Science.gov

Sample records for grown bulk ingaas

  1. Multilayers of InGaAs Nanostructures Grown on GaAs(210) Substrates

    PubMed Central

    2010-01-01

    Multilayers of InGaAs nanostructures are grown on GaAs(210) by molecular beam epitaxy. With reducing the thickness of GaAs interlayer spacer, a transition from InGaAs quantum dashes to arrow-like nanostructures is observed by atomic force microscopy. Photoluminescence measurements reveal all the samples of different spacers with good optical properties. By adjusting the InGaAs coverage, both one-dimensional and two-dimensional lateral ordering of InGaAs/GaAs(210) nanostructures are achieved. PMID:20676193

  2. Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

    SciTech Connect

    Fedoryshyn, Y.; Kaspar, P.; Jaeckel, H.; Beck, M.

    2010-05-15

    Bulk InGaAs layers were grown at 400 deg. C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw-Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein-Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than {approx}2.9x10{sup 19} cm{sup -3} in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than {approx}4x10{sup 19} cm{sup -3}.

  3. Lattice mismatched InGaAs on silicon photodetectors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N. A.; Anderson, G. W.; Iliadis, A. A.; Christou, A.

    1993-02-01

    In0.5Ga0.5As on silicon photodetectors, including three types of interdigitated-finger devices as well as linear photoconductors, were fabricated and measured. The InGaAs/Si structure was grown by molecular beam epitaxy and utilized a 100 Å GaAs intervening nucleation layer between the silicon substrate and the InGaAs layers, step-graded InxGa1-xAs layers, and an in-situ grown 40 Å thick GaAs surface layer, which substantially enhanced the metal-semiconductor barrier height (Φb = 0.67 V) for the InGaAs. Schottky diodes fabricated independently of the photodetectors had nearly ideal characteristics with an ideality factor (n) of 1.02 and a reverse breakdown voltage of 40 V. The interdigitated Schottky photodetectors showed dark currents between <3nA and 54 μA at a 3 V bias and initial photoresponse rise times in the range of 600 to 725 ps, comparable to similar InGaAs metal-semiconductor-metal photodetectors grown lattice matched on InP. The photoconductors fabricated in the same material had rise times in the range of 575 to 1300 ps, thus being slightly slower, and had dark currents of 7 to 80 mA. The responsivity of the photoconductors was typically greater than that of the diodes by a factor of five to fifteen. The results show potential for monolithic integration of InGaAs photodetectors on silicon substrates.

  4. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques

    NASA Astrophysics Data System (ADS)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.

    2016-05-01

    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  5. Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP

    NASA Astrophysics Data System (ADS)

    Mohandas, Reshma A.; Freeman, Joshua R.; Rosamond, Mark C.; Hatem, Osama; Chowdhury, Siddhant; Ponnampalam, Lalitha; Fice, Martyn; Seeds, Alwyn J.; Cannard, Paul J.; Robertson, Michael J.; Moodie, David G.; Cunningham, John E.; Davies, A. Giles; Linfield, Edmund H.; Dean, Paul

    2016-04-01

    We demonstrate the generation of continuous wave terahertz (THz) frequency radiation from photomixers fabricated on both Fe-doped InGaAs and Fe-doped InGaAsP, grown by metal-organic chemical vapor deposition. The photomixers were excited using a pair of distributed Bragg reflector lasers with emission around 1550 nm, and THz radiation was emitted over a bandwidth of greater than 2.4 THz. Two InGaAs and four InGaAsP wafers with different Fe doping concentrations were investigated, with the InGaAs material found to outperform the InGaAsP in terms of emitted THz power. The dependencies of the emitted power on the photomixer applied bias, incident laser power, and material doping level were also studied.

  6. Control of asymmetric strain relaxation in InGaAs grown by molecular-beam epitaxy

    SciTech Connect

    France, R.; Ptak, A. J.; Jiang, C.-S.; Ahrenkiel, S. P.

    2010-05-15

    InGaAs strain relaxation is studied by an in situ multibeam optical stress sensor (MOSS). Strain relaxation during growth of InGaAs on GaAs occurs at different thicknesses and rates along the directions perpendicular to its misfit dislocations, [110] and [110]. We show the asymmetry of relaxation between these directions in real time by aligning the MOSS laser array along [110] and [110]. This asymmetric relaxation data from the MOSS correlates with both x-ray diffraction relaxation analysis and an estimation of the misfit dislocation density from transmission electron microscopy images. Lowering the V/III ratio or raising the growth temperature lowers the thickness of the onset of dislocation formation, changes the relaxation rate, lowers the final relaxation during 2 {mu}m of growth, and shifts the initial direction of relaxation from [110] to [110]. We identify two phases of relaxation that occur at different growth thicknesses. Lowering the V/III ratio changes the relative contribution of each of these phases to the total relaxation of the epilayer.

  7. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    PubMed

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs. PMID:27427737

  8. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    PubMed Central

    2010-01-01

    The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100), (210), (311), and (731) substrates. A broad photoluminescence emission peak (~950 nm) with a full width at half maximum (FWHM) of 48 nm is obtained from the sample grown on (210) substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100) substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311) with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications. PMID:20672090

  9. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ˜ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  10. Effects of using As2 and As4 on the optical properties of InGaAs quantum rods grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Patriarche, G.; Linfield, E. H.; Khanna, S. P.; Davies, A. G.

    2010-11-01

    We investigate the effect of the arsenic source (As2 and As4) on the optical properties of InGaAs quantum rods (QRs) grown by molecular beam epitaxy. Owing to differences in the In and Ga diffusion lengths under As2 and As4 fluxes, photoluminescence (PL) peak energies of the QR samples depend strongly on the As source when similar growth conditions are used. A marked improvement in the PL intensities from QR samples grown using As4 is achieved. However, for both As2 and As4, an increase of the As overpressure results in a PL intensity degradation, probably due to the formation of nonradiative recombination centers.

  11. Comparative optical study of epitaxial InGaAs quantum rods grown with As{sub 2} and As{sub 4} sources

    SciTech Connect

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras; Li, Lianhe; Khanna, Suraj P.; Linfield, Edmund H.

    2013-12-04

    Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes in optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.

  12. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOEpatents

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  13. Optical properties of InGaAs linear graded buffer layers on GaAs grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, B.; Baek, J. H.; Lee, J. H.; Choi, S. W.; Jung, S. D.; Han, W. S.; Lee, E. H.

    1996-05-01

    We report optical characteristics of linear graded InxGa1-xAs (XIn=0-0.58) buffer layers grown on GaAs by low-pressure metalorganic chemical vapor deposition. Two types of wirelike surface structures were observed from the layers grown at two different temperatures. Low-temperature photoluminescence (PL) and double-crystal x-ray diffractometric measurements indicate that the PL energy and the relaxation of the graded layers were strongly dependent on the top surface structure. InGaAs cap layers were grown on top of the graded buffer layers with a variation of indium composition. A strong PL signal was observed from the top region of the graded layer grown with a lattice-matched cap layer. It suggests that the top region of the grade, similar to a graded well structure, is compressively strained but is of high structural quality without dislocations.

  14. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    SciTech Connect

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang E-mail: mssgzhang@scut.edu.cn; Li, Guoqiang E-mail: mssgzhang@scut.edu.cn

    2014-11-21

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In{sub x}Ga{sub 1−x}As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In{sub x}Ga{sub 1−x}As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In{sub x}Ga{sub 1−x}As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In{sub x}Ga{sub 1−x}As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In{sub x}Ga{sub 1−x}As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In{sub x}Ga{sub 1−x}As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates.

  15. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    NASA Astrophysics Data System (ADS)

    Cipro, R.; Baron, T.; Martin, M.; Moeyaert, J.; David, S.; Gorbenko, V.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-01

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO2 cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  16. Low-temperature-grown InGaAs quantum wells for optical device applications

    NASA Astrophysics Data System (ADS)

    Juodawlkis, Paul William

    1999-11-01

    The large optical absorption and carrier-induced nonlinearities of semiconductor materials are useful for optical signal processing applications. For absorptive devices operating at ultrafast data rates (>100 Gb/s) or high optical intensities, it is necessary to reduce the intrinsic photo-excited carrier removal time. One method of achieving this reduction is to increase the nonradiative recombination rate through the controlled introduction of defects. In this thesis, we explore the use of low-temperature molecular-beam epitaxy (MBE) to introduce nonradiative recombination centers into InGaAs-based quantum-wells (QWs). The objectives of the thesis are: (i)to improve the understanding of the optoelectronic properties of low-temperature-grown (LTG) InGaAs/InAlAs QWs, and (ii)to assess the feasibility of using these materials for optical device applications in the 1.5-μm wavelength region. Time-resolved differential transmission measurements reveal that the nonlinear absorption recovery time in InGaAs/InAlAs QWs can be reduced from >100 ps to 0.6 ps through the combination of low-temperature growth (~250°C) and beryllium (Be) doping. The bandedge absorption slope and the nonlinear absorption cross- section are only diminished by factors of 2 to 3 relative to QWs grown at standard temperature (~500°C). The Be doping dependence of the recovery time and the residual electron density in the LTG-QWs can be mainly attributed to impurity-related compensation. Be doping also maintains the ultrafast recovery following thermal anneal. The recovery response results from fast electron- trapping followed by slow (>100 ps) trapped- electron/free-hole recombination. Detailed simulations of the nonlinear absorption saturation and recovery processes agree quantitatively with measured data and substantiate the importance of the photo-excitation wavelength on the observed recovery response. The absorption saturation model includes the competition between band-filling and band

  17. Optical properties of as-grown and annealed InAs quantum dots on InGaAs cross-hatch patterns

    PubMed Central

    2011-01-01

    InAs quantum dots (QDs) grown on InGaAs cross-hatch pattern (CHP) by molecular beam epitaxy are characterized by photoluminescence (PL) at 20 K. In contrast to QDs grown on flat GaAs substrates, those grown on CHPs exhibit rich optical features which comprise as many as five ground-state emissions from [1-10]- and [110]-aligned QDs, two wetting layers (WLs), and the CHP. When subject to in situ annealing at 700°C, the PL signals rapidly degrades due to the deterioration of the CHP which sets the upper limit of overgrowth temperature. Ex situ hydrogen annealing at a much lower temperature of 350°C, however, results in an overall PL intensity increase with a significant narrowing and a small blueshift of the high-energy WL emission due to hydrogen bonding which neutralizes defects and relieves associated strains. PMID:21849063

  18. Characterization of graphene grown on bulk and thin film nickel.

    PubMed

    Lu, Chun-Chieh; Jin, Chuanhong; Lin, Yung-Chang; Huang, Chi-Ruei; Suenaga, Kazu; Chiu, Po-Wen

    2011-11-15

    We report on graphene films grown by atmospheric pressure chemical vapor deposition on bulk and thin film nickel. Carbon precipitation on the polycrystalline grains is controlled by the methane concentration and substrate cooling rate. It is found that graphene grows over multiple grains, with edges terminating along the grain boundaries and with dimensions directly correlated to the size of the underlying grains. This greatly restricts the resulting graphene size (<10 μm) in the thin film growth, whereas monolayer graphene with linear dimensions of hundreds of micrometers takes up the great majority of the surface overlayers on the bulk nickel (>50%). In addition, the number of layers can be better controlled in the bulk growth. Characterizations of the graphene sheets using transmission electron microscopy, Raman spectroscopy, and transport measurements in the field-effect configuration are also discussed. PMID:21967558

  19. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.

    PubMed

    Kong, Moon Sik; Kim, Ji Su; Han, Sang Pil; Kim, Namje; Moon, Kiwon; Park, Kyung Hyun; Jeon, Min Yong

    2016-04-01

    We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves. PMID:27136997

  20. Comparison of luminescent efficiency of InGaAs quantum well structures grown on Si, GaAs, Ge, and SiGe virtual substrate

    NASA Astrophysics Data System (ADS)

    Yang, V. K.; Ting, S. M.; Groenert, M. E.; Bulsara, M. T.; Currie, M. T.; Leitz, C. W.; Fitzgerald, E. A.

    2003-05-01

    In order to study the luminescent efficiency of InGaAs quantum wells on Si via SiGe interlayers, identical In0.2Ga0.8As quantum well structures with GaAs and Al0.25Ga0.75As cladding layers were grown on several substrates by an atmospheric metalorganic vapor deposition system. The substrates used include GaAs, Si, Ge, and SiGe virtual substrates. The SiGe virtual substrates were graded from Si substrates to 100% Ge content. Because of the small lattice mismatch between GaAs and Ge (0.07%), high-quality GaAs-based thin films with threading dislocation densities <3×106 cm-2 were realized on these SiGe substrates. Quantitative cathodoluminescence was used to compare the luminescent efficiency of the quantum well structure on the different substrates and cross-sectional transmission electron microscopy was used to characterize dislocation densities. Our results show that the InGaAs quantum wells grown on the GaAs substrates have the highest luminescent efficiencies due to the lowest dislocation densities. Interestingly, InGaAs quantum wells grown on the SiGe virtual substrates outperform those on Ge substrates, both in terms of luminescent efficiency and dislocation density. This difference is attributed to the variation in thermal expansion coefficient (α) and its impact on defect structure during the process cycle. The SiGe virtual substrate has a smaller α compared to a Ge substrate because of the smaller α of the Si substrate, which helps minimize compressive strain in the quantum well layer during the temperature decrease from the growth temperature. Consequently, fewer misfit dislocations are created between the quantum well and cladding interfaces. These misfits can greatly affect the luminescent efficiency since they can act as recombination sites. In general, the efficiencies of the quantum wells on the SiGe and Ge substrates were affected only by higher misfit dislocation densities, whereas the quantum wells on the Si substrate had low efficiency due to

  1. Electron beam evaporated carbon doping of InGaAs layers grown by gas source molecular beam epitaxy

    SciTech Connect

    Salokatve, A.; Toivonen, M.; Asonen, H.; Pessa, M.; Likonen, J.

    1996-12-31

    The authors have studied carbon doping of GaInAs grown by gas-source molecular beam epitaxy. Graphite was used as a source material for carbon evaporation. GaInAs was studied due to its importance as a base layer in InP-based heterojunction bipolar transistors. They show that useful p-type acceptor concentrations can be achieved by evaporation from graphite source for GaInAs grown by gas-source molecular beam epitaxy. Secondary ion mass spectroscopy and Van der Pauw Hall measurements were used to characterize the carbon and net acceptor concentrations of their GaInAs layers. The effect of rapid thermal annealing on acceptor concentrations and Hall mobilities was also studied.

  2. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    NASA Astrophysics Data System (ADS)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  3. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    SciTech Connect

    Cipro, R.; Gorbenko, V.; Baron, T. Martin, M.; Moeyaert, J.; David, S.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  4. Carrier dynamics in bulk 1eV InGaAsNSb materials and epitaxial lift off GaAs-InAlGaP layers grown by MOVPE for multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; LaLumondiere, Stephen; Lotshaw, William; Moss, Steven C.; Kim, Tae Wan; Forghani, Kamran; Mawst, Luke J.; Kuech, Thomas F.; Tatavarti, Rao; Wibowo, Andree; Pan, Noren

    2013-03-01

    III-V multi-junction solar cells are based on a triple-junction design that consists of an InGaP top junction, a GaAs middle junction, and a bottom junction that employs either a 1eV material grown on the GaAs substrate or InGaAs grown on the Ge substrate. The most promising 1 eV material that is currently under extensive investigation is bulk dilute nitride such as InGaAsN(Sb) lattice matched to GaAs substrates. Both approaches utilizing dilute nitrides and lattice-mismatched InGaAs layers have a potential to achieve high performance triple-junction solar cells. In addition, it will be beneficial for both commercial and space applications if III-V triple-junction solar cells can significantly reduce weight and can be manufactured cost effectively while maintaining high efficiency. The most attractive approach to achieve these goals is to employ full-wafer epitaxial lift off (ELO) technology, which can eliminate the substrate weight and also enable multiple substrate re-usages. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk dilute nitride layers lattice matched to GaAs substrates, where carrier lifetime measurements are crucial in optimizing MOVPE materials growth. We studied carrier dynamics in InGaAsN(Sb) layers with different amounts of N incorporated. Carrier lifetimes were also measured from InGaAsN(Sb) layers at different stages of post-growth thermal annealing steps. Post-growth annealing yielded significant improvements in carrier lifetimes of InGaAsNSb double hetero-structure (DH) samples compared to InGaAsN DH samples possibly due to the surfactant effect of Sb. In addition, we studied carrier dynamics in MOVPE-grown GaAs-InAl(Ga)P layers grown on GaAs substrates. The structures were grown on top of a thin AlAs release layer, which allowed epitaxial layers grown on top of the AlAs layer to be removed from the substrate. The GaAs layers had various doping densities and

  5. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  6. A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Ritter, Dan; Eizenberg, Moshe

    2016-02-01

    Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

  7. Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon

    NASA Astrophysics Data System (ADS)

    Kjellman, Jon Øyvind; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-06-01

    Microselective-area growth of p-i-n InGaAs disks on (111) silicon by metalorganic chemical vapor deposition is a promising technology for III/V-on-Si integration. As a proof-of-concept, room-temperature electroluminescence is reported from ensembles of p-i-n InGaAs-on-Si micro-disks. The observed spectrum shows peak luminescence at 1.78 μm with a local maxima at 1.65 μm. The disks are also shown to generate a measurable photo current when illuminated by infrared light with less energy than the silicon bandgap energy. This makes these InGaAs-on-Si disks a promising technology for monolithic integration of light sources and detectors with silicon photonics and complementary metal-oxide-semiconductor electronics for optical communication, sensing, and imaging.

  8. Electrical and structural characterization of as-grown and annealed hydrothermal bulk ZnO

    SciTech Connect

    Kassier, G. H.; Hayes, M.; Auret, F. D.; Mamor, M.; Bouziane, K.

    2007-07-01

    Hall effect measurements in the range 20-370 K on as-grown and annealed hydrothermal bulk ZnO have been performed. The bulk conductivity in the highly resistive as-grown sample was found to decrease and then increase after annealing at 550 deg. C and 930 deg. C, respectively. The conduction in the as-grown material is attributed to a deep donor which is replaced by a much shallower donor after annealing at 930 deg. C. Annealing at both temperatures also produced strong surface conduction effects. Nondegenerate low-mobility surface conduction dominated the electrical properties of the sample annealed at 550 deg. C, while a degenerate surface channel was formed after annealing at 930 deg. C. In addition, Rutherford backscattering and channeling spectrometry (RBS/C) was used to assess the effect of annealing on the crystalline quality of the samples. RBS/C measurements reveal that annealing at 930 deg. C leads to significant improvement of the crystalline quality of the material, while annealing at 550 deg. C results in the segregation of a nonchanneling impurity at the surface.

  9. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Wang, Ling Jun; Lehoczky, S. L.

    2001-01-01

    Low-temperature photoluminescence (PL) spectra were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during PVT process. The impurity levels in one set of starting material/grown crystal were also measured by glow discharge mass spectroscopy (GDMS). The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the O content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. The GDMS results also showed increases in the At and Si contents by orders of magnitude after growth. To evaluate the contamination of the crystal during the high temperature growth process, three growth runs were processed using similar growth parameters but different furnace environments. The PL spectra suggest that the At contamination originated from the fused silica ampoule and that the Inconel cartridge might have been the cause of the broad Cu green and Cu red bands observed in one of the grown crystals.

  10. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly

  11. Lattice constant and hardness of InSb:Bi bulk crystals grown by vertical directional solidification

    NASA Astrophysics Data System (ADS)

    Maske, Dilip; Deshpande, Manisha; Choudhary, Rashmi; Gadkari, Dattatray

    2016-05-01

    Ingots of the Bi doped InSb (InSb1-xBix) bulk semiconductor crystals were grown by specially designed Vertical Directional Solidification (VDS) technique. Substrates of seven crystals grown with various composition values of x (0 ≤ x < 0.1) were used to analyze the effect of Bi incorporation on the crystal lattice, bonding energy and physical strength of the material. Lattice constant of each substrate was calculated using 2ɵ angles of the peak positions in the powder XRD. FTIR was used in its transmission mode to find the band edge and calculate the energy band gap. Reduction in the energy band was found up to 0.105 eV. The substrates were tested for their toughness using Vickers micro-hardness test. Comparison of these measurements with the corresponding values of undoped InSb indicate that, due to Bi incorporation in InSb lattice there is increase in the lattice constant (°A) and decrease in the energy band gap (eV) in the ratio 2:1, and decrease in the micro-hardness up to ˜20% for the Bi composition x > 0.05.

  12. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Wang, Ling Jun; Lehoczky, Sandor L.

    1999-01-01

    Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the 0 content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. To evaluate the contamination of the crystal during the high temperature growth process three growth runs were processed using similar growth parameters but with different furnace environments. The GDMS results showed orders of magnitude increase in the Al and Si contents after growth. The PL spectra suggest that the Al contamination was originated from the fused silica ampoule and the Inconel cartridge might have been the cause for the broad Cu green and Cu red bands observed in one of the grown crystal.

  13. Carrier dynamics in QW and bulk bismide and epitaxial lift off GaAs-In(Al)GaP double heterostructures grown by MOVPE for multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Peterson, Mark; Lingley, Zachary; LaLumondiere, Stephen; Moss, Steven C.; Kim, Honghyuk; Forghani, Kamran; Guan, Yingxin; Kim, Kangho; Lee, Jaejin; Mawst, Luke J.; Kuech, Thomas F.; Tatavarti, Rao

    2016-03-01

    III-V multi-junction solar cells are based on a triple-junction design that consists of an InGaP top junction, a GaAs middle junction, and a bottom junction that employs either a 1eV material grown on the GaAs substrate or InGaAs grown on the Ge substrate. The most promising 1 eV materials under extensive investigation are the bulk dilute nitride such as InGaAsN(Sb) lattice-matched to GaAs substrate and the dilute-bismide quantum well materials, such as GaAsBi, strain-compensated with GaAsP barriers. Both approaches have the potential to achieve high performance triple-junction solar cells. In addition, space satellite applications utilizing III-V triple-junction solar cells can have significantly reduced weight and high efficiency. An attractive approach to achieve these goals is to employ full-wafer epitaxial lift off (ELO) technology, which can eliminate the substrate weight and also enable multiple substrate re-usages. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk dilute bismide double heterostructures (DH). Carrier lifetime measurements are crucial to optimizing MOVPE materials growth. We have studied carrier dynamics in GaAsBi QW structures with GaAsP barriers. Carrier lifetimes were measured from GaAsBi DH samples at different stages of post-growth thermal annealing steps. Post-growth annealing yielded significant improvements in carrier lifetimes. Based on this study, single junction solar cells (SJSC) were grown and annealed under a variety of conditions and characterized. The SJSC annealed at 600 - 650 °C exhibited improved response in EQE spectra. In addition, we studied carrier dynamics in MOVPE-grown GaAs-In(Al)GaP DH samples grown on GaAs substrates. The structures were grown on top of a thin AlAs release layer, which allowed epitaxial layers grown on top of the AlAs layer to be removed from the substrate. The GaAs active layers had various doping densities and

  14. Measurement of the extent of strain relief in InGaAs layers grown under tensile strain on InP(100) substrates

    NASA Astrophysics Data System (ADS)

    Maigné, P.; Gendry, M.; Venet, T.; Tahri, Y.; Hollinger, G.

    1996-07-01

    High resolution x-ray diffraction has been used to investigate the structural properties of InxGa1-xAs epitaxial layers grown under tension on InP(100) substrates. The nominal indium composition (x=0.42) corresponds to a small lattice mismatch and a two dimensional growth mode. We have also included for comparison two samples grown under compression covering the mostly strained and the mostly relaxed regimes. Our results show that the residual strain and the asymmetry in strain relaxation along <011> directions are always larger for layers under tension. This can be explained by the difference in dislocation glide velocity induced by a different indium content, by the dissociation of perfect dislocations and partially by the difference in thermal expansion coefficients between substrate and epilayer. The larger asymmetry in strain relaxation for tensile strain layers is interpreted by the existence of microcracks aligned in the [011] direction.

  15. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  16. InGaAs Photodetectors Cut-off at 1.9 μm Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Gang; Hao, Guo-Qiang; Gu, Yi; Zhu, Cheng; Li, Ai-Zhen; Liu, Tian-Dong

    2005-01-01

    Using a linear graded InxGa1-xAs as the buffer layer, positive-intrinsic-negative wavelength-extended In0.6Ga0.4 As photodetectors with 50% cut-off wavelength of 1.9 μm at room temperature were grown by using gas-source molecular beam epitaxy, and their performance over a wide temperature range has been extensively investigated. The detectors show typical dark current at bias voltage 50 mV and the resistance-area product R0A of 7 nA/765 Ωcm2 and 31 pA/404 kΩcm2 at 290 K and 210 K, respectively. The thermal activation energy of the dark current in the temperature range 250-350 K is 0.488 eV.

  17. Two-dimensional ordering of (In,Ga)As quantum dots in vertical multilayers grown on GaAs(100) and (n11)

    SciTech Connect

    Lytvyn, P. M.; Strelchuk, V. V.; Kolomys, O. F.; Prokopenko, I. V.; Valakh, M. Ya.; Mazur, Yu. I.; Wang, Zh. M.; Salamo, G. J.; Hanke, M.

    2007-10-22

    We have investigated lateral self-assembling in In{sub 0.4}Ga{sub 0.6}As/GaAs quantum dot (QD) multilayers, which were grown by molecular beam epitaxy on GaAs(100) and (n11)B substrates with n=9,8,7,5,4,3. The lateral self-assembling and the QD size distribution have been studied by atomic force microscopy depending on substrate orientation and the number of periods within the multilayers. The observed two-dimensional ordering can be described by a centered rectangular surface unit cell. Derived autocorrelation functions exhibit the most pronounced lateral QD assembling along the elastically soft directions [1n0]. This can be attributed to elastic interaction, the particular elastic anisotropy of the high index substrates, and the minimization of the strain energy.

  18. Initial stages of chain formation in a single layer of (In,Ga)As quantum dots grown on GaAs (100)

    SciTech Connect

    Schmidbauer, M.; Wang, Zh. M.; Mazur, Yu. I.; Lytvyn, P. M.; Salamo, G. J.; Grigoriev, D.; Schaefer, P.; Koehler, R.; Hanke, M.

    2007-08-27

    The self-organized formation of In{sub 0.40}Ga{sub 0.60}As quantum dot chains was investigated using x-ray scattering. Two samples were compared grown on GaAs(100) by molecular beam epitaxy. The first sample with a single layer of In{sub 0.40}Ga{sub 0.60}As dots shows weak quantum dot alignment and a corresponding elongated shape along [011], while the top layer of a multilayered In{sub 0.40}Ga{sub 0.60}As/GaAs sample exhibits extended and highly regular quantum dot chains oriented along [011]. Numerical calculations of the three-dimensional strain fields are used to explain the initial stages of chain formation by anisotropic strain relaxation induced by the elongated dot shape.

  19. Optical and mechanical studies on unidirectional grown tri-nitrophenol methyl p-hydroxybenzoate bulk single crystal

    NASA Astrophysics Data System (ADS)

    Uthrakumar, R.; Vesta, C.; Robert, R.; Mangalam, G.; Jerome Das, S.

    2010-10-01

    The bulk single crystal of tri-nitrophenol methyl p-hydroxybenzoate (TNMPHB) of length 90 mm and diameter 12 mm was obtained by employing unidirectional growth technique. Single crystal X-ray diffraction studies and powder XRD analysis have been carried out to confirm the identity of the crystal. The optical band gap of the grown crystal was calculated to be 4.91 eV from UV transmission spectrum. The mechanical strength of the grown crystal has been studied using Vicker's microhardness tester. Low dielectric loss shows that the grown crystal contains lesser defects authenticating the suitability of the crystal towards device applications. The surface morphology studies have been carried out on the grown crystal.

  20. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  1. Influence of Mg and In on defect formation in GaN; bulk and MOCVD grown samples

    SciTech Connect

    Liliental-Weber, Z.; Benamara, M.; Jasinski, J.; Swider, W.; Washburn, J.; Grzegory, I.; Porowski, S.; Bak-Misiuk, J.; Domagala, J.; Bedair, S.; Eiting, C.J.; Dupuis, R.D.

    2000-11-22

    Transmission electron microscopy studies were applied to study GaN crystals doped with Mg. Both: bulk GaN:Mg crystals grown by a high pressure and high temperature process and those grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering (formation of polytypoids) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects with base on the basal planes and with walls inclined about 45O to these planes, empty inside (pinholes) were observed. A high concentration of these pyramidal defects was also observed in the MOCVD grown crystals. For samples grown with Mg delta doping planar defects were also observed especially at the early stages of growth followed by formation of pyramidal defects. TEM and x-ray studies of InxGa{sub 1{minus}x}N crystals for the range of 28-45% nominal In concentration shows formation of two sub-layers: strained and relaxed, with a much lower In concentration in the strained layer. Layers with the highest In concentration were fully relaxed.

  2. Time-resolved PL and TEM studies of MOVPE-grown bulk dilute nitride and bismide quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Peterson, Mark; Brodie, Miles; Moss, Steven C.; Kim, Tae Wan; Kim, Honghyuk; Guan, Yingxin; Forghani, K.; Mawst, Luke J.; Kuech, Thomas F.

    2015-03-01

    Among several approaches proposed to achieve high-efficiency III-V multi-junction solar cells, the most promising approach is to incorporate a bottom junction consisting of a 1 - 1.25 eV material. In particular, several research groups have studied MBE- and MOVPE-grown 1 - 1.25 eV bulk (In)GaAsN(Sb) dilute nitride lattice matched to GaAs substrates, but it is a challenge to grow dilute nitrides without introducing a number of localized states or defects. Localized states originating from random distributions of nitrogen sites in dilute nitrides behave as highly efficient traps, leading to short minority carrier lifetimes. As our group previously reported, carrier dynamics studies are indispensable in the optimization of dilute nitride materials growth to achieve improved solar cell performance. Also, bismide QW heterostructures have recently received a great deal of attention for applications in solar cells and semiconductor lasers because theoretical studies have predicted reduction in nonradiative recombination in Bicontaining materials. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk (In)GaAsN(Sb) materials nominally lattice matched to GaAs substrates. Compared to our previous samples, our present samples grown using different metalorganic precursors at higher growth temperatures showed a significantly less background C doping density. Carrier lifetimes were measured from such dilute nitride samples with low C doping density at various temperatures between 10K and RT. We also performed preliminary TR-PL measurements on MOVPE-grown bismide QW heterostructures at low temperatures. Carrier lifetimes were measured from as-grown and annealed bismide QW structures consisting of GaAsBi(P) wells and GaAsP barriers. Lastly, TEM cross sections were prepared from both dilute nitride and bismide samples for defect and composition analysis using a high resolution TEM.

  3. Grown-in defects limiting the bulk lifetime of p-type float-zone silicon wafers

    NASA Astrophysics Data System (ADS)

    Grant, N. E.; Rougieux, F. E.; Macdonald, D.; Bullock, J.; Wan, Y.

    2015-02-01

    We investigate a recombination active grown-in defect limiting the bulk lifetime (τbulk) of high quality float-zone (FZ) p-type silicon wafers. After annealing the samples at temperatures between 80 °C and 400 °C, τbulk was found to increase from ˜500 μs to ˜1.5 ms. By isochronal annealing the p-type samples between 80 °C and 400 °C for 30 min, the annihilation energy (Eann) of the defect was determined to be 0.3 < Eann < 0.7 eV. When the annihilated samples were phosphorus gettered at 880 °C or subject to 0.2 sun illumination for 24 h, τbulk was found to degrade. However, when the samples were subsequently annealed at temperatures between 250 and 400 °C, the defect could be re-annihilated. The experimental results suggest that the defect limiting the lifetime in the p-type FZ silicon is not related to fast diffusing metallic impurities but rather to a lattice-impurity or an impurity-impurity metastable defect.

  4. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Ohshima, Takeshi; Hemmingsson, Carl

    2014-09-01

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (EC-0.24 eV), D3 (EC-0.60 eV), D4 (EC-0.69 eV), D5 (EC-0.96 eV), D7 (EC-1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 1014 cm-2, three deep electron traps, labeled D1 (EC-0.12 eV), D5I (EC-0.89 eV), and D6 (EC-1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  5. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24 eV), D3 (E{sub C}–0.60 eV), D4 (E{sub C}–0.69 eV), D5 (E{sub C}–0.96 eV), D7 (E{sub C}–1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 10{sup 14 }cm{sup −2}, three deep electron traps, labeled D1 (E{sub C}–0.12 eV), D5I (E{sub C}–0.89 eV), and D6 (E{sub C}–1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  6. Characterization of bulk hexagonal boron nitride single crystals grown by the metal flux technique

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Hoffman, T. B.; Clubine, B.; Currie, M.; Du, X. Z.; Lin, J. Y.; Jiang, H. X.

    2014-10-01

    The optical and physical properties of hexagonal boron nitride single crystals grown from a molten metal solution are reported. The hBN crystals were grown by precipitation from a nickel-chromium flux with a boron nitride source, by slowly cooling from 1500 °C at 2-4 °C/h under a nitrogen flow at atmospheric pressure. The hBN crystals formed on the surface of the flux with an apparent crystal size up to 1-2 mm in diameter. Individual grains were as large as 100-200 μm across. Typically, the flakes removed from the metal were 6-20 μm thick. Optical absorption measurements suggest a bandgap of 5.8 eV by neglecting the binding energy of excitons in hBN. The highest energy photoluminescence peak was at 5.75 eV at room temperature. The hBN crystals typically had a pit density of 5×106 cm-2 after etching in a molten eutectic mixture of potassium hydroxide and sodium hydroxide. The quality of these crystals suggests they are suitable as substrates for two dimensional materials such as graphene and gallium nitride based devices.

  7. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  8. Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-07-31

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  9. Comparison between structural properties of bulk GaN grown in liquid Ga under high N pressure and GaN grown by other methods

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-12-01

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to the formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  10. On the bulk β-Ga2O3 single crystals grown by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Irmscher, Klaus; Uecker, Reinhard; Bertram, Rainer; Pietsch, Mike; Kwasniewski, Albert; Naumann, Martin; Schulz, Tobias; Schewski, Robert; Klimm, Detlef; Bickermann, Matthias

    2014-10-01

    The growth of bulkx β-Ga2O3 single crystals by the Czochralski method is reported and discussed in terms of crucial growth conditions and correlated with basic electrical and optical properties of the obtained crystals. β-Ga2O3 crystals have a tendency to a spiral formation due to free carrier absorption in the near infrared (NIR) wavelength range, which hampers radiative heat transfer through the growing crystal. Moderate or low free electron concentrations (<5×1017 cm-3) lead to cylindrical crystals with a high crystallized fraction (g≥0.5). The use of a CO2-containing growth atmosphere provides oxygen partial pressures between 0.8 and 4.4×10-2 bar that is sufficient to obtain cylindrical and semiconducting crystals. Doping with Sn increases the free electron concentration in the crystals to high values (~1019 cm-3) that lead to an immediate spiral formation, while doping with Mg (>6 wt ppm) provides insulating crystals with reduced probability of the spiral formation. The estimated Mg equilibrium segregation coefficient across the liquid-solid interface is 0.10-0.12. Annealing of undoped crystals in an oxidizing atmosphere at temperatures ≥1200 °C for 20 h decreases the bulk free electron concentration by about one order of magnitude, while the crystal surface becomes insulating. However, Mg:β-Ga2O3 crystals are insensitive to annealing in both oxygen- and hydrogen-containing atmospheres. The transmittance spectra showed a steep absorption edge at 260 nm and virtually full transparency in the visible and NIR wavelength range for low and moderate free electron concentrations. We also demonstrated the possibility of growing 2 in. diameter β-Ga2O3 single crystals by the Czochralski method. The good crystal quality is evidenced by rocking curve FWHM values of below 50". We noted that most dislocations propagate parallel to (100) plane. Further, we also provide thermal properties of the crystals as a function of temperature.

  11. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  12. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  13. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Kim, T. W.; Mawst, L. J.; Kim, K.; Lee, J. J.; Kuech, T. F.; Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.

    2014-02-03

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16 K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680 ps vs. 260 ps) for the PL measurement energy of 1.24 eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  14. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Kim, K.; Lee, J. J.; Kuech, T. F.; Mawst, L. J.; Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.

    2014-02-01

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16 K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680 ps vs. 260 ps) for the PL measurement energy of 1.24 eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  15. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    SciTech Connect

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  16. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Bag, Ankush; Mukhopadhyay, Partha; Das, Subhashis; Biswas, Dhrubes

    2015-12-01

    InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  17. Multijunction InGaAs thermophotovoltaic power converter

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    1996-01-01

    The experimental performance of a multijunction monolithic lattice-matched 0.74 eV InGaAs thermophotovoltaic (TPV) power converter under 980 C blackbody irradiation is reported. Eight InGaAs PN junctions grown epitaxially on a semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4 V photovoltage per typical InGaAs junction to over 3 volts for the 1 cm(exp 2) chip. This chip was originally designed and characterized for free-space 1.3 micron laser power beaming. The power efficiency of this TPV device is 16% for that part of the blackbody spectrum above the material bandgap. The device is shown to deliver about 1 watt of output power when driven with enough light. This is the first report of such a multijunction TPV device. This is not a traditional tandem cell in which the junctions are stacked vertically. Eight 1 mm long by 1 cm wide junctions are laterally connected across the device area. This multijunction design has the potential for lower I(exp 2)R power loss since the smaller PN junction area limits the current to one eighth that of the equivalent surface area. In essence, the current is traded for voltage to avoid the I(exp 2)R loss, analogous to the way power utilities avoid I(exp 2)R loss in high-tension power lines, by transforming the high current, low voltage generated at a power plant into a high voltage at a low current before transmitting the power over great distances.

  18. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    SciTech Connect

    Koumetz, Serge D. Martin, Patrick; Murray, Hugues

    2014-09-14

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.

  19. Variable temperature carrier dynamics in bulk (In)GaAsNSb materials grown by MOVPE for multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; LaLumondiere, Stephen; Wells, Nathan; Lotshaw, William; Moss, Steven C.; Kim, Tae Wan; Mawst, Luke J.; Kuech, Thomas F.

    2014-03-01

    III-V multi-junction solar cells are typically based on a triple-junction design that consists of an InGaP top junction, a GaAs middle junction, and a bottom junction that employs a 1 - 1.25 eV material grown on GaAs substrates. The most promising 1 - 1.25 eV material that is currently under extensive investigation is bulk dilute nitride such as (In)GaAsNSb lattice matched to GaAs substrates. The approach utilizing dilute nitrides has a great potential to achieve high performance triple-junction solar cells as recently demonstrated by Wiemer, et al., who achieved a record efficiency of 43.5% from multi-junction solar cells including MBE-grown dilute nitride materials [1]. Although MOVPE is a preferred technique over MBE for III-V multi-junction solar cell manufacturing, MOVPEgrown dilute nitride research is at its infancy compared to MBE-grown dilute nitride. In particular, carrier dynamics studies are indispensible in the optimization of MOVPE materials growth parameters to obtain improved solar cell performance. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk dilute nitride InGaAsN materials (Eg = 1 - 1.25 eV at RT) lattice matched to GaAs substrates. In contrast to our earlier samples that showed high background C doping densities, our current samples grown using different metalorganic precursors at higher growth temperatures showed a significantly reduced background doping density of ~ 1017 /cm3. We studied carrier dynamics in (In)GaAsNSb double heterostructures (DH) with different N compositions at room temperature. Post-growth annealing yielded significant improvements in carrier lifetimes of (In)GaAsNSb double heterostructure (DH) samples. Carrier dynamics at various temperatures between 10 K and RT were also studied from (In)GaAsNSb DH samples including those samples grown on different orientation substrates.

  20. The Thermoelectric Properties of Rare Earths as Dopants in InGaAs Films

    NASA Astrophysics Data System (ADS)

    Koltun, Rachel Ann

    Current energy technologies lose over half of the energy input to waste heat. Thermoelectric materials can recover some of this waste heat by converting it into electricity. Thermoelectric devices have no moving parts, so they are low noise and highly reliable, making them particularly suitable for extreme environments. A good thermoelectric has low thermal conductivity to maintain large temperature gradients and high electrical conductivity to effectively transport carriers across that temperature gradient. One of the major challenges in engineering such thermoelectrics is effectively decoupling these parameters. These relationships are quantified in the dimensionless thermoelectric figure of merit, ZT, where a ZT of 1 is considered commercially viable. Doping MBE grown InGaAs films with rare earths forms embedded nanoparticles that have been shown to improve thermoelectric efficiency of InGaAs. Rare earth doping effectively overcomes the problematic relationship between electrical and thermal conductivities. These embedded particles effectively decouple thermal and electrical properties by contributing carriers to increase electrical conductivity as well as forming scattering centers for mid to long wavelength phonons to decrease thermal conductivity. However, the mechanism for carrier generation from rare earths is poorly understood. Comparing different rare earths as dopants in InGaAs, we find a positive correlation with the electrical activation efficiency as the rare earth arsenide nanoparticles are more closely lattice matched to the host matrix. This is in contrast to traditional Si doped InGaAs, which is fully ionized at room temperature. The high doping efficiency of Si leads it to be as good or better of a dopant for thermoelectrics compared to the best rare earths studied. We observe that rare earth doped InGaAs has thermal activation of carriers at high temperature, giving it the potential to be a more efficient thermoelectric in this regime than

  1. Multijunction InGaAs thermophotovoltaic power converter

    SciTech Connect

    Wojtczuk, S.; Parodos, T.

    1995-10-01

    The experimental performance of a multijunction monolithic In(0.53)Ga(0.47)As power converter under blackbody irradiation is reported. Eight InGaAs PN junctions grown epitaxially on a semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4 V photovoltage per typical InGaAs junction to over 3 volts for the 1 sq cm chip. This chip was originally designed and characterized for free-space 1.3 micron laser power beaming. This is the first report of such a multijunction TPV. This is not a traditional tandem cell in which the junctions are stacked vertically. The junctions are each about 1mm long by 1 cm wide and are laterally connected across the 1 sq cm device area. This multijunction design has the potential for lower I(sup 2)R power loss since the smaller PN junction area limits the current to one-eighth that of the equivalent surface area. In essence, the current is traded for voltage to avoid the I(sup 2)R loss, analogous to the way power utilities avoid I(sup 2)R loss in high-tension power lines, by transforming the high current, low voltage generated at a power plant into a high voltage at a low current before transmitting the power over great distances.

  2. Multijunction InGaAs thermophotovoltaic power converter

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Parodos, Themis

    1995-01-01

    The experimental performance of a multijunction monolithic In(0.53)Ga(0. 47)As power converter under blackbody irradiation is reported. Eight InGaAs PN junctions grown epitaxially on a semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4 V photovoltage per typical InGaAs junction to over 3 volts for the 1 sq cm chip. This chip was originally designed and characterized for free-space 1.3 micron laser power beaming. This is the first report of such a multijunction TPV. This is not a traditional tandem cell in which the junctions are stacked vertically. The junctions are each about 1mm long by 1 cm wide and are laterally connected across the 1 sq cm device area. This multijunction design has the potential for lower I(sup 2)R power loss since the smaller PN junction area limits the current to one-eighth that of the equivalent surface area. In essence, the current is traded for voltage to avoid the I(sup 2)R loss, analogous to the way power utilities avoid I(sup 2)P loss in high-tension power lines, by transforming the high current, low voltage generated at a power plant into a high voltage at a low current before transmitting the power over great distances.

  3. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  4. Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon

    SciTech Connect

    Tran, T.-T. D.; Chen, R.; Ng, K. W.; Ko, W. S.; Lu, F.; Chang-Hasnain, C. J.

    2014-09-15

    As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.

  5. Ellipsometric study of InGaAs MODFET material

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.

    1990-01-01

    In(x)Ga(1-x)As based MODFET (modulation doped field effect transistor) material was grown by molecular beam epitaxy on semi-insulating InP substrates. Several structures were made, including lattice matched and strained layer InGaAs. All structures also included several layers of In(0.52)Al(0.48)As. Variable angle spectroscopic ellipsometry was used to characterize the structures. The experimental data, together with the calibration function for the constituent materials, were analyzed to yield the thickness of all the layers of the MODFET structure. Results of the ellipsometrically determined thicknesses compare very well with the reflection high energy electron diffraction in situ thickness measurements.

  6. Characterization and chemical surface texturization of bulk ZnTe crystals grown by temperature gradient solution growth

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Jie, Wan-qi; Liu, Hang

    2015-07-01

    Using tellurium as a solvent, we grew ZnTe ingots of 30 mm in diameter and 70 mm in length by a temperature gradient solution growth method. Hall tests conducted at 300 K indicated that the as-grown ZnTe exhibits p-type conductivity, with a carrier concentration of approximately 1014 cm-3, a mobility of approximately 300 cm2·V-1·s-1, and a resistivity of approximately 102 Ω·cm. A simple and effective method was proposed for chemical surface texturization of ZnTe using an HF:H2O2:H2O etchant. Textures with the sizes of approximately 1 µm were produced on {100}, {110}, and {111}Zn surfaces after etching. The etchant is also very promising in crystal characterization because of its strong anisotropic character and Te-phase selectivity.

  7. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    SciTech Connect

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  8. Optical properties of yellow light-emitting diodes grown on semipolar (112xAF2) bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Sato, Hitoshi; Chung, Roy B.; Hirasawa, Hirohiko; Fellows, Natalie; Masui, Hisashi; Wu, Feng; Saito, Makoto; Fujito, Kenji; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2008-06-01

    We demonstrate high power yellow InGaN single-quantum-well light-emitting diodes (LEDs) with a peak emission wavelength of 562.7nm grown on low extended defect density semipolar (112¯2) bulk GaN substrates by metal organic chemical vapor deposition. The output power and external quantum efficiency at drive currents of 20 and 200mA under pulsed operation (10% duty cycle) were 5.9mW, 13.4% and 29.2mW, 6.4%, respectively. It was observed that the temperature dependence of the output power of InGaN LEDs was significantly smaller than that of AlInGaP LEDs.

  9. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF)

    NASA Technical Reports Server (NTRS)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.

    1997-01-01

    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  10. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  11. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5 μs and (4.7 ± 0.4) × 10{sup 2 }cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179 ns is observed in the DH with a 2 μm thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  12. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  13. Border trap reduction in Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, Kechao; Winter, Roy; Zhang, Liangliang; Droopad, Ravi; Eizenberg, Moshe; McIntyre, Paul C.

    2015-11-01

    The effect of Al2O3 atomic layer deposition (ALD) temperature on the border trap density (Nbt) of Al2O3/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces Nbt. The reduction of Nbt coincides with increased hydrogen incorporation in low temperature ALD-grown Al2O3 films during post-gate metal forming gas annealing. It is also found that large-dose (˜6000 L) exposure of the In0.53Ga0.47As (100) surface to TMA immediately after thermal desorption of a protective As2 capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al2O3/InGaAs samples made at low ALD temperatures.

  14. Thermophotovoltaic energy converters based on thin film selective emitters and InGaAs photovoltaic cells

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.H.; Wilt, D.M.; Lowe, R.A.; Garverick, L.M.; Scheiman, D.

    1996-02-01

    This paper presents the results of an investigation to demonstrate thermophotovoltaic energy conversion using InGaAs photovoltaic cells, yttrium-aluminum-garnet- (YAG-) based selective emitters, and bandpass/reflector filters, with the heat source operating at 1100{degree}C. InGaAs cells were grown on InP by organometallic vapor phase epitaxy with bandgaps of 0.60 and 0.75 eV and coupled to Ho-, Er-, and Er-Tm-doped YAG selective emitters. Infrared reflector and/or shortpass filters were also used to increase the ratio of in-band to out-of-band radiation from the selective emitters. Efficiencies as high as 13.2{percent} were recorded for filtered converters. {copyright} {ital 1996 American Institute of Physics.}

  15. Crystal growth of compound semiconductors in a low-gravity environment (InGaAs crystals) (M-22)

    NASA Technical Reports Server (NTRS)

    Tatsumi, Masami

    1993-01-01

    Compound semiconductor crystals, such as gallium arsenide and indium phosphide crystals, have many interesting properties that silicon crystals lack, and they are expected to be used as materials for optic and/or electro-optic integrated devices. Generally speaking, alloy semiconductors, which consist of more than three elements, demonstrate new functions. For example, values of important parameters, such as lattice constant and emission wavelength, can be chosen independently. However, as it is easy for macroscopic and/or microscopic fluctuations of composition to occur in alloy semiconductor crystals, it is difficult to obtain crystals having homogeneous properties. Macroscopic change of composition in a crystal is caused by the segregation phenomenon. This phenomenon is due to a continuous change in the concentration of constituent elements at the solid-liquid interfacing during solidification. On Earth, attempts were made to obtain a crystal with homogeneous composition by maintaining a constant melt composition near the solid-liquid interface, through suppression of the convection flow of the melt by applying a magnetic field. However, the attempt was not completely successful. Convective flow does not occur in microgravity because the gravity in space is from four to six orders of magnitude less than that on Earth. In such a case, mass transfer in the melt is dominated by the diffusion phenomenon. So, if crystal growth is carried out at a rate that is higher than the rate of mass transfer due to this phenomenon, it is expected that crystals having a homogeneous composition will be obtained. In addition, it is also possible that microscopic composition fluctuations (striation) may disappear because microscopic fluctuations diminish in the absence of convection. We are going to grow a bulk-indium gallium arsenide (InGaAs) crystal using the gradient heating furnace (GHF) in the first material processing test (FMPT). The structure of the sample is shown where InGaAs

  16. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  17. Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN

    SciTech Connect

    Corfdir, P.; Dussaigne, A.; Giraud, E.; Ganiere, J.-D.; Grandjean, N.; Deveaud-Pledran, B.; Teisseyre, H.; Suski, T.; Grzegory, I.; Lefebvre, P.

    2012-02-01

    We investigate, via time-resolved photoluminescence, the temperature-dependence of charge carrier recombination mechanisms in nonpolar (Al,Ga)N/GaN single quantum wells (QWs) grown via molecular beam epitaxy on the a-facet of bulk GaN crystals. We study the influence of both QW width and barrier Al content on the dynamics of excitons in the 10-320 K range. We first show that the effective lifetime of QW excitons {tau} increases with temperature, which is evidence that nonradiative mechanisms do not play any significant role in the low-temperature range. The temperature range for increasing {tau} depends on the QW width and Al content in the (Al,Ga)N barriers. For higher temperatures, we observe a reduction in the QW emission lifetime combined with an increase in the decay time for excitons in the barriers, until both exciton populations get fully thermalized. Based on analysis of the ratio between barrier and QW emission intensities, we demonstrate that the main mechanism limiting the radiative efficiency in our set of samples is related to nonradiative recombination in the (Al,Ga)N barriers of charge carriers that have been thermally emitted from the QWs.

  18. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-01

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  19. Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method

    NASA Astrophysics Data System (ADS)

    Rui, Yang; Wanqi, Jie; Xiaoyan, Sun; Min, Yang

    2015-09-01

    The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic absorption bands, centered at about 1750 nm and beneath the fundamental absorption edge. However, the fundamental reflectance spectra are not sensitive to the dopants. The resistivity of undoped, Cr-doped, and In-doped ZnTe is about 102 Ω·cm, 103 Ω·cm, and 108 Ω·cm, respectively. Only In-doped ZnTe has an IR transmittance higher than 60% in the range of 500 to 4000 cm-1. However, the IR transmittance of Cr-doped ZnTe is very low and decreases greatly as the wavenumber increases, which is mainly attributed to the scattering effects caused by some defects generated by Cr-doping. Project supported by the National Basic Research Program of China (No. 2011CB610406), the National Natural Science Foundation of China (No. 51372205), the 111 Project of China (No. B08040), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120014), and the NWPU Foundation for Fundamental Research and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU).

  20. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    SciTech Connect

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-24

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  1. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  2. The temperature dependent variation of bulk and surface composition of In(x)Ga(1-x)As on GaAs grown by chemical beam epitaxy studied by RHEED, X-ray diffraction and XPS

    NASA Technical Reports Server (NTRS)

    Hansen, H. S.; Bensaoula, A.; Tougaard, S.; Zborowski, J.; Ignatiev, A.

    1992-01-01

    The paper investigates the bulk as well as near-surface composition of In(x)Ga(1-x)As epilayers on GaAs grown by chemical beam epitaxy (CBE) as a function of triethylindium flow rate and substrate temperature by reflection high energy electron diffraction (RHEED), X-ray diffraction, and XPS. To clarify whether the bulk stoichiometry of CBE-grown ternaries can be extracted from the growth rate change as determined by the change in the period of RHEED oscillations from binary to ternary compound growth, a systematic study of growth rate change as a function of ternary bulk composition determined by X-ray diffraction was performed at various temperatures. It is shown that for low growth temperatures there is a linear relationship between the two methods of determination, whereas no correlation is found for higher growth temperatures, in contrast to the MBE case where the two methods of determination yield identical results. In the near surface region the epilayer composition is determined in situ by XPS.

  3. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  4. 15 μm pixel-pitch VGA InGaAs module for very low background applications

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Reverchon, J. L.; Robo, J. A.; Truffer, J. P.; Decobert, J.; Costard, E.; Bois, P.

    2011-11-01

    Thanks to the high transmission coefficient of short infrared wavelengths in the atmosphere and specific contrasts, SWIR imaging is an attractive technology for space applications such as astronomical or earth observation. Detection module must demonstrate high uniformity, sensitivity and resolution combined with compactness to meet the needs of this application field. Image sensors based on InGaAs photodiodes arrays present very low dark currents even at ambient temperature as high quality materials can be grown on InP substrates. Besides, the suppression of InP substrate after hybridization is a way to extend the detection range towards visible wavelengths. These properties result in a new generation of sensitive, compact and multifunctional InGaAs detection modules. In this paper, we describe the performances of an uncooled VGA InGaAs module recently developed. The 640x512 array with a pitch of 15μm allows high resolution images. The excellent crystalline quality induces very low dark current densities at ambient temperature. The readout circuit is based on a capacitive trans-impedance amplifier with correlated double sampling resulting in low readout noise figure. This compact module appears as a serious alternative to the existing technologies for low light level imaging in the [0.4μm-1.7μm] spectral range.

  5. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature

    SciTech Connect

    Shah, S.; Ghosh, K.; Jejurikar, S.; Mishra, A.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Highlights: • Investigation of ground state energy in single and multi-layered InAs/GaAs QD. • Strain reducing layer (InGaAs) prevents the formation of non-radiative. • Strain reducing layer (InGaAs) is responsible for high activation energy. • Significant deviation from the Varshni model, E(T) = E − αT{sup 2}/T + β. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activation energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E − ∞ T{sup 2}/T + β, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 °C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.

  6. Location of Trapped Electron Centers in the Bulk of Epitaxial MgO(001) Films Grown on Mo(001) Using in situ W -band Electron Paramagnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cornu, Damien; Rocker, Jan; Gonchar, Anastasia; Risse, Thomas; Freund, Hans-Joachim

    2016-07-01

    We present the first in situ W -band (94-GHz) electron paramagnetic resonance (EPR) study of a trapped electron center in thin MgO(001) films. The improved resolution of the high-field EPR experiments proves that the signal originate from a well-defined species present in the bulk of the films, whose projection of the principal g -tensor components onto the (001) plane are oriented along the [110] direction of the MgO lattice. Based on a comparison between the structural properties of the films, knowledge of the ability of bulk defects to trap electrons, and the properties of the EPR signal, it is possible to propose that the paramagnetic species are located at the origin of a screw dislocation in the bulk of the film.

  7. Wurtzite ZnO (001) films grown on cubic MgO (001) with bulk-like opto-electronic properties

    SciTech Connect

    Zhou Hua; Wang Huiqiong; Chen Xiaohang; Zhan Huahan; Kang Junyong; Wu Lijun; Zhu Yimei; Zhang Lihua; Kisslinger, Kim

    2011-10-03

    We report the growth of ZnO (001) wurtzite thin films with bulk-like opto-electronic properties on MgO (001) cubic substrates using plasma-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction patterns and ex situ high resolution transmission electron microscopy images indicate that the structure transition from the cubic MgO substrates to the hexagonal films involves 6 ZnO variants that have the same structure but different orientations. This work demonstrates the possibility of integrating wurtzite ZnO films and functional cubic substrates while maintaining their bulk-like properties.

  8. Multijunction InGaAs thermophotovoltaic devices

    SciTech Connect

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Wilt, D.M.; Murray, C.S.

    1998-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.

  9. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, Jérome; Huet, O.; Truffer, JP.; Pozzi, Maxime; Oubensaid, E. H.; Hamard, S.; Maillart, P.; Costard, E.

    2014-10-01

    Thanks to the various developments presently available, SWIR technology presents a growing interest and gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material, initially developed for telecommunications detectors, appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. In the context of this evolving domain, the InGaAs imagery activities from III-VLab were transferred to Sofradir, which provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 and CACTUS640. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE SW and the perspectives of InGaAs new developments.

  10. SWIR InGaAs focal plane arrays in France

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Hamard, S.; Truffer, J. P.; Pozzi, M.; Decobert, J.; Costard, E.; Zécri, M.; Maillart, P.; Reibel, Y.; Pécheur, A.

    2013-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The study of InGaAs FPA has begun few years ago with III-VLab, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has led to put quickly on the market a 320x256 InGaAs module. The recent transfer of imagery activities from III-VLab to Sofradir allows developing new high performances products, satisfying customers' new requirements. Especially, a 640x512 InGaAs module with a pitch of 15µm is actually under development to fill the needs of low light level imaging.

  11. The fabrication process of a high performance and pure c-axis grown GdBCO bulk superconductor with the TSMT-IG technique

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Yang, Peng-tao; Yang, Wan-min; Li, Jia-wei; Hassan, Qadeer UI

    2015-10-01

    It is very important to choose a suitable seed crystal in the fabrication process of the (RE)BCO bulk superconductors by the top-seeded growth method, because a defective seed would result in the failure of the entire sample. Therefore, for optimizing the seed, a new approach is proposed in this paper for the fabrication process of Gd-Ba-Cu-O (GdBCO) bulk with promising superconducting properties. We developed the top-seeded melt texture and infiltration growth (TSMT-IG) process based on the modified top-seeded infiltration and growth (TSIG) process. In this modified infiltration growth, a mini pellet of thin melting texture (TMT) GdBCO was inserted between the NdBCO seed crystal and the solid-phase precursor pellet, resulting in the successful formation of well purified c-axis-oriented GdBCO crystals with a proper-sized TMT layer. The growth morphology, microstructure, side growth boundary, and superconducting properties of the GdBCO bulk superconductors with three different sizes of TMT pellets were studied in this paper. The results proved that the success rate for the fabrication of single-domain GdBCO bulk superconductors can be improved by the TSMT-IG process, which can also effectively inhibit the random nucleation phenomenon at some extent during the process of single-domain GdBCO bulk superconductor growth. In addition, the application of this new growth technology can help us not only to improve the growth performance of GdBCO samples with a proper size of the TMT mini pellet but also reduce the fabrication cost due to the use of only one precursor powder.

  12. Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal

    SciTech Connect

    Urbanczyk, A.; Hamhuis, G. J.; Noetzel, R.

    2010-07-26

    The authors report the coupling of single InGaAs quantum dots (QDs) to the surface plasmon resonance of a metal nanocrystal. Clear enhancement of the photoluminescence (PL) in the spectral region of the surface plasmon resonance is observed which splits up into distinct emission lines from single QDs in micro-PL. The hybrid metal-semiconductor structure is grown by molecular beam epitaxy on GaAs (100) utilizing the concept of self-organized anisotropic strain engineering for realizing ordered arrays with nanometer-scale precise positioning of the metal nanocrystals with respect to the QDs.

  13. Influence of crystallization front direction on the Mg-related impurity centers incorporation in bulk GaN:Mg grown by HNPS method

    NASA Astrophysics Data System (ADS)

    Sadovyi, B.; Amilusik, M.; Litwin-Staszewska, E.; Bockowski, M.; Grzegory, I.; Porowski, S.; Fijalkowski, M.; Rudyk, V.; Tsybulskyi, V.; Panasyuk, M.; Karbovnyk, I.; Kapustianyk, V.

    2016-08-01

    We studied the incorporation of Mg-related impurity centers in GaN crystals depending on the direction of the crystallization front. Two series of GaN crystals - (i) undoped and (ii) Mg-doped - were grown by High Nitrogen Pressure Solution (HNPS) method under otherwise identical conditions. Each series contained four samples with (10 1 bar 0) , (11 2 bar 0) , (20 2 bar 1 bar) and (20 2 bar 1) orientations. The low-temperature photoluminescence (PL) spectroscopy was used for characterization of the obtained crystals. The observed differences in the PL spectra of GaN:Mg crystals suggested that Mg incorporation in GaN grown by HNPS method depends considerably on the orientation of crystallization front. The concentration of Mg impurity incorporated into the GaN crystals subsequently increases for the following sequence of planes: (10 1 bar 0) , (11 2 bar 0) , (20 2 bar 1 bar) and (20 2 bar 1) . For (10 1 bar 0) , (11 2 bar 0) and (20 2 bar 1 bar) planes the blue band is related only to ON - MgGa donor-acceptor pair (DAP) transitions, while for (20 2 bar 1) plane the incorporation of Mg-H complexes occurs additionally to the formation ON - MgGa DAP.

  14. Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001)

    NASA Astrophysics Data System (ADS)

    Barrett, C. S. C.; Martin, T. P.; Bao, X.-Y.; Kennon, E. L.; Gutierrez, L.; Martin, P.; Sanchez, E.; Jones, K. S.

    2016-09-01

    GaAs is a material of interest as a potential buffer layer in future III-V semiconductor-based transistor technologies integrated on Si wafers. The goal of this study was to investigate the effect of growth temperature on the propagation and annihilation of antiphase domain boundaries (APBs) in GaAs films grown on Si(001) by metal-organic chemical vapor deposition (MOCVD). No intentional wafer off-cuts or high temperature pre-growth anneals (>1000 °C) were employed as both of these practices complicate integration with other devices. To evaluate the role of growth temperature on the APB evolution, a 200 nm thick layer of GaAs was grown on the Si at a fixed temperature of 530 °C so that all samples started with the same approximate APB density. Subsequently, 600 nm of GaAs was grown at temperatures varying between 530 °C and 650 °C. Chemical etching combined with scanning electron microscopy (SEM) was used to profile the density of the APBs in each sample as a function of depth. The APB annihilation rate, i.e. the exponential decay rate of APB density with respect to film thickness, increases from 2.6 μm-1 to 10.7 μm-1 as the growth temperature increases from 530 °C to 610 °C and then saturates. The increase in annihilation rate with increasing temperatures suggests that the higher temperatures remove kinetic barriers to the reduction of the overall APB interfacial area. An activation energy of 1.1 eV was extracted using an Arrhenius relationship and likely corresponds to the energy needed for APBs to kink from {110} to higher-index planes, e.g. {112}. Dark field transmission electron microscopy showed that at higher growth temperatures the APBs can shift from vertical {110} habit planes to {112} planes leading to self-annihilation with sufficient thickness.

  15. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

    PubMed

    Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L

    2016-03-01

    Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links. PMID:26901448

  16. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.

    2015-05-01

    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  17. Study on 512×128 pixels InGaAs near infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Huang, Songlei; Shao, Xiumei; Li, Tao; Huang, Zhangcheng; Gong, Haimei

    2014-10-01

    It is well known that In0.53Ga0.47As epitaxial material is lattice-matched to InP substrate corresponding to the wavelength from 0.9μm to 1.7μm, which results to high quality material and good device characteristics at room temperature. In order to develop the near infrared multi-spectral imaging, 512×128 pixels InGaAs Near Infrared Focal Plane Arrays (FPAs) were studied. The n-InP/i-InGaAs/n-InP double hereto-structure epitaxial material was grown by MBE. The 512×128 back-illuminated planar InGaAs detector arrays were fabricated, including the improvement of passivation film, by grooving the diffusion masking layer, the P type electrode layer, In bump condition and so on. The photo-sensitive region has the diffusion area of 23×23μm2 and pixel pitch of 30×30μm2 . The 512×128 detector arrays were individually hybridized on readout integrated circuit(ROIC) by Indium bump based on flip-chip process to make focal plane arrays (FPAs). The ROIC is based on a capacitive trans-impedance amplifier with correlated double sampling and integrated while readout (IWR) mode with high readout velocity of every pixel resulting in low readout noise and high frame frequency. The average peak detectivity and the response non-uniformity of the FPAs are 1.63×1012 cmHz1/2/W and 5.9%, respectively. The power dissipation and frame frequency of the FPAs are about 180mW and 400Hz, respectively.

  18. Research and experiment of InGaAs shortwave infrared imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Ren, Ling; Min, Chaobo; Sun, Jianning; Gu, Yan; Yang, Feng; Zhu, Bo; Pan, Jingsheng; Guo, Yiliang

    2015-04-01

    The design and imaging characteristic experiment of InGaAs shortwave infrared imaging system are introduced. Through the adoption of InGaAs focal plane array, the real time image process structure of InGaAs shortwave infrared imaging system is researched. The hardware circuit and image process software of the imaging system based on FPGA are researched. The InGaAs shortwave infrared imaging system is composed of shortwave infrared lens, InGaAs focal plane array, temperature controller module, power supply module, analog-to-digital converter module, digital-to-analog converter module, FPGA image processing module and optical-mechanical structure. The main lock frequency of InGaAs shortwave infrared imaging system is 30MHz. The output mode of the InGaAs shortwave infrared imaging system is PAL analog signal. The power dissipation of the imaging system is 2.6W. The real time signal process in InGaAs shortwave infrared imaging system includes non-uniformly correction algorithm, bad pixel replacement algorithm, and histogram equalization algorithm. Based on the InGaAs shortwave infrared imaging system, the imaging characteristic test of shortwave infrared is carried out for different targets in different conditions. In the foggy weather, the haze and fog penetration are tested. The InGaAs shortwave infrared imaging system could be used for observing humans, boats, architecture, and mountains in the haze and foggy weather. The configuration and performance of InGaAs shortwave infrared imaging system are respectively logical and steady. The research on the InGaAs shortwave infrared imaging system is worthwhile for improving the development of night vision technology.

  19. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  20. Metastable growth of pure wurtzite InGaAs microstructures.

    PubMed

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals. PMID:24988280

  1. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  2. Border trap reduction in Al{sub 2}O{sub 3}/InGaAs gate stacks

    SciTech Connect

    Tang, Kechao; McIntyre, Paul C.; Winter, Roy; Eizenberg, Moshe; Zhang, Liangliang; Droopad, Ravi

    2015-11-16

    The effect of Al{sub 2}O{sub 3} atomic layer deposition (ALD) temperature on the border trap density (N{sub bt}) of Al{sub 2}O{sub 3}/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces N{sub bt}. The reduction of N{sub bt} coincides with increased hydrogen incorporation in low temperature ALD-grown Al{sub 2}O{sub 3} films during post-gate metal forming gas annealing. It is also found that large-dose (∼6000 L) exposure of the In{sub 0.53}Ga{sub 0.47}As (100) surface to TMA immediately after thermal desorption of a protective As{sub 2} capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al{sub 2}O{sub 3}/InGaAs samples made at low ALD temperatures.

  3. Electron and proton damage on InGaAs solar cells having an InP window layer

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.

    1995-01-01

    As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.

  4. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  5. Lattice-engineered MBE growth of high-indium mole fraction InGaAs for low cost MMICs and (1.3--1.55 {micro}m) OEICs

    SciTech Connect

    Childs, T.T.; Sokolov, V.; Sullivan, C.T.

    1997-11-01

    Using molecular beam epitaxy (MBE) and lattice engineering techniques, the feasibility of combining photonic devices applicable to the 1.3 to 1.55 {micro}m wavelength range and monolithic microwave (or mm-wave) integrated circuits (MMICs) on GaAs is demonstrated. A key factor in the MBE growth is incorporation of an InGaAs active layer having an indium arsenide mole fraction of 0.35 or greater and its lattice compatibility with the underlying semi-insulating GaAs substrate. The InGaAs layer used for the photonic devices, can also serve as the active channel for the high electron mobility transistors (HEMTs) for application in MMICs. Several examples of active and passive photonic devices grown by MBE are presented including an optical ridge waveguide, and a photodetector for detection of light in the 1.3 {micro}m range. The material structure includes a 3-layer AlGaAs/GaAs/AlGaAs optical waveguide and a thin InGaAs absorbing layer situated directly above the optical waveguide. Metal-semiconductor-metal (MSM) photodetectors are formed on the top surface of the InGaAs layer for collection of the photo-induced carriers. The optical ridge waveguide is designed for lateral incidence of the light to enhance the MSM photodetector responsivity. Initial measurements on the optical waveguide and photodetector are presented.

  6. Study of the formation mechanism of InGaAs pyramidal layers on GaAs(100) patterned substrates by LPE

    NASA Astrophysics Data System (ADS)

    Balakrishnan, K.; Iida, S.; Kumagawa, M.; Hayakawa, Y.

    2002-07-01

    A study of the liquid phase epitaxial growth of InxGa1-xAs (x = 0.06) layers on different types of patterned GaAs(100) substrates has been carried out. The dependence of growth morphology on the stripe orientation of the star patterned trench substrate has been observed. Pyramid layers were grown in the stripes oriented along the <001> direction. Broken tent structures formed along the <012> direction. Pyramidal structured layers looked to grow faster than the tent-like and broken tent-like structures. In order to analyse the hollow pyramid structure growth in detail, they were grown on circular trench substrates for different periods of time. Hollow pyramidal structures of InGaAs have been grown on circular patterned trench substrates. Effective defect filtration can be realized in this kind of growth of hollow pyramidal structures. The formation mechanism of the hollow pyramid structured layers has been studied in detail.

  7. Performance limitations of InGaAs photodiodes

    NASA Astrophysics Data System (ADS)

    Rogalski, Antoni

    1999-04-01

    The carrier lifetimes in InxGa1-xAs (InGaAs) ternary alloys for radiative and Auger recombination are calculated for temperature 300 K in the short wavelength range 1.5 < (lambda) < 3.7 micrometers . Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. The possible Auger recombination mechanisms (CHCC, CHLH and CHSH processes) in direct-gap semiconductors are investigated. In n-type and p-type materials the carrier lifetimes are similar. It is clearly shown that in the range of low doping concentration, the carrier lifetime is determined by radiative recombination. For n-type material in the range of higher doping level, a competition between radiative and CHCC processes take place; instead for p-type materials the most effective channel of Auger mechanisms is the CHSH process. A special attention has been put on discussion of the carrier lifetimes in both types of In0.53Ga0.47As materials. Consequence of enhancement in the radiative lifetime leads to higher ultimate performance of photodiodes. The performance (RoA product) of heterostructure InGaAs photovoltaic devices are analyzed. Both the n-on-p (with p-type active region) as well as p-on- n (with n-type active region) are considered. Finally, theoretically predicted performance of InGaAs photodiodes are compared with experimental data reported by other authors.

  8. Optical properties of stacked InGaAs sidewall quantum wires in InGaAsP/InP

    SciTech Connect

    Zhou, D.; Noetzel, R.; Otten, F.W.M. van; Eijkemans, T.J.; Wolter, J.H.

    2006-05-15

    We report on the optical properties of threefold stacked InGaAs sidewall quantum wires (QWires) with quaternary InGaAsP barriers grown on shallow-patterned InP (311)A substrates by chemical beam epitaxy. Temperature dependent photoluminescence (PL) reveals efficient carrier transfer from the adjacent quantum wells (QWells) into the QWires at low temperature, thermally activated repopulation of the QWells at higher temperature, and negligible localization of carriers along the QWires. Strong broadening of power dependent PL indicates enhanced state filling in the QWires compared to that in the QWells. Clear linear polarization of the PL from the QWires confirms the lateral quantum confinement of carriers. These results demonstrate excellent optical quality of the sidewall QWire structures with room temperature PL peak wavelength at 1.55 {mu}m for applications in fiber-based optical telecommunication systems.

  9. Deep levels in virtually unstrained InGaAs layers deposited on GaAs

    NASA Astrophysics Data System (ADS)

    Pal, D.; Gombia, E.; Mosca, R.; Bosacchi, A.; Franchi, S.

    1998-09-01

    The dislocation-related deep levels in InxGa1-xAs layers grown by molecular beam epitaxy on GaAs substrates have been investigated. Virtually unstrained InGaAs layers with mole fraction x of 0.10, 0.20, and 0.30 have been obtained by properly designing the In composition of linearly graded InxGa1-xAs buffers. Two electron traps, labeled as E2 and E3, whose activation energy scales well with the energy gap, have been found. Unlike E2, E3 shows: (i) a logarithmic dependence of the deep level transient spectroscopy amplitude on the filling pulse width and (ii) an increase of concentration as the buffer/InGaAs interface is approached. These findings, together with the observation that, in compressively strained In0.2Ga0.8As, the E3-related concentration is definitely higher than that of virtually unstrained In0.2Ga0.8As, indicate that this trap is likely originated by extended defects like threading dislocations.

  10. Narrow optical line width from site-controlled InGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Lily; Yakes, Michael; Sweeney, Timothy; Carter, Samuel; Kim, Chulsoo; Kim, Mijin; Bracker, Allan; Gammon, Daniel

    2013-03-01

    The incorporation of self-assembled quantum dots (QDs) in systematically scalable quantum devices requires a method of nucleating dots with nanometer-scale spatial accuracy while preserving their narrow optical line width. We have developed a technique combining e-beam lithography, wet etching, and molecular beam epitaxial (MBE) growth to deterministically position InGaAs QDs with spectrometer limited photoluminescence line widths. Our technique takes advantage of the anisotropy in GaAs growth to evolve an etched pattern of holes and lines into faceted structures in which dots nucleate. Using this technique, we were able to grow a buffer layer of pure GaAs up to 90 nm in thickness between the processed surface and the dot nucleation surface, effectively separating the QDs from unavoidable residual defects and impurities on the patterned surface that broaden their optical line widths. Additionally, we demonstrate control over the number of dots nucleating per site, from single to a chain of several, by varying the dimensions of the original pattern. Our dots are grown in a Schottky diode structure. Their PL spectrum shows discrete charging transitions, with narrow linewidths near the spectrometer's resolution limit of 20 micro eV.

  11. Low-dark current 1024×1280 InGaAs PIN arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser

    2014-06-01

    Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.

  12. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  13. Low dark current InGaAs detector arrays for night vision and astronomy

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan

    2009-05-01

    Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.

  14. Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration.

  15. Lattice-matched and strained InGaAs solar cells for thermophotovoltaic use

    SciTech Connect

    Jain, R.K.; Wilt, D.M.; Jain, R.; Landis, G.A.; Flood, D.J.

    1996-02-01

    Lattice-matched and strained indium gallium arsenide solar cells can be used effectively and efficiently for thermophotovoltaic applications. A 0.75 eV bandgap InGaAs solar cell is well matched to a 2000 K blackbody source with a emission peak around 1.5 {mu}m. A 0.60 eV bandgap InGaAs cell is well suited to a Ho-YAG selective emitter and a blackbody at 1500 K which have emission peak around 2.0 {mu}m. Modeling results predict that the cell efficiencies in excess of 30{percent} are possible for the 1500 K Ho-YAG selective emitter (with strained InGaAs) and for the 2000 K blackbody (with lattice-matched InGaAs) sources. {copyright} {ital 1996 American Institute of Physics.}

  16. 4x4 Individually Addressable InGaAs APD Arrays Optimized for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Gu, Y.; Wu, X.; Wu, S.; Choa, F. S.; Yan, F.; Shu, P.; Krainak, M.

    2007-01-01

    InGaAs APDs with improved photon counting characteristics were designed and fabricated and their performance improvements were observed. Following the results, a 4x4 individually addressable APD array was designed, fabricated, and results are reported.

  17. Characterization of NIR InGaAs imager arrays for the JDEM SNAPmission concept

    SciTech Connect

    Seshadri, S.; Cole, M.D.; Hancock, B.; Ringold, P.; Wrigley, C.; Bonati, M.; Brown, M.G.; Schubnell, M.; Rahmer, G.; Guzman, D.; Figer,D.; Tarle, G.; Smith, R.M.; Bebek, C.

    2006-05-23

    We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and development program makes it the baseline detector technology for SNAP. However, the results presented herein suggest that existing InGaAs technology is a suitable alternative for other future astronomy applications.

  18. Dimensionality of InGaAs nonlinear optical response

    SciTech Connect

    Bolton, S.R. |

    1995-07-01

    In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.

  19. InGaAs Detectors for Miniature Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Krabach, T. N.; Staller, C.; Dejewski, S.; Cunningham, T.; Herring, M.; Fossum, E. R.

    1993-01-01

    In the past year, there has been substantial impetus for NASA to consider missions that are of relatively low cost as a trade off for a higher new mission launch rate. To maintain low mission cost, these missions will be of short duration and will use smaller launch vehicles (e.g. Pegasus). Consequently, very low volume, very low mass instrument (a.k.a. miniature instrument) payloads will be required. Furthermore, it is anticipated that the number of instruments flown on a particular mission will also be highly constrained; consequently increased instrument capability will also be desired. In the case of infrared instruments, focal planes typically require cooling to ensure high performance of the detectors, especially in the case of spectrometers where high D* is necessary. In this paper, we discuss the InGaAs detector technology and its potential.

  20. Compound semiconductors grown on porous alumina substrate as a novel hydrogen permeation membrane

    NASA Astrophysics Data System (ADS)

    Sato, Michio

    2007-01-01

    A highly p-type-doped InGaAs film was grown on a porous alumina substrate by metalorganic chemical vapor deposition (MOCVD). This structure was proposed as a novel hydrogen selective permeation membrane. In the p-type film, hydrogen atoms are converted to protons by giving their electrons to the dopant atoms. The protons easily diffuse in the film at elevated temperatures and are desorbed as hydrogen molecules from the surface of the film. When the hydrogen gas is supplied to both side of the film and there is difference in pressure, only hydrogen can penetrate into the film and move to the lower-pressure side. Preliminary experimental results are shown in this paper. Large amount of hydrogen was found in both the epitaxial InGaAs film (grown on InP) and the poly-crystal InGaAs films (grown on sapphire and porous alumina). Hydrogen was desorbed when the film was annealed in nitrogen gas. Hydrogen was absorbed into the film again by annealing in hydrogen gas. Scanning electron microscope (SEM) pictures suggest that a dense poly-crystal film without pin-holes was grown on the porous alumina substrate.

  1. Radiative efficiency of MOCVD grown QD lasers

    NASA Astrophysics Data System (ADS)

    Mawst, Luke; Tsvid, Gene; Dudley, Peter; Kirch, Jeremy; Park, J. H.; Kim, N.

    2010-02-01

    The optical spectral gain characteristics and overall radiative efficiency of MOCVD grown InGaAs quantum dot lasers have been evaluated. Single-pass, multi-segmented amplified spontaneous emission measurements are used to obtain the gain, absorption, and spontaneous emission spectra in real units. Integration of the calibrated spontaneous emission spectra then allows for determining the overall radiative efficiency, which gives important insights into the role which nonradiative recombination plays in the active region under study. We use single pass, multi-segmented edge-emitting in which electrically isolated segments allow to vary the length of a pumped region. In this study we used 8 section devices (the size of a segment is 50x300 μm) with only the first 5 segments used for varying the pump length. The remaining unpumped segments and scribed back facet minimize round trip feedback. Measured gain spectra for different pump currents allow for extraction of the peak gain vs. current density, which is fitted to a logarithmic dependence and directly compared to conventional cavity length analysis, (CLA). The extracted spontaneous emission spectrum is calibrated and integrated over all frequencies and modes to obtain total spontaneous radiation current density and radiative efficiency, ηr. We find ηr values of approximately 17% at RT for 5 stack QD active regions. By contrast, high performance InGaAs QW lasers exhibit ηr ~50% at RT.

  2. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Chang, Shih-Pang; Hsu, Wen-Da; Lau, Kei May

    2016-06-01

    We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Room temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.

  3. Comparison of Ge, InGaAs p-n junction solar cell

    NASA Astrophysics Data System (ADS)

    Korun, M.; Navruz, T. S.

    2016-04-01

    In this paper, the effect of material parameters on the efficiency of Ge and InGaAs p-n junction solar cells which are most commonly used as the sub-cell of multi-junction solar cells are investigated and the results due to these two cells are compared. The efficiency of Ge (EG =0.67 eV) solar cell which is easy to manufacture and inexpensive in cost, is compared with the efficiency of InGaAs (EG =0.74 eV) solar cell which is coming with drawback of high production difficulties and cost. The theoretical efficiency limit of Ge and InGaAs solar cells with optimum thickness were determined by using detailed balance model under one sun AM1.5 illumination. Since the band gap values of two cells are close to each other, approximate detailed balance efficiency limits of 16% for InGaAs and 14% for Ge are obtained. When drift-diffusion model is used and the thicknesses and doping concentrations are optimized, the maximum efficiency values are calculated as 13% for InGaAs and 9% for Ge solar cell. For each solar cell external quantum efficiency curves due to wavelength are also sketched and compared.

  4. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  5. Research in the modulation transfer function (MTF) measurement of InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Fang, Jiaxiong

    2012-10-01

    The Modulation Transfer Function (MTF) of an opto-electrical device is defined as the ratio of the system output modulation to the input modulation, which describes the performance of the imaging system in the Fourier domain. Accurate measurement of the MTF is often obtained by analyzing the high-quality image of a special target reproduced by the optical system with known MTF. To evaluate the MTF of short-wave infrared InGaAs focal plane arrays (FPAs), we develop a laboratory system with high precision and automation based on the slit scan method. An 8*1 linear InGaAs FPAs is then measured by this test set-up for the first time to evaluate the MTF of each pixel at room temperature. The results show a good MTF repeatability and uniformity of the 8*1 InGaAs FPAs. The relationship between the MTF and illumination is also discussed.

  6. Formation of columnar (In,Ga)As quantum dots on GaAs(100)

    SciTech Connect

    He, J.; Noetzel, R.; Offermans, P.; Koenraad, P.M.; Gong, Q.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2004-10-04

    Columnar (In,Ga)As quantum dots (QDs) with homogeneous composition and shape in the growth direction are realized by molecular-beam epitaxy on GaAs(100) substrates. The columnar (In,Ga)As QDs are formed on InAs seed QDs by alternating deposition of thin GaAs intermediate layers and monolayers of InAs with extended growth interruptions after each layer. The height of the columnar (In,Ga)As QDs is controlled by varying the number of stacked GaAs/InAs layers. The structural and optical properties are studied by cross-sectional scanning tunneling microscopy, atomic force microscopy, and photoluminescence spectroscopy. With increase of the aspect ratio of the columnar QDs, the emission wavelength is redshifted and the linewidth is reduced.

  7. Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field

    NASA Astrophysics Data System (ADS)

    Sheibani, Hamdi

    2002-01-01

    Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques

  8. The influence of sunlight irradiation on the characteristics of InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Shao, Xiumei; Zhu, Yaoming; Li, Xue; Tang, Hengjing; Li, Tao; Gong, Haimei

    2014-10-01

    InGaAs ternary compound is suitable for detector applications in the shortwave infrared (SWIR) band. Due to the advantages of good stability, low cooling requirements and high detectivity, InGaAs detectors have been applied widely in the space remote sensing area. However, InGaAs detectors would be affected by strong sunlight direct irradiation in space application. In this paper, a mesa-type InGaAs detector with large sensitive area of diameter 5mm was designed based on InP/In0.53Ga0.47As/InP epitaxial material, which is lattice-matched to InP substrate. The InGaAs detectors were fabricated by ICP etching, and packaged in a Kovar shell. The relative spectral response is in the range of 0.9μm to 1.7μm. The mechanism of the sunlight direct irradiation on InGaAs detector performance was studied. The sunlight were focalized by lens and irradiated directly on the detector. A piece of epitaxial material was investigated at the same time which was cleaved from a 2 inch wafer, same to the detector material. The real time testing was taken out to observe the output signal of the detector. After the irradiation experiment, the I-V curves and the relative response were tested immediately. The dark current of the detector increased temporarily, but come back to the original level after 24 hours. The response spectrum was nearly not affected. The XRD testing of the epitaxial material sample was carried out before and after sunlight direct irradiation. The sunlight irradiation causes thermal stress degradation. The thermal electrons were produced by the absorption of a great deal of visible light, leading to local enhancement of temperature and the lattice degeneration of the material.

  9. Passivation of InGaAs surfaces with an integrated process including an ammonia DECR plasma

    SciTech Connect

    Lescaut, B.; Nissim, Y.I.; Bresse, J.F.

    1996-12-31

    Stable and optimum characteristics of micro-optoelectronic devices and circuits require the passivation of the free surface of the III-V materials. An integrated process using a combination of surface cleaning and photochemical dielectric encapsulation is proposed for passivation. The passivation of InGaAs with a short ammonia plasma cleaning has been obtained. The treated surface has been protected with a photochemical dielectric encapsulation. MIS structures fabricated on treated InGaAs surfaces have shown a low density of interface traps and a small hysteresis. This process is an integration of two cold processes that enable its use at the end of the process fabrication of circuits.

  10. InGaAs monolithic interconnected modules (MIMs)

    SciTech Connect

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr.; Wilt, D.M.; Scheiman, D.; Brinker, D.; Murray, C.S.; Riley, D.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. Also, the use of a BSR reduces the requirements imposed on a front surface interference filter and may lead to using only an anti-reflection coating. As a result, MIMs are exposed to the entire radiator output, and with increasing output power density. MIMs were fabricated with an active area of 0.9 x 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV modules demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. The near IR reflectance (2--4 {micro}m) for both lattice-matched and lattice-mismatched structures was measured to be in the range of 80--85%. Latest electrical and optical performance results for these MIMs is presented.

  11. InGaAs monolithic interconnected modules (MIM)

    SciTech Connect

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr.; Wilt, D.M.; Scheiman, D.; Brinker, D.; Murray, C.S.; Riley, D.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs with an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.

  12. Monolithic integration of 1.3-μm InGaAs photodetectors and high-electron-mobility transistor (HEMT) electronic circuits on GaAs

    NASA Astrophysics Data System (ADS)

    Fink, Thomas; Hurm, Volker; Raynor, Brian; Koehler, Klaus; Benz, Willy; Ludwig, M.

    1995-04-01

    For the first time, monolithic optoelectronic receivers for a wavelength of 1.3 micrometers have been fabricated successfully on GaAs substrates using InGaAs metal-semiconductor-metal (MSM) photodiodes and AlGaAs/GaAs/AlGaAs high-electron-mobility transistors (HEMTs). Using molecular beam epitaxy (MBE), the photodetector layers were grown on top of a double (delta) -doped AlGaAs/GaAs/AlGaAs HEMT structure which allows the fabrication of enhancement and depletion field effect transistors. The photoabsorbing InGaAs layer was grown at 500 degree(s)C. To fabricate the optoelectronic receivers, first, an etch process using a combination of non-selective wet etching and selective reactive ion etching was applied to produce mesas for the photoconductors and to uncover the HEMT structure in all other areas. For the electronic circuits, our well-established HEMT process for 0.3-micrometers transistor gates was used which includes electron-beam lithography for gate definition and optical lithography for NiCr thin films resistors, capacitors, and inductors. The interdigitated MSM photodiode fingers were also fabricated using electron-beam lithography. For interconnecting the electronic circuits and the photodetectors, air bridges were employed. The entire process was performed on 2-inch wafers with more than 90% yield of functional receivers. The finished receiver--basically an MSM photodetector linked to a transimpedance amplifier--is operational at an incident wavelength of 1.3 micrometers at data rates up to 1.2 Gbit/s. The sensitivity of the detectors is 0.16 A/W at a 10 V bias.

  13. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Han; Wu, Jui-pin; Kuo, Yu-zheng; Chiu, Yi-jen; Tzeng, T. E.; Lay, T. S.

    2011-05-01

    In this paper, a new type of high-speed electroabsorption modulator (EAM) based on quantum dot (QD) p-i-n heterostructure is demonstrated. The QD layers sandwiched by p-AlGaAs and n-AlGaAs are grown by multilayer InGaAs self-assembled QD with luminance wavelength of 1300 nm, serving as the active region of EAM. The photocurrent spectrum measurement exhibits a red shift of 15 nm in QD transition energy levels on biasing from 0 to 6 V. A quadratic relation of energy shift against the reversed bias is extracted, confirming the quantum-confined Stark effect (QCSE) in QD. On fabricating a 300 μm long EAM, as high as DC 5 dB extinction ratio by 6 V voltage swing at 1310 nm is observed. As compared with well-developed quantum well (QW) EAM (well thickness ∼10 nm) of the same length, the lower density of states still shows the same order of magnitude in extinction ratio, suggesting strong QCSE in such 3-dimensional confined QD. An electrical-to-optical conversion with -3 dB bandwidth of 3.3 GHz is also attained in such QD EAM, where the speed is mainly limited by the parasitic capacitance on substrate. It implies that through optimization of QD and device structures, the advantages of QD properties are quite promising to be used in high-speed optoelectronic fields.

  14. InGaAs PIN photodiodes on semi-insulating InP substrates with bandwidth exceeding 14 GHz

    NASA Astrophysics Data System (ADS)

    Wen-Jeng Ho; Ting-Arn Dai; Zuon-Ming Chuang; Wei Lin; Yuan-Kuang Tu; Meng-Chyi Wu

    1995-07-01

    The top-illuminated InGaAs PIN photodiodes have been fabricated from materials grown by metalorganic vapor phase epitaxy. Using the planar air-bridge approach and the selective etching technique, it can eliminate the significant bondpad capacitance which is present in conventional PIN photodiodes on conducting substrates. Besides, a self-aligned lift-off process is used for the n-contact recess and metallization. The anti-reflection coating devices have responsivity of 0.79 and 0.78 A/W at 1.3 and 1.55 μm, respectively. The fabricated devices with 30 μm photosensitive diameter have a very low dark current below 0.2 nA and low capacitance of 143 fF at -5V bias voltage. The 3-dB bandwidth of these devices is in excess of 14.8 GHz which is in good agreement with the calculated minority-carrier transit time through an absorbing layer thickness of 1.85 μm. The device performance reveals that these devices are potentially suitable for the applications in optoelectronic integrated circuits.

  15. Comparison of low temperature photoluminescence of bulk MBE (Molecular Beam Epitaxy) grown AlGaAs and GaAs using a graphite generated dimer versus a standard tetramer arsenic group-V source

    SciTech Connect

    Brennan, T.M.; Hammons, B.E.; Smith, M.C.; Jones, E.D.

    1987-01-01

    The carbon concentrations in GaAs and AlGaAs grown by Molecular Beam Epitaxy (MBE) have been studied when a graphite generated dimeric arsenic species and a standard tetramer arsenic species are used as the group-V source. Photoluminescence and Van der Pauw-Hall measurements have been made to examine the material quality in reference to which arsenic species is used for film growth. Results indicate that a graphite crucible arrangement for the thermal cracking of As/sub 4/ produces significant carbon contamination and is unacceptable for the MBE growth of GaAs and AlGaAs. 15 refs., 3 figs.

  16. A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors

    SciTech Connect

    Reithmaier, G. Flassig, F.; Hasch, P.; Lichtmannecker, S.; Kaniber, M.; Müller, K.; Vučković, J.; Gross, R.; Finley, J. J.

    2014-08-25

    Using integrated superconducting single photon detectors, we probe ultra-slow exciton capture and relaxation dynamics in single self-assembled InGaAs quantum dots embedded in a GaAs ridge waveguide. Time-resolved luminescence measurements performed with on- and off-chip detection reveal a continuous decrease in the carrier relaxation time from 1.22 ± 0.07 ns to 0.10 ± 0.07 ns upon increasing the number of non-resonantly injected carriers. By comparing off-chip time-resolved spectroscopy with spectrally integrated on-chip measurements, we identify the observed dynamics in the rise time (τ{sub r}) as arising from a relaxation bottleneck at low excitation levels. From the comparison with the temporal dynamics of the single exciton transition with the on-chip emission signal, we conclude that the relaxation bottleneck is circumvented by the presence of charge carriers occupying states in the bulk material and the two-dimensional wetting layer continuum. A characteristic τ{sub r} ∝ P{sup −2∕3} power law dependence is observed suggesting Auger-type scattering between carriers trapped in the quantum dot and the two-dimensional wetting layer continuum which circumvents the phonon relaxation bottleneck.

  17. (In,Ga)As sidewall quantum wires on shallow-patterned InP (311)A

    SciTech Connect

    Zhou, D.; Noetzel, R.; Gong, Q.; Offermans, P.; Koenraad, P.M.; Veldhoven, P.J. van; Otten, F.W.M. van; Eijkemans, T.J.; Wolter, J.H.

    2005-03-15

    (In,Ga)As sidewall quantum wires (QWires) are realized by chemical beam epitaxy along [01-1] mesa stripes on shallow-patterned InP (311)A substrates. The QWires exhibit strong lateral carrier confinement due to larger thickness and In composition compared to the adjacent quantum wells, as determined by cross-sectional scanning-tunneling microscopy and microphotoluminescence (micro-PL) spectroscopy. The PL of the (In,Ga)As QWires with InP and quaternary (Ga,In)(As,P) barriers reveals narrow linewidth, high efficiency, and large lateral carrier confinement energies of 60-70 meV. The QWires are stacked in growth direction with identical PL peak emission energy. The PL emission energy is not only controlled by the (In,Ga)As layer thickness but also by the patterned mesa height. Stacked (In,Ga)As QWires with quaternary barriers exhibit room temperature PL emission at 1.55 {mu}m in the technologically important wavelength region for telecommunication applications.

  18. Microsecond-long lasing delays in thin P-clad InGaAs QW lasers

    SciTech Connect

    Wu, C.H.; Miester, C.F; Zory, P.S.; Emanuel, M.A.

    1996-06-01

    Microsecond-long lasing delays have been observed in wide-stripe, thin p-clad, InGaAs single quantum well (QW) lasers with ``thick`` p{sup +} cap layers. Computer modeling indicates that localized refractive index changes in the cap layer due to ohmic heating from the con- tact resistance may be the root cause.

  19. 256×1 element linear InGaAs short wavelength near-infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Fan, Guangyu; Liu, Dafu; Shao, Xiumei; Zhang, Yonggang; Zhang, Haiyan; Chen, Xinyu; Zhu, Sangen; Gong, Haimei; Fang, Jiaxiong

    2008-03-01

    256×1 element linear InGaAs detector arrays assembly have been fabricated for the short wave infrared band(0.9~1.7μm), including the detector, CMOS readout circuits, thermoelectric cooler in a sealed package. The InGaAs detectors were achieved by mesa structure on the p-InP/i-InGaAs/n-InP double hetero-structure epitaxial material. 256×1 element linear InGaAs detectors were wire-bonded to 128×1 element odd and even ROIC, which were packaged in a dual-in-line package by parallel sealing. The characteristics of detectors and detector arrays module were investigated at the room temperature. The detector shows response peak at 1.62μm with 50% cutoff wavelength of 1.73μm and average R0A with 5.02KΩ•cm2. Response non-uniformity and average peak detectivity of 256×1 element linear InGaAs detector arrays are 3.10% and 1.38×10 12cmHz 1/2/W, respectively.

  20. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  1. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter

    NASA Technical Reports Server (NTRS)

    Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila

    2007-01-01

    Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes

  2. Nanophotonic integrated circuits from nanoresonators grown on silicon

    NASA Astrophysics Data System (ADS)

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D.; Li, Kun; Chang-Hasnain, Connie

    2014-07-01

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore’s law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  3. Comparison and implications of charge collection measurements in silicon and InGaAs irradiated by energetic protons and neutrons

    SciTech Connect

    Normand, E.; Oberg, D.L.; Wert, J.L.

    1995-12-01

    A variety of charge collection measurements by energetic protons and neutrons have been measured and compared. These include deposition in: small silicon junctions, large volume American and russian silicon surface barrier detectors, and InGaAs photodiodes.

  4. Growth and properties of InGaAs/FeAl/InAlAs/InP heterostructures for buried reflector/interconnect applications in InGaAs thermophotovoltaic devices

    SciTech Connect

    Ringel, S.A.; Sacks, R.N.; Qin, L.; Clevenger, M.B.; Murray, C.S.

    1998-11-01

    Thermophotovoltaic cells consisting of InGaAs active layers are of extreme promise for high efficiency, low bandgap TPV conversion. In the monolithic interconnected module configuration, the presence of the InGaAs lateral conduction layer (LCL) necessary for the series connection between TPV cells results in undesirable free carrier absorption, causing a tradeoff between series resistance and optical absorption losses in the infrared. A potential alternative is to replace the LCL with an epitaxial metal layer that would provide a low-resistance interconnect while not suffering from free carrier absorption. The internal metal layer would also serve as an efficient, panchromatic back surface reflector, providing the additional advantage of increased effective optical thickness of the InGaAs cell. In this paper, the authors present the first results on the growth and development of buried epitaxial metal layers for TPV applications. High quality, single crystal, epitaxial Fe{sub x}Al{sub 1{minus}x} layers were grown on InAlAs/InP substrates, having compositions in the range x = 0.40--0.80. Epitaxial metal layers up to 1,000 {angstrom} in thickness were achieved, with excellent uniformity over large areas and atomically smooth surfaces. X-ray diffraction studies indicate that all FeAl layers are strained with respect to the substrate, for the entire composition range studied and for all thicknesses. The FeAl layers exhibit excellent resistance characteristics, with resistivities from 60 {micro}ohm-cm to 100 {micro}ohm-cm, indicating that interface scattering has a negligible effect on lateral conductivity. Reflectance measurements show that the FeAl thickness must be at least 1,000 {angstrom} to achieve > 90% reflection in the infrared.

  5. Structural effects on heat dissipation in InGaAs MHEMTs

    NASA Astrophysics Data System (ADS)

    Noh, Jinhyun; Ryoo, Yeonmi; Jeon, Namcheol; Cha, Ho-Young; Seo, Kwang-Seok

    2013-04-01

    Since the high thermal resistance of InGaAs metamorphic high electron mobility transistors (MHEMTs) limits their applicability, thermal management should be taken into account when designing the device structure. In this study, structural effects on heat dissipation in InGaAs MHEMTs were carefully investigated and experimentally validated. With an air bridge thickness of 10 µm and a gate pitch distance of 24 µm, the maximum channel temperature in a flip-chip bonded device was noticeably reduced from 132 to 106 °C (i.e. corresponding thermal resistance from 252.17 to 178.14 K W-1). Improved heat dissipation with the proposed structure was experimentally validated using backside-mounted devices by an infrared temperature measurement method.

  6. Low-Cost InGaAs Detectors for Near-Infrared Imaging and Photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter; Croll, B.; Simcoe, R. A.

    2014-01-01

    Near-infrared detectors made from InGaAs should provide an alternative to HgCdTe that is particularly cost-effective for arrays of small telescopes or for covering large focal planes. Originally designed for night-vision equipment, these detectors can be suitable for astronomy if they support long, up-the-ramp exposures and are cooled sufficiently. We developed custom electronics to operate the FLIR APS640C detector in a camera with thermoelectric and chilled-water cooling. We achieved differential photometric precision of 500 ppm (0.5 mmag) hr^-1/2 observing J=7.7 stars with an effective telescope aperture of 0.25 m. Laboratory results from the latest generation of InGaAs detectors will be presented, and we discuss the limits to achieving background-limited performance in the Y, J, and H bands on 1 m - class telescopes.

  7. Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography

    SciTech Connect

    Qian, X.; Li, J.; Wasserman, D.; Goodhue, W. D.

    2008-12-08

    We demonstrate the fabrication of optically active uniform InGaAs quantum dot arrays by combining nanosphere lithography and bromine ion-beam-assisted etching on a single InGaAs/GaAs quantum well. A wide range of lateral dot sizes was achieved from an oxygen plasma nanosphere resizing process. The increased lateral confinement of carriers in the dots results in low temperature photoluminescence blueshifts from 0.5 to 11 meV. Additional quantization was achieved using a selective wet-etch process. Our model suggests the presence of a 70 nm dead layer in the outer InGaAs radial edge, which we believe to be a result of defects and dislocations introduced during the dry-etch process.

  8. Giant Up-Conversion Efficiency of InGaAs Quantum Dots in a Planar Microcavity

    PubMed Central

    Xu, Qinfeng; Piermarocchi, Carlo; Pershin, Yuriy V.; Salamo, G. J.; Xiao, Min; Wang, Xiaoyong; Shih, Chih-Kang

    2014-01-01

    Self-assembled InGaAs quantum dots (QDs) were fabricated inside a planar microcavity with two vertical cavity modes. This allowed us to excite the QDs coupled to one of the vertical cavity modes through two propagating cavity modes to study their down- and up-converted photoluminescence (PL). The up-converted PL increased continuously with the increasing temperature, reaching an intensity level comparable to that of the down-converted PL at ~120 K. This giant efficiency in the up-converted PL of InGaAs QDs was enhanced by about 2 orders of magnitude with respect to a similar structure without cavity. We tentatively explain the enhanced up-converted signal as a direct consequence of the modified spontaneous emission properties of the QDs in the microcavity, combined with the phonon absorption and emission effects. PMID:24492329

  9. InGaAs HEMT MMIC LINA and doublers for EHF SATCOM ground terminals

    NASA Astrophysics Data System (ADS)

    Chow, P. D.; Lester, J.; Huang, P.; Jones, W.

    1991-07-01

    A K-band MMIC LNA and a family of MMIC frequency doublers were designed and fabricated using the planar-doped pseudomorphic InGaAs HEMT technology for future EHF satellite communication terminal transceiver applications. The InGaAs HEMT LNA showed less than 2 dB noise figure and more than 32 dB gain from 21 to 23 GHz. The Ku-, K-, and Q-band MMIC HEMT doublers demonstrated low conversion loss and wideband operation. They showed 10 dBm, 8 dBm, and 0 dBm output powers, and 2.5 dB, 4.5 dB, and 8.6 dB conversion losses at 17.4 GHz, 22.25 GHz, and 43.5 GHz, respectively.

  10. Electrical and Optical Performance Characteristics of p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in ThermoPhotoVoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A Monolithic Interconnected Module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual Indium Gallium Arsenide (InGaAs) devices series-connected on a single semi-insulating Indium Phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An InfraRed (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74eV InGaAs, have demonstrated V(sub infinity) = 3.2 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. IR reflectance measurements (greater than 2 microns) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  11. InGaAs focal plane array developments at III-V Lab

    NASA Astrophysics Data System (ADS)

    Rouvié, Anne; Reverchon, Jean-Luc; Huet, Odile; Djedidi, Anis; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Bria, Toufiq; Pires, Mauricio; Decobert, Jean; Costard, Eric

    2012-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.

  12. Growth, microstructure, and luminescent properties of direct-bandgap InAlP on relaxed InGaAs on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Mukherjee, K.; Beaton, D. A.; Christian, T.; Jones, E. J.; Alberi, K.; Mascarenhas, A.; Bulsara, M. T.; Fitzgerald, E. A.

    2013-05-01

    Direct-bandgap InAlP alloy has the potential to be an active material in nitride-free yellow-green and amber optoelectronics with applications in solid-state lighting, display devices, and multi-junction solar cells. We report on the growth of high-quality direct-bandgap InAlP on relaxed InGaAs graded buffers with low threading dislocation densities. Structural characterization reveals phase-separated microstructures in these films which have an impact on the luminescence spectrum. While similar to InGaP in many ways, the greater tendency for phase separation in InAlP leads to the simultaneous occurrence of compositional inhomogeneity and CuPt-B ordering. Mechanisms connecting these two structural parameters are presented as well as results on the effect of silicon and zinc dopants on homogenizing the microstructure. Spontaneous formation of tilted planes of phase-separated material, with alternating degrees of ordering, is observed when InAlP is grown on vicinal substrates. The photoluminescence peak-widths of these films are actually narrower than those grown on exact (001) substrates. We find that, despite phase-separation, ordered direct-bandgap InAlP is a suitable material for optoelectronics.

  13. n/p/n tunnel junction InGaAs Monolithic Interconnected Module (MIM)

    SciTech Connect

    Wilt, D.M.; Murray, C.S.; Fatemi, N.S.; Weizer, V.

    1999-03-01

    The Monolithic Interconnected Module (MIM), originally introduced at the First NREL thermophotovoltaic (TPV) conference, consists of low-bandgap indium gallium arsenide (InGaAs) photovoltaic devices, series interconnected on a common semi-insulating indium phosphide (InP) substrate. An infrared reflector is deposited on the back surface of the substrate to reflect photons, which were not absorbed in the first pass through the structure. The single largest optical loss in the current device occurs in the heavily doped {ital p}-type emitter. A new MIM design (pat pend.) has been developed which flips the polarity of the conventional MIM cell (i.e., n/p rather than p/n), eliminating the need for the high conductivity {ital p}-type emitter. The {ital p}-type base of the cell is connected to the {ital n}-type lateral conduction layer through a thin InGaAs tunnel junction. 0.58 eV and 0.74 eV InGaAs devices have demonstrated reflectances above 90{percent} for wavelengths beyond the bandgap ({gt}95{percent} for unprocessed structures). Electrical measurements indicate minimal voltage drops across the tunnel junction ({lt}3 mV/junction under 1200 K-blackbody illumination) and fill factors that are above 70{percent} at current densities (J{sub sc}) above 8 A/cm{sup 2} for the 0.74 eV devices. {copyright} {ital 1999 American Institute of Physics.}

  14. n/p/n Tunnel Junction InGaAs Monolithic Interconnected Module (MIM)

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Murray, Christopher S.; Fatemi, Navid S.; Weizer, Victor

    2005-01-01

    The Monolithic Interconnected Module (MIM), originally introduced at the First NREL thermophotovoltaic (TPV) conference, consists of low-bandgap indium gallium arsenide (InGaAs) photovoltaic devices, series interconnected on a common semi-insulating indium phosphide (inP) substrate. An infrared reflector is deposited on the back surface of the substrate to reflect photons, which were not absorbed in the first pass through the structure. The single largest optical loss in the current device occurs int he heavily doped p-type emitter. A new MIM design (pat.pend.) has been developed which flips the polarity of the conventional MIM cell (i.e., n/p rather than p/n), eliminating the need for the high conductivity p-type emitter. The p-type base of the cell is connected to the n-type lateral conduction layer through a thin InGaAs tunnel junction. 0.58 eV and 0.74 eV InGaAs devices have demonstrated reflectances above 90% for wavelengths beyond the bandgap (greater than 95% for unprocessed structures). Electrical measurements indicate minimal voltage drops across the tunnel junction (less than mV/junction under 1200K-blackbody illumnination) and fill factors that are above 70% at current densities (J(sub sc)) above 8 Angstroms per square centimeters for the 0.74eV devices.

  15. InGaAs concentrator cells for laser power converters and tandem cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, S.; Vernon, S.; Gagnon, E.

    1993-01-01

    In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.

  16. Phase separation and ordering in InGaAs and InGaAs materials. Final report

    SciTech Connect

    Not Available

    1995-02-23

    This report highlights the advances in the understanding of phase separation and atomic ordering in mixed III-V layers. Specifically, the following issues were addressed in the grant period (August 1987 to February 1992): (1) bulk vs surface phase separation; (2) influence of growth technique on phase separation; (3) origin of coarse contrast modulations; (4) influence of dopant diffusion on phase separated microstructures; (5) influence of annealing on carrier mobility in InGaAsP layers; (6) co-existence of CuPt-type ordering and phase separation; (7) influence of growth conditions on ordering; (8) influence of surface reconstruction on atomic ordering.

  17. In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires.

    PubMed

    Heiss, Martin; Ketterer, Bernt; Uccelli, Emanuele; Morante, Joan Ramon; Arbiol, Jordi; Fontcuberta i Morral, Anna

    2011-05-13

    Growth of GaAs and In(x)Ga(1-x)As nanowires by the group-III assisted molecular beam epitaxy growth method on (001)GaAs/SiO(2) substrates is studied in dependence on growth temperature, with the objective of maximizing the indium incorporation. Nanowire growth was achieved for growth temperatures as low as 550 °C. The incorporation of indium was studied by low temperature micro-photoluminescence spectroscopy, Raman spectroscopy and electron energy loss spectroscopy. The results show that the incorporation of indium achieved by lowering the growth temperature does not have the effect of increasing the indium concentration in the bulk of the nanowire, which is limited to 3-5%. For growth temperatures below 575 °C, indium rich regions form at the surface of the nanowires as a consequence of the radial growth. This results in the formation of quantum dots, which exhibit spectrally narrow luminescence. PMID:21430322

  18. The physical origin of dispersion in accumulation in InGaAs based metal oxide semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-05-01

    Dispersion in accumulation is a widely observed phenomenon in technologically important InGaAs gate stacks. Two principal different interface defects were proposed as the physical origin of this phenomenon—disorder induced gap states and border traps. While the gap states are located at the semiconductor side of the interface, the border traps are related to the dielectric side. The study of Al2O3, HfO2, and an intermediate composition of HfxAlyO deposited on InGaAs enabled us to find a correlation between the dispersion and the dielectric/InGaAs band offset. At the same time, no change in the dispersion was observed after applying an effective pre-deposition treatment which results in significant reduction of the interface states. Both observations prove that border traps are the physical origin of the dispersion in accumulation in InGaAs based metal-oxide-semiconductor gate stacks.

  19. Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.

    2013-09-01

    We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<= 1 m) telescopes capable of precise (< 1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640 × 512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7°C of cooling, and we reduce it to 840 e- s-1 pixel-1 (with a pixel-to-pixel variation of ± 200 e- s-1 pixel-1) by cooling the array to -20°C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that two-star differential photometry is possible to a precision of 631 ± 205 ppm (0.68 mmag) hr-1/2 at a flux of 2.4 × 104 e- s-1. Employing three comparison stars and decorrelating reference signals further improves the precision to 483 ± 161 ppm (0.52 mmag) hr-1/2. Photometric observations of HD80606 and HD80607 (J = 7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr-1/2 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.

  20. InGaAs versus HgCdTe for short-wavelength infrared applications

    NASA Astrophysics Data System (ADS)

    Rogalski, Antoni; Ciupa, Robert

    1999-04-01

    The carrier lifetimes in In(subscript x)Ga(subscript 1-x)As (InGaAs) and Hg(subscript 1-x)Cd(subscript x)Te (HgCdTe) ternary alloys for radiative and Auger recombination are calculated for temperature 300 K in the short wavelength range 1.5 less than (lambda) less than 3.7 micrometer. Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. This theoretical prediction has been confirmed by good agreement with experimental data for n-type In(subscript 0.53)Ga(subscript 0.47)As. The possible Auger recombination mechanisms (CHCC, CHLH and CHSH processes) in direct-gap semiconductors are investigated. In both n-type ternary alloys, the carrier lifetimes are similar, and competition between radiative and CHCC processes take place. In p-type materials the carrier lifetime are also comparable, however the most effective channels of Auger mechanisms are: CHSH process in InGaAs, and CHLH process in HgCdTe. Next, the performance of heterostructure p-on-n photovoltaic devices are considered. Theoretically predicted R(subscript o)A values are compared with experimental data reported by other authors. In(subscript 0.53)Ga(subscript 0.47)As photodiodes have shown the device performance within a factor of 10 of theoretical limit. However, the performance of InGaAs photodiodes decreases rapidly at intermediate wavelengths due to mismatch-induced defects. HgCdTe photodiodes maintain high performance close to ultimate limit over a wider range of wavelengths. In this context technology of HgCdTe is considerably advanced since the same lattice parameter of this alloy over wide composition range.

  1. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates

    SciTech Connect

    Lee, J. H.; Wang, Zh. M.; Strom, N. W.; Mazur, Yu. I.; Salamo, G. J.

    2006-11-13

    Several distinctive self-assembled InGaAs quantum dot molecules (QDMs) are studied. The QDMs self-assemble around nanoscale-sized GaAs moundlike templates fabricated by droplet homoepitaxy. Depending on the specific InAs monolayer coverage, the number of QDs per GaAs mound ranges from two to six (bi-QDMs to hexa-QDMs). The Ga contribution from the mounds is analyzed in determining the morphologies of the QDMs, with respect to the InAs coverages ranging between 0.8 and 2.4 ML. Optical characterization shows that the resulting nanostructures are high-quality nanocrystals.

  2. Investigation of cross-hatch surface and study of anisotropic relaxation and dislocation on InGaAs on GaAs (001)

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Bag, Ankush; Mukhopadhyay, Partha; Das, Subhashis; Biswas, Dhrubes

    2016-05-01

    There exist discrepancies between reports on cross-hatch (CH) behaviour and its interaction with interfacial misfit dislocations in the literature. In this work, a thorough CH analysis has been presented by use of conventional and statistical analysis of AFM data. It has been shown that correlation between cross-hatch and misfit dislocation depends on the growth conditions and residual strain. Anisotropic relaxation and dislocations, composition and epitaxial tilt have been studied by HRXRD analysis. To illustrate these findings, molecular beam epitaxy (MBE) grown metamorphic InGaAs on GaAs (001) samples have been used. Reciprocal space mapping has been used to characterize the composition and relaxation while epilayer tilt and dislocation have been investigated by HRXRD rocking curve. A better understanding of CH pattern can enable us to minimize the surface roughness for metamorphic electronic devices and to fully utilize the quasi-periodic undulation in cross-hatch in applications, like ordered quantum dot growth. [Figure not available: see fulltext.

  3. Extremely low nonalloyed and alloyed contact resistance using an InAs cap layer on InGaAs by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Chen, J.; Chyi, J.; Morkoc, H.

    1988-01-01

    Extremely low alloyed and nonalloyed ohmic contact resistances have been formed on n-type InAs/In(0.53)Ga(0.47)As/In(0.52)Al(0.48)As structures grown on InP(Fe) by molecular-beam epitaxy. To insure the accuracy of the small contact resistances measured, an extended transmission line model was used to extrapolate contact resistances from test patterns with multiple gap spacings varying from 1 to 20 microns. For a 150-A-thick InAs layer doped to 2 x 10 to the 18th/cu cm and a 0.1-micron-thick InGaAs layer doped to 1 x 10 to the 18th/cu cm, a specific contact resistance of 2.6 x 10 to the -8th ohm-asterisk sq cm was measured for the nonalloyed contact, while a resistance less than 1.7 x 10 to the -8th ohm-asterisk sq cm is reported for the alloyed contact. Conventional Au-Ge/Ni/Au was used for the ohmic metal contact and alloying was performed at 500 C for 50 s in flowing H2. Using a thermionic field emission model, the barrier height at the InAs/InGaAs interface was calculated to be 20 meV.

  4. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  5. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  6. Bulk Fuel Man.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by bulk fuel workers. Addressed in the four individual units of the course are the following topics: bulk fuel equipment, bulk fuel systems, procedures for handling fuels, and…

  7. Logarithmic InGaAs detectors with global shutter and active dark current reduction

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Arion, Bogdan; Bouvier, Christian; Noguier, Vincent

    2015-05-01

    In this paper, we present newly developed logarithmic InGaAs detectors with global shuttering and also an active dark current reduction technique to ensure ambient temperature operation without TEC for industrial applications. The newly released detectors come with both VGA (15um pitch) and QVGA (25um pitch) resolutions, giving the possibility to use lens less than 1-inch size. The logarithmic response is obtained by using solar-cell mode InGaAs photodiodes. The VGA and QVGA ROICs have 3 analog memories inside each pixel which permit, except the classic ITR, IWR and CDS modes, a new differential imaging mode which can be a useful feature in active imaging systems. The photodiode frontend circuit, in pure voltage mode, is made with non-inverting amplifier instead of CTIA. The reason of this choice is that the exposure time can be shortened without need of excessive power consumption as in CTIA front-end. We think that this arrangement associated with true CDS could match the noise performance of CTIA based one. VGA and QVGA ROICs have been designed and manufactured by using 0.18um 1P4M CMOS process. Both ROIC have been tested with success and match the design targets. The first batch of both detectors is under fabrication and will be presented during the conference.

  8. Near-infrared InGaAs detectors for background-limited imaging and photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.

    2014-07-01

    Originally designed for night-vision equipment, InGaAs detectors are beginning to achieve background-limited performance in broadband imaging from the ground. The lower cost of these detectors can enable multi-band instruments, arrays of small telescopes, and large focal planes that would be uneconomical with high-performance HgCdTe detectors. We developed a camera to operate the FLIR AP1121 sensor using deep thermoelectric cooling and up-the-ramp sampling to minimize noise. We measured a dark current of 163 e- s-1 pix-1, a read noise of 87 e- up-the-ramp, and a well depth of 80k e-. Laboratory photometric testing achieved a stability of 230 ppm hr-1/2, which would be required for detecting exoplanet transits. InGaAs detectors are also applicable to other branches of near-infrared time-domain astronomy, ranging from brown dwarf weather to gravitational wave follow-up.

  9. Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun; Chekhovich, E. A.; Tartakovskii, A. I.

    2014-11-01

    A wealth of atomistic information is contained within a self-assembled quantum dot (QD), associated with its chemical composition and the growth history. In the presence of quadrupolar nuclei, as in InGaAs QDs, much of this is inherited to nuclear spins via the coupling between the strain within the polar lattice and the electric quadrupole moments of the nuclei. Here, we present a computational study of the recently introduced inverse spectra nuclear magnetic resonance technique to assess its suitability for extracting such structural information. We observe marked spectral differences between the compound InAs and alloy InGaAs QDs. These are linked to the local biaxial and shear strains, and the local bonding configurations. The cation alloying plays a crucial role especially for the arsenic nuclei. The isotopic line profiles also largely differ among nuclear species: While the central transition of the gallium isotopes have a narrow linewidth, those of arsenic and indium are much broader and oppositely skewed with respect to each other. The statistical distributions of electric field gradient (EFG) parameters of the nuclei within the QD are analyzed. The consequences of various EFG axial orientation characteristics are discussed. Finally, the possibility of suppressing the first-order quadrupolar shifts is demonstrated by simply tilting the sample with respect to the static magnetic field.

  10. Multifunction InGaAs detector with on-chip signal processing

    NASA Astrophysics Data System (ADS)

    Shkedy, Lior; Fraenkel, Rami; Fishman, Tal; Giladi, Avihoo; Bykov, Leonid; Grimberg, Ilana; Ilan, Elad; Vaserman, Shay; Koifman, Alina

    2013-06-01

    Advanced electro-optical systems are designed towards a more compact, low power, and low cost solution with respect to traditional systems. Integration of several components or functionalities, such as infrared imager, laser designator, laser range finder (LRF), into one multi-function detector serves this trend. SNIR Read-Out Integrated Circuit (ROIC) incorporates this high level of signal processing and with relatively low power consumption. In this paper we present measurement results from a Focal Plane Array (FPA) where the SNIR ROIC is Flip-Chip bonded to a 15µm pitch VGA InGaAs detector array. The FPA is integrated into a metallic vacuum sealed package. We present InGaAs arrays with dark current density below 1.5 nA/cm2 at 280K (typically 1fA), Quantum Efficiency higher than 80% at 1550 nm and operability better than 99.5%. The metallic package is integrated with a low power proximity electronics which delivers Camera Link output. The overall power dissipation is less than 1W, not including Thermal-Electric Cooling (TEC), which is required in some applications. The various active and passive operation modes of this detector will be reviewed. Specifically, we concentrate on the "high gain" mode with low readout noise for Low Light Level imaging application. Another promising feature is the Asynchronous Laser Pulse Detection (ALPD) with remarkably low detection thresholds.

  11. Impact of atomic layer deposition temperature on HfO2/InGaAs metal-oxide-semiconductor interface properties

    NASA Astrophysics Data System (ADS)

    Suzuki, Rena; Taoka, Noriyuki; Yokoyama, Masafumi; Kim, Sang-Hyeon; Hoshii, Takuya; Maeda, Tatsuro; Yasuda, Tetsuji; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2012-10-01

    We have studied the impact of atomic-layer-deposition (ALD) temperature on the HfO2/InGaAs metal-oxide-semiconductor (MOS) interface with a comparison to the Al2O3/InGaAs interface. It is found that the interface properties such as the C-V characteristics and the interface trap density (Dit) and the interface structure of HfO2/InGaAs have strong dependence on the ALD temperature, while the Al2O3/InGaAs interfaces hardly depend on it. As a result, we have achieved the HfO2/InGaAs interfaces with low Dit comparable to that in the Al2O3/InGaAs interface by lowering the ALD temperature down to 200 °C or less. Also, we have found that As2O3 and Ga2O3 formed at the interface during ALD increase with a decrease in the ALD temperature. Combined with the ALD temperature dependence of the electrical characteristics, the better C-V characteristics and the lower Dit obtained at the lower ALD temperature can be explained by the As2O3 and Ga2O3 passivation of the HfO2/InGaAs interfaces, which is consistent with a reported theoretical result on the effective passivation of III-V MOS interfaces by trivalent oxides.

  12. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  13. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  14. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  15. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  16. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  17. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  18. A low noise high readout speed 512×128 ROIC for shortwave InGaAs FPA

    NASA Astrophysics Data System (ADS)

    Huang, SongLei; Huang, Zhangcheng; Chen, Yu; Tang, Hengjing; Fang, Jiaxiong

    2015-03-01

    A low noise high readout speed 512×128 readout Integrated circuit (ROIC) based on capacitance trans-impedance amplifier (CTIA) is designed in this paper. The ROIC is flip-chip bonded with Indium bumps to InGaAs detectors which cutoff wavelength is 1.7μm, as a hybrid structure (InGaAs FPA). The ROIC with 30μm pixel pitch and 50fF integrated capacitance, is fabricated in 0.5μm DPTM CMOS process. The results show that output noise is about 3.0E-4V which equivalent readout noise is 95e-, output voltage swing is better than 2.5V; the dynamic range of InGaAs FPA reaches 69.7dB@2ms, and the power dissipation is about 175mw. The peak detectivity of InGaAs FPA reaches 2E12cmHz1/2w-1 at 300K without TEC cooling.

  19. Effects of buffer layer and back-surface field on MBE-grown InGaAsP/InGaAs solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Yuanyuan; Ji, Lian; Dai, Pai; Tan, Ming; Lu, Shulong; Yang, Hui

    2016-02-01

    Solid-state molecular beam epitaxy (MBE)-grown InGaAsP/InGaAs dual-junction solar cells on InP substrates are reported. An efficiency of 10.6% under 1-sun AM1.5 global light intensity is realized for the dual-junction solar cell, while the efficiencies of 16.4 and 12.3% are reached for the top InGaAsP and bottom InGaAs cells, respectively. The effects of the buffer layer and back-surface field on the performance of solar cells are discussed. High device performance is achieved in the case of a low concentration of oxygen and weak recombination when InGaAs buffers and InP back-surface field layers are used, respectively.

  20. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  1. Impact of La{sub 2}O{sub 3} interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks deposited by atomic-layer-deposition

    SciTech Connect

    Chang, C.-Y. Takenaka, M.; Takagi, S.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.

    2015-08-28

    We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectiveness of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.

  2. Inversion of Zeeman splitting of exciton states in InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Grigoryev, P. S.; Yugov, O. A.; Eliseev, S. A.; Efimov, Yu. P.; Lovtcius, V. A.; Petrov, V. V.; Sapega, V. F.; Ignatiev, I. V.

    2016-05-01

    Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the numerical solution of the two-particle Schrödinger equation, taking into account the Coulomb interaction and valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation of the g -factor convincingly follows the dependencies obtained in the experiments.

  3. Electronic states and intraband terahertz optical transitions in InGaAs quantum rods

    NASA Astrophysics Data System (ADS)

    Prodanović, Nikola; Vukmirović, Nenad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul

    2012-04-01

    Strain-dependent eight-band k .p method is used to analyze the electronic structure and intraband optical transitions in self-assembled InGaAs quantum rods in the terahertz range. The calculation of absorption spectra for the growth- and in-plane-polarized radiation shows some similarities to those of quantum well and single quantum dot structures, augmented with contribution from transitions between the dot and quantum well states. The influence of rod height on the electronic structure and the intraband absorption spectra is also investigated. It is found that the energy of maximal terahertz absorption can be tailored by the rod height for both in-plane and in-growth polarized radiation.

  4. Dynamic vibronic coupling in InGaAs quantum dots [Invited

    NASA Astrophysics Data System (ADS)

    Brash, A. J.; Martins, L. M. P. P.; Barth, A. M.; Liu, F.; Quilter, J. H.; Glässl, M.; Axt, V. M.; Ramsay, A. J.; Skolnick, M. S.; Fox, A. M.

    2016-07-01

    The electron-phonon coupling in self-assembled InGaAs quantum dots is relatively weak at low light intensities, which means that the zero-phonon line in emission is strong compared to the phonon sideband. However, the coupling to acoustic phonons can be dynamically enhanced in the presence of an intense optical pulse tuned within the phonon sideband. Recent experiments have shown that this dynamic vibronic coupling can enable population inversion to be achieved when pumping with a blue-shifted laser and for rapid de-excitation of an inverted state with red detuning. In this paper we con?rm the incoherent nature of the phonon-assisted pumping process and explore the temperature dependence of the mechanism. We also show that a combination of blue- and red-shifted pulses can create and destroy an exciton within a timescale ~20 ps determined by the pulse duration and ultimately limited by the phonon thermalisation time.

  5. InGaAs PV device development for TPV power systems

    SciTech Connect

    Wilt, D.M.; Fatemi, N.S.; Hoffman, R.W. Jr.; Jenkins, P.P.; Brinker, D.J.; Scheiman, D.; Lowe, R.A.; Chubb, D.

    1994-09-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 on Indium phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high rack currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  6. InGaAs PV device development for TPV power systems

    SciTech Connect

    Wilt, D.M.; Fatemi, N.S.; Hoffman, R.W. Jr.; Jenkins, P.P.; Scheiman, D.; Lowe, R.; Landis, G.A.

    1994-08-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  7. InGaAs PV device development for TPV power systems

    SciTech Connect

    Wilt, D.M.; Fatemi, S.; Hoffman, R.W. Jr.; Jenkins, P.P.; Scheiman, D.; Lowe, R.; Landis, G.A.

    1995-01-05

    Indium Gallium Arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2% (AM0) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8% efficiency under a 1500 {degree}K blackbody with a projected efficiency of 29.3%. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8% and 6% respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Measurement of heavy-hole spin dephasing in (InGa)As quantum dots

    NASA Astrophysics Data System (ADS)

    Dahbashi, R.; Hübner, J.; Berski, F.; Wiegand, J.; Marie, X.; Pierz, K.; Schumacher, H. W.; Oestreich, M.

    2012-01-01

    We measure the spin dephasing of holes localized in self-assembled (InGa)As quantum dots by spin noise spectroscopy. The localized holes show a distinct hyperfine interaction with the nuclear spin bath despite the p-type symmetry of the valence band states. The experiments reveal a short spin relaxation time τfasthh of 27 ns and a second, long spin relaxation time τslowhh which exceeds the latter by more than one order of magnitude. The two times are attributed to heavy-hole spins aligned perpendicular and parallel to the stochastic nuclear magnetic field. Intensity dependent measurements and numerical simulations reveal that the long relaxation time is still obscured by light absorption, despite low laser intensity and large detuning. Off-resonant light absorption causes a suppression of the spin noise signal due to the creation of a second hole entailing a vanishing hole spin polarization.

  9. Carrier dynamics in InGaAs with embedded ErAs nanoislands

    SciTech Connect

    Azad, Abul K.; Prasankumar, Rohit P.; Talbayev, Diyar; Taylor, Antoinette J.; O'Hara, John F.; Averitt, Richard D.; Zide, Joshua M. O.; Lu Hong; Gossard, Arthur C.

    2008-09-22

    Using time-resolved optical-pump terahertz-probe spectroscopy, we study the ultrafast carrier dynamics in In{sub 0.53}Ga{sub 0.47}As:ErAs, a potential candidate for 1550 nm based terahertz photoconductive detectors. Material growth is performed by codepositing ErAs nanoislands with Be-compensated InGaAs on an InP:Fe substrate using molecular beam epitaxy. The material shows a rapid photoconductivity response following optical excitation. Photoexcitation with {approx}0.5 {mu}J/cm{sup 2} 800 nm femtosecond laser pulses yields a 3.2 ps carrier lifetime in optical-pump terahertz-probe experiments. We also measure the carrier lifetime using a 1550 nm femtosecond optical pump-probe system, and it is found to agree well with the terahertz measurements. These short lifetimes demonstrate significant potential for implementing terahertz systems using telecommunication based technologies.

  10. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    SciTech Connect

    Cilibrizzi, Pasquale; Askitopoulos, Alexis Silva, Matteo; Lagoudakis, Pavlos G.; Bastiman, Faebian; Clarke, Edmund; Zajac, Joanna M.; Langbein, Wolfgang

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates, providing a platform for on chip quantum simulations.

  11. InGaAs spin light emitting diodes measured in the Faraday and oblique Hanle geometries

    NASA Astrophysics Data System (ADS)

    Mansell, R.; Laloë, J.-B.; Holmes, S. N.; Petrou, A.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Barnes, C. H. W.

    2016-04-01

    InGaAs quantum well light emitting diodes (LED) with spin-injecting, epitaxial Fe contacts were fabricated using an in situ wafer transfer process where the semiconductor wafer was transferred under ultrahigh vacuum (UHV) conditions to a metals growth chamber to achieve a high quality interface between the two materials. The spin LED devices were measured optically with applied magnetic fields in either the Faraday or the oblique Hanle geometries in two experimental set-ups. Optical polarizations efficiencies of 4.5% in the Faraday geometry and 1.5% in the Hanle geometry are shown to be equivalent. The polarization efficiency of the electroluminescence is seen to decay as the temperature increases although the spin lifetime remains constant due to the influence of the D’yakonov–Perel’ spin scattering mechanism in the quantum well.

  12. InGaAs PV Device Development for TPV Power Systems

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Scheiman, David; Lowe, Roland; Landis, Geoffrey A.

    1994-01-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  13. InGaAs vertical-cavity surface-emitting lasers

    SciTech Connect

    Geels, R.S.; Corzine, S.W.; Coldren, L.A. )

    1991-06-01

    In this paper the authors give theoretical and experimental results for vertical-cavity surface-emitting lasers (VCSEL's). The modeling is applied to the design of InGaAs VCSEL's A simple method is introduced to calculate the reflectivity of semiconductor stack mirrors with graded interfaces and compound metal/semiconductor stack mirrors. The theoretical predictions are compared to results from actual device measurements. A novel technique is introduced to determine material parameters: fabrication of in-plane lasers from VCSEL material. The procedure used to determine the optical model in such an in-plane laser is described. Using the insight gained from our modeling, we have increased our external efficiency to {gt}30% with a threshold current density of 1 kA/cm{sup 2}. Linewidth measurements on very high reflectivity VCSEL's have indicated widths as low as 85 MHz and linewidth-power products of 5 MHz {center dot} mW.

  14. InGaAs PV device development for TPV power systems

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David; Lowe, Roland A.; Chubb, Donald

    1994-01-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 on Indium phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high rack currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  15. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  16. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  17. Numerical modeling of extended short wave infrared InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Glasmann, Andreu; Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Indium gallium arsenide (In1-xGaxAs) is an ideal material choice for short wave infrared (SWIR) imaging due to its low dark current and excellent collection efficiency. By increasing the indium composition from 53% to 83%, it is possible to decrease the energy gap from 0.74 eV to 0.47 eV and consequently increase the cutoff wavelength from 1.7 μm to 2.63 μm for extended short wavelength (ESWIR) sensing. In this work, we apply our well-established numerical modeling methodology to the ESWIR InGaAs system to determine the intrinsic performance of pixel detectors. Furthermore, we investigate the effects of different buffer/cap materials. To accomplish this, we have developed composition-dependent models for In1-xGaxAs, In1-xAlxAs, and InAs1-y Py. Using a Green's function formalism, we calculate the intrinsic recombination coefficients (Auger, radiative) to model the diffusion-limited behavior of the absorbing layer under ideal conditions. Our simulations indicate that, for a given total thickness of the buffer and absorbing layer, structures utilizing a linearly graded small-gap InGaAs buffer will produce two orders of magnitude more dark current than those with a wide gap, such as InAlAs or InAsP. Furthermore, when compared with experimental results for ESWIR photodiodes and arrays, we estimate that there is still a 1.5x magnitude of reduction in dark current before reaching diffusion-limited behavior.

  18. Degradation processes in high power multi-mode InGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2009-02-01

    Recently, broad-area InGaAs-AlGaAs strained quantum well (QW) lasers have attracted much attention because of their unparalleled high optical output power characteristics that narrow stripe lasers or tapered lasers can not achieve. However, broad-area lasers suffer from poor beam quality and their high reliability operation has not been proven for communications applications. This paper concerns reliability and degradation aspects of broad-area lasers. Good facet passivation techniques along with optimized structural designs have led to successful demonstration of reliable 980nm single-mode lasers, and the dominant failure mode of both single-mode and broadarea lasers is catastrophic optical mirror damage (COMD), which limits maximum output powers and also determines operating output powers. Although broad-area lasers have shown characteristics unseen from singlemode lasers including filamentation, their effects on long-term reliability and degradation processes have not been fully investigated. Filamentation can lead to instantaneous increase in optical power density and thus temperature rise at localized areas through spatial-hole burning and thermal lensing which significantly reduces filament sizes under high power operation, enhancing the COMD process. We investigated degradation processes in commercial MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers at ~975nm with and without passivation layers by performing accelerated lifetests of these devices followed by failure mode analyses with various micro-analytical techniques. Since instantaneous fluctuations of filaments can lead to faster wear-out of passivation layer thus leading to facet degradation, both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. Electron beam induced current technique was employed to study dark line defects (DLDs) generated in degraded lasers stressed under different test conditions and focused

  19. Testing of InGaAs, microbolometer and pyroelectric detectors in support of the EarthCARE mission

    NASA Astrophysics Data System (ADS)

    Hopkinson, Gordon; Gomez Rojas, Luis; Skipper, Mark; Meynart, Roland

    2008-10-01

    A test programme for infrared detectors in support of the EarthCARE mission is discussed. Commercially available linear InGaAs arrays from XenICs, Belgium (cut-off wavelengths 1.7, 2.2 and 2.5 μm), 384 x 288 amorphous silicon microbolometer arrays from ULIS, France and un-windowed single element lithium tantalate pyroelectric detectors from Infratec, Germany have been studied in detail to assess their suitability for EarthCARE and to provide performance data to aid in the design of the flight instruments. Tests included radiation resistance (cobalt60 and 60 MeV protons plus a heavy ion latch-up test for the InGaAs and microbolometer arrays), dark signal, noise, output stability, linearity, crosstalk and spectral response. In addition, the pyroelectric detectors were tested for low microphony.

  20. A simple device for measuring the spectral transmittance of lens used in InGaAs image intensifier apparatus

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofeng; Guo, Hui; Yin, Lei; He, Yingping; Hou, Zhipeng; Miao, Zhuang; Yan, Lei

    2014-09-01

    In this article, in order to accurately measure the spectral transmittance of imaging lens used in InGaAs imaging apparatus, a simple device, which spectrum ranges from 400 nanometers to 2000 nanometers, based on double grating monochromator and self-collimating has been founded by using stable shortwave infrared radiant source, accurate double grating monochromator and telescope, stable silicon detector and cooled HgCdTe infrared detector. An imaging lens whose spectral transmittance has been known is measured on it. Comparing the test results to known data provided by manufacture, it is shown that the testing device founded in this article is competent to measure spectral transmittance of shortwave infrared imaging lens and which max relative deviation is no more than +/-2.5%. It is worthwhile for selecting InGaAs image intensifier assembly and evaluating the quality of shortwave infrared imaging lens.

  1. Mechanical properties of Gd123 superconducting bulks at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Murakami, A.

    2012-05-01

    Mechanical properties of melt-grown GdBa2Cu3Ox (Gd123) large single-domain superconducting bulks with 10 wt% of Ag2O and 0.5 wt% of Pt have been evaluated at 77 K through flexural tests, on specimens cut from the samples, in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. The densified bulk was 46 mm in diameter and 25 mm in thickness, with low void density, and the standard bulk was around the same size, with voids. The results show that the mechanical properties of the densified Gd123 bulk with low void density are better than those of the standard Gd123 bulk with voids. We also compared the mechanical properties of as-grown bulks with those of annealed bulks. The relations between the microstructure and the flexural strength or the fracture toughness of the densified Gd123 bulk have been shown.

  2. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  3. Effects of forming gas anneal on ultrathin InGaAs nanowire metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Si, Mengwei; Gu, Jiangjiang J.; Wang, Xinwei; Shao, Jiayi; Li, Xuefei; Manfra, Michael J.; Gordon, Roy G.; Ye, Peide D.

    2013-03-01

    InGaAs gate-all-around metal-oxide-semiconductor field-effect transistors (MOSFETs) with 6 nm nanowire thickness have been experimentally demonstrated at sub-80 nm channel length. The effects of forming gas anneal (FGA) on the performance of these devices have been systematically studied. The 30 min 400 °C FGA (4% H2/96% N2) is found to improve the quality of the Al2O3/InGaAs interface, resulting in a subthreshold slope reduction over 20 mV/dec (from 117 mV/dec in average to 93 mV/dec). Moreover, the improvement of interface quality also has positive impact on the on-state device performance. A scaling metrics study has been carried out for FGA treated devices with channel lengths down to 20 nm, indicating excellent gate electrostatic control. With the FGA passivation and the ultra-thin nanowire structure, InGaAs MOSFETs are promising for future logic applications.

  4. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Henry; Meixell, Mike; Zhang, Jiawen; Bey, Philip; Kimchi, Joe; Kilmer, Louis C.

    2012-06-01

    Teledyne Judson Technologies (TJT) has been developing technology for small pixel, large format, low dark current, and low capacitance NIR/SWIR InGaAs detector arrays, aiming to produce <10μm pixels and >2Kx2K format arrays that can be operated at or near room temperature. Furthermore, TJT is now developing technology for sub-10μm pixel arrays in response to requirements for a variety of low light level (LLL) imaging applications. In this paper, we will review test data that demonstrates lower dark current density for 10-20μm pixel arrays. We will present preliminary results on the successful fabrication of test arrays with pixels as small as 5μm. In addition, a lot of effort has been made to control and reduce the detector pixel capacitance which can become another source of detector noise. TJT is also developing 4" InGaAs wafer process and now offers four different types of InGaAs 2D arrays/FPAs that are tailored to different customer requirements for dark current, capacitance, spectral response, and bias range.

  5. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    SciTech Connect

    Paul, Matthias Kettler, Jan; Zeuner, Katharina; Clausen, Caterina; Jetter, Michael; Michler, Peter

    2015-03-23

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  6. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    SciTech Connect

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  7. Stray light characterization of an InGaAs anamorphic hyperspectral imager.

    PubMed

    Lin, Mike; Swanson, Rand; Moon, Thomas; Smith, Casey; Kehoe, Michael; Brown, Steven W; Lykke, Keith R

    2010-08-01

    Compact hyperspectral sensors potentially have a wide range of applications, including machine vision, quality control, and surveillance from small Unmanned Aerial Vehicles (UAVs). With the development of Indium Gallium Arsenide (InGaAs) focal plane arrays, much of the Short Wave Infra-Red (SWIR) spectral regime can be accessed with a small hyperspectral imaging system, thereby substantially expanding hyperspectral sensing capabilities. To fully realize this potential, system performance must be well-understood. Here, stray light characterization of a recently-developed push-broom hyperspectral sensor sensitive in the 1 microm -1.7 microm spectral regime is described. The sensor utilizes anamorphic fore-optics that partially decouple image formation along the spatial and spectral axes of the instrument. This design benefits from a reduction in complexity over standard high-performance spectrometer optical designs while maintaining excellent aberration control and spatial and spectral distortion characteristics. The stray light performance characteristics of the anamorphic imaging spectrometer were measured using the spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) facility at the National Institute of Standards and Technology (NIST). A description of the measurements and results are presented. Additionally, a stray-light matrix was assembled for the instrument to improve the instrument's spectral accuracy. Transmittance of a silicon wafer was measured to validate this approach. PMID:20721136

  8. Polarized and spatially resolved Raman scattering from composition-graded wurtzite InGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rho, H.; Lee, E. H.; Song, J. D.

    2016-05-01

    We report Raman scattering from wurtzite single-crystalline InGaAs nanowires (NWs) to probe optical phonon behaviors associated with spatial grading in alloy composition along the NW length. Polarized Raman spectra revealed several optical phonons and their scattering symmetries: (i) InAs-like A 1(LO) and A 1(TO) phonons and (ii) GaAs-like A 1(LO), A 1(TO), and E 2(high) phonons. In addition, strong anisotropic behavior was observed in the Raman tensor elements of the A 1(TO) phonon mode. Interestingly, a spatial mapping of the GaAs-like A 1(TO) phonon along the NW length direction showed a systematic increase in energy from the NW top (~255 cm‑1) to the midpoint (~263 cm‑1), indicating an increase in the Ga mole fraction from about 0.5 to about 0.8. Further toward the NW bottom, the GaAs-like A 1(TO) phonon energy saturated to the peak value at about 264 cm‑1. In the upper half of the NW, the phonon linewidths broadened significantly due to the spatial grading in In/Ga composition along the NW length. When the composition grading was negligible in the bottom half of the NW, the spectral widths were considerably narrowed. The GaAs-like E 2(high) phonon showed similar variations in both energy and spectral width along the NW length.

  9. Reduction of sidewall interface recombination in GaAs and InGaAs active regions

    NASA Astrophysics Data System (ADS)

    Strand, Timothy Andrew

    In the continual effort to reduce the operating current in semiconductor lasers, the first step is always to reduce the size of the device. When we do so, however, we encounter a new set of challenges. As the device size decreases, the "walls close in" on the electrons and holes, that is, the sidewalls of the device become so close together that the electrons and holes can diffuse to them before recombining radiatively. The device sidewalls, are often littered with carrier traps, which act as nonradiative recombination sites for the electrons and holes. This wasted current, a small fraction of the total in larger devices, becomes the dominant current mechanism in small devices. In this work we present two techniques for limiting this sidewall interface recombination. The first uses semiconductor regrowth to remove the recombination sites that are normally formed at the air-exposed sidewalls. We use buried, in-plane lasers to demonstrate a reduction in the sidewall recombination rate by a factor of forty. In the second technique, we show that the sidewall interface recombination can also be reduced by preventing the carriers from diffusing to the sidewalls. We demonstrate two methods for reducing this lateral carrier diffusion; segmented GaAs quantum wells, and InGaAs quantum dots. In the former, we demonstrate a reduction in the low-temperature lateral carrier diffusion constant by a factor of forty-six (versus a comparable GaAs quantum well).

  10. InGaAs PIN photodetectors integrated and vertically coupled with silicon-on-insulator waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqi; Qiu, Chao; Sheng, Zhen; Wu, Aimin; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-05-01

    Heterogeneous integration of III-V materials with silicon-on-insulator (SOI) waveguide circuitry by an adhesive die-to-wafer bonding process has been proposed as a solution to Si-based lasers and photodetectors. Here, we present the design and optimization of an InGaAs PIN photodetector vertically coupled with the underlying SOI waveguide, which could be readily fabricated using this bonding process. With the help of grating couplers, a thick bonding layer of 2.5 μm is applied, which inherently avoids the risk of low-bonding yield suffering in the evanescent coupling counterpart. An anti-reflection layer is also introduced between the bonding layer and the III-V layer stack to relieve the accuracy requirement for the bonding layer thickness. Besides, by optimizing the structure parameters, a high-absorption efficiency of 82% and a wide optical 1dB-bandwidth of 220nm are obtained. The analysis shows that the detection bandwidth of the present surface-illuminated photodetector is generally limited by transit-time in the i-InGaAs layer. The relationship of the detection bandwidth and the absorption efficiency versus the i-InGaAs layer thickness is presented for the ease of choosing proper structure parameters for specific applications. With the results presented here, the device can be readily fabricated.

  11. Conduction mechanisms in ion-irradiated InGaAs layers

    SciTech Connect

    Joulaud, L.; Mangeney, J.; Chimot, N.; Crozat, P.; Fishman, G.; Bourgoin, J.C.

    2005-03-15

    The electrical and optical properties of H{sup +}- and Au{sup +}-irradiated InGaAs layers were studied using Hall-effect, van der Pauw, and relaxation-time measurements. Comparing the different results allows us to obtain information on the nature of the defects created by these two irradiations. Proton irradiation introduces donor-acceptor paired defects. Gold-ion irradiation creates neutral defect clusters and ionized point defects. The carrier mobilities in all of the irradiated materials are degraded, decreasing with increasing irradiation dose. A scattering model taking into account the paired defects is developed and the mobility evolution calculated from this model agrees with the experimental data of both annealed and unannealed samples. The photocurrent spectra reveal a metallic conduction in the band gap in the case of light-ion irradiation, while such type of conduction does not appear for heavy-ion irradiation. This metallic conduction is a consequence of band tailing induced by shallow defects and vanishes when the material is annealed at 400 deg. C. The proton irradiation-induced defects appear to be related to the EL-2-like defects.

  12. Impact of strain engineering on nanoscale strained InGaAs MOSFET devices.

    PubMed

    Lee, Chang-Chun; Chang, Shu-Tong; Sun, P-H; Huang, C-X

    2011-07-01

    The strain distributions in the In(0.53)Ga(0.47)As channel regions of the In(0.4)Ga(0.6)As source/drain (S/D) with various lengths and widths were studied via 3D process simulations. The resulting mobility improvement was analyzed. The tensile strain along the transport direction was found to dominate the mobility improvement. The strain along the vertical direction perpendicular to the gate oxide was found to affect the mobility the least, while the strain along the width direction was slightly degraded. The impact of the channel width and length on the performance improvement, such as on the mobility gain, was analyzed via TCAD simulations. The novelty of this paper stems from its study of the impact of the channel width and length on the performance of InGaAs NMOSFETs, such as on their mobility gain, and from its exploration of physical insights for scaling the future III-V MOS devices. PMID:22121581

  13. Induction detection of concealed bulk banknotes

    NASA Astrophysics Data System (ADS)

    Fuller, Christopher; Chen, Antao

    2011-10-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects.

  14. Recent Progress in HTS Bulk Technology and Performance at NSC

    NASA Astrophysics Data System (ADS)

    Teshima, Hidekazu; Morita, Mitsuru

    This paper describes the current status of large single-grained RE-Ba-Cu-O (where RE: Y or rare earth elements) bulk superconductors with excellent superconducting properties in Nippon Steel Corporation. Intensive research on RE-Ba-Cu-O revealed that the optimal RE element is different for application requirements. While Gd-Ba-Cu-O bulk superconductors are greatly attractive for almost all bulk applications, Eu-Ba-Cu-O is suitable for compact NMR/MRI and Dy-Ba-Cu-O for current leads. In addition, single-domain bulk superconductors have been grown up to 150 mm in diameter by incorporating the RE compositional gradient method. Furthermore, progress of machining technology enables to obtain various complicated shapes of bulk superconductors.

  15. Hydrogels: DNA bulks up

    NASA Astrophysics Data System (ADS)

    Labean, Thom

    2006-10-01

    Since the 1940s DNA has been known as the genetic material connected to heredity, and from the early 1980s it has also been considered as a potential structural material for nanoscale construction. Now, a hydrogel made entirely of DNA brings this molecule into the realm of bulk materials.

  16. Growth of L-lysine monohydrochloride dihydrate bulk single crystal by Sankaranarayanan—Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Ramesh Babu, R.; Sethuraman, K.; Gopalakrishnan, R.; Ramasamy, P.

    2006-12-01

    Unidirectional bulk semi-organic nonlinear optical single crystal of L-lysine monohydrochloride dihydrate ( L-LMHCl) has been grown by Sankaranarayanan-Ramasamy (SR) method. The growth conditions have been optimized. The optical transparency of the grown crystal was measured.

  17. Electron mobility in ultra-thin InGaAs channels: Impact of surface orientation and different gate oxide materials

    NASA Astrophysics Data System (ADS)

    Krivec, Sabina; Poljak, Mirko; Suligoj, Tomislav

    2016-01-01

    Electron mobility is investigated in sub-20 nm-thick InGaAs channels, sandwiched between different gate oxides (SiO2, Al2O3, HfO2) and InP as substrate, using physics-based numerical modeling. Effects of body thickness downscaling to 2 nm, different gate oxides, and surface orientation [(1 0 0) and (1 1 1)] are examined by including all electron valleys and all relevant scattering mechanisms. We report that ultra-thin (1 1 1) Al2O3-InGaAs-InP devices offer greater electron mobility than (1 0 0) devices even in the extremely-thin channels. Furthermore, ultra-thin (1 0 0) InGaAs devices outperform SOI in terms of electron mobility for body thicknesses above ∼4 nm, while (1 1 1) InGaAs channels are superior to SOI for all body thickness values above ∼3 nm. The study of different gate oxides indicates that HfO2 is the optimum gate dielectric regardless of device orientation, offering a mobility improvement of up to 124% for (1 1 1) and 149% for (1 0 0) surface orientation, when compared to the initial Al2O3-InGaAs-InP structure. The (1 1 1) orientation offers improvement over (1 0 0) device irrespective of the body thickness and gate oxide material, with the highest difference reported for SiO2, followed by Al2O3 and HfO2.

  18. MBE-grown metamorphic lasers for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Kettler, T.; Posilovic, K.; Bimberg, D.; Karachinsky, L. Ya.; Gladyshev, A. Yu.; Maximov, M. V.; Novikov, I. I.; Shernyakov, Yu. M.; Zhukov, A. E.; Ustinov, V. M.; Kovsh, A. R.

    2007-04-01

    We have studied growth phenomena and structural and optical properties of metamorphic (MM) quantum dots (QDs) and QD lasers emitting in the 1.4-1.5 μm range. InAs/InGaAs QDs were grown on top of (In,Ga)As buffer layers deposited on GaAs (1 0 0) substrates. The wavelength of the QDs could be adjusted in the 1400-1600 nm spectral range by changing the composition of the (In,Ga)As matrix layer and by the amount of InAs deposited to form QDs. An additional wavelength shift can be achieved by strained-layer (In,Ga,Al)As overgrowth of the QDs. It is found that high-performance degradation-robust operation of the devices can be achieved through minimization of the defect density in the matrix material and within the QD sheets. A defect-reduction technique involving steps of strain-sensitive overgrowth and selective evaporation of the material in the defect-related areas was applied, leading to both elimination of dislocated clusters and blocking of propagating defects. MM QD lasers exhibited emission wavelength in the 1.4-1.5 μm range with a differential quantum efficiency of about ˜50% and pulsed power up to 7 W, limited by catastrophic optical mirror damage. The narrow-stripe lasers operate in a single transverse mode withstanding continuous wave current densities above 20 kA cm -2 without irreversible degradation. A maximum single mode continuous-wave output power of 220 mW limited by thermal roll-over is obtained. No beam filamentation was observed up to the highest pumping levels. Single-mode devices with as-cleaved facets are tested for 60 °C (800 h) and 70 °C (200 h) junction temperature. No noticeable degradation has been observed at 50 mW cw single mode output power, clearly manifesting for the first time degradation-free laser diodes on foreign substrates. The technology opens a way for integration of various III-V materials with silicon or germanium substrates for the next generation of microprocessors, optical interconnects and cascaded solar cells.

  19. Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip

    SciTech Connect

    Popov, V. V.; Yermolaev, D. M.; Shapoval, S. Yu.; Maremyanin, K. V.; Gavrilenko, V. I.; Zemlyakov, V. E.; Bespalov, V. A.; Yegorkin, V. I.; Maleev, N. A.; Ustinov, V. M.

    2014-04-21

    A tightly concatenated chain of InGaAs field-effect transistors with an asymmetric T-gate in each transistor demonstrates strong terahertz photovoltaic response without using supplementary antenna elements. We obtain the responsivity above 1000 V/W and up to 2000 V/W for unbiased and drain-biased transistors in the chain, respectively, with the noise equivalent power below 10{sup −11} W/Hz{sup 0.5} in the unbiased mode of the detector operation.

  20. InGaAs triangular barrier photodiodes for high-responsivity detection of near-infrared light

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuya; Ohmori, Masato; Noda, Takeshi; Kojima, Tomoya; Kado, Sakunari; Vitushinskiy, Pavel; Iwata, Naotaka; Sakaki, Hiroyuki

    2016-06-01

    InGaAs triangular barrier (TB) structures of various barrier thicknesses have been formed on InP substrates. With them, we have fabricated TB photodiodes that yield a very high responsivity of 2.3 × 104 A/W at 100 K for the 1312 nm light of 320 fW power. By passivating the diode surface with polyimide, the dark current has been markedly reduced. Diodes with thicker barriers show higher sensitivity and responsivity, reflecting the enhancement of the barrier lowering effect by photogenerated holes.

  1. Radiation performance of AlGaAs and InGaAs concentrator cells and expected performance of cascade structures

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Swartz, C. K.; Hart, R. E., Jr.

    1987-01-01

    Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1-MeV electrons and 37-MeV protons. These cells are candidates for individual cells in a cascade structure. Data are presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AM0. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series-connected and separately connected structures are investigated.

  2. Long dephasing time and high temperature ballistic transport in an InGaAs open quantum dot

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Faniel, S.; Delfosse, F.; Gustin, C.; Boutry, H.; Huynen, I.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.

    2003-04-01

    We report on measurements of the magnetoconductance of an open circular InGaAs quantum dot between 1.3 and 204 K. We observe two types of magnetoconductance fluctuations: universal conductance fluctuations (UCFs), and “focusing” fluctuations related to ballistic trajectories between openings. The electron phase coherence time extracted from UCFs amplitude is larger than in GaAs/AlGaAs quantum dots and follows a similar temperature dependence (between T-1 and T-2). Below 150 K, the characteristic length associated with “focusing” fluctuations shows a slightly different temperature dependence from that of the conductivity.

  3. Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity.

    PubMed

    Amthor, Matthias; Weißenseel, Sebastian; Fischer, Julian; Kamp, Martin; Schneider, Christian; Höfling, Sven

    2014-12-15

    We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct non-linearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing. PMID:25607064

  4. Bulk Email Forensics

    NASA Astrophysics Data System (ADS)

    Cohen, Fred

    Legal matters related to unsolicited commercial email often involve several hundred thousand messages. Manual examination and interpretation methods are unable to deal with such large volumes of evidence. Furthermore, as the actors gain experience, it is increasingly difficult to show evidence of spoliation and detect intentional evidence construction. This paper presents improved automated techniques for bulk email analysis and presentation to aid in evidence interpretation.

  5. Low phase noise high power handling InGaAs photodiodes for precise timing applications

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don

    2009-05-01

    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor <6 rad/W at a peak-to-peak RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  6. Imaging Early Demineralization on Tooth Occlusal Surfaces with a High Definition InGaAs Camera

    PubMed Central

    Fried, William A.; Fried, Daniel; Chan, Kenneth H.; Darling, Cynthia L.

    2013-01-01

    In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-IR due to the high transparency of dental enamel. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1300-nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acid-resistant varnish, leaving a 4×4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1 & 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR reflectance at 3 wavelengths, 1310, 1460 and 1600-nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths greater than 500-nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 24 hr and 48 hr lesions were significantly higher (P<0.05) for NIR reflectance imaging at 1460-nm and 1600-nm than it was for NIR reflectance imaging at 1300-nm, visible reflectance imaging, and fluorescence. The results of this study suggest that NIR reflectance measurements at longer near-IR wavelengths coincident with higher water absorption are better suited for imaging early caries lesions. PMID:24357911

  7. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    SciTech Connect

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  8. Imaging early demineralization on tooth occlusional surfaces with a high definition InGaAs camera

    NASA Astrophysics Data System (ADS)

    Fried, William A.; Fried, Daniel; Chan, Kenneth H.; Darling, Cynthia L.

    In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-IR due to the high transparency of dental enamel. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1300-nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acidresistant varnish, leaving a 4×4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1 and 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR reflectance at 3 wavelengths, 1310, 1460 and 1600-nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths greater than 500-nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 24 hr and 48 hr lesions were significantly higher (P<0.05) for NIR reflectance imaging at 1460-nm and 1600-nm than it was for NIR reflectance imaging at 1300-nm, visible reflectance imaging, and fluorescence. The results of this study suggest that NIR reflectance measurements at longer near-IR wavelengths coincident with higher water absorption are better suited for imaging early caries lesions.

  9. COUGAR: a liquid nitrogen cooled InGaAs camera for astronomy and electro-luminescence

    NASA Astrophysics Data System (ADS)

    Van Bogget, Urbain; Vervenne, Vincent; Vinella, Rosa Maria; van der Zanden, Koen; Merken, Patrick; Vermeiren, Jan

    2014-06-01

    A SWIR FPA was designed and manufactured with 640*512 pixels, 20 μm pitch and InGaAs detectors for electroluminescence characterization and astronomical applications in the [0.9 - 1.55 μm] range. The FPA is mounted in a liquid nitrogen dewar and is operated by a low noise frontend electronics. One of the biggest problem in designing sensors and cameras for electro-luminescence measurements is the autoillumination of the detectors by the readout circuit. Besides of proper shielding of the detectors, the ROIC shall be optimized for minimal electrical activity during the integration time of the very-weak signals coming from the circuit under test. For this reason a SFD (or Source Follower per Detector) architecture (like in the Hawaii sensor) was selected, resulting in a background limited performance of the detector. The pixel has a (somewhat arbitrary) full well capacity of 400 000 e- and a sensitivity of 2.17 μV/e-. The dark signal is app. 1 e-/pixel/sec and with the appropriate Fowler sampling the dark noise lowers below 5 e-rms. The power consumption of the circuit is limited 2 mW, allowing more than 24 hours of operation on less than 1 l of liquid nitrogen. The FPA is equipped with 4 outputs (optional readout on one single channel) and is capable of achieving 3 frames per second. Due to the non-destructive readout it is possible to determine in a dynamic way the optimal integration time for each observation. The Cougar camera is equipped with ultra-low noise power supply and bias lines; the electronics contain also a 24 bit AD converter to fully exploit the sensitivity of the FPA and the camera.

  10. Fracture Toughness Properties of Gd123 Superconducting Bulks

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Murakami, A.

    Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.

  11. Bulk-barrier transistor

    NASA Astrophysics Data System (ADS)

    Mader, H.; Mueller, R.; Beinvogl, W.

    1983-10-01

    Experimental and theoretical results are presented on a bulk-barrier transistor (BBT). In this device the charge-carrier transportation is determined by an energy barrier, which is located inside a semiconductor. The barrier is the result of a space-charge region in a three-layered n-p-n or p-n-p structure with a very thin middle layer. The height of the energy barrier, which is adjustable by technological parameters, can be controlled by an external voltage.

  12. Surfactant-assisted growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    NASA Astrophysics Data System (ADS)

    Salas, R.; Guchhait, S.; McNicholas, K. M.; Sifferman, S. D.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.

    2016-05-01

    We explore the effects of surfactant-mediated epitaxy on the structural, electrical, and optical properties of fast metal-semiconductor superlattice photoconductors. Specifically, application of a bismuth flux during growth was found to significantly improve the properties of superlattices of LuAs nanoparticles embedded in In0.53Ga0.47As. These improvements are attributed to the enhanced structural quality of the overgrown InGaAs over the LuAs nanoparticles. The use of bismuth enabled a 30% increase in the number of monolayers of LuAs that could be deposited before the InGaAs overgrowth degraded. Dark resistivity increased by up to ˜15× while carrier mobility remained over 2300 cm2/V-s and carrier lifetimes were reduced by >2× at comparable levels of LuAs deposition. These findings demonstrate that surfactant-mediated epitaxy is a promising approach to enhance the properties of ultrafast photoconductors for terahert generation.

  13. Analysis of crosstalk in front-illuminated InGaAs PIN hetero-junction photovoltaic infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Tang, Hengjing; Zhang, Kefeng; Li, Tao; Ning, Jinhua; Li, Xue; Gong, Haimei

    2009-07-01

    Here presented an experimental study on crosstalk in front illuminated planar and mesa-type InP/ InGaAs/ InP PIN hetero-junction photovoltaic infrared detector arrays. A scanning laser beam with an optical wavelength of 1310 nm coupled in a single-mode optical fiber placed within a few microns of the detector array surface was used to measure the crosstalk between the detector pixels. The crosstalk in the detector array varying with the distance between the incident laser spot and the measured pixel was shown. It is suggested that for the deep mesa-type arrays the dominating source of crosstalk is the light reflected from the detector substrate. And the dominating source of crosstalk that occurs in the planar type and shallow mesa type photovoltaic arrays is associated with photo-induced carries generated in the InGaAs absorption layer that diffuse laterally between neighbor pixels. These results gave out the possibility to optimize the detectors structures in order to reduce crosstalk.

  14. Beyond hydrostatic strain in empirical pseudopotentials for the electronic structure of InGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun; Cakan, Asli

    2015-03-01

    Self-assembled quantum dots (SAQDs) are among the prime candidates for realizing semiconductor qubits. Even though much progress has been achieved toward understanding their electronic structure, more efforts are needed to reach the desired quantitative level for a precise control of the carrier and nuclear spin degrees of freedom. In this respect, the empirical pseudopotential method has been highly successful for structures involving more than hundred thousand atoms. However, due to lack of self-consistency, their use in strained environments, as in SAQDS, requires vital improvement. The main contribution of this work is to develop empirical pseudopotentials valid for inhomogeneous strain environments caused by cation alloying in InGaAs SAQDs. In our presentation, we first validate our approach with the ab initio density functional theory results based on Projector Augmented-Wave technique. This is followed by a comparison of the electronic structure results with and without strain-dependent pseudopotentials for InGaAs SAQDs having an alloy composition of 20-30% indium, which is typically the case in the current samples. Supported by TUBITAK with the Project No. 112T178.

  15. Analysis of high frame rate readout circuit for near-infrared InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Chen, Yu; Huang, Songlei; Fang, Jiaxiong

    2013-09-01

    High frame rate imaging for applications such as meteorological forecast, motion target tracking require high-speed Read-Out Integrated Circuit (ROIC). In order to achieve 10 KHz of frame rate, this paper analyzes the bandwidth of Capacitive-feedback Trans-Impedance Amplifier (CTIA) in ROIC which is the dominant bandwidth-limiting node when interfaced with large InGaAs detector pixel capacitance of about 10pF. A small-signal model is presented to study the relationship between integration capacitance, detector capacitance, transconductance and CTIA bandwidth. Calculation and simulation results show explicitly how the series resistance at the interface restricts the frame rate of Focal Plane Arrays (FPA). In order to achieve low-noise performance at a high frame rate, this paper describes an optimal solution in ROIC design. A prototype ROIC chip (DL7) has been fabricated with 0.5-μm mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that frame rate is above 10 KHz and ROIC noise is around 270 e-, near identical to the design value.

  16. Analysis and design of a low-noise ROIC for hybrid InGaAs infrared FPA

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Huang, SongLei; Huang, ZhangCheng; Fang, Jiaxiong

    2011-08-01

    The noises of CMOS readout integrated circuit (ROIC) for hybrid focal plane array (FPA) may occupy a great part of total noise in conditions that a low resistance or large capacitor detector interfacing with CTIA input stage. A novel low noise low power preamplifier with shared current-mirrors bias is designed. It has a gain of more than 90dB, which makes enough inject efficiency and low detector bias offset. Besides, it has strong detector bias control, because the shared current-mirror copies the DC current of the amplifier and generates the bias control voltage. A pixel level Correlated Double Sample circuits is designed in order to suppress the reset KTC noise and 1/f noise from preamplifier. An experimental chip of 30μm pitch 32×32 array was fabricated in standard 0.5μm CMOS mixed signal process. A few experimental structures are designed to study the allocating of layout area for low noise designing. The ROIC is bonded to an existing back-illuminated 30μm pitch InGaAs photodiode array with indium bump fabrication. The test of both the ROIC chips and InGaAs focal plane array is shown in this paper, and the contrast of different structure is shown and analyzed.

  17. An uncooled 1280 x 1024 InGaAs focal plane array for small platform, shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Blessinger, M.; Enriquez, M.; Ettenberg, M.; Evans, M.; Flynn, K.; Lin, M.; Passe, J.; Stern, M.; Sudol, T.

    2009-05-01

    The increasing demand for short wave infrared (SWIR) imaging technology for soldier-based and unmanned platforms requires camera systems where size, weight and power consumption are minimized without loss of performance. Goodrich, Sensors Unlimited Inc. reports on the development of a novel focal plane (FPA) array for DARPA's MISI (Micro-Sensors for Imaging) Program. This large format (1280 x 1024) array is optimized for day/night imaging in the wavelength region from 0.4 μm to 1.7 μm and consists of an InGaAs detector bump bonded to a capacitance transimpedance amplifier (CTIA)-based readout integrated circuit (ROIC) on a compact 15 μm pixel pitch. Two selectable integration capacitors provide for high dynamic range with low (< 50 electrons) noise, and expanded onchip ROIC functionality includes analog-to-digital conversion and temperature sensing. The combination of high quality, low dark current InGaAs with temperature-parameterized non-uniformity correction allows operation at ambient temperatures while eliminating the need for thermoelectric cooling. The resulting lightweight, low power implementation is suitable for man-portable and UAV-mounted applications.

  18. Effect of multilayer barriers on the optical properties of GaInNAs single quantum-well structures grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sun, H. D.; Clark, A. H.; Calvez, S.; Dawson, M. D.; Kim, K. S.; Kim, T.; Park, Y. J.

    2005-07-01

    We report on the effects of combined strain-compensating and strain-mediating layers of various widths on the optical properties of 1.3 μm GaInNAs/GaAs single quantum well structures grown by metalorganic vapor phase epitaxy (MOVPE). While the emission wavelength of GaInNAs/GaAs quantum wells can be redshifted by the adoption of strain-compensated GaNAs layers, the material quality is degraded by the increased stress at the well/barrier interface. This detrimental effect can be cured by inserting a strain-mediating InGaAs layer between them. Contrary to what is expected, however, the emission wavelength is blueshifted by the insertion of the InGaAs layer, which is attributed to the reduced N incorporation due to the improved interface quality. Our results indicate that the optical properties of MOVPE-grown GaInNAs/GaAs quantum wells can be optimized in quantum efficiency and emission wavelength by combination of strain-compensating and strain-mediating layers with suitable characteristics.

  19. Graphic Grown Up

    ERIC Educational Resources Information Center

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  20. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Onat, Bora M.; Huang, Wei; Masaun, Navneet; Lange, Michael; Ettenberg, Martin H.; Dries, Christopher

    2007-04-01

    Under the DARPA Photon Counting Arrays (PCAR) program we have investigated technologies to reduce the overall noise level in InGaAs based imagers for identifying a man at 100m under low-light level imaging conditions. We report the results of our experiments comprising of 15 InGaAs wafers that were utilized to investigate lowering dark current in photodiode arrays. As a result of these experiments, we have achieved an ultra low dark current of 2nA/cm2 through technological advances in InGaAs detector design, epitaxial growth, and processing at a temperature of +12.3 degrees C. The InGaAs photodiode array was hybridized to a low noise readout integrated circuit, also developed under this program. The focal plane array (FPA) achieves very high sensitivity in the shortwave infrared bands in addition to the visible response added via substrate removal process post hybridization. Based on our current room-temperature stabilized SWIR camera platform, these imagers enable a full day-night imaging capability and are responsive to currently fielded covert laser designators, illuminators, and rangefinders. In addition, improved haze penetration in the SWIR compared to the visible provides enhanced clarity in the imagery of a scene. In this paper we show the results of our dark current studies as well as FPA characterization of the camera built under this program.

  1. Analysis of Carrier Recombination Processes in 0.6 eV InGaAs Epitaxial Materials for Thermophotovoltaic Devices

    SciTech Connect

    D Donetsky; F Newman; M Dashiell

    2006-10-30

    Minority carrier lifetime was measured by time-resolved photoluminescence (TRPL) method in sets of p-type and n-type InGaAs double heterostructures (DH) moderately doped with Zn and Te, respectively. Contributions of the radiative and non-radiative recombination terms were separated by fitting experimental data to temperature dependences of the radiative term. The latter was modeled with measured fundamental absorption spectrum and the temperature dependence of the photon recycling effect was taken into account. Different temperature dependences of radiative terms for electron and hole materials were obtained. It was concluded that in 0.6 eV Te-doped InGaAs structures the radiative recombination controls the hole lifetime at liquid nitrogen temperatures, while Auger recombination dominates at room and above room temperatures. In similar 0.6 eV InGaAs with Zn-doped active regions Shockley-Read-Hall (SRH) recombination was found dominant in a wide temperature range from liquid nitrogen to above-room temperatures. Rapid decrease of electron lifetime with decrease of excess carrier concentration was observed and attributed to recombination through partially-ionized deep donor centers. The obtained data allows for more adequate modeling of the performance and design optimization of narrow-gap photonic devices based on InGaAs Indium-rich compounds.

  2. Design of 800×2 low-noise readout circuit for near-infrared InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Huang, Songlei; Fang, Jiaxiong

    2012-12-01

    InGaAs near-infrared (NIR) focal plane arrays (FPA) have important applications in space remote sensing. A design of 800×2 low-noise readout integrated circuit (T800 ROIC) with a pitch of 25 μm is presented for a dual-band monolithic InGaAs FPA. Mathematical analysis and transient noise simulations have been presented for predicting and lowering the noise in T800 ROIC. Thermal noise from input-stage amplifier which plays a dominant role in ROIC is reduced by increasing load capacitor under tradeoff and a low input offset voltage in the range of +/-5 mV is obtained by optimizing transistors in the input-stage amplifier. T800 ROIC has been fabricated with 0.5-μm 5V mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that ROIC noise is around 90 μV and input offset voltage shows a good correspondence with simulation results. 800×2 InGaAs FPA has a peak detectivity (D*) of about 1.1×1012 cmHz1/2/ W, with dynamic range of above 80dB.

  3. Low-noise InGaAs infrared 1.0- to 2.4-μm focal plane arrays for SCIAMACHY

    NASA Astrophysics Data System (ADS)

    van der A, Ronald J.; Hoogeveen, Ruud W. M.; Spruijt, Hugo J.; Goede, Albert P. H.

    1997-01-01

    SCIAMACHY has been selected for the ESA environmental satellite ENVISAT with the objective to carry out atmospheric research in the UV, VIS, and IR spectral range. The most innovative parts of the instrument are the low- noise InGaAs semiconductor focal plane arrays covering the 1.0-2.4 micrometers wavelength range. For the first time InGaAs focal plane arrays with an extended wavelength range have become space qualified. In this paper theory and measurement of the dark current and noise behavior of these detectors is presented. Each InGaAs focal plane array consists of a 1024 pixel linear photo-detecting sliver and two 512 pixel multiplexing read-out chips. Each multiplexer contains 512 individual charge transimpedance amplifier and correlated double sampling circuits. A cylindrical lens, integrated in the detector housing, focuses the light on detector in the cross-dispersion direction. The InGaAs composition of the detectors is tuned to match the required wavelength range. Measurements have been performed of the dark current and noise as function of temperature and bias voltage in order to relate their performance to theory presented in this paper. InGaAs detectors sensitive to 2400 nm wavelength achieve dark current levels as low as 20-100 fA per detector pixel area of 1.25 (DOT) 10-4 cm2 at an operating temperature of 150 K and a bias voltage of 2 mV. Lower temperatures further reduce the dark current but also decrease the quantum efficiency at long wavelengths, yielding no net gain in performance. The development programme of these SCIAMACHY detectors has been carried out by Epitaxx Inc., for and in cooperation with the Space Research Organization Netherlands.

  4. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  5. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  6. Bulk muscles, loose cables.

    PubMed

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  7. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  8. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  9. InP/InGaAs/InP DHBT structures with graded composition base grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Teng, Teng; Ai, Likun; Xu, Anhuai; Sun, Hao; Zhu, Fuying; Qi, Ming

    2011-05-01

    A new InP/InGaAs/InP DHBT structure with graded composition base was optimized and grown successfully in this work. The gallium (Ga) composition increased gradually from 47% on the collector side to 55% on the emitter side. The InP/InGaAs/InP DHBT structures were grown by gas source molecular beam epitaxy (GSMBE). Characteristics of InP, InGaAs and InGaAsP materials were investigated. High quality InP/InGaAs/InP DHBT structural materials were obtained. The InP/InGaAs/InP DHBT device with emitter area of 100×100 μm2 was fabricated. The offset voltage of 0.2 V, BVCEO>1.2 V, current gain of ß=550 at VCE of 1.0 V were achieved. The reasons for the low breakdown voltage were analyzed.

  10. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    PubMed

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer