Science.gov

Sample records for growth crystal field

  1. Phase-Field Simulations of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2010-07-01

    This course gives an elementary introduction to the phase-field method and to its applications for the modeling of crystal growth. Two different interpretations of the phase-field variable are given and discussed. It can be seen as a physical order parameter that characterizes a phase transition, or as a smoothed indicator function that tracks domain boundaries. Elementary phase-field models for solidification and epitaxial growth are presented and are applied to the dendritic growth of a pure substance and the step-flow growth on a vicinal surface.

  2. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  3. Crystal growth under microgravity conditions with using of magnetic fields

    NASA Astrophysics Data System (ADS)

    Feonychev, A.; Bondareva, N.

    The peculiarities of melt flows and crystal growth by the Bridgman and floating zone methods aboard spacecrafts under the action of steady axial or rotating magnetic field are considered. Steady magnetic field can minimize adverse effect of residual accelerations and vibrations on dopant segregation in crystals growing by the Bridgman method but it requires using strong magnetic fields, which induces specific oscillations. Under strong convection in terrestrial conditions steady magnetic field gives positive effect. Under growth of small-sized crystals by the floating zone method in microgravity conditions an use of steady magnetic field brings into dramatic increase of radial segregation due to convective vortex to free fluid surface. The flows being created by rotating magnetic field and resultant under combination of Marangoni convection with rotating magnetic field were studied for wide range of parameters including the regimes of oscillatory (turbulent) convection. Mathematical model and computer program was tested by published results of two experiments. The dependence of transition from laminar to oscillatory flow was obtained for different boundary conditions, geometric parameters of fluid and intensity of magnetic field. Specific oscillations with very low frequency and oscillations of the beating type had been discovered under the action rotating magnetic field on Marangoni convection. The mutual influence of rotating magnetic field and thermocapillary convection on flow stability was noted. Use of rotating magnetic field under crystal growth by floating zone method leads to reduction of azimuth velocity which is responsible for origin of oscillatory convection and striation of crystals. It was shown on concrete examples that there is a possibility to reduce radial segregation under optimization of rotating velocity and intensity of magnetic field. For the Bridgman method (in general for ampoule methods of crystal growth), the use of rotating magnetic

  4. Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Yang, Tao; Du, Xiu-Juan

    2012-11-01

    We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.

  5. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  6. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  7. Magnetic field controlled FZ single crystal growth of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Behr, G.; Gerbeth, G.; Priede, J.; Uhlemann, H.-J.; Fischer, F.; Schultz, L.

    2005-02-01

    Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid-liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by the RF heater coil and the solution of the coupled heat and hydrodynamic equations were done for the model substance Ni with and without additional magnetic field. As a result, an innovative magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt ranging from intensive inwards/outwards flows to flows almost at rest. The selection of parameters necessary for the desired fluid flow is determined from numerical simulation. The basis for the calculations are the process-related fluid flow conditions which are determined by the mode of heating, heat radiation at the free surface and material parameters. This treatment of the problem leads to the customised magnetic field for the special intermetallic compound. The application of the new magnetic system leads to a distinct improvement of the solid-liquid interface validated on experiments with the model substance Nickel.

  8. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  9. Effect of an electric field on nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  10. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  11. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  12. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  13. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  14. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  15. A phase-field/Monte-Carlo model describing organic crystal growth from solution. Investigation of the diffusion-influenced growth of hydroquinone crystals

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Yürüdü, C.; Ulrich, J.; Emmerich, H.

    2009-08-01

    In this paper work we present a phase-field/Monte-Carlo hybrid algorithm for the simulation of solutal growth of organic crystals. The algorithm is subsequently used for an investigation of diffusion effects on the growth mechanisms. This method combines a two-scale phase-field model of the liquid phase epitaxial growth and a Monte-Carlo algorithm of the 2D nucleation and thus is faster than previous purely Monte Carlo simulations of crystal growth. The inclusion of supersaturation and diffusion in the method allows the study of crystal growth under various growth conditions. Parameters used in the hybrid algorithm are bound to the energetic parameters of crystal faces, which can be estimated from a detailed study of the actual crystal structure based on a connected nets analysis, which allows the prediction of the shape and morphology of real crystals. The study of the diffusion effect is carried out based on an example of a hydroquinone crystal, which grows from the water solution at various supersaturations. The dependencies of the growth rate and the nucleation rate on the supersaturation indicate the change of the growth mechanism from spiral growth to 2D nucleation. The difference in the growth rate for various faces is in agreement with the crystal morphologies derived from the attachment energy method and observed experimentally. The main result of the simulation is the evaluation of engineering limits for choosing appropriate external process conditions.

  16. Dynamic control over the heat field during LBO crystal growth by High temperature solution method

    NASA Astrophysics Data System (ADS)

    Kokh, A.; Vlezko, V.; Kokh, K.; Kononova, N.; Villeval, Ph.; Lupinski, D.

    2012-12-01

    The paper presents LiB3O5 crystal growth under oscillating temperature regime provided by sequential switching of the heaters placed around the crucible. First results have demonstrated the ability to grow high-quality crystals under dynamicaly changed (rotating) heat field confirming the possibility to control over heat-mass-transfer processes by proposed contact free method.

  17. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  18. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  19. Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field

    NASA Astrophysics Data System (ADS)

    Dost, Sadik; Lent, Brian; Sheibani, Hamdi; Liu, Yongcai

    2004-05-01

    This review article presents recent developments in Liquid Phase Electroepitaxial (LPEE) growth of bulk single crystals of alloy semiconductors under an applied static magnetic field. The growth rate in LPEE is proportional to the applied electric current. However, at higher electric current levels the growth becomes unstable due to the strong convection occurring in the liquid zone. In order to address this problem, a significant body of research has been performed in recent years to suppress and control the natural convection for the purpose of prolonging the growth process to grow larger crystals. LPEE growth experiments show that the growth rate under an applied static magnetic field is also proportional and increases with the field intensity level. The modeling of LPEE growth under magnetic field was also the subject of interest. Two-dimensional mathematical models developed for the LPEE growth process predicted that the natural convection in the liquid zone would be suppressed almost completely with increasing the magnetic field level. However, experiments and also three-dimensional models have shown that there is an optimum magnetic field level below which the growth process is stable and the convection in the liquid zone is suppressed, but above such a field level the convective flow becomes very strong and leads to unstable growth with unstable interfaces. To cite this article: S. Dost et al., C. R. Mecanique 332 (2004).

  20. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  1. Application of a rotating magnetic field to semiconductor crystal growth in Space

    NASA Astrophysics Data System (ADS)

    Senchenkov, A. S.; Barmin, I. V.

    2003-12-01

    To eliminate the tremendous influence of the residual accelerations on homogeneity of the crystal growing in a space experiment, a rotating magnetic field (RMF) is used. A number of the experiments have been performed in space within the RMF both in the frame of the Russian national program and together with European scientists. In the paper some theoretical and experimental results illustrating the effectiveness of RMF application to crystal growth under microgravity conditions are presented. Tables 2, Figs 5, Refs 8.

  2. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  3. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  4. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  5. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  6. In-situ observation of electric-field-induced acceleration in crystal growth of tetrathiafulvalene-tetracyanoquinodimethane

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro

    2013-04-01

    In-situ observations of vapor-phase growth of tetrathiafulvalene (TTF)-tetracyanoquinodimethane (TCNQ) crystals under an electric field were conducted without influencing the actual crystal growth process. The shortest incubation time of TTF-TCNQ nuclei and the highest initial growth rate of the crystals are obtained on the anode side and in high electric field regions. It is demonstrated that the distribution of molecules thermally diffusing on the substrate surface is controlled by an external electric field. These results indicate the potential for selective growth of highly conductive organic wires for micro- and nanoscale wiring in organic nanodevices.

  7. Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Do Hyun; Adornato, Peter M.; Brown, Robert A.

    1988-01-01

    A previous finite-element analysis of vertical Bridgman growth for dilute and nondilute alloys is extended to include the effect of a vertically-aligned magnetic field in the limit of zero magnetic Reynolds number. Calculations are presented for growth of a dilute gallium-germanium alloy in a vertically stabilized Bridgman-Stockbarger system and in a furnace with a uniform temperature gradient imposed along the ampoule. Steady cellular convection driven by radial temperature gradients causes good axial and radial mixing in both systems without a magnetic field. A weak magnetic field decreases the intensity of convection and the effectiveness of solute mixing. The radial nonuniformity is greatest for an intermediate field strength. Stronger fields suppress flow recirculation completely, and lead to uniform solute segregation across the crystal and to diffusion-controlled axial segregation.

  8. A binary phase field crystal study for liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  9. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  10. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  11. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  12. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy.

    PubMed

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively. PMID:27575207

  13. Phase-field study of crystal growth in three-dimensional capillaries: Effects of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Debierre, Jean-Marc; Guérin, Rahma; Kassner, Klaus

    2016-07-01

    Phase-field simulations are performed to explore the thermal solidification of a pure melt in three-dimensional capillaries. Motivated by our previous work for isotropic or slightly anisotropic materials, we focus here on the more general case of anisotropic materials. Different channel cross sections are compared (square, hexagonal, circular) to reveal the influence of geometry and the effects of a competition between the crystal and the channel symmetries. In particular, a compass effect toward growth directions favored by the surface energy is identified. At given undercooling and anisotropy, the simulations generally show the coexistence of several growth modes. The relative stability of these growth modes is tested by submitting them to a strong spatiotemporal noise for a short time, which reveals a subtle hierarchy between them. Similarities and differences with experimental growth modes in confined geometry are discussed qualitatively.

  14. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings. PMID:26274192

  15. Two-dimensional liquid crystalline growth within a phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  16. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  17. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale

    NASA Astrophysics Data System (ADS)

    Rudolph, Peter

    2008-04-01

    After introduction of various types of magnetic fields in crystal growth, their main pros and cons for crystallization processes are discussed. It is shown that their further developments towards industrial maturity are bound up with the cardinal demands—increase of the process output, improvement of the crystal quality, and reduction of costs. In a further section, the advantages of travelling magnetic fields are presented. The central chapter is devoted to the target of the current KRISTMAG˜ project—the development of an internal heater-magnet module for coupled generation of temperature and a travelling magnetic field, suitable for incorporation into industrial Czochralski pullers and vertical gradient freeze equipments. Amplitude, frequency and phase shift of the three-phase current are all adjustable and are combined with a dc component to control the crystallization process effectively. Results of accompanying numeric modelling are presented. The current state of crystal growth experiments in travelling magnetic field and first encouraging results are given.

  18. Convection patterns and temperature fields of ammonothermal GaN bulk crystal growth process

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshio; Sato, Osamu; Tomida, Daisuke; Yokoyama, Chiaki

    2016-05-01

    The natural convection heat transfer in an ammonothermal process for growing GaN bulk single crystals has been examined numerically. We consider only one crystal to simplify the calculation and discuss the relationship between convection patterns and temperature fields. Two types of convection patterns are observed owing to the difference in the crystal radius. When the convection pattern is transformed, the crystal surface temperature decreases as the crystal radius increases.

  19. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  20. Multilayer thin film growth on crystalline and quasicrystalline surfaces: A phase-field crystal study

    NASA Astrophysics Data System (ADS)

    Muralidharan, Srevatsan; Khodadad, Raika; Sullivan, Ethan; Haataja, Mikko

    2012-06-01

    In this paper, we explore the effects of misfit strain fields on both heterogeneous nucleation behavior and anisotropic growth of islands at submonolayer coverages and compositional patterning at complete monolayer coverage via simulations of a phase-field crystal model. In particular, deposition on top of a herringbone structure and quasicrystalline (QC) substrate are considered, the former representing a system with spatially periodic misfit strain fields arising from the presence of surface dislocations, and the latter representing a system which inherently possesses a wide range of local, aperiodic misfit patterns. In the case of single-component systems, we demonstrate that misfit strain fields lead to heterogeneous nucleation behavior and anisotropic island growth. In the case of QC substrate, a wide range of morphologies, such as coexistence of locally hexagonally ordered atomic clusters within a larger scale arrangement with overall QC symmetry and so-called “starfish” aggregates, is observed in a pure system at submonolayer coverages when the adlayer-substrate interaction strength and lattice mismatch are tuned. In the case of bulk-immiscible binary systems at complete monolayer coverage, strain-stabilized compositional domains emerge at low line tension values for both substrates. Interestingly, the compositional domains on the QC substrate inherit their symmetries at sufficiently low line tension values, while at larger line tension values, the domain structure begins to resemble the classical spinodal microstructure. Such domain structures should be readily observable in colloidal systems in which attractive interparticle and particle-substrate interactions can be tuned.

  1. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  2. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  3. Investigating the role of oriented nucleus in polymer shish-kebab crystal growth via phase-field method

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Ouyang, Jie; Su, Jin; Zhou, Wen

    2014-03-01

    The phase-field method has been developed to simulate the shish-kebab crystal growth in polymer crystallization by introducing the oriented nucleus. With the help of this developed phase-field model, the role of oriented nucleus in polymer shish-kebab crystal growth has been investigated. It appears that the growth mechanisms of shish-kebab crystal on a preformed oriented nucleus may be attributed to epitaxial growth and lattice match. First the oriented nucleus (early shish) further grows into stable shish entity through epitaxial growth, and then lattice match supplies the sites for kebabs and epitaxial lateral growth from these sites forms the kebabs. It also has been verified that kebabs can be grown on oriented nucleus in the total absence of any flow. Therefore, with regard to flow induced shish-kebab crystal, the oriented nucleus plays a major role in the growth of shish-kebab morphology and the flow mainly helps to generate the oriented nucleus. Besides, when the nucleus possesses a rod-like profile, the kebabs are generally parallel and equidistantly distributed, and the well-defined interval between adjacent kebabs is strongly influenced by the orientation angle of the rod-like nucleus. On the other hand, when the nucleus is slightly curved and presents a thread-like profile, the distribution of kebabs on the shish is no longer equidistant and the influence of orientation angle on the kebab density becomes weak.

  4. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  5. Mercury iodide crystal growth

    NASA Technical Reports Server (NTRS)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  6. The Design of a Transparent Vertical Multizone Furnace: Application to Thermal Field Tuning and Crystal Growth

    NASA Technical Reports Server (NTRS)

    Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1998-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.

  7. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  8. Directional growth by low electric-field-controlled crystallization of bulk amorphous lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kim, J. E.; Yang, Y. S.

    2004-12-01

    Highly oriented rod-shaped crystals were grown during crystallization of bulk amorphous Li2B4O7 under a low ac electric field of ˜5V/mm. The crystal c axis that is the long direction of rods and perpendicular to the flat surface of the sample is parallel to the applied electric-field direction. The oriented crystals, with an alignment within a declined angle of ˜15°, are so long along the c direction compared with those of other directions that the geometrical structure of each rod is quasi-one-dimensional. The measured electromechanical coupling coefficient of kt=0.47 is comparable to that of single-crystal Li2B4O7.

  9. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  10. Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen; Duffar, Thierry

    2015-11-01

    The influence of rotating magnetic fields (RMF) on species transport and interface stability during the growth of Cd0.96Zn0.04Te:In crystals by using the traveling heater method (THM), under microgravity and terrestrial conditions, is numerically investigated. The numerical results are compared to ground and space experiments. The modeling of THM under ground conditions shows very deleterious effects of the natural convection on the morphological stability of the growth interface. The vertical flow transports the liquid of low Te concentration from the dissolution interface to the growth interface, which is consequently destabilized. The suppression of this flow, in low-gravity conditions, results in higher morphological stability of the growth interface. Application of RMF induces a two flow cell pattern, which has a destabilizing effect on the growth interface. Simulations performed by varying the magnetic field induction in the range of 1 - 3 mT show optimal conditions for the growth with a stable interface at low strength of the magnetic field (B = 1 mT). Computations of indium distribution show a better homogeneity of crystals grown under purely diffusive conditions. Rotating magnetic fields of B = 1 mT induce low intensity convection, which generates concentration gradients near the growth interface. These numerical results are in agreement with experiments performed during the FOTON M4 space mission, showing good structural quality of Cd0.96Zn0.04Te crystals grown at very low gravity level. Applying low intensity rotating magnetic fields in ground experiments has no significant influence on the flow pattern and solute distribution. At high intensity of RMF (B = 50 mT), the buoyancy convection is damped near the growth front, resulting in a more stable advancing interface. However, convection is strengthening in the upper part of the liquid zone, where the flow becomes unsteady. The multi-cellular unsteady flow generates temperature oscillations, having

  11. Diffusion-Controlled Anisotropic Growth of Stable and Metastable Crystal Polymorphs in the Phase-Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Tegze, G.; Gránásy, L.; Tóth, G. I.; Podmaniczky, F.; Jaatinen, A.; Ala-Nissila, T.; Pusztai, T.

    2009-07-01

    We use a simple density functional approach on a diffusional time scale, to address freezing to the body-centered cubic (bcc), hexagonal close-packed (hcp), and face-centered cubic (fcc) structures. We observe faceted equilibrium shapes and diffusion-controlled layerwise crystal growth consistent with two-dimensional nucleation. The predicted growth anisotropies are discussed in relation with results from experiment and atomistic simulations. We also demonstrate that varying the lattice constant of a simple cubic substrate, one can tune the epitaxially growing body-centered tetragonal structure between bcc and fcc, and observe a Mullins-Sekerka-Asaro-Tiller-Grinfeld-type instability.

  12. Control of Convection by Dynamic Magnetic Fields for VB, FZ and THM Crystal Growth Application

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2000-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, a detailed one-dimensional planar TMF model has been developed and is presented.

  13. Determination of forced convection parameters by interferometric imaging of the concentration field during growth of KDP crystals

    NASA Astrophysics Data System (ADS)

    Verma, Sunil; Muralidhar, K.

    2011-07-01

    Growth of a potassium dihydrogen phosphate (KDP) crystal from its aqueous solution has been considered under forced convection conditions. The KDP crystal is grown in a conventional top hanging geometry. Forced convection conditions are created by rotating the crystal about a vertical axis. The rotational RPM is varied in a cycle, creating an accelerated rotation (AR) paradigm. The effect of varying the rotational RPM on the concentration field around the crystal was investigated. Mach-Zehnder interferometry was adopted as an optical technique to image the evolving concentration fields. Six different experiments were performed to obtain the specific set of time periods and rotation rates of the acceleration cycle that result in a uniform concentration field around the growing crystal. The Reynolds number, an index of the strength of forced convection, was optimized through the experiments. The optimized parameters of the accelerated rotation cycle were found to be as follows: maximum rotation rate of 32 RPM, spin up period=40 s, spin down period=40 s, steady period=40 s, and stationary period=40 s. The parametric study further revealed that concentration was highly sensitive to the maximum rotation rate adopted during the AR cycle. It did not depend crucially on the time periods that could be varied by as much as ±25% around the respective average values. Finally, a KDP crystal was grown using the optimized forced convection parameters and the crystal quality was found to be good.

  14. Dynamics of three-dimensional convection in microgravity crystal growth: g-jitter with steady magnetic fields

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2004-03-01

    We present results from three-dimensional simulations of the flow induced by transient acceleration (g-jitter) in microgravity crystal growth. Transient accelerations in both axial and transverse directions are considered for a simple prototype of a vertical Bridgman crystal growth system. We also consider the effects of applying a steady magnetic field in axial or transverse directions to suppress the flow. In most cases, application of a magnetic field suppresses flow oscillations, but for transverse jitter at intermediate frequencies, flow oscillations are increased. This counter-intuitive effect is a dynamic one, in which boundary layer formation under the influence of a magnetic field shortens the time scale of momentum transfer, allowing the flow to respond more quickly to the time variation of acceleration. The effect of the magnetic field on an enclosed flow with electrically insulating boundary conditions is to preferentially suppress the velocity component tangential to the magnetic field. The ability to filter a single velocity component by application of a specified magnetic field could be useful for simultaneously improving both axial and radial segregation in semiconductor crystal growth.

  15. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    PubMed Central

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.

    2016-01-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal. PMID:27161600

  16. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    NASA Astrophysics Data System (ADS)

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; da Como, Enrico; Hall, Simon R.

    2016-05-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

  17. Thermoelectric Magnetohydrodynamic Flow During Crystal Growth with a Moderate or Weak Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Y. Y.; Walker, John S.; Szofran, Frank R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This paper treats a steady, axisymmetric melt motion in a cylindrical ampoule with a uniform, axial magnetic field and with an electric current due to a radial temperature variation along the crystal-melt interface, where the values of the absolute thermoelectric power for the crystal and melt are different. The radial component of the thermoelectric current in the melt produces an azimuthal body force, and the axial variation of the centrifugal force due to the azimuthal motion drives a meridional circulation with radial and axial velocities. For moderate magnetic field strengths, the azimuthal velocity and magnetic field produce a radial induced electric field which partially cancels the Seebeck electromotive force in the melt, so that the thermoelectric current and the melt motion are coupled. For weak magnetic fields, the thermoelectric current is decoupled from the melt motion, which is an ordinary hydrodynamic flow driven by a known azimuthal body force. The results show how the flow varies with the strength of the magnetic field and with the magnitude of the temperature variation along the crystal-melt interface. They also define the parameter ranges for which the simpler weak-field decoupled analysis gives accurate predictions.

  18. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  19. Total immersion crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.

  20. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  1. MCT crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1988-01-01

    Convection and segregation in directional solidification and crystal growth by the Bridgman-Stockbarger technique are traditionally treated by assuming axisymmetric thermal condition on the ampoule wall. It is, however, difficult to achieve such a condition in an experimental setup. Any deviation from an axisymmetric temperature field on the wall of a vertical ampoule represents a horizontal temperature gradient. The horizontal density gradient that results from thermal expansion in the melt under this condition must lead on earth to some buoyance-driven convection, no matter what the axial (vertical) temperature distribution that is imposed on the melt. The magnitude of such convective flows for conditions representative of the MSFC mercury-cadmium-telluride (MCT) Bridgman setup is studied.

  2. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment.

    PubMed

    Tanaka, Hiroaki; Sasaki, Susumu; Takahashi, Sachiko; Inaka, Koji; Wada, Yoshio; Yamada, Mitsugu; Ohta, Kazunori; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-11-01

    It is said that the microgravity environment positively affects the quality of protein crystal growth. The formation of a protein depletion zone and an impurity depletion zone due to the suppression of convection flow were thought to be the major reasons. In microgravity, the incorporation of molecules into a crystal largely depends on diffusive transport, so the incorporated molecules will be allocated in an orderly manner and the impurity uptake will be suppressed, resulting in highly ordered crystals. Previously, these effects were numerically studied in a steady state using a simplified model and it was determined that the combination of the diffusion coefficient of the protein molecule (D) and the kinetic constant for the protein molecule (β) could be used as an index of the extent of these depletion zones. In this report, numerical analysis of these depletion zones around a growing crystal in a non-steady (i.e. transient) state is introduced, suggesting that this model may be used for the quantitative analysis of these depletion zones in the microgravity environment. PMID:24121357

  3. Phase field crystal study of nano-crack growth and branch in materials

    NASA Astrophysics Data System (ADS)

    Yingjun, Gao; Zhirong, Luo; Lilin, Huang; Hong, Mao; Chuanggao, Huang; Kui, Lin

    2016-06-01

    The phase field crystal (PFC) method is a new multiscale method, which can reproduce physical phenomena on an atomic level and on a diffusion time scale for the microstructure evolution of materials. The morphology of microcrack propagation and the branch of single crystal materials under tensile strain with a fixed grip condition are simulated by using PFC coupling with an external field method. The results show that microcrack propagation depends a lot on the applied strain. The crack starts to grow and branch when the strain reaches a critical value for biaxial tension. The temperature parameter may also have an effect on crack propagation and the branch. In order to indicate the connection between the PFC results and materials behavior, the energy balance approach is used to analyze the mechanism of crack extension, and also the critical value of the strain for crack extension is obtained. The simulated results are in good agreement with other simulation results and experimental results.

  4. Faceted growth of primary Al{sub 2}Cu crystals during directional solidification in high magnetic field

    SciTech Connect

    Li, Chuanjun; Ren, Zhongming; Shen, Yu; Wang, Qiuliang; Dai, Yinming; Wang, Hui

    2013-10-21

    The high magnetic field is widely used to modify the crystal morphology. In this work, the effect of the magnetic field on growing behavior of faceted crystals in the Al-40 wt. %Cu alloy was investigated using directional solidification technique. It was found that the faceted growth of primary Al{sub 2}Cu phase was degraded and the primary spacing was reduced upon applying the magnetic field. Additionally, the length of the mushy zone first decreased and then increased with increase of the magnetic field intensity. The quantitative analysis reveals that the shear stress induced by the fluid motion is insufficient to break the atom bonds at the solid-liquid interface. However, both of the thermoelectric magnetic convection (TEMC) and the thermoelectric magnetic force (TEMF) cause dendrites to fracture and reduce the primary spacing. The two effects also weaken the faceting growth. Moreover, the instability of the solid-liquid interface is generated by the TEMF, which further leads to degrade the faceted growth. The length of mushy zone was changed by the TEMC and reached the minimum in the magnetic field of 0.5 T, which is in good agreement with the predicted value (0.83 T)

  5. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  6. Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muiznieks, A.; Buligins, L.; Raming, G.; Mühlbauer, A.; Lüdge, A.; Riemann, H.

    2000-06-01

    Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye technique used for the production of high-quality silicon single crystals with large diameters ( ⩾100 mm ). Since the pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of the pancake inductor is calculated by boundary element method. The obtained non-symmetric power distribution on the free melt surface and the corresponding EM forces are used for the coupled calculation of the 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with control volume approach. The buoyancy, Marangoni and EM forces are considered. The afterwards calculated corresponding 3D dopant concentration field is used to derive the variations of resistivity in a longitudinal cut of the grown crystal. The results are compared with experimental measurements (photo-scanning method) and with results of 2D transient flow calculations. Rotational striations are found in both 3D-calculated and experimental resistivity distributions and show a qualitative agreement. A Fourier analysis for the resistivity variations is performed and the observed differences are explained by modelling limitations.

  7. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  8. Growth, spectral property and crystal field analysis of Cr3+-doped Na2Mg5(MoO4)6 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhen; Li, Linyun; Huang, Yisheng; Sun, Shijia; Lin, Zhoubin; Wang, Guofu

    2015-11-01

    This paper reports the growth and spectral properties of Cr3+:Na2Mg5(MoO4)6 crystals. The Na2Mg5(MoO4)6 crystal was grown from a flux of Na2Mo2O7 by the top seeded solution growth method. The absorption cross-sections are 0.692 × 10-19 cm2 at 507 nm and 1.151 × 10-19 cm2 at 736 nm, respectively. The emission cross-section is 1.62 × 10-19 cm2 at 914 nm with FWHM of 192 nm. Based on the absorption and emission spectra, the crystal field strength Dq, the Racah parameters B and C, effective phonon energy ℏω and the Huang-Rhys factor S were calculated. The spectral properties of Cr3+:Na2Mg5(MoO4)6 crystal demonstrate a good potential for tunable laser material.

  9. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  10. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  11. Crystal growth of CdTe in space and thermal field effects on mass flux and morphology

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1988-01-01

    The primary, long-range goals are the development of vapor phase crystal growth experiments, and the growth of technologically useful crystals in space. The necessary ground-based studies include measurements of the effects of temperature variations on the mass flux and crystal morphology in vapor-solid growth processes. For in-situ mass flux measurements dynamic microbalance techniques will be employed. Crystal growth procedures and equipment will be developed to be compatible with microgravity conditions and flight requirements. Emphasis was placed on the further development of crystal growth and the investigation of relevant transport properties of CdTe. The dependence of the mass flux on source temperature was experimentally established. The CdTe synthesis and pretreatment procedures are being developed that yield considerable improvements in mass transport rates, and mass fluxes which are independent of the amount of source material. A higher degree of stoichiometric control of CdTe than before was achieved during this period of investigation. Based on this, a CdTe crystal growth experiment, employing physical vapor transport, yielded very promising results. Optical microscopy and X-ray diffraction studies revealed that the boule contained several large sized crystal grains of a high degree of crystallinity. Further characterization studies of CdTe crystals are in progress. The reaction chamber, furnace dimensions, and ampoule location of the dynamic microbalance system were modified in order to minimize radiation effects on the balance performance.

  12. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  13. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  14. Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors

    SciTech Connect

    Yang, H.; Yang, C; Kim, S; Jang, M; Park, C

    2010-01-01

    The dependence of pentacene nanostructures on gate dielectric surfaces were investigated for flexible organic field-effect transistor (OFET) applications. Two bilayer types of polymer/aluminum oxide (Al{sub 2}O{sub 3}) gate dielectrics were fabricated on commercial Al foils laminated onto a polymer back plate. Some Al foils were directly used as gate electrodes, and others were smoothly polished by an electrolytic etching. These Al surfaces were then anodized and coated with poly({alpha}-methyl styrene) (PAMS). For PAMS/Al{sub 2}O{sub 3} dielectrics onto etched Al foils, surface roughness up to 1 nm could be reached, although isolated dimples with a lateral diameter of several micrometers were still present. On PAMS/Al{sub 2}O{sub 3} dielectrics (surface roughness >40 nm) containing mechanical grooves of Al foil, average hole mobility ({mu}FET) of 50 nm thick pentacene-FETs under the low operating voltages (|V| < 6 V) was {approx}0.15 cm{sup 2} V{sup -1} s{sup -1}. In contrast, pentacene-FETs employing the etched Al gates exhibited {mu}FET of 0.39 cm{sup 2} V{sup -1} s{sup -1}, which was comparable to that of reference samples with PAMS/Al{sub 2}O{sub 3} dielectrics onto flat sputtered Al gates. Conducting-probe atomic force microscopy and two-dimensional X-ray diffraction of pentacene films with various thicknesses revealed different out-of-plane and in-plane crystal orderings of pentacene, depending on the surface roughness of the gate dielectrics.

  15. Computational analyses of crystal growth

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1987-01-01

    Two important aspects of Hg/Cd/Te crystal growth processes are discussed. First, the thermal field and second, the fluid movement in the melt zone. The thermal analysis includes numerical calculation of axisymmetric heat conduction within the sample. It also includes a three-dimensional radiation model to calculate the radiative heat exchange between the furnace and the crystal as determined by the complex geometry of the furnace and the adiabatic shield. The thermal analysis also includes a crystal conductivity which is dependent on temperature and composition. To tackle the fluid flow aspect of the problem, an attempt was made to use a newly developed incompressible flow code based on the slight compressibility, and hence the finite sound speed, of all real fluids.

  16. Modeling of Czochralski crystal growth

    SciTech Connect

    Ramachandran, P.A.; Dudukovic, M.P. . Chemical Reaction Engineering Lab.)

    1991-05-01

    The manufacture of high quality silicon crystals especially for power device applications requires the understanding and full quantification of the relationship between the process variables and the crystal properties. This cannot be achieved solely by experimental work and a systematic modeling study is needed. This document presents the results of such a study. A detailed finite element program was developed for the heat transfer in the crystal and the melt of the CZ process. A model was developed to predict the oxygen content of the CZ grown silicon as a function of the operating variables: crucible rotation rate, crystal rotation, crucible temperature and the heat flux to the melt. Preliminary work was also done to assess the effect of the magnetic field on the crystal oxygen content. A complete thermal stress a model was developed for the calculation of the resolved shear stresses in the crystal as a function of its growth history. Multivariable control theory was applied to CZ process and new control methods were suggested. 46 refs., 47 figs., 8 tabs.

  17. Physical vapor transport crystal growth

    NASA Technical Reports Server (NTRS)

    Yoel, Dave W.; Anderson, Elmer; Wu, Maw-Kuen; Cheng, H. Y.

    1987-01-01

    The goals of this research are two-fold: to study effective means of growing ZnSe crystals of good optical quality and to determine the advantages of growing such crystals in microgravity. As of this date the optimal conditions for crystal growth have not been determined. However, successful growth runs were made in two furnances and the results are given.

  18. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  19. An Apparatus for Growth of Small Crystals From Solutions.

    ERIC Educational Resources Information Center

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  20. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  1. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  2. Protein crystals and their growth

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2003-01-01

    Recent results on the associations between protein molecules in crystal lattices, crystal-solution surface energy, elastic properties, strength, and spontaneous crystal cracking are reviewed and discussed. In addition, some basic approaches to understanding the solubility of proteins are followed by an overview of crystal nucleation and growth. It is argued that variability of mixing in batch crystallization may be a source of the variation in the number of crystals ultimately appearing in the sample. The frequency at which new molecules join a crystal lattice is measured by the kinetic coefficient and is related to the observed crystal growth rate. Numerical criteria used to discriminate diffusion- and kinetic-limited growth are discussed on this basis. Finally, the creation of defects is discussed with an emphasis on the role of impurities and convection on macromolecular crystal perfection.

  3. Crystallization with oils: a new dimension in macromolecular crystal growth

    NASA Astrophysics Data System (ADS)

    Chayen, Naomi E.

    1999-01-01

    The crystal growth of biological macromolecules is a complicated process involving numerous parameters. This paper presents an approach which employs the use of oil as a major aid to crystal growth, and which has opened up a new dimension in the field of macromolecular crystallization. The presence of oil is a parameter which can contribute to the accuracy, the cleanliness and to the increase in the reproducibility of the experiments. Furthermore, the oil has a role in the protection of the trials during the course of their duration and in maintaining the stability of the resulting crystals. The use of oil also applies to the crystallization of membrane proteins. The results of a wide range of experiments which exploit the presence of oil to abet macromolecular crystal growth using both vapour diffusion and microbatch are presented.

  4. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  5. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  6. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  7. Cessation of growth in crystals

    NASA Astrophysics Data System (ADS)

    Falcón Rodríguez, C.; Aguilera Morales, S.; Falcón Rodríguez, F.

    2000-01-01

    A mathematical model that explains the cessation of growth of protein crystals as a consequence of the increment of bond weakness between adjacent protein molecules is presented. It is assumed that the main factor increasing the bond weakness is the concentration of precipitating salts generally used in protein crystal growth practice.

  8. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Bugg, Charles E.

    1991-01-01

    Studies of protein crystal growth in the microgravity environment in space are described with special attention given to the crystal growth facilities and the techniques used in Space Shuttle experiments. The properties of large space-grown crystals of gamma interferon, elastase, lathyros ochrus lectin I, and few other proteins grown on various STS flights are described. A comparison of the microgravity-grown crystals with the bast earth-grown crystals demonstrated that the space-grown crystals are more highly ordered at the molecular level than their earth-grown counterparts. When crystallization conditions were optimized, the microgravity-grown protein crystals were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolution than their earth-grown counterparts.

  9. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  10. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  11. 3D modeling of the molten zone shape created by an asymmetric HF EM field during the FZ crystal growth process

    NASA Astrophysics Data System (ADS)

    Rudevics, A.; Muiznieks, A.; Ratnieks, G.; Riemann, H.

    2005-06-01

    In the modern industrial floating zone (FZ) silicon crystal growth process by the needle-eye technique, the high frequency (HF) electromagnetic (EM) field plays a crucial role. The EM field melts a rotating poly silicon feed rod and maintains the zone of molten silicon, which is held by the rotating single crystal. To model such a system, the 2D axi-symmetric models can be used, however, due to the system's asymmetry (e.g., the asymmetry of the HF inductor) the applicability of such models is restricted. Therefore, the modeling of FZ process in three dimensions (3D) is necessary. This paper describes a new complex 3D mathematical model of the FZ crystal growth and a correspondingly developed software package Shape3D. A 3D calculation example for the realistic FZ system is also presented. Figs 25, Refs 9.

  12. Crystal growth inside an octant.

    PubMed

    Olejarz, Jason; Krapivsky, P L

    2013-08-01

    We study crystal growth inside an infinite octant on a cubic lattice. The growth proceeds through the deposition of elementary cubes into inner corners. After rescaling by the characteristic size, the interface becomes progressively more deterministic in the long-time limit. Utilizing known results for the crystal growth inside a two-dimensional corner, we propose a hyperbolic partial differential equation for the evolution of the limiting shape. This equation is interpreted as a Hamilton-Jacobi equation, which helps in finding an analytical solution. Simulations of the growth process are in excellent agreement with analytical predictions. We then study the evolution of the subleading correction to the volume of the crystal, the asymptotic growth of the variance of the volume of the crystal, and the total number of inner and outer corners. We also show how to generalize the results to arbitrary spatial dimension. PMID:24032777

  13. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  14. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  15. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  16. Crystal Growth Using MEPHISTO

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    1999-01-01

    The shuttle flight experiment "In Situ Monitoring of Crystal Growth Using MEPHISTO" was accomplished during STS-87 as part of the fourth flight of the United States Microgravity Payload (USMP-4), which was flown from November 19 to December 5, 1997. The data returned from that flight are just now beginning to yield quantitative results. This project is an international collaboration: the furnace system known as MEPHISTO was built in France by CNES (French National Space Agency) and CEA (French Atomic Energy Commission); the principal investigator, Prof. Reza Abbaschian, is from the University of Florida at Gainesville; and numerical and analytical modeling support includes collaborators from the University of New South Wales, Australia, the University of Wisconsin at Milwaukee, the National Institute of Standards and Technology, and the NASA Lewis Research Center. MEPHISTO is a French acronym that translates into English as Materials for the Study of Interesting Phenomena of Solidification on Earth and in Orbit. Since this was the fourth flight of the MEPHISTO furnace, the experiment is referred to as MEPHISTO-4. MEPHISTO-4 was a directional solidification experiment that studied the liquid-to-solid transformation of bismuth alloyed with tin. Directional solidification is a freezing technique common to the processing of the electronic materials used in integrated circuits and detectors, such as silicon and germanium. When liquids are frozen on Earth, they must be cooled. The cooling causes stirring because of density variations in the liquid. This stirring, known as natural convection, influences the quality of the resulting solid. During freezing, regions of high and low concentrations of tin are created. This introduces another important phenomenon: diffusion, or the movement by molecular action of matter from regions of high concentration to regions of lower concentration. In MEPHISTO-4, it is tin that diffuses from the high-concentration region in front of the

  17. 3D mathematical model system for melt hydrodynamics in the silicon single crystal FZ-growth process with rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Lacis, K.; Muiznieks, A.; Ratnieks, G.

    2005-06-01

    A system of three-dimensional numerical models is described to analyse the melt hydrodynamics in the floating zone crystal growth by the needle-eye technique under a rotating magnetic field for the production of high quality silicon single crystals of large diameters big( 100dots 200 mm big). Since the pancake inductor has only one turn, the high frequency (HF) electromagnetic (EM) field and the distribution of heat sources and EM forces on the melt free surface have distinct asymmetric features. This asymmetry together with the displacement of the crystal and feed rod axis and crystal rotation manifests itself as three dimensional hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. Additionally, the rotating magnetic field can be used to influence the melt hydrodynamics and to reduce the flow asymmetry. In the present 3D model system, the shape of the molten zone is obtained from symmetric FZ shape calculations. The asymmetric HF EM field is calculated by the 3D boundary element method. The low-frequency rotating magnetic field and a corresponding force density distribution in the melt are calculated by the 3D finite element method. The obtained asymmetric HF field power distribution on the free melt surface, the corresponding HF EM forces and force density of the rotating magnetic field are used for the coupled calculation of 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with a control volume approach. Beside the EM forces, also the buoyancy and Marangoni forces are considered. After HD calculations a corresponding 3D dopant concentration field is calculated and used to derive the variations resistivity in the grown crystal. The capability of the system of models is illustrated by a calculation example of a realistic FZ system

  18. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  19. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel

    1992-01-01

    The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.

  20. Monitoring Crystal Growth From Solution

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1982-01-01

    Experimental system for monitoring growth of triglycine sulfate (TGS) crystals from solution is being studied. System consists of outer cell containing distilled water heated and stirred to maintain constant temperature to within plus or minus 0.1 degrees C, inner (growth) cell containing supersaturated solution of TGS, and seed crystal mounted in plastic-covered stainless-steel sting equiped with controlled cooling mechanism and temperature sensors.

  1. Protein crystal growth (5-IML-1)

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1992-01-01

    Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  2. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    NASA Astrophysics Data System (ADS)

    Král, Robert; Nitsch, Karel

    2015-10-01

    Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.

  3. The impact of space research on semiconductor crystal growth technology

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  4. Containerless protein crystal growth method

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1991-01-01

    A method of growing protein crystals from levitated drops is introduced and unique features of containerless approach in 1-g and micro-G laboratories are discussed. Electrostatic multidrop levitation system which is capable of simultaneous four drop levitation is described. A method of controlling protein saturation level in a programmed way is introduced and discussed. Finally, some of the unique features of containerless approach of protein crystal growth in space are discussed and summarized.

  5. Bioengineering single crystal growth.

    PubMed

    Wu, Ching-Hsuan; Park, Alexander; Joester, Derk

    2011-02-16

    Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern. PMID:21265521

  6. Crystal growth of a binary compound semiconductor under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Hiraoka, Y.; Ikegami, K.; Maekawa, T.; Matsumoto, S.; Yoda, S.; Kinoshita, K.

    We investigate the possibilities of growing a uniform binary compound crystal in space numerically, proposing a new crystal growth method. We develop a numerical calculation method of the growth of binary crystals. The calculation method is applied to the crystal growth analysis of an InAs-GaAs binary semiconductor and the effect of buoyancy convection induced under microgravity conditions on the crystal growth process is investigated. We find that the concentration field is disturbed and, as a result, the solution—crystal interface is deformed by buoyancy convection even when the gravitational acceleration is as low as 10 -6 g, which is supposed to be the gravity level in the International Space Station. We also find that the direction of residual gravity has a strong effect on the concentration field in the solution and the crystal growth process.

  7. Optical analysis of crystal growth

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Passeur, Andrea; Harper, Sabrina

    1994-01-01

    Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.

  8. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  9. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  10. Nucleation-trap crystallizer for growth of crystals from solutions

    NASA Astrophysics Data System (ADS)

    Karnal, A. K.; Saxena, A.; Ganesamoorthy, S.; Bhaumik, Indranil; Wadhawan, V. K.; Bhat, H. L.; Gupta, P. K.

    2006-12-01

    Stability of the solution against spurious nucleation plays a dominant role in the growth of crystals at high growth rates requiring high levels of supersaturation. If any spurious nucleation does occur during a growth run, it becomes practically impossible to grow a very large crystal. A novel nucleation-trap crystallizer has been developed and used for the growth of crystals from aqueous solution so as to trap any unwanted nuclei and the particles that appear and settle at the bottom of the crystallizer during the growth process. In this crystallizer, any particles and nuclei nucleating during the growth are forced into the nucleation trap (or well) and subsequently by manipulating the temperature of the well; the growth of the nuclei is arrested. DKDP and ammonium acid phthalate crystals were grown in the developed system. X-ray rocking curve measurements on DKDP and ammonium acid phthalate crystals yielded FWHM of 89.1 and 29.71 arcsec, respectively.

  11. Development of the β-BaB2O4 crystal growth technique in the heat field of three-fold axis symmetry

    NASA Astrophysics Data System (ADS)

    Kokh, A. E.; Bekker, T. B.; Vlezko, V. A.; Kokh, K. A.

    2011-03-01

    In our earlier works we have shown the efficiency of β-BaB2O4 crystal growth in the heat field of three-fold axis symmetry. In order to involve the whole body of the high temperature solution in the convective motion it is very important to achieve vertical temperature distribution with the ‘hot points' at the lower part of the growth crucible. At the same time to prevent crystal overgrowth and contact with the crucible wall, the temperature of the latter at the high temperature solution surface must be higher than the crystallization temperature. In order to accomplish such temperature distribution two-zone heating furnace with three heating sectors in each zone has been developed. Load commutator executes power distribution on heating sectors during the growth run. We suppose that developed heating furnace and the system of thermoregulation allow one to achieve stable thermo-gravitational convection in the whole body of high temperature solution, thus substantially delaying the onset of constitutional undercooling.

  12. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  13. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Gillies, Donald C.; Watring, Dale A.

    1999-01-01

    The objective of the study is to establish the effects of processing semiconducting, solid solution, single crystals in a microgravity environment on the metallurgical, compositional, electrical, and optical characteristics of the crystals. The alloy system being investigated is the solid solution semiconductor Hg(1-x)Cd(x)Te, with x-values appropriate for infrared detector applications in the 8 to 14 mm wavelength region. Both melt and Te-solvent growth are being performed. The study consists of an extensive ground-based experimental and theoretical research effort followed by flight experimentation where appropriate. The ground-based portion of the investigation also includes the evaluation of the relative effectiveness of stabilizing techniques, such as applied magnetic fields, for suppressing convective flow during the melt growth of the crystals.

  14. Crystal-field effects in fluoride crystals for optical refrigeration

    SciTech Connect

    Hehlen, Markus P

    2010-01-01

    The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass. The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts

  15. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  16. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  17. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  18. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  19. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1989-01-01

    The mechanisms involved in protein crystallization and those parameters which influence the growth process and crystalline perfection were studied. The analysis of the flows around growing crystals is detailed. The preliminary study of the growth of isocitrate lyase and the crystal morphologies found are discussed. Preliminary results of controlled nucleation studies are presented.

  20. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1991-01-01

    The objective of this research is to study the effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality. The application of graphoepitaxy (artificial epitaxy) to proteins is detailed. The development of a method for the control of nucleation is discussed. The factor affecting the morphology of isocitrate lyase crystals is presented.

  1. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  2. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  3. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  4. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  5. Preparation for microgravity science investigation of compound semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Clark, I. O.; Crouch, R. K.; Carlson, F. M.

    1985-01-01

    Preparatory work on Bridgman directional solidification (BDS) of PbSnTe crystals prior to microgravity crystal growth experiments on Shuttle flights are reported. Gravitational effects become important in crystal growth when density gradients are present. The situation is critical in BDS of PbSnTe because of the necessity of obtaining homogeneous compositional distributions, which can be disturbed when convective processes occur. Numerical models have been defined which quantify the effects of convection in the crystal growth solution. The models were verified by earth-based crystal-growth tests in a two-zone furnace using equal concentrations of each of the elements. Data are provided to demonstrate the differences in composition among crystals grown at different orientations to the gravitational field vector.

  6. Modelling the growth of feather crystals

    SciTech Connect

    Wood, H.J.; Hunt, J.D.; Evans, P.V.

    1997-02-01

    An existing numerical model of dendritic growth has been adapted to model the growth of twinned columnar dendrites (feather crystals) in a binary aluminium alloy, Examination of the effect of dendrite tip angle on growth has led to an hypothesis regarding the stability of a pointed tip morphology in these crystals.

  7. Compact spaceflight solution crystal-growth system

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra; Vikram, Chandra; Witherow, William

    1991-01-01

    A versatile, miniaturized, stand alone, crystal solution growth chamber design is presented which is based on fiber optics, diode lasers, and holographic optical elements in conjunction with knowledge gained from previous Spacelab work. Diagnostics instrumentation is based on a crystal growth monitor, a growth/dissolution monitor with feedback, solution diagnostics, multiple wavelength holography, and single wavelength or color Schlieren with video recording.

  8. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  9. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  10. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  11. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  12. Optical Diagnostics of Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, T. G.; Lal, R. B.

    1996-01-01

    Non-contact optical techniques such as, optical heterodyne, ellipsometry and interferometry, for real time in-situ monitoring of solution crystal growth are demonstrated. Optical heterodyne technique has the capability of measuring the growth rate as small as 1A/sec. In a typical Michelson interferometer set up, the crystal is illuminated by a Zeeman laser with frequency omega(sub 1) and the reference beam with frequency omega(sub 2). As the crystal grows, the phase of the rf signal changes with respect to the reference beam and this phase change is related to the crystal growth rate. This technique is demonstrated with two examples: (1) by measuring the copper tip expansion/shrinkage rate and (2) by measuring the crystal growth rate of L-Arginine Phosphate (LAP). The first test shows that the expansion/shrinkage rate of copper tip was fast in the beginning, and gets slower as the expansion begins to stabilize with time. In crystal growth, the phase change due the crystal growth is measured using a phase meter and a strip chart recorder. Our experimental results indicate a varied growth rate from 69.4 to 92.6A per sec. The ellipsometer is used to study the crystal growth interface. From these measurements and a theoretical modeling of the interface, the various optical parameters can be deduced. Interferometry can also be used to measure the growth rate and concentration gradient in the vicinity of the crystal.

  13. Zinc Crystal Growth in Microgravity

    NASA Astrophysics Data System (ADS)

    Michael, B. P.; Nuth, Joseph A., III; Lilleleht, Lembit U.

    2003-06-01

    We report one of the first direct measurements of the efficiency of vapor-to-crystalline-solid growth in a microgravity environment aboard NASA's Reduced Gravity Research Facility. Zinc vapor is produced from a heater in a vacuum chamber containing argon gas. Vapor-phase nucleation is induced by cooling as the vapor expands away from the heat source, and its onset is easily detected visually by the appearance of a cloud of solid, crystalline zinc particles. The size distribution of these particles is monitored in situ by photon correlation spectroscopy. Samples were also extracted from the vapor for later analysis by scanning electron microscopy. The initial, rapid increase in the particle size distribution as a function of time is used to calculate the sticking efficiency for zinc atoms at growing crystal sites. Only a few of every 105 zinc atoms that collide with the grain surfaces are incorporated into the growing crystals. If the large (>10 μm) graphite or SiC grains extracted from meteorites grow with comparable efficiency, then such materials could not have formed on timescales compatible with circumstellar outflows. However, these grains could have formed in equilibrium in stellar atmospheres prior to the initiation of the outflow.

  14. Investigation of crystal growth from solutions

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1975-01-01

    Growth of organic compounds from solution, in particular Rochelle salt and triglycine sulphate, was investigated. Ground-based experiments showed that gravity-driven convection currents in the growth solution influenced defect production in crystals, degraded ferroelectric quality, and indicated that an experiment done in a zero-gravity environment would be beneficial. A crystal of Rochelle salt was grown on board Skylab-4. The quality of this crystal was compared to earth-grown crystals and its unusual features were studied. A typical defect produced in this convection-free environment was a long straight tube extending in the direction of the c crystal axis. These tubes were much longer and more regularly arranged than in similar earth-grown crystals. The crystal was actually several crystals with corresponding axes parallel to each other. Ferroelectric hysteresis experiments showed that some parts of the crystal had many defects, while other parts were of extremely good quality.

  15. Effect of Interaction of the Temperature Field and Supersaturation on the Morphology of the Solid-Vapor Interface in Crystal Growth by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.

  16. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  17. Development of a laser-Doppler system for measurement of velocity fields in PVT crystal growth systems

    NASA Technical Reports Server (NTRS)

    Jones, O. C.; Glicksman, M. E.; Lin, J. T.; Kim, G. T.; Singh, N. B.

    1991-01-01

    A laser-Doppler velocimetry (LDV) system capable of measuring velocities as low as 10 exp -5 m/s is presented, and a calibration system for determining the accuracy of the LDV system at these velocities is described. The results obtained in mercurous chloride crystal grown in cylindrical ampoules at 300 C, using physical vapor transport (PVT) methods, are presented. It is concluded that the overall flow pattern observed is a unicellular, asymmetric pattern between Rayleigh number of 125 and 250.

  18. Innovation in crystal growth: A personal perspective

    NASA Astrophysics Data System (ADS)

    Mullin, J. B.

    2008-04-01

    The evolution of crystal growth has been crucially dependent on revolutionary innovations and initiatives involving ideas, technology and communication. A personal perspective is presented on some of these aspects in connection with the early history of semiconductors that have helped evolve our knowledge and advance the science and technology of crystal growth. The presentation considers examples from work on germanium, silicon, indium antimonide, gallium arsenide, indium phosphide, gallium phosphide and mercury cadmium telluride. In connection with metal organic vapour phase epitaxy (MOVPE), the influence of adduct purification for alkyls is noted together with the growth of Hg xCd 1-xTe. The role of crystal growth organisations together with initiatives in the publication of the Journal of Crystal Growth (JCG) and the pivotal role of the International Organisation of Crystal Growth (IOCG) are also highlighted in the quest for scientific excellence.

  19. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  20. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  1. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  2. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  3. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described

  4. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  5. Laser Irradiated Growth of Protein Crystal

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Takano, Kazufumi; Hosokawa, Youichiroh; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi; Yoshimura, Masashi; Tsunaka, Yasuo; Morikawa, Masaaki; Kanaya, Shigenori; Masuhara, Hiroshi; Kai, Yasushi; Sasaki, Takatomo

    2003-07-01

    We succeeded in the first ever generation of protein crystals by laser irradiation. We call this process Laser Irradiated Growth Technique (LIGHT). Effective crystallization was confirmed by applying an intense femtosecond laser. The crystallization period was dramatically shortened by LIGHT. In addition, protein crystals were obtained by LIGHT from normally uncrystallized conditions. These results indicate that intense femtosecond laser irradiation generates crystal nuclei; protein crystals can then be grown from the nuclei that act as seeds in a supersaturated solution. The nuclei formation is possible primarily due to nonlinear nucleation processes of an intense femtosecond laser with a peak intensity of over a gigawatt (GW).

  6. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  7. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  8. Microscopic kinetic model for polymer crystal growth

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing

    2011-03-01

    Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.

  9. Large-size germanium crystal growth for rare event physics

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Wang, Guojian; Mei, Hao; Guan, Yutong; Yang, Gang; Govani, Jayesh; Cubed Collaboration

    2014-09-01

    Cosmogenic production in germanium crystals grown on the surface can limit the sensitivity for the next generation deep underground experiments in searching for rare event physics beyond the Standard Model. One of the best solutions to eliminate unwanted cosmogenics is to produce the germanium crystals and detectors in an underground environment. The goal of this project is to create state-of-the-art detectors to advance neutrinoless double-beta decay and dark matter exploration research and technology while simultaneously paving the way for infrastructure to support an underground laboratory for zone refining, crystal growth, and detector fabrication. The greatest challenge in the growth of germanium crystals is a lack of precise control of individual crystal properties such as the impurity distribution, the dislocation density, and the crystalline structure. With knowledge gained from the pioneers in the field of crystal growth, the researchers have developed a novel technique to grow detector-grade crystals. In this paper, we will report detector-grade large-size germanium crystal growth at the University of South Dakota. Cosmogenic production in germanium crystals grown on the surface can limit the sensitivity for the next generation deep underground experiments in searching for rare event physics beyond the Standard Model. One of the best solutions to eliminate unwanted cosmogenics is to produce the germanium crystals and detectors in an underground environment. The goal of this project is to create state-of-the-art detectors to advance neutrinoless double-beta decay and dark matter exploration research and technology while simultaneously paving the way for infrastructure to support an underground laboratory for zone refining, crystal growth, and detector fabrication. The greatest challenge in the growth of germanium crystals is a lack of precise control of individual crystal properties such as the impurity distribution, the dislocation density, and the

  10. Materials discovery through crystal growth

    NASA Astrophysics Data System (ADS)

    zur Loye, Hans-Conrad

    2016-04-01

    The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.

  11. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  12. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  13. Crystal growth of calcium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Gaur, S. S.; Sheehan, M. E.; Nancollas, G. H.

    1988-02-01

    The kinetics of crystal growth of calcium oxalate monohydrate has been investigated up to very large extents of growth over a range of supersaturations maintained using the Constant Composition technique. It is suggested that the initial rapid growth of aged seed crystals resulting in marked lattice perfection, reduces the density of growth sites on the crystal surfaces. A method for the preparation of perfected crystallites of calcium oxalate monohydrate through pregrowth of aged crystals has been developed. At large extents of growth with respect to initial seed crystals ( > 200% for aged crystals and 30-60% for pregrown crystals), the rates of crystallization at constant supersaturation undergo marked increases accompanying the formulation of secondary nuclei. These nucleation thresholds depend both upon supersaturation and upon the initial specific surface area of the crystallites and may be important factors in the formation of calcium oxalate stones in vivo. Experiments in whole urine suggest that the kinetics of growth, secondary nucleation, aggregation and cementation of particles may be important factors in kidney stone formation.

  14. (PCG) Protein Crystal Growth on STS-26

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Mission Specialist George (Pinky) D. Nelson uses a 35 mm camera to photograph a protein crystal grown during the STS-26 Protein Crystal Growth (PCG-II-01) experiment. The protein crystal growth (PCG) carrier is shown deployed from the PCG Refrigerator/Incubator Mocule (R/IM) located in the middeck forward locker. The R/IM contained three Vapor Diffusion Apparatus (VDS) trays (one of which is shown). A total of sixty protein crystal samples were processed during the STS-26 mission.

  15. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  16. Effects of impurities on crystal growth in fructose crystallization

    NASA Astrophysics Data System (ADS)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  17. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  18. On growth rate hysteresis and catastrophic crystal growth

    NASA Astrophysics Data System (ADS)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  19. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity.

    PubMed

    Saijo, Shinya; Yamada, Yusuke; Sato, Takao; Tanaka, Nobuo; Matsui, Takuro; Sazaki, Gen; Nakajima, Kazuo; Matsuura, Yoshiki

    2005-03-01

    atoms, the average B factor in the 10 T crystal shows an improvement of 1.8 angstroms(2) over that for the 0 T control; subsequently, the difference in diffraction intensity between the 10 T and 0 T crystals corresponds to an increase of 22.6% at the resolution limit. The mosaicity of the 10 T crystal was better than that of the 0 T crystal. More highly isotropic values of 0.0065, 0.0049 and 0.0048 degrees were recorded along the a, b and c axes, respectively. Anisotropic mosaicity analysis indicated that crystal growth is most perfect in the direction that corresponds to the favoured growth direction of the crystal, and that the crystal grown in the magnetic field had domains that were three times the volume of those of the control crystal. Overall, the magnetic field has improved the quality of these crystals and the diffracted intensity has increased significantly with the magnetic field, leading to a higher resolution. PMID:15735330

  20. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  1. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  2. Onboard photo: Crystal Growth Furnace experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Space Shuttle Columbia (STS-50) astronaut Bornie Dunbar wears protective goggles to assemble a zeolite sample cartridge for the Crystal Growth Furnace (CGF) in the United States Microgravity Laboratory-1 (USML-1) science module.

  3. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  4. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    Work performed during the period 11 Feb. 1992 to 10 Aug. 1993 on research support for cadmium telluride crystal growth is reported. Work on chemical impurity characterization and mass spectroscopy is described.

  5. Growth Of Oriented Crystals At Polymerized Membranes

    DOEpatents

    Charych, Deborah H. , Berman, Amir

    2000-01-25

    The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.

  6. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  7. Interface control and snow crystal growth

    NASA Astrophysics Data System (ADS)

    Li, Jessica; Schaposnik, Laura P.

    2016-02-01

    The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.

  8. Interface control and snow crystal growth.

    PubMed

    Li, Jessica; Schaposnik, Laura P

    2016-02-01

    The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms. PMID:26986434

  9. Field emission and growth of fullerene nanotubes

    SciTech Connect

    Rinzler, A.G.; Hafner, J.H.; Nilolaev, P.; Colbert, D.T.; Smalley, R.E.

    1994-11-01

    Efforts to control the growth of individual carbon nanotubes from nanotube seed crystals have led to a characterization of their field-induced electron emission behavior. The application of a bias voltage in the growth apparatus was motivated by the prolific formation of nanotubes in the carbon are growth method, in which the electric field appears to play a central role. The authors report here the ability to achieve various tube tip configurations by the controlled application of voltage, heat and chemicals to an individual nanotube, and that these states are well characterized by the emission currents they induce.

  10. A Multiscale simulation method for ice crystallization and frost growth

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad

    2015-11-01

    Formation of ice crystals and frost is associated with physical mechanisms at immensely separated scales. The primary focus of this work is on crystallization and frost growth on a cold plate exposed to the humid air. The nucleation is addressed through Gibbs energy barrier method based on the interfacial energy of crystal and condensate as well as the ambient and surface conditions. The supercooled crystallization of ice crystals is simulated through a phase-field based method where the variation of degree of surface tension anisotropy and its mode in the fluid medium is represented statistically. In addition, the mesoscale width of the interface is quantified asymptotically which serves as a length-scale criterion into a so-called ``Adaptive'' AMR (AAMR) algorithm to tie the grid resolution at the interface to local physical properties. Moreover, due to the exposure of crystal to humid air, a secondary non-equilibrium growth process contributes to the formation of frost at the tip of the crystal. A Monte-Carlo implementation of Diffusion Limited Aggregation method addresses the formation of frost during the crystallization. Finally, a virtual boundary based Immersed Boundary Method (IBM) is adapted to address the interaction of ice crystal with convective air during its growth.

  11. Simulation study of twisted crystal growth in organic thin films

    NASA Astrophysics Data System (ADS)

    Fang, Alta; Haataja, Mikko

    2015-10-01

    Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate.

  12. Simulation study of twisted crystal growth in organic thin films.

    PubMed

    Fang, Alta; Haataja, Mikko

    2015-10-01

    Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate. PMID:26565254

  13. Growth kinetics and morphology of polymer crystals

    NASA Astrophysics Data System (ADS)

    Toda, Akihiko

    2007-03-01

    Originating from the nature of chain folding, polymer single crystals are quite unique in the growth kinetics and morphology. The developments of the understanding in the past 50 years are discussed and the unsolved important issues will be suggested. Polymer single crystals are thin lamellae with the thickness in the order of 10nm determined by the period of chain folding, which keeps a constant value for the isothermal crystallization. The growth of polymer single crystals is modeled by the kinetics of creation and annihilation of growth steps on a rectangular substrate with the pre-determined thickness. The growth face is therefore regarded as a one-dimensional substrate and the kinks and anti-kinks on the substrate correspond to the growth steps propagating in the opposite directions. The kinetic equations of those kinks proposed by Seto and Frank well describe the transition of growth regime as a crossover from single nucleation to multi-nucleation on the basis of the standard model of chain-folded polymer crystallization with surface nucleation proposed by Lauritzen and Hoffman. However, the analysis of the growth kinetics and morphology of single crystals having curved growth front suggests an unusual behavior of the step propagation velocity. The anomaly can be accounted for by a self-poisoning of the growth step interrupted by polymer chains with folding shorter than required. An entropic barrier of pinning proposed by Sadler and Gilmer is a possible candidate of the self-poisoning and is in accordance with recent computer simulation results suggesting the kinetics on a rugged free energy landscape having a resemblance to protein folding. Therefore, the quantitative evaluation of the kinetic barriers of surface nucleation and pinning has been an important issue. In addition, examination of the kinetics of melting will have valuable information because melting of a crystal must be free from nucleation but can still be limited by the entropic barrier.

  14. Ultraslow growth rates of giant gypsum crystals

    PubMed Central

    Van Driessche, A. E. S.; García-Ruíz, J. M.; Tsukamoto, K.; Patiño-Lopez, L. D.; Satoh, H.

    2011-01-01

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale. PMID:21911400

  15. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The solubility and growth mechanism of canavalin were studied, and the applicability of the Schlieren technique to protein crystal growth was investigated. Canavalin which may be crystallized from a basic solution by the addition of hydrogen (H+) ions was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studied. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth mechanism at high supersaturation ratios (>1.28) is screw dislocation like. A Schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed.

  16. Crystal growth and furnace analysis

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1986-01-01

    A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.

  17. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase

  18. Phase-Field Crystals with Elastic Interactions

    SciTech Connect

    Stefanovic, Peter; Provatas, Nikolas; Haataja, Mikko

    2006-06-09

    We report on a novel extension of the recently introduced phase-field crystal (PFC) method [Elder et al., Phys. Rev. Lett. 88, 245701 (2002)], which incorporates elastic interactions as well as crystal plasticity and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster than diffusive time scales. This allows us to preserve the quintessential advantage of the PFC model: the ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation in our model and show that simulations of grain growth and elastoplastic deformation are consistent with the microstructural properties of nanocrystals.

  19. Study on crystal-melt interface shape of sapphire crystal growth by the KY method

    NASA Astrophysics Data System (ADS)

    Liu, Weina; Lu, Jijun; Chen, Hongjian; Yan, Wenbo; Min, Chunhua; Lian, Qingqing; Wang, Yunman; Cheng, Peng; Liu, Caichi; Xu, Yongliang

    2015-12-01

    In this article, the influence of the flow field structure and temperature gradient of forefront interface on the shape of crystal-melt interface which may reflect the interface stability were analyzed through the method of numerical simulation by using CGSim software. In order to get a suitable interface shape and grow high-quality sapphire crystal, the heater arrangement should be adjusted during the KY process. The results indicate that the effect of Marangoni convection cannot be neglected at the last stage, the crystal-melt interface is governed by the flow field structure and the temperature gradient in melt at the crystal-melt interface. The phenomenon of shoulder concave appears at the stage of shoulder turning and interface inversion appears at the last stage during the crystal growth is discussed. Adjusting heater arrangement may effectively optimize the shape of crystal-melt interface.

  20. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  1. Solution growth of crystals in zero gravity

    NASA Technical Reports Server (NTRS)

    Lai, R. B.

    1982-01-01

    A series of experiments will be performed in which triglycine sulfate (TGS) crystals will be grown by a low-temperature solution growth technique in the microgravity environment of the orbital Spacelab. Triglycine sulfate (TGS) crystals will be grown in the Fluid Experiment System (FES) facility on Spacelab 3 by slowly extracting heat at a controlled rate through a seed crystal of TGS suspended on an insulated sting in a saturated solution of TGS. The FES rack assembly designed for SL-3 is shown in Figure I-1, and a detailed view of the test cell layout is presented in Figure I-2. Variations in the liquid density, solution concentration and temperature around the growing crystal will be studied using a variety of techniques, such as schlieren, shadowgraph, and interferometric measurements. Growth in Earth gravity will also be studied by the same optical techniques, and in both cases the resulting crystalline features will be compared and correlated with the growth conditions.

  2. Two puzzling aspects of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Grant, M. L.; Saville, D. A.

    1988-01-01

    A study is presented of several mechanisms which may reduce crystal growth rates and or terminate crystal growth. It is found that salt gradients which change the local chemical potential of the protein are insufficient to account for the slow crystal growth rates which have been reported. Contaminants which adsorb protein from solution may reduce the effective protein concentration, but the impurity's concentration and its affinity for protein are unknown. Association of protein molecules in bulk solution can reduce the monomer concentration significantly, but extant theory and experiment are not sensitive enough to determine the actual concentration of aggregates in solution. For systems of interest, shear-induced effects were found to be too weak to interfere with normal binding of incoming protein molecules. Although we found that most crystal growth occurs in a regime where both interfacial kinetics and diffusion influence crystal growth, the role of mass transfer rates on the terminal size of crystals is unknown, primarily because no data exist which cover the size range of interest (0.1 mm to 1 mm in length).

  3. Growth rate dispersion of small ammonium alum crystals

    NASA Astrophysics Data System (ADS)

    Teodossiev, N.

    1987-01-01

    The growth rates of small (below 60 μm) and large (about 1 mm) crystals of ammonium alum was measured during batch crystallization from aqueous solutions. The growth rate distribution of small crystals is close to normal. With increasing supersaturation the growth rate of the large crystals increases more rapidly than that of small crystals.

  4. (PCG) Protein Crystal Growth Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lyase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator for STS-26 was Charles Bugg.

  5. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lysase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator on STS-26 was Charles Bugg.

  6. Growth of crystals for synchrotron radiation Mössbauer investigation

    NASA Astrophysics Data System (ADS)

    Kotrbova, M.; Hejduk, J.; Malnev, V. V.; Seleznev, V. N.; Yagupov, S. V.; Andronova, N. V.; Chechin, A. I.; Mikhailov, A. Yu.

    1991-10-01

    Iron borate crystals (FeBO 3) were flux grown at the Physical Institute (Prague) and at Simferopol State University. During the crystal growth procedure the temperature regime was held constant to 0.1°C accuracy. Crystals were investigated with the help of a double crystal X-ray diffractometer DRON-2 (SiO 2(30 overline33)FeBO 3(444), MoK α 1 radiation). The rocking curve measurements were carried out in a constant magnetic field of 1kG. Most of the crystal surface has a rocking curve 10″-15″ wide. Some parts of some crystals with the area 1 × 1 mm 2 have rocking curves of 3″-4″ width and can be considered ideal.

  7. Growth Modes and Energetics of 101 Face Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, L.

    2004-01-01

    From analyses of lysozyme 101 face growth rate data using a 2D nucleation model for layer-by-layer growth, we find the effective barrier for crystal growth to be gamma = 1.0 +/- 0.2 x 10(exp -13) erg/molecule. The magnitude of the effective barrier is 2.4 +/- 0.5 k(sub beta)T, at 22 C. We also find that beyond a critical solution supersaturation, sigma(sub c), crystal growth rates are more accurately described by a kinetic roughening hypothesis. Beyond sigma(sub c), crystals grow by the continuous addition of molecules anywhere on the crystal surface rather than layer-by-layer. The magnitude of the critical supersaturation (sigma(sub c), = 1.7 +/- 0.2) for a crossover from a layer-by-layer to continuous growth is found to be statistically independent of the solution conditions that vary with buffer pH, temperature or precipitant concentration. Using the experimentally determined values for gamma and sigma(sub c), we find the crystal growth unit to be comprised of 7 +/- 3 molecules. The energy barrier, E(sub c), for the continuous addition of the growth Units is 6.2 +/- 0.3 x 10(exp -13) erg/molecule or 15 +/1 1 k(sub beta)T at 22C.

  8. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  9. Sublimation Growth of Titanium Nitride Crystals

    SciTech Connect

    Du, Li; Edgar, J H; Kenik, Edward A; Meyer III, Harry M

    2009-01-01

    The sublimation-recondensation growth of titanium nitride crystal with N/Ti ratio of 0.99 on tungsten substrate is reported. The growth rate dependence on temperature and pressure was determined, and the calculated activation energy is 775.8 29.8kJ/mol. The lateral and vertical growth rates changed with the time of growth and the fraction of the tungsten substrate surface covered. The orientation relationship of TiN (001) || W (001) with TiN [100] || W [110], a 45o angle between TiN [100] and W [100], occurs not only for TiN crystals deposited on W (001) textured tungsten but also for TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this preferred orientational relationship minimizes the lattice mismatch between the TiN and tungsten.

  10. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  11. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto (n 11) seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  12. Lead chloride crystal growth from boiling solutions

    NASA Astrophysics Data System (ADS)

    Veintemillas-Verdaguer, S.; Rodríguez-Clemente, R.; Torrent-Burgues, J.

    1993-03-01

    Lead chloride single crystals can be grown from boiling solutions using KNO3-H20 solutions as a solvent. Crystals of 1 mm size produced by gel-growth technique were used as seeds. The solubility of PbC12 increases almost linearly with the KNO3 molality being 0.63m in a 7m KNO3 aqueous solutions at 105°C and pH = 2.6; this increase is related to the decrease of the activity coefficient of lead chloride in these solutions. In the first experiments, the supersaturation was attained by solvent extraction, but due to the simultaneous changes in the concentration of the KNO3 mineralizer during the extraction, the growth rate was irregular and defective crystals were obtained. The experimental set-up was therefore modified and a transport technique was added to the system in order to feed the boiling reactor continuously with fresh lead chloride solution. The growth of the crystals takes place at constant concentration of KNO3 in these new conditions. With this experimental modification, isometric PbCI2 crystals of up to lcm size were obtained in three weeks. The observed morphology is close to that calculated by Woensdregt and Hartmann [J. Crystal Growth 87(1988)561].

  13. Protein Crystal Growth Dynamics and Impurity Incorporation

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Thomas, Bill

    2000-01-01

    The general concepts and theories of crystal growth are proven to work for biomolecular crystallization. This allowed us to extract basic parameters controlling growth kinetics - free surface energy, alpha, and kinetic coefficient, beta, for steps. Surface energy per molecular site in thermal units, alpha(omega)(sup 2/3)/kT approx. = 1, is close to the one for inorganic crystals in solution (omega is the specific molecular volume, T is the temperature). Entropic restrictions on incorporation of biomolecules into the lattice reduce the incorporation rate, beta, by a factor of 10(exp 2) - 10(exp 3) relative to inorganic crystals. A dehydration barrier of approx. 18kcal/mol may explain approx. 10(exp -6) times difference between frequencies of adding a molecule to the lattice and Brownian attempts to do so. The latter was obtained from AFM measurements of step and kink growth rates on orthorhombic lysozyme. Protein and many inorganic crystals typically do not belong to the Kossel type, thus requiring a theory to account for inequivalent molecular positions within its unit cell. Orthorhombic lysozyme will serve as an example of how to develop such a theory. Factors deteriorating crystal quality - stress and strain, mosaicity, molecular disorder - will be reviewed with emphasis on impurities. Dimers in ferritin and lysozyme and acetylated lysozyme, are microheterogeneous i.e. nearly isomorphic impurities that are shown to be preferentially trapped by tetragonal lysozyme and ferritin crystals, respectively. The distribution coefficient, K defined as a ratio of the (impurity/protein) ratios in crystal and in solution is a measure of trapping. For acetylated lysoyzme, K = 2.15 or, 3.42 for differently acetylated forms, is independent of both the impurity and the crystallizing protein concentration. The reason is that impurity flux to the surface is constant while the growth rate rises with supersaturation. About 3 times lower dimer concentration in space grown ferritin and

  14. Method for solid state crystal growth

    DOEpatents

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  15. Protein Crystal Growth Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Dowling, Timothy E. (Inventor)

    1997-01-01

    Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface. the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.

  16. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  17. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program

  18. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  19. Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals

    NASA Astrophysics Data System (ADS)

    Raming, G.; Muižnieks, A.; Mühlbauer, A.

    2001-08-01

    The floating-zone-process with needle-eye inductor is a complex process with many coupled parameters that have nonlinear influence on the process stability and resistivity distribution in the silicon single crystal. To fulfill the requirements of semiconductor industry for tighter specification of resistivity distribution, additional means like magnetic fields can be used to reach a more homogeneous resistivity distribution without disturbing process stability. The current paper analyses the influence of static and alternating fields on the fluid motion and macroscopic and microscopic resistivity profile by means of numerical calculations. It is found that with a lower frequency of the HF-inductor current and with an additional AC-field the radial resistivity profile can be made more homogeneous. Rotating magnetic fields give only a slightly more homogeneous resistivity profile. DC-fields do not change the radial resistivity distribution qualitatively, but suppress all flow oscillations and therefore axial microscopic resistivity variations.

  20. Biomolecular Modification of Inorganic Crystal Growth

    SciTech Connect

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  1. Effect of power arrangement on the crystal shape during the Kyropoulos sapphire crystal growth process

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hung; Chen, Jyh-Chen; Lu, Chung-Wei; Liu, Che-Ming

    2012-08-01

    The Kyropoulos (KY) method is commonly used to grow large sized sapphire single crystals. The shape of the sapphire crystal thus grown is determined by the heater arrangement and the power reduction history in the Kyropoulos furnace. In order to grow high-quality sapphire single crystal, the heater arrangement should allow different power inputs in different sections in order to control the thermal field in the melt during the growth process. In this study, a numerical computation is performed to investigate the effects of the heater arrangement on the thermal and flow transport, the shape of the crystal-melt interface, and the power requirements during the Kyropoulos sapphire crystal growth process in a resistance heated furnace. Four different power ratio arrangements in a three-zone heater are considered. The results show that for the power arrangements considered herein, the temperature gradients along the crystallization front do not exceed 0.05 K/mm, and that, after the growth of the crown, the crystal maintains an almost constant diameter. The remelting phenomenon may occur during growth when the input power of the upper side of the heater is higher than that of the lower side of the heater.

  2. Phosphorus and other trace elements from secondary olivine in composite mantle xenoliths (CMX) from Cima Volcanic Field (CVF; California, USA): implications for crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Asimow, Paul; Ntaflos, Theodoros; Boyce, Jeremy; Koroneos, Antonios; Perugini, Diego; Liu, Yongsheng; Klemme, Stephan; Berndt, Jasper

    2015-04-01

    Phosphorus(P)-rich zones in olivine may reflect excess incorporation of P during rapid growth; zoning patterns may then record growth rate variations (Milman-Barris et al., 2008; Stolper et al., 2009). We report data on interior cuts of two CMX from alkali basalt flows (Mukasa & Wilshire, 1997) in the CVF with second-generation P-rich olivines. In Ci-1-196, a dark layer (~200 μm wide) between lherzolite and websterite is interpreted as a rapidly crystallized melt layer (ML), consisting of Ol+Gl+Pl+Spl+Cpx+Ap+Ilm. Glass (~15 vol%) is variable in composition (P2O5 ≤1.2 wt%, Li 8.22-20.0 ppm). Olivines in the layer have 0.03-0.62 wt% P2O5; P-rich Ol (P2O5 >0.1 wt%) are Fo85-89.3. The lowest P concentrations are consistent with equilibrium with liquid parental to Gl, but the higher concentrations are not. Li concentrations, zoned from 3.84 to 4.90 ppm (core-rim), indicate equilibrium incorporation during crystal growth from a small, evolving melt pool and preservation of this rapidly relaxing gradient. REEs are mostly consistent with equilibrium growth from liquids evolving towards the observed LREE-enriched glass. Most of the clinopyroxenes are diopsides with some augites. Apatite inclusions occur in the rim of P-rich Fo85 and in An54. In Ki-5-301, a dark-coloured area of irregular shape (~200 μm wide) is present along the contact between lherzolite and orthopyroxenite, consisting of Ol+Pl+Gl+Cpx+Spl+Ilm+Ap. It resembles a tabular dyke but is connected to melt-patches infiltrating the host rock. Widespread Glass in the layer has variable composition with two populations not related by fractional crystallization: 1) P2O5 1.02-1.09 wt% and 2) P2O51.62-2.35 wt% (a Gl inclusion in Ol has P2O5 3.57 wt% may have captured melt from the P-rich boundary layer at the interface with the rapidly growing olivine). REEs cluster in the same two groups. Li is as low as 3.66 ppm group 1 and 3-4× higher (9.64-13.3 ppm) in group 2. Olivine occurs as small idiomorphic crystals

  3. Growth rate study of canavalin single crystals

    NASA Technical Reports Server (NTRS)

    Demattei, R. C.; Feigelson, R. S.

    1989-01-01

    The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

  4. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  5. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    PubMed Central

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  6. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization.

    PubMed

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  7. Minimal physical requirements for crystal growth self-poisoning

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Dahal, Yuba Raj; Schmit, Jeremy D.

    2016-02-01

    Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. Here we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which is the characteristic of poisoning. Our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.

  8. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and

  9. Method for crystal growth control

    DOEpatents

    Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.

    1981-01-01

    The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.

  10. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-12-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V-1 s-1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines.

  11. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  12. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the

  13. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  14. Crack Growth in Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Report describes experiments on crack growth in single-crystal silicon at room temperature in air. Crack growth in (111) cleavage plane of wafers, 50 by 100 by 0.76 mm in dimension, cut from Czochralski singlecrystal silicon studied by double-torsion load-relaxation method and by acoustic-emission measurements. Scanning electron microscopy and X-ray topography also employed. Results aid in design and fabrication of silicon photovoltaic and microelectronic devices.

  15. Optical monitoring of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Choudry, A.

    1988-01-01

    The possibility of using various optical techniques for detecting the onset of nucleation in protein crystal growth was investigated. Direct microscopy, general metrologic techniques, light scattering, ultraviolet absorption, and interferometry are addressed along with techniques for determining pH value. The necessity for collecting basic data on the optical properties of the growth solution as a prerequisite to the evaluation of monitoring techniques is pointed out.

  16. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1988-01-01

    The solubility and growth of the protein canavalin, and the application of the schlieren technique to study fluid flow in protein crystal growth systems were investigated. These studies have resulted in the proposal of a model to describe protein crystal growth and the preliminary plans for a long-term space flight experiment. Canavalin, which may be crystallized from a basic solution by the addition of hydrogen (H+) ions, was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studies. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth rate limiting step is a screw dislocation mechanism. A schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed. The data for lyrozyme showed non-linearities in plots of optical properties and density vs. concentration. In conjunction with with W. A. Tiller, a model based on colloid stability theory was proposed to describe protein crystallization. The model was used to explain observations made by ourselves and others. The results of this research has lead to the development for a preliminary design for a long-term, low-g experiment. The proposed apparatus is univeral and capable of operation under microprocessor control.

  17. Iminodiacetic acid doped ferroelectric triglycine sulphate crystal: Crystal growth and characterization

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Narayana Moolya, B.; Dharmaprakash, S. M.

    2011-01-01

    Single crystals of iminodiacetic acid (HN(CH 2COOH) 2) doped triglycine sulphate (IDATGS) crystals have been grown from aqueous solution containing 1-10 mol% of iminodiacetic acid at constant temperature by slow evaporation technique. The effects of different amounts of doping entities on the growth habit have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. The grown crystals were subjected to Fourier transform infrared (FTIR) spectroscopy studies to find the presence of various functional groups qualitatively. The dielectric permittivity has been studied as a function of temperature. An increase in the transition temperature (49.2-49.7 °C) of IDATGS crystals is observed. The dielectric constant ( ε‧ max) of IDATGS crystals vary in the range 922-2410 compared to pure TGS ( Tc=49.12 °C and ε‧ max=3050). Curie Weiss constants Cp and Cf in the paraelectric and ferroelectric phases were determined. The transition temperature ( Tc) is found to decrease with increase in dopant concentration. P- E hysteresis studies show the presence of internal bias field in the crystal. Piezoelectric measurements were also carried out at room temperature. Domain patterns on b-cut plates were observed using scanning electron microscope. The micro hardness studies reveal that the doped crystals are harder than the pure TGS crystals. The low dielectric constant, higher transition temperature, internal bias field and hardness suggest that IDATGS crystals could be a potential material for IR detectors.

  18. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Comparison of Earth grown and Space grown Isocitrate Lysase crystals. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator was Charles Bugg.

  19. A clarified gel for crystal growth

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Simpson, N. R.

    1985-01-01

    A procedure for preparing clarified sodium silicate gels suitable for crystal growth is described. In the method described here, the silicate stock is clarified by pretreating it with cation exchange resins before preparing the gels. Also, a modified recipe is proposed for preparing gels to achieve improved transparency.

  20. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  1. Meniscus Imaging for Crystal-Growth Control

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  2. Growth of Organic Crystals by Ostwald Ripening

    NASA Technical Reports Server (NTRS)

    Egbert, W.; Podsiadly, C.; Naumann, R.

    1985-01-01

    The objective of this investigation is to evaluate the growth of various organic crystals by chemical precipitation and Ostwald ripening. Six precipitation reactors were flown on STS-51A. Five of the reactors contained proprietary materials. The sixth contained urea dissolved in ethanol with toluene as the precipitating agent. The size distribution will be analyzed and compared with a similar model being developed.

  3. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  4. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  5. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  6. Crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)

    1992-01-01

    Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.

  7. Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Pan, Huanhuan; Zhang, Xiujuan; Yang, Yang; Shao, Zhibin; Deng, Wei; Ding, Ke; Zhang, Yu; Jie, Jiansheng

    2015-07-01

    3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) organic nanostructures possess extraordinary electronic and optoelectronic properties. However, it remains a challenge to achieve patterned growth of PTCDA nanowire (NW) arrays for integrated device applications. Here, we demonstrated the high-density, large-area, uniform, and cross-aligned growth of single-crystalline PTCDA NW arrays by using Au nanoparticles (NPs) as the growth templates. The high surface energy of Au NPs led to the cross-aligned growth of organic NWs, enabling the growth of PTCDA NW arrays with any desirable patterns by pre-patterning the Au films on a Si substrate. The PTCDA NW arrays as field emitters show good performance with a large emission current density and high emission stability. Furthermore, photodetectors based on PTCDA NW arrays were constructed via a simple in-situ growth approach, which exhibited high sensitivity to a wideband light ranging from 400-800 nm and surpassed the individual NW-based photodetectors in terms of higher photocurrent and faster response speed. Successful applications of PTCDA NW arrays in field emission and photodetectors show a great potential application of organic NW arrays in future efficient electronic and optoelectronic devices.

  8. Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices.

    PubMed

    Pan, Huanhuan; Zhang, Xiujuan; Yang, Yang; Shao, Zhibin; Deng, Wei; Ding, Ke; Zhang, Yu; Jie, Jiansheng

    2015-07-24

    3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) organic nanostructures possess extraordinary electronic and optoelectronic properties. However, it remains a challenge to achieve patterned growth of PTCDA nanowire (NW) arrays for integrated device applications. Here, we demonstrated the high-density, large-area, uniform, and cross-aligned growth of single-crystalline PTCDA NW arrays by using Au nanoparticles (NPs) as the growth templates. The high surface energy of Au NPs led to the cross-aligned growth of organic NWs, enabling the growth of PTCDA NW arrays with any desirable patterns by pre-patterning the Au films on a Si substrate. The PTCDA NW arrays as field emitters show good performance with a large emission current density and high emission stability. Furthermore, photodetectors based on PTCDA NW arrays were constructed via a simple in-situ growth approach, which exhibited high sensitivity to a wideband light ranging from 400-800 nm and surpassed the individual NW-based photodetectors in terms of higher photocurrent and faster response speed. Successful applications of PTCDA NW arrays in field emission and photodetectors show a great potential application of organic NW arrays in future efficient electronic and optoelectronic devices. PMID:26135069

  9. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    " is often historically used to describe these microgravity experiments. This is somewhat inaccurate as the field involves the study of many varied biological molecules including viruses, proteins, DNA, RNA and complexes of those structures. For this reason we use the term macromolecular crystal growth. In this chapter we review a series of diagnostic microgravity crystal growth experiments carried out principally using the European Space Agency (ESA) Advanced Protein Crystallization Facility (APCF). We also review related research, both experimental and theoretical, on the aspects of microgravity fluid physics that affect microgravity protein crystal growth. Our experiments have revealed some surprises that were not initially expected. We discuss them here in the context of practical lessons learnt and how to maximize the limited microgravity opportunities available.

  10. Surface Phenomena and Parameters of Crystal Growth: Simple Basics

    SciTech Connect

    Chernov, A. A.

    2010-07-22

    Basic concepts of crystal growth and their practical use to semi-quantitatively estimate growth processes are explained: surface energy and free energy, driving force of crystallization, atomically rough vs smooth interface structure and the corresponding normal vs layer-by-layer growth modes, application of the activated complex concept to derive kinetic coefficient characterizing crystal growth rate at a given driving force. The Reader is supposed to be familiar with general physics and chemistry. No specific knowledge in crystal growth is required.

  11. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  12. Aluminum nitride bulk crystal growth in a resistively heated reactor

    NASA Astrophysics Data System (ADS)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  13. High-purity silicon crystal growth investigations

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schuyler, T.; Hurd, J. L.; Fearheiley, M.; Evans, C.; Elder, R.

    1986-01-01

    Information is given on evaporation and segregation contributions to impurity profiles of floating zone crystals (FZ); high-purity silicon float zoning (FZ); minority-carrier lifetime measurement of heavily doped silicon crystals; the effect of some crystal growth parameters on minority-carrier lifetime; and defect investigations by X-ray topography in graphical and tabular form. It was concluded that evaporation contributes substantially to impurity reduction when FZ or cold-crucible growth is conducted in a vacuum; boron and gallium may be more favorable dopants than indium or aluminum for obtaining high minority-carrier lifetimes; minority-carrier lifetimes greater than 100 microseconds are feasible at a 2 times 10 to the 17th power cm-3 doping level; minority-carrier lifetime decreases with increasing crystal cooling rate and also with the presence of dislocations; the method used to clean silicon feed rods affects lifetime; and microdefect densities in dislocation-free FZ crystals appear to be lower with Ga doping than with B doping.

  14. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  15. Hydrothermal crystal growth of oxides for optical applications

    NASA Astrophysics Data System (ADS)

    McMillen, Colin David

    2007-12-01

    The manipulation of light has proven to be an integral part of today's technology-based society. In particular, there is great interest in obtaining coherent radiation in all regions of the optical spectrum to advance technology in military, medical, industrial, scientific and consumer fields. Exploring new crystal growth techniques as well as the growth of new optical materials is critical in the advancement of solid state optics. Surprisingly, the academic world devotes little attention to the growth of large crystals. This shortcoming has left gaps in the optical spectrum inaccessible by solid state devices. This dissertation explores the hydrothermal crystal growth of materials that could fill two such gaps. The first gap exists in the deep-UV region, particularly below 200 nm. Some materials such as LiB3O5 and beta-BaB2O4 can generate coherent light at wavelengths as low as 205 nm. The growth of these materials was explored to investigate the feasibility of the hydrothermal method as a new technique for growing these crystals. Particular attention was paid to the descriptive chemistry surrounding these systems, and several novel structures were elucidated. The study was also extended to the growth of materials that could be used for the generation of coherent light as low as 155 nm. Novel synthetic schemes for Sr2Be2B2O7 and KBe2BO 3F2 were developed and the growth of large crystals was explored. An extensive study of the structures, properties and crystal growth of related compounds, RbBe2BO3F2 and CsBe2BO 3F2, was also undertaken. Optimization of a number of parameters within this family of compounds led to the hydrothermal growth of large, high quality single crystal at rates suitable for large-scale growth. The second gap in technology is in the area of high average power solid state lasers emitting in the 1 mum and eye-safe (>1.5 mum) regions. A hydrothermal technique was developed to grow high quality crystals of Sc 2O3 and Sc2O3 doped with suitable

  16. A novel crystal growth technique from the melt: Levitation-Assisted Self-Seeding Crystal Growth Method

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Uecker, Reinhard; Fornari, Roberto

    2014-02-01

    A novel melt crystal growth technique was developed and applied for growing bulk In2O3 single crystals. In this new method the In2O3 starting material inside an inductively heated metal crucible is subjected to a controlled decomposition in such a way that a certain amount of free metallic indium forms. As a result, the electromagnetic field from an RF coil couples also to the In2O3 starting material, in addition to the metal crucible, which facilitates the melting. Liquid In2O3 has good electrical conductivity so that eddy currents are induced in the melt close to the crucible wall. This in turn induces a counter magnetic field that ultimately leads to levitation of a portion of the molten In2O3. The amount of the levitated material depends on the mutual RF coil-crucible position, their configurations as well as other components of a growth furnace. A consequence of the partial levitation of In2O3 melt is the formation of a liquid neck between the levitated and the quiescent melt portions. This neck is crucial as it acts as a seed during the crystallization process. The neck can be further shaped by controlled overheating or soaking. By cooling down, two single crystals are formed on the opposite sides of the seed. We named this new crystal growth technique “Levitation-Assisted Self-Seeding Crystal Growth Method”. It is in principle applicable to any oxides whose melts are electrically conductive. Thanks to this method we have successfully grown truly bulk In2O3 single crystals from the melt for the first time worldwide.

  17. Growth of single crystals by vapor transport

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    The primary objectives of the program were to establish basic vapor transport and crystal growth properties and to determine thermodynamic, kinetic and structural parameters relevant to chemical vapor transport systems for different classes of materials. An important aspect of these studies was the observation of the effects of gravity-caused convection on the mass transport rate and crystal morphology. These objectives were accomplished through extensive vapor transport, thermochemical and structural studies on selected Mn-chalcogenides, II-VI and IV-VI compounds.

  18. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  19. Laser crystallization and localized growth of nanomaterials for solar applications

    NASA Astrophysics Data System (ADS)

    In, Jungbin; Ryu, Sang-Gil; Lee, Daeho; Ahn, Sanghoon; Zheng, Andy Cheng; Hwang, David Jae-Seok; Grigoropoulos, Costas P.

    2013-09-01

    Laser-assisted localized growth of semiconducting nanostructures is reported. As is the case of conventional crystal growth, localized laser enables three kinds of crystal growth: (1) melt growth (recrystallization) of amorphous silicon nanopillars by pulsed laser; (2) vapor growth (chemical vapor deposition) of germanium nanowires; (3) solution growth (hydrothermal growth) of zinc oxide nanowires. The results not only demonstrate programmable and digital fabrication of laser-assisted crystal growth, but also reveal unusual growth chacracteristics (grain morphologies, growth kinetics). Related to solar applications, it is suggested that these structures can act as epitaxial seeds for growth of coarse grains and as multi-spectral centers for enhanced and engineered light absorption.

  20. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  1. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1994-01-01

    This research involved (1) using the Atomic Force Microscope (AFM) in a study on the growth of lysozyme crystals and (2) refinement of the design of the Thermonucleator which controls the supersaturation required for the nucleation and growth of protein crystals separately. AFM studies of the (110) tetragonal face confirmed that lysozyme crystals grow by step propagation. There appears to be very little step pile up in the growth regimes which we studied. The step height was measured at = 54A which was equal to the (110) interpane spacing. The AFM images showed areas of step retardation and the formation of pits. These defects ranged in size from 0.1 to 0.4 mu. The source of these defects was not determined. The redesign of the Thermonucleator produced an instrument based on thermoelectric technology which is both easier to use and more amenable to use in a mu g environment. The use of thermoelectric technology resulted in a considerable size reduction which will allow for the design of a multi-unit growth apparatus. The performance of the new apparatus was demonstrated to be the same as the original design.

  2. Method of controlling defect orientation in silicon crystal ribbon growth

    NASA Technical Reports Server (NTRS)

    Leipold, M. H. (Inventor)

    1978-01-01

    The orientation of twinning and other effects in silicon crystal ribbon growth is controlled by use of a starting seed crystal having a specific (110) crystallographic plane and (112) crystallographic growth direction.

  3. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E.

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  4. Lead isotope variation with growth zoning in a galena crystal

    USGS Publications Warehouse

    Cannon, R.S., Jr.; Pierce, A.P.; Delevaux, M.H.

    1963-01-01

    A large crystal of lead sulfide from Picher, Oklahoma, has significant differences in isotopic composition of lead in successive growth zones. Lead isotope ratios in the parent ore-fluid evidently changed with time during crystal growth. The growth history of this crystal, interpreted quantitatively, points to a tentative hypothesis of genesis of Mississippi Valley deposits of lead and zinc.

  5. Determining crystal growth kinetic parameters using optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Boerkamp, M.; Lamb, D. W.; Lye, P. G.

    2012-12-01

    The capability of an 'intrinsic exposed core optical fibre sensor' (IECOFS) as a monitoring device of scale formation has been evaluated. The IECOFS has been used to measure kinetics parameters of calcium carbonate heterogeneous crystal growth such as the activation energy, the crystal growth rate and the induction time. The IECOFS was able to evaluate crystal growth inhibition through the use of chemical inhibitors.

  6. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  7. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  8. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  9. Sealed silica pressure ampoules for crystal growth

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1984-01-01

    The properties of vitreous silica and the mechanics of thick walled pressure vessels are reviewed with regard to the construction of sealed silica crucibles such as are used in the growth of mercury-cadmium telluride crystals. Data from destructive rupture tests are reported, failure modes discussed, and recommendations for design given. Ordinary commercial clear vitreous silica from flame fused quartz can withstand a surface stress of 20 MPa or more in this application.

  10. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  11. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study.

    PubMed

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-01-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection. PMID:27210816

  12. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  13. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    PubMed Central

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-01-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection. PMID:27210816

  14. Effect of 6H-SiC crystal growth shapes on thermo-elastic stress in the growing crystal

    NASA Astrophysics Data System (ADS)

    Shi, Yong-gui; Dai, Pei-yun; Yang, Jian-feng; Jin, Zhi-hao; Liu, Hu-lin

    2012-07-01

    The effect of 6H-SiC crystal growth shapes on the thermo-elastic stress distribution in the growing crystal was systematically investigated by using a finite element method. The thermo-elastic stress distribution in the crystal with a flat growth shape was more homogeneous than that in the crystals with concave and convex growth shapes, and the value of thermo-elasticity in the crystal with a flat growth shape was also smaller than that in the two other types of crystals. The maximum values of thermo-elastic stress appeared at interfaces between the crystal and the graphite lid. If the lid was of the same properties as 6H-SiC, the thermo-elastic stress would decrease in two orders of magnitude. Thus, to grow 6H-SiC single crystals of high quality, a transition layer of SiC formed by deposition or reaction is suggested; meanwhile the thermal field in the growth chamber should be adjusted to maintain the crystals with flat growth shapes.

  15. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. PMID:26228157

  16. Efg Crystal Growth Apparatus And Method

    SciTech Connect

    Mackintosh, Brian H.; Ouellette, Marc

    2003-05-13

    An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.

  17. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  18. Convective instability in protein crystal growth

    NASA Astrophysics Data System (ADS)

    Lima, D.; de Wit, A.

    2004-08-01

    The conditions for the onset of convection during protein crystalization from a solution are studied theoretically on the basis of diffusion-convection evolution equations for the concentrations coupled to the Navier-Stokes equation describing the flow velocity. We consider that the density of the solution depends on the concentration of two species, namely, a protein and a precipitating agent, a salt. While the protein is crystallized at the crystal/solution interface, the salt is rejected, and these mechanisms are described by means of boundary conditions for the interface. We find the base profiles for both protein and salt concentrations and perform a linear stability analysis of this basic state with regard to buoyancy induced perturbations. This gives information on the critical diameter of capillaries above which convection may be observed, as well as on the influence of the speed of growth V of the crystal interface on the stability of the system. Numerical integration of the model shows good agreement with the predictions of the linear stability analysis.

  19. Alloy Semiconductor Crystal Growth Under Microgravity

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yasuhiro; Arivanandhan, Mukannan; Rajesh, Govindasamy; Tanaka, Akira; Ozawa, Tetsuo; Okano, Yasunori; Sankaranarayanan, Krishnasamy; Inatomi, Yuko

    2010-12-01

    Microgravity studies on the dissolution and crystallization of InxGa1-xSb have been done using a sandwich combination of InSb and GaSb as the starting material using the Chinese recoverable satellite. The same type of experiment was performed under 1G gravity condition for comparison. From these experiments and the numerical simulation, it is found that the shape of the solid/liquid interface and composition profile in the solution was found to be significantly affected by gravity. GaSb seed was dissolved faster than GaSb feed even though the GaSb feed temperature was higher than that of GaSb seed temperature. These results clearly indicate that solute transport due to gravity affects dissolution and growth processes of alloy semiconductor bulk crystals.

  20. Convective diffusion in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Meehan, E. J., Jr.; Xidis, A. L.; Howard, S. B.

    1986-01-01

    A protein crystal modeled as a flat plate suspended in the parent solution, with the normal to the largest face perpendicular to gravity and the protein concentration in the solution adjacent to the plate taken to be the equilibrium solubility, is studied. The Navier-Stokes equation and the equation for convective diffusion in the boundary layer next to the plate are solved to calculate the flow velocity and the protein mass flux. The local rate of growth of the plate is shown to vary significantly with depth due to the convection. For an aqueous solution of lysozyme at a concentration of 40 mg/ml, the boundary layer at the top of a 1-mm-high crystal has a thickness of 80 microns at 1 g, and 2570 microns at 10 to the -6th g.

  1. Growth and characterisation of ?-cystine doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Meera, K.; Muralidharan, R.; Santhanaraghavan, P.; Gopalakrishnan, R.; Ramasamy, P.

    2001-06-01

    Single crystals of L-cystine doped triglycine sulfate (LCTGS) were grown from aqueous solution by low temperature solution growth technique. Morphological changes were observed on the grown crystals. Crystalline quality and cell parameter values were found using rocking curve and powder X-ray diffraction analysis, respectively. The presence of L-cystine in LCTGS was estimated qualitatively by FTIR analysis. Microhardness studies were carried out using Leitz Weitzler hardness tester at room temperature. The dielectric studies were carried out to identify the phase transition temperature and to find the dielectric constant. P-E hysteresis studies were done to find the values of spontaneous polarisation and coercive field for both pure and doped TGS crystals. Scanning electron microscopic investigations on uncoated b-cut plates were carried out to visualise the lenticular domains. AFM studies on the cleaved b-cut plate were carried out to understand the ferroelectric surface and the domain structure.

  2. Physical vapor transport crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jianping, Ma; Fuli, Liu; Yuan, Zang; Yantao, Liu

    2014-03-01

    Zinc oxide (ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes (LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport (PVT), at temperatures exceeding 1500 °C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.

  3. High-temperature solution growth of YVO4:Nd crystals

    NASA Astrophysics Data System (ADS)

    Majchrowski, Andrzej; Michalski, Edward; Mierczyk, Zygmunt

    2003-10-01

    In this work we present the results on growth investigations of yttrium orthovanadate YVO4 single crystals doped with neodymium ions. Because of high temperature crystallization of stoichiometric YVO4 compound the Czochralski growth encounters serious problems connected with crucible materials and nonstoichiometry caused by evaporation of vanadium oxide. To avoid these problems we used high temperature solution growth method which allows to lower the temperature of YVO4 crystallization from 1810°C to below 1200°C. Several fluxes were tried, namely V2O5, NaVO3, and LiVO3. Spontaneous crystallization from all mentioned fluxes gave growth of small YVO4:Nd single crystals. To obtain bigger crystals we also carried out top seeded solution growth from LiVO3. X-ray diffraction investigations confirmed formation of tetragonal YVO4 crystals. Absorption and luminescence spectra of obtained YVO4:Nd crystals confirmed their applicability in diode-pumped lasers.

  4. Solution growth of Triglycine Sulfate (TGS) crystals on the International Microgravity Laboratory (IML-1)

    NASA Technical Reports Server (NTRS)

    Lal, Ravi B.; Batra, Ashok K.; Yang, LI; Wilcox, W. R.; Trolinger, J. D.

    1989-01-01

    An experiment was planned for the International Microgravity Laboratory (IML-1) to be launched around Feb. 1991. Crystals of triglycine sulfate (TGS) will be grown by low temperature solution crystal growth technique using a multiuser facility called Fluid Experiment System (FES). A special cooled sting technique of solution crystal growth will be used where heat is extracted from the seed crystal through a semi-insulating sting, thereby creating the desired supersaturation near the growing crystal. Also, a holocamera will be used to provide tomography of the three dimensional flow field and particle image displacement velocimetry to monitor the convective flows.

  5. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to

  6. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  7. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  8. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  9. An automated protein crystal growth facility on the space station

    NASA Technical Reports Server (NTRS)

    Herrmann, Melody

    1988-01-01

    The need is addressed for an automated Protein Crystal Growth experiment on the Space Station and how robotics will be integrated into the system design. This automated laboratory system will enable several hundred protein crystals to grow simultaneously in microgravity and will allow the major variables in protein crystal growth to be monitored and controlled during the experiment. Growing good quality crystals is important in determining the complete structure of the protein by X-ray diffraction. This information is useful in the research and development of medicines and other important medical and biotechnological products. Previous Protein Crystal Growth experiments indicate that the microgravity environment of space allows larger crystals of higher quality to be grown as compared to the same crystals grown on the ground. It is therefore important to have a laboratory in space where protein crystals can be grown under carefully controlled conditions so that a crystal type can be reproduced as needed.

  10. An experimental study of the ice column habit transitions. [crystal growth in atmosphere

    NASA Technical Reports Server (NTRS)

    Cho, N.; Hallett, J.

    1982-01-01

    The influence of supersaturation on column growth of ice crystals forming from atmospheric water vapor was investigated. A high density of crystals was generated on a glass fiber cooled by liquid N2 in a thermal diffusion chamber. Attention was focused on a neighbor-free hollow prism during a stepwise decrease in supersaturation while the crystal temperature was maintained constant. Another experiment involved epitaxial growth of ice crystals on CuS, where nonthickening crystals could only be grown below -7 C. A critical supersaturation was found to be necessary for growth of the basal plane. Beyound the critical value, surface kinetics do not control the growth rate, which is then dominated by the penetration of water molecules through the diffusion field surrounding the crystal.

  11. Growth kinetics and H-shaped crystals of SAPO-40

    NASA Astrophysics Data System (ADS)

    Di Renzo, F.; Dumont, Nathalie; Trens, P.; Gabelica, Zelimir

    2003-11-01

    Crystal morphologies with well-defined macroscopic cavities are very rare occurrences. Tabular crystals of SAPO-40 with a symmetrical notch at each end have been obtained by selective inhibition of the growth of the large-pore faces. Crystal growth has continued on the small-pores (0 1 0) faces, circumvented the inhibited sphenoidal faces formed a protruding tab at the corners of the crystals.

  12. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  13. On Favorable Thermal Fields for Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.

    2009-01-01

    The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analyses [14] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.

  14. Analysis of the dopant segregation effects at the floating zone growth of large silicon crystals

    NASA Astrophysics Data System (ADS)

    Mühlbauer, A.; Muiznieks, A.; Virbulis, J.

    1997-10-01

    A computer simulation is carried out to study the dopant concentration fields in the molten zone and in the growing crystal for the floating zone (FZ) growth of large (> 100mm) Si crystals with the needle-eye technique and with feed/crystal rotation. The mathematical model developed in the previous work is used to calculate the shape of the molten zone and the velocity field in the melt. The influence of melt convection on the dopant concentration field is considered. The significance of the rotation scheme of the feed rod and crystal on the dopant distribution is investigated. The calculated dopant concentration directly at the growth interface is used to determine the normalized lateral resistivity distribution in the single crystal. The calculated resistivity distributions are compared with lateral spreading resistivity measurements in the single crystal.

  15. Growth of urea crystals by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Route, R. K.; Kao, T.-M.

    1985-01-01

    This work demonstrates that high optical quality crystals of urea can be grown by the physical vapor transport method. The unique features of this method are compared with growth from methanol/water solutions. High growth rates, exceeding 2.5 mm/day, were achieved, and cm-size optical quality single crystals were obtained. Details of the growth technique and the physical properties of the crystals are presented.

  16. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  17. In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula; Osterberg, Ulf

    2004-01-01

    The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.

  18. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  19. Organic crystal growth experiment facility (13-IML-1)

    NASA Technical Reports Server (NTRS)

    Kanbayashi, Akio

    1992-01-01

    The interesting nature of metal-like organic compounds composed of charge transfer complexes has been recently realized. Crystals of these complexes can usually be grown by the solution crystallization method. It is difficult to grow such organic crystals on Earth, especially from the chemical reactions through diffusion controlled process in the solutions, because of gravitational disturbances, or sedimentation. The International Microgravity Lab. (IML-1) Organic Crystal Growth with G-Gitter Preventive Measure (OCGP) experiment is expected to grow a single crystal large enough to allow its intrinsic physical properties to be measured and its detailed crystal structure to be determined. This experiment also attempts to assess the experimental conditions including the microgravity environment for further study of the fundamental process of solution crystallization, nucleation, and growth from supersaturated phases including chemical reactions. Microgravity disturbances, G-jitter, may be an important environmental factor in the experimental method to assess. The vibration damping effects on organic crystal growth can be carefully studied.

  20. Specific mass increment and nonequilibrium crystal growth

    NASA Astrophysics Data System (ADS)

    Martyushev, Leonid M.; Terentiev, Pavel S.

    2013-09-01

    Unsteady nonequilibrium crystallization of ammonium chloride from an aqueous solution resulting in the formation of irregular, so-called seaweed, structures is experimentally investigated. It is shown that specific increment of mass for the coexisting structures (or parts thereof) is the same and changes with time (t) according to the power law a/t-b, where the factor a=1.87±0.09 and the factor b is determined by the system relaxation time. The normalization of the power law to the total time of structure growth allows obtaining a universal law that describes the specific mass increment with time for both seaweed and dendrite structures (including the non-coexisting ones).

  1. Calcium oxalate crystal growth in human urinary stones

    SciTech Connect

    Kim, K.M.; Johnson, F.B.

    1981-01-01

    Calcium oxalate stones are very common and increasing. Crystal growth is no less important than the crystal nucleation in the pathogenesis of stone formation. The crystal growth was studied in human calcium oxalate stones by a combined electron microscopy and x-ray diffraction. The main mode of weddellite growth was interpenetration twinning of tetrahedral bipyramids. Bipyramids may form as initial crystal seeds, develop from anhedral crystals (crystals which lack flat symmetric faces) of spherular or mulberry shape, develop on the surface of preformed bipyramids by spiral dislocation mechanisms, or develop on whewellite crystal by heterogeneous nucleation and epitaxy. Heterogeneous nucleations of whewellite on weddellite, and calcium apatite on whewellite were also observed. Whewellite grew mainly by parallel twinning. Interpenetration twinning was exceptional. Transformation of anhedral to euhedral (completely bounded by flat faces that are set ar fixed angles to one another) whewellite occurred by parallel fissurations followed by brick wall like stacking of the crystals, while euhedral transformation of weddellite occurred by protrusion of bipyramids frm anhedral crystal surface. Occasionally, an evidence of crystal dissolution was noted. Although an aggregation of crystals is believed to play a pivotal role in stone nidus formation, growth in size of the formed crystals, and twinning and epitactic crystal intergrowth apparently play a significant role in the obstructive urinary stone formation.

  2. Flux free growth of superconducting FeSe single crystals

    NASA Astrophysics Data System (ADS)

    Maheshwari, P. K.; Joshi, L. M.; Gahtori, Bhasker; Srivastava, A. K.; Gupta, Anurag; Patnaik, S. P.; Awana, V. P. S.

    2016-07-01

    We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature x-ray diffraction (XRD) on the surface of the piece of such obtained crystals showed single [101] plane of β-FeSe tetragonal phase. The bulk powder XRD, being obtained by crushing the part of crystal chunk showed majority (∼87%) β-FeSe tetragonal (space group P4/nmm) and minority (∼13%) δ-FeSe hexagonal (space group P63/mmc) crystalline phases. Detailed high resolution transmission electron microscope images along with selected area electron diffraction showed the abundance of both majority β-FeSe and minority δ-FeSe phases. Both transport (ρ-T) and magnetization exhibited superconductivity at below around 10 K. Interestingly, the magnetization signal of these crystals is dominated by the magnetism of minority δ-FeSe magnetic phase, and hence the isothermal magnetization at 4 K was seen to be ferromagnetic like. Transport (ρ-T) measurements under magnetic field showed superconductivity onset at below 12 K, and ρ = 0 (T c) at 9 K. Superconducting transition temperature (T c) decreases with applied field to around 6 K at 7 T, with dT c/dH of ∼0.4 K T‑1, giving rise to an H c2(0) value of around 50 , 30 and 20 T for normal resistivity ρ n = 90%, 50% and 10% respectively, which are calculated from conventional one band Werthamer–Helfand–Hohenberg equation. FeSe single crystal activation energy is calculated from thermally activated flux flow model which is found to decreases with field from 12.1 meV for 0.2 T to 3.77 meV for 7 T.

  3. Modelling the solution growth of TGS crystals in low gravity

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Rosenberger, Franz; Alexander, J. Iwan D.

    1990-01-01

    The experimental growth of triglycine sulfate (TGS) crystals from aqueous solution is modeled here in two dimensions using the PHOENICS finite volume code. Simulations are carried out for steady, impulsive, and periodic accelerations in order to determine tolerable acceleration levels. Scaling arguments are used to estimate the times required for thermal and solutal variations from the initial equilibrium state to be diffusively transported throughout the system, and to obtain order of magnitude information on the relative magnitudes of diffusive and convective transport. The computed concentration fields reflect the features of the concentration distributions found experimentally during experiments conducted aboard Spacelab 3 in 1985.

  4. Laser Schlieren Crystal-Growth Imager

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Johnston, M. H.

    1986-01-01

    Crystal observed as it grows from melt with aid of laser schlieren imaging. Observation method allows entire perimeter of growing crystal to be inspected. Isolated crystal facets examined, convection flows and temperature and concentration gradients revealed. Method does not require contact with, or proximity to, crystal.

  5. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong

    2016-09-01

    In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.

  6. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  7. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  8. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  9. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  10. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  11. Numerical analysis of sapphire crystal growth by the Kyropoulos technique

    NASA Astrophysics Data System (ADS)

    Demina, S. E.; Bystrova, E. N.; Lukanina, M. A.; Mamedov, V. M.; Yuferev, V. S.; Eskov, E. V.; Nikolenko, M. V.; Postolov, V. S.; Kalaev, V. V.

    2007-09-01

    A numerical model has been suggested to analyze processes occurring during sapphire crystal growth by the Kyropoulos technique. The model accounts for the radiative heat exchange in the crystal and melt convection together with the crystallization front formation. The theoretical predictions agree well with available experimental data.

  12. Preliminary investigations of protein crystal growth using the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Suddath, F. L.; Snyder, R.; Naumann, R.; Broom, M. B.; Pusey, M.; Yost, V.; Herren, B .; Carter, D.

    1986-01-01

    Four preliminary Shuttle experiments are described which have been used to develop prototype hardware for a more advanced system that will evaluate effects of gravity on protein crystal growth. The first phase of these experiments has centered on the development of micromethods for protein crystal growth by vapor-diffusion techniques (using a space version of the hanging-drop method) and on dialysis using microdialysis cells. Results suggest that the elimination of density-driven sedimentation can effect crystal morphology. In the dialysis experiment, space-grown crystals of concanavalin B were three times longer and 1/3 the thickness of earth-grown crystals.

  13. Reversed Crystal Growth of RHO Zeolitic Imidazolate Framework (ZIF).

    PubMed

    Self, Katherine; Telfer, Michael; Greer, Heather F; Zhou, Wuzong

    2015-12-21

    RHO zeolitic imidazolate framework (ZIF), Zn1.33 (O.OH)0.33 (nim)1.167 (pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) analyses, and a reversed crystal growth mechanism was revealed. Initially, precursor materials joined together to form disordered aggregates, which then underwent surface recrystallization forming a core-shell structure, in which a disordered core is encased in a layer of denser, less porous crystal. When the growth continued, the shell became less and less porous, until it was a layer of true single crystal. The crystallization then extended from the surface to the core over a six-week period until, eventually, true single crystals were formed. PMID:26577835

  14. Reversed Crystal Growth of RHO Zeolitic Imidazolate Framework (ZIF)

    PubMed Central

    Self, Katherine; Telfer, Michael; Greer, Heather F.

    2015-01-01

    Abstract RHO zeolitic imidazolate framework (ZIF), Zn1.33(O.OH)0.33(nim)1.167(pur), crystals with a rhombic dodecahedral morphology were synthesized by a solvothermal process. The growth of the crystals was studied over time using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X‐ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) analyses, and a reversed crystal growth mechanism was revealed. Initially, precursor materials joined together to form disordered aggregates, which then underwent surface recrystallization forming a core–shell structure, in which a disordered core is encased in a layer of denser, less porous crystal. When the growth continued, the shell became less and less porous, until it was a layer of true single crystal. The crystallization then extended from the surface to the core over a six‐week period until, eventually, true single crystals were formed. PMID:26577835

  15. Space manufacturing in an automated crystal growth facility

    NASA Technical Reports Server (NTRS)

    Quinn, Alberta W.; Herrmann, Melody C.; Nelson, Pamela J.

    1989-01-01

    An account is given of a Space Station Freedom-based robotic laboratory system for crystal growth experiments; the robot must interface with both the experimental apparatus and such human input as may be required for control and display. The goal of the system is the simultaneous growth of several hundred protein crystals in microgravity. The robot possesses six degrees-of-freedom, allowing it to efficiently manipulate the cultured crystals as well as their respective growth cells; the crystals produced are expected to be of sufficiently high quality for complete structural determination on the basis of XRD.

  16. Inorganic and protein crystal growth - Similarities and differences

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1986-01-01

    Transport and interface kinetic concepts for the design and control of inorganic crystal growth experiments are reviewed, and their applications and limitations in protein crystal growth are considered. It is suggested that the interfacial concentration gradients are steeper for faster crystallization, and that the interfacial concentration distributions for the protein and the precipitant can differ significantly. Results show that uniformity in crystal composition and steady-state conditions in growth kinetics are favored by larger sample size, since surface-tension gradients drive strong in microgravity experiments and in small samples on earth.

  17. Properties of TGS aqueous solution for crystal growth

    NASA Technical Reports Server (NTRS)

    Kroes, R. L.; Reiss, D.

    1984-01-01

    A study has been made of the properties of triglycine sulfate (TGS) aqueous solution relevant to its use for single crystal growth. Measurements of the solubility, index of refraction, density, viscosity, diffusivity, and optical dispersion are presented and discussed. A knowledge of these properties is of importance for controlling and modeling the growth process and for obtaining high quality single crystals.

  18. Crystal growth in fused solvent systems. [in space environment

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noval, B. A.; White, W. B.; Spear, K. E.; Henry, E. C.

    1974-01-01

    The successful nucleation of bismuth germanate, B12GeO20 on a high quality seed and the growth of regions of single crystals of the same orientation of the seed are reported. Lead germanate, Pb5Ge3O11 was also identified as a ferroelectric crystal with large electrooptic and nonlinear optic constants. Solvent criteria, solvent/development, and crystal growth are discussed, and recommendations for future studies are included.

  19. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  20. Growth of Triglycine Sulfate (TGS) crystals aboard Spacelab-3

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Aggarwal, M. D.; Batra, A. K.; Kroes, R. L.; Wilcox, William R.; Trolinger, James R.; Cirino, Philip

    1987-01-01

    An experiment to study the growth of single crystals of triglycine sulfate (NH2CH2COOH)3 H2SO4 (TGS) was successfully carried out on the Spacelab-3 mission during April 29 to May 6, 1985. Two crystals of TGS were grown during the flight, using a specially developed cooled sting technique of solution crystal growth. For the first time in any flight experiment the growth was monitored on-board as well as on ground by video-schlieren technique. Hundreds of holograms were taken for the solution/crystal interaction during the growth process. Preliminary results indicate that the optical system worked very well and the quality of reconstructed holograms is satisfactory. The cooled sting technique was successfully demonstrated. Holographic interferograms indicate convection free, diffusion limited growth. Some of the preliminary results of crystal quality are also presented.

  1. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  2. Direct observation of interface instability during crystal growth

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Feigelson, R. S.; Elwell, D.

    1982-01-01

    The general aim of this investigation was to study interface stability and solute segregation phenomena during crystallization of a model system. Emphasis was to be placed on direct observational studies partly because this offered the possibility at a later stage of performing related experiments under substantially convection-free conditions in the space shuttle. The major achievements described in this report are: (1) the development of a new model system for fundamental studies of crystal growth from the melt and the measurement of a range of material parameters necessary for comparison of experiment with theory. (2) The introduction of a new method of measuring segregation coefficient using absorption of a laser beam by the liquid phase. (3) The comparison of segregation in crystals grown by gradient freezing and by pulling from the melt. (4) The introduction into the theory of solute segregation of an interface field term and comparison with experiment. (5) The introduction of the interface field term into the theories of constitutional supercooling and morphological stability and assessment of its importance.

  3. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  4. In vitro inhibition of struvite crystal growth by acetohydroxamic acid.

    PubMed

    Downey, J A; Nickel, J C; Clapham, L; McLean, R J

    1992-10-01

    Struvite (MgNH4PO46H2O) crystals were produced by Proteus mirabilis growth in artificial urine, in the presence and absence of the urease inhibitor, acetohydroxamic acid (AHA). In the absence of AHA, struvite crystals assumed an "X-shaped" or dendritic crystal habit due to rapid growth along their 100 axis. When AHA was present, crystal growth, as monitored by phase contrast light microscopy, was greatly slowed, and the crystals assumed an octahedral crystal habit. Scanning electron microscopy revealed that crystals grown in the presence of AHA were pitted on their surface. This pitting was absent in control samples. While most of this inhibition by AHA was due to lowered urease activity, some crystal growth inhibition occurred in struvite produced in the absence of urease activity through NH4OH titration of artificial urine. We conclude that while AHA is primarily a urease inhibitor, it may also disrupt struvite growth and formation directly through interference with the molecular growth processes on crystal surfaces. PMID:1450840

  5. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  6. Needs and Opportunities in Crystal Growth.

    ERIC Educational Resources Information Center

    Mroczkowski, Stanley

    1980-01-01

    Presents a survey of the scientific basis for single crystals production, discussing some of the theoretical and experimental advances in the area. Future prospects for semiconductors, magnetic lasers, nonlinear optics, piezoelectrics, and other crystals are surveyed. (Author/CS)

  7. Physical phenomena related to crystal growth in the space environment

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1973-01-01

    The mechanism of crystal growth which may be affected by the space environment was studied. Conclusions as to the relative technical and scientific advantages of crystal growth in space over earth bound growth, without regard to economic advantage, were deduced. It was concluded that the crucibleless technique will most directly demonstrate the unique effects of the greatly reduced gravity in the space environment. Several experiments, including crucibleless crystal growth using solar energy and determination of diffusion coefficients of common dopants in liquid silicon were recommended.

  8. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  9. Solution Growth of Crystals in Zero-Gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Kroes, R. L.

    1985-01-01

    In a low-g environment, buoyancy driven convection effects in solution crystal growth are greatly reduced and, thus, one can study diffusion mass transport which in 1-g is masked by convective phenomena. Crystals of triglycine sulfate (TGS) will be grown aboard the Spacelab 3 mission, using a specially developed Fluids Experiments System (FES). The objectives of the experiment are: (1) to develop a technique for solution crystal growth in a low-g environment, (2) to characterize the growth environment provided by an orbiting spacecraft and to determine the influence of the environment on the growth behavior, and (3) to determine how gravity in a low-gravity environment influences the properties of a resulting TGS crystal. Single crystals of TGS have been grown using conventional low-temperature solution crystal growth method and the growth process has been extensively characterized. Various physical properties of TGS solution have been measured. Also, a unique technique of growing solution growth crystals by extracting heat at a programmed rate from the crystal through a semi-insulating sting has been developed and tested in 1-g environment.

  10. Protein and virus crystal growth on international microgravity laboratory-2.

    PubMed Central

    Koszelak, S; Day, J; Leja, C; Cudney, R; McPherson, A

    1995-01-01

    Two T = 1 and one T = 3 plant viruses, along with a protein, were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994. The method used was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than 30 times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots. It is postulated that the establishment of quasi-stable depletion zones around crystals growing in microgravity are responsible for self-regulated and more ordered growth. Images FIGURE 1 FIGURE 2 FIGURE 6 PMID:7669890

  11. Instabilities and pattern formation in crystal growth

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    1980-01-01

    Several common modes of crystal growth provide particularly simple and elegant examples of spontaneous pattern formation in nature. Phenomena of interest here are those in which an advancing nonfaceted solidification front suffers an instability and subsequently reorganizes itself into a more complex mode of behavior. The purpose of this essay is to examine several such situations and, in doing this, to identify a few new theoretical ideas and a larger number of outstanding problems. The systems studied are those in which solidification is controlled entirely by a single diffusion process, either the flow of latent heat away from a moving interface or the analogous redistribution of chemical constituents. Convective effects are ignored, as are most effects of crystalline anisotropy. The linear theory of the Mullins-Sekerka instability is reviewed for simple planar and spherical cases and also for a special model of directional solidification. These techniques are then extended to the case of a freely growing dendrite, and it is shown how this analysis leads to an understanding of sidebranching and tip-splitting instabilities. A marginal-stability hypothesis is introduced; and it is argued that this intrinsically nonlinear theory, if valid, permits aone to use results of linear-stability analysis to predict dendritic growth rates. The review concludes with a discussion of nonlinear effects in directional solidication. The nonplanar, cellular interfaces which emerge in this situation have much in common with convection patterns in hydrodynamics. The cellular stability problem is discussed briefly, and some preliminary attempts to do calculations in the strongly nonlinear regime are summarized.

  12. The growth and dissolution of ammonium perchlorate crystals in a fluidized bed crystallizer

    NASA Astrophysics Data System (ADS)

    Tanrikulu, S. Ü.; Eroğlu, I.; Bulutcu, A. N.; Özkar, S.

    1998-11-01

    The growth and the dissolution of ammonium perchlorate crystals were studied in pure and in sodium chloride containing aqueous solutions, in a fluidized bed crystallizer. The presence of sodium chloride in the solution reduced the growth and the dissolution rates of ammonium perchlorate crystals. The growth rates were interpreted in terms of supersaturation levels. The orders and rate constants were reported. The effectiveness factors were estimated from the growth rate data to evaluate the relative magnitude of the two resistances in series, diffusion and integration. The controlling mechanism is mainly by diffusion for the crystal growth of ammonium perchlorate in pure aqueous solution. However, both diffusion and integration steps affect the growth of ammonium perchlorate crystals in the presence of sodium chloride in solution.

  13. On favorable thermal fields for detached Bridgman growth

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.

    2009-06-01

    The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analysis [C. Stelian, A. Yeckel, J.J. Derby, Influence of thermal phenomena on crystal reattachment during the dewetted Bridgman growth, J. Cryst. Growth, in press] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.

  14. Unidirectional growth of benzophenone single crystals from solution

    NASA Astrophysics Data System (ADS)

    Ramasamy, P.

    2008-04-01

    Uniaxial benzophenone crystals along (1 1 0), (0 1 0), and (1 0 0)-oriented were grown by uniaxially solution-crystallization method of Sankaranarayanan-Ramasamy (SR). The experimental parameters involved in the present study were investigated in detail and a constant growth rate was achieved by compensating the loss of growth units in the solution. A transparent uniaxial benzophenone crystal having dimension of 500 mm length and 55 mm diameter was grown at room temperature for the first time in the literature. In contrast to the conventional solution growth method, the growth rate along each direction was measured at ease during the respective growth experiment by monitoring the elevation of the solid-liquid interface. The scaling up was found to be less complicated compared to hitherto known crystal growth methods.

  15. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  16. Growth of triglycine sulfate (TGS) crystals by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Kroes, R. L.; Wilcox, W. R.

    1982-01-01

    The growth of crystals from solution is greatly influenced by buoyancy driven convection. In a low-g environment, convection is greatly suppressed and diffusion becomes the predominant mechanism for thermal and mass transport. An experiment to grow TGS crystals by solution technique during the orbital Spacelab III mission has been designed. Crystals are grown by a new and unique technique of extracting heat from the crystal through a sting. The cooling at the sting tip is responsible for the desired supersaturation near the growing crystal. Calculations indicate that the cooled sting technique for solution crystal growth is necessary in low-g to maintain a maximum growth rate of 1 mm/day. Results of groundbased work in support of the flight experiment are discussed.

  17. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  18. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  19. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  20. Numerical computations of faceted pattern formation in snow crystal growth.

    PubMed

    Barrett, John W; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model. PMID:23005427

  1. Numerical computations of faceted pattern formation in snow crystal growth

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2012-07-01

    Faceted growth of snow crystals leads to a rich diversity of forms with remarkable sixfold symmetry. Snow crystal structures result from diffusion-limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size, and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three spacial dimensions using a computational method recently introduced by the present authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. In our computations, surface energy effects, although small, have a pronounced effect on crystal growth. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns, and scrolls on plates. Although all these forms appear in nature, it is a significant challenge to reproduce them with the help of numerical simulations for a continuum model.

  2. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  3. Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.

    2005-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.

  4. Universality classes for unstable crystal growth

    NASA Astrophysics Data System (ADS)

    Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo

    2014-06-01

    Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ∂th(x,t)=-∇.[j(∇h)+∇(∇2h)]: j (∇h) is an arbitrary function, which is linear for small ∇h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L ˜tn; (ii) the exponent β, controlling the increase in time of the typical slope of the pattern, M ˜tβ, where M ≈H/L. Our study reveals that there are only two different universality classes, according to the presence (n =1/3, β =0) or the absence (n =1/4, β >0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j (∇h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant.

  5. Crystal growth mechanisms of the (0 1 0) face of α-lactose monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-04-01

    The growth rates of the (0 1 0) face of α-lactose monohydrate crystals were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The mechanisms of growth were investigated. Spiral growth was found to be the mechanism of growth up to a critical relative supersaturation ( s-1) crit=1.9 at 30 °C. Above the critical relative supersaturation, the crystal growth mechanisms were predicted to change. All growth models fit equally well to the growth rates. No two-dimensional nucleation was observed above critical supersaturation by AFM. On the other hand increased step height and roughness on the edges of steps were observed. It was concluded that the growth mechanism of the (0 1 0) face of α-lactose monohydrate crystal is spiral growth. A parabolic relationship was obtained below critical supersaturation followed by a linear relationship with relative supersaturation.

  6. Numerical Optimization of the Thermal Field in Bridgman Detached Growth

    NASA Technical Reports Server (NTRS)

    Stelian, C.; Volz, M. P.; Derby, J. J.

    2009-01-01

    The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below

  7. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism

  8. Growth and surface topography of WSe2 single crystal

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-05-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  9. Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)

    2000-01-01

    A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).

  10. Crystal growth of large size Dy3Al5O12 garnet single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, Hideo; Sakamoto, Masaru; Numazawa, Takenori; Sato, Mitsunori; Maeda, Hiroshi

    1990-01-01

    Crystal growth conditions using the Czochralski technique were examined in order to be able to grow large-size disprosium-aluminum-garnet single crystals; these are useful as a working material in a practical magnetic refrigeration system. Using the best conditions, large-size bubble-free Dy3Al5O12 single crystals 50 mm in diameter were grown from a stoichiometric melt composition using a seed of Y3Al5O12 single crystal.

  11. Growth and characterisation of EDTA-added TGS crystals

    NASA Astrophysics Data System (ADS)

    Meera, K.; Claude, A.; Muralidharan, R.; Choi, C. K.; Ramasamy, P.

    2005-12-01

    Triglycine sulfate (TGS) crystal with 1 wt% of EDTA (ETGS) addition was grown from aqueous solution by slow-cooling technique. The addition of EDTA enhanced the metastable zone width of TGS solution and, thereby, increased the growth rate of TGS crystal. The powder X-ray diffraction analysis showed a slight change in the cell parameter values of ETGS crystal. The presence of various functional groups in the grown crystal is identified from FTIR analysis. Optical transmission studies on ETGS crystal showed a lower UV cut-off of 237 nm and the transmission percentage of 95%. The dielectric studies were carried out to identify the phase transition temperature and to find the dielectric constant. The pyroelectric co-efficient was calculated, which increased slightly with EDTA addition in TGS. Piezoelectric studies were also done on the grown crystals. Microhardness studies carried out using Leitz-Weitzler hardness tester showed that the ETGS crystal was softer than pure TGS crystal.

  12. Nb:BST: Crystal growth and ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Varatharajan, R.; Madeswaran, S.; Jayavel, R.

    2001-05-01

    Nb substituted barium strontium titanate single crystals were grown by the high-temperature solution growth technique with different Nb concentrations. The growth conditions were optimized to grow good quality large sized single crystals. Nb doping reduced the twin formation considerably and yielded bulk single crystals. A surface morphology observation indicates layer and hopper growth mechanisms. Powder X-ray diffraction studies show an increase in c/a ratio with Nb content, and ferroelectric studies revealed a decrease in curie temperature and a sharp increase in dielectric constant and spontaneous polarization.

  13. A study of solution crystal growth in LOW-g (2-IML-1)

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra B.

    1992-01-01

    During the International Microgravity Laboratory-1 (IML-1) mission it is planned to grow triglycine sulfate (TGS) crystals from aqueous solution using the modified Fluids Experiment System (FES). A special cooled sting technique will be used for solution crystal growth. The objectives of the experiment are as follows: (1) to grow crystals of TGS using the modified FES; (2) to perform holographic interferometric tomography of the fluid field in three dimensions; (3) to study the fluid motion due to g-jitter by multiple exposure holography of tracer particles; and (4) to study the influence of g-jitter on the growth rate.

  14. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  15. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  16. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  17. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  18. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  19. Large-volume protein crystal growth for neutron macromolecular crystallography

    SciTech Connect

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  20. Large-volume protein crystal growth for neutron macromolecular crystallography.

    PubMed

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  1. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.

  2. Growth and characterization of ammonium acid phthalate single crystals

    NASA Astrophysics Data System (ADS)

    Arunkumar, A.; Ramasamy, P.

    2013-04-01

    Ammonium acid phthalate (AAP) has been synthesized and single crystals were grown by slow evaporation solution growth technique. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system with the space group of Pcab. The high resolution X-ray diffraction studies revealed the crystalline perfection of the grown crystal. The various functional groups of AAP were identified by FT-IR and Raman spectral analyses. Thermal stability of the grown crystals was studied by TGA/DTA. The optical properties of the grown crystals were analyzed by UV-Vis-NIR and photoluminescence spectral studies. The mechanical property of the grown crystal was studied by Vickers microhardness measurement. The growth features of AAP were analyzed by chemical etching.

  3. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGESBeta

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  4. Fe 2O 3 single crystals: hydrothermal growth, crystal chemistry and growth morphology

    NASA Astrophysics Data System (ADS)

    Demianets, L. N.; Pouchko, S. V.; Gaynutdinov, R. V.

    2003-11-01

    Hematite single crystals have been grown under hydrothermal conditions. The analysis of atomic structures of the {h k i l} faces has been made, and the sequence of the growth rate change has been explained on the basis of that analysis. Optical and AFM study show two main mechanisms of α-Fe 2O 3 growth. They are layer-by-layer growth and island growth. The morphological characteristics of {1 1 2¯ 0} surfaces are given. Large flat terraces with height h 100-150 nm, width d˜10000 nm are observed of the face surface. Terraces are composed from the steps ( h 15-65, d 100-1200 nm). AFM-images of small steps demonstrate that they consist of globules with rounded or elongated shapes. Typical heights of globules are 0.5-5 nm, and typical lengths are 30-60 nm. These globules are orderly packed on the face, the elongation being along [1 0 1¯ 0] direction.

  5. Application of porous interface on segregation in Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Asadian, M.; Saeedi, H.

    2016-02-01

    The aim of this paper is to develop a model for the solute segregation in Czochralski crystal growth based on similarity solution. In this model, the effect of crystal growth rate for the wide range of Schmidt (Sc) numbers on boundary layer is considered. We utilize a variable R = V0 / √{ ν ω } which represents the ratio of growth velocity (V0) to stirring velocity (√{ ν ω }). Since both crystal rotation rate and growth velocity are almost varied in order to control the growth process, the parameter R can be used as a scale of optimization for the various growth conditions. The analyses show that the effective segregation coefficient (keff) is related to the parameter R. In the end, the results are utilized in the Czochralski configuration to determine the equilibrium segregation coefficient (k0) and Sc number evaluated and compared with experimental data.

  6. Improved Transparent Furnace For Crystal-Growth Experiments

    NASA Technical Reports Server (NTRS)

    Rosenthal, Bruce N.; White, Steve; Kalinowski, Joseph M.

    1989-01-01

    Novel design and fabrication process for transparent crystal-growing furnace developed. Design consists of one or more heater zones in which heating wire coiled around insides of quartz tubes. Ampoule of material supported inside furnace by guide wire. Crystal then grown by directional freezing of material in ampoule. Distinct feature of use of quartz is capability of direct visual observation of crystal-growth process during experiment. Study of transparent electronic materials conducted in new furnaces.

  7. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  8. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  9. Crystal growth of compound semiconductors in a low-gravity environment (InGaAs crystals) (M-22)

    NASA Technical Reports Server (NTRS)

    Tatsumi, Masami

    1993-01-01

    Compound semiconductor crystals, such as gallium arsenide and indium phosphide crystals, have many interesting properties that silicon crystals lack, and they are expected to be used as materials for optic and/or electro-optic integrated devices. Generally speaking, alloy semiconductors, which consist of more than three elements, demonstrate new functions. For example, values of important parameters, such as lattice constant and emission wavelength, can be chosen independently. However, as it is easy for macroscopic and/or microscopic fluctuations of composition to occur in alloy semiconductor crystals, it is difficult to obtain crystals having homogeneous properties. Macroscopic change of composition in a crystal is caused by the segregation phenomenon. This phenomenon is due to a continuous change in the concentration of constituent elements at the solid-liquid interfacing during solidification. On Earth, attempts were made to obtain a crystal with homogeneous composition by maintaining a constant melt composition near the solid-liquid interface, through suppression of the convection flow of the melt by applying a magnetic field. However, the attempt was not completely successful. Convective flow does not occur in microgravity because the gravity in space is from four to six orders of magnitude less than that on Earth. In such a case, mass transfer in the melt is dominated by the diffusion phenomenon. So, if crystal growth is carried out at a rate that is higher than the rate of mass transfer due to this phenomenon, it is expected that crystals having a homogeneous composition will be obtained. In addition, it is also possible that microscopic composition fluctuations (striation) may disappear because microscopic fluctuations diminish in the absence of convection. We are going to grow a bulk-indium gallium arsenide (InGaAs) crystal using the gradient heating furnace (GHF) in the first material processing test (FMPT). The structure of the sample is shown where In

  10. Crystal growth and roughening of solid D{sub 2}

    SciTech Connect

    Kozioziemski, B.J.; Collins, G.W.; Bernat, T.P.

    1997-03-26

    Near the triple point, growth shapes of vapor deposited hexagonal close packed D{sub 2} crystals reveal two crystal orientations contain facets which persist up to the melt. This observation is in contrast with previous experiments on rare gas solids and H{sub 2} where the highest T{sub r} measured is 0.8 T{sub tp}.

  11. Growth of large single crystals of the orthorhombic paracetamol

    NASA Astrophysics Data System (ADS)

    Mikhailenko, M. A.

    2004-05-01

    A new procedure for the growth of large (cm-range) single crystals of the metastable orthorhombic (s.g. Pcab) polymorph of paracetamol is described. The crystals were grown by very slow cooling of hot water solutions under the conditions, when the multiple nucleation was prevented. The samples were characterized by DSC and X-ray diffraction.

  12. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1997-01-01

    The growth of protein crystals suitable for X-ray crystal structure analysis is an important topic. The methods of protein crystal growth are under increasing study whereby different methods are being compared via diagnostic monitoring including Charge Coupled Device (CCD) video and interferometry. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and X-ray topographic images as well as the diffraction resolution limit and overall data quality. Choice of a liquid-liquid linear crystal growth geometry and microgravity can yield a spatial stability of growing crystals and fluid, as seen in protein crystallization experiments on the unmanned platform EURICA. A review is given here of existing results and experience over several microgravity missions. The results include CCD video as well as interferometry during the mission, followed, on return to earth, by rocking curve experiments and full X-ray data collection on LMS and earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  13. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  14. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  15. Transport modes during crystal growth in a centrifuge

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.

    1992-01-01

    Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.

  16. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  17. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  18. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  19. Effect of far-field flow on a columnar crystal in the convective undercooled melt

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Jian; Chen, Ming-Wen; Xu, Xiao-Hua; Wang, Zi-Dong

    2015-01-01

    The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations. Project supported by the Overseas Distinguished Scholar Program by the Ministry of Education of China (Grant No. MS2010BJKJ005), the National Natural Science Foundation of China (Grant No. 10972030), and the Science and Technology Support Project of Jiangxi, China (Grant No. 20112BBE50006).

  20. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  1. Growth and characterization of lead bromide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  2. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1992-01-01

    A study is presented of the crystallization of isocitrate lyase (ICL) and the influence of the lack of thermal solutal convection in microgravity on the morphology of ICL crystals is discussed. The latest results of studies with thermonucleation are presented. These include the nucleation of a protein with retrograde solubility and an unknown solubility curve. A new design for a more microgravity compatible thermonuclear is presented.

  3. Vapor crystal growth studies of single crystals of mercuric iodide (3-IML-1)

    NASA Technical Reports Server (NTRS)

    Vandenberg, Lodewijk

    1992-01-01

    A single crystal of mercuric iodide (HgI2) will be grown during the International Microgravity Lab. (IML-1) mission. The crystal growth process takes place by sublimation of HgI2 from an aggregate of purified material, transport of the molecules in the vapor from the source to the crystal, and condensation on the crystal surface. The objectives of the experiment are as follow: to grow a high quality crystal of HgI2 of sufficient size so that its properties can be extensively analyzed; and to study the vapor transport process, specifically the rate of diffusion transport at greatly reduced gravity where convection is minimized.

  4. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  5. Lattice Boltzmann simulation of water isotope fractionation during ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; DePaolo, Donald J.

    2016-05-01

    We describe a lattice Boltzmann (LB) method for simulating water isotope fractionation during diffusion-limited ice crystal growth by vapor deposition from water-oversaturated air. These conditions apply to the growth of snow crystals in clouds where the vapor composition is controlled by the presence of both ice crystals and water droplets. Modeling of water condensation with the LB method has the advantage of allowing concentration fields to evolve based on local conditions so that the controls on grain shapes of the condensed phase can be studied simultaneously with the controls on isotopic composition and growth rate. Water isotope fractionation during snow crystal growth involves kinetic effects due to diffusion of water vapor in air, which requires careful consideration of the boundary conditions at the ice-vapor interface. The boundary condition is relatively simple for water isotopes because the molecular exchange rate for water at the interface is large compared to the crystal growth rate. Our results for the bulk crystal isotopic composition are consistent with simpler models using analytical solutions for radial geometry. However, the model results are sufficiently different for oxygen isotopes that they could affect the interpretation of D-excess values of snow and ice. The extent of vapor oversaturation plays a major role in determining the water isotope fractionation as well as the degree of dendritic growth. Departures from isotopic equilibrium increase at colder temperatures as diffusivity decreases. Dendritic crystals are isotopically heterogeneous. Isotopic variations within individual snow crystals could yield information on the microphysics of ice condensation as well as on the accommodation or sticking coefficient of water associated with vapor deposition. Our results are ultimately a first step in implementing LB models for kinetically controlled condensation or precipitation reactions, but needs to be extended also to cases where the

  6. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  7. Rapid growth of thin and flexible organic semiconductor single crystal Anthracene by solution growth technique for device fabrication

    NASA Astrophysics Data System (ADS)

    Thirupugalmani, K.; Shanmugam, G.; Kannan, V.; Brahadeeswaran, S.

    2015-03-01

    Growth of thin and flexible organic semiconductor crystal Anthracene (AN) has been achieved in a very short duration. This simple, yet an effective approach was serendipitously found to yield high quality crystal with typical dimensions of 22×23×0.15-0.50 mm3 within a duration of about 30 min whereas a conventional method could take about 7-10 days to achieve similar dimensions. Further, these crystals were seen swirling and settling down slowly at the bottom of the growth flask. These factors were favorably utilized to place the Anthracene crystals firmly on prefabricated flexible substrates when they were kept in different heights within the solutions. This systematic approach also facilitated the fabrication of organic field effect transistor (OFET) and the results obtained were encouraging.

  8. Analysis of Monomer Aggregation and Crystal Growth Rates of Lysozyme

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    This project was originally conceived to analyze the extensive data of tetragonal lysozyme crystal growth rates collected at NASA/MSFC by Dr. Marc L. Pusey's research group. At that time the lack of analysis of the growth rates was hindering progress in understanding the growth mechanism of tetragonal lysozyme and other protein crystals. After the project was initiated our initial analysis revealed unexpected complexities in the growth rate behavior. This resulted in an expansion in the scope of the project to include a comprehensive investigation of the growth mechanisms of tetragonal lysozyme crystals. A discussion of this research is included as well a list of presentations and publications resulting from the research. This project contributed significantly toward the education of several students and fostered extensive collaborations between investigators.

  9. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  10. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm

  11. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  12. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  13. Crocodile: An automated apparatus for organic crystal growth from solution

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Cunisse, M.; Perigaud, A.

    CROCODILE ( CROissance de Cristaux Organiques par DIffusion Liquide dans l' Espace) is a space instrument dedicated to crystal growth from solution. The selected material N (4 nitrophenyl) (L) prolinol (NPP) is the result of studies on organic crystal in the frame of an extended program initiated by CNES for many years. The apparatus was flown aboard PHOTON, an automatic satellite, in April 1990, for a flight duration of more than 15 days. This paper describes the instrument design, with emphasis on specific and original technology well adapted to crystal growth from solution, and extendable to any space experiment on fluids. Preliminary details of the flight campaign will also be discussed.

  14. Modeling and design of PVT growth of silicon carbide crystals

    NASA Astrophysics Data System (ADS)

    Ma, Ronghui

    2003-10-01

    Physical vapor transport method (PVT) is an important technique for growing SiC bulk crystals, which is a promising semiconductor material for electrical and optoelectronic applications in the areas of high power, high temperature, high frequency and strong radiation. The ever-increasing demand for SiC substrates of high quality and large diameter has motivated extensive research effort on the growth of SiC boule using PVT method. The PVT growth process involves highly complex physics and elaborate system that significantly affect the rate of growth, growth area and defect density. This dissertation is aimed at developing a fundamental understanding of the growth process and identifying the foremost process conditions and parameters that affect crystal productivity and quality. To achieve this goal, we have developed a comprehensive model that involves major physical mechanisms of PVT growth, i.e. , transport of energy and vapor species, chemical reaction, growth kinetics, and anisotropic thermal stresses. Moreover, the multiplication of dislocation is integrated into this model to correlate thermal stresses to dislocation distribution. Through this work a relationship is established between the transport phenomena at the macroscale and defect development at the microscale. Finite volume method with adaptive non-orthogonal grid has been used for the thermal and mechanical calculations in the complex geometry. Using this integrated model, we have carried out numerical simulation of SiC growth process to predict the global temperature distribution in the furnace, the rate of growth and the shape of the as-grown crystals. In addition, the thermal stresses in the growing crystal and the dislocation distribution are also calculated. It is found that the temperature distribution in the induction-heated growth chamber is quite non-uniform. Under the growth temperatures, thermal radiation is the dominant heat transfer mode and accurate modeling is essential. The rate of

  15. Growth rate enhancement of potash alum crystals by microcrystals

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masakuni; Kamada, Toyohiro; Takiyama, Hiroshi

    1996-01-01

    During the steady growth of a single crystal of potash alum fixed in a clear supersaturated solution, secondary nucleation was intentionally induced by adding ground potash alum crystals and the resulting changes in the growth rate and the solution concentration were measured. The growth rates after the nucleation were found to abruptly increase by a factor of up to 3, and to gradually return to the steady growth rates or to some constant values. At the same time, the solution concentration started to decrease at the moment of the nucleation. As a measure of the growth rate increase the enhancement coefficient, ɛ 0, was introduced which was defined as the ratio of the growth rates in the presence to the absence of microcrystals at the same supersaturation. The values of ɛ 0 were found to be almost independent of the growth rate in the absence of microcrystals, i.e. the solution supersaturation.

  16. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    SciTech Connect

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern.

  17. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  18. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  19. Study of growth of single crystal ribbon in space

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Markworth, A. J.

    1975-01-01

    The technical feasibility is studied of growing single-crystal silicon ribbon in the space environment. Procedures are described for calculating the electromagnetic fields produced in a silicon ribbon by an rf shaping coil. The forces on the ribbon and the degree of shaping to be expected are determined. The expected steady-state temperature distribution in the ribbon is calculated in the one-dimensional approximation. Calculations on simplified models indicate, that lack of flatness of the shaped ribbon and excessive heating of the melt by the eddy currents induced by the shaping fields may pose problems. An analysis of the relative effects of various kinds of forces other than electromagnetic showed that in the space environment capillarity forces would dominate, and that the shape of the melt is thus principally determined by the shape of any solids with which it comes in contact. This suggests that ribbon may be produced simply by drawing between parallel wires. A concept is developed for a process of off-angle growth, in which the ribbon is pulled at an angle to the solidification front. Such a process promises to offer increased growth rate, better homogeneity, and thinner ribbon.

  20. Morphological Stability and Fluid Dynamics of Vapor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1985-01-01

    A fundamental understanding of the conditions under which crystals can retain morphological stability, i.e., shape stability of the advancing interface, during growth from vapors was studied. Morphological stability (MS) is a necessary condition for the growth of homogeneous single crystals required for numerous device applications. For crystallization from melts, the MS concepts are well developed and are essentially based on heat and mass transfer conditions about the advancing interface. For crystallization from vapors, the MS requirements are more complex and not well understood. The added complexity arises from the fact that anisotropies in interfacial kinetics are typically stronger in crystallization from vapors than from melts. These pronounced anisotropies root in the distinctly lower atomic roughness of most vapor-solid interfaces.

  1. Development of crystal supporting system for diameter of 400 mm silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Iida, T.; Machida, N.; Takase, N.; Takano, K.; Matsubara, J.; Shiraishi, Y.; Kuramoto, M.; Yamagishi, H.

    2001-07-01

    The purpose of this project is the development of a crystal supporting system (CSS) for silicon crystals with large diameters of 400 mm. Amongst the many technical problems the one that the Super Silicon Crystal Research Institute Corp. (SSi) has directed its energies is to support a weight in excess of the ability of the Dash neck to support this weight. After considering various solutions, we developed a CSS that mechanically supports the silicon subsidiary cone formed between the Dash neck and crystal shoulder. Using this method, an approximately 400 kg ingot was successfully grown from 500 kg of molten silicon in a 36-in. quartz crucible. We confirmed that the CSS mechanism worked correctly through the entire crystal growth process. This paper presents some of the anticipated problems in the mechanical supporting method and the corresponding solutions. Finally, results from real crystal growth to test and verify machine operation are reported.

  2. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  3. Growth Mechanism of the (110) Face of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Meirong; Pusey, Marc L.

    1997-01-01

    The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by completion of the helices along the 4, axes. In this study the molecular orientations of the possible growth units and the molecular growth mechanism were identified. This indicated that growth was a two-step process: aggregate growth units corresponding to the 4, helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds. A more comprehensive analysis of the measured (110) growth rates was also undertaken. They were compared with the predicted growth rates from several dislocation and two-dimensional nucleation growth models, employing tetramer and Octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. The calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units, in agreement with the predictions from the molecular level analyses.

  4. Crystal Growth and Characterization of Bil3

    NASA Technical Reports Server (NTRS)

    Hayes, Julia; Chen, Kuo-Tong; Burger, Arnold

    1997-01-01

    Bismuth tri-iodide (BiI3) have been grown by physical vapor transport (PVT), and by the Bridgman (melt) method. These crystals along with pure and stoichiometric BiI3 powder have been investigated by differential scanning calorimetry (DSC). The DSC results show that pure BiI3 powder has no phase transition and melts around 408 C. While we found no evidence for the high temperature dissociation of BiI3, the DSC measurements show that crystals grown from melt method contain a significantly large amount of Bi-rich phases than crystals grown from PVT method, as indicated by phase transition detected at 270, 285, 298 and 336 C.

  5. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    NASA Astrophysics Data System (ADS)

    Král, Robert

    2012-12-01

    Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.

  6. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  7. Czochralski growth of gallium indium antimonide alloy crystals

    SciTech Connect

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform

  8. Space-based crystal growth and thermocapillary flow

    NASA Technical Reports Server (NTRS)

    Shen, Yong-Hong

    1994-01-01

    The demand for larger crystals is increasing especially in applications associated with the electronic industry, where large and pure electronic crystals (notably silicon) are the essential material to make high-performance computer chips. Crystal growth under weightless conditions has been considered an ideal way to produce bigger and hopefully better crystals. One technique which may benefit from a microgravity environment is the float-zone crystal-growth process, a containerless method for producing high-quality electronic material. In this method, a rod of material to be refined is moved slowly through a heating device which melts a portion of it. Ideally, as the melt resolidifies it does so as a single crystal which is then used as substrate for building microelectronic devices. The possibility of contamination by contact with other material is reduced because of the 'float' configuration. However, since the weight of the material contained in the zone is supported by the surface-tension force, the size of the resulting crystal is limited in Earth-based productions; in fact, some materials have properties which prevent this process from being used to manufacture crystals of reasonable size. Consequently, there has been a great deal of interest in exploiting the microgravity environment of space to grow larger size crystals of electronic material using the float-zone method. In addition to allowing larger crystals to be grown, a microgravity environment would also significantly reduce the magnitude of convection induced by buoyancy forces during the melting state. This type of convection was once thought to be at least partially responsible for the presence of undesirable nonuniformities--called striations--in material properties observed in float-zone material. However, past experiments on crystal growth under weightless conditions found that even with the absence of gravity, the float-zone method sometimes still results striations. It is believed that another

  9. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition.

    PubMed

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G; Mpourmpakis, Giannis; Asplin, John R; Rimer, Jeffrey D

    2016-08-25

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization--citrate and hydroxycitrate--exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation of

  10. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  11. Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals

    NASA Astrophysics Data System (ADS)

    Král, R.; Nitsch, K.; Babin, V.; Šulc, J.; Jelínková, H.; Yokota, Y.; Yoshikawa, A.; Nikl, M.

    2013-12-01

    This paper reports on the growth of pure and Nd3+, Pr3+, Yb3+, and Dy3+ doped rubidium lead chloride (RbPb2Cl5) crystals by the atmosphere-controlled micro-pulling-down method. Structural and composition measurements are reported, further completed by the absorption, radio- and photoluminescence spectra and decay measurements on the prepared single crystals. Potential of these materials and preparation method for the application in the infrared solid state laser field are discussed.

  12. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  13. Growth and characterization of doped LiF crystals

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2014-12-01

    Transparent and crack-free crystals of LiF: x ( x = Ca, Pb, Na, Tl) were successfully grown by using the Czochralski method. Growth parameters such as the pulling and the rotation rates were optimized. The grown crystals were characterized and compared by using X-ray luminescence. Tl- and Na-doped crystals showed better luminescence intensity than crystals with other dopants. Thermoluminescence (TL) glow curves were obtained to study the crystal defects in the grown samples. Activation energies were calculated from the TL glow curves. The temperature dependence of the light yield in the temperature range from 10 to 300 K under alpha particle excitation was also investigated. The light yield was found to be larger at low temperatures. Na- and Tl-doped crystals showed 35% and 20% increases in the light yield, respectively, at low temperatures as compared to room temperature.

  14. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  15. Hydrothermal crystal growth of the potassium niobate and potassium tantalate family of crystals

    SciTech Connect

    Mann, Matthew; Jackson, Summer; Kolis, Joseph

    2010-11-15

    Single crystals of KNbO{sub 3} (KN), KTaO{sub 3} (KT), and KTa{sub 1-x}Nb{sub x}O{sub 3} (x=0.44, KTN) have been prepared by hydrothermal synthesis in highly concentrated KOH mineralizer solutions. The traditional problems of inhomogeneity, non-stoichiometry, crystal striations and crystal cracking resulting from phase transitions associated with this family compounds are minimized by the hydrothermal crystal growth technique. Crystals of good optical quality with only minor amounts of metal ion reduction can be grown this way. Reactions were also designed to provide homogeneous distribution of tantalum and niobium metal centers throughout the KTN crystal lattice to maximize its electro-optic properties. Synthesis was performed at relatively low (500-660 {sup o}C) temperatures in comparison to the flux and Czochralski techniques. This work represents the largest crystals of this family of compounds grown by hydrothermal methods to date. -- Graphical Abstract:

  16. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  17. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  18. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  19. Crystal growth and scintillation properties of LSO and LYSO crystals

    NASA Astrophysics Data System (ADS)

    Mao, Rihua; Wu, Chen; Dai, Ling'En; Lu, Sheng

    2013-04-01

    Lutetium oxyorthosilicate (LSO) and lutetium-yttrium oxyorthosilicate (LYSO) single crystals were grown by Czochralski method and samples with dimension of 17 mm in cubic were made. The optical and scintillation properties for these samples were performed. It was found that optical transmittance observed for both LSO and LYSO matches well with the theoretical limits. The light output (L.O.) measured by a PMT with bialkali cathode was found to be 4100 p.e./MeV with an energy resolution of 10.2% and a decay time of 42 ns. Light output non-proportionality was found in energy scale below 356 keV. The γ-ray induced afterglow in LYSO found much less than that of the LSO sample.

  20. Confined Crystal Growth in Space. Deterministic vs Stochastic Vibroconvective Effects

    NASA Astrophysics Data System (ADS)

    Ruiz, Xavier; Bitlloch, Pau; Ramirez-Piscina, Laureano; Casademunt, Jaume

    directional solidification under microgravity", Journal of Crystal Growth 303 (2007) 262 -268. [2] X. Ruiz, P. Bitlloch, L. Ramé ırez-Piscina, J. Casademunt, "Solid segregation induced by stochastic acceleration fields", ELGRA News 26 (2009) 217.

  1. Crystal Growth by Physical Vapor Transport: Experiments and Simulation Dynamics

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Worlikar, A.; Su, Ching-Hua; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Crystal growth from the vapor phase has various advantages over melt growth. The main advantage is from a lower processing temperature, which makes the process more amenable in instances where the melting temperature of the crystal is high. Other benefits stem from the inherent purification mechanism in the process due to differences in the vapor pressures of the native elements and impurities, and the enhanced interfacial morphological stability during the growth process. Further, the implementation of PVT growth in closed ampoules affords experimental simplicity with minimal needs for complex process control, which makes it an ideal candidate for space investigations in systems where gravity tends to have undesirable effects on the growth process. Bulk growth of wide band gap II-VI semiconductors by PVT has been developed and refined over the past several years at NASA MSFC. A new modeling approach for PVT has also been recently formulated and its validation and testing is the main objective of this work.

  2. Crystal growth and dielectric, mechanical, electrical and ferroelectric characterization of n-bromo succinimide doped triglycine sulphate crystals

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Byrappa, K.; Dharmaprakash, S. M.

    2011-09-01

    Single crystals of triglycine sulphate (TGS) doped with n-bromo succinimide (NBS) were grown at ambient temperature by the slow evaporation technique. An aqueous solution containing 1-20 mol% of n-bromo succinimide as dopant was used for the growth of NBSTGS crystals. The incorporation of NBS in TGS crystals has been qualitatively confirmed by FTIR spectral data. The effect of the dopant on morphology and crystal properties was investigated. The cell parameters of the doped crystal were determined by the powder X-ray diffraction technique. The dielectric constant of NBS doped TGS crystal was calculated along the ferroelectric direction over the temperature range of 30-60 °C. The dielectric constant of NBSTGS crystals decrease with the increase in NBS concentration and considerable shift in the phase transition temperature ( TC) towards the higher temperature observed. Pyroelectric studies on doped TGS were carried out to determine the pyroelectric coefficient. The emergence of internal bias field due to doping was studied by collecting P- E hysteresis data. Temperature dependence of DC conductivity of the doped crystals was studied and gradual increase in the conductivity with the increase of dopant concentration was observed. The activation energy (Δ E) calculated was found to be lower in both the ferroelectric and the paraelectric phases for doped crystals compared to that of pure TGS. The micro-hardness studies were carried out at room temperature on thin plates cut perpendicular to the b-axis. Less doped TGS crystals show higher hardness values compared to pure TGS. Piezoelectric measurements were also carried out on 010 plates of doped TGS crystals at room temperature.

  3. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  4. Containerless protein crystal growth in rotating levitated drops

    NASA Astrophysics Data System (ADS)

    Chung, Sang K.; Trinh, Eugene H.

    1998-01-01

    A method for growing protein crystals in a containerless environment using an ultrasonic-electrostatic hybrid levitator is evaluated. In this approach, a single protein solution droplet bearing a surface charge is electrostatically levitated and acoustically rotated along a horizontal axis during the crystal nucleation and growth phases. Sample rotation is induced by ultrasonic streaming and radiation pressure applied in addition to the electrostatic levitation force. This unique approach is developed in order to create controlled crystal growth conditions which would reproduce some of the aspects of the low-gravity environment. We present the outcome of a development effort and feasibility study showing the successful growth of lysozyme and thaumatin crystals suspended within the bulk of quiescent liquid protein solutions inside rotating droplets also containing a very small concentration of agarose. Even though the crystals are not growing in a completely gelled medium and rotation is required for their long-term suspension, there are indications that a convectionless crystal growth environment has been obtained within the rotating drop, and that artificial flow can be introduced in a controlled manner by imposing drop shape oscillations.

  5. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  6. A Microfluidic, High Throughput Protein Crystal Growth Method for Microgravity

    PubMed Central

    Carruthers Jr, Carl W.; Gerdts, Cory; Johnson, Michael D.; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions’ microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 103 cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  7. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1998-01-01

    The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  8. A microfluidic, high throughput protein crystal growth method for microgravity.

    PubMed

    Carruthers, Carl W; Gerdts, Cory; Johnson, Michael D; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3) cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  9. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  10. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  11. Small Device for Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Daniel Carter (center), president of New Century Pharmaceuticals, and Dr. Joseph Ho (right), vice president, examine a diffusion Controlled Apparatus for Microgravity (DCAM). At left, Dr. John Ruble, a senior scientist, examines some specimens. The plastic DCAM has two chambers joined by a porous plug through which fluids can diffuse at a controlled rate. This allows researchers to mix protein solutions on Earth and load them aboard the Space Shuttle shortly before launch. The diffusion and crystallization processes are already under way, but at such a slow pace that crystals do not start growing before the DCAM is in orbit aboard the Shuttle or a space station. Dozens of DCAM units can be flown in a small volume and require virtually no crew attention. Specimens are returned to Earth for analysis. Photo credit: NASA/Marshall Space Flight Center

  12. Vapor crystal growth technology development: Application to cadmium telluride

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.

    1991-01-01

    Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.

  13. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  14. Crystal growth furnace with trap doors

    NASA Technical Reports Server (NTRS)

    Sachs, Emanual M. (Inventor); Mackintosh, Brian H. (Inventor)

    1982-01-01

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  15. Growth and Transverse Field Muon Spin Rotation of Cobalt Niobate

    NASA Astrophysics Data System (ADS)

    Munsie, Timothy; Millington, Anna; Marjerrison, Casey; Medina, Teresa; Wilson, Murray; Kermarrec, Edwin; Liu, Lian; Dabkowska, Hanna; Uemura, Yasutomo; Williams, Travis; Luke, Graeme

    2014-03-01

    Cobalt niobate, CoNb2O6, is a material whose spins, when in a transverse field, act like the theoretical ideal 1D-Ising model. This occurs due to the magnetic spins aligning highly anisotropically along the Co2+ chains. Because of this unique structure and material performance, the creation and characterization of this material is of both experimental and theoretical interest. The research we will present is a detailing of changes in the characteristics of the growth of the material utilizing the optical floating zone crystal growth method compared to previous growth parameters and an examination of this material in a moderately high transverse field using the technique of muon spin rotation (μSR). We have determined that the quality of crystals created by the floating zone are highly dependent on the growth parameters utilized (original ceramic shape and rotation rate) and dictate the speed at which the growth can be performed. Transverse Field μSR shows a gradual but significant change to the magnetic structure of the material below 5 K. Second Affiliation: Brockhouse Institute for Materials Research.

  16. Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Isomura, Masao; Kanai, Mikuri

    2015-04-01

    We have investigated the solid phase crystallization (SPC) of amorphous germanium (a-Ge) precursors on single crystalline silicon (c-Si) substrates as seed layers and successfully obtained the epitaxial growth of Ge. The n-type (100) Si substrate is most suitable for preferential growth following the substrate orientation, because the velocity of preferential growth is higher than those on the other substrates and preferential growth is completed before random nucleation. The impurity contamination in the a-Ge precursors probably enhances random nucleation. The epitaxial growth is disturbed by the impurity contamination at a relatively high SPC temperature in the intrinsic and p-type Si substrates with the (100) orientation and the n-type and intrinsic Si substrates with the (111) orientation, because the lower velocity of preferential growth allows random crystallization. Almost no epitaxial growth is observed on the p-type (111) Si substrates even when low-impurity a-Ge precursors are used.

  17. Preparation and evaluation of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Vandenberg, L.

    Large quantities, on the order of several hundred, of consistent, high quality mercuric iodide for crystal growth have not been commercially available. The hydrocarbon, anion, and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting materials was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of mercuric iodide preparation in batches of 3 kg using Hg(NO sub 3) sub 2, or HgCl and KI. Since these salts are produced in much larger quantities than mercuric iodide, more consistent quality is available. The impurity content of these batched and single crystals are compared. Some of the single crystals grown using the in-house prepared mercuric iodide have yielded a large number of spectroscopy grade nuclear radiation detectors. The influence of the major impurities are discussed.

  18. Radiochemical study of the kinetics of crystal growth in gels

    NASA Astrophysics Data System (ADS)

    Cecal, Alexandru; Palamaru, Mircea; Juverdeanu, Anca; Giosan, Marcel

    1996-01-01

    A kinetic study was performed on nucleation and growth of crystals containing radioactive ions in gelatin and agar gels. The investigated crystals were: 60CoHPO 4, 60CoS, 60Co(OH) 2, 60Co(SCN) 2, 204Tl(OH) 3, and 204Tl[(C 2H 5) 2NCS 2] 3. The study shows that the crystal growth rate depends on the cation size and charge, the nature of anion as well as on the colloidal medium. The crystallisation process in the gel has two distinctive steps: diffusion of reactant ions in the gel followed by a chemical reaction which leads to nucleation of the crystal. Both steps are described quantitatively.

  19. Growth, properties, and applications of potassium niobate single crystals

    SciTech Connect

    Mizell, G.; Fay, W.R.; Alekel, T. III; Rytz, D.; Garrett, M.

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm may be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.

  20. Pathways to self-organization: Crystallization via nucleation and growth.

    PubMed

    Jungblut, S; Dellago, C

    2016-08-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In this article, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism. PMID:27498980

  1. A simple technique for studying struvite crystal growth in vitro.

    PubMed

    McLean, R J; Downey, J; Clapham, L; Nickel, J C

    1990-01-01

    Struvite urolithiasis forms as a consequence of a urinary tract infection by urease-producing species of bacteria such as Proteus mirabilis. Ammonia, produced by the enzymatic hydrolysis of urea, elevates urine pH causing a supersaturation and precipitation of Mg++ as struvite (NH4MgPO4). Calcium often precipitates as well, forming the mineral carbonate-apatite (Ca10(PO4)6CO3). We have developed a procedure based on direct observation by light microscopy whereby struvite crystal growth can be quickly monitored in response to chemical changes in urine. As struvite crystals assume a characteristic shape or crystal habit based on their growth rate, the effect of urine chemistry and the action of various crystallization or urease inhibitors on struvite formation can be quickly shown. In addition preliminary effects of alkaline pH, or the presence of toxic compounds on bacteria can also be shown through their loss of motility. PMID:2180168

  2. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  3. Anomalous growth of single ice crystals in solution

    NASA Technical Reports Server (NTRS)

    Gill, W. N.

    1979-01-01

    It is shown that major discrepancies exist between experiments and theory for ice crystal growth from solution. Accurate data, taken in a microgravity environment, approximate analytical models, and exact (probably numerical) models all are needed to advance our understanding of ice crystal growth phenomena. A new approximate semi-empirical theory is presented which predicts that a relatively sharp transition from natural convection control to diffusion control for ice growth in pure water occurs at a subcooling of about 10 C (a reduced temperature difference of about 0.125). No reliable data exist to test this prediction. The theory also predicts qualitatively the growth of ice in NaCl solution in which maxima in the growth rates are observed at various levels of subcooling.

  4. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  5. Growth of YFeO 3 crystal by edge-defined film-fed growth method

    NASA Astrophysics Data System (ADS)

    Nie, Jianbiao; Chen, Wenbin; Wang, Chunnan; Hu, Xiaolin; Zhao, Bin; Zhuang, Naifeng; Lin, Shukun; Chen, Jianzhong

    2012-01-01

    A sizeable single crystal of YFeO 3 (YIP) with the dimensions of 19×15×15 mm 3 has been successfully grown by the edge-defined film-fed growth method. Thermal magnetic analysis shows that Curie temperature of as-grown YIP crystal is about 363.5 °C. The hardness of YIP crystal was measured as 900 VDH, equivalent to about 7.1 moh. Moreover, the optical transmittance of as-grown YIP crystal can be significantly enhanced if this crystal was annealed at 700 °C in oxygen atmosphere.

  6. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  7. Promoting microstructural uniformity during floating-zone crystal growth

    NASA Astrophysics Data System (ADS)

    Grugel, R. N.; Lee, C. P.; Anilkumar, A. V.; Wang, T. G.; Shen, X. F.; Cröll, A.; Bune, A.

    1999-01-01

    It is demonstrated in floating-zone configurations utilizing silicone oil and nitrate salts that mechanically induced vibration effectively minimizes detrimental, gravity independent, thermocapillary flow. The processing parameters leading to crystal improvement and aspects of the on-going modeling effort are discussed. Plans for applying the crystal growth technique to commercially relevant materials, e.g., silicon, as well as the value of processing in a microgravity environment are presented.

  8. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  9. Single crystal growth and characterization of URu2Si2

    NASA Astrophysics Data System (ADS)

    Haga, Yoshinori; Matsuda, Tatsuma D.; Tateiwa, Naoyuki; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary

    2014-11-01

    We review recent progress in single crystal growth and study of electronic properties in ?. Czocharalski pulling, using purified uranium metal and subsequent annealing under ultra-high vacuum, is successfully applied to this compound, and it yields the highest residual resistivity ratio. These high-quality single crystals allow us to investigate Fermi surfaces using quantum oscillation and to make detailed transport measurements at low temperature.

  10. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  11. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  12. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal

    NASA Astrophysics Data System (ADS)

    Paramasivam, P.; Raja, C. Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier.

  13. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal.

    PubMed

    Paramasivam, P; Raja, C Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier. PMID:21640636

  14. Growth, crystalline perfection and characterization of benzophenone oxime crystal

    NASA Astrophysics Data System (ADS)

    Rajasekar, M.; Muthu, K.; Meenatchi, V.; Bhagavannarayana, G.; Mahadevan, C. K.; Meenakshisundaram, SP.

    Single crystals of benzophenone oxime (BPO) have been grown by slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the crystal belongs to monoclinic system and cell parameters are, a = 9.459 Å, b = 8.383 Å, c = 26.690 Å, v = 2115 Å3 and β = 92.807°. The structure and the crystallinity of the materials were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by FT-IR analysis. The TG/DSC studies reveal the purity of the material and the crystals are transparent in the entire visible region having a lower optical cut-off at ˜300 nm. The crystalline perfection was evaluated by high-resolution X-ray diffraction (HRXRD). The crystal is further characterized by Kurtz powder technique, dielectric studies and microhardness analysis.

  15. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  16. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  17. Stability limits for the horizontal ribbon growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  18. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  19. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  20. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  1. Vertical Bridgman growth of calcium lithium niobium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Xu, Xuewu; Chong, Tow-Chong; Zhang, Guangyu; Li, Minghua; Soo, Lay Hiok; Xu, Wei; Freeman, Bill

    2003-03-01

    The growth of calcium lithium niobium gallium garnet (CLNGG) crystal has been carried out using platinum crucibles in a vertical Bridgman (VB) furnace with three resistance-heating zones. Transparent CLNGG crystals grown from the congruent melts with and without weight loss compensation are different in color and are 25 mm in diameter and about 70 mm in length. The phase identification of the sintered raw materials, grown crystals and white compound formed on the side surface of the grown crystal has been done using the powder X-ray diffraction method. The formation of the white compound is related to the {1 0 0} facet growth near the side surface. The naturally selected growth direction of the CLNGG crystal grown without a seed is near <1 1 1> , which is in good agreement with the morphological importance analysis according to the BFDH law. The VB-grown CLNGG also shows a cleavable feature parallel to {1 1 0} face and no absorption peaks in the wavelength range of 1100-1600 nm. The linear thermal-expansion coefficient of the CLNGG crystal along <1 1 1> direction is also reported and compared with that of CNGG, GGG and platinum crucible.

  2. Interphase and capillary phenomena in crystal growth and melting processes

    NASA Astrophysics Data System (ADS)

    Naidich, Yu. V.; Grigorenko, N. F.; Perevertailo, V. M.

    1981-05-01

    The wettability of different faces of a number of single crystals (thymol, diphenylamine, dibenzyl, salol, benxophenone, sodium thiosulphate, germanium) by their own melt in the course of their growth was studied using various methods (bubble method, sessile drop method, by the melt meniscus shape). The wettability of the crystals by the own melt is incomplete, the wetting angle differs from zero and is dissimilar for different faces (wettability anisotropy). The highest values of the wetting angles are displayed by the faces having the greatest reticular density. For thynol crystals, the kinetics of face growth has been studied simultaneously with investigating the wettability. The gtowth of close-packed faces featuring the largest wetting angles has been found to be governed by a tangential mechanism. The process of melting of different faces of the above single crystals has been studied by means of microfilming (including that in vacuum at a high temperature). It has been ascertained that the crystal-melt transition at the closest-packed faces proceeds by layers. The liquid phase resulting from layer destruction forms droplets wetting the face with a wetting angle to that in crystal growth. The observed melting mechanism has been termed a "droplayered" one.

  3. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  4. Growth and form of spherulites: A phase field study.

    NASA Astrophysics Data System (ADS)

    Granasy, Laszlo

    2006-03-01

    Polycrystalline patterns termed spherulites are present in a broad variety of systems including metal alloys, polymers, minerals, and have biological relevance as well (see e.g. semi-crystalline amyloid spherulites and spherultic kidney stones). The fact that similar polycrystalline patterns are observed in systems of very different nature suggests that a minimal model based on coarse-grained fields, which neglects the details of molecular interactions, might be appropriate. Although such a field-theoretic approach disregards most of the molecular scale details of formation, some features such as crystal symmetries can be incorporated via the anisotropies of the model parameters. The rationale for developing such coarse-grained models is the current inability of fully molecular models to address the formation of large scale morphologies. A phase field theory of polycrystalline growth, we developed recently, is applied for describing spherulitic solidification in two and three dimensions. Our model consists of several mechanisms for nucleating new grains at the perimeter of the crystallites, including homogeneous (trapping of orientational disorder and branching in certain crystallographic directions) and heterogeneous (particle-induced nucleation) processes. It will be shown that the diversity of spherulitic growth morphologies arises from a competition between the ordering effect of discrete local crystallographic symmetries and the randomization of the local crystallographic orientation that accompanies crystal grain nucleation at the growth front. This randomization in the crystal orientation accounts for the isotropy of spherulitic growth at large length-scales and long times. We find the entire range of observed spherulite morphologies can be reproduced by this generalized phase field model of polycrystalline growth.

  5. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  6. Growth and birefringence studies of semi organic non-linear optical LHB single crystal

    NASA Astrophysics Data System (ADS)

    Jayaramakrishnan, V.; Prasanyaa, T.; Haris, M.; Bhoopathi, G.

    2015-02-01

    In the last few decades nonlinear optical materials are getting attention in the field of optical data storage, telecommunication, second harmonic generation (SHG) and optical signal processing, etc. In the present work we are reporting the single crystal growth of L-Histidine with hydro-bromic acid. The L-Histidine bromide (LHB) single crystals have been harvested from the solution in a span of 34 days by adopting slow cooling solution growth technique. The grown crystals have been subjected to powder X-ray diffraction studies to identify the cell parameters and structure. The crystalline perfection has been defined by rocking curve (HRXRD) analysis. Optical transmission spectra reveal the optical properties of the grown crystals. The Modified channel spectrum (MCS) method has been adopted for the study of spectral dependence of linear birefringence over the wavelength range 480-620 nm. The second harmonic generation efficiency was tested by using Kurtz and Perry method, keeping KDP as reference.

  7. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    SciTech Connect

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.

  8. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  9. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  10. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  11. Crystal growth by precipitation under microgravity

    NASA Technical Reports Server (NTRS)

    Authier, A.; Lefaucheux, F.; Robert, M. C.

    1979-01-01

    The importance of understanding the mechanisms associated with defect generation during growth and the influence of gravity is stressed. An experiment is described. The advantages of adapting this experiment to the FES are then discussed. A brief survey of the ground based research under way is given.

  12. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  13. The dynamic nature of crystal growth in pores.

    PubMed

    Godinho, Jose R A; Gerke, Kirill M; Stack, Andrew G; Lee, Peter D

    2016-01-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks. PMID:27615371

  14. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  15. Crystal-growth Underground Breeding Extra-sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  16. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Lagowski, J.

    1981-01-01

    Experimental and theoretical efforts in the development of crystal growth approaches, effective techniques for electronic characterization on a macro and microscale, and in the discovery of phenomena and processes relevant to GaAs device applications are reported. The growth of electron trap-free bulk GaAS with extremely low density of dislocations is described. In electroepitaxy, growth configuration which eliminates the substrate back-contact was developed. This configuration can be extended to the simultaneous growth on many substrates with a thin solution layer sandwiched between any two of them. The significant reduction of Joule heating effects in the configuration made it possible to realize the in situ measurement of the layer thickness and the growth velocity. Utilizing the advantages of electroepitaxy in achieving abrupt acceleration (or deceleration) of the growth it was shown that recombination centers are formed as a result of growth acceleration.

  17. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  18. Mechanism and estimation of Al(OH) 3 crystal growth

    NASA Astrophysics Data System (ADS)

    Farhadi, Fatollah; Babaheidary, Masoud Bahrami

    2002-02-01

    Precipitation is an important stage of the Bayer process. For simulation of this section, growth-rate estimation of Al(OH) 3 crystals, is vital for the solution of population balance. Various published equations for linear growth rate of Al(OH) 3 are reviewed. In all of these equations, a square exponent was considered for supersaturation terms. In some of the previous works, it was believed that BCF model is the governing mechanism for surface growth of crystals. It is shown that polynuclear model is the most probable mechanism. Also, a modification of the best previous correlation is performed, which results in a considerable improvement of the growth-rate estimation over the available published experimental data.

  19. Magnetic induced vertical crystal growth of perylene cation radicals on ITO glass surface

    NASA Astrophysics Data System (ADS)

    Micheletto, Ruggero; Matsui, Jun; Oyama, Munetaka; El-Hami, Khalil; Matsushige, Kazumi; Kawakami, Yoichi

    2005-03-01

    Perylene-acetonitrile solution with tetra- n-butyl-ammonium perchlorate (TBAP) is a substance that tends to electro-crystallize and form particular needle-like structures. These perylene materials are studied extensively for their peculiar electrical and optical properties and for the interest in the fundamental phenomena occurring in the electro crystallization process. We introduce here a novel methodology to orient the needle-like crystals by means of electro crystallization in presence of a weak magnetic field. We report details on the technique we used and we present several exceptional SEM pictures of the aggregates growing vertically from the substrate by the effect of the magnetic field. The method introduce a new simple way to control the growth of these intriguing materials and the approach is potentially the basis for the fabrication of new miniaturized devices.

  20. A study of the growth rates and growth habits of ice crystals in a solution of antifreeze (glyco) proteins

    NASA Astrophysics Data System (ADS)

    Li, Qianzhong; Luo, Liaofu

    1996-12-01

    The mechanism of the antifreeze glycoprotein/antifreeze protein interaction on the surface of ice is analyzed. The theory of ice crystal growth in an AF(G)P solution is presented. A quantitative calculation of the growth rates for gain growth has been obtained. The anisotropic growth habits and growth rates of ice crystals in an AF(G)P solution are explained.

  1. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    NASA Astrophysics Data System (ADS)

    Voloshina, O. V.; Baumer, V. N.; Bondar, V. G.; Kurtsev, D. A.; Gorbacheva, T. E.; Zenya, I. M.; Zhukov, A. V.; Sidletskiy, O. Ts.

    2012-02-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4) and yttrium (YVO 4) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  2. Accumulated distribution of material gain at dislocation crystal growth

    NASA Astrophysics Data System (ADS)

    Rakin, V. I.

    2016-05-01

    A model for slowing down the tangential growth rate of an elementary step at dislocation crystal growth is proposed based on the exponential law of impurity particle distribution over adsorption energy. It is established that the statistical distribution of material gain on structurally equivalent faces obeys the Erlang law. The Erlang distribution is proposed to be used to calculate the occurrence rates of morphological combinatorial types of polyhedra, presenting real simple crystallographic forms.

  3. Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, Frank R.; Su, Ching-Hua; Cobb, Sharon D.; Scripa, Rosalia A.; Sha, Yi-Gao

    1999-01-01

    This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions.

  4. Crystal growth, structural and photoluminescence studies of L-tyrosine hydrobromide semi organic single crystal

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Vetrivel, S.; Jayavel, R.; Vedhi, C.; Ravi, G.; Bhagavannarayana, G.

    2012-11-01

    Nearly perfect single crystal of L-tyrosine hydrobromide (LTHB) has been grown at room temperature from the saturated solution prepared from the solvent with optimised normality (2N) using slow evaporation solution growth technique. Crystal system and lattice parameters have been estimated by single crystal X-ray diffraction analysis. Prominent peeks of powder X-ray diffraction pattern have been indexed and diffraction data have been presented. The presence of various functional groups in LTHB has been identified by vibrational and Nuclear Magnetic Resonance spectral study. The crystalline nature and defect during the growth has been studied by obtaining high resolution X-ray diffraction curve (rocking curve) for the title crystal and detailed explanation is given in this paper. Cyclic voltammetric behaviour and photoluminescence properties of LTHB have also been investigated.

  5. Simulations of nucleation and early growth stages of protein crystals.

    PubMed Central

    Kierzek, A M; Wolf, W M; Zielenkiewicz, P

    1997-01-01

    Analysis of known protein crystal structures reveals that interaction energies between monomer pairs alone are not sufficient to overcome entropy loss related to fixing monomers in the crystal lattice. Interactions with several neighbors in the crystal are required for stabilization of monomers in the lattice. A microscopic model of nucleation and early growth stages of protein crystals, based on the above observations, is presented. Anisotropy of protein molecules is taken into account by assigning free energies of association (proportional to the buried surface area) to individual monomer-monomer contacts in the lattice. Lattice simulations of the tetragonal lysozyme crystal based on the model correctly reproduce structural features of the movement of dislocation on the (110) crystal face. The dislocation shifts with the speed equal to the one determined experimentally if the geometric probability of correct orientation is set to 10(-5), in agreement with previously published estimates. At this value of orientational probability, the first nuclei, the critical size of which for lysozyme is four monomers, appear in 1 ml of supersaturated solution on a time scale of microseconds. Formation of the ordered phase proceeds through the growth of nuclei (rather then their association) and requires nucleations on the surface at certain stages. Images FIGURE 2 PMID:9251778

  6. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  7. Containerless protein crystallization in floating drops: application to crystal growth monitoring under reduced nucleation conditions

    NASA Astrophysics Data System (ADS)

    Lorber, Bernard; Giegé, Richard

    1996-10-01

    A micromethod was developed for the batch crystallization of proteins under conditions were the solution has no contact with the container walls. Drops of crystallization solutions (5 to 100 μl) are placed at the interface between two layers of inert and non-miscible silicone fluids contained in square glass or plastic cuvettes. The densities of the fluids are either lower or higher than those of the major precipitating agents of macromolecules, including aqueous solutions containing salts, polyethylene glycols or alcohols. Several proteins and a spherical plant virus were crystallized in the temperature range 4°C-20°C using this set-up. A thermostated device was built for the dynamic control of the temperature of crystallization drops and the monitoring of crystal growth by video-microscopy. In all cases, the habit of the crystals grown in floating drops are identical to those of controls grown in sealed glass tubes without silicone fluid. The comparison of the number of crystals in drops kept under one layer of fluid and in floating drops of the same volume indicates that heterogeneous nucleation is minimized when protein crystallization is performed in floating drops. The advantages and limitations of this novel containerless crystallization method are discussed.

  8. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals

  9. Morphological stability and fluid dynamics of vapor crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, F. E.

    1984-01-01

    Research on morphological stability and fluid dynamics of crystal growth is discussed. Interfacial heat and mass transfer research is discussed. The finding of surface roughening is a precursor to a solid-solid phase transition was further quantified. Progress was obtained with the mass spectroscopic characterization of GeSe-Ge I sub 4.

  10. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Baker, G. R.; Foster, M. R.

    1996-01-01

    An investigation of a more complete theoretical understanding of convection effects in a vertical Bridgman apparatus is described. The aim is to develop a clear understanding of scalings of various features of dendritic crystal growth in the case that both the surface energy and undercooling are small.

  11. Stable growth mechanisms of ice disk crystals in heavy water.

    PubMed

    Adachi, Satoshi; Yoshizaki, Izumi; Ishikawa, Takehiko; Yokoyama, Etsuro; Furukawa, Yoshinori; Shimaoka, Taro

    2011-11-01

    Ice crystal growth experiments in heavy water were carried out under microgravity to investigate the morphological transition from a disk crystal to a dendrite. Surprisingly, however, no transition was observed, namely, the disk crystal or dendrite maintained its shape throughout the experiments, unlike the results obtained on the ground. Therefore, we introduce a growth model to understand disk growth. The Gibbs-Thomson effect is taken into account as a stabilization mechanism. The model is numerically solved by varying both an interfacial tension of the prism plane and supercooling so that the final sizes of the crystals can become almost the same to determine the interfacial tension. The results are compared with the typical experimental ones and thus the interfacial tension is estimated to be 20 mJ/m(2). Next, the model is solved under two supercooling conditions by using the estimated interfacial tension to understand stable growth. Comparisons between the numerical and experimental results show that our model explains well the microgravity experiments. It is also found that the experimental setup has the capability of controlling temperature on the order of 1/100 K. PMID:22181428

  12. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  13. Effect of Co2+ doping on solubility, crystal growth and properties of ADP crystals

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Yahia, I. S.

    2016-09-01

    Bulk size crystal growth of ADP with different concentrations doping of cobalt (Co2+) has been done by low cost slow evaporation technique at ambient conditions. The solubility measurement was carried out on pure and doped crystals and found that the solubility is decreasing with doping concentrations. The presence of Co2+ ion in crystalline matrix of ADP has been confirmed by structural, vibrational and elemental analyses. Scanning electron microscopic study reveals that the doping has strong effect on the quality of the crystals. The optical absorbance and transmission confirms the enhancement of quality of ADP crystals due to Co2+ doping and so the optical band gap. Further the dislocation, photoluminescence, dielectric and mechanical studies confirms that the properties of grown crystals with Co2+ doping has been enriched and propose it as a better candidate for optoelectronic applications.

  14. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  15. Pure and doped triglycine sulfate crystals: growth and characterization.

    PubMed

    Alexandru, H V

    2009-04-01

    Triglycine sulfate (TGS) crystal is an important ferroelectric crystal used on a large spectrum of radiation detection. Crystals from this family are used as targeted vidicon materials. Pure, (L + D) and L- or D-alanine doped TGS crystals in the ferro- and paraelectric phase, 3-4 cm long, were grown by slow solvent evaporation or temperature reduction. The alanine segregation coefficient, being K approximately 0.01 dopant concentrations in the crystals, was less than 1%. The L- or D-alanine doped crystals presented mirror symmetry and unipolarity. Permittivity and losses were registered online as a function of temperature or at constant temperature versus time (1 kHz, HIOKI, RLC automatic bridge). Essential parameters permittivity, losses, positive and negative polarization components, coercive field components, and the bias field of the doped samples were measured versus temperature. Hysteresis loops and their derivatives were measured with a specially designed Sawyer-Tower device. Generally, doped crystals presented much smaller permittivity and losses and a higher pyroelectric coefficient. Pure TGS samples show nonreproducible permittivity values and its relaxation was studied at constant temperature in the ferroelectric phase. Dielectric parameters have been automatically recorded online every 10 s, during approximately 7 days. It was found that the relaxation time is not a real constant on such large time intervals. In a semi-log scale, permittivity shows three stages, probably related to several mechanisms of relaxation. PMID:19426332

  16. Titanium Nitride Epitaxy on Tungsten (100) by Sublimation Crystal Growth

    SciTech Connect

    Mercurio, Lisa; Du, Li; Edgar, J H; Kenik, Edward A

    2007-01-01

    Titanium nitride crystals were grown from titanium nitride powder on tungsten by the sublimation-recondensation technique. The bright golden TiN crystals displayed a variety of shapes including cubes, truncated tetrahedrons, truncated octahedrons, and tetrahedrons bounded by (111) and (100) crystal planes. The TiN crystals formed regular, repeated patterns within individual W grains that suggested epitaxy. X-ray diffraction and electron backscattering diffraction revealed that the tungsten foil was highly textured with a preferred foil normal of (100) and confirmed that the TiN particles deposited epitaxially with the orientation TiN(100)/W(100) and TiN[100]/W[110], that is, the unit cells of the TiN crystals were rotated 45{sup o} with respect to the tungsten. Because of its larger coefficient of thermal expansion compared to W, upon cooling from the growth temperature, the TiN crystals were under in-plane tensile strain, causing many of the TiN crystals to crack.

  17. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  18. Direct observation of crystal growth from solution using optical investigation of a growing crystal face

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra

    1994-01-01

    The first technical report for the period 1 Jan. 1993 till 31 Dec. 1993 for the research entitled, 'Direct observation of crystal growth from solution using Optical Investigation of a growing crystal Face' is presented. The work on the project did not start till 1 June 1993 due to the non-availability of the required personnel. The progress of the work during the period 1 June 1993 till the end of 1993 is described. Significant progress was made for testing various optical diagnostic techniques for monitoring crystal solution. Some of the techniques that are being tested are: heterodyne detection technique, in which changes in phase are measured as a interferometric function of time/crystal growth; a conventional technique, in which a fringe brightness is measured as a function of crystal growth/time; and a Mach-Zehnder interferometric technique in which a fringe brightness is measured as a function of time to obtain information on concentration changes. During the second year it will be decided to incorporate the best interferometric technique along with the ellipsometric technique, to obtain real time in-situ growth rate measurements. A laboratory mock-up of the first two techniques were made and tested.

  19. Implications of a concentration-dependent growth rate on the boundary layer crystal-melt model

    NASA Astrophysics Data System (ADS)

    Lasaga, Antonio C.

    1981-12-01

    The influence of a melt boundary layer on crystal growth is analyzed. The treatment extends the results of Burton, Prim and Slichter (1953) and incorporates composition-dependent growth rates. It is shown that in these general cases the growth rate cannot be arbitrarily fixed but must satisfy a self-consistent equation. Self-consistency problems arise because the growth rate determines the composition profile in the melt and, in turn, the composition profile determines the growth rate. The self-consistent growth rate is shown to vary markedly with the ratio δ/D, where δ is the thickness of the boundary layer and D is the appropriate diffusion coefficient in the melt. This self-consistency can be very important in the analysis of both field and laboratory growth rates as well as in trace element partition kinetic models.

  20. Growth inhibitors and promoters examplified on solution growth of paraffin crystals

    NASA Astrophysics Data System (ADS)

    Kern, R.; Dassonville, R.

    1992-01-01

    Additives, called also intentional impurities, act on crystal growth kinetics. Generally, they are very specific and some act as inhibitors, others as promoters. Paraffin solution growth is sensitive to organic additive molecules and especially to polymers. In the latter case, the same molecule is able to act both as an inhibitor and as a promoter, depending only on its degree of polymerisation m. Polyalkylacrylate with low m value slows down the precipitation kinetics of n-paraffins, with species forming mestable solid solutions. On the contrary, high m values promote the precipitation, provided the polymer crystallizes prior to paraffin precipitation. In this case the polymer crystals act as epitaxial seeds, leading to paraffin crystal agglomerates of large size. This versatility of some polymers is of great help in industrial processes where paraffin crystals are involved.

  1. Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth.

    PubMed

    Ming, Jinfa; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zuo, Baoqi

    2015-06-01

    Use of organic templates for controlling the growth of inorganic crystals is one of the research topics in biomimetic field. In particular, oriented growth of hydroxyapatite (HAp) in organic fibrous matrix is provided a new view angle to study biomineralization of bone and its potential biomedical applications. The crystallization of HAp in fibrous hydrogels could mimic such biomineralization. In this paper, we report HAp nanorod crystal synthesized successfully by a biomimetic method using calcium chloride and ammonium dihydrogen phosphate as reagents in the presence of silk fibroin/sodium alginate (SF/SA) fibrous hydrogels. The effects of influence factors such as mineral times, pH, and temperature on controlling HAp nanorod crystals are discussed. The elongated HAp nanorods with rectangular column are grown with the increase of mineral times in biomimetic process. By changing pH, HAp nanorod crystals are obtained at alkaline condition in fibrous hydrogels. Moreover, compared to other temperatures, rod-shaped HAp crystals were formed at 20°C. The results imply this to be an effective method for preparing HAp crystals with controllable morphology for bone repair application. PMID:25842137

  2. Crystal Growth of Solid Solution HgCdTe Alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  3. Physical vapor transport growth of bulk aluminum nitride crystals

    NASA Astrophysics Data System (ADS)

    Noveski, Vladimir

    The most promising substrates for III-Nitride devices---bulk aluminum nitride (AlN) crystals were grown by seeded and self-seeded methods in sandwich sublimation configuration in nitrogen atmosphere. The growth was performed in an inductively heated reactor, which was designed and assembled during the course of this project. In the theoretical study of mass transfer effects on the crystal growth rate a one-dimensional model was developed assuming diffusion of Al species as rate limiting step. Estimation and validation of model parameters were completed by experiments carried out at temperature 1800--2400°C, pressure 55--105 kPa and temperature gradient in the vapor phase 1--4°C. Crystal growth rates ˜1 mm/h, viable for commercial production and very good uniformity in the plane of growth were achieved. Two typical issues during the seeded growth on SiC were identified: (1) the formation of voids, and (2) the formation of cracks. A viable process window of temperatures, growth times and source-to-seed distances was identified in which these issues could be overcome and single crystalline AIN was deposited on 200--300 mm2 SiC seeds. X-ray diffraction confirmed a single crystalline nature of the grown material, and scanning electron microscopy (SEM) and optical microscopy revealed the step-flow growth mechanism. Grain expansion in the growth direction during self-seeded studies indicated a possibility of achieving single crystalline AlN of significant size starting from a polycrystalline material. Growth interruption and seed preparation were introduced to preserve the crucible integrity and provide conditions for one-dimensional transport. The use of an inverted temperature gradient during initial stages and sintering of the AlN powder source helped eliminating the secondary nucleation, which had been identified to be an issue during the growth on previously polished AlN seeds. X-ray topography and optical microscopy confirmed the epitaxial re-growth after

  4. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  5. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum.

    PubMed

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-02-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum. PMID:25566884

  6. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum

    PubMed Central

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-01-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral–octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum. PMID:25566884

  7. Floating zone crystal growth of selected R2PdSi3 ternary silicides

    SciTech Connect

    Xu, Yiku; Frontzek, Matthias D; Mazilu, Irina; Loeser, W; Behr, G; Buechner, Bernd; Liu, L

    2011-01-01

    Substitution of various rare earths R within the class of R2PdSi3 single crystals with hexagonal AlB2-type crystallographic structure reveals the systematic dependence of anisotropic magnetic properties governed by the interplay of crystal-electric field effects and magnetic two-ion interactions. Here we compare the floating zone (FZ) crystal growth with radiation heating of compounds with R = Tb, Tm, Pr, and Gd. The congruent melting behavior enabled moderate growth velocities of 3 to 5 mmh-1. The preferred growth directions are close to the basal plane of the hexagonal unit cell. The composition of the crystals, except of Tb2PdSi3, is slightly Pd-depleted with respect to the nominal composition 16.7 at.% Pd. Thin precipitates of RSi secondary phases were detected in the crystal matrix. Their phase fraction can be diminished by growth from Pd-rich melt compositions and annealing treatments. The compounds exhibit antiferromagnetic order below the N el temperatures TN: 23.6 K (Tb2PdSi3), 1.8 K (Tm2PdSi3), 2.17 K (Pr2PdSi3) and 22 K (Gd2PdSi3) with different grades of magnetic anisotropy.

  8. Studies Related to Crystal Growth Using Synchrotron Radiation Diffraction.

    NASA Astrophysics Data System (ADS)

    Rule, Robert J.

    1990-01-01

    Available from UMI in association with The British Library. Small crystals of ammonium dihydrogenphosphate (ADP), sodium chlorate and sucrose, generated by secondary nucleation in aqueous solution, have been grown under constant conditions of supersaturation. A wide dispersion of growth rates was observed for each material using optical microscopy. A number of individual crystals of known growth rate were successfully retrieved from solution for each system. An assessment of the mosaic spread of each crystal was made using synchrotron radiation Laue diffraction on station 9.7 at Daresbury laboratory. All of the crystals produced diffraction patterns comprising small, sharp spots, indicative of low mosaic spread (<0.5 ^circ), contrary to published work. No correlation was found between growth rate and mosaic spread for these simple, small-molecule materials. An explanation of the previously reported discrepancies has been provided. The susceptibility of these compounds to radiation damage has been systematically investigated; ADP proved highly robust whilst sucrose and sodium chlorate showed significant sensitivity to irradiation. The role of mosaic spread in the growth of more complex systems is discussed with specific reference to two materials possessing channel structures: chenodeoxycholic acid and SAPO-5. In each case, the directions of slow growth have been related to high mosaic spread. An order of magnitude calculation of the rate of absorption of energy has been made for a variety of materials in the SRS white beam. The associated theoretical heating capability of the beam has also been estimated. A crystal melting experiment using crystals of 2 bromobenzophenone has indicated that the heating rate under standard experimental conditions is of the order of 1-2^circ C per sec., substantially less than anticipated. A pilot study of the combined use of SR Laue diffraction and high resolution powder diffraction for microcrystal structure determination has been

  9. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  10. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  11. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  12. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  13. Susceptor for EFG crystal growth apparatus

    DOEpatents

    Menna, Andrew A.

    1996-09-03

    An improved susceptor for a crucible/die assembly for growing tubular crystalline structures by the EFG process is provided. The crucible/die assembly comprises a die having a substantially polygonally-shaped top end surface for supporting a film of silicon feed material that is replenished from a melt in the crucible through capillary action. A hollow crystalline body is grown from the film of silicon material on the top end surface of the die. The heat susceptor is made of graphite or similar material, and has a peripheral configuration similar to that of the die. Further, the upper surface of the heat susceptor has a central land and a plurality of circumferentially-spaced upwardly extending projections. The central land thermally contacts a central portion of the lower surface of the crucible/die, and the projections thermally contact the lower surface of the crucible/die at its corners, whereby a temperature distribution is provided that permits growth of hollow bodies having more nearly constant thickness walls.

  14. Twin-mediated crystal growth: an enigma resolved

    PubMed Central

    Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.

    2016-01-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth. PMID:27346073

  15. Twin-mediated crystal growth: an enigma resolved

    NASA Astrophysics Data System (ADS)

    Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.

    2016-06-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth.

  16. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1992-01-01

    The 4 solution growth experiments on the LDEF were presented thoroughly elsewhere. The CaCO3-experiment, and to a certain extent also the TTF-TCNQ-experiments yielded useful results. In Jan. 1992, the next series of solution growth experiments were sent to ESA for shipment to KSC. As on the LDEF, the SGF (solution growth facility) of the EURECA-1 contains 4 large experiments. From the beginning, the planning and developments were introduced. Still, the basic concept was maintained, and the CaCO3-experiment, that showed the best results on the LDEF, will now be repeated with improved technology and in larger scale on the EURECA-1. The contents of the 4 SGF experiments are as follows: (1) growth of calcium-carbonate crystals; (2) formation and transformation of tri-calcium-phosphate; (3) growth of zeolite crystals; and (4) soret coefficient measurements (diffusion). The scientific background for the choice of experiments and the major improvements of the SGF are reviewed. Furthermore, some ideas on basic microgravity solution growth experimentation from ESA's newly established EWG (Expert Working Group) on solution growth are reported.

  17. Twin-mediated crystal growth: an enigma resolved.

    PubMed

    Shahani, Ashwin J; Gulsoy, E Begum; Poulsen, Stefan O; Xiao, Xianghui; Voorhees, Peter W

    2016-01-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth. PMID:27346073

  18. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  19. Preparation and evaluation of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; van den Berg, L.

    1989-11-01

    Large quantities (on the order of several hundred kilograms) of consistent, high-quality mercuric iodide (HgI2) for crystal growth have not been commercially available. The hydrocarbon, anion and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting material was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of HgI2 preparation in batches of 3 kg using Hg(NO3)2, or HgCl2 and KI. Since these salts are produced in much larger quantities than HgI2, more consistent quality is available. The impurity content of these batches and single crystals grown from them have been evaluated. These results and those from several commercially available starting materials and their grown single crystals are compared. Some of the single crystals grown using the in-house prepared HgI2 have yielded a large number of spectroscopy-grade nuclear detectors. The influence of the major impurities will be discussed.

  20. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.