Science.gov

Sample records for grown nio thin

  1. Continuous spin reorientation transition in epitaxially grown antiferromagnetic NiO thin films

    SciTech Connect

    Li, J.; Arenholz, E.; Meng, Y.; Tan, A.; Park, J.; Jin, E.; Son, H.; Wu, J.; Jenkins, C. A.; Scholl, A.; Hwang, Chanyong; Qiu, Z. Q.

    2011-03-01

    Fe/NiO/MgO/Ag(001) films were grown epitaxially, and the Fe and NiO spin orientations were determined using x-ray magnetic dichroism. We find that the NiO spins are aligned perpendicularly to the in-plane Fe spins. Analyzing both the in-plane and out-of-plane spin components of the NiO layer, we demonstrate unambiguously that the antiferromagnetic NiO spins undergo a continuous spin reorientation transition from the in-plane to out-of-plane directions with increasing of the MgO thickness.

  2. Resistance switching in a single-crystalline NiO thin film grown on a Pt0.8Ir0.2 electrode

    NASA Astrophysics Data System (ADS)

    Kawai, Masanori; Ito, Kimihiko; Shimakawa, Yuichi

    2009-07-01

    A single-crystalline NiO thin film was grown epitaxially on an atomically flat Pt0.8Ir0.2 bottom electrode layer grown epitaxially on a SrTiO3(100) substrate. The memory cells of the single-crystalline NiO thin film with Pt top electrodes showed unipolar resistance switching behaviors. The result demonstrates that a unipolar resistance switching is not a characteristic phenomenon in the polycrystalline NiO but it can also occur in the single-crystalline NiO.

  3. Structural Properties and Resistance-Switching Behavior of Thermally Grown NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Wook; Jung, Ranju; Park, Bae Ho; Li, Xiang-Shu; Park, Chanwoo; Shin, Seongmo; Kim, Dong-Chirl; Lee, Chang Won; Seo, Sunae

    2008-03-01

    We investigated the structural and electrical properties of polycrystalline NiO thin films on Pt electrodes formed by thermal oxidation. A Ni-Pt alloy phase was found at the interface, which could be explained by the oxidation kinetics and reactions of Ni, NiO, and Pt. An increase in the oxidation temperature decreased the volume of the alloy layer and improved the crystalline quality of the NiO thin films. Pt/NiO/Pt structures were fabricated, and they showed reversible resistance switching from a high-resistance state (HRS) to a low-resistance state (LRS) and vice versa during unipolar current-voltage measurements. The oxidation temperature affected (did not affect) the HRS (LRS) resistance of the Pt/NiO/Pt structures. This indicated that the transport characteristics of HRS and LRS should be different.

  4. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  5. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  6. Resistance Switching Behavior in Epitaxially Grown NiO

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Bak, J. H.; Park, Y. D.; Char, K.; Kim, D. C.; Jung, R.; Seo, S.; Li, X. S.; Park, G.-S.; Yoo, I. K.

    2008-03-01

    Reproducible resistance switching behavior has been found in NiO films prepared by a pulsed laser deposition system. The I-V measurements of epitaixally grown NiO on SrRuO3 electrode show a bipolar resistive memory switching behavior, in contrast with a unipolar switching behavior of polycrystalline NiO on Pt electrode. In order to understand the resistive memory switching mechanism in NiO, the I-V characteristics and memory switching property of epitaxial NiO prepared under various synthesis conditions and electrodes has been investigated. The IV measurements at room temperature suggest that the interface between NiO and the electrode plays an important role on the resistive switching phenomena. To analyze the role of the interface, our efforts to control the interfaces and to measure the I-V characteristics at low temperature will be presented.

  7. Properties of NiO thin films deposited by intermittent spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Reguig, B. A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J. C.

    2007-02-01

    NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl 2·6H 2O diluted in distilled water, using a simple "perfume atomizer". The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.

  8. Hydrogen Microsensor Based on NiO Thin Films

    NASA Astrophysics Data System (ADS)

    Fasaki, I.; Antoniadou, M.; Giannoudakos, A.; Stamataki, M.; Kompitsas, M.; Roubani-Kalantzopoulou, F.; Hotovy, I.; Rehacek, V.

    A multitude of industries use H2 either as part of their process or as a fuel. All these applications motivate nowadays the development of hydrogen sensor devices which enable its safe and controlled use. Since H2 is explosive above the lower explosion limit at 40,000 ppm, devices which permit the detection of its presence and measure its concentration become indispensable. In this work, we present a microsensor based on NiO thin films produced with dc reactive magnetron sputtering on GaAs, with an incorporated Pt heater, all on a DO-8 package ready for use. The microsensor was tested to H2 concentrations 5,000 and 10,000 ppm at different working temperatures. The change of the electrical resistance of NiO thin films was the signal for hydrogen sensing. The response of the sensor was not proportional to concentration of the gas neither to the working temperature.

  9. Surface phonons of NiO(001) ultrathin films grown pseudomorphically on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kostov, K. L.; Polzin, S.; Schumann, F. O.; Widdra, W.

    2016-01-01

    For an ultrathin NiO(001) film of 4 monolayer (ML) thickness grown on Ag(001), the vibrational properties have been determined by high-resolution electron energy loss spectroscopy (HREELS). For the well-ordered pseudomorphically grown film, nine phonon modes have been identified and their dispersions have been revealed along the ΓbarΧbar high-symmetry direction. The comparison with phonon data for a 25 ML thick NiO(001) film shows that the NiO(001) phonon properties are already fully developed at 4 ML. Significant differences are found for the surface-localized phonon S6 which has an increased dispersion for the ultrathin film. The dipole-active Fuchs-Kliewer phonon-polariton exhibits a narrower lineshape than the mode found for a single-crystal surface, which might hint to a reduced antiferromagnetic coupling in the ultrathin film.

  10. Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties

    NASA Astrophysics Data System (ADS)

    Nandy, S.; Goswami, S.; Chattopadhyay, K. K.

    2010-03-01

    Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ˜700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.

  11. Electrochromism of non-stoichiometric NiO thin film: as single layer and in full device

    NASA Astrophysics Data System (ADS)

    Da Rocha, M.; Rougier, A.

    2016-04-01

    Electrochromic properties, known as a reversible modulation of the optical properties under an applied voltage, of NiO thin films are discussed in respect of the film stoichiometry. Using radio-frequency magnetron sputtering, non-stoichiometric "NiO" thin films of good crystallinity were grown at room temperature from low oxygen partial pressure [i.e., above 2 % P(O2/Ar + O2)]. A further increase in oxygen partial pressure leads to conductive brownish films containing a large amount of Ni3+. 2 %-Ni1- x O thin films exhibit significant EC performance in lithium-based electrolyte with a transmittance modulation of 25 %. If it is generally accepted that this optical modulation is due to an insertion of small cations, the presence of additional surface phenomena is also shown. The cycling of full device, based on the association of WO3 and "NiO" in temperature up to 60 °C and down to -35 °C confirms expected increase and decrease in capacity while surprisingly the optical switch from a transparent to a neutral gray color appears slightly modified.

  12. Properties of Li-Doped NiO Thin Films Prepared by RF-Magnetron Sputtering.

    PubMed

    Kwon, Ho-Beom; Han, Joo-Hwan; Lee, Hee Young; Lee, Jai-Yeoul

    2016-02-01

    Li-doped NiO thin films were deposited on glass and c-axis (0001) sapphire single crystal substrates by radio frequency (RF)-niagnetron sputtering. The effects of the type of substrate, substrate temperature and atmosphere on the structural, electrical and optical properties of the NiO thin films were examined. The electrical conductivity of the NiO thin films depends on the type of substrate, substrate temperature and oxygen atmosphere. The electrical conductivity of the thin films on the glass and sapphire substrates was improved by the introduction of oxygen and decreased with increasing substrate temperature. The optical transmittance decreased with the introduction of oxygen and increased with increasing substrate temperature. PMID:27433612

  13. The electrochromic characteristics of sol gel-prepared NiO thin film

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Wu, Minghong; Qin, Zheng; Xu, Hong

    2003-04-01

    In this work, NiO thin film was prepared by the sol-gel technique and analysed by thermogravimetry, x-ray diffractometry and x-ray photoelectron spectroscopy. The electrochromic characteristics were studied by ultraviolet spectroscopy. NiO thin film shows electrochromic characteristics. Its colour changes from transparent to brown when a voltage is applied. The transmittance of the film can shift from 90 to 40%. Deterioration of the film caused by colouring and discolouring was not observed for up to 100 cycles.

  14. Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sato, Kazuya; Kim, Sangcheol; Komuro, Shuji; Zhao, Xinwei

    2016-06-01

    Transparent conducting Cu-doped NiO thin films were deposited on quartz glass substrates by radio frequency magnetron spattering. The fabricated thin films were all in amorphous phase. A relatively high transmittance of 73% was achieved. The density ratio of Ni3+/(Ni2+ + Ni3+) ions in the films decreased with increasing O2 gas pressure in the fabrication chamber, which caused a decrease in the carrier concentration of the films. The increasing pressure also led to the increase in Hall mobility. By controlling the chamber pressure and substrate temperature, p-type transparent conducting NiO films with reasonable electrical properties were obtained.

  15. Characterization of crystalline structure and morphology of NiO thin films.

    PubMed

    Shin, Hyemin; Choi, Soo-Bin; Yu, Chung-Jong; Kim, Jae-Yong

    2011-05-01

    We investigated the relation of sputtering powers with structural and morphological properties of nickel oxide (NiO) thin films. NiO thin films were fabricated by using an rf-reactive sputtering method on Si(100) substrates with a Ni target in a partial pressure of oxygen and argon. The films were deposited by various rf-sputtering powers from 100 to 200 W at room temperature. The phases and crystalline structures of the deposited films were investigated by using grazing incident X-ray diffraction (XRD). The thickness and surface morphology of the films were investigated by using a field emission-scanning electron microscopy (FE-SEM). The different sputtering conditions drastically affected the crystallinity and the surface morphology of NiO thin films. A combined analysis of the data obtained from X-ray diffraction and SEM images demonstrates that the preferred orientation of NiO films tends to grow from (111) to (200) direction as increasing the sputtering power, which can be explained by in terms of the surface energy along the indexing plane in an fcc structure. As increasing the rf power, lattice constants decreased from 4.26 to 4.20 angstroms and samples became high-quality crystals. Under our experimental condition, NiO films prepared at 150 W with 20% partial pressure of oxygen and 7 cm distance from the sample to the target show the best quality of the crystal. PMID:21780511

  16. Transformation from an atomically stepped NiO thin film to a nanotape structure: A kinetic study using x-ray diffraction

    SciTech Connect

    Sakata, Osami

    2008-12-15

    Transformation from an atomically stepped epitaxial thin film of NiO to a self-assemble nanotape structure at the step edge was observed in situ using synchrotron x-ray diffraction. The pristine NiO thin film was epitaxially grown on an ultrasmooth sapphire (0001) substrate with a regular step of 0.2 nm in height using laser molecular beam epitaxy. Transformation from the thin film to the nanotape structure was facilitated by postannealing in air from room temperature to 620 K. From the Arrhenius plot of ln(in-plane domain sizes) versus 1/T, an atomic-scale transformation energy of {approx}0.0135 eV/atom was derived.

  17. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    NASA Astrophysics Data System (ADS)

    Cattin, L.; Reguig, B. A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J. C.

    2008-07-01

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl 2·6H 2O), nickel nitrate hexahydrate (Ni(NO 3) 2·6H 2O), nickel hydroxide hexahydrate (Ni(OH) 2·6H 2O), nickel sulfate tetrahydrate (NiSO 4·4H 2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl 2 and Ni(NO 3) 2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10 -2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  18. Magnetic force microscopy of conducting nanodots in NiO thin films

    NASA Astrophysics Data System (ADS)

    Meang, Wan Joo; Seo, Jeongdae; Ahn, Yoonho; Son, J. Y.

    2016-03-01

    We report a nanoscale magnetic conducting filament in a resistive random access memory (RRAM) device by the direct investigation of conducting nanobits in NiO thin films using magnetic force microscopy. The conducting nanobit in a NiO RRAM capacitor formed by CAFM and KFM exhibited a typical bistable resistive switching characteristic. The magnetizations of the conducting nanobit were measured as a function of the set-reset switching cycle and as the switching cycles were increased, a strong ferromagnetic signal was observed. The metallic Ni formation in the nanoscale magnetic conducting filament could be a possible reason for the origin of the magnetism. [Figure not available: see fulltext.

  19. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    SciTech Connect

    Warren, O.L.

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1{times}1) and (1{times}2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  20. Probing the redox states at the surface of electroactive nanoporous NiO thin films.

    PubMed

    Marrani, Andrea G; Novelli, Vittoria; Sheehan, Stephen; Dowling, Denis P; Dini, Danilo

    2014-01-01

    Nanoporous NiO thin film electrodes were obtained via plasma-assisted microwave sintering and characterized by means of a combination of electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The aim of this study is the elucidation of the nature of the surface changes introduced by the redox processes of this nanostructured material. NiO undergoes two distinct electrochemical processes of oxidation in aqueous electrolyte with the progress of NiO anodic polarization. These findings are consistent with the sequential formation of oxyhydroxide species at the surface, the chemical nature of which was assessed by XPS. Electronic relaxation effects in the Ni 2p spectra clearly indicated that the superficial oxyhydroxide species resulted to be β-NiOOH and γ-NiOOH. We also show for the first time spectral evidence of an electrochemically generated Ni(IV) species. This study has direct relevance for those applications in which NiO electrodes are utilized in aqueous electrolyte, namely catalytic water splitting or electrochromism, and may constitute a starting point for the comprehension of electronic phenomena at the NiO/organic electrolyte interface of cathodic dye-sensitized solar cells (p-DSCs). PMID:24325361

  1. Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films

    NASA Astrophysics Data System (ADS)

    Kore, R. M.; Ghadge, T. S.; Ambare, R. C.; Lokhande, B. J.

    2016-04-01

    In the present study, the effect of nickel precursors containing different anions like nitrate, chloride and sulphate on the morphology and pseudocapacitance behavior of NiO is investigated. The NiO samples were prepared by using a potentiondynamic electrodeposition technique in the three electrode cell. Cyclic voltammetry technique was exploited for potentiodynamic deposition of the films. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The XRD reveals the cubic crystal structure for all samples. The SEM micrograph shows nanoflakelike, up grown nanoflakes and honeycomb like nanostructured morphologies for nitrate, chloride and sulphate precursors respectively. The capacitive behavior of these samples was recorded using cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 1 M KOH electrolyte. The specific capacitance values of NiO samples obtained using CV for nitrate, chloride and sulphate precursors were 136, 214 and 893 Fg-1 respectively, at the scan rate of 5 mVs-1. The charge discharge study shows high specific energy for the sample obtained from sulphate (23.98 Whkg-1) as compared to chloride (9.67 Whkg-1) and nitrate (4.9 Whkg-1), whereas samples of cholride (13.9 kWkg-1 and nitrate (10.5 kWkg-1) shows comparatively more specific power than samples obtained from sulphate (7.6 kWkg-1). The equivalent series resistance of NiO samples observed from EIS study are 1.34, 1.29 and 1.27 Ω respectively for nitrate, chloride and sulphate precursors. These results emphasizes that the samples obtained from sulphate precursors provides very low impedance through honeycomb like nanostructured morphology which supports good capacitive behavior of NiO.

  2. Electronic and magnetic structure of epitaxial Fe3O4(001 ) /NiO heterostructures grown on MgO(001) and Nb-doped SrTiO3(001 )

    NASA Astrophysics Data System (ADS)

    Kuepper, K.; Kuschel, O.; Pathé, N.; Schemme, T.; Schmalhorst, J.; Thomas, A.; Arenholz, E.; Gorgoi, M.; Ovsyannikov, R.; Bartkowski, S.; Reiss, G.; Wollschläger, J.

    2016-07-01

    We study the underlying chemical, electronic, and magnetic properties of a number of magnetite-based thin films. The main focus is placed onto Fe3O4 (001)/NiO bilayers grown on MgO(001) and Nb-SrTiO3(001) substrates. We compare the results with those obtained on pure Fe3O4 (001) thin films. It is found that the magnetite layers are oxidized and Fe3 + dominates at the surfaces due to maghemite (γ -Fe2O3 ) formation, which decreases with increasing magnetite layer thickness. For layer thicknesses of around 20 nm and above, the cationic distribution is close to that of stoichiometric Fe3O4 . At the interface between NiO and Fe3O4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2 p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2O4 interlayer can be excluded by means of x-ray magnetic circular dichroism. Magneto-optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and an altered in-plane easy axis pointing in the <100 > direction. We discuss the spin magnetic moments of the magnetite layers and find that a thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.

  3. Origin of intrinsic ferromagnetism in undoped antiferromagnetic NiO thin films

    NASA Astrophysics Data System (ADS)

    Verma, Vikram; Katiyar, Monica

    2015-06-01

    Thin films of nickel oxide (NiO) have been deposited on Si substrates using pulsed laser deposition technique. The number of laser pulses and substrate temperature were changed to vary the average particle size of different samples. The x-ray data show that all films are polycrystalline irrespective of deposition condition and the preferred texture of the thin film changes with temperature. A detailed magnetic characterization of the M-H loops at different temperatures as well as zero-field-cooled and field-cooled (ZFC-FC) curves has been carried out to show that NiO films having a particle size of 3.6 nm and 5.9 nm exhibit the transition from superparamagnetic to ferromagnetic as we decrease the temperature. Whereas for films having a larger average particle size (30.3 nm), the behavior is antiferromagnetic (AFM) at all temperatures similar to the bulk NiO. The exchange bias proves the presence of ferromagnetic contribution in addition to the AFM part in films having a small crystallite size. The linear correlation between susceptibility and the inverse of the particle diameter confirmed that our samples follow Neel’s case for random distribution of uncompensated spins at the crystallite surface. To further verify this model, the value of the surface anisotropy constant is calculated and found to be in agreement with the reported values.

  4. Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films

    NASA Astrophysics Data System (ADS)

    Lee, C. B.; Kang, B. S.; Lee, M. J.; Ahn, S. E.; Stefanovich, G.; Xianyu, W. X.; Kim, K. H.; Hur, J. H.; Yin, H. X.; Park, Y.; Yoo, I. K.; Park, J.-B.; Park, B. H.

    2007-08-01

    The effects of Ni and Ni0.83Pt0.17 alloy electrodes on the resistance switching of the dc-sputtered polycrystalline NiO thin films were investigated. The initial off-state resistances of the films were similar to that of Pt /NiO/Pt film. However, after the first cycle of switching, the off-state resistance significantly decreased in the films with Ni in the electrode. It can be attributed to the migration of Ni from electrodes to the NiO films. The improvement in data dispersion of switching parameters is explained in terms of the decrease of the effective thickness of the films resulting from the migration of Ni.

  5. Structure, optical and electrochromic properties of NiO thin films

    NASA Astrophysics Data System (ADS)

    Sawaby, A.; Selim, M. S.; Marzouk, S. Y.; Mostafa, M. A.; Hosny, A.

    2010-08-01

    Nickel oxide thin films were prepared by sol-gel dip coating process. Nickel acetate tetrahydrate [Ni(CH 3COO) 2·4H 2O] has been used as the starting material with absolute ethyl alcohol to prepare NiO thin films on both glass and indium tin oxide glass (ITO) substrates with heat treatment at different annealing temperatures from 673 to 733 K. Thermogravimetric analysis (TGA) was studied for the xerogel sample. Polycrystalline structures of the prepared films were detected by X-ray diffraction analysis (XRD), and the particle size was determined by Scherrer formula. The morphology and the structure of the prepared thin films were investigated by the transmission electron microscope (TEM). The optical properties of NiO thin films were examined. The optical constants such as the absorption coefficient ( α), extinction coefficient ( k), the energy gap ( Eg) and the refractive index ( n) of the prepared films were determined. The effect of annealing temperature on the electrochromic behavior was observed providing that good electrochromic performance was T<713 K.

  6. Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors.

    PubMed

    Kannan, Vasudevan; Inamdar, Akbar I; Pawar, Sambaji M; Kim, Hyun-Seok; Park, Hyun-Chang; Kim, Hyungsang; Im, Hyunsik; Chae, Yeon Sik

    2016-07-13

    We report an efficient method for growing NiO nanostructures by oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor applications. This facile physical vapor deposition technique combined with OAD presents a unique, direct, and economical route for obtaining high width-to-height ratio nanorods for supercapacitor electrodes. The NiO nanostructure essentially consists of nanorods with varying dimensions. The sample deposited at OAD 75° showed highest supercapacitance value of 344 F/g. NiO nanorod electrodes exhibits excellent electrochemical stability with no degradation in capacitance after 5000 charge-discharge cycles. The nanostructured film adhered well to the substrate and had 131% capacity retention. Peak energy density and power density of the NiO nanorods were 8.78 Wh/kg and 2.5 kW/kg, respectively. This technique has potential to be expanded for growing nanostructured films of other interesting metal/metal oxide candidates for supercapacitor applications. PMID:27322601

  7. Memory and threshold resistive switching in BiFeO3 thin films using NiO as a buffer layer

    NASA Astrophysics Data System (ADS)

    Luo, Jinming; Zhang, Haining; Chen, Shuhan; Yang, Xiaodong; Bu, Shouliang; Wen, Jianping

    2016-05-01

    BiFeO3 and BiFeO3/NiO thin films have been deposited on Pt/Ti/SiO2/Si substrates by sol-gel method. Compared with bare BiFeO3 thin films, an improvement of memory resistive switching characteristic, such as the dispersion of switching voltages and resistances, has been clearly observed in BiFeO3 thin films using NiO as a buffer layer. Moreover, threshold resistive switching has also been demonstrated in BiFeO3/NiO thin films, but no observation in BiFeO3 thin films. Then, the role of thin NiO layer on memory resistive switching stabilization and threshold resistive switching is discussed.

  8. Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide

    NASA Astrophysics Data System (ADS)

    Uplane, M. M.; Mujawar, S. H.; Inamdar, A. I.; Shinde, P. S.; Sonavane, A. C.; Patil, P. S.

    2007-10-01

    Nickel oxide thin films were grown onto FTO-coated glass substrates by a two-step process: electrodeposition of nickel sulphide and their thermal oxidation at 425, 475 and 525 °C. The influence of thermal oxidation temperature on structural, optical, morphological and electrochromic properties was studied. The structural properties undoubtedly revealed NiO formation. The electrochromic properties were studied by means of cyclic voltammetry. The films exhibited anodic electrochromism, changing from a transparent state to a coloured state at +0.75 V versus SCE, i.e. by simultaneous ion and electron ejection. The transmittance in the coloured and bleached states was recorded to access electrochromic quality of the films. Colouration efficiency and electrochromic reversibility were found to be maximum (21 mC/cm 2 and 89%, respectively) for the films oxidized at 425 °C. The optical band gap energy of nickel oxide slightly varies with increase in annealing temperature.

  9. Realization of a label-free electrochemical immunosensor for detection of low density lipoprotein using NiO thin film.

    PubMed

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2016-06-15

    A label-free electrochemical immunosensor, based on nickel oxide (NiO) thin film, for the detection of low density lipoprotein (LDL) has been proposed. P-type semiconducting NiO thin film was deposited by RF sputtering technique and its properties were investigated by X-ray diffraction and Fourier transform infrared spectroscopy. The NiO thin film was utilized as an efficient matrix for the covalent immobilization of apolipoprotein B-100 antibody using EDC/NHS chemistry. The immunoelectrode, thus prepared, was studied using differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy. The impedimetric response of the immunosensor exhibited a high sensitivity of 12 kΩ μM(-1) over a wide linear range (0.018-0.5 μM) of LDL. The long shelf life (18 weeks) and enhanced performance characteristics of the immunosensor demonstrate the excellent ability of the NiO matrix for quantification of LDL at commercial level. PMID:26852197

  10. Fabrication of NiO thin film electrode for supercapacitor applications

    SciTech Connect

    Mali, V. V.; Navale, S. T.; Chougule, M. A.; Khuspe, G. D.; Godse, P. R.; Patil, V. B.; Pawar, S. A.

    2014-04-24

    Nanocrystalline NiO electrode is successfully electrosynthesized for supercapacitor application. The nanocrystalline NiO electrode is characterized using scanning electron microscope (SEM). Nickel oxide is a highly porous and the film surface looked smooth and composed of fine elongated particles. The supercapacitive performance of NiO electrode is tested using cyclic voltammetry (C-V) technique in 0.5M Na{sub 2}S{sub 2}O{sub 3} electrolyte within potential range of −1.2 to +1.2 V. The effect of scan rate on the capacitance of NiO electrode is studied. The highest specific capacitance of 439 Fg{sup −1} at the voltage scan rate of 50mVs{sup −1} is achieved. Additionally stability and charging–discharging of NiO electrode are studied.

  11. Electrical properties of undoped and Li-doped NiO thin films deposited by RF sputtering without intentional heating

    NASA Astrophysics Data System (ADS)

    Sugiyama, Mutsumi; Nakai, Hiroshi; Sugimoto, Gaku; Yamada, Aika; Chichibu, Shigefusa F.

    2016-08-01

    The fundamental transmittance and electrical properties of undoped and Li-doped NiO thin films deposited by conventional RF sputtering without intentional heating were evaluated. Both the transmittance and resistivity of undoped and Li-doped NiO decreased with increasing O2 fraction in the sputtering gas, f(O2) = O2/(Ar + O2). The result is attributed to the increase in the concentration of acceptors of Ni vacancies (VNi) under oxygen-rich growth conditions. In addition to VNi, Li atom on the Ni site (LiNi) likely acts as a shallow accepter, which can explain the experimental finding that the carrier concentration of Li-doped NiO was approximately three orders of magnitude higher than that of the undoped case deposited under the same f(O2). The mobility of NiO was remarkably low (around 0.1–1.0 cm2 V‑1 s‑1) and almost independent of f(O2) or the amount of doping, reflecting the large hole effective mass.

  12. thin films grown with additional NaF layers

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Kim, Juran; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-10-01

    CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.

  13. Fabrication of hetero-junction diode using NiO thin film on ITO/glass substrate

    NASA Astrophysics Data System (ADS)

    Soni, Sonali; Sharma, Vinay; Kuanr, Bijoy K.

    2016-05-01

    Fabrication, characterization and testing of hetero-junctions of NiO thin films were done. Nickel films were evaporated on polished ITO coated glass substrates using thermal deposition. The films were annealed at high temperatures in the presence of oxygen to obtain NiO films. The rectifying current-voltage (I-V) properties confirmed that a hetero-junction diode was successfully formed. The AC and DC behavior of hetero-junction using DC silver-probes were determined. The threshold voltage, ideality factor and reverse saturation current of hetero junction were determined. We have compared these I-V characteristics with semiconducting PN junction diode. To test the device characteristics, we used the structure as a diode clipper at various frequencies. It is showed that our device is a better high-frequency junction-device than a normal PN junction diode.

  14. InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2014-04-24

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl{sub 3} and 0.03M SbCl{sub 3}, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm{sup −1} corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  15. InSb thin films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Rajaram, P.

    2014-04-01

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl3 and 0.03M SbCl3, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm-1 corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  16. Tuning the metal-insulator transition temperature of Sm0.5Nd0.5NiO3 thin films via strain

    NASA Astrophysics Data System (ADS)

    Gardner, H. Jeffrey; Singh, Vijay; Zhang, Le; Hong, Xia

    2014-03-01

    We have investigated the effect of substrate induced strain and film thickness on the metal-insulator transition of the correlated oxide Sm0.5Nd0.5NiO3 (SNNO). We have fabricated epitaxial 3 - 40 nm thick SNNO films on (001) LaAlO3 (LAO), (001) SrTiO3 (STO), and (110) NdGaO3 (NGO) via off-axis RF magnetron sputtering. The SNNO films are atomically smooth with (001) orientation as determined by atomic force microscopy and x-ray diffraction. SNNO films grown on LAO, subject to compressive strain, exhibit a sharp metal-insulator transition at lower temperatures. Conversely, films grown on STO and NGO, subject to tensile strain, exhibit a smeared albeit above room temperature metal-insulator transition. For all substrates, we have observed that the metal-insulator transition temperature (TMI) increases monotonically with decreasing film thickness until the electrically dead layer is reached (below 4 nm). We discuss the effect of strain and oxygen deficiencies on the TMI of SNNO thin films.

  17. Metastable oxygen incorporation into thin film NiO by low temperature active oxidation: Influence on hole conduction

    SciTech Connect

    Aydogdu, Gulgun H.; Ruzmetov, Dmitry; Ramanathan, Shriram

    2010-12-01

    The ability to controllably tune cation valence state and resulting electrical conductivity of transition metal-oxides such as NiO is of great interest for a range of solid state electronic and energy devices and more recently in understanding electron correlation phenomena at complex oxide interfaces. Here, we demonstrate that it is possible to enhance electrical conductivity of NiO thin films by one order of magnitude by photoexcitation and three orders of magnitude by ozone treatment at as low as 310 K. The change occurs within nearly 2000 s and, thereafter, reaches a self-limiting value. A surprising difference is seen at 400 K: ultraviolet photon and ozone treatments cause only a marginal reduction in resistance in the first few minutes and, then, the resistance begins to increase and recovers its original value. This unusual reversal is explained by considering metastable incorporation of oxygen in NiO and oxygen equilibration with the environment. Variation in nickel valence state prior to and after photoexcitation and ozone treatment, investigated by x-ray photoelectron spectroscopy, provides mechanistic insights into resistance trends. This study demonstrates photon-assisted and ozone oxidation as effective low temperature routes to tune the electrical properties as well as metastably incorporate oxygen into oxides with direct influence on electrical conduction properties.

  18. Influence of oxygen partial pressure on the physical properties of Ag doped NiO thin films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Reddy, A. Sivasankar; Reddy, P. Sreedhara

    2013-06-01

    Ag doped p-type NiO thin films were successfully deposited by DC reactive magnetron sputtering technique at different oxygen partial pressures in the range 1 × 10-4 - 9 × 10-4 mbar. The structural and morphological properties of the films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). All the deposited films were of polycrystalline nature and exhibited cubic structure with preferential growth. The morphological studies revealed that the surface roughness was increased with increasing oxygen partial pressure up to 5 × 10-4 mbar and decreased at higher oxygen partial pressures.

  19. Characterization of graphene grown on bulk and thin film nickel.

    PubMed

    Lu, Chun-Chieh; Jin, Chuanhong; Lin, Yung-Chang; Huang, Chi-Ruei; Suenaga, Kazu; Chiu, Po-Wen

    2011-11-15

    We report on graphene films grown by atmospheric pressure chemical vapor deposition on bulk and thin film nickel. Carbon precipitation on the polycrystalline grains is controlled by the methane concentration and substrate cooling rate. It is found that graphene grows over multiple grains, with edges terminating along the grain boundaries and with dimensions directly correlated to the size of the underlying grains. This greatly restricts the resulting graphene size (<10 μm) in the thin film growth, whereas monolayer graphene with linear dimensions of hundreds of micrometers takes up the great majority of the surface overlayers on the bulk nickel (>50%). In addition, the number of layers can be better controlled in the bulk growth. Characterizations of the graphene sheets using transmission electron microscopy, Raman spectroscopy, and transport measurements in the field-effect configuration are also discussed. PMID:21967558

  20. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zou, Yuqin; Wang, Yong

    2011-06-01

    This paper reports a hydrothermal preparation of NiO-graphene sheet-on-sheet and nanoparticle-on-sheet nanostructures. The sheet-on-sheet nanocomposite showed highly reversible large capacities at a common current of 0.1 C and good rate capabilities. A large initial charge capacity of 1056 mAh/g was observed for the sheet-on-sheet composite at 0.1 C, which decreased by only 2.4% to 1031 mAh/g after 40 cycles of discharge and charge. This cycling performance is better than that of NiO nanosheets, graphene nanosheets, NiO-graphene nanoparticle-on-sheet, and previous carbon/carbon nanotube supported NiO composites. It is believed that the mechanical stability and electrical conductivity of NiO nanosheets are increased by graphene nanosheets (GNS), the aggregation or restacking of which to graphite platelets are, on the other hand, effectively prevented by NiO nanosheets.

  1. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-01

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01601d

  2. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.

    PubMed

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-01

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis. PMID:27216291

  3. Effects of anode materials on resistive characteristics of NiO thin films

    SciTech Connect

    Jia, Ze; Wang, Linkai; Zhang, Naiwen; Ren, Tianling; Liou, Juin J.

    2013-01-28

    This letter shows that the NiO-based structure with different anodes has different resistive switching properties. A conical conductive filament (CF) model is proposed for oxygen vacancies distributed in NiO films. Modeling analysis reveals much larger dissolution velocity of CF near anodes than near cathodes during the reset process. Different interfaces shown in Auger electron spectroscopy can be bound with the model to reveal that CF is dissolved in the structure with Pt or Au as anodes, while CF remains constant if the anode material is Ti or Al, which can explain whether switching properties occur in the specific NiO-based structures.

  4. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

    PubMed Central

    Yamauchi, Ryosuke; Hamasaki, Yosuke; Shibuya, Takuto; Saito, Akira; Tsuchimine, Nobuo; Koyama, Koji; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates. PMID:26402241

  5. Multiferroic YCrO3 thin films grown on glass substrate: Resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Son, Jong Yeog

    2016-01-01

    Polycrystalline YCrO3 thin films were deposited on (111) Pt/Ta/glass substrates by pulsed laser deposition. The YCrO3 thin films exhibited good ferroelectric properties with remnant polarization of about 5 µC/cm2. Large leakage current was observed by I- V curve and ferroelectric hysteresis loop. The YCrO3 resistive random access memory (RRAM) capacitor showed unipolar switching behaviors with SET and RESET voltages higher than those of general NiO RRAM capacitors. [Figure not available: see fulltext.

  6. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2013-09-01

    In this paper, we report on rf power induced change in the structural and optical properties of nickel oxide (NiO) thin films deposited onto glass substrates by rf magnetron sputtering technique. The crystallinity of the film was found to increase with increasing rf power and the deposited film belong to cubic phase. The maximum optical transmittance of 95% was observed for the film deposited at 100 W. The slight shift in transmission threshold towards higher wavelength region with increasing rf power revealed the systematic reduction in optical energy band gap (3.93 to 3.12 eV) of the films. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion parameters, dielectric constants, relaxation time, and optical non-linear susceptibility were evaluated. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  7. Metal-insulator transition at room temperature and infrared properties of Nd0.7Eu0.3NiO3 thin films

    NASA Astrophysics Data System (ADS)

    Capon, F.; Laffez, P.; Bardeau, J.-F.; Simon, P.; Lacorre, P.; Zaghrioui, M.

    2002-07-01

    Nd0.7Eu0.3NiO3 thin films are deposited by rf sputtering and subsequent oxygen pressure annealing on (100) oriented silicon substrate. We characterize the thermochromic properties of films by measuring electrical transition, infrared transmittance, and reflectance. The thermochromic effect at room temperature is observed. Resistivity measurements exhibit a sharper hysteresis loop than is usually observed in NdNiO3 thin films. Infrared properties in the 8-14 mum wavelength range spectra reveal a contrast of 30% in reflectance and 55% in transmittance.

  8. Structural and morphological properties of sputtered NiO thin films at various sputtering pressures

    SciTech Connect

    Reddy, A. Mallikarjuna; Reddy, Y. Ashok Kumar; Reddy, A. Sivasankar; Reddy, P. Sreedhara

    2012-06-05

    Nickel oxide thin films were successfully deposited on glass substrates at different sputtering pressures in the range of 3 x 10{sup -2} to 5 x 10{sup -2} mbar. It was observed that sputtering pressure influenced the structural and morphological properties. Structural properties were studied with X-ray diffractometer. All the deposited films were polycrystalline and exhibited cubic structure with preferential growth along (220) plane. From morphological studies it was observed that fine and uniform grains with RMS roughness of 9.4 nm were obtained when the films deposited at a sputtering pressure of 4 x 10{sup -2} mbar,. The grain size and the surface roughness decreased at higher sputtering pressures. The surface mobility of the adatoms decreased after series of collisions resulting in the decrease of grain size at high sputtering pressures.

  9. Photoluminescence Spectra of thin Zno films grown by ALD technology

    NASA Astrophysics Data System (ADS)

    Akopyan, I. Kh.; Davydov, V. Yu.; Labzovskaya, M. E.; Lisachenko, A. A.; Mogunov, Ya. A.; Nazarov, D. V.; Novikov, B. V.; Romanychev, A. I.; Serov, A. Yu.; Smirnov, A. N.; Titov, V. V.; Filosofov, N. G.

    2015-09-01

    The photoluminescence of ZnO films grown by atomic layer deposition (ALD) on silicon substrates has been investigated. A new broad photoluminescence band has been revealed in the exciton region of the spectrum. The properties of the band in the spectra of the films with different crystallographic orientations of substrates have been studied in a wide temperature range at different excitation levels. A model describing the origin of the new band has been proposed.

  10. Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)

    SciTech Connect

    Kim, W.; Jin, E.; Wu, J.; Park, J.; Arenholz, E.; Scholl, A.; Hwang, C.; Qiu, Z.

    2010-02-10

    Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy in Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.

  11. Significance of microstructure for a MOCVD-grown YSZ thin film gas sensor

    SciTech Connect

    Vetrone, J.; Foster, C.; Bai, G.

    1996-11-01

    The authors report the fabrication and characterization of a low temperature (200--400 C) thin film gas sensor constructed from a MOCVD-grown yttria-stabilized zirconia (YSZ) layer sandwiched between two platinum thin film electrodes. A reproducible gas-sensing response is produced by applying a cyclic voltage which generates voltammograms with gas-specific current peaks and shapes. Growth conditions are optimized for preparing YSZ films having dense microstructures, low leakage currents, and maximum ion conductivities. In particular, the effect of growth temperature on film morphology and texture is discussed and related to the electrical and gas-sensing properties of the thin film sensor device.

  12. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    SciTech Connect

    Pathan, H.M.; Lokhande, C.D. . E-mail: l_chandrakant@yahoo.com; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan . E-mail: shhan@hanyang.ac.kr

    2005-06-15

    Indium sulphide (In{sub 2}S{sub 3}) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In{sub 2}S{sub 3} thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study.

  13. Thin film transistors using PECVD-grown carbon nanotubes.

    PubMed

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-21

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 microA mm(-1), which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 10(5), has been realized in the relatively short channel length of 10 microm. The field effect mobility of the device was 5.8 cm(2) V(-1) s(-1). PMID:20418603

  14. Thin film transistors using PECVD-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ono, Yuki; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2010-05-01

    Thin film transistors with a carbon nanotube (CNT) network as a channel have been fabricated using grid-inserted plasma-enhanced chemical vapor deposition (PECVD) which has the advantage of preferential growth of the CNTs with semiconducting behavior in the I-V characteristics of CNT field effect transistors (CNT-FETs). Taking advantage of the preferential growth and suppression of bundle formation, a large ON current of 170 µA mm - 1, which is among the largest in these kinds of devices with a large ON/OFF current ratio of about 105, has been realized in the relatively short channel length of 10 µm. The field effect mobility of the device was 5.8 cm2 V - 1 s - 1.

  15. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  16. Epitaxially grown strained pentacene thin film on graphene membrane.

    PubMed

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-01

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. PMID:25565340

  17. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties. PMID:23988792

  18. Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Égerházi, L.; Smausz, T.; Bari, F.

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed fD = 1.83 ± 0.01 for TiOx layers grown at 5-50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of fD not only confirms the fractal structure of TiOx IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  19. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  20. Origin of resistivity change in NiO thin films studied by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Calka, P.; Martinez, E.; Lafond, D.; Minoret, S.; Guedj, C.; Tirano, S.; Detlefs, B.; Roy, J.; Zegenhagen, J.

    2011-06-15

    We investigated origins of the resistivity change during the forming of NiO based resistive random access memories in a nondestructive way using hard x-ray photoelectron spectroscopy. Energy shifts and bandgap states observed after switching suggest that oxygen vacancies are created in the low resistive state. As a result conduction may occur via defects such as electrons traps and metallic nickel impurities. Migration of oxygen atoms seems to be the driving mechanism. This provides concrete evidence of the major role played by oxygen defects in decreasing resistivity. This is a key point since oxygen vacancies are particularly unstable and thus difficult to identify by physico-chemical analyses.

  1. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect

    Seo, Won-Oh; Kim, Jihyun; Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol; Kim, Donghwan

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2 MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  2. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C.; Zavoianu, R.; Pavel, O. D.; Dinescu, M.

    2012-09-01

    Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO3)2 aqueous solutions with Ni concentrations of 10-3% (w/w) (1 g/L) and 10-4% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  3. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    NASA Astrophysics Data System (ADS)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  4. Amorphous indium gallium zinc oxide thin film grown by pulse laser deposition technique

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2016-05-01

    Highly electrically conducting and transparent in visible light IGZO thin film were grown on glass substrate at substrate temperature of 400 C by a pulse laser deposition techniques. Structural, surface, electrical, and optical properties of IGZO thin films were investigated at room temperature. Smooth surface morphology and amorphous nature of the film has been confirmed from the AFM and GIXRD analysis. A resistivity down to 7.7×10-3 V cm was reproducibly obtained while maintaining optical transmission exceeding 70% at wavelengths from 340 to 780 nm. The carrier densities of the film was obtain to the value 1.9×1018 cm3, while the Hall mobility of the IGZO thin film was 16 cm2 V-1S-1.

  5. Raman spectroscopy of ZnMnO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Orozco, S.; Riascos, H.; Duque, S.

    2016-02-01

    ZnMnO thin films were grown by Pulsed Laser Deposition (PLD) technique onto Silicon (100) substrates at different growth conditions. Thin films were deposited varying Mn concentration, substrate temperature and oxygen pressure. ZnMnO samples were analysed by using Raman Spectroscopy that shows a red shift for all vibration modes. Raman spectra revealed that nanostructure of thin films was the same of ZnO bulk, wurzite hexagonal structure. The structural disorder was manifested in the line width and shape variations of E2(high) and E2(low) modes located in 99 and 434cm-1 respectively, which may be due to the incorporation of Mn ions inside the ZnO crystal lattice. Around 570cm-1 was found a peak associated to E1(LO) vibration mode of ZnO. 272cm-1 suggest intrinsic host lattice defects. Additional mode centred at about 520cm-1 can be overlap of Si and Mn modes.

  6. Structural characterization of InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2015-06-24

    In the present work we have grown InSb thin films on brass substrates, using the electrodeposition technique. The electrochemical baths used in the growth were made up of aqueous solutions of InCl{sub 3} and SbCl{sub 3} mixed together in various proportions. The films grown were characterized by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Analysis of X-rays (EDAX). Compositional studies show that stoichiometric InSb films can be prepared from a bath containing 0.05M InCl{sub 3} and 0.04M SbCl{sub 3}. XRD studies reveal that the films grown are polycrystalline having the zinc blende structure with (111) orientation. Crystallite size, dislocation density and strain were calculated using the XRD results. Optical transmission spectra were recorded using an FTIR spectrophotometer. The value of direct band gap was found to be around 0.20 eV for the thin films having the best stoichiometry.

  7. Self-assembled hierarchical 3D - NiO microspheres with ultra-thin porous nanoflakes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Thorat, Gaurav M.; Mun, Junyoung; Seo, Jeong Gil

    2016-01-01

    Transition metal oxides have attracted great attention as an anode material for next generation lithium ion batteries. Here we report the preparation of self-assembled hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes by simple and cost effective urea assisted chemical co-precipitation method followed by annealing at different temperature. It is noteworthy that the annealing temperature has an impact on the formation of different morphologies and resultantly on the electrochemical performance. This hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes shows enhanced electrochemical performance with a large reversible capacity, superior cyclic performance, high rate capability, and improved ionic conductivity as an anode material for lithium ion batteries. A high reversible capacity up to 795 mA h g-1 after 150 cycles at a rate of 0.5 C, and a capacity higher than 460.2 mA h g-1 at a rate as high as 10 C were obtained for optimized NiO sample. In particular, enhancement of the electrochemical performance was attributed to the high specific surface area, good electric contact among the particles, and easier lithium ion diffusion.

  8. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  9. Oxygen measurements in thin ribbon silicon. [edge-defined film-fed grown

    NASA Technical Reports Server (NTRS)

    Hyland, S. L.; Ast, D. G.; Baghdadi, A.

    1987-01-01

    The oxygen content of thin silicon ribbons grown by the dendritic web technique was measured using a modification of the ASTM method based on Fourier transform infrared spectroscopy. Web silicon was found to have a high oxygen content, ranging from 13 to 19 ppma, calculated from the absorption peak associated with interstitial oxygen and using the new ASTM conversion coefficient. The oxygen concentration changed by about 10 percent along the growth direction of the ribbon. In some samples, a shoulder was detected on the absorption peak. A similar shoulder in Czochralski grown material has been variously interpreted in the literature as due to a complex of silicon, oxygen, and vacancies, or to a phase of SiO2 developed along dislocations in the material. In the case of web silicon, it is not clear which is the correct interpretation.

  10. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  11. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  12. Optical Properties Of {beta}-FeSi2 Thin Films Grown By Magnetron Sputtering

    SciTech Connect

    Tatar, B.; Kutlu, K.

    2007-04-23

    {beta}-FeSi2 semiconductor thin films have been grown on Si(100) and Si(111) substrate at room temperature by unbalanced magnetron sputtering. The thicknesses of {beta}-FeSi2 thin films have been prepared to have value between 0.3-1{mu}m. Optical characteristic of the {beta}-FeSi2 films have been deduced using Fourier Transform Infrared Spectroscopy (FT-IR) in the wavelength range 1000-2000nm. The {beta}-FeSi2 films have been determinated to have optical direct band gap from the plot of ({alpha}h{upsilon})2 vs. h{upsilon} The direct band gap values of the films have been observed to vary between 0.82-0.89 eV depending on the type of substrates.

  13. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  14. Highly crystalline MoS{sub 2} thin films grown by pulsed laser deposition

    SciTech Connect

    Serrao, Claudy R.; You, Long; Gadgil, Sushant; Hu, Chenming; Salahuddin, Sayeef; Diamond, Anthony M.; Hsu, Shang-Lin; Clarkson, James; Carraro, Carlo; Maboudian, Roya

    2015-02-02

    Highly crystalline thin films of MoS{sub 2} were prepared over large area by pulsed laser deposition down to a single monolayer on Al{sub 2}O{sub 3} (0001), GaN (0001), and SiC-6H (0001) substrates. X-ray diffraction and selected area electron diffraction studies show that the films are quasi-epitaxial with good out-of-plane texture. In addition, the thin films were observed to be highly crystalline with rocking curve full width half maxima of 0.01°, smooth with a RMS roughness of 0.27 nm, and uniform in thickness based on Raman spectroscopy. From transport measurements, the as-grown films were found to be p-type.

  15. A study on the epitaxial Bi2Se3 thin film grown by vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Cheng; Chen, Yu-Sung; Lee, Chao-Chun; Wu, Jen-Kai; Lee, Hsin-Yen; Liang, Chi-Te; Chang, Yuan Huei

    2016-06-01

    We report the growth of high quality Bi2Se3 thin films on Al2O3 substrates by using chemical vapor deposition. From the atomic force microscope, x-ray diffraction and transmission electron microscope measurements we found that the films are of good crystalline quality, have two distinct domains and can be grown epitaxially on the Al2O3 substrate. Carrier concentration in the sample is found to be 1.1 × 1019 cm-3 between T = 2 K to T = 300 K, and electron mobility can reach 954 cm2/V s at T = 2 K. Weak anti-localization effect is observed in the low temperature magneto-transport measurement for the sample which indicates that the thin film has topological surface state.

  16. Scaling behavior of ZnPc thin films grown on CuI interlayers

    NASA Astrophysics Data System (ADS)

    Lee, Jinho; Jin, Sung-Il; Park, Chan Ryang; Yim, Sanggyu

    2015-01-01

    The growth behavior and consequent surface morphology evolution of zinc phthalocyanine (ZnPc) thin films deposited on a CuI interlayer were studied using atomic force microscopy and height difference correlation function (HDCF) analysis. The planar phthalocyanine thin films grown on non-interacting substrates have previously been reported to show anomalous scaling behavior such as large growth exponents, ß, sometimes larger than 0.5, and small anomaly values, ρ, typically smaller than 0.6. In contrast, ZnPc thin films on a CuI interlayer (CuI/ ZnPc) in this work showed conventional scaling behavior with a ß value of 0.26 ± 0.05 and a ρ value of 0.91. The HDCF analyses and x-ray diffraction results indicate that the expected interdigitated electron donor-acceptor interface was hardly formed for the CuI/ZnPc thin film system due to the lack of surface-parallel crystallites with high step edge barriers.

  17. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application

    SciTech Connect

    Zhu, Jianhui; Jiang, Jian; Liu, Jingping; Ding, Ruimin; Ding, Hao; Feng, Yamin; Wei, Guangming; Huang, Xintang

    2011-03-15

    Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni{sub 2}(OH){sub 2}CO{sub 3}) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni{sub 2}(OH){sub 2}CO{sub 3} NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 {sup o}C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with {approx}93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems. -- Graphical abstract: Porous NiO nanowall arrays (NWAs) grown on alloy substrate have been made using nullaginite as precursor and studied as supercapacitor electrodes. Porous nanowalls interconnected with each other resulting in the formation of extended-network architectures and exhibited excellent capacitor properties. NiO NWAs electrode delivered a capacitance of 270 F/g (0.67 A/g); even at high current density, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Besides, it exhibited excellent cycle lifetime with {approx}93% capacitance kept after 4000 cycles. These remarkable results made it possible for mass production of NiO NWAs and future thin-film microelectronic applications. Display Omitted Research highlights: {yields} Large-scale nullaginite (Ni{sub 2}(OH){sub 2}CO{sub 3}) nanowall arrays (NWAs) have been synthesized on

  18. Growth mechanism of CuZnInSe2 thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, Ya Hsin; Yang, Chu Shou; Wu, Chia Hsing; Chiu, Jai Wei; Yang, Min De; Wu, Chih-Hung

    2013-09-01

    CuZnInSe2 (CZIS) has potential application in solar cell for absorption layer, and give an advantage to change the band gap from CuInSe2 (1.02 eV) to ZnSe (2.67 eV). Using molecular beam epitaxy technology, the CZIS thin films were grown via CuInSe (CIS) and ZnSe base. In the case of CIS, thin films were grown on Mo-coated soda lime glass with various zinc flux. CIS was transformed into chalcopyrite and sphalerite coexisting CZIS easily but it is difficult to transform into the pure sphalerite CZIS. Zn/(Zn+In+Cu) ratio has limited to approximate 36 at% and the excess-Zn played a catalyst role. In the case of ZnSe base, which was grown on GaAs (001), various In and Cu flux defined as the TIn series and TCu series, respectively. There are four types of compound in the TIn series and TCu series, including ZnSe, InxSey, ZnIn2Se4 (ZIS) and CZIS. In the TIn series under the lowest In and Cu flux, selenium (Se) were randomly combined with cations to form the CZIS. When TIn is increased in this moment, the CZIS was transformed into ZIS. In the TCu series, CZIS demonstrated via In-rich ZIS (Zn(In, Cu)Se) and InxSey base ((Zn, Cu)InSe). It is chalcopyrite and sphalerite coexisting structure in the medium TCu region. In the high TCu region, it is transformed into the Zn-poor and Cu-rich CZIS.

  19. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Morosanu, C.; Iliescu, M.; Mihailescu, I. N.

    2004-04-01

    Hydroxyapatite (HA) thin films for applications in the biomedical field were grown by pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (RF-MS) techniques. The depositions were performed from pure hydroxyapatite targets on Ti-5Al-2.5Fe (TiAlFe) alloys substrates. In order to prevent the HA film penetration by Ti atoms or ions diffused from the Ti-based alloy during and after deposition, the substrates were pre-coated with a thin buffer layer of TiN. In both cases, TiN was introduced by reactive PLD from TiN targets in low-pressure N 2. The PLD films were grown in vacuum onto room temperature substrates. The RF-MS films were deposited in low-pressure argon on substrates heated at 550 °C. The initially amorphous PLD thin films were annealed at 550 °C for 1 h in ambient air in order to restore the initial crystalline structure of HA target. The thickness of the PLD and RF-MS films were ˜1 μm and ˜350 nm, respectively. All films were structurally studied by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray spectrometry (EDS) and white light confocal microscopy (WLCM). The mechanical properties of the films were tested by Berkovich nano-indentation. Both PLD and RF-MS films mostly contain HA phase and exhibit good mechanical characteristics. Peaks of CaO were noticed as secondary phase in the GIXRD patterns only for RF-MS films. By its turn, the sputtered films were smoother as compared to the ones deposited by PLD (50 nm versus 250 nm average roughness). The RF-MS films were harder, more mechanically resistant and have a higher Young modulus.

  20. Induced polarized state in intentionally grown oxygen deficient KTaO{sub 3} thin films

    SciTech Connect

    Mota, D. A.; Romaguera-Barcelay, Y.; Tkach, A.; Agostinho Moreira, J.; Almeida, A.; Perez de la Cruz, J.; Vilarinho, P. M.; Tavares, P. B.

    2013-07-21

    Deliberately oxygen deficient potassium tantalate thin films were grown by RF magnetron sputtering on Si/SiO{sub 2}/Ti/Pt substrates. Once they were structurally characterized, the effect of oxygen vacancies on their electric properties was addressed by measuring leakage currents, dielectric constant, electric polarization, and thermally stimulated depolarization currents. By using K{sub 2}O rich KTaO{sub 3} targets and specific deposition conditions, KTaO{sub 3-{delta}} oxygen deficient thin films with a K/Ta = 1 ratio were obtained. Room temperature X-ray diffraction patterns show that KTaO{sub 3-{delta}} thin films are under a compressive strain of 2.3% relative to KTaO{sub 3} crystals. Leakage current results reveal the presence of a conductive mechanism, following the Poole-Frenkel formalism. Furthermore, dielectric, polarization, and depolarization current measurements yield the existence of a polarized state below T{sub pol} {approx} 367 Degree-Sign C. A Cole-Cole dipolar relaxation was also ascertained apparently due to oxygen vacancies induced dipoles. After thermal annealing the films in an oxygen atmosphere at a temperature above T{sub pol}, the aforementioned polarized state is suppressed, associated with a drastic oxygen vacancies reduction emerging from annealing process.

  1. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  2. Angle-resolved X-ray photoelectron spectroscopy of topmost surface for LaNiO 3 thin film grown on SrTiO 3 substrate by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, S. Y.; Lin, J.; Ong, C. K.; Cui, D. F.

    1999-01-01

    The LaNiO 3 thin film was grown on SrTiO 3 (001) substrate by computer-controlled laser molecular beam epitaxy (laser MBE). In situ monitoring of the growing film surface was performed with a reflection high energy electron diffraction (RHEED). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) indicated that the terminating plane of the LaNiO 3 film was the LaO atomic plane, and the SrTiO 3 (001) surfaces of as-supplied substrate as well as HF-pretreated substrate were predominantly terminated with TiO atomic plane. The structural conversion of the topmost atomic layer from NiO to LaO occurred during the LaNiO 3 epitaxial growth process.

  3. The magnetic and chemical structural property of the epitaxially-grown multilayered thin film

    NASA Astrophysics Data System (ADS)

    Lee, Hwachol

    L10 FePt- and Fe-related alloys such as FePtRh, FeRh and FeRhPd have been studied for the high magnetocrystalline anisotropy and magnetic phase transition property for the future application. In this work, the thin film structural and magnetic property is investigated for the selected FePtRh and FeRhPd alloys. The compositionally-modulated L10 FePtRh multilayered structure is grown epitaxially on a-plane Al2O3 with Cr and Pt buffer layer at 600degC growth temperature by DC sputtering technique and examined for the structural, interfacial and magnetic property. For the epitaxially grown L10 [Fe50Pt45Rh5 (FM) (10nm) / Fe50Pt25Rh25 (AFM) (20nm)]x8 superlattice, the magnetically and chemically sharp interface formation between layers was observed in X-ray diffraction, transmission electron microscopy and polarized neutron reflectivity measurements with the negligible exchange bias at room and a slight coupling effect at lower temperature regime. For FeRhPd, the magnetic phase transition of epitaxially-grown 111-oriented Fe46Rh48Pd6 thin film is studied. The applied Rhodium buffer layer on a-plane Al2O3 (11 20) at 600degC shows the extraordinarily high quality of epitaxial film in (111) orientation, where two broad and coherent peak in rocking curve, and Laue oscillations are observed. The epitaxially-grown Pd-doped FeRh on Pt (111) grown at 600degC, 700degC exhibits the co-existing stable L10 (111) and B2 (110) structures and magnetic phase transition around 300degC. On the other hand, the partially-ordered FeRhPd structure grown at 400degC, 500degC shows background high ferromagnetic state over 5K˜350K temperature. For the reduced thickness of Fe46Rh48Pd 6, the ferromagnetic state becomes dominant with a reduced portion of the film undergoing a magnetic phase transition. For some epitaxial FeRhPd film, the spin-glass-like disordered state is also observed in field dependent SQUID measurement. For the tri-layered FeRhPd with thin Pt spacer, the background

  4. Structural and optical characterization of MOCVD-grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pagni, O.; James, G. R.; Leitch, A. W. R.

    2004-03-01

    We report on the characterization of ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) using diethyl zinc (DEZ) and tert-butanol (TBOH) as precursors. Substrate temperature proved to be a crucial factor in the crystallization process, as it vastly impacted the structural properties of the samples studied. Highly c-axis oriented films with large grain size (52 nm), low tensile strain (0.6%), uniform substrate coverage and a columnar structure devoid of hexagonal needles were successfully deposited on n-Si (100) substrates. The temperature-dependent luminescence spectra recorded confirmed the excellent quality of the material obtained in this work. Our results so far set TBOH apart as an outstanding oxygen source for the MOCVD growth of ZnO.

  5. Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles.

    PubMed

    Lopez-Santos, C; Alvarez, R; Garcia-Valenzuela, A; Rico, V; Loeffler, M; Gonzalez-Elipe, A R; Palmero, A

    2016-09-30

    Porous thin films grown at oblique angles by evaporation techniques are formed by tilted nanocolumnar structures which, depending on the material type and growth conditions, associate along certain preferential directions, giving rise to large domains. This arrangement, commonly denoted as bundling association, is investigated in the present work by performing fundamental experiments and growth simulations. It is proved that trapping processes of vapor species at the film surface, together with the shadowing mechanism, mediate the anisotropic widening of the nanocolumns and promote their preferential coalescence along certain directions, giving rise to domains with different shape and size. The role of these two processes is thoroughly studied in connection with the formation of these domains in materials as different as SiO2 and TiO2. PMID:27535651

  6. As-grown superconducting Bi-Sr-Ca-Cu-O thin films by coevaporation

    SciTech Connect

    Satoh, T.; Yoshitake, T.; Miura, S.; Fujita, J.; Kubo, Y.; Igarashi, H.

    1989-08-14

    Superconducting Bi-Sr-Ca-Cu-O thin films have been prepared on (100) MgO substrates at about 600 /degree/C by coevaporation. The /ital c/-axis lattice constant of this system was controlled to the values of 24--43 A by changing film composition. Superconducting transition temperatures of these films were affected by substrate temperature and by a post-deposition annealing at a low temperature. The highest zero resistance temperature (/ital T//sub /ital c/, zero/) of the as-grown Bi/sub 2/(Sr,Ca)/sub 3/Cu/sub 2/O/sub /ital x// film was 79 K. The best Bi/sub 2/(Sr, Ca)/sub 4/Cu/sub 3/O/sub /ital x// film showed an onset temperature of 105 K and /ital T//sub /ital c/, zero/ zero of 78 K after annealing at 400 /degree/C for 1 h.

  7. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  8. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGESBeta

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  9. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  10. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  11. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Keen, B.; Makin, R.; Stampe, P. A.; Kennedy, R. J.; Sallis, S.; Piper, L. J.; McCombe, B.; Durbin, S. M.

    2014-04-01

    The alloying of bismuth with III-V semiconductors, in particular GaAs and InAs thin films grown by molecular beam epitaxy (MBE), has attracted considerable interest due to the accompanying changes in band structure and lattice constant. Specifically, bismuth incorporation in these compounds results in both a reduction in band gap (through shifting of the valence band) and an increase in the lattice constant of the alloy. To fully understand the composition of these alloys, a better understanding of the binary endpoints is needed. At present, a limited amount of literature exists on the III-Bi family of materials, most of which is theoretical work based on density functional theory calculations. The only III-Bi material known to exist (in bulk crystal form) is InBi, but its electrical properties have not been sufficiently studied and, to date, the material has not been fabricated as a thin film. We have successfully deposited crystalline InBi on (100) GaAs substrates using MBE. Wetting of the substrate is poor, and regions of varying composition exist across the substrate. To obtain InBi, the growth temperature had to be below 100 °C. It was found that film crystallinity improved with reduced Bi flux, into an In-rich regime. Additionally, attempts were made to grow AlBi and GaBi.

  12. Characterization of strontium barium niobate optical thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, H.; Li, S.; Fernandez, F. E.; Jia, W.; Liu, G.

    1999-12-01

    Optical quality thin films of strontium barium niobate SrxBa1-xNb2O6 either undoped or Eu3+-doped has been successfully grown on fused quartz substrates using pulsed laser deposition (PLD) technique. The optical properties were characterized in either time domain or in frequency domain. Undoped SBN thin films show a broad-band emission at UV, extending to the visible, which attributes to the exciton luminescence of the SBN host in the film. High-resolution nonlinear optical response in the picosecond region, as well as the third-order susceptibility were characterized by degenerate four-wave-mixing (DFWM) measurements. A considerable enhancement, by 2 orders of magnitude, of the third order nonlinear susceptibility χ(3) in transverse alignment was observed with respect to the bulk values. Eu3+-doped SBN films show a significant change in optical properties with annealing process. The fine structure of 5D0 to 7F multiplet emission was well resolved in the annealed sample. In a hole-burning experiment, a hole of width 100 MHz with depth as high as 30% was burnt using laser pumping at 5774 Å. It is suggested that Eu3+ ions may substitute Nb, occupying 6-fold sites.

  13. Characterization of strontium barium niobate optical thin film grown by pulsed laser deposition

    SciTech Connect

    Liu, H.; Fernandez, F. E.; Jia, W.; Li, S.; Liu, G.

    1999-12-02

    Optical quality thin films of strontium barium niobate Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} either undoped or Eu{sup 3+}-doped has been successfully grown on fused quartz substrates using pulsed laser deposition (PLD) technique. The optical properties were characterized in either time domain or in frequency domain. Undoped SBN thin films show a broad-band emission at UV, extending to the visible, which attributes to the exciton luminescence of the SBN host in the film. High-resolution nonlinear optical response in the picosecond region, as well as the third-order susceptibility were characterized by degenerate four-wave-mixing (DFWM) measurements. A considerable enhancement, by 2 orders of magnitude, of the third order nonlinear susceptibility {chi}{sup (3)} in transverse alignment was observed with respect to the bulk values. Eu{sup 3+}-doped SBN films show a significant change in optical properties with annealing process. The fine structure of {sup 5}D{sub 0} to {sup 7}F multiplet emission was well resolved in the annealed sample. In a hole-burning experiment, a hole of width 100 MHz with depth as high as 30% was burnt using laser pumping at 5774 A. It is suggested that Eu{sup 3+} ions may substitute Nb, occupying 6-fold sites.

  14. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2015-12-01

    Titanium doped tungsten oxide (Ti:WO3) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O2 atmosphere. Ti:WO3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10-3-5.0 × 10-3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm2) and tungsten (3 W/cm2) were kept constant. Ti:WO3 films deposited at an oxygen pressure of 5 × 10-3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm2/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: -22.01 mC/cm2, Qa: 17.72 mC/cm2), reversibility (80%) and methylene blue decomposition rate (-1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO3 films.

  15. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    NASA Astrophysics Data System (ADS)

    Chason, E.; Karlson, M.; Colin, J. J.; Magnfält, D.; Sarakinos, K.; Abadias, G.

    2016-04-01

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  16. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Mayr, Lukas; Stöger-Pollach, Michael; Klötzer, Bernhard; Penner, Simon

    2015-03-01

    Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films ("YSZ", 8 mol% Y2O3) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  17. Systematic process development towards high performance transferred thin silicon solar cells based on epitaxially grown absorbers

    NASA Astrophysics Data System (ADS)

    Murcia Salazar, Clara Paola

    ). First principles modeling, however, predicts that efficiencies of 20+% are achievable with less than 20 mum of c-Si. In addition to a high voltage design, this work reports state of the art epitaxial c-Si solar cell performance and a path towards 20+%-efficient transferred epitaxial solar cells. The design and fabrication approach is based on high open circuit voltage first, high short circuit current second. A first design is a thin solar cell grown on a conductive silicon wafer. This structure allows developing processes to increase bulk lifetime and reduce surface recombination. Important processes that can be used for a transferred solar cell such as increased fill factor (FF) are developed at this stage. A second design is based on the use of a separation layer prior to the solar cell growth. We achieve a comparable performance with the second design. A third design includes the transfer of the solar cell to a secondary substrate. Initial processing development is reported for the transferred solar cells. Improvements in solar cell critical parameters have been characterized with a combination of predictive modeling and solar cell diagnostic tools such as quantum efficiency and voltage measurements. Fabrication processes have been developed to improve solar cell performance. The combination of process development, test structures, systematic fabrication, testing and analysis concludes with a path to high voltage, transferred thin c-Si solar cells towards 20+% efficiencies.

  18. Effect of precursor on epitaxially grown of ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate by hydrothermal technique

    SciTech Connect

    Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.; Kim, Jin Soo; Yu, Yeon-Tae; Han, Myung-Soo; Park, Young-Sik; Lee, In-Hwan

    2008-03-04

    Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the film grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.

  19. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix Till

    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic alpha-phase to the beta-phase occurs at 313 K. The magnetic state of the beta-phase has remained controversial. A second order transition to the paramagnetic gamma-phase takes place at 398 K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of alpha- and beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3 is demonstrated to be effective for patterning MnAs. We show

  20. Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    SciTech Connect

    Halliday, Matthew T.; Joly, Alan G.; Hess, Wayne P.; Shluger, AL

    2015-10-22

    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.

  1. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Hunt, S.; Teplyakov, A.; Opila, R. L.

    2010-12-01

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H 2O 2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH 4) 2S and RCA procedures giving the best RMS values (˜0.5-0.8 nm).

  2. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  3. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    SciTech Connect

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-07-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10{sup -4} and 6 x 10{sup -4} {Omega} cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10{sup -3} {Omega}{sup -1} for ITO higher than 0.55 x 10{sup -3} {Omega}{sup -1} for FTO.

  4. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmgrown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600 °C has been studied. x-ray diffraction (XRD) measurements revealed an (011) out-of-plane textured growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  5. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  6. Dynamics of surface evolution in semiconductor thin films grown from a chemical bath.

    PubMed

    Gupta, Indu; Mohanty, Bhaskar Chandra

    2016-01-01

    Dynamics of surface evolution in CdS thin films grown by chemical bath deposition technique has been studied from time sequence of atomic force micrographs. Detailed scaling analysis of surface fluctuation in real and Fourier space yielded characteristic exponents αloc = 0.78 ± 0.07, α = 2.20 ± 0.08, αs = 1.49 ± 0.22, β = 0.86 ± 0.05 and βloc = 0.43 ± 0.10, which are very different from those predicted by the local growth models and are not related to any known universality classes. The observed anomalous scaling pattern, characterized by power law scaling dependence of interface width on deposition time differently at local and global scale, with rapid roughening of the growth front has been discussed to arise as a consequence of a nonlocal effect in the form of diffusional instability. PMID:27615367

  7. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  8. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  9. Diamond thin films grown by microwave plasma assisted chemical vapor deposition

    SciTech Connect

    Leksono, M.

    1991-09-05

    Undoped and boron doped diamond thin films have been successfully grown by microwave plasma chemical vapor deposition from CH{sub 4}, H{sub 2}, and B{sub 2}H{sub 6}. The films were characterized using x- ray diffraction techniques, Raman and infrared spectroscopies, scanning electron microscopy, secondary ion mass spectrometry, and various electrical measurements. The deposition rates of the diamond films were found to increase with the CH{sub 4} concentration, substrate temperature, and/or pressure, and at 1.0% methane, 900{degrees}C, and 35 Torr, the value was measured to be 0.87 {mu}m/hour. The deposition rate for boron doped diamond films, decreases as the diborane concentration increases. The morphologies of the undoped diamond films are strongly related to the deposition parameters. As the temperature increases from 840 to 925 C, the film morphology changes from cubo-octahedron to cubic structures, while as the CH{sub 4} concentration increases from 0.5 to 1.0%, the morphology changes from triangular (111) faces with a weak preferred orientation to square (100) faces. At 2.0% Ch{sub 4} or higher the films become microcrystalline with cauliflower structures. Scanning electron microscopy analyses also demonstrate that selective deposition of undoped diamond films has been successfully achieved using a lift-off process with a resolution of at least 2 {mu}m. The x-ray diffraction and Raman spectra demonstrate that high quality diamond films have been achieved. The concentration of the nondiamond phases in the films grown at 1.0% CH{sub 4} can be estimated from the Raman spectra to be at less than 0.2% and increases with the CH{sub 4} concentration. The Raman spectra of the boron doped diamond films also indicate that the presence of boron tends to suppress the nondiamond phases in the films. Infrared spectra of the undoped diamond films show very weak CH stretch peaks which suggest that the hydrogen concentration is very low.

  10. Ultrafast structural dynamics of LaVO3 thin films grown by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Brahlek, Matthew; Lapano, Jason; Stoica, Vladimir; Zhang, Lei; Zhang, Hai-Tian; Akamatsu, Hirofumi; Eaton, Craig; Gopalan, Venkatraman; Freeland, John; Wen, Haidan; Engel-Herbert, Roman

    LaVO3, with a partially full d-shell is expected to be metallic, but due to electron-electron interactions a gap emerges and the ground state is a Mott insulator. Such effects are a strong function of the bonding geometry, and particularly the V-O-V bond angle. Controlling these structural effects on the ultrafast time scale can lead to control over the underlying electronic ground state. Here we report the ultrafast structural dynamics of 25 and 50 nm thick LaVO3 thin films grown by the hybrid molecular beam epitaxy technique on SrTiO3 when excited across the bandgap by 800 nm light. Using time-resolved x-ray diffraction on the 100 ps time scale at Sector 7 of the Advanced Photon Source, we directly measured the structural changes with atomic accuracy by monitoring integer Bragg diffraction peaks and find a large out-of-plane strain of 0.18% upon optical excitation; the recovery time is ~1 ns for the 25 nm film and ~2 ns for the 50 nm film, consistent with the thermal transport from the film to the substrate. Further, we will discuss the response of the oxygen octahedral rotation patterns indicated by changes of the half-order diffraction peaks. Understanding such ultrafast structural deformation is important for optimizing optical excitations to create new metastable phases starting from a Mott insulator. This work was supported by the Department of Energy under Grant DE-SC0012375, and DE-AC02-06CH11357.

  11. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    SciTech Connect

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.

  12. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires. PMID:26671780

  13. Nucleation and stochiometry dependence of rutile-TiO2 thin films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Constantin, Costel; Sun, Kai; Feenstra, R. M.

    2008-03-01

    Considerable interest has been shown of late in transition-metal oxides. One case is the titanium dioxide system, which can have applications as a high-k dielectric gate insulator for Si-based devicesootnotetextZ. J. Luo et al., Appl. Phys. Lett. 79, 2803. In this study, rutile-TiO2 thin films were grown on GaN(0001) substrates by oxygen plasma-assisted molecular beam epitaxy. Two sets of films were grown, one in which the initial GaN surface is prepared WITH the pseudo 1x1 Ga-rich surface reconstruction, and the other set, WITHOUT the pseudo 1x1. On top of these two type of surfaces, the rutile-TiO2 thin films were grown at Ts˜ 600 ^oC, and with a thickness ˜ 40 - 50 nm. During growth, reflection high-energy electron diffraction indicated a reversible stoichiometry transition from O-rich to Ti-rich growth. Post-growth x-ray diffraction measurements performed on the samples WITHOUT the GaN pseudo 1x1, show the presence of additional peaks at 2θ = 52.9^o, which implies the existence of additional phases. In addition, the high-resolution transmission electron microscopy performed on these samples show a high degree of disorder, as compared to the samples prepared WITH the pseudo 1x1. Work supported by ONR.

  14. Titanium Isopropoxide Precursor Volume Consumption as a Function of Temperature for Titanium Dioxide Thin Films Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Constantin, Costel

    2012-02-01

    Atomic layer deposition (ALD) offers tremendous opportunities for controlling material synthesis on an atomic level and for creating nanolayers with unique new functionalities. ALD is a chemical gas phase thin film deposition method based on alternating surface reactions that employs two or more precursors. ALD is often used for growth of high k dielectric constant oxide films. Titanium dioxide material have a k value of 80, and a band gap of ˜ 3 eV, and due to strong oxidizing properties thin films coated on construction materials and glass have fog proof, and self cleaning properties. Our ALD reactor employs liquid Titanium Isopropoxide [TiOCH(CH3)24] as a metal precursor and distilled H2O as an oxygen source to grow thin films of titanium dioxide [TiO2] on silicon [Si], gallium nitride [GaN], and Aluminium foil [Al-foil] substrates. Titanium Isopropoxide exhibit a vapor pressure surge above 40^o C and we report the volume precursor consumption as a function of precursor temperature and thin film thickness for ALD grown TiO2 on Si, GaN, and Al-foil substrates. We will also present dielectric constants of the TiO2 thin films measured with a variable angle spectroscopic ellipsometer.

  15. Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy

    SciTech Connect

    Wang, Quan; Zhang, Yanmin; Hu, Ran; Ren, Naifei; Ge, Daohan

    2013-11-14

    Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

  16. Structural and magnetic properties of epitaxial CrO2 thin films grown on TiO2 (001) substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Xueyu; Zhong, Xing; Visscher, P. B.; LeClair, Patrick R.; Gupta, Arunava

    2013-04-01

    The structural and magnetic properties of epitaxial CrO2 thin films grown on (001)-oriented TiO2 substrates by atmospheric pressure chemical vapor deposition are investigated. Due to the competition between demagnetization and a relatively weak perpendicular magnetocrystalline anisotropy, the deposited CrO2 (001) films exhibit magnetic properties that are significantly different from CrO2 (100) and CrO2 (110) films grown on TiO2 substrates. Based on the thickness dependence of M-H curves, a surface anisotropy is confirmed to exist, likely originating from strain in the film. The out-of-plane hysteresis curves can be well described by a distribution of effective anisotropy that may be due to a varying local demagnetizing field and a distribution of strain across the film. For the in-plane magnetization, the hysteresis curves are consistent with stripe or vortex domain structures of an almost closed flux configuration at remanence.

  17. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    SciTech Connect

    Brendel, V M; Garnov, S V; Yagafarov, T F; Iskhakova, L D; Ermakov, R P

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry to targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)

  18. Enhanced Carrier Generation in Nb-Doped SnO2 Thin Films Grown on Strain-Inducing Substrates

    NASA Astrophysics Data System (ADS)

    Nakao, Shoichiro; Yamada, Naoomi; Hirose, Yasushi; Hasegawa, Tetsuya

    2012-06-01

    We report the effect of lattice strain from the substrate on carrier generation in Nb-doped SnO2 (NTO) transparent conductive oxide (TCO) thin films. The carrier activation efficiency of Nb was strongly affected by in-plane tensile strain, and the NTO films grown on c-Al2O3 and anatase TiO2 seed layers had carrier density (ne) as high as 3×1020 cm-3. In contrast, strain-free NTO films grown on glass exhibited much smaller ne due to the formation of deep impurity levels. These results imply that NTO has potential as a practical TCO in the presence of substrate-film epitaxial interaction.

  19. X-ray Investigation of Ferromagnetic MnAs Thin Films Grown on GaAs(001) by MBE

    NASA Astrophysics Data System (ADS)

    Huang, S.; Ming, Z. H.; Soo, Y. L.; Kao, Y. H.; Tanaka, M.; Munekata, H.

    1996-03-01

    Quantitative characterization of the microstructures in epitaxial layers grown by MBE is essential for understanding the dynamical processes of epitaxy and surface morphology. In the present study, various x-ray techniques including grazing incidence x-ray scattering (GIXS), x-ray diffraction (XRD), and extended x-ray absorption fine structure (EXAFS) have been employed to investigate the microstructures of two MnAs thin films grown on GaAs(001) by using two different growth templates. The film structures are compared in terms of the interfacial roughness, lattice constants, epilayer thickness, local environment surrounding the Mn atoms, coordination number, and local disorder. These results provide quantitative evidence for the effects of template on the local structure and crystallinity of the MnAs films which can be correlated with the observed difference in their physical properties such as the easy magnetization direction, etc.. * Research is supported in part by DOE.

  20. As-grown Y-Ba-Cu-O thin films by reactive coevaporation with oxygen plasma cooling

    NASA Astrophysics Data System (ADS)

    Matsumoto, M.; Akoh, H.; Takada, S.

    1989-10-01

    We have developed a new fabrication process of as-grown Y-Ba-Cu-O thin films using a reactive coevaporation method specially with the rf-plasma cooling in the low oxygen pressure of 0.4 mTorr. By this O2 plasma cooling process, the transition temperature Tc is improved from 40 to 81 K for the film with a thickness of 1000 Å. The x-ray diffraction analysis shows that the activated oxygen species generated by the rf plasma make Y-Ba-Cu-O films oxidize sufficiently even in the low pressure of oxygen. In addition, we have studied the thickness dependence of Tc for as-grown films with various thicknesses of 60-2000 Å.

  1. As-grown Y-Ba-Cu-O thin films by reactive coevaporation with oxygen plasma cooling

    SciTech Connect

    Matsumoto, M.; Akoh, H.; Takada, S. )

    1989-10-15

    We have developed a new fabrication process of as-grown Y-Ba-Cu-O thin films using a reactive coevaporation method specially with the rf-plasma cooling in the low oxygen pressure of 0.4 mTorr. By this O{sub 2} plasma cooling process, the transition temperature {ital T}{sub {ital c}} is improved from 40 to 81 K for the film with a thickness of 1000 A. The x-ray diffraction analysis shows that the activated oxygen species generated by the rf plasma make Y-Ba-Cu-O films oxidize sufficiently even in the low pressure of oxygen. In addition, we have studied the thickness dependence of {ital T}{sub {ital c}} for as-grown films with various thicknesses of 60--2000 A.

  2. High-quality Bi{sub 2}Te{sub 3} thin films grown on mica substrates for potential optoelectronic applications

    SciTech Connect

    Wang, K.; Bao, L. H.; Liu Yanwen; Wang Weiyi; Xiu Faxian; Meyer, N.; Che, X. Y.; He, L.; Lang, M. R.; Wang, K. L.; Chen, Z. G.; Post, K.; Basov, D. N.; Zou, J.

    2013-07-15

    We report high-quality topological insulator Bi{sub 2}Te{sub 3} thin films grown on muscovite mica substrates by molecular beam epitaxy. The topographic and structural analysis revealed that the Bi{sub 2}Te{sub 3} thin films exhibited atomically smooth terraces over a large area and a high crystalline quality. Both weak antilocalization effect and quantum oscillations were observed in the magnetotransport of the relatively thin samples. A phase coherence length of 277 nm for a 6 nm thin film and a high surface mobility of 0.58 m{sup 2} V{sup -1} s{sup -1} for a 4 nm thin film were achieved. These results confirm that the thin films grown on mica are of high quality.

  3. Strain effects in epitaxial Mn{sub 2}O{sub 3} thin film grown on MgO(100)

    SciTech Connect

    Dang Duc Dung; Duong Van Thiet; Duong Anh Tuan; Cho, Sunglae

    2013-05-07

    We report on the epitaxial growth and magnetic properties of Mn{sub 2}O{sub 3} thin films grown on MgO(001) substrate by molecular beam epitaxy. We observed the reduction in binding energy of Mn valence states, the increase in satellite separation up to 12.7 eV, and the smaller band gap of 3.32 eV. In addition, the antiferromagnetic ordering below 90 K in bulk changed to ferrimagnetic up to 175 K. The results were possibly to be explained by a lattice mismatch strain on Mn{sub 2}O{sub 3} film on MgO(001) substrate.

  4. Magnetic properties of MnAs thin films grown on GaAs (0 0 1) by MOVPE

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; May, S. J.; Chiu, P. T.; Wessels, B. W.

    2007-01-01

    The thickness dependence of the in-plane uniaxial anisotropy and coercive field of epitaxial MnAs thin films on GaAs (0 0 1) substrates has been determined from the magneto-optic Kerr effect. The metalorganic vapor phase epitaxy grown films are single α phase at room temperature with a B-type variant orientation. The coercive field of these films increases to a maximum for a film 35 nm thick and then decreases in thicker films. An increase in magnetic anisotropy field with increasing thickness is observed and is attributed to an increasing volume contribution to the anisotropy constant.

  5. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Chen, W. J.; Yang, C. S.; Tsai, Y. H.; Wang, H. H.; Chen, R. H.; Shen, J. L.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 °C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  6. Wet chemically grown composite thin film for room temperature LPG sensor

    NASA Astrophysics Data System (ADS)

    Birajadar, Ravikiran; Desale, Dipalee; Shaikh, Shaheed; Mahajan, Sandip; Upadhye, Deepak; Ghule, Anil; Sharma, Ramphal

    2014-04-01

    We have synthesized thin film of zinc oxide-polyaniline (ZnO/PANI) composite using a simple wet chemical approach. As-synthesized ZnO/PANI composite thin film studied using different characterization techniques. The optical study reveals the penetration and interaction of PANI molecules with ZnO thin film. Prominent blue shift in UV-vis due to interaction between ZnO and PANI indicate presence of zinc oxide in polyaniline matrix. It is observed that ZnO thin film is not sensitive to LPG (liquefied petroleum gas) at room temperature. On the other hand ZnO/PANI composite thin film shows good response and recovery behaviors at room temperature.

  7. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    NASA Astrophysics Data System (ADS)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  8. Effect of annealing on the properties of zinc oxide nanofiber thin films grown by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Sadananda Kumar, N.; Bangera, Kasturi V.; Shivakumar, G. K.

    2013-01-01

    Zinc oxide nanofiber thin films have been deposited on glass substrate by spray pyrolysis technique. The X-ray diffraction studies revealed that the films are polycrystalline with the hexagonal structure and a preferred orientation along (002) direction for films annealed for 1 h at 450 °C. Further increase in annealing time changes the preferred orientation to (100) direction. The scanning electron microscopic analysis showed the formation of ZnO nanofiber with an average diameter of approximately 800 nm for annealed films. The compositional analysis of nanofiber ZnO thin films were studied by time of flight secondary ion mass spectroscopy, which indicated oxygen deficiency in the films. The optical properties of annealed films have shown a variation in the band gap between 3.29 and 3.20 eV. The electrical conductivity of the as grown and annealed films showed an increase in the conductivity by two orders of magnitude with increase in annealing duration.

  9. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Hojabri, Alireza

    2016-09-01

    Zirconium oxide thin films were grown successfully by thermal annealing of zirconium thin films deposited on quartz and silicon substrates by direct current magnetron sputtering technique. The structural and optical properties in relation to thermal annealing times were investigated. The X-ray diffraction patterns revealed that structure of films changes from amorphous to crystalline by increase of annealing times in range 60-240 min. The composition of films was determined by Rutherford back scattering spectroscopy. Atomic force microscopy results exhibited that surface morphology and roughness of films depend on the annealing time. The refractive index of the films was calculated using Swanepoel's method. The optical band gap energy of annealed films decreased from 5.50 to 5.34 eV with increasing thermal annealing time.

  10. Unconventional magnetization of Fe3O4 thin film grown on amorphous SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Yin, Jia-Xin; Liu, Zhi-Guo; Wu, Shang-Fei; Wang, Wen-Hong; Kong, Wan-Dong; Richard, Pierre; Yan, Lei; Ding, Hong

    2016-06-01

    High quality single crystal Fe3O4 thin films with (111) orientation had been prepared on amorphous SiO2 substrate by pulsed laser deposition. The magnetization properties of the films are found to be unconventional. The Verwey transition temperature derived from the magnetization jump is around 140K, which is higher than the bulk value and it can be slightly suppressed by out-plane magnetic field; the out-of-plane magnetization, which is unexpectedly higher than the in-plane value, is also significantly increased as compared with the bulk value. Our findings highlight the unusual magnetization of Fe3O4 thin film grown on the amorphous SiO2 substrate.

  11. Electric fatigue in Pb(Nb,Zr,Sn,Ti)O3 thin films grown by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Zhai, Jiwei; Chen, Haydn

    2003-08-01

    Antiferroelectric Pb(Nb,Zr,Sn,Ti)O3 (PNZST) thin films were deposited via a sol-gel process on LaNiO3-buffered Pt/Ti/SiO2/Si substrates. The highly (100)-oriented LaNiO3 buffer layer facilitated the formation of high-quality PNZST films with a strong (100) preferred orientation. These films showed improved electric fatigue properties than those grown on Pt/Ti/SiO2/Si substrates. With increasing cycling field, the remanent polarization increases but the saturated polarization decreases. Fatigue properties of PNZST antiferroelectric thin films might be closely related to the nonuniform strain buildup due to switching that tends to stabilize the ferroelectric phase.

  12. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Tuzcuoglu, H.; Gabor, M. S.; Petrisor, T.; Tiusan, C.; Zighem, F.; Chérif, S. M.; Moch, P.

    2014-01-01

    10 nm and 50 nm Co2FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (Ta), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing Ta, while the uniaxial anisotropy field is nearly unaffected by Ta within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta. Finally, the FMR linewidth decreases when increasing Ta, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10-3 and 1.3×10-3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively).

  13. Crystal structure of thin oxide films grown on Zr-Nb alloys studied by RHEED

    NASA Astrophysics Data System (ADS)

    Khatamian, D.; Lalonde, S. D.

    1997-05-01

    The highly surface sensitive reflection high energy electron diffraction (RHEED) technique was used to determine thecrystal structure of oxide films grown on Zr-Nb alloys in air up to 673 K. The results show that the oxide films grown on Zr-2.5 wt% Nb(α-Zr + β-Zr) have a mixture of nearly-cubic-tetragona and monoclinic structures for films of 200 nm thick or less and that the outer layers of films thicker than 800 nm only have the monoclinic crystal structure. However, oxide films grown on Zr-20 wt% Nb (β-Zr) have a stabilized nearly-cubic-tetragonal structure for all film thicknesses, studied here, up to 2100 nm.

  14. Pseudo capacitive performance of copper oxide thin films grown by RF sputtering

    SciTech Connect

    Reddy, B. Purusottam; Ganesh, K. Sivajee; Hussain, O. M.

    2015-06-24

    Thin films of Copper Oxide were prepared by radio frequency magnetron sputtering on steel substrates maintained at 250°C under different RF powers ranging from 150W to 250W by keeping the sputtering pressure at 5.7×10{sup −3} mbar and O{sub 2}:Ar ratio of 1:7. The influence of RF power on the pseudo capacitive performance of thin films was studied. The X-ray diffraction studies and Raman studies indicates that all the thin films exhibits CuO phase. The electrochemical studies was done by using three electrode configuration with platinum as reference electrode. From the cyclic voltammetry studies a high rate pseudocapacitance of 227 mFcm{sup −2} at 0.5 mVs{sup −1} and 77% of capacity retention after 1000 cycles was obtained for the CuO thin films prepared at an RF power of 220W.

  15. Post-annealing effects on ZnS thin films grown by using the CBD method

    NASA Astrophysics Data System (ADS)

    Ahn, Heejin; Um, Youngho

    2015-09-01

    Herein, the structural, morphological, and optical properties of zinc sulfide (ZnS) thin films deposited via the chemical bath deposition method are reported. These films were deposited on soda-lime glass (SLG) substrates by using ZnSO4, thiourea, and 25% ammonia at 90 °C. The effect of changing the annealing temperature from 100 °C to 300 °C on the properties of the ZnS thin films was investigated. X-ray diffraction (XRD) patterns showed that the ZnS thin film annealed at 100 °C had an amorphous structure; however, as the annealing temperature was increased, the crystalline quality of the thin film was enhanced. Moreover, transmission measurements showed that the optical transmittance was about 80% for wavelengths above 500 nm. The band gap energy (E g ) value of the film annealed at 300 °C was decreased to about 3.82 eV.

  16. Optical, Electrical, and UV Photoresponse Properties of Fluorine-Doped ZnO Thin Films Grown on Flexible Mica Substrates

    NASA Astrophysics Data System (ADS)

    Kim, Younggyu; Leem, Jae-Young

    2015-12-01

    Fluorine-doped ZnO (FZO) thin films have several potential applications, for instance, in low-cost optoelectronic devices; understanding how their optical, electrical, and photoresponse properties depend on and can be controlled via the synthesis conditions is essential for application of these systems. In this study, FZO thin films with different annealing temperatures were grown on muscovite mica substrates via sol-gel spin-coating. In photoluminescence measurements, a strong peak in the ultraviolet (UV) region and a broad peak in the visible region were observed for all films, being strongly dependent on the annealing temperature. The transmittance of the annealed films was slightly higher than that of as-grown film, and the absorption edges in the transmittance spectra red-shifted with increasing annealing temperature. The optical bandgap and Urbach energy of the films were calculated from the absorption coefficient values, using the Tauc and Urbach relations, respectively. Finally, the electrical (i.e., resistivity and carrier concentration) and photoresponse properties of the films were investigated to assess their applicability for use in FZO-based UV detectors.

  17. KCl ultra-thin films with polar and non-polar surfaces grown on Si(111)7 × 7

    PubMed Central

    Beinik, Igor; Barth, Clemens; Hanbücken, Margrit; Masson, Laurence

    2015-01-01

    The growth of ultra-thin KCl films on the Si(111)7 × 7 reconstructed surface has been investigated as a function of KCl coverage and substrate temperature. The structure and morphology of the films were characterized by means of scanning tunneling microscopy (STM) under ultra-high vacuum (UHV) conditions. Detailed analysis of the atomically resolved STM images of islands grown at room and high temperatures (400 K–430 K) revealed the presence of KCl(001) and KCl(111) islands with the ratio between both structures depending on the growth temperature. At room temperature, the growth of the first layer, which covers the initial Si(111)7 × 7 surface, contains double/triple atomic layers of KCl(001) with a small fraction of KCl(111) islands. The high temperature growth promotes the appearance of large KCl(111) areas, which are built up by three atomic layers. At room and high temperatures, flat and atomically well-defined ultra-thin KCl films can be grown on the Si(111)7 × 7 substrate. The formation of the above mentioned (111) polar films is interpreted as a result of the thermally activated dissociative adsorption of KCl molecules on Si(111)7 × 7, which produces an excess of potassium on the Si surface. PMID:25650038

  18. Semiconductor-insulator transition in VO{sub 2} (B) thin films grown by pulsed laser deposition

    SciTech Connect

    Rúa, Armando; Díaz, Ramón D.; Lysenko, Sergiy; Fernández, Félix E.

    2015-09-28

    Thin films of B-phase VO{sub 2} were grown by pulsed-laser deposition on glass and (100)-cut MgO substrates in a temperature range from 375 to 425 °C and at higher gas pressures than usual for this technique. The films were strongly oriented, with ab-planes parallel to the substrate surface. Detailed study of surface morphology through Atomic Force Microscopy images suggest significant differences in evolution as a function of growth temperature for films on the two types of substrates. Measurements of electrical conductivities through cooling-heating cycles from room temperature to 120 K showed changes of five orders of magnitude, with steeper changes between room temperature and ∼150 K, which corresponds with the extended and reversible phase transition known to occur for this material. At lower temperatures conductivities exhibited Arrhenius behavior, indicating that no further structural change was occurring and that conduction is thermally activated. In this lower temperature range, conductivity of the samples can be described by the near-neighbor hopping model. No hysteresis was found between the cooling and heating braches of the cycles, which is at variance with previous results published for VO{sub 2} (B). This apparent lack of hysteresis for thin films grown in the manner described and the large conductivity variation as a function of temperature observed for the samples suggests this material could be of interest for infrared sensing applications.

  19. Room temperature ferromagnetism in epitaxial Cr{sub 2}O{sub 3} thin films grown on r-sapphire

    SciTech Connect

    Punugupati, Sandhyarani Narayan, Jagdish; Hunte, Frank

    2015-05-21

    We report on the epitaxial growth and magnetic properties of Cr{sub 2}O{sub 3} thin films grown on r-sapphire substrate using pulsed laser deposition. The X-ray diffraction (XRD) (2θ and Φ) and TEM characterization confirm that the films are grown epitaxially. The r-plane (011{sup ¯}2) of Cr{sub 2}O{sub 3} grows on r-plane of sapphire. The epitaxial relations can be written as [011{sup ¯}2] Cr{sub 2}O{sub 3} ‖ [011{sup ¯}2] Al{sub 2}O{sub 3} (out-of-plane) and [1{sup ¯}1{sup ¯}20] Cr{sub 2}O{sub 3} ‖ [1{sup ¯}1{sup ¯}20] Al{sub 2}O{sub 3} (in-plane). The as-deposited films showed ferromagnetic behavior up to 400 K but ferromagnetism almost vanishes with oxygen annealing. The Raman spectroscopy data together with strain measurements using high resolution XRD indicate that ferromagnetism in r-Cr{sub 2}O{sub 3} thin films is due to the strain caused by defects, such as oxygen vacancies.

  20. Conductivity of Thin Films Based on Single-Walled Carbon Nanotubes Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Russakov, D. M.; Lomakin, M. V.; Chirkova, I. M.; Shandakov, S. D.

    2015-03-01

    Electrical and optical properties of thin films of single-walled carbon nanotubes (SWCNT) obtained by aerosol chemical vapor deposition using ethanol, ferrocene, and sulfur are studied. Structural and geometrical characteristics of the synthesis products are determined by the methods of Raman spectroscopy and transmission electron microscopy. The effect of sulfur on the properties of the SWCNTs and thin films based on them is found.

  1. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    SciTech Connect

    Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  2. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    NASA Astrophysics Data System (ADS)

    McLeod, K.; Kumar, S.; Dutta, N. K.; Smart, R. St. C.; Voelcker, N. H.; Anderson, G. I.

    2010-09-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  3. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  4. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  5. Properties of SnS thin films grown by physical vapour deposition

    NASA Astrophysics Data System (ADS)

    Ganchev, M.; Vitanov, P.; Sendova-Vassileva, M.; Popkirov, G.; Dikov, H.

    2016-02-01

    Thin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates and on n-type Si substrate and their physical properties were studied. The phase of the obtained thin films before and after thermal treatment was confirmed by X-ray diffraction analysis and Raman spectra. Optical transmission and reflection spectra were measured in the wavelength range 300-1800 nm, and the data were used to determine the direct and indirect optical band gaps. Four-point measurements have revealed that SnS thin film exhibits p-type conduction. Current-voltage characteristics of the SnS/ n-Si structures demonstrate strong photosensitivity and photovoltaic effect. However, in order to be able to evaluate the potential applicability of this heterojunction for photovoltaic or electronic devices, further study and technological optimization has to be conducted.

  6. Analysis of copper (I) oxide thin films grown in a photo-assisted chemical vapor deposition reactor for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mohiuddin, Omar H.

    Copper (I) oxide (Cu2O) has enormous potenetial for photovoltaic applications. Cu2O is a p-type semiconductor with a direct band gap of 2.2 eV. When grown on silicon, thin film Cu2O has the potential to increase photovoltaic eciency. Cu2O is a suitable photovoltaic material because it is inexpensive, non-toxic and abundant in the earth's crust. A model was developed based on a stagnation flow reactor with a reduction in activation energy for the precursor decomposition due to the light irradiation to model the light irradiation. The parameters that were tested were substrate temperature (200 to 700° C), gas temperature (100 and 150 °C) and carrier gas flow rate (25 to 100 sccm). The model was tested with a 480 nm and 172 nm light irradiation source and without any light irradiation source. This thesis utilizes a photo assisted chemical vapor deposition reactor to deposit films of Cu2O on silicon. The films were grown with a surface temperature of 700 °C, a gas temperature of 150 °C and an oxygen gas flow rate of 100 sccm. One deposition was done without the use of any light irradiation and another deposition was done with a 480 nm light irradiation source. X-ray diffraction, ellipsometry and transmission electron microscopy (TEM) were used to investigate the light irradiation eect on the lm growth and morphology. When grown with light irradiation, the ellipsometer showed that the film thickness increased to 98 +/- 6 nm from 74 +/- 10 nm, which shows that there is greater uniformity with a higher thickness when grown with light irradiation. The XRD results showed an increase in crystallinity in Cu2O grown with light irradiation, and the TEM results showed the grain sizes double when grown with light irradiation. The UV irradiation has been shown to increase the copper (I) oxide film quality and lm thickness. The model showed that the effect of the light irradiation was maximized at a surface temperature of 400 °C After this temperature the thermal eects become

  7. Tunable magnetic anisotropy in permalloy thin films grown on holographic relief gratings

    NASA Astrophysics Data System (ADS)

    Berendt, J.; Teixeira, J. M.; García-García, A.; Raposo, M.; Ribeiro, P. A.; Dubowik, J.; Kakazei, G. N.; Schmool, D. S.

    2014-02-01

    The aim of the present work is to show a simple method that combines conventional laser interferometry and standard thin film deposition techniques to fabricate modulated magnetic nanostructures with lateral periodicity, and to tailor the magnetic properties by varying geometrical parameters. Well defined Ni80Fe20 magnetic thin films with sinusoidal grating profiles were obtained with a periodicity of 1.2 μm and different grating depths. Magnetic studies via ferromagnetic resonance and magneto optical Kerr effect demonstrate the tunability of the induced in-plane magnetic anisotropy with depth profile.

  8. Etching Technique to Reveal Dislocations in Thin GaAs Films Grown on Si Substrates

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hironobu; Soga, Tetsuo; Mikuriya, Nobuo; Jimbo, Takashi; Umeno, Masayoshi

    1988-02-01

    Dislocations in GaAs and GaAs/Si are revealed by the etching technique at room temperature. The etchant is composed of H2O, K2Cr2O7, HNO3, HCl and H2SO4. The dislocation density of GaAs grown on Si by MOCVD using GaP and strained layer superlattices is about 1× 106 cm-2.

  9. Cu(In,Ga)Se 2 thin-film solar cells grown with cracked selenium

    NASA Astrophysics Data System (ADS)

    Kawamura, Masahiro; Fujita, Toshiyuki; Yamada, Akira; Konagai, Makoto

    2009-01-01

    Cu(In 1-xGa x)Se 2 (CIGS) films have been grown by using cracked selenium. In conventional evaporation system, the Se atoms were supplied as large clusters (Se x, x>5). However, the size of clusters can be reduced by the thermal cracking. The film qualities grown with small clusters (Se x, x<4) would be improved, since the smaller size molecules easily react with elemental metals, resulting in the reduction of selenium vacancies and the enhancement of surface migration. The CIGS films were deposited by the three-stage method with cracked selenium, and the films were evaluated by SEM, XRD, EDX, C- V measurement and admittance spectroscopy. It was found from the C- V characteristics that the carrier concentrations of the CIGS films grown with cracked selenium were increased with increasing the cracking temperature. The result clearly showed that the use of cracked selenium was effective for reduction of selenium vacancies. The conversion efficiency of 15.4% was obtained by using cracked selenium at a cracking temperature of 500 °C.

  10. Nanocolumnar interfaces and enhanced magnetic coercivity in preferentially oriented cobalt ferrite thin films grown using oblique-angle pulsed laser deposition.

    PubMed

    Mukherjee, Devajyoti; Hordagoda, Mahesh; Hyde, Robert; Bingham, Nicholas; Srikanth, Hariharan; Witanachchi, Sarath; Mukherjee, Pritish

    2013-08-14

    Highly textured cobalt ferrite (CFO) thin films were grown on Si (100) substrates using oblique-angle pulsed laser deposition (α-PLD). X-ray diffraction and in-depth strain analysis showed that the obliquely deposited CFO films had both enhanced orientation in the (111) crystal direction as well as tunable compressive strains as a function of the film thicknesses, in contrast to the almost strain-free polycrystalline CFO films grown using normal-incidence PLD under the same conditions. Using in situ optical plume diagnostics the growth parameters in the α-PLD process were optimized to achieve smoother film surfaces with roughness values as low as 1-2 nm as compared to the typical values of 10-12 nm in the normal-incidence PLD grown films. Cross-sectional high resolution transmission electron microscope images revealed nanocolumnar growth of single-crystals of CFO along the (111) crystallographic plane at the film-substrate interface. Magnetic measurements showed larger coercive fields (∼10 times) with similar saturation magnetization in the α-PLD-grown CFO thin films as compared to those deposited using normal-incidence PLD. Such significantly enhanced magnetic coercivity observed in CFO thin films make them ideally suited for magnetic data storage applications. A growth mechanism based on the atomic shadowing effect and strain compression-relaxation mechanism was proposed for the obliquely grown CFO thin films. PMID:23829642

  11. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  12. Dielectric anomaly in Li-doped zinc oxide thin films grown by sol gel route

    NASA Astrophysics Data System (ADS)

    Dhananjay; Singh, Satyendra; Nagaraju, J.; Krupanidhi, S. B.

    2007-08-01

    Sol gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400 500 °C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (Ps) and coercive field were 0.15 μC/cm2 and 20 kV/cm, respectively, confirming the presence of ferroelectricity.

  13. Correlation of Crystalline and Structural Properties of C60 Thin Films Grown at Various Temperature with Charge Carrier Mobility

    SciTech Connect

    Singh,T.; Sarciftci, N.; Yang, H.; Yang, L.; Plochberger, B.; Sitter, H.

    2007-01-01

    Transistors fabricated from C{sub 60} films grown by hot wall epitaxy at higher substrate temperature, showed an order of magnitude increased charge carrier mobility up to 6 cm{sup 2}/V s. In this letter, the authors present an extensive study of morphology and crystallinity of the fullerene films using atomic force microscopy and grazing-incidence x-ray diffraction. A clear correlation of crystalline quality of the C{sub 60} film and charge carrier mobility was found. A higher substrate temperature leads to a single crystal-like faceted fullerene crystals. The high crystalline quality solely brings a drastic improvement in the charge carrier mobility. A gate voltage independent mobility is also observed in these devices which can be attributed to the highly conjugated nature of the C{sub 60} thin film.

  14. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  15. Studies of zinc-blende type MnAs thin films grown on InP(001) substrates by XRD

    NASA Astrophysics Data System (ADS)

    Oomae, H.; Irizawa, S.; Jinbo, Y.; Toyota, H.; Kambayashi, T.; Uchitomi, N.

    2013-09-01

    The detailed crystalline structure of molecular beam epitaxially grown MnAs thin films on InP(001) substrate has been investigated using high resolution X-ray diffraction techniques. Reciprocal space mapping of the MnAs/InP(001) samples indicates that the MnAs has a cubic zinc-blende (zb) structure with the epitaxial relationship zb-MnAs[110]|InP[110]. The lattice constant of zb-MnAs is ˜6.06 Å. The MnAs lattice is relaxed and is mosaic-like likely due to large lattice mismatch between the film and InP substrate. The isotropic nature of the magnetic properties supported our conjecture that the MnAs epitaxial film under study has indeed a cubic structure.

  16. Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition

    SciTech Connect

    Jacimovic, J; Gaal, R; Magrez, Arnaud; Forro, Laszlo; Regmi, Murari; Eres, Gyula

    2013-01-01

    The temperature dependent resistivity and thermo-electric power of Cr-N codoped TiO2 were compared with that of single element N and Cr doped and undoped TiO2 using epitaxial anatase thin films grown by pulsed laser deposition on (100) LaAlO3 substrates. The resistivity plots and especially the thermoelectric power data confirm that codoping is not a simple sum of single element doping. However, the negative sign of the Seebeck coefficient indicates electron dominated transport independent of doping. The narrowing distinction among the effects of different doping methods combined with increasing resistivity of the films with improving crystalline quality of TiO2 suggest that structural defects play a critical role in the doping process.

  17. Highly effective and isotropic pinning in epitaxial Fe(Se,Te) thin films grown on CaF2 substrates

    NASA Astrophysics Data System (ADS)

    Braccini, V.; Kawale, S.; Reich, E.; Bellingeri, E.; Pellegrino, L.; Sala, A.; Putti, M.; Higashikawa, K.; Kiss, T.; Holzapfel, B.; Ferdeghini, C.

    2013-10-01

    We report on the isotropic pinning obtained in epitaxial Fe(Se,Te) thin films grown on CaF2(001) substrate. High critical current density values - larger than 1 MA/cm2 in self field and liquid helium - are reached together with a very weak dependence on the magnetic field and a complete isotropy. Analysis through transmission electron microscopy evidences the presence of defects looking like lattice disorder at a very small scale, between 5 and 20 nm, which are thought to be responsible for such isotropic behavior in contrast to what was observed on SrTiO3, where defects parallel to the c-axis enhance pinning in that direction.

  18. Synthesis of nanocrystalline Cu2ZnSnS4 thin films grown by the spray-pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Singh, Joginder; Rajaram, P.

    2015-08-01

    Spray pyrolysis was used to deposit Cu2ZnSnS4 (CZTS) thin films on soda lime glass substrates at 300 °C. Aqueous solutions of copper chloride, zinc chloride, stannous chloride and thiourea were mixed together to form the spray liquid. The sprayed films were annealed under vacuum at 350 °C, 400 °C and 450 °C. Structural and optical characterization was performed on the CZTS films using X-ray diffraction (XRD) and UV-VIS spectrophotometry. XRD results indicate that the films are single phase nanocrystalline CZTS. Optical studies show that the optical gap values are 1.44 eV for the as-grown film and 1.46 eV, 1.48 eV and 1.49 eV for the films annealed at 350 °C, 400 °C and 450 °C, respectively.

  19. Radiation tolerant GaAs MESFET with a highly-doped thin active layer grown by OMVPE

    SciTech Connect

    Nishiguchi, M.; Hashinaga, T.; Nishizawa, H.; Hayashi, H. ); Okazaki, N. ); Kitagawa, M.; Fujino, T. )

    1990-12-01

    A new structure of GaAs MESFET with high radiation tolerance is proposed. Changes in electrical parameters of a GaAs MESFET as a function of total {gamma}-ray dose have been found to be caused mainly by a decrease in the effective carrier concentration in an active layer. The authors have designed a new structure from a simulation based on an empirical relationship between the changes of the effective carrier concentration and the total {gamma}-ray dose. It has been successfully demonstrated by utilizing a highly-doped thin active layer (4 {times} 10{sup 18} cm{sup {minus}3}, 100 {Angstrom}) grown by OMVPE. This MESFET can withstand a dose ten times higher (1 {times} 10{sup 9} rads(GaAs)) than a conventional one can.

  20. Phase-coherent electron transport in (Zn, Al)O{sub x} thin films grown by atomic layer deposition

    SciTech Connect

    Saha, D. E-mail: pmisra@rrcat.gov.in; Misra, P. E-mail: pmisra@rrcat.gov.in; Ajimsha, R. S.; Joshi, M. P.; Kukreja, L. M.

    2014-11-24

    A clear signature of disorder induced quantum-interference phenomena leading to phase-coherent electron transport was observed in (Zn, Al)O{sub x} thin films grown by atomic layer deposition. The degree of static-disorder was tuned by varying the Al concentration through periodic incorporation of Al{sub 2}O{sub 3} sub-monolayer in ZnO. All the films showed small negative magnetoresistance due to magnetic field suppressed weak-localization effect. The temperature dependence of phase-coherence length (l{sub φ}∝T{sup −3/4}), as extracted from the magnetoresistance measurements, indicated electron-electron scattering as the dominant dephasing mechanism. The persistence of quantum-interference at relatively higher temperatures up to 200 K is promising for the realization of ZnO based phase-coherent electron transport devices.

  1. Transport properties of Bi2Se3 thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wei, Z. T.; Zhang, M.; Yan, Y.; Kan, X.; Yu, Z.; Chen, Y. L.; Yang, X. S.; Zhao, Y.

    2015-11-01

    Epitaxial growth of Bi2Se3 thin films is of great current interest due to the advantages in spintronics and thermoelectrical applications. In this paper, Bi2Se3 thin films on Si (111) substrate have been prepared via magnetron sputtering deposition with post-annealing treatment and their microstructures and electrical transport properties were studied. Good quality with highly c-axis oriented films could be obtained after post-annealing treatment. The annealing temperature (Ta) obviously affected the phase structures and electrical properties. The crystallinity and the lattice parameters c of the Bi2Se3 thin-films increased with increasing Ta. The relative atomic ratio of Se/Bi decreased with increasing Ta and large number of Se vacancies was discovered in films with Ta = 350°C. The resistivity of films decreased monotonously and showed weakly metallic resistivity with the increase of Ta. Non-saturated high-field linear magnetoresistance and weak antilocalization were found in films with higher Ta.

  2. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    SciTech Connect

    Lo, Fang-Yuh Ting, Yi-Chieh; Chou, Kai-Chieh; Hsieh, Tsung-Chun; Ye, Cin-Wei; Hsu, Yung-Yuan; Liu, Hsiang-Lin; Chern, Ming-Yau

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescence spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.

  3. Nonlinear optical dynamics and Eu3+ spectral holeburning in strontium barium niobate thin film grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, G. K.; Li, S. T.; Beitz, J. V.; Fernandez, F. E.

    2002-01-01

    Optical quality SrxBa1-xNb2O6 (SBN) thin films, both undoped and Eu3+-doped, of thickness less than 0.5 μm have been successfully grown on fused quartz substrates using a pulsed laser deposition technique. Optical properties of these films were characterized in high-resolution spectroscopic experiments in time and frequency domains. For undoped SBN thin films, broadband emission in the UV region extending to the visible was observed following excitation at 355 nm. This emission is attributed to exciton luminescence of the SBN film. Nonlinear optical response in the picosecond regime and the third-order nonlinear susceptibility, χ(3), were studied using degenerate four-wave-mixing methods. In transverse alignment, χ(3) is enhanced by two orders of magnitude in comparison with its bulk counterpart. A thermal annealing process, monitored via changes in spectral properties of Eu3+, was employed to convert the as-grown amorphous film into a polycrystalline film. High-resolution spectroscopic measurements in the frequency domain were conducted on a 200-nm-thick film of Eu3+-doped SBN. Our spectroscopic results suggest that Eu3+ ions may substitute for Nb, thereby occupying a normally six-fold coordinated lattice site. At liquid helium temperature, spectral holes in the 7F0-5D0 optical transition were burned in the thermally annealed films. Typical observed hole widths were 70-100 MHz and hole depths were as large as 30% of the peak fluorescence intensity.

  4. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  5. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  6. Surface reconstructions and transport of epitaxial PtLuSb (001) thin films grown by MBE

    NASA Astrophysics Data System (ADS)

    Patel, Sahil J.; Logan, John A.; Harrington, Sean D.; Schultz, Brian D.; Palmstrøm, Chris J.

    2016-02-01

    This work presents the surface reconstructions and transport properties of the topological insulator PtLuSb grown on Al0.1In0.9Sb/GaAs (001). Two stable surface reconstructions, (1×3) and c(2×2), were observed on PtLuSb (001) surfaces. Antimony-dimerization was determined to be the nature of the (1×3) surface reconstruction as evidenced by chemical binding energy shifts in the antimony 4d core-level for surface bonding components. The two surface reconstructions were studied as a function of Sb4 overpressure and substrate temperature to create a reconstruction phase diagram. From this reconstruction phase diagram, a growth window from 320 °C to 380 °C using an antimony overpressure was identified. Within this window, the highest quality films were grown at a growth temperature of 380 °C. These films exhibited lower p-type carrier concentrations as well as relatively high hole mobilities.

  7. In-situ superconducting YBa2Cu3O7 thin films grown by ion beam co-deposition

    NASA Astrophysics Data System (ADS)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1989-12-01

    We present superconducting YBa2C3O7 (YBCO) thin films grown in-situ by three-ion-beam sputtering. Y, Y2O3, Cu, Cu2O, BaF2 and BaCO3 sputter targets have been investigated. The highest quality films were prepared using a BaCO3 target. Auger analysis of films grown using a BaCO3 target show no carbon content. Y2O3 and Cu2O are more suitable than the native metals as sputter targets for YBCO growth as they are much less prone to sputter rate variations with oxygen partial pressure. They also supply oxygen to the growing film. As-deposited YBCO films are metallic (resistivity 240 μΩ cm at 100 K), reflective, and of highly homogeneous composition with TCO transition temperatures of 73 K and transition widths of 15 K. Post-annealing in flowing oxygen improves TCO's to 82 K. Critical currents are in excess of 105 A cm-2 at 77 K. Films are textured with c-axis orientation perpendicular to the (100) SrTiO3 substrate surface. As-deposited superconducting YBCO films have also been prepared on SiO2 and Y2O3 buffer layers on Si wafers.

  8. Comparative study of magnetite (Fe3O4) thin films grown by pulsed laser ablation and sputtering

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Varun Karthik Y., S.; Haveesh, G.; Tarun Y. S., N.; Prasad, D. V. B.; Chowdhury, D. Roy; Prasad, K. Eswar

    2016-05-01

    Comparative study of magnetite (Fe3O4) thin films grown by pulsed laser ablation (PLD) and radio frequency (RF)-sputtering of α-Fe2O3 target have been investigated. We have found strong correlation between RF power (P) of sputtering and substrate temperature (Ts) of PLD films on their structural and magnetic properties. Films grown at low P and Ts are dominated by antiferromagnetic α-Fe2O3 phase while ferrimagnetic Fe3O4 phase is dominant at high P and Ts Post-annealing in H2/H2O atmosphere at 450 °C, these films show single phase Fe3O4 but RF power and substrate temperature still play a significant role. With increasing P and Ts values, the orientation of Fe3O4 films change from (110) to (111) followed by complete randomizations. These (110) to (111) orientations affect magnetic properties differently above Verwey transition temperature of 120 K. The RF-power and substrate temperature have the same influence on the physical properties of Fe3O4 films, as both are related to thermal energy.

  9. Enhanced ionic conduction at the film/substrate interface in LiI thin films grown on sapphire(0001)

    SciTech Connect

    Lubben, D.; Modine, F.A.

    1993-12-01

    The ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in-situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the LiI parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of {approximately}5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction ({sigma}T) of {approximately}0.47{plus_minus}.03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF{sub 2} films grown under similar conditions.

  10. Thermal oxidation-grown vanadium dioxide thin films on FTO (Fluorine-doped tin oxide) substrates

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiang; Li, Yi; Wang, Feng; Huang, Yize; Fang, Baoying; Wang, Xiaohua; Zhu, Huiqun; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Qin, Yuan; Ding, Jie

    2013-11-01

    By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ˜40% happened at 900-1250 nm region at room temperature. The change of optical transmittance at this region was ˜25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor-metal phase transition at ˜51 °C, the width of the hysteresis loop is ˜8 °C.

  11. Investigation of thin films of organic-based magnets grown by physical vapor deposition

    SciTech Connect

    Kao, C. Y.; Lu, Y.; Li, B.; Yoo, J.-W.; Epstein, A. J.

    2014-10-06

    Thin films of organic-based magnet, V[TCNE]{sub x} (TCNE: tetracyanoethylene), were deposited by physical vapor deposition (PVD) based reactive evaporation. The growth conditions were studied in detail. A saturated composition of V[TCNE]{sub ∼1.9} was determined by optimizing the growth condition. Two sets of films with different V to TCNE ratios were characterized. Both films were magnetic ordered up to 400 K and held coercive field of 60 Oe at room temperature. With the presence of excess vanadium within the film, the increase of defects created by PVD results in significant change in electronic property.

  12. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  13. Photoresponse in thin films of WO{sub 3} grown by pulsed laser deposition

    SciTech Connect

    Roy Moulik, Samik; Samanta, Sudeshna; Ghosh, Barnali

    2014-06-09

    We report, the photoresponse behaviour of Tungsten trioxide (WO{sub 3}) films of different surface morphology, grown by using pulsed laser deposition (PLD). The Growth parameters for PLD were changed for two substrates SiO{sub 2}/Si (SO) and SrTiO{sub 3} (STO), such a way which, result nanocrystalline film on SO and needle like structured film on STO. The photoresponse is greatly modified in these two films because of two different surface morphologies. The nanocrystalline film (film on SO) shows distinct photocurrent (PC) ON/OFF states when light was turned on/off, the enhancement of PC is ∼27%. Whereas, the film with needle like structure (film on STO) exhibits significantly enhanced persistent photocurrent even in light off condition, in this case, the enhancement of PC ∼ 50% at room temperature at lowest wavelength (λ = 360 nm) at a nominal bias voltage of 0.1 V.

  14. Free-standing thin film Ge single crystals grown by plasma-enhanced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hopson, P., Jr.

    1984-01-01

    The films, which are approximately 10 microns in thickness, are grown epitaxially on polished (100) NaCl substrates at 450 C by plasma enhanced chemical vapor deposition. Upon cooling, the films are separated from the substrate by differential shear stress, leaving free-standing films of Ge which can be handled. Growths are attained by nucleating at minimum plasma power for very brief intervals and then raising the power to 65 W to increase the growth rate to approximately 10 microns/h. It is found that substrate exposure to the plasma at too high a power for too long a time sputters and erodes the surface, thereby substantially degrading the nucleation process and the ultimate growths. It is noted that the free-standing films are visually specular and exhibit a high degree of crystalline order when examined by X-ray diffraction. Auger electron spectroscopy and energy dispersive analysis of X-rays reveal no detectable bulk contamination.

  15. Structural evolution of platinum thin films grown by atomic layer deposition

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Bent, Stacey; Johnson, Richard; Clemens, Bruce; Brennan, Sean; Toney, Mike F.

    2014-08-14

    The structural properties of Pt films grown by atomic layer deposition (ALD) are investigated with synchrotron based x-ray scattering and x-ray diffraction techniques. Using grazing incidence small angle scattering, we measure the lateral growth rate of the Pt islands to be 1.0 Å/cycle. High resolution x-ray diffraction reveals that the in-plane strain of the Pt lattice undergoes a transition from compressive strain to tensile strain when the individual islands coalescence into a continuous film. This transition to tensile strain is attributed to the lateral expansion that occurs when neighboring islands merge to reduce their surface energy. Using 2D grazing incidence x-ray diffraction, we show that the lattice orientation becomes more (111) oriented during deposition, with a sharp transition occurring during coalescence. Pt ALD performed at a lower deposition temperature (250 °C) is shown to result in significantly more randomly oriented grains.

  16. Enhanced photocatalytic performance in atomic layer deposition grown TiO{sub 2} thin films via hydrogen plasma treatment

    SciTech Connect

    Sasinska, Alexander; Singh, Trilok; Wang, Shuangzhou; Mathur, Sanjay; Kraehnert, Ralph

    2015-01-15

    The authors report the effect of hydrogen plasma treatment on TiO{sub 2} thin films grown by atomic layer deposition as an effective approach for modifying the photoanode materials in order to enhance their photoelectrochemical performance. Hydrogen plasma treated TiO{sub 2} thin films showed an improved absorption in the visible spectrum probably due to surface reduction. XPS analysis confirmed the formation of Ti{sup 3+} states upon plasma treatment. Hydrogen plasma treatment of TiO{sub 2} films enhanced the measured photocurrent densities by a factor of 8 (1 mA/cm{sup 2} at 0.8 V versus normal hydrogen electrode) when compared to untreated TiO{sub 2} (0.12 mA/cm{sup 2}). The enhancement in photocurrent is attributed to the formation of localized electronic states in mid band-gap region, which facilitate efficient separation and transportation of photo excited charge carriers in the UV region of electromagnetic spectrum.

  17. Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zastrow, S.; Gooth, J.; Boehnert, T.; Heiderich, S.; Toellner, W.; Heimann, S.; Schulz, S.; Nielsch, K.

    2013-03-01

    Sb2Te3 has recently been an object of intensive research since its promising applicability in thermoelectric, in phase-change memory devices and as a topological insulator. In this work, we report highly textured Sb2Te3 thin films, grown by atomic layer deposition on Si/SiO2 wafers based on the reaction of SbCl3 and (Et3Si)2Te. The low deposition temperature at 80 °C allows the pre-patterning of the Sb2Te3 by standard lithography processes. A platform to characterize the Seebeck coefficient S, the electrical conductivity σ as well as the Hall coefficient RH on the same film has been developed. Comparing all temperature-dependent transport properties, three different conductive regions in the temperature range of 50-400 K are found. Room temperature values of S = 146 × 10-6 VK-1, σ = 104 Sm-1 and mobility µ = 270.5 × 10-4 m2 V-1 s-1 are determined. The low carrier concentration in the range of n = 2.4 × 1018 cm-3 at 300 K quantifies the low defect content of the Sb2Te3 thin films.

  18. Growth parameters effect on the electric and thermoelectric characteristics of Bi 2Se 3 thin films grown by MOCVD system

    NASA Astrophysics Data System (ADS)

    Al Bayaz, A.; Giani, A.; Artaud, M. C.; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2002-06-01

    Bi 2Se 3 thin films were grown by metal organic chemical vapour deposition (MOCVD) on pyrex substrate in an horizontal reactor using Trimethylbismuth (TMBi) and Diethylselinium (DESe) as metal-organic sources. The effect of the growth parameters such as substrate temperature, Tg, and TMBi partial pressure, PTMBi, on the structural, electrical and thermoelectrical properties of Bi 2Se 3 films, has been investigated. We noticed that a high growth temperature is very important for a good orientation of crystallites, which can be directly related to the best values of Hall mobility and Seebeck coefficient found. Therefore, a large stability of the reactions over the substrates with following growth conditions: 455°C⩽ Tg⩽485°C,0.5×10 -4⩽ PTMBi⩽1×10 -4 atm and a total hydrogen flow rate DT=3 slm, is achieved. In these optimal growth conditions, we found a better crystalline structure of Bi 2Se 3 thin films using X-ray diffraction. Thus, these layers always displayed n-type conduction using Hall effect, with carrier concentration close to 2×10 19 cm -3 and maximum values of Hall mobility and Seebeck coefficient of μ=247 cm 2/V s and | α|=120 μV/K respectively. Then, these films appear to be very promising for thermoelectric applications.

  19. Magnetorefractive effect in the La1-xKxMnO3 thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Bessonov, V. D.; Gan'shina, E. A.; Kaul', A. R.; Korsakov, I. E.; Perov, N. S.; Fetisov, L. Yu.; Yurasov, A. N.

    2014-10-01

    Thin epitaxial La1-хKхMnO3 films were grown using two-stage procedure. Influence of substitution of La3+ ions with K+ ions on the optical and electrical properties of La1-xKxMnO3 films (х=0.05, 0.10, 0.15 и 0.18) has been studied in detail. A noticeable magnetorefractive effect in the films under study was detected in the infrared range. Magnetorefractive effect as well as transverse magneto-optical Kerr effect and magnetoresistance have the maximum in optimally doped sample with x=0.18 corresponding to the highest Curie temperature. The experimental data for compositions close to optimally doped films are in good agreement with the data calculated in the framework of a theory developed for manganites. The resonance-like contribution to magnetoreflection spectra of manganite films has been observed in the vicinity of the phonon bands. It is shown that magnetic and charge inhomogeneities strongly influence on the magneto-optical effects in films. Thin films of La1-xKxMnO3 with the large values of Kerr and magnetorefractive effect are promising magneto-optical material in the infrared range.

  20. Annealing effect on the optical and electrical properties of ZnO thin film grown on inp substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, K.; Majumdar, S.; Bhunia, S.

    2012-06-01

    ZnO thin films have been fabricated by sublimation process on indium phosphide (InP) (111) substrates. These films were annealed at various temperatures in order to study the annealing effect on the optical and electrical properties of ZnO thin film grown on InP substrate. From photoluminescence study it was observed that the near band edge peak, i.e., excitonic peak, decreases drastically with the increase of annealing temperature. This indicates that at higher annealing temperature the recombinations are taking place in non-radiative way. It was also observed that the defect related broad peak around 500 nm, i.e., green luminescence peak for ZnO, increases at higher annealing temperatures. As O vacancy is responsible for the green luminescence, so more oxygen vacancies have been introduced at higher annealing temperatures. The electrical characterization of ZnO film revealed that the resistivity of the film increases with the increasing annealing temperatures. Ionised Zn interstitials contribute to carrier concentration in ZnO. Evaporation of Zn interstitials at higher annealing temperatures may have decreased the carrier concentration which in tern had increased the resistivity.

  1. NiO(s) (Bunsenite) is not Available to Alyssum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AIMS: To determine if the Ni-hyperaccumulator Alyssum corsicum can absorb Ni from the kinetically inert crystalline mineral NiO(s) (bunsenite). METHODS: A. corsicum and A. montanum plants were grown for 30 days in a serpentine Hoagland solution. NiO was provided at 0 or 0.1 g L-1 (1.34 mmol L-1) ...

  2. The Seebeck Coefficient in Oxygen Enriched La2NiO4

    NASA Astrophysics Data System (ADS)

    Bach, Paul; Leboran, Victor; Rivadulla, Francisco

    2013-03-01

    Oxide-based devices show promise for themoelectric applications due to their chemical stability and straightforward fabrication. The La2NiO4+δ system has been predicted to show an increased thermopower coupled with an increased electrical conductivity around δ = 0 . 05 [Pardo et al. PRB 86, 165114 (2012)] that could lead to a large thermoelectric figure of merit (ZT). We investigate the suitability of lanthanum nickelate as a candidate material for high-ZT devices through a systematic study of oxygenated thin films grown by pulsed laser deposition. We report the electrical conductivity, Seebeck coefficient, and structural morphology of La2NiO4 grown in a range of oxidizing atmospheres and discuss their implications for controlled engineering of thermoelectric properties. We have explored the possibility of gate-tuning these systems in order to fabricate single-oxide based devices. This work was supported by the Ministerio de Ciencia e Innovación (Spain), grant MAT2010-16157, and the European Research Council, grant ERC-2010-StG 259082 2D THERMS.

  3. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    SciTech Connect

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y.; Amin, N.

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  4. Negative Magnetoresistance of Indium Tin Oxide Nanoparticle Thin Films Grown by Chemical Thermolysis

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Yoshida, Kota; Higaki, Tomohiro; Kimura, Yuta; Nakamoto, Masami; Kashiwagi, Yukiyasu; Yamamoto, Mari; Saitoh, Masashi; Ohno, Toshinobu; Furuta, Shinya

    2013-02-01

    To clarify the electrical transport properties of nanostructured thin films, tin-doped indium oxide (ITO) nanoparticle (NP) solution-processed films were fabricated. An air-atmosphere, simple chemical thermolysis method was used to grow the ITO NPs, and the structural and electrical properties of spin-coated granular ITO NP films were investigated. X-ray diffraction measurements showed clear observation of the cubic indium oxide (222) diffraction peak, and films with a smaller Sn concentration were shown to have a better crystalline quality. We further explored the physical origin of the sign of the magnetoresistance (MR) in the variable-range hopping (VRH) region. A negative MR under a magnetic field perpendicular to the film surface increases with decreasing Sn concentration, and these results can be explained by the forward interference model in the VRH region. A larger negative MR is attributed to longer localization and hopping lengths, and better crystallinity. Thus, ITO NP thin films produced by this method are attractive candidates for oxide-based diluted magnetic semiconductors and other electronic devices.

  5. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  6. Magnetic Properties of FePt based Nanocomposite Thin Films Grown on Low Cost Substrates

    NASA Astrophysics Data System (ADS)

    Gayen, A.; Biswas, B.; Singh, A. K.; Saravanan, P.; Perumal, A.

    We report a systematic investigation of temperature dependent magnetic properties of FePt single and FePt(30)/M/Fe(5) nanocomposite thin films prepared by sputtering technique on low cost substrates at ambient temperature and post annealed at different temperatures. With increasing annealing temperature, L10 ordering, hard magnetic properties and thermal stability of FePt films are improved. The formation of interlayer exchange coupling between hard and soft magnetic layers in FePt/M(Al,Cu,C)/Fe films depends strongly on interlayer materials and interface morphology. A strong interlayer exchange coupling was achieved when the C interlayer thickness was about 0.5 nm, which enhances saturation magnetization largely. Also, the magnetization reversal process changes from incoherent to coherent switching process, which results a single hysteresis loop. High temperature magnetic studies revealed that the effective reduction in the coercivity decreases from 34 Oe/K to 13 Oe/K by the introduction of a thin C(0.5 nm) layer in FePt/C/Fe film. This reveals a promising approach to improve the stability of hard magnetic properties at high temperatures, suitable for high temperature magnetic applications.

  7. Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Karuppasamy, A.

    2013-10-01

    In the present work, tungsten oxide thin films were deposited at various oxygen chamber pressures (1.0-5.0 × 10-3 mbar) by maintaining the sputtering power density and argon pressure constant at 3.0 W/cm2 and 1.2 × 10-2 mbar, respectively. The role of surface morphology and porosity on the electrochromic properties of crystalline tungsten oxide thin films has been investigated. XRD and Raman studies reveal that all the samples post annealed at 450 ̊C in air for 3.0 h settle in monoclinic crystal system of tungsten oxide (W18O49). Though the phase of material is indifferent to oxygen pressure variations (PO2), morphology and film density shows a striking dependence on PO2. A systematic study on plasma (OES), morphology, optical and electrochromic properties of crystalline tungsten oxide reveal that the films deposited at PO2 of 2.0 × 10-3 mbar exhibit better coloration efficiency (58 cm2/C), electron/ion capacity (Qc: -25 mC/cm2), and reversibility (92%). This is attributed to the enhanced surface properties like high density of pores and fine particulates (100 nm) and to lesser bulk density of the film (ρ/ρo = 0.84) which facilitates the process of intercalation/de-intercalation of protons and electrons. These results show good promise toward stable and efficient crystalline tungsten oxide based electrochromic device applications.

  8. Reduced Cu concentration in CuAl-LPE-grown thin Si layers

    SciTech Connect

    Wang, T.H.; Ciszek, T.F.; Asher, S.; Reedy, R.

    1995-08-01

    Cu-Al has been found to be a good solvent system to grow macroscopically smooth Si layers with thicknesses in tens of microns on cast MG-Si substrates by liquid phase epitaxy (LPE) at temperatures near 900{degrees}C. This solvent system utilizes Al to ensure good wetting between the solution and substrate by removing silicon native oxides, and employs Cu to control Al doping into the layers. Isotropic growth is achieved because of a high concentration of solute silicon in the solution and the resulting microscopically rough interface. The incorporation of Cu in the Si layers, however, was a concern since Cu is a major solution component and is generally regarded as a bad impurity for silicon devices due to its fast diffusivity and deep energy levels in the band gap. A study by Davis shows that Cu will nonetheless not degrade solar cell performance until above a level of 10{sup 17} cm{sup -3}. This threshold is expected to be even higher for thin layer silicon solar cells owing to the less stringent requirement on minority carrier diffusion length. But to ensure long term stability of solar cells, lower Cu concentrations in the thin layers are still preferred.

  9. Microstructure comparison between KNbO 3 thin films grown by polymeric precursors and PLD methods

    NASA Astrophysics Data System (ADS)

    Weber, I. T.; Rousseau, A.; Guilloux-Viry, M.; Bouquet, V.; Perrin, A.

    2005-11-01

    KNbO 3 (KN) thin films were prepared by both Pulsed Laser Deposition (PLD) and Polymeric Precursor Route (PPR) onto polycrystalline alumina (Al 2O 3) and single-crystalline (100) SrTiO 3 substrates. Structural and microstructural characteristics of the thin films were determined by X-ray diffraction, field emission scanning electronic microscopy and electron channeling patterns in order to establish a correlation between the preparation method and the samples characteristics. It was evidenced that both methods are able to produce well crystallized single phase films presenting an epitaxial growth along 110 direction onto (100) SrTiO 3 substrates. PLD led to a highest crystalline quality ( Δω˜0.25° for PLD and Δω˜1° for PPR), while PPR provides crystallization at lower temperatures, without the appearance of secondary phases. The most remarkable difference between the methods concerns the film morphology (grain size and shape). In fact, deposition by these two routes gives access to various microstructures which open the way to specific study of physical behavior which currently depends on it.

  10. Effects of Precursor Concentration on Structural and Optical Properties of ZnO Thin Films Grown on Muscovite Mica Substrates by Sol-Gel Spin-Coating.

    PubMed

    Kim, Younggyu; Leem, Jae-Young

    2016-05-01

    The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration. It is remarkable that the highest I(NBE)/I(DLE) ratio was observed for the ZnO thin film with 0.8 M precursor concentration, even though cracks formed on the surface of this film. PMID:27483897

  11. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  12. Ferromagnetic resonance of patterned chromium dioxide thin films grown by selective area chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.; Jokubaitis, M.; Yu, W.; Mohamad, H.; Shelford, L. R.; Keatley, P. S.; Xiao, Gang; Hicken, R. J.

    2015-05-01

    A selective area chemical vapour deposition technique has been used to fabricate continuous and patterned epitaxial CrO2 thin films on (100)-oriented TiO2 substrates. Precessional magnetization dynamics were stimulated both electrically and optically, and probed by means of time-resolved Kerr microscopy and vector network analyser ferromagnetic resonance techniques. The dependence of the precession frequency and the effective damping parameter upon the static applied magnetic field were investigated. All films exhibited a large in-plane uniaxial anisotropy. The effective damping parameter was found to exhibit strong field dependence in the vicinity of the hard axis saturation field. However, continuous and patterned films were found to possess generally similar dynamic properties, confirming the suitability of the deposition technique for fabrication of future spintronic devices.

  13. Structural, optical and magnetic properties of Fe-doped barium stannate thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    James, K. K.; Aravind, Arun; Jayaraj, M. K.

    2013-10-01

    Barium stannate is a wide band gap semiconductor with cubic perovskite structure. Polycrystalline bulk samples of BaSn1-xFexO3d (BFS), with x = 0.00, 0.02, 0.03, 0.05 and 0.10 were prepared by solid-state reaction. In this paper, we report the growth of undoped and Fe doped barium stannate thin films on fused silica substrate using pulsed laser deposition (PLD) technique at a relatively high substrate temperature and low oxygen pressure. The deposited films have wide bandgap and are transparent in the visible region. The X-ray diffraction analysis of the films confirmed the cubic structure. Microstructural studies were carried out using micro-Raman spectroscopy and AFM analysis. Defect induced Raman shifts were observed in the samples. Magnetic studies revealed an increase in magnetic properties for films doped with 10 at% Fe doped samples.

  14. Intermodulation distortion measurements of MgB2 thin films grown by HPCVD

    NASA Astrophysics Data System (ADS)

    Cifariello, G.; Aurino, M.; di Gennaro, E.; Lamura, G.; Orgiani, P.; Villegier, J.-C.; Xi, X. X.; Andreone, A.

    2006-06-01

    The two tone intermodulation distortion (IMD) arising in MgB2 thin films synthesized by hybrid physical-chemical vapour deposition (HPCVD) is studied in order to probe the influence of the two bands on the symmetry of the gap function. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10, are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, IMD versus temperature data show the intrinsic s-wave behaviour expected for this compound

  15. Microstructure investigation and magnetic study of permalloy thin films grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lamrani, Sabrina; Guittoum, Abderrahim; Schäfer, Rudolf; Pofahl, Stefan; Neu, Volker; Hemmous, Messaoud; Benbrahim, Nassima

    2016-06-01

    We study the effect of thickness on the structural and magnetic properties of permalloy thin films, evaporated on glass substrate. The films thicknesses range from 16 to 90 nm. From X-ray diffraction spectra analysis, we show that the thinner films present a "1,1,1" preferred orientation. However, the thicker films exhibit a random orientation. The grains size increases and the lattice parameter decreases with increasing thickness. The magnetic force microscopy observations display cross-tie walls features only for the two thicker films (60 and 90 nm thick films). The magnetic microstructure, carried out by Kerr microscopy technique, shows the presence of magnetic domains changing with the direction of applied magnetic field. The coercive field, Hc, was found to decrease from 6.5 for 16 to 1.75 Oe for 90 nm. All these results will be discussed and correlated.

  16. Synthesis of LECBD grown cluster assembled SeO 2 thin films

    NASA Astrophysics Data System (ADS)

    Rath, S.; Das, K.; Sarangi, S. N.; Dash, A. K.; Ray, S. K.; Sahu, S. N.

    2006-12-01

    Cluster assembled selenium oxide (SeO 2) thin films, as a function of oxygen flow pressure (OFP) have been synthesized by a low energy cluster beam deposition (LECBD) technique. The OFP dependent surface morphology leading to well separated nanoclusters (size ranging from 50 to 200 nm) and fractal features are confirmed from transmission electron microscopic (TEM) measurements. A diffusion limited aggregation (DLA) mediated fractal growth with dimension as 1.71 ± 0.01 has been observed for high OFP (60 mbar). Structural analysis by glancing angle X-ray diffraction (GXRD) and selected area diffraction (SAD) studies identify the presence of tetragonal phase SeO 2 in the deposit. Micro-Raman studies indicate the shifts in bending and stretching vibrational phonon modes in cluster assembled SeO 2 as compared to their bulk counter part due to the phonon confinement effect.

  17. Anisotropic properties of molecular beam epitaxy-grown colossal magnetoresistance manganite thin films

    SciTech Connect

    ODonnell, J.; Onellion, M.; Rzchowski, M.S.; Eckstein, J.N.; Bozovic, I.

    1997-04-01

    We show that both the magnetoresistance and magnetism in tetragonal MBE-grown films of La{sub 1{minus}x}Ca{sub x}MnO{sub 3} show anisotropic effects that depend on both temperature and magnetic field. We show that the {open_quotes}colossal{close_quotes} magnetoresistance depends on the angle between the magnetization and the transport current and that the size of this effect is temperature-dependent. Below the Curie temperature this results in an unusual upturn in the magnetoresistance for small magnetic fields normal to the plane of the film as the magnetization rotates out of the plane. Low-field hysteresis of the in-plane magnetoresistance is also observed, and also shows an anisotropy with respect to the current and magnetization directions. We also find an in-plane biaxial magnetocrystalline anisotropy with easy axes along the {l_brace}100{r_brace} (Mn{endash}O) crystal directions, and evidence for {ital c}-axis magnetocrystalline anisotropy. {copyright} {ital 1997 American Institute of Physics.}

  18. Electrical parameters of thin nanoscale SiOx layers grown on plasma hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Alexandrova, S.; Szekeres, A.; Halova, E.; Kojuharova, N.

    2014-12-01

    In the present paper results are presented on electrical characterization of the interface Si/SiOx, formed by oxidation on Si wafers, previously exposed to rf hydrogen plasma. As a tool of investigations multiple frequency C-V and G-V measurements are applied. The data analysis was performed using two-frequency method to extract generalized frequency independent C-V characteristic. Interface trap densities were evaluated from the generalized C-V data by comparison with theoretical data for an ideal interface. A set of localized states, acting as interface traps, was found that characterize the interface of Si to substoichiometric SiOx, layer with x < 2. The dielectric constant of the oxides was calculated from the capacitance in accumulation of the generalized C-V curves. The thickness and the refractive index of the oxide layers were obtained from ellipsometric data analysis assuming the oxide-Si substrate as single layer system. From the data for the dielectric constant and refractive index suggestion is made that the grown oxides on hydrogenated Si contain voids thus reducing the dielectric constant. Correlation with oxide mechanical stress is found.

  19. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  20. The annealing effects of V-doped GaN thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Souissi, M.; Bouzidi, M.; El Jani, B.

    2012-02-01

    We have investigated the annealing effect of V-doped GaN (GaN:V) epitaxial layers grown on sapphire by metal organic chemical vapor deposition (MOCVD). The film was annealed at a temperature of 1075 °C for 30 min in N 2 ambient after growth. The structural, surface morphology and optical properties of GaN:V films were studied by high resolution X-ray diffraction (HRXRD), atomic force microscope (AFM) and photoluminescence (PL). The results show that the annealing makes for the destruction in the crystal quality and surface morphology. After thermal annealing, the photoluminescence (PL) measurement showed a reduction of the blue luminescence (BL) band observed in GaN:V at room temperature (RT). The phenomenon is attributed to vanadium diffusion or to the V-related complex dissociation. Near-band-edge (NBE) peak exhibited a red shift after 1075 °C anneal. This is due to the decrease in the level of strain. In the infrared region, we observed the emergence of the line 0.93 eV accompanied by a decrease in the intensity of the 0.82 eV emission. Their possible origins are discussed.

  1. The effects of oxygen pressure on disordering and magneto-transport properties of Ba2FeMoO6 thin films grown via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong-Won; Ghosh, Siddhartha; Buvaev, Sanal; Mhin, Sungwook; Jones, Jacob L.; Hebard, Arthur F.; Norton, David P.

    2015-07-01

    Epitaxial Ba2FeMoO6 thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. The anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.

  2. Properties of MBE-grown NbO2 thin films

    NASA Astrophysics Data System (ADS)

    Demkov, Alex; O'Hara, Andy; Posadas, Agham

    2014-03-01

    Niobium dioxide or NbO2 a sister compound of the more celebrated VO2, belongs to the class of transition metal oxides that undergo a temperature-driven metal-to-insulator transition. Using density functional theory, we explore the electronic properties of both the high-temperature metallic rutile and the low-temperature insulating distorted rutile phases. We investigate the nature of the transition and predict a large carrier concentration change even at the high transition temperature of 1080 K. We also grew thin NbO2 films on LSAT(111) single crystal substrates using molecular beam epitaxy. The films show very good crystallinity with a single out-of-plane orientation by x-ray diffraction, and exhibit a smooth surface with the presence of three epitaxial domains as observed by reflection high energy electron diffraction. The NbO2 stoichiometry is confirmed by x-ray photoemission measurements of the Nb 3d core level as well as the valence band.

  3. Quantum dot FRET-based probes in thin films grown in microfluidic channels.

    PubMed

    Crivat, Georgeta; Da Silva, Sandra Maria; Reyes, Darwin R; Locascio, Laurie E; Gaitan, Michael; Rosenzweig, Nitsa; Rosenzweig, Zeev

    2010-02-10

    This paper describes the development of new fluorescence resonance energy transfer (FRET)-based quantum dot probes for proteolytic activity. The CdSe/ZnS quantum dots are incorporated into a thin polymeric film, which is prepared by layer-by-layer deposition of alternately charged polyelectrolytes. The quantum dots, which serve as fluorescent donors, are separated from rhodamine acceptor molecules, which are covalently attached to the film surface by a varying number of polyelectrolyte layers. When excited with visible light, the emission color of the polyelectrolyte multilayer film appears orange due to FRET between the quantum dots and molecular acceptors. The emission color changes to green when the rhodamine molecules are removed from the surface by enzymatic cleavage. The new probe design enables the use of quantum dots in bioassays, in this study for real-time monitoring of trypsin activity, while alleviating concerns about their potential toxicity. Application of these quantum dot FRET-based probes in microfluidic channels enables bioanalysis of volume-limited samples and single-cell studies in an in vivo-like environment. PMID:20073459

  4. Polycrystalline SrFe12O19 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Garcia, Tupac; de Posada, E.; Jimenez, Ernesto; Sanchez Ll., J. L.; Diaz Castanon, S.; Bartolo-Perez, Pascual; Cauich, W.; Oliva, I.; Pena, J. L.; Ceh, O.

    1999-07-01

    Polycrystalline SrFe12O19 thin films were deposited on Si (100) substrates by PLD using a Nd-YAG laser ((lambda) equals 1064 nm). During the deposition process substrates were kept at room temperature. As-deposited films were annealed in air at temperatures between 600 degree(s)C and 840 degree(s)C. Samples were characterized by AES, ESCA, SEM, AFM, x-ray diffraction and VSM. It is presented the relevance of the preparation of the target surface on the film quality. Some differences in the chemical composition of as-deposited films, compared with the target and the annealed films, were observed. The x-ray diffraction spectra show a textured as- deposited films. Samples annealed at 600 degree(s)C, and below, showed a very weak magnetic response. In contrast annealing in the temperature range 700 degree(s)C - 840 degree(s)C led to the formation of a nanocrystalline particle system (average particle size 150 - 350 nm) which behave as a single domain in the thermally demagnetized state. The obtained coercivities (5750 - 6850 Oe) are among the highest values reported for films, powders and sintered samples.

  5. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  6. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  7. Magnetic Properties of Polycrystalline Bismuth Ferrite Thin Films Grown by Atomic Layer Deposition.

    PubMed

    Jalkanen, Pasi; Tuboltsev, Vladimir; Marchand, Benoît; Savin, Alexander; Puttaswamy, Manjunath; Vehkamäki, Marko; Mizohata, Kenichiro; Kemell, Marianna; Hatanpää, Timo; Rogozin, Valentin; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku

    2014-12-18

    The atomic layer deposition (ALD) method was applied to grow thin polycrystalline BiFeO3 (BFO) films on Pt/SiO2/Si substrates. The 50 nm thick films were found to exhibit high resistivity, good morphological integrity, and homogeneity achieved by the applied ALD technique. Magnetic characterization revealed saturated magnetization of 25 emu/cm(3) with temperature-dependent coercivity varying from 5 to 530 Oe within the temperature range from 300 to 2 K. Magnetism observed in the films was found to change gradually from ferromagnetic spin ordering to pinned magnetic domain interactions mixed with weak spin-glass-like behavior of magnetically frustrated antiferromagnetic/ferromagnetic (AFM-FM) spin ordering depending on the temperature and magnitude of the applied magnetic field. Antiferromagnetic order of spin cycloids was broken in polycrystalline films by crystal sizes smaller than the cycloid length (∼60 nm). Uncompensated spincycloids and magnetic domain walls were found to be the cause of the high magnetization of the BFO films. PMID:26273981

  8. Thermally driven stability of octadecylphosphonic acid thin films grown on SS316L.

    PubMed

    Lim, Min Soo; Smiley, Katelyn J; Gawalt, Ellen S

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF, and water flushes, whereas untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a 3-hour period, whereas the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  9. Thermally Driven Stability of Octadecylphosphonic Acid Thin Films Grown on SS316L

    PubMed Central

    Lim, Min Soo; Smiley, Katelyn J.; Gawalt, Ellen S.

    2010-01-01

    Stainless steel 316L is widely used as a biomedical implant material; however, there is concern about the corrosion of metallic implants in the physiological environment. The corrosion process can cause mechanical failure due to resulting cracks and cavities in the implant. Alkyl phosphonic acid forms a thin film by self-assembly on the stainless steel surface and this report conclusively shows that thermal treatment of the octadecylphosphonic acid (ODPA) film greatly enhances the stability of the ODPA molecules on the substrate surface. AFM images taken from the modified substrates revealed that thermally treated films remain intact after methanol, THF and water flushes while untreated films suffer substantial loss. Water contact angles also show that the hydrophobicity of thermally treated films does not diminish after being incubated in a dynamic flow of water for a three hour period while the untreated film becomes increasingly hydrophilic due to loss of ODPA. IR spectra taken of both treated and untreated films after water and THF flushes show that the remaining film retains its initial crystallinity. A model is suggested to explain the stability of ODPA film enhanced by thermal treatment. An ODPA molecule is physisorbed to the surface weakly by hydrogen bonding. Heating drives away water molecules leading to the formation of strong monodentate or mixed mono/bi-dentate bonds of ODPA molecule to the surface. PMID:20648546

  10. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  11. The orientational relationship between monoclinic β-Ga2O3 and cubic NiO

    NASA Astrophysics Data System (ADS)

    Nakagomi, Shinji; Kubo, Shohei; Kokubun, Yoshihiro

    2016-07-01

    The orientational relationship between β-Ga2O3 and NiO was studied by X-ray diffraction measurements and cross-sectional high resolution transmission electron microscopy. A β-Ga2O3 thin film was formed on a (100) NiO layer on a (100) MgO substrate by gallium evaporation in an oxygen plasma. It was found that the resulting β-Ga2O3 had a four-fold domain structure satisfying both (100) β-Ga2O3 ‖ (100) NiO and (010) β-Ga2O3 ‖ {011} NiO. A γ-Ga2O3 layer was observed at the interface between the β-Ga2O3 and the NiO. An NiO film was also formed on a (100) β-Ga2O3 single-crystal substrate by the sol-gel method. An epitaxial (100) NiO film was formed on a (100) β-Ga2O3 substrate, and satisfied (011) NiO ‖ (010) β-Ga2O3. The crystal orientations of β-Ga2O3 on (100) NiO and NiO on (100) β-Ga2O3 can be explained using atomic arrangement models of the (100) plane of NiO and the (100) plane of β-Ga2O3.

  12. Enhancement of thickness uniformity of thin films grown by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1995-01-01

    A peculiarity of the pulsed laser deposition technique of thin-film growth which limits its applicability is the very rapid drop of resulting film thickness as a function of distance from the deposition axis. This is due to the narrow forward peaking of the emission plume characteristic of the laser ablation process. The plume is usually modeled by a cos(sup n) theta function with n greater, and in some cases, much higher, than 1. Based on this behavior, a method is presented to substantially enhance coverage uniformity in substrate zones of the order of the target-substrate distance h, and to within a specified thickness tolerance. Essentially, target irradiation is caused to form an annular emission source instead of the usual spot. By calculating the resulting thickness profiles, an optimum radius s is found for the annular source, corresponding to a given power in the emission characteristic and a given value of h. The radius of this annulus scales with h. Calculated numerical results for optimal s/h ratios corresponding to a wide range of values for n are provided for the case of +/- 1% tolerance in deviation from the thickness at deposition axis. Manners of producing annular illumination of the target by means of conic optics are presented for the case of a laser beam with radially symmetric profile. The region of uniform coverage at the substrate can be further augmented by extension of the method to multiple concentric annular sources. By using a conic optic of novel design, it is shown also how a single-laser beam can be focused onto a target in the required manner. Applicability of the method would be limited in practice by the available laser power. On the other hand, the effective emitting area can be large, which favors extremely high growth rates, and since growth can occur uniformly over the whole substrate for each laser pulse, single-shot depositions with substantial thicknesses are possible. In addition, the simultaneity of growth over the

  13. Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Sharma, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-11-01

    This paper presents effect of low temperature annealing on the physical properties of ZnO thin films for photovoltaic applications. The thin films of thickness 50 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing radio frequency magnetron sputtering technique followed by thermal annealing within low temperature range 150-450 °C. These as-grown and annealed films were subjected to the X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of the as-grown ZnO film was also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the films have wurtzite structure of hexagonal phase with preferred orientation (1 0 0) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in detail. The optical band gap was found in the range 3.30-3.52 eV and observed to decrease with annealing temperature except 150 °C. The current-voltage characteristics show that the films exhibit approximately ohmic behavior. The SEM studies show that the films are uniform, homogeneous and free from crystal defects and voids. The experimental results reveal that ZnO thin films may be used as alternative materials for eco-friendly buffer layer to the thin film solar cell applications.

  14. Photoconductivity of ultra-thin Ge(GeSn) layers grown in Si by low-temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Talochkin, A. B.; Chistokhin, I. B.; Mashanov, V. I.

    2016-04-01

    Photoconductivity (PC) spectra of Si/Ge(GeSn)/Si structures with the ultra-thin (1.0-2.3 nm) Ge and GeSn alloy layers grown by the low-temperature (T = 100 °C) molecular beam epitaxy are studied. Photoresponse in the range of 1.2-0.4 eV related to light absorption in the buried Ge(GeSn) layer is observed. It is shown that in case of lateral PC, a simple diffusion model can be used to determine the absorption coefficient of this layer α ˜ 105 cm-1. This value is 100 times larger than that of a single Ge quantum dot layer and is reached significantly above the band gap of most bulk semiconductors. The observed absorption is caused by optical transitions between electron and hole states localized at the interfaces. The anomalous high value of α can be explained by the unusual state of Ge(GeSn) layer with high concentration of dangling bonds, the optical properties of which have been predicted theoretically by Knief and von Niessen (Phys. Rev. B 59, 12940 (1999)).

  15. Production and characterization of Nd,Cr:GSGG thin films on Si(001) grown by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Willmott, P. R.; Manoravi, P.; Holliday, K.

    Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8+/-0.1 Jcm-2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above 3 Jcm-2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer-Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal.

  16. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    PubMed Central

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  17. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering.

    PubMed

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-01-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect. PMID:27142578

  18. Surface sulfurization on MBE-grown Cu(In1-x,Gax)Se2 thin films and devices

    NASA Astrophysics Data System (ADS)

    Khatri, Ishwor; Matsuyama, Isamu; Yamaguchi, Hiroshi; Fukai, Hirofumi; Nakada, Tokio

    2015-08-01

    Molecular beam epitaxy (MBE) grown Cu(In1-x,Gax)Se2 (CIGS) thin films were sulfurized at temperatures of 450-550 °C for 30 min in a 10% H2S-N2 mixture gas. The micro-roughness together with the S diffusion in the CIGS surfaces increased with increasing sulfurization temperature. Both near-band-edge PL intensity and decay time of the CIGS absorber layer enhanced after sulfurization. PL sub-peak around 80 meV below the main peak almost disappeared after sulfurization above 500 °C, which is expected due to the occupation of Se vacancies (Vse) with S. The open-circuit voltage (Voc), hence conversion efficiency, improved after sulfurization. The photovoltaic performance of the solar cells was consistent with PL intensity. Moreover, it is found for the first time from the SIMS analysis that the Cu atoms were depleted at the surface of CIGS layer after sulfurization, which could result in the improved Voc.

  19. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Sokolov, N. S.; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Maksimova, K. Yu.; Grunin, A. I.; Bursian, V. E.; Lutsev, L. V.; Tabuchi, M.

    2016-01-01

    Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  20. Structural, morphological, and optoelectrical characterization of Bi2S3 thin films grown by co-evaporation

    NASA Astrophysics Data System (ADS)

    Mesa, F.; Arredondo, C. A.; Vallejo, W.

    2016-03-01

    This work presents the results of synthesis and characterization of polycrystalline n-type Bi2S3 thin films. The films were grown through a chemical reaction from co-evaporation of their precursor elements in a soda-lime glass substrate. The effect of the experimental conditions on the optical, morphological structural properties, the growth rate, and the electrical conductivity (σ) was studied through spectral transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM) and σ versus T measurements, respectively. The results showed that the films grow only in the orthorhombic Bi2S3 bismuthinite phase. It was also found that the Bi2S3 films present an energy band gap (Eg) of about 1.38 eV. In addition to these results, the electrical conductivity of the Bi2S3 films was affected by both the transport of free carriers in extended states of the conduction band and for variable range hopping transport mechanisms, each one predominating in a different temperature range.

  1. Magnetic properties of Sm-Co thin films grown on MgO(100) deposited from a single alloy target

    SciTech Connect

    Verhagen, T. G. A.; Boltje, D. B.; Ruitenbeek, J. M. van; Aarts, J.

    2014-08-07

    We have grown epitaxial Sm-Co thin films by sputter deposition from a single alloy target with a nominal SmCo{sub 5} composition on Cr(100)-buffered MgO(100) single-crystal substrates. By varying the Ar gas pressure, we can change the composition of the film from a SmCo{sub 5}-like to a Sm{sub 2}Co{sub 7}-like phase. The composition, crystal structure, morphology, and magnetic properties of these films have been determined using Rutherford Backscattering, X-ray diffraction, and magnetization measurements. We find that we can grow films with, at room temperature, coercive fields as high as 3.3 T, but with a remanent magnetization which is lower than can be expected from the texturing. This appears to be due to the Sm content of the films, which is higher than expected from the content of the target, even at the lowest possible sputtering pressures. Moreover, we find relatively large variations of film properties using targets of nominally the same composition. At low temperatures, the coercive fields increase, as expected for these hard magnets, but in the magnetization, we observe a strong background signal from the paramagnetic impurities in the MgO substrates.

  2. Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Wen Jie; Gao, Kuang Hong; Li, Zhi Qing

    2016-05-01

    We study the low-temperature transport properties of Bi2Se3 thin films grown by magnetron sputtering. A positive magnetoresistance resulting from the weak antilocalization (WAL) effect is observed at low temperatures. The observed WAL effect is two dimensional in nature. Applying the Hikami-Larkin-Nagaoka theory, we have obtained the dephasing length. It is found that the temperature dependence of the dephasing length cannot be described only by the Nyquist electron-electron dephasing, in conflict with prevailing experimental results. From the WAL effect, we extract the number of the transport channels, which is found to increase with increasing the thickness of the films, reflecting the thickness-dependent coupling between the top and bottom surface states in topological insulator. On the other hand, the electron-electron interaction (EEI) effect is observed in temperature-dependent conductivity. From the EEI effect, we also extract the number of the transport channel, which shows similar thickness dependence with that obtained from the analysis of the WAL effect. The EEI effect, therefore, can be used to analyze the coupling effect between the top and bottom surface states in topological insulator like the WAL effect.

  3. Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating

    NASA Astrophysics Data System (ADS)

    Kim, Ikhyun; Kim, Younggyu; Nam, Giwoong; Kim, Dongwan; Park, Minju; Kim, Haeun; Lee, Wookbin; Leem, Jae-Young; Kim, Jong Su; Kim, Jin Soo

    2014-08-01

    Nanocrystalline ZnO thin films grown on fluorine-doped tinoxide (FTO) substrates were fabricated using the spin-coating method. The structural and the optical properties of the ZnO thin films prepared using different sol concentrations were investigated by using field-emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), photoluminescence (PL) measurements, and ultraviolet-visible (UV-vis) spectrometry. The surface morphology of the ZnO thin films, as observed in the SEM images, exhibited a mountain-chain structure. XRD results indicated that the thin films were preferentially orientated along the direction of the c-axis and that the grain size of the ZnO thin films increased with increasing sol concentration. The PL spectra showed a strong ultraviolet emission peak at 3.22 eV and a broad orange emission peak at 2.0 eV. The intensities of deep-level emission (DLE) gradually increased with increasing sol concentration from 0.4 to 1.0 M. The transmittance spectra of the ZnO thin films showed that the ZnO thin films were transparent (~85%) in the visible region and exhibited sharp absorption edges at 375 nm. Thus, The Urbach energy of ZnO thin films decreased with increasing sol concentration.

  4. Influence of oxygen partial pressure on the structural, optical and electrical properties of Cu-doped NiO thin films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Sivasankar Reddy, A.; Sreedhara Reddy, P.

    2013-01-01

    The NiO-Cu composite thin films were successfully deposited on Corning 7059 glass substrates at different oxygen partial pressures in the range of 9 × 10-5-6 × 10-4 mbar using the dc reactive magnetron sputtering technique. All the deposited films were of polycrystalline nature and exhibited cubic structure with preferential growth. The optical transmittance and band gap of the films increased with increasing the oxygen partial pressure up to 2 × 10-4 mbar and decreased on further increasing the oxygen partial pressure. From the surface morphological studies, fine and uniform grains were observed at an oxygen partial pressure of 2 × 10-4 mbar. Compositional analysis indicated that Ni content increased and Cu content decreased with increasing the oxygen partial pressure. The resistivity values decreased gradually from 64 to 10 Ω cm with increasing the oxygen pressure to 6 × 10-4 mbar.

  5. Raman evidence of the formation of LT-LiCoO 2 thin layers on NiO in molten carbonate at 650°C

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Baddour-Hadjean, R.; Cassir, M.; Pereira-Ramos, J. P.

    2004-03-01

    The structural evolution of thin layers of Co 3O 4 elaborated on nickel-based substrates in the Li 2CO 3-Na 2CO 3 carbonate eutectic at 650 °C as a function of time immersion is reported. Raman microspectrometry has been applied in order to provide more information on the nature of the protective cobalt oxide layers. The typical Raman fingerprint of the LT-LiCoO 2 compound has been obtained, with four well defined bands at 449, 484, 590 and 605 cm -1, while XRD data are unable to distinguish the layered phase (HT) from the spinel one (LT). The mechanical stability of such films does not exceed 10 h in direct contact with the molten carbonate bulk at 650 °C; nevertheless, these conditions are much more corrosive than in a molten carbonate fuel cell (MCFC).

  6. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  7. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process

    PubMed Central

    2014-01-01

    Stacked precursors of Cu-Zn-Sn-S were grown by radio frequency sputtering and annealed in a furnace with Se metals to form thin-film solar cell materials of Cu2ZnSn(S,Se)4 (CZTSSe). The samples have different absorber layer thickness of 1 to 2 μm and show conversion efficiencies up to 8.06%. Conductive atomic force microscopy and Kelvin probe force microscopy were used to explore the local electrical properties of the surface of CZTSSe thin films. The high-efficiency CZTSSe thin film exhibits significantly positive bending of surface potential around the grain boundaries. Dominant current paths along the grain boundaries are also observed. The surface electrical parameters of potential and current lead to potential solar cell applications using CZTSSe thin films, which may be an alternative choice of Cu(In,Ga)Se2. PACS number: 08.37.-d; 61.72.Mm; 71.35.-y PMID:24397924

  8. Effect of post-annealing temperature on structural and optical properties of ZnO thin films grown on mica substrates using sol-gel spin-coating

    NASA Astrophysics Data System (ADS)

    Kim, Younggyu; Leem, Jae-Young

    2015-09-01

    ZnO thin films were grown on flexible muscovite mica substrates using sol-gel spin-coating. The structural and optical properties of the sol-gel-derived ZnO thin films annealed at temperatures between 300 - 600 °C were investigated. The surface morphology of the ZnO thin films was found to depend slightly on the annealing temperature. In the photoluminescence spectra, the position of the near-band-edge (NBE) peak was shifted towards a lower energy by the post-annealing process, and the full width at half maximum (FWHM) values of the NBE peaks for the annealed ZnO thin films were significantly lower than those for the as-grown film. Defect-related deep-level peaks exhibiting green and red emissions were observed only for the annealed ZnO thin films. The Urbach energy and optical band gap of the films decreased with an increase in annealing temperatures up to 500 °C.

  9. Surface oxygen exchange properties of Sr doped La2NiO4+δ as SOFC cathode: Thin-film electrical conductivity relaxation investigation

    DOE PAGESBeta

    Guan, Bo; Li, Wenyuan; Zhang, Xinxin; Liu, Xingbo

    2015-06-02

    La2-xSrxNiO4+δ dense films are prepared by a novel spray-modified pressing method. The surface reaction kinetics is investigated via electrical conductivity relaxation (ECR). The layer thickness, 5~10 μm, is much less than the characteristic length of lanthanum nickelates, resulting in surface-controlled situation and allowing more accurate fitting than the traditional pellets ECR on the surface exchange coefficient (k). k for LNO is 1.6×10-5 cm/s in 0.2 atm at 700°C. Sr doping impairs the exchange kinetics, and k of Sr40 is about one order of magnitude smaller than undoped one. Interstitial oxygen and Ni oxidation state are suggested the predominant roles inmore » determining surface kinetics. In conclusion, given the properties of the thin-film herein developed by spray-modified pressing is closer to those in practical porous electrode compared to pulsed laser deposited film in terms of preferential orientation and strain, it warrants the use of such a method in a variety of pertinent investigations.« less

  10. Surface morphology of grown thin films of the quasi one-dimensional organic conductor TTF-TCNQ studied by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.; Caro, J.; Figueras, A.; Gorostiza, P.; Sanz, F.

    1998-01-01

    Thin films of the quasi one-dimensional organic conductor TTF-TCNQ grown on KCl (001) substrates by Chemical Vapor Deposition has been analyzed with Atomic Force Microscopy. The films are polycrystalline, composed of microcrystals with rectangular shape with the c∗ crystallographic axis perpendicular to the substrate. The stepped surface morphology of the microcrystals has been studied. The growth of the films is strongly dominated by an oriented nucleation and the one-dimensional nature of the compound.

  11. An amorphous-to-crystalline phase transition within thin silicon films grown by ultra-high-vacuum evaporation and its impact on the optical response

    NASA Astrophysics Data System (ADS)

    Orapunt, Farida; Tay, Li-Lin; Lockwood, David J.; Baribeau, Jean-Marc; Noël, Mario; Zwinkels, Joanne C.; O'Leary, Stephen K.

    2016-02-01

    A number of thin silicon films are deposited on crystalline silicon, native oxidized crystalline silicon, and optical quality fused quartz substrates through the use of ultra-high-vacuum evaporation at growth temperatures ranging from 98 to 572 °C. An analysis of their grazing incidence X-ray diffraction and Raman spectra indicates that a phase transition, from amorphous-to-crystalline, occurs as the growth temperature is increased. Through a peak decomposition process, applied to the Raman spectroscopy results, the crystalline volume fractions associated with these samples are plotted as a function of the growth temperature for the different substrates considered. It is noted that the samples grown on the crystalline silicon substrates have the lowest crystallanity onset temperature, whereas those grown on the optical quality fused quartz substrates have the highest crystallanity onset temperature; the samples grown on the native oxidized crystalline silicon substrates have a crystallanity onset temperature between these two limits. These resultant dependencies on the growth temperature provide a quantitative means of characterizing the amorphous-to-crystalline phase transition within these thin silicon films. It is noted that the thin silicon film grown on an optical quality fused quartz substrate at 572 °C, possessing an 83% crystalline volume fraction, exhibits an optical absorption spectrum which is quite distinct from that associated with the other thin silicon films. We suggest that this is due to the onset of sufficient long-range order in the film for wave-vector conservation to apply, at least partially. Finally, we use a semi-classical optical absorption analysis to study how this phase transition, from amorphous-to-crystalline, impacts the spectral dependence of the optical absorption coefficient.

  12. Preparation and characterization of lithium thio-germanate thin film electrolytes grown by RF sputtering for solid state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Seo, Inseok

    In this study, lithium thio-germanate thin amorphous films were prepared as electrolytes for lithium rechargeable batteries by RF sputtering deposition in Ar atmosphere. The targets for RF sputtering were prepared by milling the appropriate amounts of the starting materials in the nLi2S+GeS 2(n = 1, 2, and 3), Li2GeS3, Li4GeS 4 and Li6GeS5, binary system. The ~1 mum thin film electrolytes were grown onto a variety of substrates using 50 W power and 25 mtorr gas pressure. Films were sputtered in inactive Ar atmospheres. IR, Raman spectroscopy and XRD were used to characterize the chemical bonding and the local structures in the films. XPS spectroscopy was used to further characterize the composition and electronic structures of the films. Ionic conductivity measurements of the electrolyte film using impedance spectroscopy were used to examine the Li2S dependence of the conductivity. The conductivities of the thin films at 25 °C is 1.7 x 10-3 (S/cm). This ionic conductivities of the thin films are two order magnitude higher than oxide thin films (LiPON) which are commercial thin film electrolytes. Therefore, lithium thio-germanate thin film electrolytes are very promising materials for use Li-ion batteries.

  13. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  14. MBE Grown In x Ga1- x N Thin Films with Bright Visible Emission Centered at 550 nm

    NASA Astrophysics Data System (ADS)

    Dasari, K.; Thapa, B.; Wang, J.; Wright, J.; Kaya, S.; Jadwisienczak, W. M.; Palai, R.

    2016-04-01

    The In x Ga1- x N thin films with indium content of x = 14-18 at.% were successfully grown by using molecular beam epitaxy (MBE) at high growth temperatures from 650°C to 800°C. In situ reflection high-energy electron diffraction (RHEED) of the In x Ga1- x N films confirmed the Stranski-Krastanov growth mode. X-ray diffraction (XRD) of the films confirmed their highly crystalline nature having c-axis orientation with a small fraction of secondary InN phase admixture. High-resolution cross-sectional scanning electron microscopy images showed two-dimensional epilayers growth with thickness of about ˜260 nm. The high growth temperature of In x Ga1- x N epilayers is found to be favorable to facilitate more GaN phase than InN phase. All the fundamental electronic states of In, Ga, and N were identified by x-ray photoelectron spectroscopy (XPS) and the indium composition has been calculated from the obtained XPS spectra with CASAXPS software. The composition calculations from XRD, XPS and photoluminescence closely match each other. The biaxial strain has been calculated and found to be increasing with the In content. Growing In x Ga1- x N at high temperatures resulted in the reduction in stress/strain which affects the radiative electron-hole pair recombination. The In x Ga1- x N film with lesser strain showed a brighter and stronger green emission than films with the larger built-in strain. A weak S-shaped near band edge emission profile confirms the relatively homogeneous distribution of indium.

  15. Cation Off-Stoichiometry Leads to High p-Type Conductivity and Enhanced Transparency in Co2ZnO4 and Co2NiO4 Thin Films

    SciTech Connect

    Zakutayev, A.; Paudel, T. R.; Ndione, P. F.; Perkins, J. D.; Lany, S.; Zunger, A.; Ginley, D. S.

    2012-02-15

    We explore the effects of cation off-stoichiometry on structural, electrical, optical, and electronic properties of Co{sub 2}ZnO{sub 4} normal spinel and Co{sub 2}NiO{sub 4} inverse spinel using theoretic and experimental (combinatorial and conventional) techniques, both at thermodynamic equilibrium and in the metastable regime. Theory predicts that nonequilibrium substitution of divalent Zn on nominally trivalent octahedral sites increases net hole density in Co{sub 2}ZnO{sub 4}. Experiment confirms high conductivity and high work function in Co{sub 2}NiO{sub 4} and Zn-rich Co{sub 2}ZnO{sub 4} thin films grown by nonequilibrium physical vapor deposition techniques. High p-type conductivities of Co{sub 2}ZnO{sub 4} (up to 5 S/cm) and Co{sub 2}NiO{sub 4} (up to 204 S/cm) are found over a broad compositional range, they are only weakly sensitive to oxygen partial pressure and quite tolerant to a wide range of processing temperatures. In addition, off-stoichiometry caused by nonequilibrium growth decreases the optical absorption of Co{sub 2}ZnO{sub 4} and Co{sub 2}NiO{sub 4} thin films, although the 500-nm thin films still have rather limited transparency. All these properties as well as high work functions make Co{sub 2}ZnO{sub 4} and Co{sub 2}NiO{sub 4} thin films attractive for technological applications, such as hole transport layers in organic photovoltaic devices or p-type buffer layers in inorganic solar cells.

  16. NIO1 diagnostics

    SciTech Connect

    Zaniol, B. Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cavenago, M.; De Muri, M.; Mimo, A.

    2015-04-08

    The radio frequency ion source NIO1, jointly developed by Consorzio RFX and INFN-LNL, will generate a 60kV-135mA hydrogen negative ion beam, composed of 9 beamlets over an area of about 40 × 40 mm{sup 2}. This experiment will operate in continuous mode and in conditions similar to those foreseen for the larger ion sources of the Neutral Beam Injectors for ITER. The modular design of NIO1 is convenient to address the several still open important issues related to beam extraction, optics, and performance optimization. To this purpose a set of diagnostics is being implemented. Electric and water cooling plant related measurements will allow monitoring current, pressure, flow, and temperature. The plasma in the source will be characterized by emission spectroscopy, cavity ring-down and laser absorption spectroscopy. The accelerated beam will be analyzed with a fast emittance scanner, its intensity profile and divergence with beam emission spectroscopy and visible tomography. The power distribution of the beam on the calorimeter will be monitored by thermocouples and by an infrared camera. This contribution presents the implementation and initial operation of some of these diagnostics in the commissioning phase of the experiment, in particular the cooling water calorimetry and emission spectroscopy.

  17. X-ray analysis of strain distribution in two-step grown epitaxial SrTiO{sub 3} thin films

    SciTech Connect

    Panomsuwan, Gasidit E-mail: g.panomsuwan@gmail.com; Takai, Osamu; Saito, Nagahiro

    2014-08-04

    Epitaxial SrTiO{sub 3} (STO) thin films were grown on (001)-oriented LaAlO{sub 3} (LAO) substrates using a two-step growth method by ion beam sputter deposition. An STO buffer layer was initially grown on the LAO substrate at a low temperature of 150 °C prior to growing the STO main layer at 750 °C. The thickness of the STO buffer layer was varied at 3, 6, and 10 nm, while the total film thickness was kept constant at approximately 110 nm. According to x-ray structural analysis, we show that the STO buffer layer plays an essential role in controlling the strain in the STO layer grown subsequently. It is found that the strains in the STO films are more relaxed with an increase in buffer layer thickness. Moreover, the strain distribution in two-step grown STO films becomes more homogeneous across the film thickness when compared to that in directly grown STO film.

  18. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2016-05-01

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  19. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    NASA Technical Reports Server (NTRS)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  20. Microstructural and magneto-transport characterization of Bi2SexTe3-x topological insulator thin films grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jin, Zhenghe; Kumar, Raj; Hunte, Frank; Narayan, Jay; Kim, Ki Wook; North Carolina State University Team

    Bi2SexTe3-x topological insulator thin films were grown on Al2O3 (0001) substrate by pulsed laser deposition (PLD). XRD and other structural characterization measurements confirm the growth of the textured Bi2SexTe3-x thin films on Al2O3 substrate. The magneto-transport properties of thick and thin Þlms were investigated to study the effect of thickness on the topological insulator properties of the Bi2SexTe3 - x films. A pronounced semiconducting behavior with a highly insulating ground state was observed in the resistivity vs. temperature data. The presence of the weak anti-localization (WAL) effect with a sharp cusp in the magnetoresistance measurements confirms the 2-D surface transport originating from the TSS in Bi2SexTe3-x TI films. A high fraction of surface transport is observed in the Bi2SexTe3-x TI thin films which decreases in Bi2SexTe3-x TI thick films. The Cosine (θ) dependence of the WAL effect supports the observation of a high proportion of 2-D surface state contribution to overall transport properties of the Bi2SexTe3-x TI thin films. Our results show promise that high quality Bi2SexTe3-x TI thin films with significant surface transport can be grown by PLD method to exploit the exotic properties of the surface transport in future generation spintronic devices. This work was supported, in part, by National Science Foundation ECCS-1306400 and FAME.

  1. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  2. Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies

    NASA Astrophysics Data System (ADS)

    Anspoks, A.; Kalinko, A.; Kalendarev, R.; Kuzmin, A.

    2012-11-01

    Nanocrystalline NiO samples have been studied using the Ni K-edge extended x-ray absorption fine structure (EXAFS) spectroscopy and recently developed modeling technique, combining classical molecular dynamics with ab initio multiple-scattering EXAFS calculations (MD-EXAFS). Conventional analysis of the EXAFS signals from the first two coordination shells of nickel revealed that (i) the second shell average distance R(Ni-Ni2) expands in nanocrystalline NiO compared to microcrystalline NiO, in agreement with overall unit cell volume expansion observed by x-ray diffraction; (ii) on the contrary, the first shell average distance R(Ni-O1) in nanocrystalline NiO shrinks compared to microcrystalline NiO; (iii) the thermal contribution into the mean-square relative displacement σ2 is close in both microcrystalline and nanocrystalline NiO and can be described by the Debye model; (iv) the static disorder is additionally present in nanocrystalline NiO in both the first Ni-O1 and second Ni-Ni2 shells due to nanocrystal structure relaxation. Within the MD-EXAFS method, the force-field potential models have been developed for nanosized NiO using as a criterion the agreement between the experimental and theoretical EXAFS spectra. The best solutions have been obtained for the 3D cubic-shaped nanoparticle models with nonzero Ni vacancy concentration Cvac: Cvac≈0.4-1.2% for NiO nanoparticles having the cube size of L≈3.6-4.2 nm and Cvac≈1.6-2.0% for NiO thin film composed of cubic nanograins with a size of L≈1.3-2.1 nm. Thus our results show that the Ni vacancies in nanosized NiO play important role in its atomic structure relaxation along with the size reduction effect.

  3. Effect of annealing on M-plane GaN thin films grown by PAMBE on tilt-cut LAO substrate

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Lo, Ikai; Wang, Ying-Chieh; Tsai, Cheng-Da; Yang, Chen-Chi; You, Shuo-Ting; Chou, Ming-Chi; Department of Materials and Optoelectronic Science Collaboration

    2014-03-01

    The non-polar GaN thin film is a potential candidate for high-efficient photoelectric devices. In this work, we analyzed the characteristics of M-plane GaN thin films which were grown on tilt-cut LiAlO2 (LAO) substrate by plasma-assisted molecular beam epitaxy (PAMBE). A series of samples were grown with different N/Ga flux ratios. The crystal structure and optical property of GaN samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence (PL) measurements. The peak of 32.2o in the XRD measurement showed the [1100] oriented (M-plane) for the GaN samples. To improve the crystal quality, we performed the thermal treatment by rapid thermal annealing (RTA) system on these samples and analyzed the crystal structure, surface morphology and optical property of the samples after thermal treatment. The effect of annealing on the M-plane GaN thin films was under investigation. This project is supported by National Science council of Taiwan(101-2112-M-110-006-MY3).

  4. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  5. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  6. Topological insulator Bi{sub 2}Se{sub 3} thin films grown on double-layer graphene by molecular beam epitaxy

    SciTech Connect

    Song Canli; Jiang Yeping; Chang Cuizu; Xue Qikun; Wang Yilin; Zhang Yi; Wang Lili; He Ke; Fang Zhong; Dai Xi; Xie Xincheng; Ma Xucun; Chen Xi; Jia Jinfeng; Wang Yayu; Qi Xiaoliang; Zhang Shoucheng

    2010-10-04

    Atomically flat thin films of topological insulator Bi{sub 2}Se{sub 3} have been grown on double-layer graphene formed on 6H-SiC(0001) substrate by molecular beam epitaxy. By a combined study of reflection high energy electron diffraction and scanning tunneling microscopy, we identified the Se-rich condition and temperature criterion for layer-by-layer growth of epitaxial Bi{sub 2}Se{sub 3} films. The as-grown films without doping exhibit a low defect density of 1.0{+-}0.2x10{sup 11}/cm{sup 2}, and become a bulk insulator at a thickness of ten quintuple layers, as revealed by in situ angle resolved photoemission spectroscopy measurement.

  7. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0<=y<=1) heterostructures. Thinfilm LEDs were fabricated by removing the Si (111) substrates from the grown layers. It is observed by high-resolution transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  8. Composition dependence of microwave properties of Y-Ba-Cu-O thin films grown by metal-organic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Waffenschmidt, E.; Sjamsudin, G.; Musolf, J.; Arndt, F.; He, X.; Heuken, M.; Heime, K.

    1995-01-01

    Thin film of Y-Ba-Cu-O of different compostition were grown on MgO and LaAlO3 substrates by metal-organic chemical-vapor deposition. Using a microwave cavity resonator, their microwave surface resistance at 24.5 GHz was measured at a temperature of 77.5 K. It varies from less than 3 mOmega to more than 50 mOmega depending on the composition of the films. The lowest surface resistances could be obtained with samples having a composition close to the ideal stoichiometry 1:2:3 but with a slight excess of copper and yttrium.

  9. Hot-electron mean free path of ErAs thin films grown on GaAs determined by metal-base transistor ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Russell, K. J.; Narayanamurti, V.; Appelbaum, Ian; Hanson, M. P.; Gossard, A. C.

    2006-11-01

    We present an experimental investigation of the hot-electron mean free path in ErAs thin films grown on GaAs. Using an Al/Al2O3/Al tunnel junction as a hot-electron source for ballistic electron emission spectroscopy, we investigate ErAs films of thicknesses ˜100-˜300Å . Our results indicate a mean free path of order 100Å for electrons 1-2eV above the Fermi level at 80K .

  10. Detection of Fe2+ valence states in Fe doped SrTiO3 epitaxial thin films grown by pulsed laser deposition.

    PubMed

    Koehl, Annemarie; Kajewski, Dariusz; Kubacki, Jerzy; Lenser, Christian; Dittmann, Regina; Meuffels, Paul; Szot, Kristof; Waser, Rainer; Szade, Jacek

    2013-06-01

    We present an X-ray absorption spectroscopy study on Fe-doped SrTiO3 thin films grown by pulsed laser deposition. The Fe L2,3 edge spectra are recorded for doping concentrations from 0-5% after several annealing steps at moderate temperatures. The Fe valence state is determined by comparison with an ilmenite reference sample and calculations according to the charge transfer multiplet model. We found clear evidence of Fe(2+) and Fe(3+) oxidation states independently of the doping concentration. The Fe(2+) signal is enhanced at the surface and increases after annealing. The Fe(2+) configuration is in contrast to the mixed Fe(3+)/Fe(4+) valence state in bulk material and must be explained by the specific defect structure of the thin films due to the kinetically limited growth which induces a high concentration of oxygen vacancies. PMID:23615619