline injuries between 2002 and 2011, and the patients were analyzed by age, sex, race, anatomic location of the injury, geographical location of the injury, and disposition from the emergency department (ED). Statistical analyses were performed with SUDAAN 10 software. Estimated expenses were determined using 2010 data. There were an estimated 1,002,735 ED visits for trampoline-related injuries; 288,876 (29.0%) sustained fractures. The average age for those with fractures was 9.5 years; 92.7% were aged 16 years or younger; 51.7% were male, 95.1% occurred at home, and 9.9% were admitted. The fractures were located in the upper extremity (59.9%), lower extremity (35.7%), and axial skeleton (spine, skull/face, rib/sternum) (4.4%-spine 1.0%, skull/face 2.9%, rib/sternum 0.5%). Those in the axial skeleton were older (16.5 y) than the upper extremity (8.7 y) or lower extremity (10.0 y) (P<0.0001) and more frequently male (67.9%). Lower extremity fractures were more frequently female (54.0%) (P<0.0001). The forearm (37%) and elbow (19%) were most common in the upper extremity; elbow fractures were most frequently admitted (20.0%). The tibia/fibula (39.5%) and ankle (31.5%) were most common in the lower extremity; femur fractures were most frequently admitted (57.9%). Cervical (36.4%) and lumbar (24.7%) were most common locations in the spine; cervical fractures were the most frequently admitted (75.6%). The total ED expense for all trampoline injuries over this 10-year period was $1.002 billion and $408 million for fractures. Trampoline fractures most frequently involve the upper extremity followed by the lower extremity, >90% occur in children. The financial burden to society is large. Further efforts for prevention are needed.

  9. Reverse engineering--rapid prototyping of the skull in forensic trauma analysis.

    PubMed

    Kettner, Mattias; Schmidt, Peter; Potente, Stefan; Ramsthaler, Frank; Schrodt, Michael

    2011-07-01

    Rapid prototyping (RP) comprises a variety of automated manufacturing techniques such as selective laser sintering (SLS), stereolithography, and three-dimensional printing (3DP), which use virtual 3D data sets to fabricate solid forms in a layer-by-layer technique. Despite a growing demand for (virtual) reconstruction models in daily forensic casework, maceration of the skull is frequently assigned to ensure haptic evidence presentation in the courtroom. Owing to the progress in the field of forensic radiology, 3D data sets of relevant cases are usually available to the forensic expert. Here, we present a first application of RP in forensic medicine using computed tomography scans for the fabrication of an SLS skull model in a case of fatal hammer impacts to the head. The report is intended to show that this method fully respects the dignity of the deceased and is consistent with medical ethics but nevertheless provides an excellent 3D impression of anatomical structures and injuries. © 2011 American Academy of Forensic Sciences.

  10. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...

  11. Growth of the skull in young children in Baotou, China.

    PubMed

    Hou, Hai-dong; Liu, Ming; Gong, Ke-rui; Shao, Guo; Zhang, Chun-Yang

    2014-09-01

    There are some controversies about the optimal time to perform skull repair in very young Chinese children because of the rapid skull growth in this stage of life. The purpose of this current study is to describe the characteristics of skull growth and to discuss the optimal time for skull repair in young Chinese children with skull defects. A total of 112 children born in the First Affiliated Hospital of Baotou Medical College were measured for six consecutive years starting in 2006. Cranial length (CL, linear distance between the eyebrows to the pillow tuberosity), cranial width (CW, double-sided linear distance of connection of external auditory canal), ear over the top line (EOTL), the eyebrows-the posterior tuberosity line (EPTL), and head circumference (HC) were measured to describe the skull growth. The most rapid period of skull growth occurs during the first year of life. The second and third most rapid periods are the second and third years, respectively. Then, the skull growth slowed and the values of the skull growth index of 6-year-old children were close to those of adults. Children 0-1 years old should not receive skull repair due to their rapid skull growth. The indexes of children 3 years old or older were close to those of the adult; therefore, 3 years old or older may receive skull repair.

  12. The Development of Skull Prosthesis Through Active Contour Model.

    PubMed

    Chen, Yi-Wen; Shih, Cheng-Ting; Cheng, Chen-Yang; Lin, Yu-Cheng

    2017-09-09

    Skull defects result in brain infection and inadequate brain protection and pose a general danger to patient health. To avoid these situations and prevent re-injury, a prosthesis must be constructed and grafted onto the deficient region. With the development of rapid customization through additive manufacturing and 3D printing technology, skull prostheses can be fabricated accurately and efficiently prior to cranioplasty. However, an unfitted skull prosthesis made with a metal implant can cause repeated infection, potentially necessitating secondary surgery. This paper presents a method of creating suitably geometric graphics of skull defects to be applied in skull repair through active contour models. These models can be adjusted in each computed tomography slice according to the graphic features, and the curves representing the skull defect can be modeled. The generated graphics can adequately mimic the natural curvature of the complete skull. This method will enable clinical surgeons to rapidly implant customized prostheses, which is of particular importance in emergency surgery. The findings of this research can help surgeons provide patients with skull defects with treatment of the highest quality.

  13. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  14. Endoscopic Approach to Remove Intra-extracranial Tumors in Various Skull Base Regions: 10-year Experience of a Single Center

    PubMed Central

    Zhang, Qiu-Hang; Wang, Zhen-Lin; Guo, Hong-Chuan; Kong, Feng; Yan, Bo; Li, Ming-Chu; Chen, Ge; Liang, Jian-Tao; Bao, Yu-Hai; Ling, Feng

    2017-01-01

    Background: Some problems have been found in the usually adopted combined approach for the removal of intra-extracranial tumors in skull base. Herein, we described a pure endoscopic transnasal or transoral approach (ETA) for the removal of intra-extracranial tumors in various skull base regions. Methods: Retrospectively, clinical data, major surgical complications, pre- and postoperative images, and follow-up information of a series of 85 patients with intra-extracranial tumors in various skull base regions who were treated by surgery via ETA in our skull base center during the past 10 years were reviewed and analyzed. Results: Gross total tumor removal was achieved in 80/85 cases (94.1%) in this study. All 37 cases with tumors in anterior skull base and all 14 cases with tumors in jugular foramen received total tumor removal. Thirteen and three cases with tumors in clivus received total and subtotal tumor removal, respectively. Total and subtotal tumor removal was performed for 16 cases and 2 cases in lateral skull base, respectively. The complications in this study included: cerebrospinal fluid leakage (n = 3), meningitis (n = 3), and new cranial nerve deficits (n = 3; recovered in 3 months after surgery). In the follow-up period of 40–151 months (median: 77 months), seven patients (8.8%) out of the 80 cases of total tumor removal experienced recurrence. Conclusions: Complete resection of intra-extracranial growing tumors in various skull base regions can be achieved via the pure ETA in one stage in selected cases. Surgical procedure for radical removal of tumors is feasible and safe. PMID:29237926

  15. A history of depressed skull fractures from ancient times to 1800.

    PubMed

    Ganz, Jeremy C; Arndt, Jürgen

    2014-01-01

    The story of managing depressed fractures illustrates how knowledge of proven value does not always get handed down. Celsus was the first to describe sensible management for depressed fractures. As he wrote in Latin this was forgotten. Galen's Greek writings survived forming the basis of management until the sixteenth century. In 1517, Hans von Gersdorff published a formidable illustrated surgical text. One illustration depicts an instrument for elevating depressed bone fragments. It looked dramatic but could not work and its defects were finally defined in the eighteenth century. Ambroise Paré used a bone punch just as we do today, but no later surgeon mentions this, though the instrument was well known. Elements of chance, fashion, emotionally powerful illustrations, and perhaps stubbornness had a profound effect on management delaying rational treatment for centuries.

  16. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with a...

  17. Looking Inside a Tyrannosaur’s Skull

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven; Nelson, Ron; Williamson, Tom

    2017-08-15

    Researchers using Los Alamos’ unique neutron-imaging and high-energy X-ray capabilities have exposed the inner structures of the fossil skull of a 74-million-year-old tyrannosauroid dinosaur nicknamed the Bisti Beast in the highest-resolution scan of tyrannosaur skull ever done.

  18. Implant-retained skull prosthesis to cover a large defect of the hairy skull resulting from treatment of a basal cell carcinoma: A clinical report.

    PubMed

    Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita

    2017-05-01

    Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted of resecting the tumor and external part of the skull bone. To protect the brain and to cover the defect of the hairy skull, an acrylic resin skull prosthesis with hair was designed to mask the defect. The skull prosthesis was retained on 8 extraoral implants placed at the margins of the defect in the skull bone. The patient was satisfied with the treatment outcome. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Management Strategies for Skull Base Inverted Papilloma.

    PubMed

    Grayson, Jessica W; Khichi, Sunny S; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A

    2016-07-01

    Inverted papilloma attached to the ventral skull base presents a surgical dilemma because surgical removal of the bony pedicle is critical to decrease risk of recurrence. The objective of this study is to evaluate the effectiveness of endoscopic management of skull base inverted papilloma. Case series with planned data collection. Tertiary medical center. Patients with skull base inverted papilloma. Over 7 years, 49 patients with skull base inverted papilloma were referred for surgical resection. Demographics, operative technique, pathology, complications, recurrence, and postoperative follow-up were evaluated. Average age at presentation was 57 years. Twenty-six patients (53%) had prior attempts at resection elsewhere, and 5 had squamous cell carcinoma (SCCA) arising in an inverted papilloma. Six patients (12%) suffered major complications, including skull base osteomyelitis in 2 previously irradiated patients, cerebrospinal fluid leak with pneumocephalus (n = 1), meningitis (n = 1), invasive fungal sinusitis (n = 1), and cerebrovascular accident (n = 1). The mean disease-free interval was 29 months (range, 10-78 months). One patient with SCCA recurred in the nasopharynx (overall 2% recurrence rate). He is disease-free 3 years following endoscopic nasopharyngectomy. Three patients with SCCA had endoscopic resection of the skull base, while 1 subject with inverted papilloma pedicled on the superior orbital roof had an osteoplastic flap in conjunction with a Draf III procedure. All others received endoscopic resection. Removal of the bony pedicle resulted in excellent local control of skull base inverted papillomas. Our experience demonstrates that disease eradication with limited morbidity is attainable with this approach. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  20. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  1. Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture

    PubMed Central

    Langsetmo, Lisa; Nguyen, Tuan V.; Nguyen, Nguyen D.; Kovacs, Christopher S.; Prior, Jerilynn C.; Center, Jacqueline R.; Morin, Suzanne; Josse, Robert G.; Adachi, Jonathan D.; Hanley, David A.; Eisman, John A.

    2011-01-01

    Background A set of nomograms based on the Dubbo Osteoporosis Epidemiology Study predicts the five- and ten-year absolute risk of fracture using age, bone mineral density and history of falls and low-trauma fracture. We assessed the discrimination and calibration of these nomograms among participants in the Canadian Multicentre Osteoporosis Study. Methods We included participants aged 55–95 years for whom bone mineral density measurement data and at least one year of follow-up data were available. Self-reported incident fractures were identified by yearly postal questionnaire or interview (years 3, 5 and 10). We included low-trauma fractures before year 10, except those of the skull, face, hands, ankles and feet. We used a Cox proportional hazards model. Results Among 4152 women, there were 583 fractures, with a mean follow-up time of 8.6 years. Among 1606 men, there were 116 fractures, with a mean follow-up time of 8.3 years. Increasing age, lower bone mineral density, prior fracture and prior falls were associated with increased risk of fracture. For low-trauma fractures, the concordance between predicted risk and fracture events (Harrell C) was 0.69 among women and 0.70 among men. For hip fractures, the concordance was 0.80 among women and 0.85 among men. The observed fracture risk was similar to the predicted risk in all quintiles of risk except the highest quintile of women, where it was lower. The net reclassification index (19.2%, 95% confidence interval [CI] 6.3% to 32.2%), favours the Dubbo nomogram over the current Canadian guidelines for men. Interpretation The published nomograms provide good fracture-risk discrimination in a representative sample of the Canadian population. PMID:21173069

  2. Skulls and Human Evolution: The Use of Casts of Anthropoid Skulls in Teaching Concepts of Human Evolution.

    ERIC Educational Resources Information Center

    Gipps, John

    1991-01-01

    Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)

  3. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  4. Traumatic epistaxis: Skull base defects, intracranial complications and neurosurgical considerations.

    PubMed

    Veeravagu, Anand; Joseph, Richard; Jiang, Bowen; Lober, Robert M; Ludwig, Cassie; Torres, Roland; Singh, Harminder

    2013-01-01

    Endonasal procedures may be necessary during management of craniofacial trauma. When a skull base fracture is present, these procedures carry a high risk of violating the cranial vault and causing brain injury or central nervous system infection. A 52-year-old bicyclist was hit by an automobile at high speed. He sustained extensive maxillofacial fractures, including frontal and sphenoid sinus fractures (Fig. 1). He presented to the emergency room with brisk nasopharyngeal hemorrhage, and was intubated for airway protection. He underwent emergent stabilization of his nasal epistaxis by placement of a Foley catheter in his left nare and tamponade with the Foley balloon. A six-vessel angiogram showed no evidence of arterial dissection or laceration. Imaging revealed inadvertent insertion of the Foley catheter and deployment of the balloon in the frontal lobe (Fig. 2). The balloon was subsequently deflated and the Foley catheter removed. The patient underwent bifrontal craniotomy for dural repair of CSF leak. He also had placement of a ventriculoperitoneal shunt for development of post-traumatic hydrocephalus. Although the hospital course was a prolonged one, he did make a good neurological recovery. The authors review the literature involving violation of the intracranial compartment with medical devices in the settings of craniofacial trauma. Caution should be exercised while performing any endonasal procedure in the settings of trauma where disruption of the anterior cranial base is possible. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  5. A large, switchable optical clearing skull window for cerebrovascular imaging

    PubMed Central

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  6. Forecasting the burden of future postmenopausal hip fractures.

    PubMed

    Omsland, T K; Magnus, J H

    2014-10-01

    A growing elderly population is expected worldwide, and the rate of hip fractures is decisive for the future fracture burden. Significant declines in hip fracture rates in Norway, the USA, France, Germany, and the UK are required to counteract the impact of the ageing effects. This study aims to evaluate the consequences of the expected growth of the elderly population worldwide on the hip fracture burden using Norway as an example. Furthermore, we wanted to estimate the decline in hip fracture rates required to counteract the anticipated increase in the burden of hip fracture for Norway, the USA, France, Germany, and the UK. The burden of future postmenopausal hip fractures in Norway were estimated given (1) constant age-specific rates, (2) continued decline, and (3) different cohort scenarios. Based on population projection estimates and population age-specific hip fracture rates in women 65 years and older, we calculated the required declines in hip fracture rates needed to counteract the growing elderly populations in Norway, the USA, France, Germany, and the UK. The level of age-specific hip fracture rates had a huge impact on the future hip fracture burden in Norway. Even if the hip fracture rates decline at the same speed, a 22 % increase in the burden of hip fractures can be expected by 2040. An annual decline in hip fracture rates of 1.1-2.2 % until 2040 is required to counteract the effects of the growing elderly population on the future burden of hip fractures in Norway, the USA, France, Germany, and the UK. Hip fracture rates have a great impact on the burden of hip fractures. The rates will have to decline significantly to counteract the impact of a growing elderly population. A change in preventive strategies and further studies are warranted to identify the complex causes associated to hip fractures.

  7. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  8. The Genetics of Canine Skull Shape Variation

    PubMed Central

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2013-01-01

    A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. PMID:23396475

  9. Craniomaxillofacial fractures during recreational baseball and softball.

    PubMed

    Bak, Matthew J; Doerr, Timothy D

    2004-10-01

    Baseball and softball are leading causes of sports-related facial trauma in the United States. We review our institutional experience (Strong Memorial Hospital, Rochester, NY) with these injuries and discuss measures to reduce their incidence. We review our institutions experience with facial fractures sustained during the course of a softball or baseball game over a 12-year period. A total of 38 patients were identified and medical records analyzed for patient demographics, type of impact, and fracture location. The male-to-female ratio was 3.2:1; mean age was 24.2 years, with 17 (45%) of the injuries occurring in the pediatric population. The majority of the injuries were caused by direct impact with the ball (68%), while player-player collisions (18%) and impact from a swung bat (13%) were responsible for the remaining injuries. There were a total of 39 fractures; 18 fractures (46%) involved the midface (level 2), skull (level 1) fractures accounted for 12 (31%), while 9 (23%) were mandibular (level 3) fractures. With 68% of the injuries resulting from a ball impact, we endorse the recommendations of the Consumer Product Safety Commission for the use of low-impact National Operating Committee on Standards for Athletic Equipment-approved baseballs and softballs for youth and recreational leagues.

  10. Surgical management of giant skull osteomas

    PubMed Central

    Yudoyono, Farid; Sidabutar, Roland; Dahlan, Rully Hanafi; Gill, Arwinder Singh; Ompusunggu, Sevline Estethia; Arifin, Muhammad Zafrullah

    2017-01-01

    Objective: Surgical management of giant skull osteomas Osteomas are benign, generally slow growing, bone forming tumors limited to the craniofacial and jaw bones. Materials and Methods: A retrospective review of all cases of osteoma diagnosed from 2009 to 2013 treated in our hospital. The data collected included age at diagnosis, gender, lesion location, size, presenting and duration of symptoms, treatment, complication and outcome. Results: During our study period there were 15 cases that were treated surgically. Their mean age was 42 years (range: 15–65 years) and all of our patients were female. The average duration of symptoms was 3 years and size varying from 4 cm to 12 cm. Eight patients complained of headache, whereas 6 patients complained about esthetics, and 1 patient presented with proptosis. The tumor was excised by cutting the base of the tumor and then residual tumor was grinded using a round head cutting bar. Osteoma was removed with esthetically acceptable appearance. Conclusion: There were no major complications during operative and postoperative period. Although osteomas are usually slow growing but surgery is usually performed due to esthetic reasons. It is important to plan an appropriate surgical approach that minimizes any damage to the adjacent structures. PMID:28761516

  11. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  12. Autogenous Bone Reconstruction of Large Secondary Skull Defects.

    PubMed

    Fearon, Jeffrey A; Griner, Devan; Ditthakasem, Kanlaya; Herbert, Morley

    2017-02-01

    The authors sought to ascertain the upper limits of secondary skull defect size amenable to autogenous reconstructions and to examine outcomes of a surgical series. Published data for autogenous and alloplastic skull reconstructions were also examined to explore associations that might guide treatment. A retrospective review of autogenously reconstructed secondary skull defects was undertaken. A structured literature review was also performed to assess potential differences in reported outcomes between autogenous bone and synthetic alloplastic skull reconstructions. Weighted risks were calculated for statistical testing. Ninety-six patients underwent autogenous skull reconstruction for an average defect size of 93 cm (range, 4 to 506 cm) at a mean age of 12.9 years. The mean operative time was 3.4 hours, 2 percent required allogeneic blood transfusions, and the average length of stay was less than 3 days. The mean length of follow-up was 28 months. There were no postoperative infections requiring surgery, but one patient underwent secondary grafting for partial bone resorption. An analysis of 34 studies revealed that complications, infections, and reoperations were more commonly reported with alloplastic than with autogenous reconstructions (relative risk, 1.57, 4.8, and 1.48, respectively). Autogenous reconstructions are feasible, with minimal associated morbidity, for patients with skull defect sizes as large as 500 cm. A structured literature review suggests that autogenous bone reconstructions are associated with lower reported infection, complication, and reoperation rates compared with synthetic alloplasts. Based on these findings, surgeons might consider using autogenous reconstructions even for larger skull defects. Therapeutic, IV.

  13. [Skull cult. Trophy heads and tzantzas in pre-Columbian America].

    PubMed

    Carod-Artal, F J

    2012-07-16

    The skull cult is a cultural tradition that dates back to at least Neolithic times. Its main manifestations are trophy heads, skull masks, moulded skulls and shrunken heads. The article reviews the skull cult in both pre-Columbian America and the ethnographic present from a neuro-anthropological perspective. The tradition of shaping and painting the skulls of ancestors goes back to the Indo-European Neolithic period (Natufian culture and Gobekli Tepe). In Mesoamerica, post-mortem decapitation was the first step of a mortuary treatment that resulted in a trophy head, a skull for the tzompantli or a skull mask. The lithic technology utilised by the Mesoamerican cultures meant that disarticulation had to be performed in several stages. Tzompantli is a term that refers both to a construction where the heads of victims were kept and to the actual skulls themselves. Skull masks are skulls that have been artificially modified in order to separate and decorate the facial part; they have been found in the Templo Mayor of Tenochtitlan. The existence of trophy heads is well documented by means of iconographic representations on ceramic ware and textiles belonging to the Paraca, Nazca and Huari cultures of Peru. The Mundurucu Indians of Brazil and the Shuar or Jivaroan peoples of Amazonian Ecuador have maintained this custom down to the present day. The Shuar also shrink heads (tzantzas) in a ritual process. Spanish chroniclers such as Fray Toribio de Benavente 'Motolinia' and Gaspar de Carvajal spoke of these practices. In pre-Columbian America, the tradition of decapitating warriors in order to obtain trophy heads was a wide-spread and highly developed practice.

  14. Orbital shape in intentional skull deformations and adult sagittal craniosynostoses.

    PubMed

    Sandy, Ronak; Hennocq, Quentin; Nysjö, Johan; Giran, Guillaume; Friess, Martin; Khonsari, Roman Hossein

    2018-06-21

    Intentional cranial deformations are the result of external mechanical forces exerted on the skull vault that modify the morphology of various craniofacial structures such as the skull base, the orbits and the zygoma. In this controlled study, we investigated the 3D shape of the orbital inner mould and the orbital volume in various types of intentional deformations and in adult non-operated scaphocephaly - the most common type of craniosynostosis - using dedicated morphometric methods. CT scans were performed on 32 adult skulls with intentional deformations, 21 adult skull with scaphocephaly and 17 non-deformed adult skulls from the collections of the Muséum national d'Histoire naturelle in Paris, France. The intentional deformations group included six skulls with Toulouse deformations, eight skulls with circumferential deformations and 18 skulls with antero-posterior deformations. Mean shape models were generated based on a semi-automatic segmentation technique. Orbits were then aligned and compared qualitatively and quantitatively using colour-coded distance maps and by computing the mean absolute distance, the Hausdorff distance, and the Dice similarity coefficient. Orbital symmetry was assessed after mirroring, superimposition and Dice similarity coefficient computation. We showed that orbital shapes were significantly and symmetrically modified in intentional deformations and scaphocephaly compared with non-deformed control skulls. Antero-posterior and circumferential deformations demonstrated a similar and severe orbital deformation pattern resulting in significant smaller orbital volumes. Scaphocephaly and Toulouse deformations had similar deformation patterns but had no effect on orbital volumes. This study showed that intentional deformations and scaphocephaly significantly interact with orbital growth. Our approach was nevertheless not sufficient to identify specific modifications caused by the different types of skull deformations or by scaphocephaly.

  15. Paleopathological findings in radiographs of ancient and modern Greek skulls.

    PubMed

    Papagrigorakis, Manolis J; Karamesinis, Kostas G; Daliouris, Kostas P; Kousoulis, Antonis A; Synodinos, Philippos N; Hatziantoniou, Michail D

    2012-12-01

    The skull, when portrayed radiologically, can be a useful tool in detecting signs of systemic diseases and results of pathological growth mechanisms. The aim of this study was therefore to examine, compare, and classify findings in cranial configuration of pathological origin, in modern and ancient skulls. The material consists of 240 modern and 141 ancient dry skulls. Three radiographs for each skull (lateral, anteroposterior, basilar) provide enough evidence for differential diagnoses. Cases of osteoporosis are among the interesting pathological findings. A prevalence of female modern skulls in those determined as osteoporotic skulls is noted. Special interest is placed on the area of the sella turcica and many variations, regarding the shape and texture, are recognized both in ancient and modern skulls. Malignancies and important causes of cranial destruction are identified in both skull collections. Diploid thickening and osteolytic areas appear commonly among ancient remains. Moreover, from the ancient skull collection, one case possibly recognizable as fibrous dysplasia is noted while another case with an unusual exostosis gives rise to many questions. Interpreted with caution, the results of the present study, which can serve as an approach of paleopathology and paleoradiology, indicate similarity trends in cranial configuration of pathologic origin in modern and ancient people. Radiography and cephalometry were the main diagnostic tools used to gather evidence and are evaluated as a quite appropriate method to examine anthropological material and assess the internal structure of skeletal remains since they are non-destructive techniques.

  16. [Cloverleaf skull and bilateral facial clefts].

    PubMed

    Alvarez-Manassero, Denisse; Manassero-Morales, Gioconda

    2015-01-01

    Cloverleaf skull syndrome, or Kleeblattschädel syndrome, is a rare malformation in which the skull has a cloverleaf appearance. It is caused by the premature closure of several sutures, being evident before birth. To present our experience in a case of cloverleaf skull syndrome, and update the information from the literature. A female infant of 5 months of age, diagnosed at birth with cleft lip and palate and hydrocephaly. A peritoneal ventricle valve was implanted at 30 days of life, and an ocular enucleation was performed due to an infectious process. The patient was followed-up in Genetics, where it confirmed a macrocephaly and craniosynostosis type cloverleaf skull. The 46XX cytogenetic study and echocardiography were normal. The brain CT scan showed multiple anomalies associated with hydrocephaly and non-specific malformations. Cloverleaf skull may be present in isolated form or associated with other congenital abnormalities, leading to various craniosynostosis syndromes, such as Crouzon, Pfeiffer or Carpenter. It may also be a component of the amniotic rupture sequence or to different dysplasias, such as campomelic dysplasia, thanatophoric dysplasia type 2, or the asphyxiating thoracic dystrophy of Jeune. The case presented does not fulfil all the characteristics needed to be included within a specific syndrome, and on not having a family history that suggests a hereditary pattern or chromosome abnormalities, it is concluded that it is a case of a congenital anomaly of sporadic presentation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Skull base tumors: a kaleidoscope of challenge.

    PubMed

    Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna

    2014-08-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.

  18. Skull Base Tumors: A Kaleidoscope of Challenge

    PubMed Central

    Khanna, J.N.; Natrajan, Srivalli; Galinde, Jyotsna

    2014-01-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions. PMID:25083368

  19. The Skull of Phyllomedusa sauvagii (Anura, Hylidae).

    PubMed

    Ruiz-Monachesi, Mario R; Lavilla, Esteban O; Montero, Ricardo

    2016-05-01

    The hylid genus Phyllomedusa comprises charismatic frogs commonly known as monkey, leaf or green frogs, and is the most diverse genus of the subfamily Phyllomedusinae, including about 31 species. Although there is some information about the anatomy of these frogs, little is known about the osteology. Here the adult skull of Phyllomedusa sauvagii, both articulated and disarticulated, is described and the intraspecific variation is reported. Additionally, cartilage associated with the adult skull, such as the nasal capsules, auditory apparatus, and hyobranchial apparatus, are included in the analysis. Further examination of disarticulated bones reveals their remarkable complexity, specifically in the sphenethmoid and of the oocipital region. The description of disarticulated bones is useful for the identification of fossil remains as well as providing morphological characteristics that are phylogenetically informative. When comparing the skull morphology with the available information of other species of the genus, Phyllomesusa sauvagii skull resembles more that of P. vaillantii and P. venusta than P. atelopoides. © 2016 Wiley Periodicals, Inc.

  20. Molding of top skull in the treatment of Apert syndrome.

    PubMed

    Shen, Weimin; Cui, Jie; Chen, Jianbin; Weiping, Shen

    2015-03-01

    Patients with Apert syndrome have bilateral coronal craniosynostosis, along with a distinguishing feature of their many deformity, called tower skull. Surgical correction of this deformity is the mainstay of treatment. We describe 3 patients molded top skull after front bone osteotomy orbital bar advancement. This successfully restricted growth of their top skull while allowing growth in other dimensions. Utilization of top-skull molding after cranial surgery shows promise of satisfaction in this setting.

  1. Skull Base Erosion Resulting From Primary Tumors of the Temporomandibular Joint and Skull Base Region: Our Classification and Reconstruction Experience.

    PubMed

    Chen, Min-Jie; Yang, Chi; Zheng, Ji-Si; Bai, Guo; Han, Zi-Xiang; Wang, Yi-Wen

    2018-06-01

    We sought to introduce our classification and reconstruction protocol for skull base erosions in the temporomandibular joint and skull base region. Patients with neoplasms in the temporomandibular joint and skull base region treated from January 2006 to March 2017 were reviewed. Skull base erosion was classified into 3 types according to the size of the defect. We included 33 patients, of whom 5 (15.2%) had type I defects (including 3 in whom free fat grafts were placed and 2 in whom deep temporal fascial fat flaps were placed). There were 8 patients (24.2%) with type II defects, all of whom received deep temporal fascial fat flaps. A total of 20 patients (60.6%) had type III defects, including 17 in whom autogenous bone grafts were placed, 1 in whom titanium mesh was placed, and 2 who received total alloplastic joints. The mean follow-up period was 50 months. All of the patients exhibited stable occlusion and good facial symmetry. No recurrence was noted. Our classification and reconstruction principles allowed reliable morpho-functional skull base reconstruction. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a...

  3. Patterns of integration in the canine skull: an inside view into the relationship of the skull modules of domestic dogs and wolves.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-12-01

    The skull shape variation in domestic dogs exceeds that of grey wolves by far. The artificial selection of dogs has even led to breeds with mismatching upper and lower jaws and maloccluded teeth. For that reason, it has been advocated that their skulls (including the teeth) can be divided into more or less independent modules on the basis of genetics, development or function. In this study, we investigated whether the large diversity of dog skulls and the frequent occurrence of orofacial disproportions can be explained by a lower integration strength between the modules of the skull and by deviations in their covariation pattern when compared to wolves. For that purpose, we employed geometric morphometric methods on the basis of 99 3D-landmarks representing the cranium (subdivided into rostrum and braincase), the mandible (subdivided into ramus and corpus), and the upper and lower tooth rows. These were taken from CT images of 196 dog and wolf skulls. First, we calculated the shape disparity of the mandible and the cranium in dogs and wolves. Then we tested whether the integration strength (measured by RV coefficient) and the covariation pattern (as analysed by partial least squares analysis) of the modules subordinate to the cranium and the mandible can explain differing disparity results. We show, contrary to our expectations, that the higher skull shape diversity in dogs is not explained by less integrated skull modules. Also, the pattern of their covariation in the dog skull can be traced back to similar patterns in the wolf. This shows that existing differences between wolves and dogs are at the utmost a matter of degree and not absolute. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    PubMed

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  6. Pediatric temporal bone fractures: A case series.

    PubMed

    Waissbluth, S; Ywakim, R; Al Qassabi, B; Torabi, B; Carpineta, L; Manoukian, J; Nguyen, L H P

    2016-05-01

    Temporal bone fractures are relatively common findings in patients with head trauma. The aim of this study was to evaluate the characteristics of temporal bone fractures in the pediatric population. Retrospective case series. Tertiary care pediatric academic medical center. The medical records of patients aged 18 years or less diagnosed with a temporal bone fracture at the Montreal Children's Hospital from January 2000 to August 2014 were reviewed. Patient demographics, clinical presentation, mechanism of injury and complications were analyzed. Imaging studies and audiograms were also evaluated. Out of 323 patients presenting to the emergency department with a skull fracture, 61 presented with a temporal bone fracture. Of these, 5 presented with bilateral fractures. 47 patients had associated fractures, and 3 patients deceased. We observed a male to female ratio of 2.8:1, and the average age was 9.5 years. Motor vehicle accidents were the primary mechanism of injury (53%), followed by falls (21%) and bicycle or skateboard accidents (10%). The most common presenting signs included hemotympanum, decreased or loss of consciousness, facial swelling and nausea and vomiting. 8 patients had otic involvement on computed tomography scans, and 30 patients had documented hearing loss near the time of accident with a majority being conductive hearing loss. 17 patients underwent surgical management of intracranial pressure. In children, fractures of the temporal bone were most often caused by motor vehicle accidents and falls. It is common for these patients to have associated fractures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].

    PubMed

    Seemann, Sophie

    2016-01-01

    Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.

  8. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    PubMed

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  9. Management of osteomyelitis of the skull base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benecke, J.E. Jr.

    1989-12-01

    Osteomyelitis of the skull base is the most severe form of malignant otitis externa. As a result of having treated 13 patients with skull base osteomyelitis over a 4-year period, we have developed a method of staging and monitoring this malady using gallium and technetium scanning techniques. Stage I is localized to soft tissues, stage II is limited osteomyelitis, and stage III represents extensive skull base osteomyelitis. All stages are treated with appropriate antipseudomonal antibiotics. The duration of therapy depends upon the clearing of inflammation as shown on the gallium scan. Each case must be looked at independently and notmore » subjected to an arbitrary treatment protocol.« less

  10. Condyle and mandibular bone change after unilateral condylar neck fracture in growing rats.

    PubMed

    Hu, Y; Yang, H-f; Li, S; Chen, J-z; Luo, Y-w; Yang, C

    2012-08-01

    Unilateral fracture of the condylar neck in immature subjects might lead to mandible asymmetry and condyle remodelling. A rat model was used to investigate mandibular deviation and condylar remodelling associated with condyle fracture. 72 4-week-old male rats were randomly divided into three groups: an experimental group (unilateral transverse condylar fracture induced surgically), a sham operation group (surgical exposure but no fracture), and a non-operative control group (no operation). The rats were killed at intervals up to 9weeks after surgery, and outcomes were assessed using various measures of mandible deviation, histological and X-ray observation, and immunohistochemical measures of expression levels of connective tissue growth factor (CTGF) and type II collagen (Col II). The fracture led to the degeneration of mandibular size, associated with atrophy of fractured condylar process. Progressive remodelling of cartilage and increasing expression levels of CTGF and Col II were found. The authors conclude that condylar fracture can lead to asymmetries in mandible and condyle remodelling and expression of CTGF and Col II in condylar cartilage on both the ipsilateral and the contralateral sides. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  12. [The reduction of the radiation dosage by means of storage phosphor-film radiography compared to a conventional film-screen system with a grid cassette on a skull phantom].

    PubMed

    Heyne, J P; Merbold, H; Sehner, J; Neumann, R; Freesmeyer, M; Jonetz-Mentzel, L; Kaiser, W A

    1999-07-01

    How much can the radiation dose be reduced for skull radiography by using digital luminescence radiography (DLR) compared to a conventional screen film system with a grid cassette? A skull phantom (3M) was x-rayed in anterior-posterior orientation using both a conventional screen film system with grid cassette and DLR (ADC-70, Agfa). The tube current time product (mAs) was diminished gradually while keeping the voltage constant. The surface entrance dose was measured by a sensor of Dosimax (Wellhöfer). Five investigators evaluated the images by characteristic and critical features, spatial resolution and contrast. The surface entrance dose at 73 kV/22 mAs was 0.432 mGy in conventional screen film system and 0.435 mGy in DLR. The images could be evaluated very well down to an average dose of 71% (0.308 mGy; SD 0.050); sufficient images were obtained down to an average dose of 31% (0.136 mGy; SD 0.065). The resolution of the line pairs were reduced down to 2 levels depending on the investigator. Contrast was assessed as being very good to sufficient. The acceptance of the postprocessed images (MUSICA-software) was individually different and resulted in an improvement of the assessment of bone structures and contrast in higher dose ranges only. For the sufficient assessment of a possible fracture/of paranasal sinuses/of measurement of the skull the dose can be reduced to at least 56% (phi 31%; SD 14.9%)/40% (phi 27%; SD 9.3%)/18% (phi 14%; SD 4.4%). Digital radiography allows question-referred exposure parameters with clearly reduced dose, so e.g. for fracture exclusion 73 kV/12.5 mAs and to skull measurement 73 kV/4 mAs.

  13. Chondroblastoma of the skull.

    PubMed Central

    Feely, M; Keohane, C

    1984-01-01

    A case of chondroblastoma of the temporal bone is reported, and the pathology of the lesion outlined. The rarity of these neoplasms in the skull makes accurate prognosis impossible. Images PMID:6512556

  14. New Insights into the Skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea)

    PubMed Central

    Witton, Mark P.

    2012-01-01

    The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds. PMID:22470442

  15. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  16. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  17. Study of Mastoid Canals and Grooves in North Karnataka Human Skulls

    PubMed Central

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-01-01

    Introduction: This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. Material and Methods: The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. Results: The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. Conclusion: The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding. PMID:24086832

  18. Study of mastoid canals and grooves in north karnataka human skulls.

    PubMed

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-08-01

    This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding.

  19. [Three-dimensional endoscopic endonasal study of skull base anatomy].

    PubMed

    Abarca-Olivas, Javier; Monjas-Cánovas, Irene; López-Álvarez, Beatriz; Lloret-García, Jaime; Sanchez-del Campo, Jose; Gras-Albert, Juan Ramon; Moreno-López, Pedro

    2014-01-01

    Training in dissection of the paranasal sinuses and the skull base is essential for anatomical understanding and correct surgical techniques. Three-dimensional (3D) visualisation of endoscopic skull base anatomy increases spatial orientation and allows depth perception. To show endoscopic skull base anatomy based on the 3D technique. We performed endoscopic dissection in cadaveric specimens fixed with formalin and with the Thiel technique, both prepared using intravascular injection of coloured material. Endonasal approaches were performed with conventional 2D endoscopes. Then we applied the 3D anaglyph technique to illustrate the pictures in 3D. The most important anatomical structures and landmarks of the sellar region under endonasal endoscopic vision are illustrated in 3D images. The skull base consists of complex bony and neurovascular structures. Experience with cadaver dissection is essential to understand complex anatomy and develop surgical skills. A 3D view constitutes a useful tool for understanding skull base anatomy. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  20. Open Approaches to the Anterior Skull Base in Children: Review of the Literature.

    PubMed

    Wasserzug, Oshri; DeRowe, Ari; Ringel, Barak; Fishman, Gadi; Fliss, Dan M

    2018-02-01

    Introduction  Skull base lesions in children and adolescents are rare, and comprise only 5.6% of all skull base surgery. Anterior skull base lesions dominate, averaging slightly more than 50% of the cases. Until recently, surgery of the anterior skull base was dominated by open procedures and endoscopic skull base surgery was reserved for benign pathologies. Endoscopic skull base surgery is gradually gaining popularity. In spite of that, open skull base surgery is still considered the "gold standard" for the treatment of anterior skull base lesions, and it is the preferred approach in selected cases. Objective  This article reviews current concepts and open approaches to the anterior skull base in children in the era of endoscopic surgery. Materials and Methods  Comprehensive literature review. Results  Extensive intracranial-intradural invasion, extensive orbital invasion, encasement of the optic nerve or the internal carotid artery, lateral supraorbital dural involvement and involvement of the anterior table of the frontal sinus or lateral portion of the frontal sinus precludes endoscopic surgery, and mandates open skull base surgery. The open approaches which are used most frequently for surgical resection of anterior skull base tumors are the transfacial/transmaxillary, subcranial, and subfrontal approaches. Reconstruction of anterior skull base defects is discussed in a separate article in this supplement. Discussion  Although endoscopic skull base surgery in children is gaining popularity in developed countries, in many cases open surgery is still required. In addition, in developing countries, which accounts for more than 80% of the world's population, limited access to expensive equipment precludes the use of endoscopic surgery. Several open surgical approaches are still employed to resect anterior skull base lesions in the pediatric population. With this large armamentarium of surgical approaches, tailoring the most suitable approach to a

  1. Photogrammetric 3D skull/photo superimposition: A pilot study.

    PubMed

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-04-01

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Traumatic Brain Injury: A Guide for Caregivers of Service Members and Veterans

    DTIC Science & Technology

    2010-01-01

    Fracture - Module 1, pages 2, 15, 22, 26...pages 6, 9, 13-16, 20, 22, 25, 27 Skull Fracture - Companion, page 9; Module 1, pages 14-15, 22, 26 Simple Fracture - Module 1, page 15 Compound... Fracture - Module 1, page 15 Depressed Skull Fracture - Module 1, page 15 Basal Skull Fracture - Module 1, page 15 Sleep Changes - Module 2, pages

  3. Coexistence of Wormian Bones With Metopism, and Vice Versa, in Adult Skulls.

    PubMed

    Cirpan, Sibel; Aksu, Funda; Mas, Nuket; Magden, Abdurrahman Orhan

    2016-03-01

    The aim of the study is to investigate coexistence of Wormian bones with metopism, and vice versa, in adult skulls. A total of 160 dry adult human skulls of unknown sex and ages were randomly selected from the Gross Anatomy Laboratory of Medical School of Dokuz Eylul University. The skulls were examined for presence of metopism, Wormian bones (WB), and coexistence of WBs with metopism and vice versa. Topographic distribution of the WBs was macroscopically evaluated within the skulls including metopism. The photographs were being taken with Canon 400B (55 mm objective). The frequency of metopism and WBs in 160 skulls is 7.50% (12/160) and 59.3% (95/160), respectively, P < 0.05 (). The incidence of coexistence of WBs with metopism was found as 11 of 12 skulls (91.66%), whereas the incidence of coexistence of metopism with WBs was found as 11 of 95 skulls (11.58%), P < 0.05 (). There were totally 23 sutures including WBs in 11 skulls, which had metopism (). The number (%) of metopic skulls for each specific suture including WBs were found as: 11 lamdoid sutures in 7/11 (63.63%) skulls, 4 lambda in 4/11 (36.36%) skulls, 2 asterion in 2/11 (18.18%) skulls, 1 squamous in 1/11 (9.09%) skull, 2 sagittal in 2/11 (18.18%) skulls, and 3 parieromsatoid sutures in 2/11 (18.18%) skulls (). The distribution of these 23 WBs in sutures of 11 skulls including metopisms is determined as follows: 11/23 (47.82%) WBs at lambdoid sutures [5/23 (21.74%) at the right lambdoid sutures and 6/23 (26.08%) at the left lambdoid sutures, and 4 pair of 11 WBs bilaterally located]; 4 (17.39%) WBs at lambda; 2/23 (8.69%) WBs at asterion [1/23 (4.34%) at the right asterion and 1/23 (4.34%) at the left asterion of 2 diverse skulls]; 2/23 (8.69%) WBs at sagittal sutures; 1/23 (4.34%) WBs at the left squamous suture; 3/23 (13.04%) WBs at parietomastoid sutures [2/23 (8.69%) at the right parietomastoid sutures and 1/23 (4.34%) at the left parietomastoid suture and 1 pair of them bilaterally

  4. Gender differences in D-aspartic acid content in skull bone.

    PubMed

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  5. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    PubMed

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier Gmb

  6. Hand in glove: brain and skull in development and dysmorphogenesis

    PubMed Central

    Flaherty, Kevin

    2013-01-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  7. Patient-specific puzzle implant preformed with 3D-printed rapid prototype model for combined orbital floor and medial wall fracture.

    PubMed

    Kim, Young Chul; Min, Kyung Hyun; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk; Jeong, Woo Shik

    2018-04-01

    The management of combined orbital floor and medial wall fractures involving the inferomedial strut is challenging due to absence of stable cornerstone. In this article, we proposed surgical strategies using customized 3D puzzle implant preformed with Rapid Prototype (RP) skull model. Retrospective review was done in 28 patients diagnosed with combined orbital floor and medial wall fracture. Using preoperative CT scans, original and mirror-imaged RP skull models for each patient were prepared and sterilized. In all patients, porous polyethylene-coated titanium mesh was premolded onto RP skull model in two ways; Customized 3D jigsaw puzzle technique was used in 15 patients with comminuted inferomedial strut, whereas individual 3D implant technique was used in each fracture for 13 patients with intact inferomedial strut. Outcomes including enophthalmos, visual acuity, and presence of diplopia were assessed and orbital volume was measured using OsiriX software preoperatively and postoperatively. Satisfactory results were achieved in both groups in terms of clinical improvements. Of 10 patients with preoperative diplopia, 9 improved in 6 months, except one with persistent symptom who underwent extraocular muscle rupture. 18 patients who had moderate to severe enophthalmos preoperatively improved, and one remained with mild degree. Orbital volume ratio, defined as volumetric ratio between affected and control orbit, decreased from 127.6% to 99.79% (p < 0.05) in comminuted group, and that in intact group decreased from 117.03% to 101.3% (p < 0.05). Our surgical strategies using the jigsaw puzzle and individual reconstruction technique provide accurate restoration of combined orbital floor and medial wall fractures. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  10. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    PubMed

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  11. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model,.

    PubMed

    Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C

    2016-09-01

    The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.

  12. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Bert W.; Weinstein, Gregory S.

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach wasmore » investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.« less

  13. Skull Base Tumors

    NASA Astrophysics Data System (ADS)

    Schulz-Ertner, Daniela

    In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.

  14. Pervasive genetic integration directs the evolution of human skull shape.

    PubMed

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Relationships between scalp, brain, and skull motion estimated using magnetic resonance elastography.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V

    2018-05-17

    The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Measurements of postnatal growth of the skull of Pan troglodytes verus using lateral cephalograms.

    PubMed

    Arnold, Wolfgang H; Protsch von Zieten, Reiner; Schmidt, Ekehard

    2003-03-01

    The postnatal growth of the viscerocranium in relation to the neurocranium of Pan troglodytes verus has been investigated using standardized lateral cephalograms. Sex and age were determined on the basis of cranial morphology and the skulls were divided into four age groups: infantile, juvenile, subadult and adult. The cephalograms were traced on transparencies and specific anatomical landmarks were identified for the measurement of lines angles and the area of the neurocranium and viscerocranium. The results showed that the skull of Pan troglodytes verus exhibits klinorhynchy. During postnatal growth it develops towards airorhynchy, but never shows true airorhynchy. In the infantile age group the measured area of the neurocranium is larger than that of the viscerocranium. The measured area of the viscerocranium increases until adulthood and is larger than that of the neurocranium in the subadult and adult group. From the results we conclude that in Pan troglodytes verus growth of the neurocranium seizes early in juvenile individuals, whereas the viscerocranium grows until adulthood. This may reflect an adaptation to the masticatory system.

  17. The ontogenetic origins of skull shape disparity in the Triturus cristatus group.

    PubMed

    Cvijanović, Milena; Ivanović, Ana; Kalezić, Miloš L; Zelditch, Miriam L

    2014-09-01

    Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur. © 2014 Wiley Periodicals, Inc.

  18. A symbolic shaped-based retrieval of skull images.

    PubMed

    Lin, H Jill; Ruiz-Correa, Salvador; Shapiro, Linda G; Cunningham, Michael L; Sze, Raymond W

    2005-01-01

    In this work, we describe a novel symbolic representation of shapes for quantifying skull abnormalities in children with craniosynostosis. We show the efficacy of our work by demonstrating an application of this representation in shape-based retrieval of skull morphologies. This tool will enable correlation with potential pathogenesis and prognosis in order to enhance medical care.

  19. The transnasal approach to the skull base. From sinus surgery to skull base surgery

    PubMed Central

    Wagenmann, Martin; Schipper, Jörg

    2012-01-01

    The indications for endonasal endoscopic approaches to diseases of the skull base and its adjacent structures have expanded considerably during the last decades. This is not only due to improved technical possibilities such as intraoperative navigation, the development of specialized instruments, and the compilation of anatomical studies from the endoscopic perspective but also related to the accumulating experience with endoscopic procedures of the skull base by multidisciplinary centers. Endoscopic endonasal operations permit new approaches to deeply seated lesions and are characterized by a reduced manipulation of neurovascular structures and brain parenchyma while at the same time providing improved visualization. They reduce the trauma caused by the approach, avoid skin incisions and minimize the surgical morbidity. Transnasal endoscopic procedures for the closure of small and large skull base defects have proven to be reliable and more successful than operations with craniotomies. The development of new local and regional vascularized flaps like the Hadad-flap have contributed to this. These reconstructive techniques are furthermore effectively utilized in tumor surgery in this region. This review delineates the classification of expanded endonasal approaches in detail. They provide access to lesions of the anterior, middle and partly also to the posterior cranial fossa. Successful management of these complex procedures requires a close interdisciplinary collaboration as well as continuous education and training of all team members. PMID:22558058

  20. The Hydraulic Mechanism in the Orbital Blowout Fracture Because of a High-Pressure Air Gun Injury.

    PubMed

    Kang, Seok Joo; Chung, Eui Han

    2015-10-01

    There are 2 predominant mechanisms that are used to explain the pathogenesis of orbital blowout fracture; these include hydraulic and buckling mechanisms. Still, however, its pathophysiology remains uncertain. To date, studies in this series have been conducted using dry skulls, cadavers, or animals. But few clinical studies have been conducted to examine whether the hydraulic mechanism is involved in the occurrence of pure orbital blowout fracture. The authors experienced a case of a 52-year-old man who had a pure medial blowout fracture after sustaining an eye injury because of a high-pressure air gun. Our case suggests that surgeons should be aware of the possibility that the hydraulic mechanism might be involved in the blowout fracture in patients presenting with complications, such as limitation of eye movement, diplopia, and enophthalmos.

  1. Demonstration of skull bones mobility using optical methods: practical importance in medicine

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander V.; Okushko, Vladimir R.; Vturin, Sergey A.; Moseychuk, Vladimir V.; Petrov, Aleksey A.; Suetenkov, Dmitry E.

    2014-01-01

    Unprompted skull bones mobility not related to breathing, heart beating and other physiological reactions, using installation of original construction with control of physiological parameters by biofeedback hardware-software complex BOS-lab and BOS-pulse appliance (COMSIB, Novosibirsk, Russia) has been confirmed. Teeth eruption occurs through odontiasis canals, emerging from the funiculus. The main driving force for promoting a tooth into odontiasis canal during eruption is the unprompted skull bones mobility. A simple optical installation was made for the visualization of skull bones mobility during the investigation of the median palatine and incisors sutures. Early detection of failures of unprompted skull bones mobility and its normalization can lead to prevention of impact teeth, malocclusion, extrudocclusion and other anomalies and deformations of teeth, teeth rows, TMJ and skull. The skull bones mobility should be considered during the early preventive treatment and therapy of the consequences of injuries and malfunction of the maxillofacial area.

  2. Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note.

    PubMed

    Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou

    2008-12-01

    Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.

  3. Skull Base Invasion Patterns and Survival Outcomes of Nonmelanoma Skin Cancers

    PubMed Central

    Dundar, Yusuf; Cannon, Richard B.; Monroe, Marcus M.; Buchmann, Luke Oliver; Hunt, Jason Patrick

    2016-01-01

    Objective Report routes of skull base invasion for head and neck nonmelanoma skin cancers (NMSCs) and their survival outcomes. Design Retrospective. Participants Ninety patients with NMSC with skull base invasion between 2004 and 2014. Major Outcome Measures Demographic, tumor characteristics, and treatments associated with different types of skull base invasion and disease-specific survival (DSS) and overall survival (OS). Results Perineural invasion (PNI) to the skull base occurred in 69% of patients, whereas 38% had direct skull base invasion. Age, histology, orbital invasion, active immunosuppression, cranial nerve (CN) involved, and type of skull base invasion were significantly associated with DSS and OS (p < 0.05). Patients with basal cell carcinoma (BCC) had significantly improved DSS and OS compared with other histologies (p < 0.05). Patients with CN V PNI had significantly improved DSS and OS compared with CN VII PNI (p < 0.05). Patients with zone II PNI had significantly improved DSS and OS compared with those with direct invasion or zone III PNI (p < 0.05). Nonsurgical therapy was rarely used and is associated with a reduction in DSS and OS (p < 0.05). Conclusion Patterns and survival outcomes for NMSC skull base invasion are reported. Zone II PNI, BCC, and CN V PNI are associated with improved survival outcomes. PMID:28321381

  4. [Radiological anatomical examinations in skulls from anthropological collections (author's transl)].

    PubMed

    Wicke, L

    1976-01-01

    A total of 114 skulls dating from the Neolithic Age, the Bronze Age and the Iron Age, of Incas and Red Indians, of Asians from North and South China, as well as Negro skulls found in Turkey were radiologically analysed and compared with control skulls of recent origin. The 3 standard X-ray views were taken (postero-anterior, axial and lateral) and appropriate linear and angle measurements were carried out. The resultant 4120 values were compared by variance analysis and the differences between the groups are presented. The differences in linear values may be attributable merely to racial variation; the constancy of the obtained angle measurements is striking. The results were also compared by means of linear regression with measured volume values of the brain skull; it was thereby possible to develop a new formula by means of which the volume of the brain skull can be calculated from the parameter BPH (introduced by the author) and from the distance B with the help of a constant factor. The importance of Radiology in Anthropology is pointed out.

  5. A novel ciliopathic skull defect arising from excess neural crest.

    PubMed

    Tabler, Jacqueline M; Rice, Christopher P; Liu, Karen J; Wallingford, John B

    2016-09-01

    The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pedicled Extranasal Flaps in Skull Base Reconstruction

    PubMed Central

    Kim, Grace G.; Hang, Anna X.; Mitchell, Candace; Zanation, Adam M.

    2013-01-01

    Cerebrospinal fluid (CSF) leaks most commonly arise during or after skull base surgery, although they occasionally present spontaneously. Recent advances in the repair of CSF leaks have enabled endoscopic endonasal surgery to become the preferred option for management of skull base pathology. Small defects (<1cm) can be repaired by multilayered free grafts. For large defects (>3cm), pedicled vascular flaps are the repair method of choice, resulting in much lower rates of postoperative CSF leaks. The pedicled nasoseptal flap (NSF) constitutes the primary reconstructive option for the vast majority of skull base defects. It has a large area of potential coverage and high rates of success. However, preoperative planning is required to avoid sacrificing the NSF during resection. In cases where the NSF is unavailable, often due to tumor involvement of the septum or previous resection removing or compromising the flap, other flaps may be considered. These flaps include intranasal options—inferior turbinate (IT) or middle turbinate (MT) flaps—as well as regional pedicled flaps: pericranial flap (PCF), temporoparietal fascial flap (TPFF), or palatal flap (PF). More recently, novel alternatives such as the pedicled facial buccinator flap (FAB) and the pedicled occipital galeopericranial flap (OGP) have been added to the arsenal of options for skull base reconstruction. Characteristics of and appropriate uses for each flap are described. PMID:23257554

  7. Effects of the murine skull in optoacoustic brain microscopy.

    PubMed

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.

    PubMed

    Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina

    2016-01-01

    Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion. © 2015 American Academy of Forensic Sciences.

  9. Head and neck injury patterns in fatal falls: epidemiologic and biomechanical considerations.

    PubMed

    Freeman, Michael D; Eriksson, Anders; Leith, Wendy

    2014-01-01

    Fatal falls often involve a head impact, which are in turn associated with a fracture of the skull or cervical spine. Prior authors have noted that the degree of inversion of the victim at the time of impact is an important predictor of the distribution of skull fractures, with skull base fractures more common than skull vault fractures in falls with a high degree of inversion. The majority of fatal fall publications have focused on skull fractures, and no research has described the association between fall circumstances and the distribution of fractures in the skull and neck. In the present study, we accessed data regarding head and neck fractures resulting from fatal falls from a Swedish autopsy database for the years 1992-2010, for the purposes of examining the relationships between skull and cervical spine fracture distribution and the circumstances of the fatal fall. Out of 102,310 medico-legal autopsies performed there were 1008 cases of falls associated with skull or cervical spine fractures. The circumstances of the falls were grouped in 3 statistically homogenous categories; falls occurring at ground level, falls from a height of <3 m or down stairs, and falls from ≥3 m. Only head and neck injuries and fractures that were associated with the fatal CNS injuries were included for study, and categorized as skull vault and skull base fractures, upper cervical injuries (C0-C1 dislocation, C1 and C2 fractures), and lower cervical fractures. Logistic regression modeling revealed increased odds of skull base and lower cervical fracture in the middle and upper fall severity groups, relative to ground level falls (lower cervical <3 m falls, OR = 2.55 [1.32, 4.92]; lower cervical ≥3 m falls, OR = 2.23 [0.98, 5.08]; skull base <3 m falls, OR = 1.82 [1.32, 2.50]; skull base ≥3 m falls, OR = 2.30 [1.55, 3.40]). C0-C1 dislocations were strongly related to fall height, with an OR of 8.3 for ≥3 m falls versus ground level. The findings of increased

  10. Historical evidence of the 1936 Mojokerto skull discovery, East Java.

    PubMed

    Huffman, O Frank; Shipman, Pat; Hertler, Christine; de Vos, John; Aziz, Fachroel

    2005-04-01

    To resolve ambiguities in the literature, we detail the discovery history of the Mojokerto child's skull (Perning 1), employing letters, maps, photographs, reports, and newspaper accounts not previously used for this purpose. Andoyo, an experienced vertebrate-fossil collector with the Geological Survey of the Netherlands Indies, found the skull on February 13, 1936, while collecting for Johan Duyfjes, who had mapped the field area geologically. On February 18-19 Andoyo sent the fossil and a 1:25,000-topographic map showing the discovery point to Survey headquarters. The locality lies between Perning and Sumbertengu villages, approximately 10km northeast of Mojokerto city, East Java. G.H. Ralph von Koenigswald, Survey paleontologist, identified the specimen as Pithecanthropus and then named it Homo modjokertensis (it is now accepted as Homo erectus). Unfortunately he confused the discovery record in a March 28 newspaper article by characterizing the skull as a "surface find" [Dutch: oppervlaktevondst] while also attributing it to ancient beds. von Koenigswald probably had insufficient basis for either assertion, having not yet talked to Andoyo or Duyfjes. Eugene Dubois challenged von Koenigswald on the "surface-find" issue, Andoyo was consulted, and Duyfjes went to the site. Duyfjes and von Koenigswald then published scientific papers stating that the skull was unearthed 1m deep from a hill-slope outcrop of conglomeratic sandstone in Duyfjes' Pucangan formation. A cross section by Andoyo, which may show the Mojokerto site, also indicates a skull at 1m depth in conglomeratic sandstone. Photographs taken in 1936-1938 show a shallow pit at a single field location that fits Duyfjes' site description and is identified as the Mojokerto-skull site in 1940-1943 publications. By WWII the scientific community accepted the skull as an early hominid. Although von Koenigswald's "surface-find" comment remains a source of doubt in the record, we consider in situ discovery for the

  11. The Role of Interface on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model.

    PubMed

    Deland, Trevor S; Niespodziewanski, Emily; Fenton, Todd W; Haut, Roger C

    2016-01-01

    The role of impact interface characteristics on the biomechanics and patterns of cranial fracture has not been investigated in detail, and especially for the pediatric head. In this study, infant porcine skulls aged 2-19 days were dropped with an energy to cause fracturing onto four surfaces varying in stiffness from a rigid plate to one covered with plush carpeting. Results showed that heads dropped onto the rigid surface produced more extensive cranial fracturing than onto carpeted surfaces. Contact forces generated at fracture initiation and the overall maximum contact forces were generally lower for the rigid than carpeted impacts. While the degree of cranial fracturing from impacts onto the heavy carpeted surface was comparable to that of lower-energy rigid surface impacts, there were fewer diastatic fractures. This suggests that characteristics of the cranial fracture patterns may be used to differentiate energy level from impact interface in pediatric forensic cases. © 2015 American Academy of Forensic Sciences.

  12. A Statistical Skull Geometry Model for Children 0-3 Years Old

    PubMed Central

    Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P.; Rupp, Jonathan D.; Hoff, Carrie N.; Hu, Jingwen

    2015-01-01

    Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0–3 YO population. In this study, head CT scans from fifty-six 0–3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models. PMID:25992998

  13. A statistical skull geometry model for children 0-3 years old.

    PubMed

    Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2015-01-01

    Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.

  14. The inferior turbinate flap in skull base reconstruction

    PubMed Central

    2013-01-01

    Background As the indications for expanded endonasal approaches continue to evolve, alternative reconstructive techniques are needed to address increasingly complex surgical skull base defects. In the absence of the nasoseptal flap, we describe our experience with the posterior pedicle inferior turbinate flap (PPITF) in skull base reconstruction. Design Case series. Setting Academic tertiary care centre. Methods Patients who underwent reconstruction of the skull base with the PPITF were identified. Medical records were reviewed for demographic, presentation, treatment, follow-up, surgical and outcomes data. Main outcome measures Flap survival, adequacy of seal, and complications. Results Two patients with residual/recurrent pituitary adenomas met the inclusion criteria. The nasoseptal flap was unavailable in each case due to a prior septectomy. Salvage of the original nasoseptal flap was not possible, as it did not provide adequate coverage of the resultant defect due to contraction from healing. All PPITFs healed uneventfully and covered the entire defect. No complications were observed in the early post-operative period. Endoscopic techniques and limitations of the PPITF are also discussed. Conclusions Our clinical experience supports the PPITF to be a viable alternative for reconstruction of the skull base in the absence of the nasoseptal flap. PMID:23663897

  15. Microsurgical resection of skull base meningioma-expanding the operative corridor.

    PubMed

    Raheja, Amol; Couldwell, William T

    2016-11-01

    A better understanding of surgical anatomy, marked improvement in illumination devices, provision of improved hemostatic agents, greater availability of more precise surgical instruments, and better modalities for skull base reconstruction have led to an inevitable evolution of skull base neurosurgery. For the past few decades, many skull base neurosurgeons have worked relentlessly to improve the surgical approach and trajectory for the expansion of operative corridor. With the advent of newer techniques and their rapid adaptation, it is foundational, especially for young neurosurgeons, to understand the basics and nuances of modifications of traditional neurosurgical approaches. The goal of this topic review is to discuss the evolution of, concepts in, and technical nuances regarding the operative corridor expansion in the field of skull base surgery for intracranial meningioma as they pertain to achieving optimal functional outcome.

  16. Epigenetic control of skull morphogenesis by histone deacetylase 8

    PubMed Central

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  17. A new approach to fracture modelling in reservoirs using deterministic, genetic and statistical models of fracture growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawnsley, K.; Swaby, P.

    1996-08-01

    It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less

  18. Function-dependent shape characteristics of the human skull.

    PubMed

    Witzel, U; Preuschoft, H

    2002-06-01

    Using the FEM-program ANSYS 5.4, we have shaped a model of the human skull in which the flow of forces and the relative location and magnitudes of stresses are investigated. Forces are applied from below through the tooth row of the upper jaw. An ample volume is provided for the transmission of these bite forces upward to the roof of the braincase, where bearings counteract the forces from below. Within this volume, no other morphological features are considered than two cone-shaped orbits and a nasal channel which has a rounded, triangular cross section, extending upward between the orbits. Under loads (= bite forces) acting simultaneously in the directions and relative sizes of realistic bite- and chewing forces, there occurred stress concentrations inside the model which resemble closely the morphological characteristics of the human skull. The most remarkable pathways of stresses correspond to Toldt's and Benninghoff's nasal, zygomatic and pterygoid pillars. Aside from these stress concentrations, stress-free regions become visible at places, where the skull shows excavations: the vaulted palate with canalis incisivus, the canine fossa, superior and inferior orbital fissure, or cavities like the maxillary sinuses and cavum cranii. Behind the posterior molars and the pterygoid, the stresses disappear abruptly, and in the side wall of the nasal cavity a maxillary hiatus remains without stresses. A flow of forces comparable to, but not at the exact position of the zygomatic arch extends from the highly stressed zygomatic bone rearward and upward. In a later step of simulation, somewhat deeper, at the place of the really existing zygomatic arch, a series of small forces was applied, which correspond to the resultant force that is created by the redirection of the pull of the m. masseter into the temporal fascia. This--biologically reasonable--manipulation of the model leads to a reduction of the forces in the zygomatic bone, and to a downward shift of the zygomatic

  19. Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes?

    PubMed Central

    Klaczko, Julia; Sherratt, Emma; Setz, Eleonore Z. F.

    2016-01-01

    Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes. PMID:26886549

  20. A Three-Dimensional Statistical Average Skull: Application of Biometric Morphing in Generating Missing Anatomy.

    PubMed

    Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M

    2015-07-01

    The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4  mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.

  1. Surgical outcomes after reoperation for recurrent skull base meningiomas.

    PubMed

    Magill, Stephen T; Lee, David S; Yen, Adam J; Lucas, Calixto-Hope G; Raleigh, David R; Aghi, Manish K; Theodosopoulos, Philip V; McDermott, Michael W

    2018-05-04

    OBJECTIVE Skull base meningiomas are surgically challenging tumors due to the intricate skull base anatomy and the proximity of cranial nerves and critical cerebral vasculature. Many studies have reported outcomes after primary resection of skull base meningiomas; however, little is known about outcomes after reoperation for recurrent skull base meningiomas. Since reoperation is one treatment option for patients with recurrent meningioma, the authors sought to define the risk profile for reoperation of skull base meningiomas. METHODS A retrospective review of 2120 patients who underwent resection of meningiomas between 1985 and 2016 was conducted. Clinical information was extracted from the medical records, radiology data, and pathology data. All records of patients with recurrent skull base meningiomas were reviewed. Demographic data, presenting symptoms, surgical management, outcomes, and complications data were collected. Kaplan-Meier analysis was used to evaluate survival after reoperation. Logistic regression was used to evaluate for risk factors associated with complications. RESULTS Seventy-eight patients underwent 100 reoperations for recurrent skull base meningiomas. Seventeen patients had 2 reoperations, 3 had 3 reoperations, and 2 had 4 or more reoperations. The median age at diagnosis was 52 years, and 64% of patients were female. The median follow-up was 8.5 years. Presenting symptoms included cranial neuropathy, headache, seizure, proptosis, and weakness. The median time from initial resection to first reoperation was 4.4 years and 4.1 years from first to second reoperation. Seventy-two percent of tumors were WHO grade I, 22% were WHO grade II, and 6% were WHO grade III. The sphenoid wing was the most common location (31%), followed by cerebellopontine angle (14%), cavernous sinus (13%), olfactory groove (12%), tuberculum sellae (12%), and middle fossa floor (5%). Forty-four (54%) tumors were ≥ 3 cm in maximum diameter at the time of the first

  2. X-cephalometric study of different parts of the upper airway space and changes in hyoid position following mandibular fractures.

    PubMed

    Chen, L-J; Zhao, M-C; Pan, X-F; Wei, Y-Q; Wang, D-Y

    2013-09-01

    This study analyses the different parts of the upper airway space and the changes in hyoid position. The results provide a clinical reference for developing timely and effective treatment programmes for patients with mandibular fractures caused by maxillofacial trauma. Standard X-cephalometric measurements of the lateral skull of 210 subjects were taken. The subjects were divided into four fracture groups: condylar, mandibular angle, mandibular body, and parasymphyseal. The radiographs of the mandibular fracture groups were compared with the normal occlusion group to analyse the upper airway space and the changes in hyoid position. Different types of fractures have different effects on the upper airway space. Bilateral mandibular body fracture and the parasymphyseal fracture have a significant influence on the lower oropharyngeal and laryngopharyngeal airway spaces, with serious obstructions severely restricting the ventilatory function of patients. Fractures at different parts of the mandibular structure are closely related to the upper airway and hyoid position.

  3. Thickness and resistivity variations over the upper surface of the human skull.

    PubMed

    Law, S K

    1993-01-01

    A study of skull thickness and resistivity variations over the upper surface was made for an adult human skull. Physical measurements of thickness and qualitative analysis of photographs and CT scans of the skull were performed to determine internal and external features of the skull. Resistivity measurements were made using the four-electrode method and ranged from 1360 to 21400 Ohm-cm with an overall mean of 7560 +/- 4130 Ohm-cm. The presence of sutures was found to decrease resistivity substantially. The absence of cancellous bone was found to increase resistivity, particularly for samples from the temporal bone. An inverse relationship between skull thickness and resistivity was determined for trilayer bone (n = 12, p < 0.001). The results suggest that the skull cannot be considered a uniform layer and that local resistivity variations should be incorporated into realistic geometric and resistive head models to improve resolution in EEG. Influences of these variations on head models, methods for determining these variations, and incorporation into realistic head models, are discussed.

  4. Developmental changes in the skull morphology of common minke whales Balaenoptera acutorostrata.

    PubMed

    Nakamura, Gen; Kato, Hidehiro

    2014-10-01

    We investigated growth-related and sex-related morphological changes in the skulls of 144 North Pacific common minke whales Balaenoptera acutorostrata. Measurement was conducted at 39 points on the skull and mandible to extract individual allometric equations relating the length and zygomatic width of the skull. The results revealed no significant differences in skull morphology by sex except for width of occipital bone. The size relative to the skull of the anatomical parts involved in feeding, such as the rostrum and mandible, increased after birth. In contrast, the sensory organs and the anatomical regions involved in neurological function, such as the orbit, tympanic bullae, and foramen magnum, were fully developed at birth, and their relative size reduced over the course of development. This is the first study to investigate developmental changes in the skull morphology using more than 100 baleen whale specimens, and we believe the results of this study will contribute greatly to multiple areas of baleen whale research, including taxonomy and paleontology. © 2014 Wiley Periodicals, Inc.

  5. Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.

    PubMed

    Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander

    2013-12-01

    Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Maximising functional recovery following hip fracture in frail seniors.

    PubMed

    Beaupre, Lauren A; Binder, Ellen F; Cameron, Ian D; Jones, C Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay

    2013-12-01

    This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations - those with cognitive impairment, residing in nursing homes or males - also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Maximising functional recovery following hip fracture in frail seniors

    PubMed Central

    Beaupre, Lauren A.; Binder, Ellen F.; Cameron, Ian D.; Jones, C. Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay

    2015-01-01

    This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations – those with cognitive impairment, residing in nursing homes or males – also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. PMID:24836335

  8. Radiological features of the skull in Klinefelter's syndrome and male hypogonadism.

    PubMed

    Kosowicz, J; Rzymski, K

    1975-07-01

    Skull radiographs were performed in 21 cases of Klinefelter's syndrome and in 30 cases of eunuchoidism. The radiographic changes of the skull in Klinefelter's syndrome are: temporal flattening, decreased width of the vault, narrowing of the mandible, decreased length of the skull, shortening of the anterior fossa cranii, decrease in the angle of the base, thinning of the vault bones at the major fontanelle, premature and excessive calcification of the coronal suture, deepening of the posterior fossa and shortening of the mandibular rami. In hypogonadotropic eunuchoidism the skull radiographs show: small mastoid processes, fine bones of the vault, small sella turcica, club-shaped clinoid processes, excessive development of sphenoidal sinuses and in the fourth and later decades of life a diminished bone density (osteoporosis).

  9. Augmented reality-assisted skull base surgery.

    PubMed

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Inca - interparietal bones in neurocranium of human skulls in central India

    PubMed Central

    Marathe, RR; Yogesh, AS; Pandit, SV; Joshi, M; Trivedi, GN

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists. PMID:21799611

  11. Inca - interparietal bones in neurocranium of human skulls in central India.

    PubMed

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  12. A Single-Center Review of Facial Fractures as the Result of High-Speed Projectile Injuries

    PubMed Central

    Liu, Farrah C.; Halsey, Jordan N.; Hoppe, Ian C.; Ciminello, Frank S.; Lee, Edward S.; Granick, Mark S.

    2018-01-01

    Purpose: Gunshot injuries to the face that result in fractures of the underlying skeleton present a challenge in management. The goal of this study was to evaluate patterns of facial fractures as a result of gunshot injuries and strategies for management. Methods: A retrospective review of facial fractures resulting from gunshot injuries in a level 1 trauma center was performed for the years 2000 to 2012. Data were collected for patient demographics, fracture distribution, concomitant injuries, and surgical management strategies. Results: A total of 190 patients sustained facial fractures from a gunshot injury. The average age was 29.9 years, and 90% were male. Sixteen injuries were self-inflicted. The most common fractures were of the mandible and the orbit. Uncontrolled hemorrhage was noted on presentation in 68 patients; 100 patients were intubated on arrival. The average Glasgow Coma Scale score on arrival was 11.9. Concomitant injuries included skull fracture, intracranial hemorrhage, and intrathoracic injury. Surgical management was required in 89 patients. Nine patients required soft-tissue coverage. Thirty patients expired. Conclusion: Gunshot injuries to the face resulting in fractures of the underlying skeleton have high instances of morbidity and mortality. Life-threatening concomitant injuries can complicate management of facial fractures in this population. PMID:29713397

  13. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning

    PubMed Central

    Pierce, S E; Angielczyk, K D; Rayfield, E J

    2009-01-01

    Variation in modern crocodilian and extinct thalattosuchian crocodylomorph skull morphology is only weakly correlated with phylogeny, implying that factors other than evolutionary proximity play important roles in determining crocodile skull shape. To further explore factors potentially influencing morphological differentiation within the Thalattosuchia, we examine teleosaurid and metriorhynchid skull shape variation within a mechanical and dietary context using a combination of finite element modelling and multivariate statistics. Patterns of stress distribution through the skull were found to be very similar in teleosaurid and metriorhynchid species, with stress peaking at the posterior constriction of the snout and around the enlarged supratemporal fenestrae. However, the magnitudes of stresses differ, with metriorhynchids having generally stronger skulls. As with modern crocodilians, a strong linear relationship between skull length and skull strength exists, with short-snouted morphotypes experiencing less stress through the skull than long-snouted morphotypes under equivalent loads. Selection on snout shape related to dietary preference was found to work in orthogonal directions in the two families: diet is associated with snout length in teleosaurids and with snout width in metriorhynchids, suggesting that teleosaurid skulls were adapted for speed of attack and metriorhynchid skulls for force production. Evidence also indicates that morphological and functional differentiation of the skull occurred as a result of dietary preference, allowing closely related sympatric species to exploit a limited environment. Comparisons of the mechanical performance of the thalattosuchian skull with extant crocodilians show that teleosaurids and long-snouted metriorhynchids exhibit stress magnitudes similar to or greater than those of long-snouted modern forms, whereas short-snouted metriorhynchids display stress magnitudes converging on those found in short-snouted modern

  15. Pediatric Orbital Fractures

    PubMed Central

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.

    2013-01-01

    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  16. Spring-assisted posterior skull expansion without osteotomies.

    PubMed

    Arnaud, Eric; Marchac, Alexandre; Jeblaoui, Yassine; Renier, Dominique; Di Rocco, Federico

    2012-09-01

    A posterior flatness of the skull vault can be observed in infants with brachycephaly. Such posterior deformation favours the development of turricephaly which is difficult to correct. To reduce the risk of such deformation, an early posterior skull remodelling has been suggested. Translambdoid springs can be used to allow for a distraction through the patent lambdoid sutures and obtain a progressive increase of the posterior skull volume. The procedure consists in a posterior scalp elevation, the patient being on a prone position. Springs made of stainless steel wire (1.5 mm in diameter) are bent in a U-type fashion, and strategically positioned across both lambdoid sutures. No drilling is usually necessary, as the lambdoid suture can be gently forced with a subperiosteal elevator in its middle and an indentation can be created with a bony rongeur on each side of the open suture to allow for a self-retention of bayonet-shaped extremity of the spring. Careful attention is addressed to the favoured prone position during the post-operative period. After a delay of 3-6 months, the springs can be removed during a second uneventful procedure, with limited incisions, usually as a preliminary step of the subsequent frontal remodelling. The concept of spring-assisted expansion across patent sutures under 6 months of age was confirmed in our experience (19 cases). Insertion of the springs allowed for immediate distraction across the suture. A posterior remodelling of the skull could be achieved with minimal morbidity allowing to delay safely a radical anterior surgery.

  17. Osseointegrated Implants and Prosthetic Reconstruction Following Skull Base Surgery.

    PubMed

    Hu, Shirley; Arnaoutakis, Demetri; Kadakia, Sameep; Vest, Allison; Sawhney, Raja; Ducic, Yadranko

    2017-11-01

    Rehabilitation following ablative skull base surgery remains a challenging task, given the complexity of the anatomical region, despite the recent advances in reconstructive surgery. Remnant defects following resection of skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction, including local rotational muscle flaps, pedicled flaps with skin paddle, or even free tissue transfer. However, not all patients are appropriate surgical candidates and therefore may instead benefit from nonsurgical options for functional and aesthetic restoration. Osseointegrated implants and biocompatible prostheses provide a viable alternative for such a patient population. The purpose of this review serves to highlight current options for prosthetic rehabilitation of skull base defects and describe their indications, advantages, and disadvantages.

  18. Genomic and transcriptomic characterization of skull base chordoma

    PubMed Central

    Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-01

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492

  19. Genomic and transcriptomic characterization of skull base chordoma.

    PubMed

    Sa, Jason K; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-03

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma.

  20. Osseointegrated Implant Applications in Cosmetic and Functional Skull Base Rehabilitation

    PubMed Central

    Benscoter, Brent J.; Jaber, James J.; Kircher, Matthew L.; Marzo, Sam J.; Leonetti, John P.

    2011-01-01

    This study discusses the indications, outcomes, and complications in patients that underwent osseointegrated implantation for skull base rehabilitation. We conducted a retrospective review of eight patients with skull base defects who had undergone implantation of a facial prosthetic retention device ± bone-anchored hearing aid at a tertiary academic referral center. Descriptive analysis of applications, techniques, outcomes, and complications were reviewed. The majority of patients were males (n = 6) with previously diagnosed skull base malignancy (n = 5) with an average age of 46 (range, 14 to 77). All patients received an implanted facial prosthetic device either for an aural (n = 7) or orbital (n = 1) prosthesis. There were only two complications that included infection (n = 1) and implant extrusion (n = 1). Osseointegrated implantation of abutments for anchoring prosthetic devices in patients for skull base rehabilitation provides an excellent cosmetic option with minimal complications. PMID:22451830

  1. Minimally invasive surgery of the anterior skull base: transorbital approaches

    PubMed Central

    Gassner, Holger G.; Schwan, Franziska; Schebesch, Karl-Michael

    2016-01-01

    Minimally invasive approaches are becoming increasingly popular to access the anterior skull base. With interdisciplinary cooperation, in particular endonasal endoscopic approaches have seen an impressive expansion of indications over the past decades. The more recently described transorbital approaches represent minimally invasive alternatives with a differing spectrum of access corridors. The purpose of the present paper is to discuss transorbital approaches to the anterior skull base in the light of the current literature. The transorbital approaches allow excellent exposure of areas that are difficult to reach like the anterior and posterior wall of the frontal sinus; working angles may be more favorable and the paranasal sinus system can be preserved while exposing the skull base. Because of their minimal morbidity and the cosmetically excellent results, the transorbital approaches represent an important addition to established endonasal endoscopic and open approaches to the anterior skull base. Their execution requires an interdisciplinary team approach. PMID:27453759

  2. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    PubMed Central

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  3. [Stab injuries of the skull and brain].

    PubMed

    Ritter, C; Adebahr, G

    1986-01-01

    A few cases of skull and brain stab wounds are described and the clinicodiagnostic problems discussed. The injuries often remain unrecognized because the external wound often appears harmless, there are no neurological symptoms, or the clinical picture is interpreted as drunkenness, blunt injury or as another disease. The importance of a precise physical examination of the whole patient's head is pointed out. The refined methods used in modern radiodiagnostics of the skull are the most helpful in correctly recognizing these injuries; there are reports of patients with severe injuries who recovered when the correct diagnosis had been established.

  4. High Resolution Three-Dimensional MR Imaging of the Skull Base: Compartments, Boundaries, and Critical Structures.

    PubMed

    Blitz, Ari Meir; Aygun, Nafi; Herzka, Daniel A; Ishii, Masaru; Gallia, Gary L

    2017-01-01

    High-resolution 3D MRI of the skull base allows for a more detailed and accurate assessment of normal anatomic structures as well as the location and extent of skull base pathologies than has previously been possible. This article describes the techniques employed for high-resolution skull base MRI including pre- and post-contrast constructive interference in the steady state (CISS) imaging and their utility for evaluation of the many small structures of the skull base, focusing on those regions and concepts most pertinent to localization of cranial nerve palsies and in providing pre-operative guidance and post-operative assessment. The concept of skull base compartments as a means of conceptualizing the various layers of the skull base and their importance in assessment of masses of the skull base is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Automated human skull landmarking with 2D Gabor wavelets

    NASA Astrophysics Data System (ADS)

    de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan

    2018-05-01

    Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

  6. Effect of small and large animal skull bone on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Xu, Qiuyun; Volinski, Bridget; Hariri, Ali; Fatima, Afreen; Nasiriavanaki, Mohammadreza

    2017-03-01

    Photoacoustic imaging (PAI) has proved to be a promising non-invasive technique for diagnosis, prognosis and treatment monitoring of neurological disorders in small and large animals. Skull bone effects both light illumination and ultrasound propagation. Hence, the PA signal is largely affected. This study aims to quantify and compare the attenuation of PA signal due to the skull obstacle in the light illumination path, in the ultrasound propagation path, or in both. The effect of mouse, rat, and mesocephalic dog skull bones, ex-vivo, is quantitatively studied.

  7. Skull deformations in craniosynostosis and endocrine disorders: morphological and tomographic analysis of the skull from the crypt of the Silesian Piasts in Brzeg (16th-17th century), Poland.

    PubMed

    Kozłowski, T; Cybulska, M; Błaszczyk, B; Krajewska, M; Jeśman, C

    2014-10-01

    of morphological and tomographic (CT) studies of the skull that was found in the crypt of the Silesian Piasts in the St. Jadwiga church in Brzeg (Silesia, Poland) are presented and discussed here. The established date of burial of probably a 20-30 years old male was 16th-17th century. The analyzed skull showed premature obliteration of the major skull sutures. It resulted in the braincase deformation, similar to the forms found in oxycephaly and microcephaly. Tomographic analysis revealed gross pathology. Signs of increased intracranial pressure, basilar invagination and hypoplasia of the occipital bone were observed. Those results suggested the occurrence of the very rare Arnold-Chiari syndrome. Lesions found in the sella turcica indicated the development of pituitary macroadenoma, which resulted in the occurrence of discreet features of acromegaly in the facial bones. The studied skull was characterized by a significantly smaller size of the neurocranium (horizontal circumference 471 mm, cranial capacity ∼ 1080 ml) and strongly expressed brachycephaly (cranial index=86.3), while its height remained within the range for non-deformed skulls. A narrow face, high eye-sockets and prognathism were also observed. Signs of alveolar process hypertrophy with rotation and displacement of the teeth were noted. The skull showed significant morphological differences compared to both normal and other pathological skulls such as those with pituitary gigantism, scaphocephaly and microcephaly. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Trepanation and enlarged parietal foramen on skulls from the Loyalty Islands (Melanesia).

    PubMed

    Vasilyev, Sergey V; Sviridov, Alexey A

    2017-06-01

    The goal of this study is a comprehensive examination of openings discovered on two skulls in the collection of skeletal remains from the Loyalty Islands (Melanesia). The skull No. 1524 displayed an evidence of successful trepanation, and the skull No. 7985 revealed openings that were reminiscent of a trepanation, however, we are inclined to believe that in the latter case we are dealing with a rare genetic anomaly - enlarged parietal foramen.

  9. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2017-12-01

    Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to

  10. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-08-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  11. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-11-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  12. Langerhans cell histiocytosis of skull: a retrospective study of 18 cases.

    PubMed

    Zhang, Xiang-Heng; Zhang, Ji; Chen, Zheng-He; Sai, Ke; Chen, Yin-Sheng; Wang, Jian; Ke, Chao; Guo, Chen-Chen; Chen, Zhong-Ping; Mou, Yong-Gao

    2017-04-01

    The present study presents 18 cases of Chinese patients harboring a Langerhans cell histiocytosis (LCH) of the skull. Eighteen consecutive patients were diagnosed as LCH of the skull and confirmed pathologically between March 2002 and February 2014. In the present study, the patients of LCH without skull involvement were excluded. According to disease extent at diagnosis, the 18 LCH patients with skull involvement were divided into three groups: (I) unifocal-monosystem group, including ten cases with solitary skull lesion; (II) multifocal-monosystem group, including two cases with multiple bone lesions and no extra-skeletal involvement; (III) multisystem group, including six cases with LCH lesions involving both skeletal and extra-skeletal system. In unifocal-monosystem group, excision of the skull lesion was performed in eight of ten cases, a low dosage of local radiotherapy and a purposeful observation was accept by the remaining two cases of this group after biopsy respectively. In multifocal-monosystem group, both of the two cases were received chemotherapy. In multi-system group, all the six cases were managed with systemic chemotherapy, after their diagnoses of LCH were confirmed. The mean age at the time of diagnosis was 9.4 years. There was a male predominance in this disease male/female ratio was 3.5:1. In our cases, a skull mass with or without tenderness was the most common chief complaint (13 cases, 72.2%), and frontal bone was the most frequent affected locations of skull (6 cases, 33.3%). In unifocal-monosystem group, nine of ten remained free from LCH, the remain one lesion recurred 22 months after his surgical excision. In multifocal-monosystem group, a complete response (CR) was obtained in one of them, and a stable disease (SD) of multiple osseous lesions was obtained in another one. In the multi-system group, a CR in four cases and a partial response (PR) in one case were obtained, and a progressive disease (PD) was observed in the remaining one

  13. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories

    NASA Astrophysics Data System (ADS)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  14. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    PubMed

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  15. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  16. Dietary hardness, loading behavior, and the evolution of skull form in bats.

    PubMed

    Santana, Sharlene E; Grosse, Ian R; Dumont, Elizabeth R

    2012-08-01

    The morphology and biomechanics of the vertebrate skull reflect the physical properties of diet and behaviors used in food acquisition and processing. We use phyllostomid bats, the most diverse mammalian dietary radiation, to investigate if and how changes in dietary hardness and loading behaviors during feeding shaped the evolution of skull morphology and biomechanics. When selective regimes of food hardness are modeled, we found that species consuming harder foods have evolved skull shapes that allow for more efficient bite force production. These species have shorter skulls and a greater reliance on the temporalis muscle, both of which contribute to a higher mechanical advantage at an intermediate gape angle. The evolution of cranial morphology and biomechanics also appears to be related to loading behaviors. Evolutionary changes in skull shape and the relative role of the temporalis and masseter in generating bite force are correlated with changes in the use of torsional and bending loading behaviors. Functional equivalence appears to have evolved independently among three lineages of species that feed on liquids and are not obviously morphologically similar. These trends in cranial morphology and biomechanics provide insights into behavioral and ecological factors shaping the skull of a trophically diverse clade of mammals. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  17. Taking a fresh look at the skull base in otorhinolaryngology with web-based simulation: Student's Interactive Skull-Base Trainer (SISTer).

    PubMed

    von Sass, Peter Freiherr; Scheckenbach, Kathrin; Wagenmann, Martin; Klenzner, Thomas; Schipper, Joerg; Chaker, Adam

    2015-02-01

    The increasing amount of medical knowledge and necessity for time-effective teaching and learning have given rise to emerging online, or e-learning, applications. The base of the skull is a challenging anatomic area in the otorhinolaryngology (ORL) department-for both students and lecturers. Technology-enhanced learning might be an expedient approach to benefit both learners and lecturers. To investigate and create for advanced medical students a self-assessed adaptive e-learning application for the skull base within our curriculum of otolaryngology at the University Medical Center of Heinrich Heine University, Düsseldorf, Germany. Pilot approach with prospective evaluation of a newly implemented web-based e-learning simulation. The e-learning application (Student's Interactive Skull-Base Trainer) was made accessible as an elective course to a total of 269 enrolled medical students during the first 2 semesters after web launch. Spatiotemporal independent e-learning application for the skull base. Self-assessed evaluation with focus on general acceptance and personal value as well as usage data analysis. The application was well accepted by the learners. More than 80% of the participating students found the application to be a beneficial tool for enhancing their analytical and clinical problem-solving skills. Although the general matter of the skull base seemed to be of lesser interest, the concept of anchored instructions with the use of high-end, interactive, multimedia-based content was considered to be particularly suitable for this challenging topic. Most of the students would have appreciated an extension of optional e-learning modules. With this pilot approach we were able to implement a useful and now well-accepted tool for blended learning. We showed that it is possible to raise interest even in this very specialized subspecialty of ORL with overall individual learning benefit for the students. There is a demand for more e-learning and web-based simulation

  18. On the integral use of foundational concepts in verifying validity during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T

    2017-09-01

    Often cited reliability test on video superimposition method integrated scaling face-images in relation to skull-images, tragus-auditory meatus relationship in addition to exocanthion-Whitnall's tubercle relationship when orientating the skull-image and wipe mode imaging in addition to mix mode imaging when obtaining skull-face image overlay and evaluating the goodness of match. However, a report that found higher false positive matches in computer assisted superimposition method transited from the above foundational concepts and relied on images of unspecified sizes that are lesser than 'life-size', frontal plane landmarks in the skull- and face- images alone for orientating the skull-image and mix images alone for evaluating the goodness of match. Recently, arguing the use of 'life-size' images as 'archaic', the authors who tested the reliability in the computer assisted superimposition method have denied any method transition. This article describes that the use of images of unspecified sizes at lesser than 'life-size' eliminates the only possibility to quantify parameters during superimposition which alone enables dynamic skull orientation when overlaying a skull-image with a face-image in an anatomically acceptable orientation. The dynamic skull orientation process mandatorily requires aligning the tragus in the 2D face-image with the auditory meatus in the 3D skull-image for anatomically orientating the skull-image in relation to the posture in the face-image, a step not mentioned by the authors describing the computer assisted superimposition method. Furthermore, mere reliance on mix type images during image overlay eliminates the possibility to assess the relationship between the leading edges of the skull- and face-image outlines as also specific area match among the corresponding craniofacial organs during superimposition. Indicating the possibility of increased false positive matches as a consequence of the above method transitions, the need for testing

  19. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    PubMed

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  20. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Contemporary skull development - palatal angle analysis.

    PubMed

    Dostalova, T; Eliasova, H; Gabcova, D; Feberova, J; Kaminek, M

    2015-01-01

    The palatal angle is an important angle of the craniofacial complex. It is significant for the diagnosis of craniofacial disorders mainly for nasopharyngeal soft-tissue patterns.Background The dentists and otorhinolaryngologists use this relationship to establish proper treatment mechanics and evaluate facial profile. The aims of this study were to provide comparative cephalometric analyses of historical and contemporary skulls. A total of 190 cephalograms of 2 groups of subjects were evaluated. Dolphin Imaging 11.0 - Cephalometric Tracing Analysis was used for the analysis. Unpaired two-tailed t-test assuming equality of variances was used for all variables (at the significance level p = 0.0001). The -modern forensic skulls had larger palatal angle at average value of 8.60 degrees ± 4.35, than that of archeological ones, the average value of which was 6.50 degrees ± 3.92. The difference was found significant. Unpaired two-tailed t-test assuming equality of variances showed that historical and contemporary skulls had statistically significant results. The difference was -2.09 with standard error of 0.60 (95% confidence interval from -3.29 to -0.89). Two-tailed probability attained value of P was less than 0.0001. The difference between both groups was found significant. An increase in the palatal angle can be directly connected with anterior rotation of upper jaw(Tab. 2, Fig. 5, Ref. 19).

  2. Acoustic emission from a growing crack

    NASA Technical Reports Server (NTRS)

    Jacobs, Laurence J.

    1989-01-01

    An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen.

  3. High activity iodine 125 endocurietherapy for recurrent skull base tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.P.; Good, R.R.; Leibrock, L.G.

    1988-04-15

    Experience with endocurietherapy of skull base tumors is reviewed. We present our cases of recurrent pituitary hemangiopericytoma, radiation-induced recurrent meningioma, recurrent clival chordoma, recurrent nasopharyngeal cancer involving the cavernous sinus, and recurrent parotid carcinoma of the skull base which were all successfully retreated with high-activity 125-iodine (I-125) permanent implantation.76 references.

  4. Skull metastases detecting on arterial spin labeling perfusion: Three case reports and review of literature.

    PubMed

    Ryu, Kyeong H; Baek, Hye J; Cho, Soo B; Moon, Jin I; Choi, Bo H; Park, Sung E; An, Hyo J

    2017-11-01

    Detection of skull metastases is as important as detection of brain metastases because early diagnosis of skull metastases is a crucial determinant of treatment. However, the skull can be a blind spot for assessing metastases on routine brain magnetic resonance imaging (MRI). To the best of our knowledge, the finding of skull metastases on arterial spin labeling (ASL) has not been reported. ASL is a specific MRI sequence for evaluating cerebral blood flow using magnetized endogenous inflow blood. This study uses ASL as a routine sequence of brain MRI protocol and describes 3 clinical cases of skull metastases identified by ASL. The study also highlights the clinical usefulness of ASL in detecting skull metastases. Three patients with known malignancy underwent brain MRI to evaluate for brain metastases. All of the skull metastases were conspicuously depicted on routine ASL images, and the lesions correlated well with other MRI sequences. Three patients received palliative chemotherapy. Three patients are being followed up regularly at the outpatient department. The routine use of ASL may help to detect lesions in blind spots, such as skull metastases, and to facilitate the evaluation of intracranial pathologies without the use of contrast materials in exceptional situations.

  5. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    PubMed

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  6. Reconstruction Using Locoregional Flaps for Large Skull Base Defects.

    PubMed

    Hatano, Takaharu; Motomura, Hisashi; Ayabe, Shinobu

    2015-06-01

    We present a modified locoregional flap for the reconstruction of large anterior skull base defects that should be reconstructed with a free flap according to Yano's algorithm. No classification of skull base defects had been proposed for a long time. Yano et al suggested a new classification in 2012. The lb defect of Yano's classification extends horizontally from the cribriform plate to the orbital roof. According to Yano's algorithm for subsequent skull base reconstructive procedures, a lb defect should be reconstructed with a free flap such as an anterolateral thigh free flap or rectus abdominis myocutaneous free flap. However, our modified locoregional flap has also enabled reconstruction of lb defects. In this case series, we used a locoregional flap for lb defects. No major postoperative complications occurred. We present our modified locoregional flap that enables reconstruction of lb defects.

  7. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    PubMed

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  8. The remarkable convergence of skull shape in crocodilians and toothed whales

    PubMed Central

    Evans, Alistair R.; Fitzgerald, Erich M. G.; Adams, Justin W.; Clausen, Philip D.; McHenry, Colin R.

    2017-01-01

    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey. PMID:28275142

  9. The remarkable convergence of skull shape in crocodilians and toothed whales.

    PubMed

    McCurry, Matthew R; Evans, Alistair R; Fitzgerald, Erich M G; Adams, Justin W; Clausen, Philip D; McHenry, Colin R

    2017-03-15

    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey. © 2017 The Author(s).

  10. Skull base erosion and associated complications in sphenoid sinus fungal balls

    PubMed Central

    Meier, Josh C.; Remenschneider, Aaron K.; Sadow, Peter; Chambers, Kyle; Dedmon, Matt; Lin, Derrick T.; Holbrook, Eric H.; Metson, Ralph; Gray, Stacey T.

    2016-01-01

    Background: Sphenoid sinus fungal balls (SSFB) are rare entities that can result in serious orbital and intracranial complications. There are few published reports of complications that result from SSFB. Objective: To review the incidence of skull base erosion and orbital or intracranial complications in patients who present with SSFB. Methods: A retrospective review was performed of all the patients with SSFB who were treated at the Massachusetts Eye and Ear Infirmary from 2006 to 2014. Presenting clinical data, radiology, operative reports, pathology, and postoperative course were reviewed. Results: Forty-three patients with SSFB were identified. Demographic data were compared between patients with (39.5%) and those without (61.5%) skull base erosion. Two patients underwent emergent surgery for acute complications of SSFB (one patient with blindness, one patient who had a seizure). Both patients with acute complications had evidence of skull base erosion, whereas no patients with an intact skull base developed an orbital or intracranial complication (p = 0.15). All the patients were surgically managed via an endoscopic approach. Conclusion: SSFBs are rare but may cause significant skull base erosion and potentially severe orbital and intracranial complications if not treated appropriately. Endoscopic sphenoidotomy is effective in treating SSFB and should be performed emergently in patients who presented with associated complications. PMID:28683250

  11. [Complications and pitfalls in surgery of the ear/lateral skull base].

    PubMed

    Schick, B; Dlugaiczyk, J

    2013-04-01

    Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills.Following a summary about general aspects in pre-, intra- and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation, surgery of vestibular schwannomas, and jugulotympanal paragangliomas. Based on these exemplary procedures, basic "do's and don'ts" of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed.An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Lumbar subarachnoid drainage in cerebrospinal fluid leaks after lateral skull base surgery.

    PubMed

    Allen, Kyle P; Isaacson, Brandon; Purcell, Patricia; Kutz, Joe Walter; Roland, Peter S

    2011-12-01

    To determine the efficacy of lumbar drainage in managing cerebrospinal fluid (CSF) leak after lateral skull base surgery. Retrospective case review. Academic tertiary referral center. Patients who had a lumbar subarachnoid drain placed after a lateral skull base procedure between July 1999 and February 2010 were included. Patients were identified by searching medical records for lateral skull base approach Current Procedural Terminology codes. The following variables were recorded for each subject: diagnosis, type of lateral skull base operation, duration of lumbar drainage, need for revision surgery, and presence of meningitis. Successful cessation of postoperative CSF leakage. Five hundred eight charts were reviewed, and 63 patients were identified who received a lumbar drain after a lateral skull base operation. The most common diagnosis was acoustic neuroma in 61.9%. The most common skull base approaches were the translabyrinthine, middle fossa, and transpetrosal approaches. Approximately 60.3% of patients had CSF rhinorrhea, 23.8% had an incisional leak, and 14.3% had otorrhea. The mean duration of lumbar drainage was 4.6 days. Forty eight (76.2%) study subjects had resolution of their CSF leak with lumbar drainage. Fifteen patients (23.8%) required revision surgery to stop the CSF leak. Lumbar drainage was successful in 90% of leaks after the translabyrinthine approach but in only 50% of those undergoing a suboccipital approach, which was a statistically significant difference. Postoperative CSF leaks after lateral skull base surgery can be managed with a lumbar subarachnoid drain in a majority of cases but is more successful after the translabyrinthine than the suboccipital approach. Recurrent CSF leaks after lumbar drainage is likely to require a revision operation.

  13. Early In-Theater Management of Combat-Related Traumatic Brain Injury: A Prospective, Observational Study to Identify Opportunities for Performance Improvement

    DTIC Science & Technology

    2015-05-18

    Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral contusion (51.4%). Hypertonic saline...were common on presentation. Head computed tomographic scan most commonly found skull fracture (68.9%), subdural hematoma (54.1%), and cerebral con...reported was skull fracture, occurring in 68.9% of patients. The most common type of intracranial hemorrhage was subdural hematoma (54.1%). Multiple

  14. Digital preparation and osteology of the skull of Lesothosaurus diagnosticus (Ornithischia: Dinosauria).

    PubMed

    Porro, Laura B; Witmer, Lawrence M; Barrett, Paul M

    2015-01-01

    Several skulls of the ornithischian dinosaur Lesothosaurus diagnosticus (Lower Jurassic, southern Africa) are known, but all are either incomplete, deformed, or incompletely prepared. This has hampered attempts to provide a comprehensive description of skull osteology in this crucial early dinosaurian taxon. Using visualization software, computed tomographic scans of the Lesothosaurus syntypes were digitally segmented to remove matrix, and identify and separate individual cranial and mandibular bones, revealing new anatomical details such as sutural morphology and the presence of several previously undescribed elements. Together with visual inspection of exposed skull bones, these CT data enable a complete description of skull anatomy in this taxon. Comparisons with our new data suggest that two specimens previously identified as Lesothosaurus sp. (MNHN LES 17 and MNHN LES 18) probably represent additional individuals of Lesothosaurus diagnosticus.

  15. An investigation into the accuracy and reliability of skull-photo superimposition in a South African sample.

    PubMed

    Gordon, G M; Steyn, M

    2012-03-10

    One of the aims of forensic science is to determine the identities of victims of crime. In some cases the investigators may have ideas as to the identities of the victims and in these situations, ante mortem photographs of the victims could be used in order to try and establish identity through skull-photo superimposition. The aim of this study was to evaluate the accuracy of a newly developed digital photographic superimposition technique on a South African sample of cadaver photographs and skulls. Forty facial photographs were selected and for each photo, 10 skulls (including the skull corresponding to the photo) were used for superimposition. The investigator did not know which of the 10 skulls corresponded to the photograph in question. The skulls were scanned 3-dimensionally, using a Cyberware™ Model 3030 Colour-3D Scanhead scanner. The photos were also scanned. Superimposition was done in 3D Studio Max and involved a morphological superimposition, whereby a skull is superimposed over the photo and assessed for a morphological match. Superimposition using selected anatomical landmarks was also performed to assess the match. A total of 400 skull-photo superimpositions were carried out using the morphological assessment and another 400 using the anatomical landmarks. In 85% of cases the correct skull was included in the possible matches for a particular photo using morphological assessment. However, in all of these cases, between zero and three other skulls out of 10 possibilities could also match a specific photo. In the landmark based assessment, the correct skull was included in 80% of cases. Once again, however, between one and seven other skulls out of 10 possibilities also matched the photo. This indicates that skull-photo superimposition has limited use in the identification of human skeletal remains, but may be useful as an initial screening tool. Corroborative techniques should also be used in the identification process. Copyright © 2011 Elsevier

  16. Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.

    PubMed

    Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E

    2014-10-01

    Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P < .0001), whereas the shape of the skull was significantly rounder compared to controls. Temporal muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.

  17. Skull base bony lesions: Management nuances; a retrospective analysis from a Tertiary Care Centre

    PubMed Central

    Singh, Amit Kumar; Srivastava, Arun Kumar; Sardhara, Jayesh; Bhaisora, Kamlesh Singh; Das, Kuntal Kanti; Mehrotra, Anant; Sahu, Rabi Narayan; Jaiswal, Awadhesh Kumar; Behari, Sanjay

    2017-01-01

    Background: Skull base lesions are not uncommon, but their management has been challenging for surgeons. There is large no of bony tumors at the skull base which has not been studied in detail as a group. These tumors are difficult not only because of their location but also due to their variability in the involvement of important local structure. Through this retrospective analysis from a Tertiary Care Centre, we are summarizing the details of skull base bony lesions and its management nuances. Materials and Methods: The histopathologically, radiologically, and surgically proven cases of skull base bony tumors or lesions involving bone were analyzed from the neurosurgery, neuropathology record of our Tertiary Care Institute from January 2009 to January 2014. All available preoperative and postoperative details were noted from their case files. The extent of excision was ascertained from operation records and postoperative magnetic resonance imaging if available. Results: We have surgically managed 41 cases of skull base bony tumors. It includes 11 patients of anterior skull base, 13 middle skull base, and 17 posterior skull base bony tumors. The most common bony tumor was chordoma 15 (36.6%), followed by fibrous dysplasia 5 (12.2%), chondrosarcoma (12.2%), and ewings sarcoma-peripheral primitive neuroectodermal tumor (EWS-pPNET) five cases (12.2%) each. There were more malignant lesions (n = 29, 70.7%) at skull base than benign (n = 12, 29.3%) lesions. The surgical approach employed depended on location of tumor and pathology. Total mortality was 8 (20%) of whom 5 patients were of histological proven EWS-pPNET. Conclusions: Bony skull base lesion consists of wide variety of lesions, and requires multispecialty management. The complex lesions required tailored approaches surgery of these lesions. With the advent of microsurgical and endoscopic techniques, and use of navigation better outcomes are being seen, but these lesions require further study for development

  18. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  19. Properties and architecture of the sperm whale skull amphitheatre.

    PubMed

    Alam, Parvez; Amini, Shahrouz; Tadayon, Maryam; Miserez, Ali; Chinsamy, Anusuya

    2016-02-01

    The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space. We contend that the amphitheatre will flex elastically to equilibrate forces transmitted via the spermaceti organ that arise through diving. We find that collisions from sperm whale aggression do not cause the amphitheatre to bend, but rather localise stress to the base of the amphitheatre on its anterior face. We consider, therefore, that the uniquely thin and extended construction of the amphitheatre, has relevance as an energy absorptive structure in diving. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Skull counting in late stages after internal contamination by actinides.

    PubMed

    Tani, Kotaro; Shutt, Arron; Kurihara, Osamu; Kosako, Toshiso

    2015-02-01

    Monitoring preparation for internal contamination with actinides (e.g. Pu and Am) is required to assess internal doses at nuclear fuel cycle-related facilities. In this paper, the authors focus on skull counting in case of single-incident inhalation of (241)Am and propose an effective procedure for skull counting with an existing system, taking into account the biokinetic behaviour of (241)Am in the human body. The predicted response of the system to skull counting under a certain counting geometry was found to be only ∼1.0 × 10(-5) cps Bq(-1) 1y after intake. However, this disadvantage could be remedied by repeated measurements of the skull during the late stage of the intake due to the predicted response reaching a plateau at about the 1000th day after exposure and exceeding that in the lung counting. Further studies are needed for the development of a new detection system with higher sensitivity to perform reliable internal dose estimations based on direct measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  2. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    PubMed Central

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  3. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas

    PubMed Central

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-01-01

    Background Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Methods Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. Results All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. Conclusions This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique. PMID:25561762

  4. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    PubMed

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  5. Surgery of the ear and the lateral skull base: pitfalls and complications

    PubMed Central

    Schick, Bernhard; Dlugaiczyk, Julia

    2013-01-01

    Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills. Following a summary about general aspects in pre-, intra-and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation and surgery of vestibular schwannomas and jugulotympanal paragangliomas. Based on these exemplary procedures, basic “dos and don’ts” of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed. An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. PMID:24403973

  6. Congenital intraosseous cavernous hemangioma of the skull: an unusual case.

    PubMed

    Rumana, Makhdoomi; Khursheed, Nayil; Farhat, Mustafa; Othman, Salim; Masood, Laharwal

    2013-01-01

    Intraosseous hemangiomas are benign vascular malformations mostly seen in the spine. They rarely occur in the skull. The usual age-group involved is the 2nd to 4th decades, and females outnumber males. We hereby report a rare case of congenital intraosseous cavernous hemangioma of the skull bone in a male infant. The patient underwent total excision of the lesion. © 2014 S. Karger AG, Basel.

  7. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    PubMed

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2015-04-21

    Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. A finite element model of the human skull without mandible consisting of nearly 740,000 tetrahedrons was built. Fistlike impacts on the infraorbital rim, the nasoorbitoethmoid region, and the supraorbital arch were simulated and stress propagations were depicted in a time-dependent display. Finite element simulation revealed von Mises stresses beyond the yield criterion of facial bone at the site of impacts and propagation of stresses in considerable amount towards skull base in the scenario of the fistlike impact on the infraorbital rim and on the nasoorbitoethmoid region. When impact was given on the supraorbital arch stresses seemed to be absorbed. As patients presenting with facial fractures have a risk for craniocerebral injuries attention should be paid to this and the indication for a CT-scan should be put widely. Efforts have to be made to generate more precise finite element models for a better comprehension of craniofacial and brain injury.

  9. Leonardo da Vinci's "A skull sectioned": skull and dental formula revisited.

    PubMed

    Gerrits, Peter O; Veening, Jan G

    2013-05-01

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned paranasal sinuses and ductus nasolacrimalis. A dissected lateral wall of the maxilla is also present. Furthermore, at the level of the foramen mentale, the drawing displays compact and spongious bony components, together with a cross-section through the foramen mentale and its connection with the canalis mandibulae. Leonardo was the first to describe a correct dental formula (6424) and made efforts to place this formula above the related dental elements. However, taking into account, the morphological features of the individual elements of the maxilla, it can be suggested that Leonardo sketched a "peculiar dental element" on the position of the right maxillary premolar in the dental sketch. The fact that the author did not make any comment on that special element is remarkable. Leonardo could have had sufficient knowledge of the precise morphology of maxillary and mandibular premolars, since the author depicted these elements in the dissected skull. The fact that the author also had access to premolars in situ corroborates our suggestion that "something went wrong" in this part of the drawing. The present study shows that historical anatomical drawings are very useful for interactive learning of detailed anatomy for students in medicine and dentistry. Copyright © 2012 Wiley Periodicals, Inc.

  10. Vestibular evoked myogenic potentials in response to lateral skull taps are dependent on two different mechanisms.

    PubMed

    Brantberg, Krister; Westin, Magnus; Löfqvist, Lennart; Verrecchia, Luca; Tribukait, Arne

    2009-05-01

    To explore the mechanisms for skull tap induced vestibular evoked myogenic potentials (VEMP). The muscular responses were recorded over both sternocleidomastoid (SCM) muscles using skin electrodes. A skull tapper which provided a constant stimulus intensity was used to test cervical vestibular evoked myogenic potentials (VEMP) in response to lateral skull taps in healthy subjects (n=10) and in patients with severe unilateral loss of vestibular function (n=10). Skull taps applied approximately 2 cm above the outer ear canal caused highly reproducible VEMP. There were differences in VEMP in both normals and patients depending on side of tapping. In normals, there was a positive-negative ("normal") VEMP on the side contra-lateral to the skull tapping, but no significant VEMP ipsi-laterally. In patients, skull taps above the lesioned ear caused a contra-lateral positive-negative VEMP (as it did in the normals), in addition there was an ipsi-lateral negative-positive ("inverted") VEMP. When skull taps were presented above the healthy ear there was only a small contra-lateral positive-negative VEMP but, similar to the normals, no VEMP ipsi-laterally. The present data, in conjunction with earlier findings, support a theory that skull-tap VEMP responses are mediated by two different mechanisms. It is suggested that skull tapping causes both a purely ipsi-lateral stimulus side independent SCM response and a bilateral and of opposite polarity SCM response that is stimulus side dependent. Possibly, the skull tap induced VEMP responses are the sum of a stimulation of two species of vestibular receptors, one excited by vibration (which is rather stimulus site independent) and one excited by translation (which is more stimulus site dependent). Skull-tap VEMP probably have two different mechanisms. Separation of the two components might reveal the status of different labyrinthine functions.

  11. What happens between pure hydraulic and buckling mechanisms of blowout fractures?

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Shimizu, Yusuke; Jiang, Hua; Nakajima, Tatsuo

    2010-06-01

    The present study aims to evaluate how the ratio of the hydraulic and buckling mechanisms affects blowout fracture patterns, when these two mechanisms work simultaneously. Three-dimensional computer-aided-design (CAD)models were generated simulating ten skulls. To simulate impact, 1.2J was applied on the orbital region of these models in four patterns. Pattern 1: All the energy works to cause the hydraulic effect. Pattern 2: Two-thirds of the energy works to cause the hydraulic effect; one-third of the energy works to cause the buckling effect. Pattern 3: One-third of the energy works to cause the hydraulic effect; two-thirds of the energy works to cause the buckling effect. Pattern 4: The entire energy quantum works to cause the buckling effect. Using the finite element method, the regions where fractures were theoretically expected to occur were calculated and were compared between the four patterns. More fracture damage occurred for Pattern 1 than Pattern 2, and for Pattern 3 than for Pattern 4. The hydraulic and buckling mechanisms interact with one another. When these two mechanisms are combined, the orbital walls tend to develop serious fractures. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    NASA Astrophysics Data System (ADS)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  13. Examination of life-threatening injuries in 431 pediatric facial fractures at a level 1 trauma center.

    PubMed

    Hoppe, Ian C; Kordahi, Anthony M; Paik, Angie M; Lee, Edward S; Granick, Mark S

    2014-09-01

    Pediatric facial fractures represent a challenge in management due to the unique nature of the growing facial skeleton. Oftentimes, more conservative measures are favored to avoid rigid internal fixation and disruption of blood supply to the bone and soft tissues. In addition, the great force required to fracture bones of the facial skeleton often produces concomitant injuries that present a management priority. The purpose of this study was to examine a level 1 trauma center's experience with pediatric facial trauma resulting in fractures of the underlying skeleton with regards to epidemiology and concomitant injuries. A retrospective review of all facial fractures at a level 1 trauma center in an urban environment was performed for the years 2000 to 2012. Patients aged 18 years or younger were included. Patient demographics were collected, as well as location of fractures, concomitant injuries, and surgical management strategies. A significance value of 5% was used. During this period, there were 3147 facial fractures treated at our institution, 353 of which were pediatric patients. Upon further review, 68 patients were excluded because of insufficient data for analysis, leaving 285 patients for review. The mean age of patients was 14.2 years with a male predominance (77.9%). The mechanism of injury was assault in 108 (37.9%), motor vehicle accident in 68 (23.9%), pedestrian struck in 41 (14.4%), fall in 26 (9.1%), sporting accident in 20 (7.0%), and gunshot injury in 16 (5.6%). The mean Glasgow Coma Scale (GCS) on arrival to the emergency department was 13.7. The most common fractures were those of the mandible (29.0%), orbit (26.5%), nasal bone (14.4%), zygoma (7.7%), and frontal bone/frontal sinus (7.5%). Intracranial hemorrhage was present in 70 patients (24.6%). A skull fracture was present in 50 patients (17.5%). A long bone fracture was present in 36 patients (12.6%). A pelvic or thoracic fracture was present in 30 patients (10.5%). A cervical spine

  14. Evaluation of morphological changes in the adult skull with age and sex.

    PubMed

    Urban, Jillian E; Weaver, Ashley A; Lillie, Elizabeth M; Maldjian, Joseph A; Whitlow, Christopher T; Stitzel, Joel D

    2016-12-01

    The morphology of the brain and skull are important in the evaluation of the aging human; however, little is known about how the skull may change with age. The objective of this study was to evaluate the morphological changes of the adult skull using three-dimensional geometric morphometric analysis of thousands of landmarks with the focus on anatomic regions that may be correlated with brain atrophy and head injury. Computed tomography data were collected between ages 20 and 100. Each scan was segmented using thresholding techniques. An atlas image of a 50th percentile skull was registered to each subject scan by computing a series of rigid, affine, and non-linear transformations between atlas space and subject space. Landmarks on the atlas skull were transformed to each subject and partitioned into the inner and outer cranial vault and the cranial fossae. A generalized Procrustes analysis was completed for the landmark sets. The coordinate locations describing the shape of each region were regressed with age to generate a model predicting the landmark location with age. Permutation testing was performed to assess significant changes with age. For the males, all anatomic regions reveal significant changes in shape with age except for the posterior cranial fossa. For the females, only the middle cranial fossa and anterior cranial fossa were found to change significantly in shape. Results of this study are important for understanding the adult skull and how shape changes may pertain to brain atrophy, aging, and injury. © 2014 Anatomical Society.

  15. Mirror-Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction.

    PubMed

    Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk

    2015-08-01

    Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and

  16. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes

    PubMed Central

    Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.

    2017-01-01

    The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of

  17. A Giant Pliosaurid Skull from the Late Jurassic of England

    PubMed Central

    Benson, Roger B. J.; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard

    2013-01-01

    Pliosaurids were a long-lived and cosmopolitan group of marine predators that spanned 110 million years and occupied the upper tiers of marine ecosystems from the Middle Jurassic until the early Late Cretaceous. A well-preserved giant pliosaurid skull from the Late Jurassic Kimmeridge Clay Formation of Dorset, United Kingdom, represents a new species, Pliosaurus kevani. This specimen is described in detail, and the taxonomy and systematics of Late Jurassic pliosaurids is revised. We name two additional new species, Pliosaurus carpenteri and Pliosaurus westburyensis, based on previously described relatively complete, well-preserved remains. Most or all Late Jurassic pliosaurids represent a globally distributed monophyletic group (the genus Pliosaurus, excluding ‘Pliosaurus’ andrewsi). Despite its high species diversity, and geographically widespread, temporally extensive occurrence, Pliosaurus shows relatively less morphological and ecological variation than is seen in earlier, multi-genus pliosaurid assemblages such as that of the Middle Jurassic Oxford Clay Formation. It also shows less ecological variation than the pliosaurid-like Cretaceous clade Polycotylidae. Species of Pliosaurus had robust skulls, large body sizes (with skull lengths of 1.7–2.1 metres), and trihedral or subtrihedral teeth suggesting macropredaceous habits. Our data support a trend of decreasing length of the mandibular symphysis through Late Jurassic time, as previously suggested. This may be correlated with increasing adaptation to feeding on large prey. Maximum body size of pliosaurids increased from their first appearance in the Early Jurassic until the Early Cretaceous (skull lengths up to 2360 mm). However, some reduction occurred before their final extinction in the early Late Cretaceous (skull lengths up to 1750 mm). PMID:23741520

  18. Use of Pedicled Trapezius Myocutaneous Flap for Posterior Skull Reconstruction.

    PubMed

    Singh, Mansher; Rios Diaz, Arturo J; Cauley, Ryan; Smith, Timothy R; Caterson, E J

    2015-09-01

    Soft-tissue defects in posterior skull can be challenging for reconstruction. If related to tumor resection, these wound beds are generally irradiated and can be difficult from a recipient-vessel perspective for a free tissue transfer. Locoregional flaps might prove to be important reconstructive option in such patients. There is a very limited data on the usage of pedicled trapezius myocutaneous flaps for such defects. The authors reviewed existing study for usage of trapezius flap for posterior skull repair and used pedicled trapezius myocutaneous flaps based on the descending branch of superficial cervical artery (SCA) for reconstruction of posterior skull soft-tissue defect in an irradiated and infected wound. Two patients were operated for trapezius myocutaneous flap for posterior skull defects complicated by cerebrospinal fluid (CSF) leakage and epidural abscess. There was no recipient or donor-site complication at a mean follow-up of 12.5 months. Neither of the 2 patients had any functional deficits for the entire duration of the follow-up. Although this flap was able to help in controlling the CSF leakage in the first patient, it successfully healed the cavity generated from epidural abscess drainage in the second patient. The large angle of rotation coupled with the ability to complete the procedure without repositioning the patients makes trapezius myocutaneous flap an attractive option for posterior skull reconstruction. In our limited experience, the pedicled trapezius flaps are a reliable alternative as they are well vascularized and able to obliterate the soft-tissue defect completely. The recipient site healed completely in infected as well as irradiated wound beds. In addition, the donor site can be primarily closed with minimal donor-associated complication.

  19. Relationship between the cranial base and the mandible in artificially deformed skulls.

    PubMed

    Ferros, I; Mora, M J; Obeso, I F; Jimenez, P; Martinez-Insua, A

    2016-11-01

    There is controversy regarding the relationship between mandibular position and alterations of the cranial base that provoke a more anterior location of the glenoid fossa. Artificially deformed skulls display marked alterations of the cranial base. This study evaluates mandibular changes as function of the morphology of the cranial base in these skulls. A geometric morphometric study was performed on lateral cephalometric X-rays of three groups of skulls: 32 with anteroposterior deformity, 17 with circumferential deformity and 39 with no apparent deformity. In artificially deformed skulls, the cranial base was deformed causing the mandibular condyle to be in a more anterior position. There was a complete remodelling of the mandible involving narrowing and elongation of the mandibular ramus, rotation of the corpus of the mandible and increased vertical height of the symphysis. Forward displacement did not occur. Integration between mandible and cranial base is not altered by deformation of the skull. Deformity of the cranial vault exerts an influence on the mandible, supporting the theory of modular units in complete integration. This also supports the theory that mandibular prognathism is a multifactorial result and not a direct effect of displacement of the cranial base. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Frequency of intrathoracic injuries in children younger than 3 years with rib fractures.

    PubMed

    Darling, Stephen E; Done, Stephen L; Friedman, Seth D; Feldman, Kenneth W

    2014-10-01

    Research documents that among children admitted to trauma intensive care units the number of rib fractures sustained indicates the child's likelihood of having and severity of intrathoracic injury. This has been misused in court to argue that children with multiple rib fractures who lack intrathoracic injury have abnormal bone fragility rather than inflicted injury. To determine frequency of intrathoracic injuries in children younger than 3 years with rib fractures in cases of child abuse and accidental trauma. We conducted a retrospective review of rib fractures caused by documented abuse or accidents from 2003 to 2010 in children treated at Seattle Children's Hospital and Harborview Medical Center. A senior pediatric radiologist and radiology fellow independently reviewed the imaging. Children with bone demineralization were excluded. Descriptive and simple comparative statistics were used. Seventy-two percent (47/65) of infants and toddlers with rib fractures were abused. Abused children had more rib fractures than accidentally injured children (5.55 vs. 3.11, P = 0.012). However intrathoracic injuries as a whole (55.6% vs. 12.8%, P < 0.001) and individual types of intrathoracic injuries were more common with accidents. Rates of other thoracic cage injuries did not differ substantially (27.8% accidents vs. 12.8% abuse, P = 0.064). Intracranial and intra-abdominal injuries and skull fractures were equally frequent, but other extrathoracic fractures were more common with abuse (70.2% vs. 16.7%, P < 0.001). Abused infants and toddlers have fewer intrathoracic injuries but more rib fractures than accidentally injured peers. This likely reflects different injury mechanics. Lack of intrathoracic injuries in abused children with rib fractures does not imply bone fragility.

  1. The Making of a Skull Base Team and the Value of Multidisciplinary Approach in the Management of Sinonasal and Ventral Skull Base Malignancies.

    PubMed

    Snyderman, Carl H; Wang, Eric W; Fernandez-Miranda, Juan C; Gardner, Paul A

    2017-04-01

    The management of sinonasal and ventral skull base malignancies is best performed by a team. Although the composition of the team may vary, it is important to have multidisciplinary representation. There are multiple obstacles, both individual and institutional, that must be overcome to develop a highly functioning team. Adequate training is an important part of team-building and can be fostered with surgical telementoring. A quality improvement program should be incorporated into the activities of a skull base team. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evidence-based medicine: Mandible fractures.

    PubMed

    Morrow, Brad T; Samson, Thomas D; Schubert, Warren; Mackay, Donald R

    2014-12-01

    After studying this article, the participant should be able to: 1. Describe the anatomy and subunits of the mandible. 2. Review the cause and epidemiology of mandible fractures. 3. Discuss the preoperative evaluation and diagnostic imaging. 4. Understand the principles and techniques of mandible fracture reduction and fixation. The management of mandibular fractures has undergone significant improvement because of advancements in plating technology, imaging, and instrumentation. As the techniques in management continue to evolve, it is imperative for the practicing physician to remain up-to-date with the growing body of scientific literature. The objective of this Maintenance of Certification article is to present a review of the literature so that the physician may make treatment recommendation based on the best evidence available. Pediatric fractures have been excluded from this article.

  3. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography.

    PubMed

    Yin, Ziying; Sui, Yi; Trzasko, Joshua D; Rossman, Phillip J; Manduca, Armando; Ehman, Richard L; Huston, John

    2018-05-17

    To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    DTIC Science & Technology

    1979-08-01

    23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3

  5. A Comparative Taphonomic Analysis of 24 Trophy Skulls from Modern Forensic Cases.

    PubMed

    Yucha, Josephine M; Pokines, James T; Bartelink, Eric J

    2017-09-01

    Cranial remains retained from fallen enemies are commonly referred to as "trophy skulls," and many such crania were acquired as souvenirs by U.S. servicemembers during WWII and the Vietnam conflict. These remains increasingly have become the subject of forensic anthropological analysis as their possessors, typically veterans or their relatives, try to discard or repatriate them. The present research uses a qualitative analytical approach to review 24 cases of reported trophy skulls (14 previously unpublished cases and 10 from the literature) to determine which perimortem and postmortem characteristics are most useful for generating a taphonomic profile. Overall, the taphonomic signature of trophy remains includes traits relating to acquisition and preparation, ornamental display, and subsequent curation. Contextual evidence and the biological profile also are considered when determining the possible origin of human cranial remains as a trophy skull. Thorough taphonomic analysis will aid in identifying these types of remains as trophy skulls. © 2017 American Academy of Forensic Sciences.

  6. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen

    2016-05-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  7. Neck swelling due to skull base (pseudo)meningocele protruding through a congenital skull base bone defect: a case report.

    PubMed

    Sharma, Rajeev; Singh, Bhoopendra; Kedia, Shweta; Laythalling, Rajinder Kumar

    2017-02-01

    Meningocele is defined as a protrusion of the meninges through an opening in the skull or spinal column, forming a bulge or sac filled with cerebrospinal fluid. A pseudomeningocele is defined as a cerebrospinal fluid (CSF) collection formed due to escape of CSF through a dural defect with trapping of CSF into the surrounding soft tissues. We herby report rare occurrence of a large (pseudo)meningocele in a young patient with congenital skull base defect presenting as upper lateral neck swelling. We present the case of a 17-year-old boy who had painless progressive swelling right side of the upper neck without any history of meningitis or CSF leak. He had a history of undergoing cranioplasty using steel plates for nontraumatic boggy swelling right parieto-occipital region at the age of 5 years at another hospital. Clinical examination showed painless swelling right side of the upper neck, with positive cough impulse and transillumination. CT head with cisternography showed a large right skull base defect through which a large pseudomeningocele was herniating, thus producing upper neck swelling and compressing oral cavity. The neck swelling and intraoral bulge reduced in size after the coperitoneal shunt. Differential diagnosis of (pseudo)meningocele should be considered while evaluating a painless progressive upper neck swelling having cough impulse and transillumination in a young patient.

  8. Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer.

    PubMed

    Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J

    2018-03-01

    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.

  9. Surgical Treatment of Pediatric Craniofacial Fractures: A National Perspective.

    PubMed

    Massenburg, Benjamin B; Sanati-Mehrizy, Paymon; Taub, Peter J

    2015-11-01

    Head trauma is the most common cause of death because of injury in children, and trauma alone is the leading cause of morbidity and mortality in pediatrics. This study aimed to characterize the demographics and economic burden associated with the surgical and nonsurgical repair of craniofacial fractures in the pediatric inpatient population in the United States. A retrospective cohort study was performed using the 2012 Kids' Inpatient Database which identified 20,070 patients who had a skull or facial fracture, of whom 6395 (31.9%) were treated surgically. Epidemiologic patient and hospital data were analyzed as potential determinants of surgical treatment, prolonged hospitalizations, and higher charges. Pediatric craniofacial fractures are estimated to represent $1.2 billion of national healthcare expenditures annually. The average patient charge for surgical treatment of a craniofacial fracture in the pediatric population is $84,849 compared with $52,490 for nonsurgical management (P < 0.001), and the average length of stay was longer for surgical repair when compared with nonsurgical management for craniofacial fractures (5.3 days versus 4.6 days, P < 0.001). Patients who were older, African American, had nonprivate insurance, whose fracture was caused by external trauma, and who were treated in an urban hospital had an independently increased likelihood of surgical repair of craniofacial fractures. Patients who were older, female, insured, of lower income brackets, whose fracture was caused by a motor vehicle accident, who had surgical treatment of their craniofacial fracture, and who were treated in hospitals in the South, Midwest, or West, teaching hospitals, and government-owned hospitals had an independent risk for a prolonged hospitalization. Patients who were older, Caucasian, insured, whose fracture was caused by a motor vehicle accident, and who were treated in hospitals in the South, teaching hospitals, pediatric hospitals, larger hospitals

  10. Knowledge of skull base anatomy and surgical implications of human sacrifice among pre-Columbian Mesoamerican cultures.

    PubMed

    Lopez-Serna, Raul; Gomez-Amador, Juan Luis; Barges-Coll, Juan; Arriada-Mendicoa, Nicasio; Romero-Vargas, Samuel; Ramos-Peek, Miguel; Celis-Lopez, Miguel Angel; Revuelta-Gutierrez, Rogelio; Portocarrero-Ortiz, Lesly

    2012-08-01

    Human sacrifice became a common cultural trait during the advanced phases of Mesoamerican civilizations. This phenomenon, influenced by complex religious beliefs, included several practices such as decapitation, cranial deformation, and the use of human cranial bones for skull mask manufacturing. Archaeological evidence suggests that all of these practices required specialized knowledge of skull base and upper cervical anatomy. The authors conducted a systematic search for information on skull base anatomical and surgical knowledge among Mesoamerican civilizations. A detailed exposition of these results is presented, along with some interesting information extracted from historical documents and pictorial codices to provide a better understanding of skull base surgical practices among these cultures. Paleoforensic evidence from the Great Temple of Tenochtitlan indicates that Aztec priests used a specialized decapitation technique, based on a deep anatomical knowledge. Trophy skulls were submitted through a stepwise technique for skull mask fabrication, based on skull base anatomical landmarks. Understanding pre-Columbian Mesoamerican religions can only be realized by considering them in their own time and according to their own perspective. Several contributions to medical practice might have arisen from anatomical knowledge emerging from human sacrifice and decapitation techniques.

  11. Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial nerves, and intracranial vasculature.

    PubMed

    Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej

    2015-05-15

    Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study.

    PubMed

    Swaney, Philip J; Gilbert, Hunter B; Webster, Robert J; Russell, Paul T; Weaver, Kyle D

    2015-03-01

    Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.

  13. A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry

    PubMed Central

    Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.

    2011-01-01

    Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792

  14. Low-grade fibrosarcoma of the anterior skull base: endoscopic resection and repair.

    PubMed

    Kuhn, Frederick A; Javer, Amin R

    2003-01-01

    Fibrosarcomas of the paranasal sinuses and skull base are uncommon tumors. Traditionally, "open approach" surgery remains the mainstay for treatment of choice for these tumors. A 49-year-old man underwent resection of a right anterior skull base fibrosarcoma using the endoscopic approach. Close follow-up using both endoscopic and imaging methods over a period of four years has revealed a well-healed skull base with no evidence of recurrence. Significant resistance exists at present for such a technique to deal with malignant diseases of the head and neck but results from advanced centers continue to prove that this may be a technique worth mastering and improving on.

  15. Harvey Cushing's Treatment of Skull Base Infections: The Johns Hopkins Experience

    PubMed Central

    Somasundaram, Aravind; Pendleton, Courtney; Raza, Shaan M.; Boahene, Kofi; Quinones-Hinojosa, Alfredo

    2012-01-01

    Objectives In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to infections of the skull base. Design Following institutional review board (IRB) approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Setting The Johns Hopkins Hospital, 1896 to 1912. Participants Eleven patients underwent operative treatment for suspected infections of the skull base. Main Outcome Measures The main outcome measure was operative approach, postoperative mortality, and condition recorded at the time of discharge. Results Eleven patients underwent operative intervention for infections of the skull base. The mean age was 30 years (range: 9 to 63). Of these patients, seven (64%) were female. The mean length of stay was 16.5 days (range: 4 to 34). Postoperatively eight patients were discharged in “well” or “good” condition, one patient remained “unimproved,” and two patients died during their admission. Conclusion Cushing's careful preoperative observation of patients, meticulous operative technique, and judicious use of postoperative drainage catheters contributed to a remarkably low mortality rate in his series of skull base infections. PMID:24083129

  16. Retrieval and clinical analysis of distraction-based dual growing rod constructs for early-onset scoliosis.

    PubMed

    Hill, Genevieve; Nagaraja, Srinidhi; Akbarnia, Behrooz A; Pawelek, Jeff; Sponseller, Paul; Sturm, Peter; Emans, John; Bonangelino, Pablo; Cockrum, Joshua; Kane, William; Dreher, Maureen

    2017-10-01

    Growing rod constructs are an important contribution for treating patients with early-onset scoliosis. These devices experience high failure rates, including rod fractures. The objective of this study was to identify the failure mechanism of retrieved growing rods, and to identify differences between patients with failed and intact constructs. Growing rod patients who had implant removal and were previously enrolled in a multicenter registry were eligible for this study. Forty dual-rod constructs were retrieved from 36 patients across four centers, and 34 of those constructs met the inclusion criteria. Eighteen constructs failed due to rod fracture. Sixteen intact constructs were removed due to final fusion (n=7), implant exchange (n=5), infection (n=2), or implant prominence (n=2). Analyses of clinical registry data, radiographs, and retrievals were the outcome measures. Retrievals were analyzed with microscopic imaging (optical and scanning electron microscopy) for areas of mechanical failure, damage, and corrosion. Failure analyses were conducted on the fracture surfaces to identify failure mechanism(s). Statistical analyses were performed to determine significant differences between the failed and intact groups. The failed rods fractured due to bending fatigue under flexion motion. Construct configuration and loading dictate high bending stresses at three distinct locations along the construct: (1) mid-construct, (2) adjacent to the tandem connector, or (3) adjacent to the distal anchor foundation. In addition, high torques used to insert set screws may create an initiation point for fatigue. Syndromic scoliosis, prior rod fractures, increase in patient weight, and rigid constructs consisting of tandem connectors and multiple crosslinks were associated with failure. This is the first study to examine retrieved, failed growing rod implants across multiple centers. Our analysis found that rod fractures are due to bending fatigue, and that stress concentrations

  17. Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Al-Ansary, Mariam Luay Y.

    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull's geometry is known. Measuring the skull's geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15lambda +/- 0.11lambda or 0.09 +/- 0.07mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32lambda +/- 0.25lambda or 0.19 +/- 0.15mm from the actual profile.

  18. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  19. The first skull of the earliest giant panda

    PubMed Central

    Jin, Changzhu; Ciochon, Russell L.; Dong, Wei; Hunt, Robert M.; Liu, Jinyi; Jaeger, Marc; Zhu, Qizhi

    2007-01-01

    Fossils of the giant panda Ailuropoda (Order Carnivora, Family Ursidae) are largely isolated teeth, mandibles, and a few rare skulls, known from the late Pliocene to late Pleistocene in China and Southeast Asia. Much of this material represents a Pleistocene chronospecies, Ailuropoda baconi, an animal larger than the living giant panda, Ailuropoda melanoleuca. The earliest certain record of Ailuropoda is the late Pliocene chronospecies, Ailuropoda microta, smaller than either A. baconi or A. melanoleuca, and previously known only from teeth and a few mandibles from karst caves in south China. Here, we report the discovery of the first skull of A. microta, establishing its cranial anatomy and demonstrating that the specialized cranial and dental adaptations of Ailuropoda for durophagous feeding behavior centered on bamboo were already evident in this late Pliocene species. The skull from Jinyin cave (Guangxi) and dental remains from other karst localities in southeastern China show that Ailuropoda microta occupied south China from ≈2 to 2.4 Myr ago after a marked global climatic deterioration. Dental and basicranial anatomy indicate a less specialized morphology early in the history of the lineage and support derivation of the giant panda from the Miocene Asian ursid Ailurarctos PMID:17578912

  20. Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds.

    PubMed

    Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat

    2018-04-03

    Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft

  1. P14.05 How far can they grow... - Two clinical examples

    PubMed Central

    Espírito Santo, V.; Mendes, M.; Almendra, R.; Veiga, A.; Velon, A.; Guimarães, P.

    2017-01-01

    Abstract Introduction: Cerebral metastases are the most common form of central nervous system (CNS) tumours in adults. However, malignant neoplasm may also involve structures external to the brain, such as tissue surrounding the base of the skull, and then metastasize to the brain either by direct invasion or by spreading by the cranial nerves. CASE1: A 74 year-old man, with a past history of chronic kidney disease due to renal artery thrombosis and hypertension, was admitted in the emergency room (ER) complaining of persisting pain in the superior half of the right hemiface and frontal region, refractory to analgesia, with 2 months of evolution. He also referred diplopia in the right eye, homolateral hearing loss and asthenia. Neurological examination revealed psychomotor retardation, right VI cranial nerve paralysis, right sensorineural hypoacusis and dysphagia. Brain and neck MRI showed a lesion in right nasopharynx that invaded the bony structures of the base of the skull, in particular the petrous apex, clivus and great sphenoid wing. It also had an endocranial soft tissue component that occupied the cistern of Gasser’s ganglion. He was diagnosed with a nasopharynx malignant neoplasm. His clinical status deteriorated rapidly and he died 1 month later. CASE2: A 68 year-old woman, with a past history of left great sphenoid wing meningioma that was removed 2 years ago, was admitted in the ER complaining of tinnitus and hearing loss in the left ear and dizziness. Neurological examination revealed peripheral left facial paralysis, which the patient claims to have arisen shortly after the previous surgery and left conductive hypoacusis. Brain MRI showed a lesion in the left parotid gland that invaded the petrous bone, infiltrating the jugular foramen and carotid canal, causing deformation of these vascular structures. She was diagnosed with a parotid gland malignant neoplasm that slowly grow in the last 2 years. By this moment, she is still waiting for a

  2. The ecological origins of snakes as revealed by skull evolution.

    PubMed

    Da Silva, Filipe O; Fabre, Anne-Claire; Savriama, Yoland; Ollonen, Joni; Mahlow, Kristin; Herrel, Anthony; Müller, Johannes; Di-Poï, Nicolas

    2018-01-25

    The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.

  3. Facial artery musculomucosal flap for reconstruction of skull base defects: a cadaveric study.

    PubMed

    Xie, Liyue; Lavigne, François; Rahal, Akram; Moubayed, Sami Pierre; Ayad, Tareck

    2013-08-01

    Failure in skull base defects reconstruction following tumor resection can have serious consequences such as ascending meningitis and pneumocephaly. The nasoseptal flap showed a very low incidence of cerebrospinal fluid leak but is not always available. The superiorly pedicled facial artery musculomucosal (FAMM) flap has been successfully used for reconstruction of head and neck defects. Our objective is to show that the FAMM flap can be used as a new alternative in skull base reconstruction. Cadaveric study. Feasibility. Thirteen specimens underwent bilateral FAMM flap dissection. Two new modifications of the traditional FAMM flap have been developed. Feasibility in FAMM flap transfer to the skull base was investigated through endoscopic skull base dissection and maxillectomy in four specimens. Measurements were recorded for each harvested flap. The mean surface area of the modified FAMM flap efficient for reconstruction was 15.90 cm(2) . The flaps easily covered the simulated defects of the frontal sinus and the fovea ethmoidalis areas. Modifications of the traditional FAMM flap were necessary for a tension-free coverage of the planum sphenoidale and sella turcica. The FAMM flap holds high potential as a new alternative vascular flap in skull base reconstruction. However, it has not been used in patients yet and should be considered only when other options are not available. New modifications developed in this article can elongate the traditional FAMM flap, potentially contributing to a tighter seal of the skull base defect than FAMM flap alone. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Image guidance systems for minimally invasive sinus and skull base surgery in children.

    PubMed

    Benoit, Margo McKenna; Silvera, V Michelle; Nichollas, Richard; Jones, Dwight; McGill, Trevor; Rahbar, Reza

    2009-10-01

    The use of image guidance for sinonasal and skull base surgery has been well-characterized in adults but there is limited information on the use of these systems in the pediatric population, despite their widespread use. The aim of this study is to evaluate the use of image guidance systems to facilitate an endoscopic minimally invasive approach to sinonasal and skull base surgery in a pediatric population. A retrospective cohort study was performed at a tertiary pediatric hospital. Thirty-three children presented with complications of sinusitis, tumors, traumatic, or congenital lesions of the skull base and underwent endoscopic surgery using image guidance from March 2000 to April 2007. Patient variables including diagnosis, extent of disease, and complications were extracted from paper and computer charts. Additional surgical variables including set-up time, accuracy, surgeon satisfaction index and number of uses per case were also reviewed. Twenty-eight patients (85%) underwent sinonasal surgery and five (15%) underwent skull base surgery. Indications included infectious complications of acute sinusitis (N=15), neoplasms (N=12), choanal atresia (N=4), and cerebrospinal fluid leak (N=2). Thirty-one patients (94%) required only one procedure. No surgical complications were reported. Surgeon satisfaction, mean accuracy and number of uses per procedure increased over time (p<0.05). Image guidance systems are safe and effective tools that facilitate a minimally invasive approach to sinonasal and skull base surgery in children. Consistent with adult literature, usage and surgeon comfort increased with experience. The additional anatomical information obtained by image guidance systems facilitates a minimally invasive endoscopic approach for sinonasal and skull base pathologies.

  5. [The anatomy of a reduced skull model--visualisation of Leonardo da Vinci's anthropology].

    PubMed

    Ahner, E

    2008-04-02

    The article focuses on a rare example of a miniature skull of unknown origin. The profoundness of the anatomical details, conjoint with outstanding virtuosity, reminds of Leonardo da Vinci's anatomical skull studies and asks for additional interpretation beside the emblematic "memento mori"-character. Following the miscellaneous topics of his skull studies an anatomical-anthropological interpretation is proposed. For such a project the mergence of anthropology, history of medicine and history of art was mandatory. Concerning some discrepancies within the anatomical realism, the depiction of a pathology is discussed and beyond the visualisation of a historic concept of brain function.

  6. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  7. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    PubMed

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  9. The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data.

    PubMed

    Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron

    2016-10-25

    Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.

  10. Evolutionary origin of the turtle skull.

    PubMed

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  11. Evolution of Skull and Mandible Shape in Cats (Carnivora: Felidae)

    PubMed Central

    Christiansen, Per

    2008-01-01

    The felid family consists of two major subgroups, the sabretoothed and the feline cats, to which all extant species belong, and are the most anatomically derived of all carnivores for predation on large prey with a precision killing bite. There has been much controversy and uncertainty about why the skulls and mandibles of sabretoothed and feline cats evolved to become so anatomically divergent, but previous models have focused on single characters and no unifying hypothesis of evolutionary shape changes has been formulated. Here I show that the shape of the skull and mandible in derived sabrecats occupy entirely different positions within overall morphospace from feline cats, and that the evolution of skull and mandible shape has followed very different paths in the two subgroups. When normalised for body-size differences, evolution of bite forces differ markedly in the two groups, and are much lower in derived sabrecats, and they show a significant relationship with size and cranial shape, whereas no such relationship is present in feline cats. Evolution of skull and mandible shape in modern cats has been governed by the need for uniform powerful biting irrespective of body size, whereas in sabrecats, shape evolution was governed by selective pressures for efficient predation with hypertrophied upper canines at high gape angles, and bite forces were secondary and became progressively weaker during sabrecat evolution. The current study emphasises combinations of new techniques for morphological shape analysis and biomechanical studies to formulate evolutionary hypotheses for difficult groups. PMID:18665225

  12. Neomorphosis and heterochrony of skull shape in dog domestication.

    PubMed

    Geiger, Madeleine; Evin, Allowen; Sánchez-Villagra, Marcelo R; Gascho, Dominic; Mainini, Cornelia; Zollikofer, Christoph P E

    2017-10-18

    The overall similarity of the skull shape of some dog breeds with that of juvenile wolves begs the question if and how ontogenetic changes such as paedomorphosis (evolutionary juvenilisation) played a role in domestication. Here we test for changes in patterns of development and growth during dog domestication. We present the first geometric morphometric study using ontogenetic series of dog and wolf crania, and samples of dogs with relatively ancestral morphology and from different time periods. We show that patterns of juvenile-to-adult morphological change are largely similar in wolves and domestic dogs, but differ in two ways. First, dog skulls show unique (neomorphic) features already shortly after birth, and these features persist throughout postnatal ontogeny. Second, at any given age, juvenile dogs exhibit skull shapes that resemble those of consistently younger wolves, even in dog breeds that do not exhibit a 'juvenilized' morphology as adults. These patterns exemplify the complex nature of evolutionary changes during dog domestication: the cranial morphology of adult dogs cannot simply be explained as either neomorphic or paedomorphic. The key to our understanding of dog domestication may lie in a closer comparative examination of developmental phases.

  13. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.

    PubMed

    Toro-Ibacache, Viviana; Zapata Muñoz, Víctor; O'Higgins, Paul

    2016-01-01

    The human skull is gracile when compared to many Middle Pleistocene hominins. It has been argued that it is less able to generate and withstand high masticatory forces, and that the morphology of the lower portion of the modern human face correlates most strongly with dietary characteristics. This study uses geometric morphometrics and finite element analysis (FEA) to assess the relationship between skull morphology, muscle force and cranial deformations arising from biting, which is relevant in understanding how skull morphology relates to mastication. The three-dimensional skull anatomies of 20 individuals were reconstructed from medical computed tomograms. Maximal contractile muscle forces were estimated from muscular anatomical cross-sectional areas (CSAs). Fifty-nine landmarks were used to represent skull morphology. A partial least squares analysis was performed to assess the association between skull shape and muscle force, and FEA was used to compare the deformation (strains) generated during incisor and molar bites in two individuals representing extremes of morphological variation in the sample. The results showed that only the proportion of total muscle CSA accounted for by the temporalis appears associated with skull morphology, albeit weekly. However, individuals with a large temporalis tend to possess a relatively wider face, a narrower, more vertically oriented maxilla and a lower positioning of the coronoid process. The FEAs showed that, despite differences in morphology, biting results in similar modes of deformation for both crania, but with localised lower magnitudes of strains arising in the individual with the narrowest, most vertically oriented maxilla. Our results suggest that the morphology of the maxilla modulates the transmission of forces generated during mastication to the rest of the cranium by deforming less in individuals with the ability to generate proportionately larger temporalis muscle forces. Copyright © 2015 Elsevier GmbH. All

  14. Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka

    2010-04-01

    First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.

  15. Dog behavior co-varies with height, bodyweight and skull shape.

    PubMed

    McGreevy, Paul D; Georgevsky, Dana; Carrasco, Johanna; Valenzuela, Michael; Duffy, Deborah L; Serpell, James A

    2013-01-01

    Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (p<0.001) with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape

  16. Clinical diagnostic dilemma of intracranial germinoma manifesting as wide skull base extension.

    PubMed

    Zhou, Zhi-hang; Zhang, Hai-bo; Rao, Jun; Bian, Xiu-wu

    2014-09-01

    The aims of this study were to present an uncommon intracranial germinoma manifesting as skull base extension and analyze its clinical characteristics to give valuable insight into such uncommon radiologic variant. This is a clinical study of a 15-year-old girl with intracranial germinoma manifesting as skull base extension. Clinical characteristics, magnetic resonance imaging scan observations, pathologic findings, and flow of the treatment procedure were presented and analyzed. She had a 5-month history of diuresis and diplopia. magnetic resonance imaging observation displayed a neoplasm located in the right-side central skull base and suprasellar area with wide extension into the cavernous sinus, intraorbital region, ethmoidal sinus, sphenoid sinus, and pituitary fossa. After administration of contrast medium, strong and heterogeneous enhancement of the mass was observed, with a dural tail sign along the right cerebellar tentorial. Right pterional approach was performed, and intraoperative histologic examination suspected the diagnosis of germinoma; partial resection was achieved, and postoperative radiotherapy was administered. Cranial nerve palsy improved greatly 6 months postoperatively. Although highly unusual, germinoma should be included in the differential diagnosis of all masses with extension along the midline region of skull base, especially when it happens in young female patients.

  17. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process.

    PubMed

    Huotilainen, Eero; Jaanimets, Risto; Valášek, Jiří; Marcián, Petr; Salmi, Mika; Tuomi, Jukka; Mäkitie, Antti; Wolff, Jan

    2014-07-01

    The process of fabricating physical medical skull models requires many steps, each of which is a potential source of geometric error. The aim of this study was to demonstrate inaccuracies and differences caused by DICOM to STL conversion in additively manufactured medical skull models. Three different institutes were requested to perform an automatic reconstruction from an identical DICOM data set of a patients undergoing tumour surgery into an STL file format using their software of preference. The acquired digitized STL data sets were assessed and compared and subsequently used to fabricate physical medical skull models. The three fabricated skull models were then scanned, and differences in the model geometries were assessed using established CAD inspection software methods. A large variation was noted in size and anatomical geometries of the three physical skull models fabricated from an identical (or "a single") DICOM data set. A medical skull model of the same individual can vary markedly depending on the DICOM to STL conversion software and the technical parameters used. Clinicians should be aware of this inaccuracy in certain applications. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.

    PubMed

    Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto

    2016-04-01

    MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.

  19. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  20. 3D shape recovery of a newborn skull using thin-plate splines.

    PubMed

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  1. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance

  2. How We Got Here: Evolutionary Changes in Skull Shape in Humans & Their Ancestors

    ERIC Educational Resources Information Center

    Price, Rebecca M.

    2012-01-01

    This activity uses inquiry to investigate how large changes in shape can evolve from small changes in the timing of development. Students measure skull shape in fetal, infant, juvenile, and adult chimpanzees and compare them to adult skulls of "Homo sapiens," "Homo erectus," and "Australopithecus afarensis." They conclude by re-interpreting their…

  3. Collagen matrix as an inlay in endoscopic skull base reconstruction.

    PubMed

    Oakley, G M; Christensen, J M; Winder, M; Jonker, B P; Davidson, A; Steel, T; Teo, C; Harvey, R J

    2018-03-01

    Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described. A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined. Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients. Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.

  4. Conceptual transitions in methods of skull-photo superimposition that impact the reliability of identification: a review.

    PubMed

    Jayaprakash, Paul T

    2015-01-01

    Establishing identification during skull-photo superimposition relies on correlating the salient morphological features of an unidentified skull with those of a face-image of a suspected dead individual using image overlay processes. Technical progression in the process of overlay has included the incorporation of video cameras, image-mixing devices and software that enables real-time vision-mixing. Conceptual transitions occur in the superimposition methods that involve 'life-size' images, that achieve orientation of the skull to the posture of the face in the photograph and that assess the extent of match. A recent report on the reliability of identification using the superimposition method adopted the currently prevalent methods and suggested an increased rate of failures when skulls were compared with related and unrelated face images. The reported reduction in the reliability of the superimposition method prompted a review of the transition in the concepts that are involved in skull-photo superimposition. The prevalent popular methods for visualizing the superimposed images at less than 'life-size', overlaying skull-face images by relying on the cranial and facial landmarks in the frontal plane when orienting the skull for matching and evaluating the match on a morphological basis by relying on mix-mode alone are the major departures in the methodology that may have reduced the identification reliability. The need to reassess the reliability of the method that incorporates the concepts which have been considered appropriate by the practitioners is stressed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. The role of three-dimensional printed models of skull in anatomy education: a randomized controlled trail.

    PubMed

    Chen, Shi; Pan, Zhouxian; Wu, Yanyan; Gu, Zhaoqi; Li, Man; Liang, Ze; Zhu, Huijuan; Yao, Yong; Shui, Wuyang; Shen, Zhen; Zhao, Jun; Pan, Hui

    2017-04-03

    Three-dimensional (3D) printed models represent educational tools of high quality compared with traditional teaching aids. Colored skull models were produced by 3D printing technology. A randomized controlled trial (RCT) was conducted to compare the learning efficiency of 3D printed skulls with that of cadaveric skulls and atlas. Seventy-nine medical students, who never studied anatomy, were randomized into three groups by drawing lots, using 3D printed skulls, cadaveric skulls, and atlas, respectively, to study the anatomical structures in skull through an introductory lecture and small group discussions. All students completed identical tests, which composed of a theory test and a lab test, before and after a lecture. Pre-test scores showed no differences between the three groups. In post-test, the 3D group was better than the other two groups in total score (cadaver: 29.5 [IQR: 25-33], 3D: 31.5 [IQR: 29-36], atlas: 27.75 [IQR: 24.125-32]; p = 0.044) and scores of lab test (cadaver: 14 [IQR: 10.5-18], 3D: 16.5 [IQR: 14.375-21.625], atlas: 14.5 [IQR: 10-18.125]; p = 0.049). Scores involving theory test, however, showed no difference between the three groups. In this RCT, an inexpensive, precise and rapidly-produced skull model had advantages in assisting anatomy study, especially in structure recognition, compared with traditional education materials.

  6. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  7. Evolution of skull shape in the family Salamandridae (Amphibia: Caudata).

    PubMed

    Ivanović, Ana; Arntzen, Jan W

    2018-03-01

    We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed. © 2017 Anatomical Society.

  8. Lesson to be remembered from a skull base tumor.

    PubMed

    Briet, C; Bernard, F; Rodien, P

    2017-09-01

    The natural history of giant prolactinomas is not known. While it is commonly accepted that the enlargement of microadenoma is rare and more limited than macroadenoma, it is so far uncommon that macroadenoma progress to giant adenoma. Thus, spontaneous enlargement of adenomas is poorly documented. We report the unusual history of undiagnosed microprolactinoma, revealed 12years later at the stage of a giant adenoma presenting as a skull base tumor. This unique observation provides information on the natural history of giant adenomas and arguments for particular attention to microadenomas with signs of invasion. Moreover, this clinical case highlights the need for a prolactin dosage for all midline skull base tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Variations in leopard cat (Prionailurus bengalensis) skull morphology and body size: sexual and geographic influences

    PubMed Central

    Oliveira, Luiz Flamarion B.

    2015-01-01

    The leopard cat, Prionailurus bengalensis (Kerr, 1792), is one of the most widespread Asian cats, occurring in continental eastern and southeastern Asia. Since 1929, several studies have focused on the morphology, ecology, and taxonomy of leopard cats. Nevertheless, hitherto there has been no agreement on basic aspects of leopard cat biology, such as the presence or absence of sexual dimorphism, morphological skull and body differences between the eleven recognized subspecies, and the biogeography of the different morphotypes. Twenty measurements on 25 adult leopard cat skulls from different Asian localities were analyzed through univariate and multivariate statistical approaches. Skull and external body measurements from studies over the last 77 years were assembled and organized in two categories: full data and summary data. Most of this database comprises small samples, which have never been statistically tested and compared with each other. Full data sets were tested with univariate and multivariate statistical analyses; summary data sets (i.e., means, SDs, and ranges) were analyzed through suitable univariate approaches. The independent analyses of the data from these works confirmed our original results and improved the overview of sexual dimorphism and geographical morphological variation among subspecies. Continental leopard cats have larger skulls and body dimensions. Skulls of Indochinese morphotypes have broader and higher features than those of continental morphotypes, while individuals from the Sunda Islands have skulls with comparatively narrow and low profiles. Cranial sexual dimorphism is present in different degrees among subspecies. Most display subtle sex-related variations in a few skull features. However, in some cases, sexual dimorphism in skull morphology is absent, such as in P. b. sumatranus and P. b. borneoensis. External body measurement comparisons also indicate the low degree of sexual dimorphism. Apart from the gonads, the longer hind

  10. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  11. Micro-mechanical properties of different sites on woodpecker's skull.

    PubMed

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  12. Anatomical and Radiographic Study on the Skull and Mandible of the Common Opossum (Didelphis Marsupialis Linnaeus, 1758) in the Caribbean.

    PubMed

    Mohamed, Reda

    2018-04-23

    Common opossums ( Didelphis marsupialis ) are found throughout the Caribbean island of Trinidad and Tobago. The present work was conducted on 10 skulls and mandibles of the common opossum to describe the osteology and foramina of these skulls and mandibles grossly and radiographically. The information that is garnered can be used to detect, diagnose, and treat head affections, as well as for comparative studies with the skulls and mandibles of other similar species. The skulls and mandibles were prepared and cleaned using standard method. All of the characteristic features of various standards views of the skulls bones, including dorsal, lateral, caudal and midsagittal, and the lateral and caudal views of the mandibles as well as the foramina of the skulls and mandibles were described and discussed. Each skull was divided into long facial and short cranial regions. No supraorbital foramen was observed in the skulls. The tympanic bulla was absent while there was the tympanic process of the alisphenoid. The temporal process of the zygomatic bone, zygomatic process of maxilla, and zygomatic process of the squamosal bone formed the zygomatic arch. The dental formula was confirmed. The bones and foramina of the skull and mandible were similar to other marsupial species and were homologue to that of other mammals.

  13. Burden of osteoporosis and fractures.

    PubMed

    Keen, Richard W

    2003-09-01

    Osteoporosis currently affects up to one in three women and one in 12 men. In 1990, there were 1.6 million hip fractures per annum worldwide and this number is estimated to reach 6 million by 2050. This increase in the number of fractures is due to an increase in the number of elderly people in the population, improved survival, and an increase in the age-specific fracture rates of unknown etiology. The rising number of osteoporotic fractures and their associated morbidity will place a heavy burden on future health care resources. In the United States, the cost for the management of osteoporosis has been estimated at $17 billion. The majority of this cost is spent on the acute surgical and medical management following hip fracture, and the subsequent rehabilitation. Currently, only minimal costs are utilized for treatment and prevention of osteoporosis. Hopefully, however, an accurate assessment of the burden of osteoporosis on the individual and the health care system will enable the targeting of resources to tackle this growing problem. With an increasing number of effective pharmaceutical interventions, it is critical that these agents are targeted to those at greatest risk for future fracture. This will ultimately reduce the burden of osteoporosis in future years.

  14. Embryonic development of the skull of the Andean lizard Ptychoglossus bicolor (Squamata, Gymnophthalmidae)

    PubMed Central

    Hernández-Jaimes, Carlos; Jerez, Adriana; Ramírez-Pinilla, Martha Patricia

    2012-01-01

    The study of cranial design and development in Gymnophthalmidae is important to understand the ontogenetic processes behind the morphological diversity of the group and to examine the possible effects of microhabitat use and other ecological parameters, as well as phylogenetic constraints, on skull anatomy. Complete morphological descriptions of embryonic skull development within Gymnophthalmidae are non-existent. Likewise, very little is known about the complete chondrocranium of the family. Herein, the development of the skull of the semi-fossorial lizard Ptychoglossus bicolor is described along with an examination of the chondrocranium of other gymnophthalmid taxa and the teiid Cnemidophorus lemniscatus. Cranial chondrification begins with early condensations in the ethmoid, orbitotemporal and occipital regions of the chondrocranium as well as the viscerocranium. Ossification of the skull starts with elements of the dermatocranium (pterygoid, prefrontal, maxilla and jugal). The orbitosphenoid is the last chondral bone to appear. At birth, the skull is almost completely ossified and exhibits a large frontoparietal fontanelle. In general terms, the chondrocranium of the gymnophthalmids studied is characteristic of lacertiform terrestrial lizards, in spite of their life habits, and resembles the chondrocranium of C. lemniscatus in many aspects. However, the gymnophthalmids show great variation in the orbitosphenoid and a complex nasal capsule. The latter exhibits greater development of some nasal cartilages, which make it more complex than in C. lemniscatus. These characteristics might be related to microhabitat use and the well-developed olfactory and vomeronasal systems observed within this clade. PMID:22881276

  15. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The skull roof tracks the brain during the evolution and development of reptiles including birds.

    PubMed

    Fabbri, Matteo; Mongiardino Koch, Nicolás; Pritchard, Adam C; Hanson, Michael; Hoffman, Eva; Bever, Gabriel S; Balanoff, Amy M; Morris, Zachary S; Field, Daniel J; Camacho, Jasmin; Rowe, Timothy B; Norell, Mark A; Smith, Roger M; Abzhanov, Arhat; Bhullar, Bhart-Anjan S

    2017-10-01

    Major transformations in brain size and proportions, such as the enlargement of the brain during the evolution of birds, are accompanied by profound modifications to the skull roof. However, the hypothesis of concerted evolution of shape between brain and skull roof over major phylogenetic transitions, and in particular of an ontogenetic relationship between specific regions of the brain and the skull roof, has never been formally tested. We performed 3D morphometric analyses to examine the deep history of brain and skull-roof morphology in Reptilia, focusing on changes during the well-documented transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds. Non-avialan taxa cluster tightly together in morphospace, whereas Archaeopteryx and crown birds occupy a separate region. There is a one-to-one correspondence between the forebrain and frontal bone and the midbrain and parietal bone. Furthermore, the position of the forebrain-midbrain boundary correlates significantly with the position of the frontoparietal suture across the phylogenetic breadth of Reptilia and during the ontogeny of individual taxa. Conservation of position and identity in the skull roof is apparent, and there is no support for previous hypotheses that the avian parietal is a transformed postparietal. The correlation and apparent developmental link between regions of the brain and bony skull elements are likely to be ancestral to Tetrapoda and may be fundamental to all of Osteichthyes, coeval with the origin of the dermatocranium.

  17. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men.

    PubMed

    Chalhoub, Didier; Orwoll, Eric S; Cawthon, Peggy M; Ensrud, Kristine E; Boudreau, Robert; Greenspan, Susan; Newman, Anne B; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A

    2016-11-01

    Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7years of follow-up. Men answered questionnaires about fractures every 4months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24-3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater

  18. Areal and volumetric Bone Mineral Density and risk of multiple types of fracture in older men

    PubMed Central

    Chalhoub, Didier; Orwoll, Eric S.; Cawthon, Peggy M.; Ensrud, Kristine E.; Boudreau, Robert; Greenspan, Susan; Newman, Anne B.; Zmuda, Joseph; Bauer, Douglas; Cummings, Steven; Cauley, Jane A.

    2016-01-01

    Although many studies have examined the association between low bone mineral density (BMD) and fracture risk in older men, none have simultaneously studied the relationship between multiple BMD sites and risk of different types of fractures. Using data from the Osteoporotic Fractures in Men study, we evaluated the association between areal BMD (aBMD) by dual-energy X-ray absorptiometry (DXA) and volumetric BMD (vBMD) by quantitative computed tomography (QCT) measurements, and different types of fractures during an average of 9.7 years of follow up. Men answered questionnaires about fractures every 4 months (>97% completions). Fractures were confirmed by centralized review of radiographic reports; pathological fractures were excluded. Risk of fractures was assessed at the hip, spine, wrist, shoulder, rib/chest/sternum, ankle/foot/toe, arm, hand/finger, leg, pelvis/coccyx, skull/face and any non-spine fracture. Age and race adjusted Cox proportional-hazards modeling was used to assess the risk of fracture in 3301 older men with both aBMD (at the femoral neck (FN) and lumbar spine) and vBMD (at the trabecular spine and FN, and cortical FN) measurements, with hazard ratios (HRs) expressed per standard deviation (SD) decrease. Lower FN and spine aBMD were associated with an increased risk of fracture at the hip, spine, wrist, shoulder, rib/chest/sternum, arm, and any non-spine fracture (statistically significant HRs per SD decrease ranged from 1.24 - 3.57). Lower trabecular spine and FN vBMD were associated with increased risk of most fractures with statistically significant HRs ranging between 1.27 and 3.69. There was a statistically significant association between FN cortical vBMD and fracture risk at the hip (HR=1.55) and spine sites (HR=1.26), but no association at other fracture sites. In summary, both lower aBMD and vBMD were associated with increased fracture risk. The stronger associations observed for trabecular vBMD than cortical vBMD may reflect the greater

  19. Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.

    PubMed

    Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T

    2005-03-01

    Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.

  20. Morphometry and CT measurements of useful bony landmarks of skull base.

    PubMed

    Ray, Biswabina; Rajagopal, K V; Rajesh, T; Gayathri, B M V; D'Souza, A S; Swarnashri, J V; Saxena, Alok

    2011-01-01

    Aim of this study was to determine the distance between Henle's spine (HS) on the temporal bone to the clinically important bony landmarks on the dry skulls that will act as a guide in various surgical procedures on skull base. Distances from the head of malleus (HOM) to surgically relevant landmarks were also studied on CT images. Thirty-nine adult preserved dry skulls were studied bilaterally. The parapetrosal triangle bounded by spinopterygoidal, bispinal and the midsagittal lines was identified. The location of the HS and its distance from the various important anatomical structures were measured. In addition, five CT images, where distances from the HOM to various anatomical landmarks were measured. The mean and range of distances from the HS to various important anatomical landmarks on the spinopterygoidal line, bispinal line and in the parapetrosal triangle were tabulated. The mean and range of CT-based measurements of distances from HOM to other anatomical landmarks were also noted. The knowledge of unvarying relationship of the HS and the HOM to the various structures of the skull would assume significance while planning surgeries around the temporal bone by guiding the direction and degree of bone removal. Statistical differences between the two genders showed significant difference only in the distance between the HS to the medial margin of the external orifice of carotid canal. Therefore, these landmarks can also be applied as references for various surgeries of middle cranial fossa, as well as transpetrosal and transmastoid approaches.

  1. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  2. Shape similarities and differences in the skulls of scavenging raptors.

    PubMed

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  3. Facial fractures in children.

    PubMed

    Boyette, Jennings R

    2014-10-01

    Facial trauma in children differs from adults. The growing facial skeleton presents several challenges to the reconstructive surgeon. A thorough understanding of the patterns of facial growth and development is needed to form an individualized treatment strategy. A proper diagnosis must be made and treatment options weighed against the risk of causing further harm to facial development. This article focuses on the management of facial fractures in children. Discussed are common fracture patterns based on the development of the facial structure, initial management, diagnostic strategies, new concepts and old controversies regarding radiologic examinations, conservative versus operative intervention, risks of growth impairment, and resorbable fixation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2015-07-20

    Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.

  5. The effect of the skull of low-birthweight neonates on applied potential tomography imaging of centralised resistivity changes.

    PubMed

    McArdle, F J; Brown, B H; Pearse, R G; Barber, D C

    1988-01-01

    An investigation is presented into the likely effects of the neonatal skull on impedance images produced by applied potential tomography (APT) by imaging impedance changes inside the skull of a human infant of occipito-frontal circumference 30 cm. Measurements have been made with the skull immersed in a tank of saline and electrodes fixed to the perimeter of the tank. Sensitivity measurements have been assessed for imaging a small target close to the centre of the skull as compared with images produced without the skull. The results obtained compare favourably with measurements on a more realistic model of the neonatal head constructed by filling the skull with agar jelly to leave only a thin exterior coating of jelly to simulate the scalp. These experiments suggest that in the central region of the head of a neonate, measured changes by the APT technique are about 44% of that expected from a homogeneous phantom, but that this might vary from 32% to 55% at different points in the image in a very complex manner.

  6. Skull 5 from Dmanisi: Descriptive anatomy, comparative studies, and evolutionary significance.

    PubMed

    Rightmire, G Philip; Ponce de León, Marcia S; Lordkipanidze, David; Margvelashvili, Ann; Zollikofer, Christoph P E

    2017-03-01

    A fifth hominin skull (cranium D4500 and mandible D2600) from Dmanisi is massively constructed, with a large face and a very small brain. Traits documented for the first time in a basal member of the Homo clade include the uniquely low ratio of endocranial volume to basicranial width, reduced vertex height, angular vault profile, smooth nasal sill coupled with a long and sloping maxillary clivus, elongated palate, and tall mandibular corpus. The convex clivus and receding symphysis of skull 5 produce a muzzle-like form similar to that of Australopithecus afarensis. While the Dmanisi cranium is very robust, differing from OH 13, OH 24, and KNM-ER 1813, it resembles Homo habilis specimens in the "squared off" outline of its maxilla in facial view, maxillary sulcus, rounded and receding zygomatic arch, and flexed zygomaticoalveolar pillar. These characters distinguish early Homo from species of Australopithecus and Paranthropus. Skull 5 is unlike Homo rudolfensis cranium KNM-ER 1470. Although it appears generally primitive, skull 5 possesses a bar-like supraorbital torus, elongated temporal squama, occipital transverse torus, and petrotympanic traits considered to be derived for Homo erectus. As a group, the Dmanisi crania and mandibles display substantial anatomical and metric variation. A key question is whether the fossils document age-related growth and sex dimorphism within a single population, or whether two (or more) distinct taxa may be present at the site. We use the coefficient of variation to compare Dmanisi with Paranthropus boisei, H. erectus, and recent Homo sapiens, finding few signals that the Dmanisi sample is excessively variable in comparison to these reference taxa. Using cranial measurements and principal components analysis, we explore the proposal that the Dmanisi skulls can be grouped within a regionally diverse hypodigm for H. erectus. Our results provide only weak support for this hypothesis. Finally, we consider all available morphological

  7. Unusual case of post-traumatic lingual paraesthesia.

    PubMed

    Tekeli, K M; Agrawal, T; Worrall, S F

    2008-03-01

    We report an unusual case of lingual paraesthesia caused by a fracture of the base of the skull involving the foramen ovale. As far as we know, lingual sensory neuropathy associated purely with a fracture of the base of the skull has not been reported before.

  8. [Anatomy of the skull base and the cranial nerves in slice imaging].

    PubMed

    Bink, A; Berkefeld, J; Zanella, F

    2009-07-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.

  9. Cartilaginous metaplasia and overgrowth of neurocranium skull after X-irradiation in utero.

    PubMed

    Schmahl, W; Meyer, I; Kriegel, H; Tempel, K H

    1979-01-01

    Prenatal X-irradiation of mice in the late organogenesis stage either with a fractionated or a single exposure dose (3 X 160 R or 200 R) leads to remarkable, previously undescribed malformations of the skull. These malformations range from mild hyperostotic nodule formation in about 90% of the offspring to excessive formation of desmal bony tissues, which extend deep into the forebrain and are thus only detectable in histological sections. Metaplastic and hyperplastic formation of cartilage in all the neurocranial regions is observed in about 10% of the offspring. The pathogenesis of these overgrowth phenomena is presumably related to a growth disturbance of both the mesenchymal skull primordium and the brain. While malformation of the latter leads to a decrease of intracranial pressure and consequently to altered growth activity of the skull sutures, the reparative and proliferative capacities of the mesenchyme are also stimulated, in a hyperplastic direction, by X-irradiation.

  10. Complex single step skull reconstruction in Gorham's disease - a technical report and review of the literature.

    PubMed

    Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M

    2015-03-11

    Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an

  11. Harvey Cushing's Approaches to Tumors in His Early Career: From the Skull Base to the Cranial Vault

    PubMed Central

    Pendleton, Courtney; Raza, Shaan M.; Gallia, Gary L.; Quiñones-Hinojosa, Alfredo

    2011-01-01

    In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to tumors of the skull base and cranial vault. Following Institutional Review Board approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Participants included four adult patients and one child who underwent surgical resection of bony tumors of the skull base and the cranial vault. The main outcome measures were operative approach and condition recorded at the time of discharge. The indications for surgery included unspecified malignant tumor of the basal meninges and temporal bone, basal cell carcinoma, osteoma of the posterior skull base, and osteomas of the frontal and parietofrontal cranial vault. While Cushing's experience with selected skull base pathology has been previously reported, the breadth of his contributions to operative approaches to the skull base has been neglected. PMID:22470271

  12. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull.

    PubMed

    Chang, Won Seok; Jung, Hyun Ho; Zadicario, Eyal; Rachmilevitch, Itay; Tlusty, Tal; Vitek, Shuki; Chang, Jin Woo

    2016-02-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) was recently introduced as treatment for movement disorders such as essential tremor and advanced Parkinson's disease (PD). Although deep brain target lesions are successfully generated in most patients, the target area temperature fails to increase in some cases. The skull is one of the greatest barriers to ultrasonic energy transmission. The authors analyzed the skull-related factors that may have prevented an increase in target area temperatures in patients who underwent MRgFUS. The authors retrospectively reviewed data from clinical trials that involved MRgFUS for essential tremor, idiopathic PD, and obsessive-compulsive disorder. Data from 25 patients were included. The relationships between the maximal temperature during treatment and other factors, including sex, age, skull area of the sonication field, number of elements used, skull volume of the sonication field, and skull density ratio (SDR), were determined. Among the various factors, skull volume and SDR exhibited relationships with the maximum temperature. Skull volume was negatively correlated with maximal temperature (p = 0.023, r(2) = 0.206, y = 64.156 - 0.028x, whereas SDR was positively correlated with maximal temperature (p = 0.009, r(2) = 0.263, y = 49.643 + 11.832x). The other factors correlate with the maximal temperature, although some factors showed a tendency to correlate. Some skull-related factors correlated with the maximal target area temperature. Although the number of patients in the present study was relatively small, the results offer information that could guide the selection of MRgFUS candidates.

  13. Chordomas of the Skull Base, Mobile Spine, and Sacrum: An Epidemiologic Investigation of Presentation, Treatment, and Survival.

    PubMed

    Zuckerman, Scott L; Bilsky, Mark H; Laufer, Ilya

    2018-05-01

    Chordomas are rare primary bone tumors that arise from the axial skeleton. Our objective was to analyze trends in radiation and surgery over time and determine location-based survival predictors for chordomas of the skull base, mobile spine, and sacrum. A retrospective cohort study of the SEER (Surveillance Epidemiology and End Results) database from 1973 to 2013 was conducted. All patients had histologically confirmed chordomas. The principal outcome measure was overall survival (OS). The cohort included 1616 patients: skull base (664), mobile spine (444), and sacrum (508). Skull base tumors presented earliest in life (47.4 years) and sacral tumors presented latest (62.7 years). Rates of radiation remained stable for skull base and mobile spine tumors but declined for sacral tumors (P = 0.006). Rates of surgical resection remained stable for skull base and sacral tumors but declined for mobile spine tumors (P = 0.046). Skull base chordomas had the longest median survival (162 months) compared with mobile spine (94 months) and sacral tumors (87 months). Being married was independently associated with improved OS for skull base tumors (hazard ratio, 0.73; 95% confidence interval, 0.53-0.99; P = 0.044). Surgical resection was independently associated with improved OS for sacral chordomas (hazard ratio, 0.48; 95% confidence interval, 0.34-0.69; P < 0.001). Surgical resection for mobile spine chordomas and radiation for sacral chordomas decreased over time. Patients with skull base tumors survived longer than did patients with mobile spine and sacral chordomas, and surgical resection was associated with improved survival in sacral chordomas only. Understanding the behavior of these tumors can help cranial and spinal surgeons improve treatment in this patient population. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Divergent effects of obesity on fragility fractures.

    PubMed

    Caffarelli, Carla; Alessi, Chiara; Nuti, Ranuccio; Gonnelli, Stefano

    2014-01-01

    Obesity was commonly thought to be advantageous for maintaining healthy bones due to the higher bone mineral density observed in overweight individuals. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures. The effect of obesity on fracture risk is site-dependent, the risk being increased for some fractures (humerus, ankle, upper arm) and decreased for others (hip, pelvis, wrist). Moreover, the relationship between obesity and fracture may also vary by sex, age, and ethnicity. Risk factors for fracture in obese individuals appear to be similar to those in nonobese populations, although patterns of falling are particularly important in the obese. Research is needed to determine if and how visceral fat and metabolic complications of obesity (type 2 diabetes mellitus, insulin resistance, chronic inflammation, etc) are causally associated with bone status and fragility fracture risk. Vitamin D deficiency and hypogonadism may also influence fracture risk in obese individuals. Fracture algorithms such as FRAX(®) might be expected to underestimate fracture probability. Studies specifically designed to evaluate the antifracture efficacy of different drugs in obese patients are not available; however, literature data may suggest that in obese patients higher doses of the bisphosphonates might be required in order to maintain efficacy against nonvertebral fractures. Therefore, the search for better methods for the identification of fragility fracture risk in the growing population of adult and elderly subjects with obesity might be considered a clinical priority which could improve the prevention of fracture in obese individuals.

  15. Morphometric analysis of infraorbital foramen in Indian dry skulls

    PubMed Central

    2011-01-01

    We analyzed the variability in position, shape, size and incidence of the infraorbital foramen in Indian dry skulls as little literature is available on this foramen in Indians to prevent clinical complications during maxillofacial surgery and regional block anesthesia. Fifty-five Indian skulls from the Department of Anatomy CSM Medical University were examined. The 110 sides (left and right) of the skulls were analyzed by measuring the infraorbital foramina distances from infraorbital margin and the piriform aperture on both sides. The vertical and horizontal dimensions were also measured. All measurements were taken with a compass transferred to calipers and analyzed statistically. The mean distances between the infraorbital foramen and the infraorbital margin on the right and left side were 6.12 mm and 6.19 mm, respectively. The mean distances between the infraorbital foramen and the piriform aperture were 15.31 mm and 15.80 mm on the right and left sides, respectively. The mean vertical dimensions on the right and left side were 3.39 mm and 3.75 mm, respectively. The mean horizontal dimensions on the two sides were 3.19 mm and 3.52 mm. These results provide detailed knowledge of the anatomical characteristics and clinical importance of the infraorbital foramina which are of paramount importance for surgeons when performing maxillofacial surgery and regional block anesthesia. PMID:21519552

  16. Skull base osteomyelitis: current microbiology and management.

    PubMed

    Spielmann, P M; Yu, R; Neeff, M

    2013-01-01

    Skull base osteomyelitis typically presents in an immunocompromised patient with severe otalgia and otorrhoea. Pseudomonas aeruginosa is the commonest pathogenic micro-organism, and reports of resistance to fluoroquinolones are now emerging, complicating management. We reviewed our experience of this condition, and of the local pathogenic organisms. A retrospective review from 2004 to 2011 was performed. Patients were identified by their admission diagnostic code, and computerised records examined. Twenty patients were identified. A facial palsy was present in 12 patients (60 per cent). Blood cultures were uniformly negative, and culture of ear canal granulations was non-diagnostic in 71 per cent of cases. Pseudomonas aeruginosa was isolated in only 10 (50 per cent) cases; one strain was resistant to ciprofloxacin but all were sensitive to ceftazidime. Two cases of fungal skull base osteomyelitis were identified. The mortality rate was 15 per cent. The patients' treatment algorithm is presented. Our treatment algorithm reflects the need for multidisciplinary input, early microbial culture of specimens, appropriate imaging, and prolonged and systemic antimicrobial treatment. Resolution of infection must be confirmed by close follow up and imaging.

  17. Comparison between diffuse infrared and acoustic transmission over the human skull.

    PubMed

    Wang, Q; Reganti, N; Yoshioka, Y; Howell, M; Clement, G T

    2015-01-01

    Skull-induced distortion and attenuation present a challenge to both transcranial imaging and therapy. Whereas therapeutic procedures have been successful in offsetting aberration using from prior CTs, this approach impractical for imaging. In effort to provide a simplified means for aberration correction, we have been investigating the use of diffuse infrared light as an indicator of acoustic properties. Infrared wavelengths were specifically selected for tissue penetration; however this preliminary study was performed through bone alone via a transmission mode to facilitate comparison with acoustic measurements. The inner surface of a half human skull, cut along the sagittal midline, was illuminated using an infrared heat lamp and images of the outer surface were acquired with an IR-sensitive camera. A range of source angles were acquired and averaged to eliminate source bias. Acoustic measurement were likewise obtained over the surface with a source (1MHz, 12.7mm-diam) oriented parallel to the skull surface and hydrophone receiver (1mm PVDF). Preliminary results reveal a positive correlation between sound speed and optical intensity, whereas poor correlation is observed between acoustic amplitude and optical intensity.

  18. Management of Anterior Skull Base Defect Depending on Its Size and Location

    PubMed Central

    Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Enriquez, Karla; Viscovich, Liza; Agredo-Lemos, Freddy Enrique; Alobid, Isam

    2014-01-01

    Introduction. We present our experience in the reconstruction of these leaks depending on their size and location. Material and Methods. Fifty-four patients who underwent advanced skull base surgery (large defects, >20 mm) and 62 patients with CSF leaks of different origin (small, 2–10 mm, and midsize, 11–20 mm, defects) were included in the retrospective study. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata. In small and midsized leaks. Fascia lata in an underlay position was used for its reconstruction covered with mucoperiosteum of either the middle or the inferior turbinate. Results. The most frequent etiology for small and midsized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%). The success rate after the first surgical reconstruction was 91% and 98% in large skull base defects and small/midsized, respectively. Rescue surgery achieved 100%. Conclusions. Endoscopic surgery for any type of skull base defect is the gold standard. The size of the defects does not seem to play a significant role in the success rate. Fascia lata and mucoperiosteum of the turbinate allow a two-layer reconstruction of small and midsized defects. For larger skull base defects, a combination of fat, fascia lata, and nasoseptal pedicled flaps provides a successful reconstruction. PMID:24895567

  19. Patients cured of acromegaly do not experience improvement of their skull deformities.

    PubMed

    Rick, Jonathan W; Jahangiri, Arman; Flanigan, Patrick M; Aghi, Manish K

    2017-04-01

    Acromegaly is a rare disease that is associated with many co-morbidities. This condition also causes progressive deformity of the skull which includes frontal bossing and cranial thickening. Surgical and/or medical management can cure this condition in many patients, but it is not understood if patients cured of acromegaly experience regression of their skull deformities. We performed a retrospective analysis on patients treated at our dedicated pituitary center from 2009 to 2014. We looked at all MRI images taken during the treatment of these patients and recorded measurements on eight skull dimensions. We then analyzed these measurements for changes over time. 29 patients underwent curative treatment for acromegaly within our timeframe. The mean age for this population was 45.0 years old (range 19-70) and 55.2 % (n = 16) were female. All of these patients were treated with a transsphenoidal resection for a somatotropic pituitary adenoma. 9 (31.1%) of these patients required further medical therapy to be cured. We found statically significant variation in the coronal width of the sella turcica after therapy, which is likely attributable to changes from transsphenoidal surgery. None of the other dimensions had significant variation over time after cure. Patients cured of acromegaly should not expect natural regression of their skull deformities. Our study suggests that both frontal bossing and cranial thickening do not return to normal after cure.

  20. Skull shapes of the Lissodelphininae: radiation, adaptation and asymmetry.

    PubMed

    Galatius, Anders; Goodall, R Natalie P

    2016-06-01

    Within Delphinidae, the sub-family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub-family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3-dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C

  1. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  2. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  4. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  5. Durable clinical remission of a skull metastasis under intralesional Viscum album extract therapy: Case report.

    PubMed

    Werthmann, Paul Georg; Huber, Roman; Kienle, Gunver Sophia

    2018-06-09

    Skull metastases are rare, they can eventually cause pain, and can invade the brain. Viscum album extracts (VAEs) are used as an adjuvant treatment in cancer. A 68-year-old patient with rectal cancer presented with lung metastases, and metastases to multiple bone sites, the chest wall, and the liver were later identified. Histological examination of one of the bone lesions revealed an additional thyroid carcinoma. An osteolytic parietal bone lesion progressed to a painful metastasis of the skull despite radiotherapy and chemotherapy. The VAEs were applied weekly into the metastasis, followed by pain relief and softening of the lesion. The lesion partially regressed (>50%) after 8 months of continued VAE treatment and remained stable for 2 years. This case shows a durable clinical remission of a skull metastasis under VAE. Further investigations of intratumoral VAE treatment seem worthwhile-especially in symptomatic skull metastases not responding to radiotherapy or systemic therapies. © 2018 The Authors Head & Neck Published by Wiley Periodicals, Inc.

  6. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects.

    PubMed

    Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won

    2016-06-01

    The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.

  7. Study on the criteria for assessing skull-face correspondence in craniofacial superimposition.

    PubMed

    Ibáñez, Oscar; Valsecchi, Andrea; Cavalli, Fabio; Huete, María Isabel; Campomanes-Alvarez, Blanca Rosario; Campomanes-Alvarez, Carmen; Vicente, Ricardo; Navega, David; Ross, Ann; Wilkinson, Caroline; Jankauskas, Rimantas; Imaizumi, Kazuhiko; Hardiman, Rita; Jayaprakash, Paul Thomas; Ruiz, Elena; Molinero, Francisco; Lestón, Patricio; Veselovskaya, Elizaveta; Abramov, Alexey; Steyn, Maryna; Cardoso, Joao; Humpire, Daniel; Lusnig, Luca; Gibelli, Daniele; Mazzarelli, Debora; Gaudio, Daniel; Collini, Federica; Damas, Sergio

    2016-11-01

    Craniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Stories, skulls, and colonial collections.

    PubMed

    Roque, Ricardo

    2011-01-01

    The essay explores the hypothesis of colonial collecting processes involving the active addition of the colonial context and historical past to museum objects through the production of short stories. It examines the emergent historicity of collections through a focus on the "histories" that museum workers and colonial agents have been attaching to scientific collections of human skulls. Drawing on the notions of collection trajectory and historiographical work, it offers an alternative perspective from which to approach the creation of singular histories and individual archives for objects in collections.

  9. Variation of BMP3 Contributes to Dog Breed Skull Diversity

    PubMed Central

    Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.

    2012-01-01

    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193

  10. Does skull shape mediate the relationship between objective features and subjective impressions about the face?

    PubMed

    Marečková, Klára; Chakravarty, M Mallar; Huang, Mei; Lawrence, Claire; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2013-10-01

    In our previous work, we described facial features associated with a successful recognition of the sex of the face (Marečková et al., 2011). These features were based on landmarks placed on the surface of faces reconstructed from magnetic resonance (MR) images; their position was therefore influenced by both soft tissue (fat and muscle) and bone structure of the skull. Here, we ask whether bone structure has dissociable influences on observers' identification of the sex of the face. To answer this question, we used a novel method of studying skull morphology using MR images and explored the relationship between skull features, facial features, and sex recognition in a large sample of adolescents (n=876; including 475 adolescents from our original report). To determine whether skull features mediate the relationship between facial features and identification accuracy, we performed mediation analysis using bootstrapping. In males, skull features mediated fully the relationship between facial features and sex judgments. In females, the skull mediated this relationship only after adjusting facial features for the amount of body fat (estimated with bioimpedance). While body fat had a very slight positive influence on correct sex judgments about male faces, there was a robust negative influence of body fat on the correct sex judgments about female faces. Overall, these results suggest that craniofacial bone structure is essential for correct sex judgments about a male face. In females, body fat influences negatively the accuracy of sex judgments, and craniofacial bone structure alone cannot explain the relationship between facial features and identification of a face as female. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Growth overshoot and seasonal size changes in the skulls of two weasel species

    PubMed Central

    Keicher, Lara; Wikelski, Martin; Zub, Karol; Dechmann, Dina K. N.

    2017-01-01

    Ontogenetic changes in mammalian skulls are complex. For a very few species (i.e. some Sorex shrews), these also include seasonally driven, bidirectional size changes within individuals, presumably to reduce energy requirements during low resource availabilities. These patterns are poorly understood, but are likely most pronounced in high-metabolic species with limited means for energy conservation. We used generalized additive models to quantify the effect of location, Julian day, age and sex on the length and depth of 512 and 847 skulls of stoat (Mustela erminea) and weasel (M. nivalis) specimens collected throughout the northern hemisphere. Skull length of both species varies between sexes and geographically, with stoat skull length positively correlated with latitude. Both species demonstrate seasonal and ontogenetic patterns, including a rare, absolute growth overshoot in juvenile braincase depth. Standardized braincase depths of both species peak in their first summer, then decrease in their first winter, followed by a remarkable regrowth that peaks again during their second summer. This seasonal pattern varies in magnitude and timing between geographical regions and the sexes, matching predictions of Dehnel's phenomenon. This suggests implications for the evolution of over-wintering strategies in mammals, justifying further research on their mechanisms and value, with implications for applied osteology research. PMID:28280592

  12. Geographical and functional-morphological variations of the skull in the gray-bellied squirrel.

    PubMed

    Endo, Hideki; Kimura, Junpei; Oshida, Tatsuo; Stafford, Brian J; Rerkamnuaychoke, Worawut; Nishida, Takao; Sasaki, Motoki; Hayashida, Akiko; Hayashi, Yoshihiro

    2004-03-01

    The geographical variations of the skulls were osteometrically examined in the gray-bellied squirrel (Callosciurus caniceps) from the populations of Korat, Ranong, southernmost Thailand, and Terutau Island. The skull size was larger in northern population than in the southern population in the continental mainland. The zoogeographical influences of the Isthmus of Kra remained unclear, since the plots from Korat population were intermingled with those from southernmost Thailand population in the principal component charts. Although Korat population has been thought to belong to north group, we suggest that Ranong and southernmost Thailand populations may contain individuals from both north and south groups separated by the ancient Kra barrier. Terutau Island population was similar to southernmost Thailand population in skull size, although Terutau population has been isolated in the island and separated from the south group of the Isthmus of Kra. In the proportional analysis the interorbital space was narrower and the binocular sense has been well-developed in Terutau population. It suggests that this population has been highly adapted to arboreal behavior. In contrast, the skull with larger interorbital space was more adaptive for terrestrial life in Korat population. The canonical discriminant analysis could clearly separate the four populations in the scattergrams of discriminant scores.

  13. Does nasal echolocation influence the modularity of the mammal skull?

    PubMed

    Santana, S E; Lofgren, S E

    2013-11-01

    In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the 'nasal dome', in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  14. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  15. Proximal third humeral shaft fractures -- a fracture entity not fully characterized by conventional AO classification.

    PubMed

    Stedtfeld, H W; Biber, R

    2014-01-01

    The retrospective study was made to evaluate the fracture patterns at the proximal humeral shaft for which the long version of a standard proximal humeral nail (PHNLV) has been used. The indication has been decided by the individual surgeons. Over a five year period 72 consecutive PHNLV cases of an acute fracture were identified and were included in the study. Mean patient age was 68.9 years. Gender ratio was m/f=22/50. 86.1% of the patients fractured their humerus by a fall, the rest by a high velocity accident. We analysed patient comorbidity, ASA score, osteoporosis, social status before accident, additional injuries affecting local soft tissues or other anatomic regions. We analysed the expansion of the fractures, dividing the humerus into five zones. Fracture morphology was categorized according to the standard AO/ASIF classification (if applicable). Comorbidities were found in 76.4% of the patients. Almost all patients (93.1%) had been living independently at home before the accident. 47.2% of patients had osteoporosis in their medical history. Five patients (6.9%) had a primary palsy of the radial nerve. Six fractures chosen for PHNLV fixation were clearly restricted to the humeral head. The remaining 66 fractures were located in the humeral shaft (AO region 12). There were 5 segmental fractures. Of the remaining 67 fractures affecting the proximal third of the humeral shaft 49.3 percent extended into the humeral head. 98 percent of these fractures displayed spiral morphology. Proximal humeral shaft fractures are amazingly similar to subtrochanteric and distal tibial shaft fractures: Spiral fracture types with different grades of comminution are absolutely dominant; a great proportion of the fractures extend into the humeral head with growing tendency of displacement if located closer to the humeral head. Diverging traction of deltoid and pectoralis muscle causes typical displacement if the fracture line runs in between their attachments substantiating the

  16. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].

    PubMed

    Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu

    2011-02-01

    To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.

  17. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - A first step to create reliable customized simulators.

    PubMed

    Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety.

  18. Benign and malignant skull-involved lesions: discriminative value of conventional CT and MRI combined with diffusion-weighted MRI.

    PubMed

    Tu, Zhanhai; Xiao, Zebin; Zheng, Yingyan; Huang, Hongjie; Yang, Libin; Cao, Dairong

    2018-01-01

    Background Little is known about the value of computed tomography (CT) and magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) in distinguishing malignant from benign skull-involved lesions. Purpose To evaluate the discriminative value of DWI combined with conventional CT and MRI for differentiating between benign and malignant skull-involved lesions. Material and Methods CT and MRI findings of 58 patients with pathologically proven skull-involved lesions (43 benign and 15 malignant) were retrospectively reviewed. Conventional CT and MRI characteristics and apparent diffusion coefficient (ADC) value of the two groups were evaluated and compared. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter separately and together. Results The presence of cortical defects or break-through and ill-defined margins were associated with malignant skull-involved lesions (both P < 0.05). Malignant skull-involved lesions demonstrated a significantly lower ADC ( P = 0.016) than benign lesions. ROC curve analyses indicated that a combination of CT, MRI, and DWI with an ADC ≤ 0.703 × 10 -3 mm 2 /s showed optimal sensitivity, while DWI along showed optimal specificity of 88.4% in differentiating between benign and malignant skull-involved lesions. Conclusion The combination of CT, MRI, and DWI can help to differentiate malignant from benign skull-involved lesions. CT + MRI + DWI offers optimal sensitivity, while DWI offers optimal specificity.

  19. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  20. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  1. Endoscopic endonasal double flap technique for reconstruction of large anterior skull base defects: technical note.

    PubMed

    Dolci, Ricardo Landini Lutaif; Todeschini, Alexandre Bossi; Santos, Américo Rubens Leite Dos; Lazarini, Paulo Roberto

    2018-04-19

    One of the main concerns in endoscopic endonasal approaches to the skull base has been the high incidence and morbidity associated with cerebrospinal fluid leaks. The introduction and routine use of vascularized flaps allowed a marked decrease in this complication followed by a great expansion in the indications and techniques used in endoscopic endonasal approaches, extending to defects from huge tumours and previously inaccessible areas of the skull base. Describe the technique of performing endoscopic double flap multi-layered reconstruction of the anterior skull base without craniotomy. Step by step description of the endoscopic double flap technique (nasoseptal and pericranial vascularized flaps and fascia lata free graft) as used and illustrated in two patients with an olfactory groove meningioma who underwent an endoscopic approach. Both patients achieved a gross total resection: subsequent reconstruction of the anterior skull base was performed with the nasoseptal and pericranial flaps onlay and a fascia lata free graft inlay. Both patients showed an excellent recovery, no signs of cerebrospinal fluid leak, meningitis, flap necrosis, chronic meningeal or sinonasal inflammation or cerebral herniation having developed. This endoscopic double flap technique we have described is a viable, versatile and safe option for anterior skull base reconstructions, decreasing the incidence of complications in endoscopic endonasal approaches. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Do Muscles Constrain Skull Shape Evolution in Strepsirrhines?

    PubMed

    Fabre, Anne-Claire; Perry, Jonathan M G; Hartstone-Rose, Adam; Lowie, AuróLien; Boens, Andy; Dumont, MaÏtena

    2018-02-01

    Despite great interest and decades of research, the musculoskeletal relationships of the masticatory system in primates are still not fully understood. However, without a clear understanding of the interplay between muscles and bones it remains difficult to understand the functional significance of morphological traits of the skeleton. Here, we aim to study the impacts of the masticatory muscles on the shape of the cranium and the mandible as well as their co-variation in strepsirrhine primates. To do so, we use 3D geometric morphometric approaches to assess the shape of each bone of the skull of 20 species for which muscle data are available in the literature. Impacts of the masticatory muscles on the skull shape were assessed using non-phylogenetic regressions and phylogenetic regressions whereas co-variations were assessed using two-blocks partial least square (2B-PLS) and phylogenetic 2B-PLS. Our results show that there is a phylogenetic signal for skull shape and masticatory muscles. They also show that there is a significant impact of the masticatory muscles on cranial shape but not as much as on the mandible. The co-variations are also stronger between the masticatory muscles and cranial shape even when taking into account phylogeny. Interestingly, the results of co-variation between the masticatory muscles and mandibular shape show a more complex pattern in two different directions to get strong muscles associated with mandibular shape: a folivore way (with the bamboo lemurs and sifakas) and a hard-object eater one (with the aye-aye). Anat Rec, 301:291-310, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Intraoperative biopsy of the major cranial nerves in the surgical strategy for adenoid cystic carcinoma close to the skull base.

    PubMed

    Tarsitano, Achille; Pizzigallo, Angelo; Gessaroli, Manlio; Sturiale, Carmelo; Marchetti, Claudio

    2012-02-01

    Adenoid cystic carcinoma of the salivary glands has a propensity for perineural invasion, which could favor spread along the major cranial nerves, sometimes to the skull base and through the foramina to the brain parenchyma. This study evaluated the relationship between neural spread and relapse in the skull base. During surgery, we performed multiple biopsies with extemporaneous examination of the major nerves close to the tumor to guide the surgical resection. The percentage of actuarial local control at 5 years for patients with a positive named nerve and skull base infiltration was 12.5%, compared with 90.0% in patients who were named nerve-negative and without infiltration of the skull base (P = .001). Our study shows that local control of disease for patients who are named nerve-positive with skull base infiltration is significantly more complex compared with patients who are named nerve-negative without infiltration of the skull base. Copyright © 2012. Published by Mosby, Inc.

  4. The application of finite element analysis in the skull biomechanics and dentistry.

    PubMed

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  5. Surgical resection of a huge cemento-ossifying fibroma in skull base by intraoral approach.

    PubMed

    Cheng, Xiao-Bing; Li, Yun-Peng; Lei, De-Lin; Li, Xiao-Dong; Tian, Lei

    2011-03-01

    Cemento-ossifying fibroma, also known as ossifying fibroma, usually occurs in the mandible and less commonly in the maxilla. The huge example in the skull base is even rare. We present a case of a huge cemento-ossifying fibroma arising below the skull base of a 30-year-old woman patient. Radiologic investigations showed a giant, lobulated, heterogeneous calcified hard tissue mass, which is well circumscribed and is a mixture of radiolucent and radiopaque, situated at the rear of the right maxilla to the middle skull base. The tumor expands into the right maxillary sinus and the orbital cavity, fusing with the right maxilla at the maxillary tuberosity and blocking the bilateral choanas, which caused marked proptosis and blurred vision. The tumor was resected successfully by intraoral approach, and pathologic examination confirmed the lesion to be a cemento-ossifying fibroma. This case demonstrates that cemento-ossifying fibroma in the maxilla, not like in the mandible, may appear more aggressive because the extensive growth is unimpeded by anatomic obstacles and that the intraoral approach can be used to excise the tumor in the skull base.

  6. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.

    PubMed

    Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann

    2017-06-15

    Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Patient exposure dose for chest and skull radiographies in Mazandaran hospitals.

    PubMed

    Etemadinezhad, Siavash; Rahimi, Seyed Ali

    2010-01-01

    Radiographic techniques are essential methods of diagnosis, and their use has been increased, especially with the development of the new technologies. Inappropriate administration of these techniques may put both the patients and personnel at unnecessary risks. The objective of this research was to measure the skin dose of chest and skull radiographies used in Mazandaran hospitals and to compare these doses with national and international standards. In this cross-sectional study, six X-ray generators at six hospitals affiliated to Mazandaran University of Medical Sciences were included. One hundred and twenty patients referred to the radiology wards for radiographic examinations of chest and skull with normal body mass index (BMI) were selected (20 patients for each radiography unit). The generators were matched for mAs, kvp, type of amplifier sheets, and technical conditions as much as possible. Calibrated thermo luminescence dosimeters (TLD-USA, Lif-100) were used to measure the skin dose by placing them on the patients' back and the absorbed doses by TLDs were read by a TLD reader (model: Harshuu, TLD3500, Japan). The mean values of the skin dose were 0.51 mGray for posteroanterior (PA), chest X-ray (CXR), 3.36 mGray for lateral CXR, 7.25 mGray for anterroposterior (AP) or PA skull X-rays, and 7.59 mGray for lateral skull X-rays. The measured values were higher than the national and international standards. The results of this research revealed that the conditions of the X-ray generators should be monitored and modified periodically. Modifying the X-ray generators plus improving technicians' skills would, to some extent, reduce the radiation exposure of the patients.

  8. Preoperative Embolization of Skull Base Meningiomas: Outcomes in the Onyx Era.

    PubMed

    Przybylowski, Colin J; Baranoski, Jacob F; See, Alfred P; Flores, Bruno C; Almefty, Rami O; Ding, Dale; Chapple, Kristina M; Sanai, Nader; Ducruet, Andrew F; Albuquerque, Felipe C

    2018-05-09

    Preoperative embolization may facilitate skull base meningioma resection, but its safety and efficacy in the Onyx era have not been investigated. In this retrospective cohort study, we evaluated the outcomes of preoperative embolization of skull base meningiomas using Onyx as the primary embolysate. We queried an endovascular database for patients with skull base meningiomas who underwent preoperative embolization at our institution in 2007-2017. Patient, tumor, procedure, and outcome data were analyzed. Twenty-eight patients (28 meningiomas) underwent successful preoperative meningioma embolization. The mean patient age ± SD was 56 ± 13 years, and 18 patients (64%) were women. The mean tumor size was 49 cm 3 . There were 1, 2, or 3 arterial pedicles embolized in 21 cases (75%), 6 cases (21%), and 1 case (4%), respectively. The embolized pedicles included branches of the middle meningeal artery in 19 cases (68%), the internal maxillary artery in 8 cases (29%), the ascending pharyngeal artery in 2 cases (7%), and the posterior auricular, ophthalmic, occipital, and anterior cerebral arteries in 1 case each (4%). The embolysates used were Onyx alone in 20 cases (71%), n-butyl cyanoacrylate alone in 3 cases (11%), coils/particles and Onyx/n-butyl cyanoacrylate in 2 cases each (7%), and Onyx and coils in 1 case (4%). The median degree of tumor devascularization was 60%. Significant neurologic morbidity occurred in 1 patient (4%) who developed symptomatic peritumoral edema after Onyx embolization. For appropriately selected skull base meningiomas supplied by dura mater-based arterial pedicles without distal cranial nerve supply, preoperative embolization with current embolysate technology affords substantial tumor devascularization with a low complication rate. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Photographic Atlas and three-dimensional reconstruction of the holotype skull of Euhelopus zdanskyi with description of additional cranial elements.

    PubMed

    Poropat, Stephen F; Kear, Benjamin P

    2013-01-01

    Euhelopus zdanskyi is one of relatively few sauropod taxa known from an almost complete skull and mandible. Recent phylogenetic analyses suggest that Euhelopus is a somphospondylan titanosauriform, and that it is a member of the clade (Euhelopodidae) which is the sister taxon to the hugely successful, dominantly Cretaceous sauropod group Titanosauria. The skull elements of Euhelopus were CT scanned at Uppsala Akademiska Sjukhuset. Three-dimensional models of the elements were constructed from the DICOM data using Mimics 14.0, InVesalius 3.0, and GeoMagic Studio 2012, the skull was rearticulated in Rhinoceros 4.0, and the final version was rendered in GeoMagic Studio 2012. The fact that relatively complete sauropod skulls are so rare in the fossil record, particularly among titanosauriforms, means that the skulls that are known should be as thoroughly described and well-illustrated as possible. This contribution supplements previous descriptions of the cranial elements of Euhelopus, one of the few euhelopodid taxa for which cranial material is known, by presenting a comprehensive photographic atlas of the skull elements to facilitate a better understanding of their morphology. We describe several elements which have been overlooked in past studies of Euhelopus, and also provide as accurate a reconstruction of the skull as possible (in the absence of the braincase), the most significant components of which are the articulations of the palate and the mandible.

  10. Do Concomitant Cranium and Axis Injuries Predict Worse Outcome? A Trauma Database Quantitative Analysis

    PubMed Central

    Chittiboina, Prashant; Banerjee, Anirban Deep; Nanda, Anil

    2011-01-01

    We performed a trauma database analysis to identify the effect of concomitant cranial injuries on outcome in patients with fractures of the axis. We identified patients with axis fractures over a 14-year period. A binary outcome measure was used. Univariate and multiple logistic regression analysis were performed. There were 259 cases with axis fractures. Closed head injury was noted in 57% and skull base trauma in 14%. Death occurred in 17 cases (6%). Seventy-two percent had good outcome. Presence of abnormal computed tomography head findings, skull base fractures, and visceral injury was significantly associated with poor outcome. Skull base injury in association with fractures of the axis is a significant independent predictor of worse outcomes, irrespective of the severity of the head injury. We propose that presence of concomitant cranial and upper vertebral injuries require careful evaluation in view of the associated poor prognosis. PMID:22470268

  11. Detecting occlusion inside a ventricular catheter using photoacoustic imaging through skull

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Guo, Xiaoyu; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2014-03-01

    Ventricular catheters are used to treat hydrocephalus by diverting the excess of the cerebrospinal fluid (CSF) to the reabsorption site so as to regulate the intracranial pressure. The failure rate of these shunts is extremely high due to the ingrown tissue that blocks the CSF flow. We have studied a method to image the occlusion inside the shunt through the skull. In this approach the pulsed laser light coupled to the optical fiber illuminate the occluding tissue inside the catheter and an external ultrasound transducer is applied to detect the generated photoacoustic signal. The feasibility of this method is investigated using a phantom made of ovis aries brain tissue and adult human skull. We were able to image the target inside the shunt located 20mm deep inside the brain through about 4mm thick skull bone. This study could lead to the development of a simple, safe and non-invasive device for percutaneous restoration of patency to occluded shunts. This will eliminate the need of the surgical replacement of the occluded catheters which expose the patients to risks including hemorrhage and brain injury.

  12. Advances in Imaging Approaches to Fracture Risk Evaluation

    PubMed Central

    Manhard, Mary Kate; Nyman, Jeffry S.; Does, Mark D.

    2016-01-01

    Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density (BMD) at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high resolution HR-peripheral QCT (HR-pQCT) and micro-magnetic resonance imaging (μMRI) assess the micro-architecture of trabecular bone; quantitative ultrasound (QUS) measures the modulus or tissue stiffness of cortical bone; and quantitative ultra-short echo time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions. PMID:27816505

  13. Skull Base Inverted Papilloma: A Comprehensive Review

    PubMed Central

    Wassef, Shafik N.; Batra, Pete S.; Barnett, Samuel

    2012-01-01

    Skull base inverted papilloma (IP) is an unusual entity for many neurosurgeons. IP is renowned for its high rate of recurrence, its ability to cause local destruction, and its association with malignancy. This paper is a comprehensive review of the reports, studies, and reviews published in the current biomedical literature from 1947 to September 2010 and synthesize this information to focus on its potential invasion to the base of the skull and possible intradural extension. The objective is to familiarize the clinician with the different aspects of this unusual disease. The role of modern diagnostic tools in medical imaging in order to assess clearly the limits of the tumors and to enhance the efficiency and the safety in the choice of a surgical approach is pointed out. The treatment guidelines for IP have undergone a complex evolution that continues today. Radical excision of the tumour is technically difficult and often incomplete. Successful management of IP requires resection of the affected mucosa which could be achieved with open surgery, endoscopic, or combined approach. Radio and chemotherapy were used for certain indications. More optimally research would be a multicenter randomized trials with large size cohorts. PMID:23346418

  14. A new head phantom with realistic shape and spatially varying skull resistivity distribution.

    PubMed

    Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen

    2014-02-01

    Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.

  15. Reconstruction of posterior neck and skull with vertical trapezius musculocutaneous flap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathes, S.J.; Stevenson, T.R.

    1988-10-01

    The vertical trapezius musculocutaneous flap has been successfully utilized for reconstruction in 13 patients with complex posterior skull and neck defects. This flap based on its vascular pedicle, the descending branch of the transverse cervical artery, provides well-vascularized tissue for coverage of defects related to chronic osteomyelitis, tumor extirpation, osteoradionecrosis, and dehisced cervical laminectomy wounds. Emphasis on flap design, including the location of the skin island, allows adequate wound coverage, direct donor site closure, and muscle function preservation. With its large size and wide arc of rotation, the vertical trapezius musculocutaneous flap provides reliable coverage for posterior trunk, cervical, andmore » skull defects.« less

  16. Surgical resection of sinonasal hemangiopericytoma involving anterior skull base: Case reports and literature review.

    PubMed

    Simmonds, Jonathan C; Rebeiz, Elie E

    Hemangiopericytomas are soft tissue tumors composed of pericytic cells that are characterized by their "staghorn" vascular branching and their variable clinical presentation. Fifteen to 25% of all HPC occur in the head and neck, with only 5% found in the nose or paranasal sinuses. Sinonasal hemangiopericytoma (SNHPC) is considered distinct from its soft tissue counterpart - the former showing a more uniform cellular organization, has convincing pericytic differentiation and is associated with a far better prognosis. With less than 200 cases of SNHPC reported in the literature, only limited assumptions can be made about this rare tumor. The purpose of this article is to add to the growing body of literature on this disease. We report two new cases of SNHCP - both in female patients who presented with epistaxis and anosmia. Pulsatile vascular masses were visualized with nasal endoscopy - one in the left middle meatus and the second one near the cribriform plate. CT and MRI studies show enhancing masses in the left nasal cavities with thinning and erosion of the skull base. Diagnoses were confirmed by pathology which reported spindle cell neoplasm staining positively for VEGF, NSE, factor XIIIa, S-100 protein, and CD34, and negative for actin, desmin, CD31, and pankeratin, consistent with hemangiopericytoma. In one patient, embolization of the sphenopalatine and labial artery as well as pre-operative radiation therapy was performed before complete endoscopic resection was undertaken. The second patient had a tumor invading the skull base, so a craniofacial resection was performed. Both patients remained free of disease two years after surgery. Review of the literature and treatment options are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Non-invasive examination of a skull fragment recovered from a World War Two aircraft crash site.

    PubMed

    Gapert, René; Rieder, Kurt

    2013-09-01

    The discovery of human remains dating to the time of the Second World War is a common occurrence in Europe and the Pacific regions. This case report demonstrates the analysis of a bone fragment recovered from a Luftwaffe crash site in Austria during the summer of 2007. Eye-witness statements and official reports were used to reconstruct the historical background of the case. A recovered German military identity tag helped to identify the pilot. Aircraft parts, also discovered at the crash site in 2007, aided the identification of the aircraft type and corroborated the eye-witness reports of the final moments before and during the crash. The bone was analyzed chiefly to establish its human or non-human origin and to identify from which anatomic region the fragment could have arisen. It was identified as part of a human adult skull which exhibited peri-mortem fractures and heat damage as well as post-mortem vegetation staining. The historical background information in connection with the morphological analysis led to the presumptive identification of the cranial fragment as belonging to a downed German pilot.

  18. An Account of the Inaugural Tessier Skull Exhibition at the University of Paris Descartes.

    PubMed

    Dusseldorp, Joseph Richard; Firmin, Françoise

    2015-10-01

    Paul Tessier is widely regarded as the father of modern craniofacial surgery. Upon his passing in 2008, his private collection of human skulls was purchased by the French Association of Facial Surgeons to ensure the collection would remain in France. The first public exhibition of the skulls was held in the medical museum of the University of Paris Descartes in April 2014. From this collection of skulls and the imagination of Tessier an entirely new specialty was created. Modern craniofacial surgery, now is an integral part of any pediatric plastic surgery department. Cranial and facial osteotomies have also become commonplace in both traumatic and aesthetic surgery. The goals for craniofacial deformity are now a return to completely normal appearance and function, as Tessier always believed they should be.

  19. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    PubMed

    Zaher, Hussam; Pol, Diego; Carvalho, Alberto B; Nascimento, Paulo M; Riccomini, Claudio; Larson, Peter; Juarez-Valieri, Rubén; Pires-Domingues, Ricardo; da Silva, Nelson Jorge; Campos, Diógenes de Almeida

    2011-02-07

    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  20. Tibia shaft fractures: costly burden of nonunions.

    PubMed

    Antonova, Evgeniya; Le, T Kim; Burge, Russel; Mershon, John

    2013-01-26

    Tibia shaft fractures (TSF) are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives). We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32) in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date). Among the 853 patients with TSF, 99 (12%) had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture) and were more likely to have their TSF open (87% vs. 70%) than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P < 0.001], spine or trunk [16.2% vs. 7.2%, P = 0.002], and skull [5.1% vs. 1.3%, P = 0.008]) than those without nonunion. Nonunion patients were more likely to use various types of surgical care, inpatient care (tibia and non-tibia related: 65% vs. 40%, P < 0.001) and outpatient physical therapy (tibia-related: 60% vs. 42%, P < 0.001) than those without nonunion. All categories of care (except emergency room costs) were more expensive in nonunion patients than in those without nonunion: median total care cost $25,556 vs. $11,686, P < 0.001. Nonunion patients were much more likely to be prescribed pain medications (99% vs. 92%, P = 0.009), especially strong opioids (90% vs. 76.4%, P = 0.002) and had longer length of opioid therapy (5.4 months vs. 2.8 months, P < 0.001) than patients without nonunion. Tibia fracture patterns in men differed from those in women. Nonunions in TSF's are associated

  1. Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning.

    PubMed

    Figueirido, Borja; Tseng, Zhijie Jack; Serrano-Alarcón, Francisco J; Martín-Serra, Alberto; Pastor, Juan F

    2014-01-01

    The red (Ailurus fulgens) and giant (Ailuropoda melanoleuca) pandas are mammalian carnivores convergently adapted to a bamboo feeding diet. However, whereas Ailurus forages almost entirely on younger leaves, fruits and tender trunks, Ailuropoda relies more on trunks and stems. Such difference in foraging mode is considered a strategy for resource partitioning where they are sympatric. Here, we use finite-element analysis to test for mechanical differences and similarities in skull performance between Ailurus and Ailuropoda related to diet. Feeding simulations suggest that the two panda species have similar ranges of mechanical efficiency and strain energy profiles across the dentition, reflecting their durophagous diet. However, the stress distributions and peaks in the skulls of Ailurus and Ailuropoda are remarkably different for biting at all tooth locations. Although the skull of Ailuropoda is capable of resisting higher stresses than the skull of Ailurus, the latter is able to distribute stresses more evenly throughout the skull. These differences in skull biomechanics reflect their distinct bamboo feeding preferences. Ailurus uses repetitive chewing in an extended mastication to feed on soft leaves, and Ailuropoda exhibits shorter and more discrete periods of chomp-and-swallow feeding to break down hard bamboo trunks.

  2. Skull base lesions: extracranial origins.

    PubMed

    Mosier, Kristine M

    2013-10-01

    A number of extracranial anatomical sites, including the nasopharynx, paranasal sinuses, and masticator space, may give rise to lesions involving the skull base. Implicit in the nature of an invasive lesion, the majority of these lesions are malignant. Accordingly, for optimal patient outcomes and treatment planning, it is imperative to include a search pattern for extracranial sites and to assess accurately the character and extent of these diverse lesions. Of particular importance to radiologists are lesions arising from each extracranial site, the search patterns, and relevant information important to convey to the referring clinician. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cranial Suture Closure in Domestic Dog Breeds and Its Relationships to Skull Morphology.

    PubMed

    Geiger, Madeleine; Haussman, Sinah

    2016-04-01

    Bulldog-type brachycephalic domestic dog breeds are characterized by a relatively short and broad skull with a dorsally rotated rostrum (airorhynchy). Not much is known about the association between a bulldog-type skull conformation and peculiar patterns of suture and synchondrosis closure in domestic dogs. In this study, we aim to explore breed-specific patterns of cranial suture and synchondrosis closure in relation to the prebasial angle (proxy for airorhynchy and thus bulldog-type skull conformation) in domestic dogs. For this purpose, we coded closure of 18 sutures and synchondroses in 26 wolves, that is, the wild ancestor of all domestic dogs, and 134 domestic dogs comprising 11 breeds. Comparisons of the relative amount of closing and closed sutures and synchondroses (closure scores) in adult individuals showed that bulldog-type breeds have significantly higher closure scores than non-bulldog-type breeds and that domestic dogs have significantly higher closure scores than the wolf. We further found that the prebasial angle is significantly positively correlated with the amount of closure of the basispheno-presphenoid synchondrosis and sutures of the nose (premaxillo-nasal and maxillo-nasal) and the palate (premaxillo-maxillary and interpalatine). Our results show that there is a correlation between patterns of suture and synchondrosis closure and skull shape in domestic dogs, although the causal relationships remain elusive. © 2016 Wiley Periodicals, Inc.

  4. Sonographic Analysis of Changes in Skull Shape After Cranial Molding Helmet Therapy in Infants With Deformational Plagiocephaly.

    PubMed

    Kwon, Dong Rak

    2016-04-01

    -The purpose of this study was to investigate the changes in skull shape on sonography after cranial molding helmet therapy in infants with deformational plagiocephaly. -Twenty-six infants who were treated with cranial molding helmet therapy were recruited. Caliper and sonographic measurements were performed. The lateral length of the affected and unaffected sides of the skull and cranial vault asymmetry index were measured with calipers. The occipital angle, defined as the angle between lines projected along the lambdoid sutures of the skull, was calculated by sonography. The occipital angle difference and occipital angle ratio were also measured. All caliper and sonographic measurements were performed in each infant twice before and twice after treatment. -The study group included 12 male and 14 female infants with a mean age ± SD of 6.2 ± 3.5 months. The mean treatment duration was 6.0 ± 2.5 months. The difference in lateral length before and after helmet therapy was significantly greater on the affected skull than the unaffected skull (16.7 ± 12.7 versus 9.0 ± 13.4 mm; P < .01). The difference in the occipital angle before and after helmet therapy was significantly greater on the affected skull than the unaffected skull (-5.7° ± 7.3° versus 4.2° ± 7.9°; P < .01). The cranial vault asymmetry index and occipital angle ratio were significantly reduced after helmet therapy (cranial vault asymmetry index, 9.3% ± 2.3% versus 3.5% ± 3.0%; occipital angle ratio, 1.07 ± 0.05 versus 1.01 ± 0.01; P < .05). -These results suggest that occipital angle measurements using sonography, combined with cephalometry, could provide a better understanding of the therapeutic effects of cranial molding helmet therapy in infants with deformational plagiocephaly. © 2016 by the American Institute of Ultrasound in Medicine.

  5. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    PubMed

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  6. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    PubMed Central

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  7. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2015-07-01

    Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Taken

  8. Creating a normative database of age-specific 3D geometrical data, bone density, and bone thickness of the developing skull: a pilot study.

    PubMed

    Delye, Hans; Clijmans, Tim; Mommaerts, Maurice Yves; Sloten, Jos Vnder; Goffin, Jan

    2015-12-01

    Finite element models (FEMs) of the head are used to study the biomechanics of traumatic brain injury and depend heavily on the use of accurate material properties and head geometry. Any FEM aimed at investigating traumatic head injury in children should therefore use age-specific dimensions of the head, as well as age-specific material properties of the different tissues. In this study, the authors built a database of age-corrected skull geometry, skull thickness, and bone density of the developing skull to aid in the development of an age-specific FEM of a child's head. Such a database, containing age-corrected normative skull geometry data, can also be used for preoperative surgical planning and postoperative long-term follow-up of craniosynostosis surgery results. Computed tomography data were processed for 187 patients (age range 0-20 years old). A 3D surface model was calculated from segmented skull surfaces. Skull models, reference points, and sutures were processed into a MATLAB-supported database. This process included automatic calculation of 2D measurements as well as 3D measurements: length of the coronal suture, length of the lambdoid suture, and the 3D anterior-posterior length, defined as the sum of the metopic and sagittal suture. Skull thickness and skull bone density calculations were included. Cephalic length, cephalic width, intercoronal distance, lateral orbital distance, intertemporal distance, and 3D measurements were obtained, confirming the well-established general growth pattern of the skull. Skull thickness increases rapidly in the first year of life, slowing down during the second year of life, while skull density increases with a fast but steady pace during the first 3 years of life. Both skull thickness and density continue to increase up to adulthood. This is the first report of normative data on 2D and 3D measurements, skull bone thickness, and skull bone density for children aged 0-20 years. This database can help build an age

  9. Novel Hantavirus in the Flat-Skulled Shrew (Sorex roboratus)

    PubMed Central

    Kang, Hae Ji; Arai, Satoru; Hope, Andrew G.; Cook, Joseph A.

    2010-01-01

    Abstract Genetically distinct hantaviruses have been identified recently in multiple species of shrews (Order Soricomorpha, Family Soricidae) in Eurasia and North America. To corroborate decades-old reports of hantaviral antigens in shrews from Russia, archival liver and lung tissues from 4 Siberian large-toothed shrews (Sorex daphaenodon), 5 Eurasian least shrews (Sorex minutissimus), 12 flat-skulled shrews (Sorex roboratus), and 18 tundra shrews (Sorex tundrensis), captured in the Sakha Republic in northeastern Siberia during July and August 2006, were analyzed for hantavirus RNA by reverse transcription–polymerase chain reaction. A novel hantavirus, named Kenkeme virus, was detected in a flat-skulled shrew. Sequence analysis of the full-length S and partial M and L segments indicated that Kenkeme virus was genetically and phylogenetically distinct from Seewis virus harbored by the Eurasian common shrew (Sorex araneus), as well as all other rodent-, soricid-, and talpid-borne hantaviruses. PMID:20426682

  10. Photographic Atlas and Three-Dimensional Reconstruction of the Holotype Skull of Euhelopus zdanskyi with Description of Additional Cranial Elements

    PubMed Central

    Poropat, Stephen F.; Kear, Benjamin P.

    2013-01-01

    Background Euhelopus zdanskyi is one of relatively few sauropod taxa known from an almost complete skull and mandible. Recent phylogenetic analyses suggest that Euhelopus is a somphospondylan titanosauriform, and that it is a member of the clade (Euhelopodidae) which is the sister taxon to the hugely successful, dominantly Cretaceous sauropod group Titanosauria. Methodology/Principal Findings The skull elements of Euhelopus were CT scanned at Uppsala Akademiska Sjukhuset. Three-dimensional models of the elements were constructed from the DICOM data using Mimics 14.0, InVesalius 3.0, and GeoMagic Studio 2012, the skull was rearticulated in Rhinoceros 4.0, and the final version was rendered in GeoMagic Studio 2012. Conclusions/Significance The fact that relatively complete sauropod skulls are so rare in the fossil record, particularly among titanosauriforms, means that the skulls that are known should be as thoroughly described and well-illustrated as possible. This contribution supplements previous descriptions of the cranial elements of Euhelopus, one of the few euhelopodid taxa for which cranial material is known, by presenting a comprehensive photographic atlas of the skull elements to facilitate a better understanding of their morphology. We describe several elements which have been overlooked in past studies of Euhelopus, and also provide as accurate a reconstruction of the skull as possible (in the absence of the braincase), the most significant components of which are the articulations of the palate and the mandible. PMID:24278222

  11. Fragility non-hip fracture patients are at risk.

    PubMed

    Gosch, M; Druml, T; Nicholas, J A; Hoffmann-Weltin, Y; Roth, T; Zegg, M; Blauth, M; Kammerlander, C

    2015-01-01

    Fragility fractures are a growing worldwide health care problem. Hip fractures have been clearly associated with poor outcomes. Fragility fractures of other bones are common reasons for hospital admission and short-term disability, but specific long-term outcome studies of non-hip fragility fractures are rare. The aim of our trial was to evaluate the 1-year outcomes of non-hip fragility fracture patients. This study is a retrospective cohort review of 307 consecutive older inpatient non-hip fracture patients. Patient data for analysis included fracture location, comorbidity prevalence, pre-fracture functional status, osteoporosis treatments and sociodemographic characteristics. The main outcomes evaluated were 1-year mortality and post-fracture functional status. As compared to the expected mortality, the observed 1-year mortality was increased in the study group (17.6 vs. 12.2 %, P = 0.005). After logistic regression, three variables remained as independent risk factors for 1-year mortality among non-hip fracture patients: malnutrition (OR 3.3, CI 1.5-7.1), Charlson comorbidity index (CCI) (OR 1.3, CI 1.1-1.5) and the Parker Mobility Score (PMS) (OR 0.85, CI 0.74-0.98). CCI and PMS were independent risk factors for a high grade of dependency after 1 year. Management of osteoporosis did not significantly improve after hospitalization due to a non-hip fragility fracture. The outcomes of older non-hip fracture patients are comparable to the poor outcomes of older hip fracture patients, and appear to be primarily related to comorbidities, pre-fracture function and nutritional status. The low rate of patients on osteoporosis medications likely reflects the insufficient recognition of the importance of osteoporosis assessment and treatment in non-hip fracture patients. Increased clinical and academic attention to non-hip fracture patients is needed.

  12. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement.

    PubMed

    Dröge, L H; Hinsche, T; Canis, M; Alt-Epping, B; Hess, C F; Wolff, H A

    2014-02-01

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting.

  13. The accuracy of an electromagnetic navigation system in lateral skull base approaches.

    PubMed

    Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L

    2017-02-01

    Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  14. [Application of neuroendoscope in the treatment of skull base chordoma].

    PubMed

    Zhang, Ya-Zhuo; Wang, Zong-Cheng; Zong, Xu-Yi; Wang, Xin-Sheng; Gui, Song-Bai; Zhao, Peng; Li, Chu-Zhong; He, Yue; Wang, Hong-Yun

    2011-07-05

    To further explore the application, approach, indication and prognosis of neuroendoscope treatment for skull base chordoma. A total of 101 patients of skull base chordoma were admitted at our hospital from May 2000 to April 2010. There were 59 males and 42 females. Their major clinical manifestations included headache, cranial nerve damage and dyspnea. They were classified according to the patterns of tumor growth: Type I (n = 13): tumor location at a single component of skull base, i. e. clivus or sphenoid sinus with intact cranial dura; Type II (n = 56): tumor involving more than two components of skull e. g clivus, sphenoid and nasal/oral cavity, etc. But there was no intracranial invasion; Type III (n = 32) : tumor extending widely and intradurally forming compression of brain stems and multiple cranial nerves. Based on the types of chordoma, different endoscopic approaches were employed, viz. transnasal, transoral, trans-subtemporal fossa and plus microsurgical craniotomy for staging in some complex cases. Among all patients, total resection was achieved (n = 19), subtotal (n = 58) and partial (n = 24). In partial resection cases, 16 cases were considered to be subtotal due to a second-stage operation. Most cases had conspicuous clinical improvements. Self-care recovery within one week post-operation accounted for 58.4%, two weeks 30.7%, one month 6.9% and more than one month 1.9%. Postoperative complications occurred in 13 cases (12.8%) and included CSF leakage (n = 4) cranial nerve palsy (n = 5), hemorrhagic nasal wounds (n = 3) and delayed intracranial hemorrhage (n = 1). All of these were cured or improved after an appropriate treatment. A follow-up of 6 - 60 months was conducted in 56 cases. Early detection and early treatment are crucial for achieving a better outcome in chordoma. Neuroendoscopic treatment plays an important role in managing those complicated cases. Precise endoscopic techniques plus different surgical approaches and staging procedures

  15. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  16. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  17. Computer-assisted shape descriptors for skull morphology in craniosynostosis.

    PubMed

    Shim, Kyu Won; Lee, Min Jin; Lee, Myung Chul; Park, Eun Kyung; Kim, Dong Seok; Hong, Helen; Kim, Yong Oock

    2016-03-01

    Our aim was to develop a novel method for characterizing common skull deformities with high sensitivity and specificity, based on two-dimensional (2D) shape descriptors in computed tomography (CT) images. Between 2003 and 2014, 44 normal subjects and 39 infants with craniosynostosis (sagittal, 29; bicoronal, 10) enrolled for analysis. Mean age overall was 16 months (range, 1-120 months), with a male:female ratio of 56:29. Two reference planes, sagittal (S-plane: through top of lateral ventricle) and coronal (C-plane: at maximum dimension of fourth ventricle), were utilized to formulate three 2D shape descriptors (cranial index [CI], cranial radius index [CR], and cranial extreme spot index [CES]), which were then applied to S- and C-plane target images of both groups. In infants with sagittal craniosynostosis, CI in S-plane (S-CI) usually was <1.0 (mean, 0.78; range, 0.67-0.95), with CR consistently at 3 and a characteristic CES pattern of two discrete hot spots oriented diagonally. In the bicoronal craniosynostosis subset, CI was >1.0 (mean 1.11; range, 1.04-1.25), with CR at -3 and a CES pattern of four discrete diagonally oriented hot spots. Scatter plots underscored the highly intuitive joint performance of CI and CES in distinguishing normal and deformed states. Altogether, these novel 2D shape descriptors enabled effective discrimination of sagittal and bicoronal skull deformities. Newly developed 2D shape descriptors for cranial CT imaging enabled recognition of common skull deformities with statistical significance, perhaps providing impetus for automated CT-based diagnosis of craniosynostosis.

  18. Elastic cavitation and fracture via injection.

    PubMed

    Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J

    2016-03-07

    The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy.

  19. Method and Apparatus for Determining Changes in Intracranial Pressure Utilizing Measurement of the Circumferential Expansion or Contraction of a Patient's Skull

    NASA Technical Reports Server (NTRS)

    Yos, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring changes in intracranial pressure (ICP) utilizing the variation of the surface wave propagation parameters of the patient's skull to determine the change in ICP. In one embodiment, the method comprises the steps of transmitting an ultrasonic bulk compressional wave onto the surface of the skull at a predetermined angle with respect to the skull so as to produce a surface wave, receiving the surface wave at an angle with respect tn the skull which is substantially the same as the predetermined angle and at a location that is a predetermined distance from where the ultrasonic bulk compressional wave was transmitted upon the skull, determining the retardation or advancement in phase of the received surface wave with respect to a reference phase, and processing the determined retardation or advancement in phase to determine circumferential expansion or contraction of the skull and utilizing the determined circumferential change to determine the change in intracranial pressure.

  20. The Application of a Nonlinear Fracture Mechanics Parameter to Ductile Fatigue Crack Growth

    DTIC Science & Technology

    1982-12-01

    ADAl I4~ � AFWAL-TR-83-4023 0 THE APPLICATION OF A NONLINEAR FRACTURE MECHANICS PARAMETER TO DUCTILE FATIGUE CRACK GROW4TH University of Dayton...SubtSle) S. TYPE OF REPORT & PERIOD COVERED The Application of a Nonlinear Fracture Final Report Mechanics Parameter to Ductile Fatigue Sept. 1978...5, and 6. To date, no single elastic-plastic fracture mechanics ( EPFM ) "type parameter has achieved universal acceptance for its corre- lation

  1. Endoscopic Skull Base Surgery

    PubMed Central

    Senior, Brent A

    2008-01-01

    Endoscopic skull base surgery has undergone rapid advancement in the past decade moving from pituitary surgery to suprasellar lesions and now to a myriad of lesions extending from the cribriform plate to C2 and laterally out to the infratemporal fossa and petrous apex. Evolution of several technological advances as well as advances in understanding of endoscopic anatomy and the development of surgical techniques both in resection and reconstruction have fostered this capability. Management of benign disease via endoscopic methods is largely accepted now but more data is needed before the controversy on the role of endoscopic management of malignant disease is decided. Continued advances in surgical technique, navigation systems, endoscopic imaging technology, and robotics assure continued brisk evolution in this expanding field. PMID:19434274

  2. Prevertebral corridor: posterior pathway for reconstruction of the ventral skull base.

    PubMed

    Durmaz, Abdullah; Fernandez-Miranda, Juan; Snyderman, Carl H; Rivera-Serrano, Carlos; Tosun, Fuat

    2011-05-01

    Regional vascularized flaps, such as the pericranial and temporoparietal fascia flaps, are currently used for reconstruction of skull base defects after endoscopic endonasal surgery whenever local vascularized flaps, such as the nasoseptal flap, are not available. Two different transposition pathways, infratemporal transpterygoid and subfrontal, have been proposed for regional flaps. The objective of this study was to describe and assess the feasibility of the transposition of a vascularized pedicled flap from the occipital galeopericranium via the prevertebral space corridor into the nasopharynx. Ten heads were injected with colored silicone. An endoscopic endonasal anterior craniofacial resection and panclival approach were performed in each specimen. The occipital flap was harvested using a previously described technique. The prevertebral corridor, extending from the neck to the nasopharynx, was dissected superficial to the paraspinal muscles. Computed tomography-based image guidance was used to assess the relationship between the corridor and adjacent neurovascular structures. Length of the corridor and pedicle and area of the donor flap were measured. The flap was harvested and successfully transposed into the nasopharynx using the proposed corridor in all studied specimens (10 heads, 20 sides). All flaps provided complete coverage of the skull base defects. The average length of the pedicle was 70.5 (SD, 6.5) mm, and the average length and width of the flap were 99.9 (SD, 14.6) mm and 59.3 (SD, 10.9) mm, respectively. The average length of the prevertebral corridor was 49.7 (SD, 4.8) mm. The occipital flap has favorable anatomic characteristics for use in skull base reconstruction. Transposition of the flap via the prevertebral corridor is a suitable option for vascularized reconstruction of expanded endonasal skull base defects when other local or regional flaps are not available. Additional clinical studies are necessary to define its role in endoscopic

  3. Tobacco-Control Policies in Tobacco-Growing States: Where Tobacco Was King

    PubMed Central

    Fallin, Amanda; Glantz, Stanton A

    2015-01-01

    Context The 5 major tobacco-growing states (Kentucky, North Carolina, South Carolina, Tennessee, and Virginia) are disproportionately affected by the tobacco epidemic, with higher rates of smoking and smoking-induced disease. These states also have fewer smoke-free laws and lower tobacco taxes, 2 evidence-based policies that reduce tobacco use. Historically, the tobacco farmers and hospitality associations allied with the tobacco companies to oppose these policies. Methods This research is based on 5 detailed case studies of these states, which included key informant interviews, previously secret tobacco industry documents (available at http://legacy.library.ucsf.edu), and media articles. This was supplemented with additional tobacco document and media searches specifically for this article. Findings The tobacco companies were particularly concerned about blocking tobacco-control policies in the tobacco-growing states by promoting a pro-tobacco culture, beginning in the late 1960s. Nevertheless, since 2003, there has been rapid progress in the tobacco-growing states’ passage of smoke-free laws. This progress came after the alliance between the tobacco companies and the tobacco farmers fractured and hospitality organizations stopped opposing smoke-free laws. In addition, infrastructure built by National Cancer Institute research projects (COMMIT and ASSIST) led to long-standing tobacco-control coalitions that capitalized on these changes. Although tobacco production has dramatically fallen in these states, pro-tobacco sentiment still hinders tobacco-control policies in the major tobacco-growing states. Conclusions The environment has changed in the tobacco-growing states, following a fracture of the alliance between the tobacco companies and their former allies (tobacco growers and hospitality organizations). To continue this progress, health advocates should educate the public and policymakers on the changing reality in the tobacco-growing states, notably the

  4. A retrospective study of skull base neoplasia in 42 dogs.

    PubMed

    Rissi, Daniel R

    2015-11-01

    This study describes the prevalence and distribution of 42 cases of skull base neoplasia in dogs between 2000 and 2014. The average age of affected individuals was 9.5 years, and there was no sex or breed predisposition. The most common skull base neoplasms were meningioma (25 cases) and pituitary adenoma (9 cases). Less common tumors included craniopharyngioma (2 cases), nerve sheath tumor (2 cases), and 1 case each of pituitary carcinoma, meningeal oligodendrogliomatosis, presumed nasal or sinonasal carcinoma, and multilobular tumor of bone. All neoplasms caused some degree of compression of adjacent structures. The distribution of the tumors was greatest in the sellar region (n = 18), followed by the paranasal region (n = 12), caudal cranial fossa (n = 10), central cranial fossa (n = 1), and rostral cranial fossa (n = 1). © 2015 The Author(s).

  5. FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models

    PubMed Central

    Martínez-Abadías, Neus; Heuzé, Yann; Wang, Yingli; Jabs, Ethylin Wang; Aldridge, Kristina; Richtsmeier, Joan T.

    2011-01-01

    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development. PMID:22053191

  6. Morphological Variations in the Transverse Venous Sinus Anatomy of Dogs and its Relationship to Skull Landmarks.

    PubMed

    Carreira, L Miguel; Ferreira, A

    2016-08-01

    We characterized the anatomical morphology of the transverse venous sinus (TVS) of 69 canine adult cadavers belonging to three groups: brachycephalic (B), dolichocephalic (D) and mesaticephalic (M). In addition, we outlined its path over the skull using five classic human craniometric points (CPs): the asterion (ast), the bregma (b), the glabella (g), the stephanion (st) and the pterion (pt). The study aimed to establish anatomical differences in the TVS between groups and in the relationship between the TVS and skull. We found that TVS anatomy and its relationships to skull landmarks vary markedly between the groups, with similar anatomical arrangements in B and M. The TVS length can be ranked as M < B < D (with D being the biggest), whereas the width can be ranked as M < D < B (with B being the widest) with the right side being smaller than the left. In the B and M groups, the TVS assumes a craniocaudal trajectory that is closer to the lateral skull wall than in D, where the TVS presents a caudocranial direction. By documenting the morphological characteristics of the TVS, we can create a set of anatomical references allowing construction of a basic framework to greatly decrease the probability of TVS injury during neuronavigation procedures when supported by a good knowledge of the skull, brain anatomies and their relationships. © 2015 Blackwell Verlag GmbH.

  7. Locoregional and Microvascular Free Tissue Reconstruction of the Lateral Skull Base.

    PubMed

    Arnaoutakis, Demetri; Kadakia, Sameep; Abraham, Manoj; Lee, Thomas; Ducic, Yadranko

    2017-11-01

    The goals of reconstruction following any oncologic extirpation are preservation of function, restoration of cosmesis, and avoidance of morbidity. Anatomically, the lateral skull base is complex and conceptually intricate due to its three-dimensional morphology. The temporal bone articulates with five other cranial bones and forms many sutures and foramina through which pass critical neural and vascular structures. Remnant defects following resection of lateral skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction including local rotational muscle flaps, pedicled flaps with skin paddle, or free tissue transfer. In this review, the advantages and disadvantages of each reconstructive method will be discussed as well as their potential complications.

  8. Panorama of Reconstruction of Skull Base Defects: From Traditional Open to Endonasal Endoscopic Approaches, from Free Grafts to Microvascular Flaps

    PubMed Central

    Reyes, Camilo; Mason, Eric; Solares, C. Arturo

    2014-01-01

    Introduction A substantial body of literature has been devoted to the distinct characteristics and surgical options to repair the skull base. However, the skull base is an anatomically challenging location that requires a three-dimensional reconstruction approach. Furthermore, advances in endoscopic skull base surgery encompass a wide range of surgical pathology, from benign tumors to sinonasal cancer. This has resulted in the creation of wide defects that yield a new challenge in skull base reconstruction. Progress in technology and imaging has made this approach an internationally accepted method to repair these defects. Objectives Discuss historical developments and flaps available for skull base reconstruction. Data Synthesis Free grafts in skull base reconstruction are a viable option in small defects and low-flow leaks. Vascularized flaps pose a distinct advantage in large defects and high-flow leaks. When open techniques are used, free flap reconstruction techniques are often necessary to repair large entry wound defects. Conclusions Reconstruction of skull base defects requires a thorough knowledge of surgical anatomy, disease, and patient risk factors associated with high-flow cerebrospinal fluid leaks. Various reconstruction techniques are available, from free tissue grafting to vascularized flaps. Possible complications that can befall after these procedures need to be considered. Although endonasal techniques are being used with increasing frequency, open techniques are still necessary in selected cases. PMID:25992142

  9. Skull Development, Ossification Pattern, and Adult Shape in the Emerging Lizard Model Organism Pogona vitticeps: A Comparative Analysis With Other Squamates.

    PubMed

    Ollonen, Joni; Da Silva, Filipe O; Mahlow, Kristin; Di-Poï, Nicolas

    2018-01-01

    The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult

  10. Skull Development, Ossification Pattern, and Adult Shape in the Emerging Lizard Model Organism Pogona vitticeps: A Comparative Analysis With Other Squamates

    PubMed Central

    Ollonen, Joni; Da Silva, Filipe O.; Mahlow, Kristin; Di-Poï, Nicolas

    2018-01-01

    The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult

  11. Gas-Driven Fracturing of Saturated Granular Media

    NASA Astrophysics Data System (ADS)

    Campbell, James M.; Ozturk, Deren; Sandnes, Bjørnar

    2017-12-01

    Multiphase flows in deformable porous materials are important in numerous geological and geotechnical applications; however, the complex flow behavior makes subsurface transport processes difficult to control—or even characterize. Here, we study gas-driven (pneumatic) fracturing of a wet unconsolidated granular packing confined in a Hele-Shaw cell, and we present an in-depth analysis of both pore-scale phenomena and large-scale pattern formation. The process is governed by a complex interplay among pressure, capillary, frictional, and viscous forces. At low gas-injection rates, fractures grow in a stick-slip fashion and branch out to form a simply connected network. We observe the emergence of a characteristic length scale—the separation distance between fracture branches—creating an apparent uniform spatial fracture density. We conclude that the well-defined separation distance is the result of local compaction fronts surrounding fractures and keeping them apart. A scaling argument is presented that predicts fracture density as a function of granular friction, grain size, and capillary interactions. We study the influence of the gas-injection rate and find that the system undergoes a fluidization transition above a critical injection rate, resulting in directional growth of the fractures, and a fracture density that increases with an increasing rate. A dimensionless fluidization number F is defined as the ratio of viscous to frictional forces, and our experiments reveal a frictional regime for F <1 characterized by stick-slip, rate-independent growth, with a transition to a viscous regime (F >1 ) characterized by continuous growth in several fracture branches simultaneously.

  12. Readability analysis of internet-based patient information regarding skull base tumors.

    PubMed

    Misra, Poonam; Kasabwala, Khushabu; Agarwal, Nitin; Eloy, Jean Anderson; Liu, James K

    2012-09-01

    Readability is an important consideration in assessing healthcare-related literature. In order for a source of information to be the most beneficial to patients, it should be written at a level appropriate for the audience. The National Institute of Health recommends that health literature be written at a maximum level of sixth grade. This is not uniformly found in current health literature, putting patients with lower reading levels at a disadvantage. In February 2012, healthcare-oriented education resources were retrieved from websites obtained using the Google search phrase skull base tumors. Of the first 25 consecutive, unique website hits, 18 websites were found to contain information for patients. Ten different assessment scales were utilized to assess the readability of the patient-specific web pages. Patient-oriented material found online for skull base tumors was written at a significantly higher level than the reading level of the average US patient. The average reading level of this material was found to be at a minimum of eleventh grade across all ten scales. Health related material related to skull base tumors available through the internet can be improved to reach a larger audience without sacrificing the necessary information. Revisions of this material can provide significant benefit for average patients and improve their health care.

  13. In the Eye of the Beholder: Owner Preferences for Variations in Cats’ Appearances with Specific Focus on Skull Morphology

    PubMed Central

    Packer, Rowena M. A.; Sordo, Lorena; Chen, Ruoning; Caney, Sarah M. A.

    2018-01-01

    Simple Summary Recently, there has been an increase in popularity of cats with different skull shapes, including shortened or lengthened muzzles. Skull shape, like other physical features, may affect human preferences; however, it is also more likely to have an impact on the welfare of the cat. We asked people to score their preference for 15 pictures of cats across two surveys. Extreme face shapes (those that were very short or very long) were least preferred. Short-faced cats were less popular amongst cat owners from animal related jobs as opposed to other people. Respondents that had a short or long-faced cat preferred cats with the same skull shape, but also had lower preferences for the opposite skull shape. Respondents from Asia, as compared to those from elsewhere, gave higher preference scores to both long and short-faced cats. Amongst the other features, green eyes, a ginger coat color and medium length coat were most preferred, although the ability to draw conclusions around these features is limited, given they are not necessarily independent of skull shape. This study provides the first evidence that preferences for cat breeds, and their associated skull morphologies, are driven by both culture and owner experience. This information may inform future research concerning the preferences of cat owners. Abstract Changes in the popularity of cat breeds are largely driven by human perceptions of, and selection for, phenotypic traits including skull morphology. The popularity of breeds with altered skull shapes appears to be increasing, and owner preferences are an important part of this dynamic. This study sought to establish how and why a range of phenotypic attributes, including skull shape, affect preferences shown by cat owners. Two questionnaires were distributed on-line to cat owners who were asked to rate preferences for pictures of cats on a 0–10 scale. Veterinarian consensus established the skull types of the cats pictured (i.e., level of

  14. Endoscopic endonasal approaches for the management of skull base meningiomas. Selection criteria and clinical outcomes.

    PubMed

    Todeschini, Alexandre B; Otto, Bradley A; Carrau, Ricardo L; Prevedello, Daniel M

    2018-05-28

    Meningiomas are the most common primary intracranial tumor, arising from different locations, including the skull base. Despite advances in adjuvant treatments, surgical resection remains the main and best treatment for meningiomas. New surgical strategies, such as the endoscopic endonasal approach, have greatly contributed in achieving maximum and total safe resection, preserving the patient's neurological function. Based on the senior authors large experience and a review of the current literature, we have compiled this chapter. We review the surgical technique used at our institution and the most relevant aspects of patient selection when considering resecting a skull base meningioma using the the EEA. Further consideration is given to some skull base meningiomas arising from specific locations with some case examples. The EEA is not an ideal approach for every skull base meningioma. Careful evaluation of the surrounding neurovascular structures surrounding the tumor is imperative to select the appropriate surgical corridor for a safe resection. Nevertheless, for appropriately selected cases, the endoscopic technique is a very valuable tool with some evidences of being superior to the microscopic transcranial approach. A dual-trained surgeon, in both endoscopic and transcranial approaches, is the best alternative to achieve the best patient outcome.

  15. Freeze fracturing of elastic porous media: a mathematical model.

    PubMed

    Vlahou, I; Worster, M G

    2015-03-08

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective 'frozen' permeability.

  16. [Multidisciplinary approach of hip fractures based on Hungarian data].

    PubMed

    Juhász, Krisztina; Turchányi, Béla; Mintál, Tibor; Somogyi, Péter

    2016-09-01

    Hip fractures are described by increased mortality, loss of quality of life, functional decline and burden of diseases. They show a growing number worldwide. The aim of the present study is to summarise the existing data on the incidence, mortality, complications and rehabilitation of hip fractures, which relevance is reported only by few studies. To reduce mortality and complications of hip fractures the authors emphasize the importance of primary treatment within 12 hours, appropriate selection of surgical methods corresponding to the fracture type after the assessment of femoral head viability, vitamin D supplementation, same conditions for primary treatment during everyday of the week, and an adequate acute treatment and rehabilitation for patient's general health status. In the future integrated processing of multidisciplinary results of hip fractures based on Hungarian data can support the development of efficient treatment and prevention strategies, which can be advantageous for the patient, families, health care system, and the society, too, by the reduction of costly complications of hip fracture healing and mortality. Orv. Hetil., 2016, 157(37), 1469-1475.

  17. Robust skull stripping using multiple MR image contrasts insensitive to pathology.

    PubMed

    Roy, Snehashis; Butman, John A; Pham, Dzung L

    2017-02-01

    Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T 1 -w MR images of normal brains, especially because high resolution T 1 -w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T 1 -w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), 2 where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T 1 -w, T 2 -w were used to skull-strip these datasets. We show significant improvement in stripping

  18. [Black bone disease of the skull and facial bones].

    PubMed

    Laure, B; Petraud, A; Sury, F; Bayol, J-C; Marquet-Van Der Mee, N; de Pinieux, G; Goga, D

    2009-11-01

    We report the case of a patient with a craniofacial black bone disease. This was discovered accidentally during a coronal approach. A 38-year-old patient was referred to our unit for facial palsy having appeared 10 years before. Rehabilitation of the facial palsy was performed with a lengthening temporal myoplasty and lengthening of the upper eyelid elevator. An unusual black color of the skull was observed at incision of the coronal approach. Subperiostal dissection of skull and malars confirmed the presence of a black bone disease. A postoperative history revealed minocycline intake (200mg per day) during 3 years. This craniofacial black bone disease was caused by minocycline intake. The originality of this case is to see directly the entire craniofacial skeleton black. This abnormal pigmentation may affect various organs or tissues. Bone pigmentation is irreversible unlike that of the mouth mucosa or of the skin. This abnormal pigmentation is usually discovered accidentally.

  19. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    PubMed

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.

  20. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice

  1. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains (<∼0.001), fracture spatial distributions are indistinguishable from random, whereas at higher strains, fractures are generally statistically clustered. All 12 large (N > 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  2. Primary Ewing's sarcoma of the skull: radical resection and immediate cranioplasty after chemotherapy. A technical note.

    PubMed

    Castle, Maria; Rivero, Mónica; Marquez, Javier

    2013-02-01

    The current standard treatment of Ewing's sarcoma is chemotherapy followed by surgery, making an immediate cranial reconstruction in a one-step surgical procedure possible. We describe the technique used to repair a cranial defect after the resection of a primary Ewing's sarcoma of the skull in a one-step surgical procedure. Bone repair with a custom-made cranioplasty immediately after resection of a primary Ewing's sarcoma of the skull avoids deformities and late complications associated with reconstructive surgery after radiotherapy and not interfere with radiotherapy and neither with follow-up. A one-step surgical procedure after chemotherapy for primary Ewing's sarcoma of the skull could be safer, less aggressive and more radical; avoiding deformities and late complications.

  3. Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.

    PubMed

    Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H

    2016-01-01

    Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing

  4. Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture.

    PubMed

    Ivancic, Paul C; Beauchman, Naseem N; Mo, Fred; Lawrence, Brandon D

    2009-03-01

    An in vitro biomechanical study of halo-vest and odontoid screw fixation of Type II dens fracture. The objective were to determine upper cervical spine instability due to simulated dens fracture and investigate stability provided by the halo-vest and odontoid screw, applied individually and combined. Previous studies have evaluated posterior fixation techniques for stabilizing dens fracture. No previous biomechanical study has investigated the halo-vest and odontoid screw for stabilizing dens fracture. A biofidelic skull-neck-thorax model was used with 5 osteoligamentous whole cervical spine specimens. Three-dimensional flexibility tests were performed on the specimens while intact, following simulated dens fracture, and following application of the halo-vest alone, odontoid screw alone, and halo-vest and screw combined. Average total neutral zone and total ranges of motion at C0/1 and C1/2 were computed for each experimental condition and statistically compared with physiologic motion limits, obtained from the intact flexibility test. Significance was set at P < 0.05 with a trend toward significance at P < 0.1. Type II dens fracture caused trends toward increased sagittal neutral zone and lateral bending range of motion at C1/2. Spinal motions with the dens screw alone could not be differentiated from physiologic limits. Significant reductions in motion were observed at C0/1 and C1/2 in flexion-extension and axial rotation due to the halo-vest, applied individually or combined with the dens screw. At C1/2, the halo-vest combined with the dens screw generally allowed the smallest average percentages of intact motion: 3% in axial rotation, 17% in flexion-extension, and 18% in lateral bending. The present reduction in C1/2 motion observed, due to the halo-vest and dens screw combined is similar to previously reported immobilization provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring. The present biomechanical data may be

  5. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  6. Descriptive Anatomy and Three-Dimensional Reconstruction of the Skull of the Early Tetrapod Acanthostega gunnari Jarvik, 1952

    PubMed Central

    Porro, Laura B.; Rayfield, Emily J.; Clack, Jennifer A.

    2015-01-01

    The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals. PMID:25760343

  7. Congenital malformations of the skull and meninges.

    PubMed

    Kanev, Paul M

    2007-02-01

    The surgery and management of children who have congenital malformations of the skull and meninges require multidisciplinary care and long-term follow-up by multiple specialists in birth defects. The high definition of three-dimensional CT and MRI allows precise surgery planning of reconstruction and management of associated malformations. The reconstruction of meningoencephaloceles and craniosynostosis are challenging procedures that transform the child's appearance. The embryology, clinical presentation, and surgical management of these malformations are reviewed.

  8. Comparative skull analysis suggests species-specific captivity-related malformation in lions (Panthera leo).

    PubMed

    Saragusty, Joseph; Shavit-Meyrav, Anat; Yamaguchi, Nobuyuki; Nadler, Rona; Bdolah-Abram, Tali; Gibeon, Laura; Hildebrandt, Thomas B; Shamir, Merav H

    2014-01-01

    Lion (Panthera leo) populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM) stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512) and captive (N = 63) origin. Tiger skulls (N = 276; 56 captive, 220 wild) were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH), FMH of captive lions (17.36±3.20 mm) was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm). There was no difference between wild (18.47±1.26 mm) and captive (18.56±1.64 mm) tigers in FMH. Birth origin (wild vs. captive) as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2%) had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm), this was evident in 40.4% (23/57) of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions.

  9. Comparative Skull Analysis Suggests Species-Specific Captivity-Related Malformation in Lions (Panthera leo)

    PubMed Central

    Saragusty, Joseph; Shavit-Meyrav, Anat; Yamaguchi, Nobuyuki; Nadler, Rona; Bdolah-Abram, Tali; Gibeon, Laura; Hildebrandt, Thomas B.; Shamir, Merav H.

    2014-01-01

    Lion (Panthera leo) populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM) stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512) and captive (N = 63) origin. Tiger skulls (N = 276; 56 captive, 220 wild) were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH), FMH of captive lions (17.36±3.20 mm) was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm). There was no difference between wild (18.47±1.26 mm) and captive (18.56±1.64 mm) tigers in FMH. Birth origin (wild vs. captive) as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2%) had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm), this was evident in 40.4% (23/57) of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions. PMID:24718586

  10. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neurosurgical head holder (skull clamp). 882.4460 Section 882.4460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4460 Neurosurgical head...

  11. Recent developments in analysis of crack propagation and fracture of practical materials

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    Present U.S. Air Force and proposed U.S. civil airworthiness regulations are based on considerations of 'damage tolerance' in aircraft structures. Airworthiness is assured by demonstrating that damage that escapes one in a sequence of periodic inspections will not grow to critical size before the next inspection. The evaluations conducted employ fracture mechanics analyses. Problems arise because the features of fracture mechanics applications related to aircraft structures are more complex than the cases of fracture mechanics which have been mainly investigated. NASA has, therefore, conducted a variety of research tasks to extend the capabilities of fracture mechanics to deal with some of these complexities. The current stage of development of these capabilities is described. Attention is given to the limitations of linear elastic fracture mechanics, a two-parameter fracture criterion, aspects of fatigue crack propagation, and crack propagation and fracture in built-up structures.

  12. A Complex Facial Trauma Case with Multiple Mandibular Fractures and Dentoalveolar Injuries

    PubMed Central

    Zorlu, Sevgi; Cankaya, Abdulkadir Burak; Aktoren, Oya; Gencay, Koray

    2015-01-01

    The principles of management of mandibular fractures differ in children when compared to adults and depend on the specific age-related status of the growing mandible and the developing dentition. This paper presents a case report with a complex facial trauma affecting the mandibular body and condyle region and dentoalveolar complex. Clinical examination revealed soft tissue injuries, limited mouth opening, lateral deviation of the mandible, an avulsed incisor, a subluxated incisor, and a fractured crown. CBCT examination revealed a nondisplaced fracture and an oblique greenstick fracture of the mandibular body and unilateral fracture of the condyle. Closed reduction technique was chosen to manage fractures of the mandible. Favorable healing outcomes on multiple fractures of the mandible throughout the 6-year follow-up period proved the success of the conservative treatment. This case report is important since it presents a variety of pathological sequelae to trauma within one case. PMID:26339511

  13. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  14. The Ardipithecus ramidus skull and its implications for hominid origins.

    PubMed

    Suwa, Gen; Asfaw, Berhane; Kono, Reiko T; Kubo, Daisuke; Lovejoy, C Owen; White, Tim D

    2009-10-02

    The highly fragmented and distorted skull of the adult skeleton ARA-VP-6/500 includes most of the dentition and preserves substantial parts of the face, vault, and base. Anatomical comparisons and micro-computed tomography-based analysis of this and other remains reveal pre-Australopithecus hominid craniofacial morphology and structure. The Ardipithecus ramidus skull exhibits a small endocranial capacity (300 to 350 cubic centimeters), small cranial size relative to body size, considerable midfacial projection, and a lack of modern African ape-like extreme lower facial prognathism. Its short posterior cranial base differs from that of both Pan troglodytes and P. paniscus. Ar. ramidus lacks the broad, anteriorly situated zygomaxillary facial skeleton developed in later Australopithecus. This combination of features is apparently shared by Sahelanthropus, showing that the Mio-Pliocene hominid cranium differed substantially from those of both extant apes and Australopithecus.

  15. [Principles of management of periprosthetic fractures].

    PubMed

    Röderer, G; Gebhard, F; Scola, A

    2016-03-01

    The increasing numbers of primary total hip and knee replacements have subsequently led to growing rates of periprosthetic fractures. In many cases geriatric patients with osteopenia or osteoporotic bone quality are affected. The goal of treatment is the retention or reconstruction of joint function using open reduction and internal fixation or a revision prosthesis. The aim of this article is a description of the basic principles of treatment of periprosthetic fractures of the lower extremities. An exact description of the fracture using current classification systems with imaging diagnostics is mandatory. This also includes an assessment of the stability of the prosthesis. In the case of a stable prosthesis and a good bone stock open reduction and internal fixation should be performed. In these cases locking plates are standard procedure. If fracture reduction is possible minimally invasive procedures can be performed which help to reduce the surgical trauma and accelerate rehabilitation. If the prosthesis is loose it has to be exchanged for a revision implant. If vast bony defects result they can be augmented using wedges. Conservative treatment plays only a subordinate role in selected cases. Periprosthetic fractures show an increasing incidence and occur more frequently in the geriatric patient population. Due to comorbidities and poor bone quality surgical treatment is a challenge. The fracture must be exactly classified using the appropriate classification system in order to clarify if the prosthesis can be retained or if it has to be exchanged.

  16. Intraventricular and skull base neuroendoscopy in 2012: a global survey of usage patterns and the role of intraoperative neuronavigation.

    PubMed

    Esposito, Felice; Di Rocco, Federico; Zada, Gabriel; Cinalli, Giuseppe; Schroeder, Henry W S; Mallucci, Conor; Cavallo, Luigi M; Decq, Philippe; Chiaramonte, Carmela; Cappabianca, Paolo

    2013-12-01

    During the past decade, endoscopic intraventricular and skull base operations have become widely used for a variety of evolving indications. A global survey of practicing endoscopic neurosurgeons was performed to characterize patterns of usage regarding endoscopy equipment, instrumentation, and the indications for using image-guided surgery systems (IGSs). An online survey consisting of 8 questions was completed by 235 neurosurgeons with endoscopic surgical experience. Responses were entered into a database and subsequently analyzed. The median number of operations performed per year by intraventricular and skull base endoscopic surgeons was 27 and 25, respectively. Data regarding endoscopic equipment brand, diameter, and length are presented. The most commonly reported indications for IGSs during intraventricular endoscopic surgery were tumor biopsy/resection, intraventricular cyst fenestration, septostomy/pellucidotomy, endoscopic third ventriculostomy, and aqueductal stent placement. Intraventricular surgeons reported using IGSs for all cases in 16.6% and never in 24.4%. Overall, endoscopic skull base surgeons reported using IGSs for all cases in 23.9% and never in 18.9%. The most commonly reported indications for IGSs during endoscopic skull base operations were complex sinus/skull base anatomy, extended approaches, and reoperation. Many variations and permutations for performing intraventricular and skull base endoscopic surgery exist worldwide. Much can be learned by studying the patterns and indications for using various types of equipment and operative adjuncts such as IGSs. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators

    PubMed Central

    Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Introduction Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Methods Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. Results All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6–3.5 times higher than in bone. For polycarbonate, forces applied were 1.6–2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Conclusion Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety. PMID:29252993

  18. [Streptococcus milleri: An unusual cause of skull extensive osteomyelitis in an immunocompetent patient].

    PubMed

    Duquenne, C; Dernis, E; Zehrouni, A; Bizon, A; Duquenne, M

    2017-09-01

    Streptococcus milleri (Streptococcus anginosus, intermedius and constellatus) are commensal organisms, which can become pathogenic and cause infection with frequent abscess formation, local or metastatic extension. Osteomyelitis of the skull has been rarely reported in this type of infection. Skull osteomyelitis due to Streptococcus milleri is reported in a 61-year-old immunocompetent man without any medical history, occurring 10 months after a head injury without any wound or complication at initial presentation. A progressive right parieto-occipital headache with worsening and increased acute phase reactants evoked a giant cell arteritis. After few days of corticosteroid therapy (0.5 mg/kg/day), diagnosis of subcutaneous abscess associated to an extensive osteomyelitis of the skull due to Streptococcus milleri was diagnosed. The outcome was favorable after drainage of one liter of pus, irrigation, debridement and antibiotherapy by amoxicillin for 8 weeks. It is necessary to discuss the differential diagnosis of giant cell arteritis particularly when symptoms are unusual. Even a short-term corticosteroid therapy may dramatically exacerbate an undetected infection. Copyright © 2017. Published by Elsevier SAS.

  19. A close examination of healthcare expenditures related to fractures.

    PubMed

    Kilgore, Meredith L; Curtis, Jeffrey R; Delzell, Elizabeth; Becker, David J; Arora, Tarun; Saag, Kenneth G; Morrisey, Michael A

    2013-04-01

    This study evaluated reasons for healthcare expenditures both before and after the occurrence of fractures among Medicare beneficiaries. In a previous study we examined healthcare expenditures in the 6 months before and after fractures. The difference-"incremental" expenditures-provides one estimate of the potentially avoidable costs associated with fractures. We constructed a second estimate of the cost burden-"attributable" expenditures-using only those costs recorded in claims with fracture diagnosis codes. Attributable expenditures accounted for only 24% to 60% of incremental expenditures, depending on the fracture site. We examined health care expenditures between 1999 and 2005 among Medicare beneficiaries who experienced fractures (cases) and among beneficiaries who did not experience fractures (controls), matched to cases on age, race, and sex. We also examined healthcare expenditures for cases and controls for 24 months prior to the fracture index date. When expenditures associated with diagnoses for aftercare, joint pain, and osteoporosis, other musculoskeletal diagnoses, pneumonia, and pressure ulcers were included, the proportion of incremental costs directly attributable to fracture care rose to 72% to 88%. Expenditures prior to fracture were higher for cases than controls, and the rate of increase accelerated over the 12 months prior to the hip fracture. Our findings confirm that the original incremental cost analysis constituted a satisfactory method for estimating avoidable costs associated with fractures. We also conclude that those with fractures had much higher and growing healthcare expenditures in the 12 months prior to the event, compared with age-, race-, and sex-matched controls. This suggests that patterns of healthcare services utilization may provide a means to improve fracture prediction rules. Copyright © 2013 American Society for Bone and Mineral Research.

  20. Mastoid bone fracture presenting as unusual delayed onset of facial nerve palsy.

    PubMed

    Hsu, Ko-Chiang; Wang, Ann-Ching; Chen, Shyi-Jou

    2008-03-01

    Delayed-onset facial nerve paralysis is a rather uncommon complication of a mastoid bone fracture for children younger than 10 years. We routinely arrange a cranial computed tomography (CT) for patients encountering initial loss of consciousness, severe headache, intractable vomiting, and/or any neurologic deficit arising from trauma to the head. However, minor symptomatic cranial nerve damage may be missed and the presenting symptom diagnosed as being a peripheral nerve problem. Herein, we report a case of a young boy who presented at our emergency department (ED) 3 days subsequent to his accident, complaining of hearing loss in the right ear and paralysis of the ipsilateral face. Unpredictably, we observed his cranial CT scan revealing a linear fracture of the skull over the right temporal bone involving the right mastoid air cells. The patient was treated conservatively and recovered well without any adverse neurologic consequences. We emphasize that ED physicians should arrange a cranial CT scan for a head-injured child with symptomatic facial nerve palsy, even if there are no symptoms such as severe headache, vomiting, Battle sign, and/or initial loss of consciousness.

  1. Zygomatic bone shape in intentional cranial deformations: a model for the study of the interactions between skull growth and facial morphology.

    PubMed

    Ketoff, S; Girinon, F; Schlager, S; Friess, M; Schouman, T; Rouch, P; Khonsari, R H

    2017-04-01

    Intentional cranial deformations (ICD) were obtained by exerting external mechanical constraints on the skull vault during the first years of life to permanently modify head shape. The repercussions of ICD on the face are not well described in the midfacial region. Here we assessed the shape of the zygomatic bone in different types of ICDs. We considered 14 non-deformed skulls, 19 skulls with antero-posterior deformation, nine skulls with circumferential deformation and seven skulls with Toulouse deformation. The shape of the zygomatic bone was assessed using a statistical shape model after mesh registration. Euclidian distances between mean models and Mahalanobis distances after canonical variate analysis were computed. Classification accuracy was computed using a cross-validation approach. Different ICDs cause specific zygomatic shape modifications corresponding to different degrees of retrusion but the shape of the zygomatic bone alone is not a sufficient parameter for classifying populations into ICD groups defined by deformation types. We illustrate the fact that external mechanical constraints on the skull vault influence midfacial growth. ICDs are a model for the study of the influence of epigenetic factors on craniofacial growth and can help to understand the facial effects of congenital skull malformations such as single or multi-suture synostoses, or of external orthopedic devices such as helmets used to correct deformational plagiocephaly. © 2016 Anatomical Society.

  2. Modified human crania from Göbekli Tepe provide evidence for a new form of Neolithic skull cult

    PubMed Central

    Gresky, Julia; Haelm, Juliane; Clare, Lee

    2017-01-01

    Archaeological excavations at Göbekli Tepe, a transitional Neolithic site in southeast Turkey, have revealed the earliest megalithic ritual architecture with characteristic T-shaped pillars. Although human burials are still absent from the site, a number of fragmented human bones have been recovered from fill deposits of buildings and from adjacent areas. We focus on three partially preserved human skulls, all of which carry artificial modifications of a type so far unknown from contemporaneous sites and the ethnographic record. As such, modified skull fragments from Göbekli Tepe could indicate a new, previously undocumented variation of skull cult in the Early Neolithic of Anatolia and the Levant. PMID:28782013

  3. Rapidly Growing Brtl/+ Mouse Model of Osteogenesis Imperfecta Improves Bone Mass and Strength with Sclerostin Antibody Treatment

    PubMed Central

    Sinder, Benjamin P.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3 week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly->Cys substitution on col1a1, for 5 weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. PMID:25445450

  4. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    PubMed

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P < 0.01) associated with percentage total brain volume in ICV measured without adjusting for skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    PubMed Central

    Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.

    2016-01-01

    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route. PMID:27293965

  6. Skulls, brains, and memorial culture: on cerebral biographies of scientists in the nineteenth century.

    PubMed

    Hagner, Michael

    2003-06-01

    In this paper, I will argue that the scientific investigation of skulls and brains of geniuses went hand in hand with hagiographical celebrations of scientists. My analysis starts with late-eighteenth century anatomists and anthropologists who highlighted quantitative parameters such as the size and weight of the brain in order to explain intellectual differences between women and men and Europeans and non-Europeans, geniuses and ordinary persons. After 1800 these parameters were modified by phrenological inspections of the skull and brain. As the phrenological examination of the skulls of Immanuel Kant, Wilhelm Heinse, Arthur Schopenhauer and others shows, the anthropometrical data was interpreted in light of biographical circumstances. The same pattern of interpretation can be found in non-phrenological contexts: Reports about extraordinary brains were part of biographical sketches, mainly delivered in celebratory obituaries. It was only in this context that moral reservations about dissecting the brains of geniuses could be overcome, which led to a more systematic investigation of brains of geniuses after 1860.

  7. An exceptional fossil skull from South America and the origins of the archosauriform radiation

    NASA Astrophysics Data System (ADS)

    Pinheiro, Felipe L.; França, Marco A. G.; Lacerda, Marcel B.; Butler, Richard J.; Schultz, Cesar L.

    2016-03-01

    Birds, dinosaurs, crocodilians, pterosaurs and their close relatives form the highly diverse clade Archosauriformes. Archosauriforms have a deep evolutionary history, originating in the late Permian, prior to the end-Permian mass extinction, and radiating in the Triassic to dominate Mesozoic ecosystems. However, the origins of this clade and its extraordinarily successful body plan remain obscure. Here, we describe an exceptionally preserved fossil skull from the Lower Triassic of Brazil, representing a new species, Teyujagua paradoxa, transitional in morphology between archosauriforms and more primitive reptiles. This skull reveals for the first time the mosaic assembly of key features of the archosauriform skull, including the antorbital and mandibular fenestrae, serrated teeth, and closed lower temporal bar. Phylogenetic analysis recovers Teyujagua as the sister taxon to Archosauriformes, and is congruent with a two-phase model of early archosauriform evolution, in response to two mass extinctions occurring at the end of the Guadalupian and the Permian.

  8. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.

    PubMed

    Bolander, Richard; Mathie, Blake; Bir, Cynthia; Ritzel, David; VandeVord, Pamela

    2011-10-01

    The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.

  9. Sinonasal outcomes following endoscopic anterior skull base surgery with nasoseptal flap reconstruction: a prospective study.

    PubMed

    Hanson, M; Patel, P M; Betz, C; Olson, S; Panizza, B; Wallwork, B

    2015-07-01

    To assess nasal morbidity resulting from nasoseptal flap use in the repair of skull base defects in endoscopic anterior skull base surgery. Thirty-six patients awaiting endoscopic anterior skull base surgery were prospectively recruited. A nasoseptal flap was used for reconstruction in all cases. Patients were assessed pre-operatively and 90 days post-operatively via the Sino-Nasal Outcome Test 20 questionnaire and visual analogue scales for nasal obstruction, pain, secretions and smell; endoscopic examination findings and mucociliary clearance times were also recorded. Sino-Nasal Outcome Test 20 questionnaire data and visual analogue scale scores for pain, smell and secretions showed no significant differences between pre- and post-operative outcomes, with visual analogue scale scores for nasal obstruction actually showing a significant improvement (p = 0.0007). A significant deterioration for both flap and non-flap sides was demonstrated post-operatively on endoscopic examination (p = 0.002 and p = 0.02 respectively). Whilst elevation of a nasoseptal flap in endoscopic surgery of the anterior skull base engendered significant clinical deterioration on examination post-operatively, quality of life outcomes showed that no such deterioration was subjectively experienced by the patient. In fact, there was significant nasal airway improvement following nasoseptal flap reconstruction.

  10. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].

    PubMed

    Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio

    2015-01-01

    The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  11. Skull ontogeny and modularity in two species of Lagenorhynchus: Morphological and ecological implications.

    PubMed

    Del Castillo, Daniela L; Viglino, Mariana; Flores, David A; Cappozzo, Humberto L

    2017-02-01

    Comparisons of skull shape between closely related species can provide information on the role that phylogeny and function play in cranial evolution. We used 3D-anatomical landmarks in order to study the skull ontogeny of two closely related species, Lagenorhynchus obscurus and Lagenorhynchus australis, with a total sample of 52 skulls. We found shared trends between species, such as the relative compression of the neurocranium and the enlargement of the rostrum during ontogeny. However, these are common mammalian features, associated with prenatal brain development and sensory capsules. Moreover, we found a posterior displacement of the external nares and infraorbital foramina, and a strong development of the rostrum in an anteroposterior direction. Such trends are associated with the process of telescoping and have been observed in postnatal ontogeny of other odontocetes, suggesting a constraint in the pattern. Interspecific differences related to the deepness of facial region, robustness of the feeding apparatus and rostrum orientation may be related with the specific lifestyles of L. obscurus and L. australis. We also tested the presence of three different modules in the skull (basicranium, neurocranium, rostrum), all of which presented strong integration. Only the rostrum showed a different ontogenetic trajectory between species. Even though we detected directional asymmetry, changes in this feature along ontogeny were not detectable. Because asymmetry may be related to echolocation, our results suggest a functional importance of directional asymmetry from the beginning of postnatal life. J. Morphol. 278:203-214, 2017. © 2016 Wiley Periodicals,Inc. © 2016 Wiley Periodicals, Inc.

  12. Random Positional Variation Among the Skull, Mandible, and Cervical Spine With Treatment Progression During Head-and-Neck Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Peter H.; Ahn, Andrew I.; Lee, C. Joe

    2009-02-01

    Purpose: With 54{sup o} of freedom from the skull to mandible to C7, ensuring adequate immobilization for head-and-neck radiotherapy (RT) is complex. We quantify variations in skull, mandible, and cervical spine movement between RT sessions. Methods and Materials: Twenty-three sequential head-and-neck RT patients underwent serial computed tomography. Patients underwent planned rescanning at 11, 22, and 33 fractions for a total of 93 scans. Coordinates of multiple bony elements of the skull, mandible, and cervical spine were used to calculate rotational and translational changes of bony anatomy compared with the original planning scan. Results: Mean translational and rotational variations on rescanningmore » were negligible, but showed a wide range. Changes in scoliosis and lordosis of the cervical spine between fractions showed similar variability. There was no correlation between positional variation and fraction number and no strong correlation with weight loss or skin separation. Semi-independent rotational and translation movement of the skull in relation to the lower cervical spine was shown. Positioning variability measured by means of vector displacement was largest in the mandible and lower cervical spine. Conclusions: Although only small overall variations in position between head-and-neck RT sessions exist on average, there is significant random variation in patient positioning of the skull, mandible, and cervical spine elements. Such variation is accentuated in the mandible and lower cervical spine. These random semirigid variations in positioning of the skull and spine point to a need for improved immobilization and/or confirmation of patient positioning in RT of the head and neck.« less

  13. Skull Size and Intelligence, and King Robert Bruce's IQ

    ERIC Educational Resources Information Center

    Deary, Ian J.; Ferguson, Karen J.; Bastin, Mark E.; Barrow, Geoffrey W. S.; Reid, Louise M.; Seckl, Jonathan R.; Wardlaw, Joanna M.; MacLullich, Alasdair M. J.

    2007-01-01

    An estimate of someone's IQ is a potentially informative personal datum. This study examines the association between external skull measurements and IQ scores, and uses the resulting regression equation to provide an estimate of the IQ of King Robert I of Scotland (Robert Bruce, 1274-1329). Participants were 48 relatively healthy Caucasian men…

  14. A discrete element model for damage and fracture of geomaterials under fatigue loading

    NASA Astrophysics Data System (ADS)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  15. Calvarial and skull base metastases: expanding the clinical utility of Gamma Knife surgery.

    PubMed

    Kotecha, Rupesh; Angelov, Lilyana; Barnett, Gene H; Reddy, Chandana A; Suh, John H; Murphy, Erin S; Neyman, Gennady; Chao, Samuel T

    2014-12-01

    Traditionally, the treatment of choice for patients with metastases to the calvaria or skull base has been conventional radiation therapy. Because patients with systemic malignancies are also at risk for intracranial metastases, the utility of Gamma Knife surgery (GKS) for these patients has been explored to reduce excess radiation exposure to the perilesional brain parenchyma. The purpose of this study was to report the efficacy of GKS for the treatment of calvarial metastases and skull base lesions. The authors performed a retrospective chart review of 21 patients with at least 1 calvarial or skull base metastatic lesion treated with GKS during 2001-2013. For 7 calvarial lesions, a novel technique, in which a bolus was placed over the treatment site, was used. For determination of local control or disease progression, radiation therapy data were examined and posttreatment MR images and oncology records were reviewed. Survival times from the date of procedure were estimated by using Kaplan-Meier analyses. The median patient age at treatment was 57 years (range 29-84 years). A total of 19 (90%) patients received treatment for single lesions, 1 patient received treatment for 3 lesions, and 1 patient received treatment for 4 lesions. The most common primary tumor was breast cancer (24% of patients). Per lesion, the median clinical and radiographic follow-up times were 10.3 months (range 0-71.9 months) and 7.1 months (range 0-61.3 months), respectively. Of the 26 lesions analyzed, 14 (54%) were located in calvarial bones and 12 (46%) were located in the skull base. The median lesion volume was 5.3 cm(3) (range 0.3-55.6 cm(3)), and the median prescription margin dose was 15 Gy (range 13-24 Gy). The median overall survival time for all patients was 35.9 months, and the 1-year local control rate was 88.9% (95% CI 74.4%-100%). Local control rates did not differ between lesions treated with the bolus technique and those treated with traditional methods or between calvarial

  16. Tibia shaft fractures: costly burden of nonunions

    PubMed Central

    2013-01-01

    Background Tibia shaft fractures (TSF) are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. Methods We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives). We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32) in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date). Results Among the 853 patients with TSF, 99 (12%) had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture) and were more likely to have their TSF open (87% vs. 70%) than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P < 0.001], spine or trunk [16.2% vs. 7.2%, P = 0.002], and skull [5.1% vs. 1.3%, P = 0.008]) than those without nonunion. Nonunion patients were more likely to use various types of surgical care, inpatient care (tibia and non-tibia related: 65% vs. 40%, P < 0.001) and outpatient physical therapy (tibia-related: 60% vs. 42%, P < 0.001) than those without nonunion. All categories of care (except emergency room costs) were more expensive in nonunion patients than in those without nonunion: median total care cost $25,556 vs. $11,686, P < 0.001. Nonunion patients were much more likely to be prescribed pain medications (99% vs. 92%, P = 0.009), especially strong opioids (90% vs. 76.4%, P = 0.002) and had longer length of opioid therapy (5.4 months vs. 2.8 months, P < 0.001) than patients without nonunion. Tibia fracture patterns in men

  17. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆

    PubMed Central

    Stenroos, Matti; Hauk, Olaf

    2013-01-01

    The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259

  18. Creating Physical 3D Stereolithograph Models of Brain and Skull

    PubMed Central

    Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.

    2007-01-01

    The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879

  19. The pioneering contribution of italian surgeons to skull base surgery.

    PubMed

    Priola, Stefano M; Raffa, Giovanni; Abbritti, Rosaria V; Merlo, Lucia; Angileri, Filippo F; La Torre, Domenico; Conti, Alfredo; Germanò, Antonino; Tomasello, Francesco

    2014-01-01

    The origin of neurosurgery as a modern, successful, and separate branch of surgery could be dated back to the end of the 19th century. The most important development of surgery occurred in Europe, particularly in Italy, where there was a unique environment, allowing brilliant open-minded surgeons to perform, with success, neurosurgical operations. Neurosurgery began at the skull base. In everyday practice, we still pay tribute to early Italian neuroanatomists and pioneer neurosurgeons who represented a starting point in a new, obscure, and still challenging field of medicine and surgery during their times. In this paper, we report at a glance the contributions of Tito Vanzetti from Padua (1809-1888), for his operation on a destructive skull base cyst that had, indeed, an intracranial expansion; of Davide Giordano (1864-1954) from Venice, who described the first transnasal approach to the pituitary gland; and, most importantly, of Francesco Durante from Messina (1844-1934), who was the first surgeon in the history of neurosurgery to successfully remove a cranial base meningioma. They carried out the first detailed reported surgical excision of intracranial lesions at the skull base, diagnosed only through clinical signs; used many of the advances of the 19th century; and conceived and performed new operative strategies and approaches. Their operations were radical enough to allow the patient to survive the surgery and, in the case of Durante, for the first time, to obtain more than 12 years of good survival at a time when a tumor of this type would have been fatal. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. In the Eye of the Beholder: Owner Preferences for Variations in Cats' Appearances with Specific Focus on Skull Morphology.

    PubMed

    Farnworth, Mark J; Packer, Rowena M A; Sordo, Lorena; Chen, Ruoning; Caney, Sarah M A; Gunn-Moore, Danièlle A

    2018-02-20

    Changes in the popularity of cat breeds are largely driven by human perceptions of, and selection for, phenotypic traits including skull morphology. The popularity of breeds with altered skull shapes appears to be increasing, and owner preferences are an important part of this dynamic. This study sought to establish how and why a range of phenotypic attributes, including skull shape, affect preferences shown by cat owners. Two questionnaires were distributed on-line to cat owners who were asked to rate preferences for pictures of cats on a 0-10 scale. Veterinarian consensus established the skull types of the cats pictured (i.e., level of brachycephaly (BC) or dolichocephaly (DC)). Preferences were then explored relative to cat skull type, coat and eye color, and coat length. Generalized estimating equations identified relationships between physical characteristics and respondent ratings. Further sub-analyses explored effects of respondents' occupation, location and previous cat ownership on rating scores. Overall, cats with extreme changes in skull morphology (both BC and DC) were significantly less preferred than mesocephalic cats. Green eyes, ginger coat color and medium length coat were most preferred. Current owners of a BC or DC pure bred cat showed significantly greater preference for cats with similar features and significantly lower preference for the opposite extreme. Respondents from Asia were significantly more likely to prefer both BC and DC cats as compared to respondents from other locations. Finally, those in an animal care profession, as compared to other professions, provided a significantly lower preference rating for BC cats but not for DC cats. This work, despite the acknowledged limitations, provides preliminary evidence that preferences for cat breeds, and their associated skull morphologies, are driven by both cultural and experiential parameters. This information may allow for better targeting of educational materials concerning cat breeds.

  1. Freeze fracturing of elastic porous media: a mathematical model

    PubMed Central

    Vlahou, I.; Worster, M. G.

    2015-01-01

    We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the rock, which results in thin films of unfrozen water forming between the ice and the rock, is one of the dominant processes of rock fracturing. We find that the fracture toughness of the rock, the size of pre-existing faults and the undercooling of the environment are the main parameters determining the susceptibility of a medium to fracturing. We also explore the dependence of the growth rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks are found for many types of rocks. We consider how the growth rate can be limited by the existence of pore ice, which decreases the permeability of a medium, and propose an expression for the effective ‘frozen’ permeability. PMID:25792954

  2. 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept.

    PubMed

    Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F

    2018-03-02

    OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.

  3. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations

    PubMed Central

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-01-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579

  4. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  5. [Management of occult malformations at the lateral skull base].

    PubMed

    Bryson, E; Draf, W; Hofmann, E; Bockmühl, U

    2005-12-01

    Occult malformations of the lateral skull base are rare anomalies, but can cause severe complications such as recurrent meningitis. Therefore, they need to be precisely delineated and sufficient surgical closure is mandatory. Between 1986 and 2004 twenty patients (10 children and 10 adults) with occult malformations at the lateral skull base were treated surgically at the ENT-Department of the Hospital Fulda gAG. Of these 3 Mondini-malformations, 11 defects of the tegmen tympani or the mastoidal roof, 2 dural lesions to the posterior fossa and 4 malformations within the pyramidal apex have been found. Four patients have had multiple anomalies. Routing symptom was in all cases at least one previous meningitis. Radiological diagnostics included high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) as well as CT- or MR-cisternography. Depending on type and localisation of the defect the following surgical algorithm was carried out: The trans-mastoidal approach was used in all cases of Mondini-malformation (including obliteration of the ear), in case of lesions to the posterior fossa as well as partly in anomalies at the tegmen tympani and mastoidal roof, respectively. Defects of the pyramidal apex should be explored via the trans-mastoidal way if the lesion is located caudally to the inner auditory canal (IAC), whereas the trans-temporal approach should be used if the lesion is situated ventral to the IAC and dorso-medially to the internal carotid artery (ICA). The trans-temporal approach was also performed in large defects of the tegmen tympani and mastoidal roof as well as in recurrences. In all cases of recurrent meningitis caused by agents of the upper airway tract the basic principle should be to search for occult skull base malformations radiologically as well as by sodium fluorescein endoscopy as long as the anomaly is detected.

  6. Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull

    NASA Astrophysics Data System (ADS)

    Chang, You; Kim, Namkeun; Stenfelt, Stefan

    2015-12-01

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  7. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    PubMed

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  8. Transversal craniofacial growth evaluated on children dry skulls using V2 and V 3 canal openings as references.

    PubMed

    Harnet, J C; Lombardi, T; Manière-Ezvan, A; Chamorey, E; Kahn, J L

    2013-11-01

    The aim of this study was to investigate the transversal relationships between two cephalometric landmarks and lines on the face using ovale, rotundum, greater palatine and infra-orbital foramina as references. Thirty-four children dry skulls, 19 males and 15 females aged 0-6 years, were examined by computed tomography scanning by using constructed tomographic axial and frontal planes. The cephalometric transversal dimensions of the face skull were measured between the right and left landmarks from the orbital lateral wall and from the zygomatic arch. The cephalometric transversal dimensions of the base skull were measured between the right and left ovale, rotundum, greater palatine and infra-orbital foramina. Statistical analysis using partial correlations, regardless of the age, showed strong relationships (p < 0.05) among transversal measurements with nerve canal openings and transversal distances of skull face. We showed that the cranial base transversal growth was very strongly related to facial transversal growth from the postnatal period up to 6 years of age.

  9. Neurosurgery during the Bronze Age: a skull trepanation in 1900 BC Greece.

    PubMed

    Papagrigorakis, Manolis J; Toulas, Panagiotis; Tsilivakos, Manolis G; Kousoulis, Antonis A; Skorda, Despoina; Orfanidis, George; Synodinos, Philippos N

    2014-02-01

    Paleoneurosurgery represents a comparatively new developing direction of neurosurgery dealing with archaeological skull and spine finds and studying their neurosurgical aspects. Trepanation of the cranial vault was a widespread surgical procedure in antiquity and the most convincing evidence of the ancient origin of neurosurgery. The present study considers a case of trepanation from the Middle Bronze Age Greece (1900-1600 B.C.). The skull under study belongs to skeletal material unearthed from Kirra, Delphi (Central Greece). Macroscopic examination and palpation, as well as three-dimensional computed tomography, were used in this study. There is osteological evidence that the skull belongs to a man who died at 30-35 years of age. The procedure of trepanation was performed on the right parietal bone. Both macroscopic and computed tomography evaluation demonstrate an intravital bone reaction at the edges of the aperture. Projected on the right surface of the brain, the trepanation is located on the level of the central groove. The small dimensions and the symmetrical shape of this hole give us an indication that it was made by a metal tool. We conclude that this paleopathological case provides valuable information about the condition of life and the pre-Hippocratic neurosurgical practice in Bronze Age Greece. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Large-scale diversification of skull shape in domestic dogs: disparity and modularity.

    PubMed

    Drake, Abby Grace; Klingenberg, Christian Peter

    2010-03-01

    Abstract: The variation among domestic dog breeds offers a unique opportunity to study large-scale diversification by microevolutionary mechanisms. We use geometric morphometrics to quantify the diversity of skull shape in 106 breeds of domestic dog, in three wild canid species, and across the order Carnivora. The amount of shape variation among domestic dogs far exceeds that in wild species, and it is comparable to the disparity throughout the Carnivora. The greatest shape distances between dog breeds clearly surpass the maximum divergence between species in the Carnivora. Moreover, domestic dogs occupy a range of novel shapes outside the domain of wild carnivorans. The disparity among companion dogs substantially exceeds that of other classes of breeds, suggesting that relaxed functional demands facilitated diversification. Much of the diversity of dog skull shapes stems from variation between short and elongate skulls and from modularity of the face versus that of the neurocranium. These patterns of integration and modularity apply to variation among individuals and breeds, but they also apply to fluctuating asymmetry, indicating they have a shared developmental basis. These patterns of variation are also found for the wolf and across the Carnivora, suggesting that they existed before the domestication of dogs and are not a result of selective breeding.

  11. Lateral skull base approaches in the management of benign parapharyngeal space tumors.

    PubMed

    Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario

    2015-06-01

    To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Scalp Hematoma Characteristics Associated With Intracranial Injury in Pediatric Minor Head Injury.

    PubMed

    Burns, Emma C M; Grool, Anne M; Klassen, Terry P; Correll, Rhonda; Jarvis, Anna; Joubert, Gary; Bailey, Benoit; Chauvin-Kimoff, Laurel; Pusic, Martin; McConnell, Don; Nijssen-Jordan, Cheri; Silver, Norm; Taylor, Brett; Osmond, Martin H

    2016-05-01

    Minor head trauma accounts for a significant proportion of pediatric emergency department (ED) visits. In children younger than 24 months, scalp hematomas are thought to be associated with the presence of intracranial injury (ICI). We investigated which scalp hematoma characteristics were associated with increased odds of ICI in children less than 17 years who presented to the ED following minor head injury and whether an underlying linear skull fracture may explain this relationship. This was a secondary analysis of 3,866 patients enrolled in the Canadian Assessment of Tomography of Childhood Head Injury (CATCH) study. Information about scalp hematoma presence (yes/no), location (frontal, temporal/parietal, occipital), and size (small and localized, large and boggy) was collected by emergency physicians using a structured data collection form. ICI was defined as the presence of an acute brain lesion on computed tomography. Logistic regression analyses were adjusted for age, sex, dangerous injury mechanism, irritability on examination, suspected open or depressed skull fracture, and clinical signs of basal skull fracture. ICI was present in 159 (4.1%) patients. The presence of a scalp hematoma (n = 1,189) in any location was associated with significantly greater odds of ICI (odds ratio [OR] = 4.4, 95% confidence interval [CI] = 3.06 to 6.02), particularly for those located in temporal/parietal (OR = 6.0, 95% CI = 3.9 to 9.3) and occipital regions (OR = 5.6, 95% CI = 3.5 to 8.9). Both small and localized and large and boggy hematomas were significantly associated with ICI, although larger hematomas conferred larger odds (OR = 9.9, 95% CI = 6.3 to 15.5). Although the presence of a scalp hematoma was associated with greater odds of ICI in all age groups, odds were greatest in children aged 0 to 6 months (OR = 13.5, 95% CI = 1.5 to 119.3). Linear skull fractures were present in 156 (4.0%) patients. Of the 111 patients with scalp hematoma and ICI, 57 (51%) patients had

  13. Application of the Mandible Injury Severity Score to Pediatric Mandibular Fractures.

    PubMed

    Swanson, Edward W; Susarla, Srinivas M; Ghasemzadeh, Ali; Mundinger, Gerhard S; Redett, Richard J; Tufaro, Anthony P; Manson, Paul N; Dorafshar, Amir H

    2015-07-01

    The Mandible Injury Severity Score (MISS) has been used to evaluate adult mandibular fractures. The purpose of this study was to evaluate the MISS in a cohort of pediatric patients. This was a retrospective study of pediatric patients treated for mandibular fractures over a 20-year period. Patients were included if they had computed tomographic imaging available for review and had at least 1 post-treatment visit. The primary predictor variable was the MISS. Secondary predictors were demographic and injury-associated factors. The outcome was treatment-associated complications. Descriptive, bivariate, and multiple logistic regression statistics were computed. One hundred sixteen patients with mandibular fractures were identified; 73 (62.9%) met the inclusion criteria. The sample's mean age was 8.5 ± 4.1 years; 44% were girls. Motor vehicle collisions (60%) and falls (15.1%) were the most common mechanisms. More than 50% of patients had an extra-mandibular injury. The mean MISS was 13.5 ± 7.8. Forty-five percent of the sample underwent open reduction and internal fixation. Complications were noted in 20.5% of patients, of which malocclusion was the most common (8.2%). Increasing MISS was associated with complications (P < .001). After controlling for the effects of age, mechanism, cervical spine and skull base injuries, and treatment, patients with an MISS of at least 14 were significantly more likely to have a complication (odds ratio = 4.0; 95% confidence interval, 1.05-15.0; P = .04). In pediatric patients with mandibular fractures, increased severity of injury is associated with complications, even after controlling for the effects of multiple confounders, including open treatment. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. A discussion of current issues and concepts in the practice of skull-photo/craniofacial superimposition.

    PubMed

    Gordon, G M; Steyn, M

    2016-05-01

    A recent review paper on cranio-facial superimposition (CFS) stated that "there have been specific conceptual variances" from the original methods used in the practice of skull-photo superimposition, leading to poor results as far as accuracy is concerned. It was argued that the deviations in the practice of the technique have resulted in the reduced accuracies (for both failure to include and failure to exclude) that are noted in several recent studies. This paper aims to present the results from recent research to highlight the advancement of skull-photo/cranio-facial superimposition, and to discuss some of the issues raised regarding deviations from original techniques. The evolving methodology of CFS is clarified in context with the advancement of technology, forensic science and specifically within the field of forensic anthropology. Developments in the skull-photo/cranio-facial superimposition techniques have largely focused on testing reliability and accuracy objectively. Techniques now being employed by forensic anthropologists must conform to rigorous scientific testing and methodologies. Skull-photo/cranio-facial superimposition is constantly undergoing accuracy and repeatability testing which is in line with the principles of the scientific method and additionally allows for advancement in the field. Much of the research has indicated that CFS is useful in exclusion which is consistent with the concept of Popperian falsifiability - a hypothesis and experimental design which is falsifiable. As the hypothesis is disproved or falsified, another evolves to replace it and explain the new observations. Current and future studies employing different methods to test the accuracy and reliability of skull-photo/cranio-facial superimposition will enable researchers to establish the contribution the technique can have for identification purposes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Fracture Prediction by Computed Tomography and Finite Element Analysis: Current and Future Perspectives.

    PubMed

    Johannesdottir, Fjola; Allaire, Brett; Bouxsein, Mary L

    2018-05-30

    This review critiques the ability of CT-based methods to predict incident hip and vertebral fractures. CT-based techniques with concurrent calibration all show strong associations with incident hip and vertebral fracture, predicting hip and vertebral fractures as well as, and sometimes better than, dual-energy X-ray absorptiometry areal biomass density (DXA aBMD). There is growing evidence for use of routine CT scans for bone health assessment. CT-based techniques provide a robust approach for osteoporosis diagnosis and fracture prediction. It remains to be seen if further technical advances will improve fracture prediction compared to DXA aBMD. Future work should include more standardization in CT analyses, establishment of treatment intervention thresholds, and more studies to determine whether routine CT scans can be efficiently used to expand the number of individuals who undergo evaluation for fracture risk.

  16. Isolated Petroclival Craniopharyngioma with Aggressive Skull Base Destruction

    PubMed Central

    Lee, Young-Hen; Lim, Dong-Jun; Park, Jung-Yul; Chung, Yong-Gu; Kim, Young-Sik

    2009-01-01

    We report a rare case of petroclival craniopharyngioma with no connection to the sellar or suprasellar region. MRI and CT images revealed a homogenously enhancing retroclival solid mass with aggressive skull base destruction, mimicking chordoma or aggressive sarcoma. However, there was no calcification or cystic change found in the mass. Here, we report the clinical features and radiographic investigation of this uncommon craniopharyngioma arising primarily in the petroclival region. PMID:19881982

  17. Fatal carotid dissection after blunt head trauma.

    PubMed

    Tartara, F; Regolo, P; Servadei, F; Versari, P P; Giovanelli, M

    2000-06-01

    Occurrence of internal carotid artery injuries associated with skull base fracture has been reported. A. report a case of fatal intracranial carotid dissection related to petrous fracture involving the carotid canal. Identification of carotid lesions may be difficult and generally related to appearance of unexpected neurological deficit. Skull base fractures may be considered an indirect sign for detection of vascular injury. Patterns of the fracture are of paramount importance; routine CT scan may fail to detect basilar fractures and high definition fine-cut CT scan should be executed to carefully identify and evaluate fractures. Temporal and sphenoid bone fractures are common in head trauma and involvement of the course of the carotid artery is frequent. The involvement of the intracranial carotid artery course represents a direct risk factor for lesions of the petrous, lacerum and cavernous segments of the carotid artery. Early diagnosis of post-traumatic vascular injury may lead to prognosis improvement because of effectiveness of heparin anticoagulant therapy. Then vascular screening is recommendable in cases with complex fractures of the skull base and particularly fracturing along the course of the carotid artery. Magnetic resonance angiography may be considered the first line diagnostic tools for vascular screening. Angiography may be reserved for patients with a proven lesion or rapid neurological deterioration taking into account the possibility of interventional treatment.

  18. Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C

    2015-01-01

    Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  19. The cumulative effect of bisphosphonates and statins on stress fractures. Is it a failure of steroid biosynthesis? Case Report.

    PubMed

    Dzugan, Sergey S; Dzugan, Sergey A

    2016-01-01

    Osteoporosis related fractures pose a significant economic and healthcare problem. There is a growing concern about increased numbers of stress or low energy fractures after bisphosphonates therapy. A 65-year-old woman is presented with a stress fracture of the left femur. From our point of view, this fracture was associated with a long-term statin and bisphosphonate therapy. We did not find a similar presentation in medical literature.

  20. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.